WO2013016960A1 - 一种切换方法、基站及系统 - Google Patents

一种切换方法、基站及系统 Download PDF

Info

Publication number
WO2013016960A1
WO2013016960A1 PCT/CN2012/074138 CN2012074138W WO2013016960A1 WO 2013016960 A1 WO2013016960 A1 WO 2013016960A1 CN 2012074138 W CN2012074138 W CN 2012074138W WO 2013016960 A1 WO2013016960 A1 WO 2013016960A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
message
downlink
uplink
source base
Prior art date
Application number
PCT/CN2012/074138
Other languages
English (en)
French (fr)
Inventor
马焕君
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013016960A1 publication Critical patent/WO2013016960A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a handover method, a base station, and a system. Background technique
  • Switching is a basic process for ensuring user mobility in a mobile communication system. Switching ensures the continuity of the service during the mobile process.
  • the user equipment UE, User Equipment
  • eNB evolved base station
  • the eNB decides whether to continue to serve the UE according to the measurement report, and if the judgment result is that the service cannot be continued.
  • another eNB is selected as the destination eNB of the handover, and the eNB that initiates the handover is the source eNB.
  • the source eNB and the target eNB are connected through the X2 port or the S1 port, and the two eNBs may be located in the same mobility management entity (MME, Mobility Management Entity) or different MMEs.
  • MME Mobility Management Entity
  • the source eNB sends a handover request (Handover Request) message to the target eNB, where the message carries the transport address and the tunnel address of the serving gateway (SGW, Serving Gateway).
  • the target eNB After receiving the handover request message, the target eNB returns a Handover Request Ack message to the source eNB, where the handover request response message carries a transport layer address and a tunnel address that are useful for backhaul; the source eNB receives the handover request response message.
  • a handover command (Handover Command) message is sent to the UE, and the UE is notified to perform handover.
  • the source eNB sends a backhaul request to the target eNB, and the target eNB establishes a reverse tunnel.
  • the source eNB's Packet Data Convergence Protocol (PDCP) is re-established, and the upper layer is sent to the upper layer, and 4 bar is sent.
  • the downlink message PDCP sequence number is notified to the target eNB.
  • the uplink PDCP layer performs uplink re-establishment, and delivers consecutive data packets to the core network.
  • the discontinuous packets are forwarded to the target eNB, and the uplink PDCP sequence number is reported to the control plane.
  • the source eNB controls the control plane of the target eNB to send uplink.
  • PDCP The sequence number report message, the PDCP layer of the source eNB deletes the back-transmission packet from the processing queue.
  • the target eNB receives the backhaul message sent by the source eNB and buffers it.
  • the target eNB control plane waits for a status transfer (SN, Status Transfer) message sent by the source eNB.
  • the UE initiates a random access to the target eNB, and after the random access is completed, sends a Handover Confirm message to the target eNB. If the target eNB does not receive the message Handover Confirm or the UE does not send a Handover Confirm message, the handover fails. At this time, the UE determines the signal quality of the source eNB cell and the target eNB cell.
  • the UE If the source eNB cell signal quality is better than the target eNB cell signal quality, the UE re-establishes to the source eNB. After the re-establishment is complete, the PDCP layer of the source eNB sends the packets in the receive queue to the lower layer, but the PDCP layer discards the packets that are sent back, causing the loss of service packets and disrupting services. Or stop, greatly reducing the user experience. Summary of the invention
  • the main technical problem to be solved by the present invention is to provide a handover method, a base station, and a system, which can avoid the loss of service packets when the handover fails, thereby improving the user experience.
  • the present invention provides a handover method, including:
  • the source base station saves the backhaul message and forwards the backhaul message to the target base station; when the handover fails, the user terminal selects to re-establish and re-establish the source base station, the source base station takes precedence. The saved backhaul message is processed.
  • the backhaul message includes an uplink backhaul message and a downlink backhaul message
  • the source base station saves the backhaul message as:
  • the source base station saves the uplink backhaul message to the buffered uplink queue of the backhaul message, and saves the downlink backhaul message to the buffered downlink queue of the backhaul message.
  • the downlink backhaul message includes a PDCP layer processed service data unit that is not deleted by the source base station, and an untagged packet that has not been processed by the PDCP layer.
  • the method when the source base station processes the saved backhaul message, the method further includes:
  • the source base station stores the new uplink packet and the downlink packet received in the re-establishment process in the uplink receiving buffer queue and the downlink receiving buffer queue, respectively.
  • the source base station processes the saved backhaul message as: an uplink processing module and a downlink processing module of the PDCP layer of the source base station, the uplink processing module and a downlink processing module.
  • the uplink backhaul message and the downlink backhaul message are respectively processed according to a scheduling occasion included in the scheduling atom provided by the system.
  • the downlink processing module processes the downlink backhaul message as:
  • the downlink processing module points a processing catheter to the cache downlink queue
  • the downlink processing module sequentially takes the downlink backhaul message from the buffered downlink queue, performs compression processing and security protection on the obtained downlink backhaul message, and delivers the processed downlink backhaul message to the RLC. a layer, until the downlink processing module processes the downlink backhaul message in the buffered downlink queue;
  • the downlink processing module points the processing conduit to the downlink receiving buffer queue, and processes the new downlink packet received after the reconstruction is successful.
  • the downlink processing module compresses the extracted downlink backhaul message by: the downlink processing module compresses the extracted downlink backhaul message according to the serial number of the PDCP, The sequence number of the PDCP is stored in the source base station before the backhaul message is reversed.
  • the uplink processing module processes the uplink backhaul message as:
  • the uplink processing module points a processing conduit to the cache uplink queue
  • the uplink processing module sequentially extracts an uplink backhaul message from the cache uplink queue, where The received uplink backhaul message is subjected to decompression processing and security confirmation, and the processed uplink backhaul message is delivered to the upper layer until the uplink processing module processes the uplink back report in the buffered uplink queue.
  • the uplink processing module points the processing conduit to the uplink receiving buffer queue, and processes the received new uplink packet.
  • the present invention also provides a base station, which is used as a source base station when switching, and includes:
  • a message storage unit configured to store a back-transmission message to be forwarded to the target base station when the handover is performed; and a message back-transmission unit, configured to reverse-transmit the back-transmission message to the target base station;
  • the message processing unit is configured to process the saved backhaul message preferentially when the current handover fails, and the user terminal selects to re-establish and re-establish the establishment with the base station;
  • the present invention also provides a handover system, including at least one source base station, and at least one target base station, where the source base station includes:
  • a message storage unit configured to store a back-transmission message to be forwarded to the target base station when the handover is performed; and a message back-transmission unit, configured to reverse-transmit the back-transmission message to the target base station;
  • the message processing unit is configured to process the saved backhaul message preferentially when the current handover fails, and the user terminal selects to re-establish and re-establish the establishment with the base station;
  • the beneficial effects of the present invention are: when the source base station and the target base station are handed over, the source base station may save the backhaul message that needs to be back-transmitted to the target base station, and at the same time, forward the back-transmission message to the target base station, during the handover process.
