WO2020073997A1 - 资源控制连接的数据包重传方法 - Google Patents

资源控制连接的数据包重传方法 Download PDF

Info

Publication number
WO2020073997A1
WO2020073997A1 PCT/CN2019/110711 CN2019110711W WO2020073997A1 WO 2020073997 A1 WO2020073997 A1 WO 2020073997A1 CN 2019110711 W CN2019110711 W CN 2019110711W WO 2020073997 A1 WO2020073997 A1 WO 2020073997A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
user equipment
network side
connection
retransmission method
Prior art date
Application number
PCT/CN2019/110711
Other languages
English (en)
French (fr)
Inventor
郑培军
施方明
林香君
范恭达
廖士杰
Original Assignee
联发科技(新加坡)私人有限公司
郑培军
施方明
林香君
范恭达
廖士杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联发科技(新加坡)私人有限公司, 郑培军, 施方明, 林香君, 范恭达, 廖士杰 filed Critical 联发科技(新加坡)私人有限公司
Priority to CN201980066163.0A priority Critical patent/CN112997577A/zh
Publication of WO2020073997A1 publication Critical patent/WO2020073997A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to the narrowband Internet of Things (NB-IOT) control plane radio resource control connection reestablishment (RRC connection reestablishment), and in particular to a method for retransmission of non-access layer (NAS) non-access data packets.
  • NB-IOT narrowband Internet of Things
  • RRC connection reestablishment radio resource control connection reestablishment
  • Narrowband Internet of Things is a low-power wide area coverage radio technology standard developed by the Third Generation Partnership Project (3GPP) to support a wide range of Internet of Things applications and services.
  • the control plane radio resource control connection reestablishment (RRC connection re-establishment) was introduced. If the terminal is disconnected during data transmission (Radio link failure), the access layer (AS) and the network will initiate the process of reestablishing the radio resource control connection.
  • the radio resource control connection re-establishment can avoid the complete process of non-access layer recovery (NAS recovery) when reconnecting, so as to reduce the power consumption of the user equipment.
  • NAS recovery non-access layer recovery
  • the most important thing in the process of radio resource control connection re-establishment is that there is no packet loss and no repeated data transmission of non-access layer data packets.
  • the present invention aims at narrow-band Internet of Things in the Control Plane CIoT EPS optimizations process to reestablish the control plane radio resource control connection and proposes a non-connected Incoming layer data packet retransmission method to ensure that non-access layer data does not drop packets and there is no repeated non-access layer data transmission.
  • the narrowband Internet of Things removes the PDCP layer and supports data transmission.
  • the main functions of the PDCP layer include header compression and decompression of data packets, data encryption / decryption, and data integrity protection.
  • the PDCP reconstruction process of RLC AM it provides data packets to be transmitted to the upper layer in sequence, as well as the inspection of duplicate packets. After removing the PDCP layer, in the process of radio resource control connection reestablishment, how to ensure complete data transmission, in order and not repeatedly transmitted to the non-access layer, in the general transmission, is guaranteed by the RLC layer.
  • the RLC layer will be rebuilt.
  • the non-access layer and above remain in the state of transmitting data.
  • the data transmitted from the non-access layer to the access layer to be sent to the network, or the data that the access layer has sent and is waiting for the network side to confirm (Acknowledgment), will all Will be discarded.
  • the non-access layer will retransmit all data that the access layer does not confirm the successful transmission, resulting in low data transmission efficiency.
  • Packets 8 to 15 have been applied by the user equipment application layer (AP, application layer) enters the access layer of the user equipment, in which packets 8 to 12 have been transmitted, but no network confirmation has been obtained, packets 13 to 15 are waiting to be sent to the network, and the user equipment is disconnected (RLF, radio) link)
  • the user equipment reselects the cell (cell selection), and the access layer and the network then initiate the process of reestablishing the radio resource connection.
  • the access layer packets 8-15 are discarded, and the control plane radio resource connection is re-established.
  • the user equipment thinks that the packets 8-15 are not successfully sent.
  • the incoming layer retransmits packets 8 to 15, but packets 8 to 12 have been received on the network side before. It is a duplicate packet, wasting network resources and affecting the composition data of the application layer.
  • FIG. 2 is a schematic diagram of the scenario of retransmission of downlink non-access layer data packets after the radio resource connection is established by the network specified in the 3GPP protocol: the network has sent packets 1 to 4 to the user equipment but has not received radio link control confirmation. Not sent yet. At this time, a disconnection occurs and the radio resource reconstruction of the control plane is completed. The old base station believes that packets 1-7 have sent failure notification to the mobile management entity (Mobility Management Entity, MME). After the connection is reestablished, the new base station retransmits packets 1-7, but the packet It has been received on the user equipment side before 1 to 4. It is a duplicate packet, which wastes network resources and affects the composition data of the application layer.
  • MME mobile management Entity
  • Fig. 3 is a schematic diagram of the scenario where the downlink non-access layer data packets are retransmitted and out of order after the radio resource connection is re-established in the network specified by the 3GPP protocol: the network has sent packets 1-7 to the user equipment and also received radio link control confirmation For any reason, such as 2-HARQ transmission, packets 10-12 have been sent to the user equipment, and packets 8-9 have not yet arrived. At this time, a disconnection occurs and the control plane radio resource connection is re-established. In the radio resource re-establishment process, layer 2 (L2) will send packets 10-12 to the higher layer after grouping packets.
  • L2 layer 2
  • the network considers that packets 8-15 have failed to be sent, so it will Packets 8 to 15 are sent, because the non-access layer does not do sequence confirmation and repeated packet inspection, which causes the user equipment application layer to receive packets 10 to 12 first and then to receive packets 8 to 9 to cause out-of-order packet reception, and packets 10 to 12 Is a duplicate package.
  • the present invention provides a method for retransmitting a data packet of a resource control connection.
  • the method for retransmitting a data packet includes: during a process of reestablishing a connection with a network side, a user equipment sends a packet receiving status to the network side, so that After completing the reestablished connection, retransmit the data packet to the user equipment according to the packet receiving status.
  • the packet receiving state includes: the sequence number of the last data packet received before the connection is re-established.
  • sending the packet receiving status to the network side includes sending the last 5 digits of the sequence number to the network side.
  • the retransmitting the data packet to the user equipment according to the packet receiving state includes: transmitting the data packet represented by the sequence number plus 1 to the user equipment.
  • the user equipment sends a packet receiving status to the network side during the process of reestablishing the connection with the network side, including: when the user equipment sends a reestablishment connection request to the network side during the process of reestablishing the connection with the network side , Add the packet receiving status to the connection re-establishment request.
  • the user equipment sends a packet receiving status to the network side during the process of reestablishing the connection with the network side, including: the user equipment sends the reestablishment connection completion information to the network side during the process of reestablishing the connection with the network side At this time, the packet receiving status is added to the reestablishment connection completion information.
  • the data packet retransmission method further includes: during the process of reestablishing the connection with the network side, the user equipment calculates a MAC value according to a fixed value, and sends the MAC value to the network side, the MAC value is used for Perform message integrity protection verification with the network side.
  • the fixed value is a default value of the user equipment and the network side.
  • the data packet retransmission method further includes: during the process of reestablishing the connection with the network side, the user equipment calculates a MAC value according to the last 5 digits of the sequence number, and sends the MAC value to the network side, The MAC value is used for message integrity protection verification with the network side.
  • the data packet retransmission method includes: during the process of reestablishing the connection between the user equipment and the network side, the radio link control layer of the user equipment does not transmit the received data packet to the upper layer.
  • the packet receiving status includes information that the data packet has been successfully received and information that the data packet has not been successfully received.
  • the present invention proposes another data packet retransmission method for resource control connection.
  • the data packet retransmission method includes: during the process of reestablishing the connection with the user equipment, the network side sends a packet receiving status to the user equipment, so that the user equipment After completing the reestablished connection, retransmit the data packet to the network side according to the packet receiving status.