  • the source base station keeps the backhaul message sent to the target base station.
  • the user terminal When the handover fails, the user terminal reselects the reestablishment with the source base station, and the reestablishment succeeds. Since the source base station keeps the backhaul message back to the target base station, the previously saved backhaul message may continue to be performed.
  • the service packet is lost after the switch fails, so that the current service can continue smoothly, thereby improving the user experience.
  • FIG. 1 is a flowchart of switching according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram 1 of a system according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram 2 of a system according to an embodiment of the present invention. detailed description
  • the source base station in this example can save the backhaul message that needs to be back-transmitted to the target base station in the handover process without deleting it, and at the same time, the back-transmission message is back-transmitted to the target base station, so in the handover process
  • the source base station keeps the backhaul message sent to the target base station.
  • the user terminal re-selects and re-establishes the re-establishment with the source base station, since the source base station keeps the back-transmission message back-transmitted to the target base station, the source base station may continue to perform the previously saved back-transmission message.
  • the source base station determines that the handover needs to be performed, receives the handover request acknowledgement message of the target base station, and confirms that the reverse tunnel between the source base station and the target base station has been successfully created, the source base station opens a back-propagation of the memory to be transmitted back to the target base station. The message is saved, and the above-mentioned back-transmission message is back-transmitted to the target base station according to a preset rule to perform the handover process.
  • the target base station does not receive the handover confirmation message or receives the handover failure acknowledgement message, it indicates that the handover fails, and the user terminal performs cell reselection. For details, see Figure 1:
  • the source base station sends a handover request message to the target base station to request a handover, where the message includes The transmission address and the tunnel address of the service gateway (SGW), and the target base station creates a reverse tunnel according to the information in the handover request message;
  • SGW service gateway
  • the source base station receives a handover request acknowledgement message fed back by the target base station, where the message includes a transport layer address and a tunnel address used for backhauling;
  • the source base station prepares data before back-transmitting data, creates a reverse tunnel, and sends a back-transmission message to the target base station.
  • the source base station saves the packet to be backhauled
  • step 105 while performing step 104, or back to the target base station before or after step 104;
  • the backhaul message described herein includes an uplink backhaul message and a downlink backhaul message.
  • the target base station After the target base station receives the backhaul message, it determines whether the handover is successful. When the target base station does not receive the handover confirmation message or receives the handover failure acknowledgement message after receiving the reverse transmission message, the target base station indicates that the handover fails, and the MME is failed. Sending a handover failure message, proceeding to step 107, when the handover is successful, proceeding to step 111;
  • the user terminal (UE) performs cell reselection, and selects to re-establish with the source base station when the cell signal quality of the source base station is better than the cell signal quality of the target base station;
  • the UE is re-established with the source base station, and successfully established to the source base station cell;
  • the source base station preferentially processes the backhaul message saved during the handover process
  • Step 110 After processing the back-transmission message in step 109, processing the new uplink message and the downlink message received after the successful reconstruction.
  • the source base station deletes the saved backhaul message and the reverse tunnel established with the target base station. It can be seen from the above that in the handover process, the source base station side does not delete the backhaul message, but saves it to prevent the service interruption when the user terminal re-establishes the source base station due to the loss of the service packet. Or stop happening.
  • the above steps are described in detail below to facilitate a better understanding of the present invention.
  • the backhaul message in the above step is an uplink packet and a downlink packet that the source base station needs to forward back to the target base station in the handover process, which is respectively referred to as an uplink backhaul packet and a downlink backhaul packet in the example;
  • the source base station in 104 saves the uplink backhaul message and the downlink backhaul message to the buffered uplink queue and the buffered downlink queue respectively, and is called when the subsequent handover fails.
  • the uplink backhaul message in this example includes all the uplink packets that are not consecutive to the source base station.
  • the specific process of determining and storing the uplink backhaul message is as follows: In the acknowledge mode (AM Acknowledged Mode), the source base station side will be ordered. The uplink packet is decompressed and guaranteed by the original configuration of the source base station, and then the ordered uplink packet is delivered to the upper layer. All the discontinuous uplink packets are determined as uplink backhaul packets, which are reversed.
  • the acknowledgment mode is specifically: after the packet aggregation layer (PDCP layer) delivers the message to the upper layer radio link control layer (the RLC layer), the base station receives the packet from the air interface. If the packet is sent, the UE receives the acknowledgment message from the base station, and the RLC layer does not retransmit the packet. Otherwise, the packet is retransmitted to the UE.
  • PDCP layer packet aggregation layer
  • RLC layer radio link control layer
  • the downlink backhaul message in this example includes the service data unit (SDU, Service Data Unit) processed by the PDCP layer that is not deleted at the source base station side, and the unremoved report that has not been processed by the PDCP layer.
  • SDU Service Data Unit
  • the PDCP layer on the source base station side deletes the packet that receives the UE side deletion indication, and does not receive the deletion indication, and the PDCP processed by the PDCP layer forwards the packet to the target.
  • the base station stores it in the cache upstream queue at the same time.
  • the process of reestablishing the UE and the source base station includes:
  • the PDCP layer of the source base station receives the new uplink packet and the downlink packet
  • the PDCP processing module of the source base station receives the new uplink packet and the downlink packet, and switches.
  • the PDCP layer of the medium source base station includes an uplink processing module and a downlink processing module.
  • the specific process of re-establishment is:
  • the control of the source base station sends a UE context (the UE context, which refers to the specific information of each bearer used in the communication service between the UE and the base station) to the user base, and the request message is re-established in the UE context re-establishment request message.
  • the UE context which refers to the specific information of each bearer used in the communication service between the UE and the base station
  • the request message is re-established in the UE context re-establishment request message.
  • the RLC layer re-establishes the signaling bearer instance.
  • the special packet is sent to trigger the re-establishment of the PDCP layer.
  • the layer After receiving the special packet, the layer reconfigures the PDCP uplink processing module and the downlink processing module on the signaling bearer 1, and the GPRS tunnel protocol user plane (GTPU, GPRS Tunnel Protocol User Plane) instance, and the new configuration takes effect immediately. .
  • GTPU GPRS tunnel protocol user plane
  • a UE context reestablishment request response message is sent to the control plane.
  • the control of the source base station sends a CRC (Connection Reestablishment Complete) message to the UE.
  • CRC Connection Reestablishment Complete
  • the UE After receiving the message, the UE re-establishes the PDCP of the Signaling Bearer 1 (SRB1, Signal Radio Bear 1), restores the SRB1 of the RLC layer, and updates the key.