  • the data packet retransmission method further includes: during the process of reestablishing the connection with the user equipment on the network side, the old base station on the network side sends the received data packet to the new base station through the X2 interface.
  • the packet receiving state includes: the sequence number of the last data packet received before the connection is re-established.
  • sending the packet receiving status to the user equipment includes sending the last 5 digits of the sequence number to the user equipment.
  • the retransmitting the data packet to the network side according to the packet receiving status includes: transmitting the data packet represented by the sequence number plus 1 to the network side.
  • the network side sends the packet receiving status to the user equipment during the process of reestablishing the connection with the user equipment, including: when the network side sends the reestablishment connection information to the network side during the process of rebuilding the connection with the user equipment , Add the packet receiving status to the reestablished connection information.
  • the data packet retransmission method further includes: during the process of reestablishing the connection with the user equipment, the network side receives the MAC value transmitted from the user equipment, calculates the MAC-1 value according to the fixed value; and compares the MAC value with the The MAC-1 value is compared to perform message integrity protection verification with the user equipment.
  • the fixed value is a default value of the network side and the user equipment.
  • the data packet retransmission method further includes: during the process of reestablishing the connection with the network side, the user equipment receives from the user equipment the lower 5 bits of the sequence number and MAC of the last data packet received by the user equipment before reestablishing the connection Value, calculate the MAC-I value according to the lower 5 digits of the sequence number of the last data packet received by the user equipment; compare the MAC value with the MAC- ⁇ value to perform with the user equipment Message integrity protection check.
  • the packet receiving status includes information that the data packet has been successfully received and information that the data packet has not been successfully received.
  • FIG. 1 is a schematic diagram of a scenario of retransmission of uplink non-access layer data packets of a user equipment specified by the 3GPP protocol after a radio resource connection is reestablished.
  • FIG. 2 is a schematic diagram of a scenario of retransmission of downlink non-access layer data packets after a radio resource connection is reestablished by a network specified by the 3GPP protocol.
  • FIG. 3 is a schematic diagram of out-of-sequence and downlink non-access layer data packet retransmission scenarios of a network specified by the 3GPP protocol after a radio resource connection is reestablished.
  • FIG. 4 is a schematic diagram of an optimized non-access layer data packet retransmission scheme after a radio resource connection is re-established by an optimized user equipment according to an embodiment of the present invention.
  • the user equipment synchronizes with the network through last-Dl-NAS-Count and last- The process of Ul-NAS-Count exchanging the latest received non-access layer data packets.
  • the last-Dl-NAS-Count is transmitted in the RRC Connection Reestablishment Request-NB message, and the last-Ul-NAS-Count is transmitted in the RRC Connection Reestablishment-NB message.
  • FIG. 5 is a schematic diagram of an optimized non-access layer data packet retransmission scheme after a radio resource connection is re-established according to an embodiment of the present invention, where the last-Ul-NAS-Count is transmitted in the RRC Connection Reestablishment-NB message In, the last-Dl-NAS-Count is transmitted in the RRC Connection Reestablishment Complete-NB message.
  • FIG. 6 is a schematic diagram of an optimized non-access layer packet retransmission scheme after a radio resource connection is re-established according to an embodiment of the invention.
  • the radio link control layer on the user equipment side is not reorganized during the re-establishment process Out of order packets to the upper layer.
  • the present invention proposes a non-access layer solution.
  • the network exchanges the received NAS COUNT message with the client, so that both the user equipment and the network know the sequence number of the last non-access layer data packet received before reestablishment.
  • the user equipment can send the last-Dl-NAS-Count to the network, and the network can send the last-Ul-NAS-Count to the user equipment.
  • the last-Dl-NAS-Count value / last-Ul-NAS-Count value is the lower 5 digits (5 Least Significant Bits) of the NAS and COUNT value of the terminal and network maintenance NAS, and the NAS COUNT is used to calculate the NAS-MAC value,
  • the NAS-MAC value is used to check the integrity of the message with the non-access layer of the network.
  • the last-Dl-NAS-Count can be transmitted in the RRC Connection Reestablishment Request-NB message or the RRC Connection Reestablishment Complete-NB message, and the last-Ul-NAS-Count can be transmitted in the RRC Connection Reestablishment-NB message.
  • the user equipment and the network start retransmitting the NAS packet with the sequence number +1 of the non-access layer data packet.
  • FIG. 4 is a schematic diagram of an optimized non-access layer data packet retransmission scheme after a radio resource connection is re-established by an optimized user equipment according to an embodiment of the present invention.
  • the flow before control plane radio resource connection re-establishment does not change.
  • the key is radio
  • the process of resource connection re-establishment the process of user device and network synchronization through last-Dl-NAS-Count and last-Ul-NAS-Count exchange of the latest received non-access layer data packets is added.
  • the last-Dl-NAS-Count is transmitted in the RRC Connection Reestablishment Request-NB message
  • the last-Ul-NAS-Count is transmitted in the RRC Connection Reestablishment-NB message.
  • the new base station After the radio resource connection is re-established, the new base station will send the eNB CP Relocation Indication to the MME, request the MME to authenticate the user's re-establishment request, and establish a connection between the new base station and the MME's UE S1. After the MME authenticates the UE, it will initiate the release of the UE S1 connection with the old base station. After receiving the MME CP RELOCATION INDICATION message, the old base station will stop the downlink NAS PDU transmission to the UE and report non-delivered NAS PDUs to the MME.
  • the MME may receive the last-Dl-NAS-Count from the UE and the non-delivered NAS PDUs from the old base station. The two messages may not be consistent. If the MME receives the last-Dl-NAS-Count and non -When delivering NAS PDUs, the retransmission basis should be based on the receiving state of the receiving end of the user equipment last-Dl-NAS-Count.
  • Example 1-2 Change the transmission time of last-Dl-NAS-Count
  • FIG. 5 is a process of adding user equipment and network synchronization through last-Dl-NAS-Count and last-Ul-NAS-Count to exchange the latest received non-access layer data packet during the radio resource connection reestablishment process.
  • the last-Ul-NAS-Count is transmitted in the RRC Connection Reestablishment-NB message
  • the last-Dl-NAS-Count is transmitted in the RRC Connection Reestablishment Complete-NB message.
  • the purpose is to prevent the MME from receiving the last-Dl-NAS from the new base station. After the -Count, non-delivered NAS PDUs are received from the old base station, causing confusion. Therefore, after the last-Dl-NAS-Count is sent to the non-delivered NAS PDUs, and the MME should use the receiving status of the user equipment receiving end last-Dl- NAS-Count is the basis for retransmission.
  • Embodiment 2 During the radio resource connection reestablishment process, the UE ID guarantee does not occupy UL NAS COUNT
  • the Re-estabUE ID carried in the RRC connection re-establishment message needs to use a NAS COUNT, and the NAS package to be transmitted needs to be recalculated.
  • the NAS MAC value will also be brought to the network to verify that the keys used by both parties are consistent.
  • the Re-estabUE ID warranty can be completed by a value that does not account for UL NAS COUNT.
  • Example 2-1 The COUNT used for the Re-estabUE ID guarantee can be set to all 1, use this value to generate the NAS MAC, and send the generated NAS MAC to the network, the network side uses the same COUNT to generate The NAS MAC is compared with the received NAS MAC to verify whether the network and the client use the same key to calculate the NAS MAC. This can reduce or avoid the need to recalculate the completed NAS package. If this COUNT is the default value of both parties, it may not need to be transmitted through the network. If it is not the default value, the transmitting end needs to be transmitted to the receiving end together with the NAS MAC.
  • Example 2-2 The available COUNT for Re-estabUE ID is available.
  • the last-Dl-NAS-Count in Example 1 is used as part of the input, and the last-Dl-NAS-Count is used as the lower 5 digit value combination
  • the NAS COUNT is sent out, and the last-Dl-NAS-Count is sent to the network together with the calculated NAS MAC.