  • the UE uses the new key to integrity protect and encrypt the CRC Request Complete message and sends it on SRB1.
  • the control plane sends a UE context re-establishment message to the user plane again, and the message carries a new configuration of other bearers.
  • the user plane receives the processing, it re-establishes the RLC layer and the MAC layer instance of the RLC layer's signaling bearer 2 (SRB2) and all data bearers (DRB, Data Radio Bear).
  • SRB2 signaling bearer 2
  • DRB Data Radio Bear
  • the new configuration takes effect immediately.
  • the RLC layer delivers special packets to the PDCP layer to trigger the re-establishment of SRB2 and DRB at the PDCP layer.
  • the PDCP re-allocates SRB2 and all DRB instances.
  • the new configuration takes effect immediately.
  • the user plane processing is completed, the UE context configuration response message is fed back to the control plane.
  • the control sends a CRC message to the UE.
  • the UE After receiving the message, the UE re-establishes SRB2 and all DRB instances, re-allocates all SRBs according to the content of the message, and restores them.
  • the source base station After the re-establishment is completed, the source base station first performs the back-transmission message saved during the reverse transmission.
  • the processing is specifically for compressing and guaranteeing the downlink backhaul message (that is, the integrity of the message and the encryption protection of the message), and decompressing and confirming the uplink backhaul message.
  • the process is as follows:
  • the source base station sends a UE context switch message to the user plane.
  • the uplink processing module and the downlink processing module restore the suspended SRB2 and all the DRBs, and the source base station receives the new downlink packet from the MME.
  • the UE receives the new uplink packet, and the uplink processing module and the downlink processing module do not process the received new uplink packet and the downlink packet, but respectively receive the received new uplink packet and downlink.
  • the message is stored in the uplink receive buffer queue and the downlink receive buffer queue. After the saved uplink backhaul message and the downlink backhaul message are processed, the received new message is processed.
  • the downlink processing module When processing the saved downlink backhaul message, the downlink processing module first points the processing catheter to the buffered downlink queue in which the downlink backhaul message is stored. It is noted that the processing catheter in this example is used to determine the current downlink processing. The module or the uplink processing module processes an indication of which message is stored in the queue, so the processing catheter in this example can be used to determine the priority of various message processing. At this time, the downlink processing module sequentially extracts the downlink backhaul message from the queue head of the buffered downlink queue, and the downlink processing module acquires the serial number of the PDCP temporarily stored before the reverse transmission from the source base station, and the downlink processing module acquires the system according to the packet.
  • the scheduling time included in the calling atom is used to compress the DRB packet of the received downlink backhaul packet by using the obtained sequence number of the PDCP, and add the header of the PDCP layer, and the packet header stores the SN of the PDCP. .
  • the downlink processing module delivers the processed message to the next layer of the RLC layer, and then takes the next downlink backhaul message from the downlink buffer queue for compression processing and the PDCP layer header to be added to the downlink buffer queue.
  • the stored downlink backhaul message is processed. Then, the downlink processing module points the processing conduit to the downlink receiving buffer queue, and processes the saved new downlink packet received from the core network side.
  • the downlink processing module in the example firstly processes the downlink backhaul message saved in the switching process first and sequentially, and then reconstructs the packet.
  • the new message received in the process is processed.
  • the order of the downlink packets is ensured, and the downlink packets that are back-transferred during the handover process are lost, or the new downlink packets are directly processed after being processed, thereby interrupting or even stopping the service, thereby improving the user. Experience.
  • the packet processing process for the uplink backhaul packet in the buffered uplink queue is similar to the downlink processing procedure, as follows:
  • the uplink processing module When processing the saved uplink backhaul message, the uplink processing module first points the processing pipeline to the buffered uplink queue in which the uplink backhaul message is stored. At this time, the uplink processing module sequentially takes out the uplink backgram from the queue head of the cached uplink queue. Text, decompress and confirm the processing, and deliver the processed message to the previous layer. Then, the uplink processing module sequentially extracts the next uplink backhaul message from the uplink buffer queue to perform the above decompression processing to perform the security confirmation processing until the uplink backhaul message stored in the uplink buffer queue is processed. The uplink processing module then directs the processing conduit to the upstream receive buffer queue to process the saved new uplink packet received from the UE side.
  • the present invention further provides a base station, where the base station includes a message storage unit, configured to store a back-transmission message that needs to be back-transmitted to the target base station when the handover is performed, and a packet back-transmission unit, configured to reverse-transmit the back-transmission message.
  • the message processing unit is configured to: when the base station is the source base station, and the current handover fails, and the user terminal selects to re-establish and re-establish the establishment with the source base station, preferentially attaching the connection.
  • the base station in this example may further include: a switching unit, configured to perform interaction of switching various information with the target base station during handover; and an information storage unit configured to store various types of connection information;
  • the message back-transmission unit is connected to the information storage unit, and the message back-transmission unit is connected to the message processing unit through the information storage unit.
  • the base station in this example may further include a handover determining unit, configured to determine whether the handover is successful during the handover process, for example, when the current base station is the target base station, the handover determination unit fails to receive the handover confirmation message or receives the handover failure.
  • the message determines whether the current switch is successful.
  • Ben The switching determination unit in the example is connected to the information storage unit and the message storage unit, respectively.
  • the base station in this example can be used as a source base station or as a target base station.
  • This example also provides a system, the system includes at least two base stations as described above, and at least one base station is a source base station, and at least one base station is a target base station.
  • the source base station in this example The target base station can belong to the same mobility management entity (see Figure 3), or it can belong to different mobility management entities (see Figure 4).
  • the present invention can ensure that the service packet is not lost after the handover of the base station fails, so that the current service is not affected, that is, after the handover fails, the UE performs cell reselection, and when the signal quality of the source base station cell is good, The source base station is re-established to the source base station. The source base station caches the back-transmission packet. When the handover failure is re-established to the source base station, the back-end packet is not lost. After the re-establishment is successful, the source base station preferentially saves the packet.
  • the back-transmission message which effectively avoids the loss of the service packet, improves the processing capability of the base station packet and the priority of the reverse-transmission packet processing, thereby ensuring the normal operation of the current service and bringing good to the user.
  • the specific embodiments of the invention are limited only by the description. It is to be understood by those skilled in the art that the present invention may be practiced without departing from the spirit and scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种切换方法、基站及系统,所述方法包括:切换时,源基站将反传报文保存,并将所述反传报文反传给目标基站;当切换失败,用户终端选择与所述源基站重建立并重建立成功时,所述源基站优先对保存的反传报文进行处理。在切换过程中,源基站一直保存有发给目标基站的反传报文。当切换失败,用户终端重新选择与所述源基站重建立并重建立成功时,由于源基站一直保存有反传给目标基站的反传报文,因此可继续可对之前保存的反传报文进行处理,避免切换失败后业务报文的丟失,使得当前业务可以继续顺利的进行,从而提高了用户的体验。

Description

一种切换方法、 基站及系统 技术领域
本发明涉及移动通信领域, 具体涉及一种切换方法、 基站及系统。 背景技术
切换是移动通讯系统中保证用户移动性的一个基本流程, 切换能够保 证用户在移动过程中业务的连续性。 用户终端(UE, User Equipment )向演 进基站(eNB, E-URAN Node B)发送测量 4艮告 ( MEASURMENT REPORT ), eNB根据测量报告判决是否还继续服务于该 UE, 当判决结果为不能继续服 务于该 UE时,会选择另一个 eNB作为切换的目的侧 eNB,发起切换的 eNB 为源 eNB。 源 eNB和目标 eNB之间通过 X2口或是 S1 口连接, 两个 eNB 可位于同一个移动管理实体(MME, Mobility Management Entity )或是不 同的 MME。
源 eNB向目标 eNB发送切换请求( Handover Request ) 消息, 该消息 中携带服务网关 (SGW, Serving Gateway ) 的传输地址和隧道地址。 目标 eNB收到切换请求消息后, 向源 eNB返回切换请求应答( Handover Request Ack )消息, 该切换请求应答消息中携带有用以反传的传输层地址和隧道地 址; 源 eNB 收到切换请求应答消息后, 向 UE发送切换命令 ( Handover Command )消息, 通知 UE进行切换。 源 eNB向目标 eNB发送 4艮文反传请 求, 目标 eNB建立反传隧道, 源 eNB的下行分组汇聚协议 ( PDCP, Packet Data Convergence Protocol )进行重建立, 停止向上层发送4艮文, 并且 4巴下 行报文 PDCP序号通知给目标 eNB。 上行 PDCP层进行上行重建立, 将上 行连续的数据报文投递到核心网, 不连续的报文反传到目标 eNB, 报告上 行 PDCP序号给控制面,由源 eNB控制面向目标 eNB控制面发送上行 PDCP 序号报告消息, 源 eNB的 PDCP层将反传的报文从处理队列中删除。
目标 eNB在收到源 eNB发送的反传报文, 进行緩存。 目标 eNB控制 面等待源 eNB发送的状态转移( SN, Status Transfer )消息。 UE向目标 eNB 发起随机接入, 随机接入完成后, 会向目标 eNB发送切换确认 ( Handover Confirm )消息。 如果目标 eNB没有接收消息 Handover Confirm或是 UE没 有发送 Handover Confirm消息, 则切换失败。 此时 UE会对源 eNB小区和 目标 eNB小区的信号质量进行判决,如果源 eNB小区信号质量比目标 eNB 小区的信号质量好,则 UE重建立到源 eNB。重建立完成后,源 eNB 的 PDCP 层将反传后接收队列中的报文向下层发送, 但是此时 PDCP层已经将反传 的报文丟弃, 从而造成业务报文的丟失, 使业务中断或停止, 大大降低了 用户的体验。 发明内容
本发明要解决的主要技术问题是, 提供一种切换方法、 基站及系统, 可避免切换失败时业务报文的丟失, 进而提高用户的体验。
为解决上述技术问题, 本发明提供了一种切换方法,包括:
切换时, 源基站将反传报文保存, 并将所述反传报文反传给目标基站; 当切换失败, 用户终端选择与所述源基站重建立并重建立成功时, 所 述源基站优先对保存的反传报文进行处理。
在本发明的一种实施例中, 所述反传报文包括上行反传报文和下行反 传报文;
所述源基站将反传报文保存为:
所述源基站将上行反传报文保存至反传报文的緩存上行队列 , 将下行 反传报文保存至反传报文的緩存下行队列。
在本发明的一种实施例中, 所述下行反传报文包括所述源基站未删除 的经 PDCP层处理过的服务数据单元和未删除的没经 PDCP层处理的报文。 在本发明的一种实施例中, 所述源基站对所述保存的反传报文进行处 理时, 所述方法还包括:
所述源基站将重建立过程中接收到的新的上行报文和下行报文分别存 储到上行接收緩存队列和下行接收緩存队列中。
在本发明的一种实施例中, 所述源基站对保存的反传报文进行处理为: 所述源基站的 PDCP层的上行处理模块和下行处理模块, 所述上行处理模 块和下行处理模块根据系统提供的调度原子内包含的调度时机分别对所述 上行反传报文和所述下行反传报文进行处理。
在本发明的一种实施例中, 所述下行处理模块对所述下行反传报文进 行处理为:
所述下行处理模块将处理导管指向所述緩存下行队列;
所述下行处理模块依次从所述緩存下行队列中取出下行反传报文, 对 取出的下行反传报文进行压缩处理和完保性保护, 并将处理后的下行反传 报文投递到 RLC层, 直至所述下行处理模块处理完所述緩存下行队列中的 下行反传报文;
所述下行处理模块将所述处理导管指向所述下行接收緩存队列, 对重 建成功后接收到的新的下行报文进行处理。
在本发明的一种实施例中, 所述下行处理模块对取出的下行反传报文 进行压缩处理为: 所述下行处理模块根据所述 PDCP的序号对取出的下行 反传报文进行压缩, 其中, 所述 PDCP的序号在所述反传报文反传前存储 在所述源基站中。
在本发明的一种实施例中, 所述上行处理模块对所述上行反传报文进 行处理为:
所述上行处理模块将处理导管指向所述緩存上行队列;
所述上行处理模块依次从所述緩存上行队列中取出上行反传报文, 对 取出的上行反传报文进行解压缩处理和完保性确认, 并将处理后的上行反 传报文投递到上层, 直至所述上行处理模块处理完所述緩存上行队列中的 上行反传报文;
所述上行处理模块将所述处理导管指向所述上行接收緩存队列, 对接 收到的新的上行报文进行处理。