  • the network side When the network side receives the COUNT with the lower 5 bits, it knows that it is the NAS COUNT used by the last successfully received and sequential NAS packet received by the UE side.In this way, the client does not need to use 5bits to send the last -Dl-NAS-Count to the network, and the UE ID guarantee during the radio resource connection re-establishment process does not occupy UL NAS COUNT.
  • Embodiment 3 The radio link control layer stops reassembling NAS packets and transmits them to the upper layer during the radio resource connection reestablishment process
  • the client's radio link control layer receives packets from the other party's radio link control layer and sends them to the upper layer in sequence according to the sequence number (SN).
  • the receiving end of the recognized mode radio link control entity AM RLC entity
  • the data unit RLC SDU
  • this behavior will result in disorder and duplication of the NAS packet transmission after reconstruction.
  • FIG. 6 is a schematic diagram of an optimized downlink non-access stratum packet retransmission scheme for a user equipment after radio resource connection re-establishment according to an embodiment of the invention.
  • the solution proposed by the present invention is not to change the flow before the radio resource connection of the control plane is re-established.
  • the key point is that the radio link control layer on the user equipment side is added during the re-establishment process and no longer reorganizes out-of-order packets to the upper layer, thereby avoiding
  • the application layer receives the out-of-order packets and waits for the reconstruction to be completed. After the non-access layer retransmits, the radio link control layer forms sequential packets for delivery.
  • Embodiment 3-2 The radio link control layer reassembles the NAS packet and transmits it to the upper layer during the radio resource connection reestablishment process, and indicates the missing NAS packet through a status report.
  • the radio link control layer on the user equipment side still allows out-of-order packets to be reassembled to the upper layer when the radio resource connection is reestablished.However, the reception status report of a NAS packet must be transmitted To the transmitting end, this status report contains a bitmap to indicate which packets have been successfully received and which have not been received. The sending end needs to retransmit the NAS packets that have not been received.
  • Embodiment 4 The access layer exchanges the access layer packet reception status report during the radio resource connection reestablishment process
  • NAS packets may be further cut into the AS layer, and some AS packets may have been successfully received at the receiving end before disconnection.
  • this embodiment proposes an access layer Optimization.
  • the user equipment retains all data packets still in the access layer buffer during the radio resource connection reestablishment process according to the layer 2 (L2, Layer 2) to be transmitted. After the connection reestablishment is completed, the access layer is responsible for retransmission in layer 2 Access layer packet.
  • the network side can exchange the receiving status report of the receiving terminal with the user equipment, where the status report contains a bitmap of successful packet reception, which is used to indicate the receiving status of the receiving terminal.
  • the old base station can forward the received upstream AS layer packet to the new base station, and send the untransmitted AS packet group packet to the MME by The MME forwards it to the new base station or directly to the new base station through the X2 interface.
  • the new base station can transmit the uncompleted AS layer packet according to the receiving terminal's status report, and the client can transmit the uncompleted AS layer packet according to the new base station's packet receiving status report.
  • the retransmission at the access layer can still operate.As long as the radio resource connection is reestablished, the user equipment and the base station retain all data packets in the access layer buffer, and during the reconstruction process In the case, the network side may exchange the receiving status report of the receiving end with the user equipment to indicate the receiving status of the receiving end, and the access layer may be responsible for retransmitting the data packets in the buffer of the access layer. If there is no X2 interface between the old base station and the new base station, there may be more access layer data packets to be retransmitted.