本发明还提供了一种基站, 用于切换时作为源基站, 包括:
报文存储单元, 用于存储切换时要反传给目标基站的反传报文; 报文反传单元, 用于反传所述反传报文给所述目标基站;
报文处理单元, 用于在当前切换失败, 用户终端选择与本基站重建立 并重建立成功时, 优先对保存的反传报文进行处理; 接。
本发明还提供了一种切换系统, 包括至少一个源基站, 且至少一个目 标基站, 所述源基站包括:
报文存储单元, 用于存储切换时要反传给目标基站的反传报文; 报文反传单元, 用于反传所述反传报文给所述目标基站;
报文处理单元, 用于在当前切换失败, 用户终端选择与本基站重建立 并重建立成功时, 优先对保存的反传报文进行处理; 接。
本发明的有益效果是: 在源基站与目标基站切换时, 源基站可将需要 反传给目标基站的反传报文保存起来, 同时将反传报文反传给目标基站, 在切换过程中, 源基站一直保存有发给目标基站的反传报文。 当切换失败, 用户终端重新选择与所述源基站重建立并重建立成功时, 由于源基站一直 保存有反传给目标基站的反传报文, 可继续对之前保存的反传报文进行处 理, 避免切换失败后业务报文的丟失, 使得当前业务可以继续顺利的进行, 从而提高了用户的体验。 附图说明
图 1为本发明一种实施例的切换流程图;
图 2为本发明一种实施例的基站的结构框图;
图 3为本发明一种实施例的系统的结构框图一;
图 4为本发明一种实施例的系统的结构框图二。 具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
本例中的源基站在切换过程中可将需要反传给目标基站的反传报文保 存起来, 而并不将其删除, 同时将上述反传报文反传给目标基站, 因此在 切换过程中, 源基站一直保存有发给目标基站的反传报文。 当切换失败, 用户终端重新选择与所述源基站重建立并重建立成功时, 由于源基站一直 保存有反传给目标基站的反传报文, 源基站可继续对之前保存的反传报文 进行优先处理, 然后再对重建成功后接收到的新的报文进行处理, 从而可 避免切换失败后业务报文的丟失, 使得当前业务可以继续顺利的进行, 具 体如下:
当源基站确定需要进行切换, 收到目标基站的切换请求确认消息, 并 确认源基站和目标基站之间的反传隧道已经创建成功时, 源基站开辟一段 内存将要反传给目标基站的反传报文保存起来, 并将上述反传报文按预设 的规则反传给目标基站以进行切换的过程。 当目标基站接收完反传报文未 收到切换确认消息或收到切换失败确认消息时, 表明此次切换失败, 用户 终端进行小区重选, 具体请参见图 1:
101:源基站向目标基站发送切换请求消息请求切换, 该消息中包含服 务网关 (SGW ) 的传输地址和隧道地址, 目标基站根据切换请求消息中的 信息创建反传隧道;
102: 源基站接收到目标基站反馈的切换请求确认消息, 该消息中包含 有用以反传的传输层地址和隧道地址;
103: 源基站进行反传数据前的数据准备, 创建反传隧道, 向目标基站 发送反传报文;
104: 源基站将要反传的报文进行保存;
105: 在进行步驟 104的同时, 或在步驟 104之前或之后将上述反传报 文反传给目标基站;
具体地, 这里所述反传报文包括上行反传报文和下行反传报文。
106: 目标基站接收完上述反传报文之后, 判断切换是否成功, 当目标 基站接收完反传报文未收到切换确认消息或收到切换失败确认消息时, 表 明此次切换失败,向 MME发送切换失败消息,转至步驟 107, 当切换成功, 转至步驟 111 ;
107: 用户终端(UE )进行小区重选, 并在源基站的小区信号质量比目 标基站的小区信号质量好时, 选择与源基站重建立;
108: UE与源基站重建立, 并成功的建立到源基站小区;
109: 源基站优先对切换过程中保存的反传报文进行处理;
110: 在步驟 109处理完反传报文后, 再对重建成功后接收到的新的上 行报文和下行报文进行处理。
111 : 源基站删除保存的反传报文以及与目标基站建立的反传隧道。 由上可知, 本例在切换过程中, 源基站侧不会将反传报文删除, 而将 其保存, 可防止切换失败时, 当用户终端重建立到源基站因业务报文丟失 导致业务中断或停止的情况发生。 下面分别对上述步驟进行详细说明, 以 助于更好的理解本发明。 上述步驟中的反传报文为切换过程中, 源基站需向目标基站反传的上 行报文和下行报文, 本例中分别称为上行反传报文和下行反传报文; 步驟
104 中的源基站将上述上行反传报文和下行反传报文分别保存到緩存上行 队列和緩存下行队列, 以供后续切换失败时调用。
本例中的上行反传报文包括源基站侧不连续的所有上行报文,确定并存 储上行反传报文的具体过程如下: 在确认模式( AM Acknowledged Mode ) 下, 源基站侧将有序的上行报文用源基站原有的配置进行解压缩和完保性 确认, 然后将有序的上行报文向上层投递, 不连续的所有上行报文确定为 上行反传报文, 将其反传到目标基站侧, 并将其存入緩存上行队列; 其中, 所述确认模式具体为:分组汇聚层( PDCP层)向上层无线链路控制层( RLC 层)投递报文后, 基站从空口发出报文, UE侧收到基站的报文需要向基站 回应报文接收的确认消息; 基站 RLC层则不会重传该报文, 否则报文会重 传给 UE。
本例中的下行反传报文包括源基站侧未删除的经 PDCP层处理过的服 务数据单元(SDU, Service Data Unit )和未删除的没经 PDCP层处理的报
Data Unit ) 的 SDU报文。 确定并存储下行反传报文的具体过程如下:
在确认模式时,对于下行报文, 源基站侧的 PDCP层将接收到 UE侧删 除指示的报文进行删除,将没有接收到删除指示,经 PDCP层处理过的 PDCP 并将其反传给目标基站, 同时将其存入緩存上行队列。
上述步驟 108中, UE与源基站重建立的过程包括:
UE重建立到源基站小区过程中, 源基站的 PDCP层接收新的上行报文 和下行报文, 源基站的 PDCP的处理模块会对接收到的新的上行报文和下 行报文、 以及切换过程中保存的上行反传报文和下行反传报文处理, 本例 中源基站的 PDCP层的包括上行处理模块和下行处理模块。 具体的重建立 的过程为:
源基站的控制面向其用户面发送 UE上下文(此处 UE上下文, 是指 UE与基站通讯业务中用到的各个承载的具体信息)重建立请求消息, 所述 UE上下文重建立请求消息中携带信令承载 1上的新配置, 用户面收到后, 除了信令承载外挂起所有的承载, RLC层重建立信令承载实例, 处理完成 后,发送特殊报文用于触发 PDCP层的重建立, PDCP层收到该特殊报文后, 重新配置信令承载 1上的 PDCP上行处理模块和下行处理模块,以及 GPRS 通道协议用户面 (GTPU, GPRS Tunnel Protocol User Plane ) 实例等, 且新 的配置立即生效。用户面处理完成后, 向控制面发送 UE上下文重建立请求 应答消息。
源基站的控制面向 UE 发送连接重建立 ( CRC , Connection Reestablishment Complete )消息, UE收到后重建立信令 载 1( SRB1 , Signal Radio Bear 1 )的 PDCP, 恢复 RLC层的 SRB1 , 更新密钥。 UE使用新的密 钥对 CRC请求完成消息进行完整性保护和加密, 并在 SRB1上发送。
控制面再次向用户面发送 UE上下文重建立消息,消息中携带的是其它 承载的新配置。 用户面收到后进行的处理, 重建立 RLC 层的信令承载 2 ( SRB2 )和所有的数据承载(DRB, Data Radio Bear)的 RLC层、 MAC层 实例。 新配置立即生效, 同时 RLC层向 PDCP层投递特殊报文, 用于触发 PDCP层的 SRB2和 DRB的重建立, PDCP会重配 SRB2和所有的 DRB实 例, 新配置立即生效。 用户面处理完成后, 向控制面反馈 UE上下文配置应 答消息。
控制面向 UE发送 CRC消息, UE收到后,重建立 SRB2和所有的 DRB 实例, 根据消息内容重配所有的 SRB, 并将其恢复。
在重建立完成后, 源基站会先将反传发生过程中保存的反传报文进行 处理, 具体为对下行反传报文进行压缩和完保性(即报文的完整性和报文 的加密保护)保护, 对上行反传报文进行解压缩和完保性确认。 处理过程 具体如下:
源基站的控制面向其用户面发送 UE上下文转换消息, 用户面收到后, 上行处理模块和下行处理模块恢复挂起的 SRB2和所有的 DRB, 源基站从 MME接收到新的下行报文, 从 UE侧接收到新的上行报文, 此时上行处理 模块和下行处理模块并不对接收到的新的上行报文和下行报文进行处理, 而是分别将接收到的新的上行报文和下行报文存储到上行接收緩存队列和 下行接收緩存队列中, 等处理完保存的上行反传报文和下行反传报文后, 再对接收到的新的报文进行处理。
下行处理模块在处理保存的下行反传报文时, 先将处理导管指向存储 有下行反传报文的緩存下行队列, 值得注意的是, 本例中的处理导管是用 来判定当前的下行处理模块或上行处理模块处理哪个队列中存储的报文的 一种指示, 因此可利用本例中的处理导管来决定各种报文处理的优先级。 此时, 下行处理模块从緩存下行队列的队首依次取出下行反传报文, 同时 下行处理模块从源基站获取反传前临时存储起来的 PDCP的序号, 下行处 理模块根据报文获取的系统下发的调用原子内所包含的调度时机, 利用获 取到的 PDCP的序号对取出的下行反传报文进行 DRB报文的压缩, 并增加 PDCP层的报文头, 报文头会存储 PDCP的 SN。 下行处理模块将处理后的 报文投递到下一层 RLC层, 然后, 依次从下行緩存队列中取出下一个下行 反传报文进行压缩处理以及 PDCP层报文头的增加, 直到下行緩存队列中 存储的下行反传报文处理完。 然后下行处理模块将处理导管指向下行接收 緩存队列, 处理保存的从核心网侧接收的新下行报文。
由上可知, 本例中的下行处理模块在处理报文时, 先将切换过程中保 存的下行反传报文通过处理导管的方式优先、 依次处理, 然后才对重建过 程中接收到的新的报文进行处理。 保证了下行报文的有序性, 也避免了切 换过程中反传的下行报文丟失、 或未经处理就直接处理接收到新的下行报 文, 从而造成的业务中断甚至停止, 提高了用户的体验。
本例中对緩存上行队列中的上行反传报文的报文处理流程与下行的处 理流程类似, 具体如下:
上行处理模块在处理保存的上行反传报文时, 先将处理导管指向存储 有上行反传报文的緩存上行队列, 此时, 上行处理模块从緩存上行队列的 队首依次取出上行反传报文, 对其进行解压缩和完保性确认处理, 并将处 理后的报文投递到上一层。 然后, 上行处理模块依次从上行緩存队列中取 出下一个上行反传报文进行上述解压缩处理以完保性确认处理, 直到上行 緩存队列中存储的上行反传报文处理完。 然后上行处理模块将处理导管指 向上行接收緩存队列, 处理保存的从 UE侧接收的新上行报文。
本例还提供了一种基站, 该基站包括报文存储单元, 用于存储切换时 需反传给目标基站的反传报文; 报文反传单元, 用于反传所述反传报文给 所述目标基站; 报文处理单元, 用于当所述基站为源基站, 且当前切换失 败, 用户终端选择与所述源基站重建立并重建立成功时, 优先对所述保存 连接。
请参见图 2, 本例中的基站还可包括: 切换单元, 用于在切换时与目标 基站完成切换各种信息的交互; 信息存储单元, 用于存储各类连接信息; 上述切换单元分别与报文反传单元和信息存储单元连接, 报文反传单元通 过信息存储单元与报文处理单元连接。
本例中的基站还可进一步包括切换判断单元, 用于在切换过程中判断 切换是否成功, 例如, 当当前该基站为目标基站时, 切换判断单元根据是 否接收到切换确认消息或接收到切换失败消息判断当前切换是否成功。 本 例中的切换判断单元分别与上述信息存储单元和报文存储单元连接。
本例中的基站可作为源基站, 也可作为目标基站。
本例还提供了一种系统, 该系统包括至少两个如上所述的基站, 且至 少一个基站为源基站, 至少一个基站为目标基站, 请参见图 3和图 4, 本例 中的源基站和目标基站可属于同一个移动管理实体(参见图 3 ), 也可属于 不同的移动管理实体(参见图 4 )。
综上可知, 本发明在基站切换失败后, 可保证业务报文不丟失, 使当 前的业务不受影响, 即切换失败后, UE发生小区重选, 当源基站小区的信 号质量较好, 会重建立到源基站, 由于源基站对反传的报文进行了緩存, 在发生切换失败重建立到源基站时, 可保证反传报文的不丟失, 重建立成 功后, 源基站优先处理保存的反传报文, 从而有效的避免的业务报文的丟 失, 提高了基站报文的处理能力和反传报文处理的优先级, 从而保证了当 前业务的正常进行, 为用户带来了良好的体验。 能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的 普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单 推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
1、 一种切换方法,所述方法包括:
切换时, 源基站将反传报文保存, 并将所述反传报文反传给目标基站; 当切换失败, 用户终端选择与所述源基站重建立并重建立成功时, 所 述源基站优先对保存的反传报文进行处理。
2、 如权利要求 1所述的方法, 其中, 所述反传报文包括上行反传报文 和下行反传报文;
所述源基站将反传报文保存为:
所述源基站将上行反传报文保存至反传报文的緩存上行队列 , 将下行 反传报文保存至反传报文的緩存下行队列。
3、 如权利要求 2所述的方法, 其中, 所述下行反传报文包括所述源基 站未删除的经分组汇聚 PDCP层处理过的服务数据单元和未删除的没经 PDCP层处理的 4艮文。
4、 如权利要求 2或 3所述的方法, 其中, 所述源基站对保存的反传报 文进行处理时, 所述方法还包括:
所述源基站将重建立过程中接收到的新的上行报文和下行报文分别存 储到上行接收緩存队列和下行接收緩存队列中。
5、 如权利要求 4所述的方法, 其中, 所述源基站对保存的反传报文进 行处理为:
所述源基站的 PDCP层的上行处理模块和下行处理模块根据系统提供 文进行处理。
6、 如权利要求 5所述的方法, 其中, 所述下行处理模块对所述下行反 传报文进行处理为:
所述下行处理模块将处理导管指向所述緩存下行队列; 所述下行处理模块依次从所述緩存下行队列中取出下行反传报文, 对 取出的下行反传报文进行压缩处理和完保性保护, 并将处理后的下行反传 报文投递到无线链路控制 RLC层, 直至所述下行处理模块处理完所述緩存 下行队列中的下行反传报文;
所述下行处理模块将所述处理导管指向所述下行接收緩存队列, 对重 建成功后接收到的新的下行报文进行处理。
7、 如权利要求 6所述的方法, 其中, 所述下行处理模块对取出的下行 反传报文进行压缩处理为:
所述下行处理模块根据所述 PDCP的序号对取出的下行反传报文进行 压缩, 其中, 所述 PDCP的序号在所述反传报文反传前存储在所述源基站 中。
8、 如权利要求 5所述的方法, 其中, 所述上行处理模块对所述上行反 传报文进行处理为:
所述上行处理模块将处理导管指向所述緩存上行队列;
所述上行处理模块依次从所述緩存上行队列中取出上行反传报文, 对 取出的上行反传报文进行解压缩处理和完保性确认, 并将处理后的上行反 传报文投递到上层, 直至所述上行处理模块处理完所述緩存上行队列中的 上行反传报文;
所述上行处理模块将所述处理导管指向所述上行接收緩存队列, 对接 收到的新的上行报文进行处理。
9、 一种基站, 用于在切换时作为源基站, 包括:
报文存储单元, 用于存储切换时要反传给目标基站的反传报文; 报文反传单元, 用于反传所述反传报文给所述目标基站;
报文处理单元, 用于在当前切换失败, 用户终端选择与本基站重建立 并重建立成功时, 优先对保存的反传报文进行处理。
10、 一种切换系统, 包括至少一个源基站和至少一个目标基站, 所述 源基站包括:
报文存储单元, 用于存储切换时要反传给目标基站的反传报文; 报文反传单元, 用于反传所述反传报文给所述目标基站;
报文处理单元, 用于在当前切换失败, 用户终端选择与本基站重建立 并重建立成功时, 优先对保存的反传报文进行处理。
PCT/CN2012/074138 2011-08-02 2012-04-16 一种切换方法、基站及系统 WO2013016960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110219332.5A CN102917409B (zh) 2011-08-02 2011-08-02 一种切换方法、基站及系统
CN201110219332.5 2011-08-02

Publications (1)

Publication Number Publication Date
WO2013016960A1 true WO2013016960A1 (zh) 2013-02-07

Family

ID=47615601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074138 WO2013016960A1 (zh) 2011-08-02 2012-04-16 一种切换方法、基站及系统

Country Status (2)

Country Link
CN (1) CN102917409B (zh)
WO (1) WO2013016960A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104170464A (zh) * 2013-02-07 2014-11-26 华为技术有限公司 一种数据传输方法以及接入网设备
CN106900017B (zh) * 2015-12-21 2021-04-02 中兴通讯股份有限公司 数据反传方法及装置
CN112105092B (zh) * 2019-06-17 2024-03-15 中兴通讯股份有限公司 双连接重建立中数据的处理方法及装置
CN111935745B (zh) * 2020-08-12 2024-04-12 太仓市同维电子有限公司 实现终端跨基站移动性能优化的方法
CN112787759B (zh) * 2021-01-26 2021-09-21 白盒子(上海)微电子科技有限公司 一种优化跨基站切换效率的方法
CN117956530A (zh) * 2024-03-27 2024-04-30 四川创智联恒科技有限公司 一种提高在切换过程中数据传输可靠性的方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080069053A1 (en) * 2006-09-20 2008-03-20 Samsung Electronics Co., Ltd. Handover method and apparatus in a mobile communication system
CN101247643A (zh) * 2007-02-15 2008-08-20 华为技术有限公司 小区切换过程中数据前转、传输的方法、系统及装置
CN101772103A (zh) * 2008-12-31 2010-07-07 阿尔卡特朗讯公司 数据转发方法及其设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080069053A1 (en) * 2006-09-20 2008-03-20 Samsung Electronics Co., Ltd. Handover method and apparatus in a mobile communication system
CN101247643A (zh) * 2007-02-15 2008-08-20 华为技术有限公司 小区切换过程中数据前转、传输的方法、系统及装置
CN101772103A (zh) * 2008-12-31 2010-07-07 阿尔卡特朗讯公司 数据转发方法及其设备

Also Published As

Publication number Publication date
CN102917409B (zh) 2017-11-14
CN102917409A (zh) 2013-02-06

Similar Documents

Publication Publication Date Title
JP7138738B2 (ja) ベアラを再構成する方法及び装置
TWI406576B (zh) 執行交接程序及建立資料之方法
CN108282825B (zh) 一种信息处理方法及装置
US9191982B2 (en) Method for synchronizing PDCP operations after RRC connection re-establishment in a wireless communication system and related apparatus thereof
WO2013016960A1 (zh) 一种切换方法、基站及系统
JP2013513988A (ja) 中継ハンドオーバ制御
WO2014110810A1 (zh) 传输数据的方法、基站和用户设备
WO2019095974A1 (zh) 数据处理方法、装置以及计算机存储介质
GB2520923A (en) Bearer reconfiguration
GB2525891A (en) Bearer reconfiguration
WO2011160355A1 (zh) S1切换的方法、数据转发方法及移动通信系统
CN111585721B (zh) 一种实体建立的处理方法及装置
WO2012155447A1 (zh) 跨基站切换过程中数据的反传方法及基站
WO2017133595A1 (zh) 数据处理的方法及装置
WO2020073997A1 (zh) 资源控制连接的数据包重传方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820104

Country of ref document: EP

Kind code of ref document: A1