  • the retransmission of the data packet reestablished by the radio resource connection can be done at the access layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种提高控制面数据传输效率的资源控制连接的数据包重传方法,当无线电资源控制连接重建时,用户设备和网络在控制面重新同步最近成功接收的下行/上行非接入层数据包序列号,由非接入层重传未成功传送非接入层数据包,并且不重复传输已经成功传送过的非接入层数据包。

Description

资源控制连接的数据包重传方法 技术领域
本发明有关于窄带物联网(NB-IOT)控制面无线电资源控制连接重建(RRC connection reestablishment),且尤其有关于非接入层(NAS,non-access stratum)数据包重传的方法。
背景技术
窄带物联网(NB-IoT)是由第三代合作伙伴计划(3GPP)开发的低功率广域覆盖的无线电技术标准,以支援广泛的物联网应用与服务。
窄带物联网在R-14版本中,为了提升移动性以及服务连续性,引入了控制面无线电资源控制连接重建(RRC connection re-establishment)。终端在数据传输时如果发生掉线情况(Radio link failure),接入层(AS,access stratum)与网络会发起无线电资源控制连接重建的过程。无线电资源控制连接重建可避免重新连线时需走过非接入层恢复(NAS recovery)的完整流程,以减少用户设备的功耗。无线电资源控制连接重建过程最重要的是不掉包并且无重复非接入层数据包的数据传输,本发明针对窄带物联网在Control Plane CIoT EPS optimizations流程进行控制面无线电资源控制连接重建,提出非接入层数据包重传方法,以保证非接入层数据不掉包并且无重复非接入层数据传输。
窄带物联网(NB-IoT)在控制面(Control Plane)的设计中,移除了PDCP层,同时又支持了数据传输。PDCP层的主要功能有数据封包的标头(Header)压缩与解压缩、数据加密/解密、数据完整性的保护。并且在RLC AM的PDCP重建过程中,提供数据包按序传输到上层,以及重复包的检查。移除PDCP层后,在无线电资源控制连接重建过程,数据传输如何保证完整,按序且不重复传输到非接入层,在一般传输中,是由RLC层来保证。然而,在控制面无线电资源控制连接重建过程中,RLC层会重建,依照NB-IoT R14协议架构设计,非接入层及以上保持在传输数据状态,接入层恢复与网络连接前,根据协议TS 36.322 section 5.4 Re-establishment procedure中的描述,非接入层传下来给接入层待发给网络的数据,或者是接入层已经发出的正在等待网络侧确认(Acknowledgment)的数据,将全部会被丢弃。并且根据协议TS 24.301 section 6.6.4.4,非接入层会重发接入层没确认发送成功的全部数据,导致数据传输效率低。
举例说明上行数据传输时掉线,无线电资源控制连接重建,如图1所示。其中,用户设备跟网络进行控制面(control plane)业务数据传输,包1~7已经成功送达网络侧,且收到包7确认(ACK),包8-包15已由用户设备应用层(AP,application layer)进到用户设备接入层,其中包8~12已经传送出去,但未获得网络确认,包13-包15正等待发送给网络,此时用户设备发生掉线(RLF,radio link failure)。用户设备重新选择小区(cell selection),接入层与网络接着发起无线电资源连接重建的过程。根据协议TS 36.322 section 5.4 Re-establishment procedure中的描述,接入层包8~15被丢弃,并且控制面无线电资源连接重建完成,用户设备认为包8~15都没发送成功,连接重建后非接入层重传包8~15,但包8~12之前在网络侧已经收到,是重复包,浪费了网络资源并且对应用层组成数据造成影响。
图2是3GPP协议规定的网络在无线电资源连接重建后下行非接入层数据包重传场景的示意图:网络已经发送包1~4给用户设备但没得到无线电链路控制确认,包5~7还没发送。此时发生掉线并且控制面无线电资源重建完成,旧基站认为包1~7都发送失败通知移动管理实体(Mobility Management Entity,MME),连接重建后由新基站重传包1~7,但包1~4之前在用户设备侧已经收到,是重复包,浪费了网络资源并且对应用层组成数据造成影响。
图3是3GPP协议规定的网络在无线电资源连接重建后下行非接入层数据包重传且乱序场景的示意图:网络已经发送包1~7已经发送给用户设备且也得到无线电链路控制确认,基于任何原因,例如2-HARQ的传输,包10~12已经发送给用户设备,包8~9还没到。此时发生掉线并且控制面无线电资源连接重建,在无线电资源重建过程中层2(L2)会把包10~12也组包后发给高层,网络认为包8~15都发送失败,所以会重发包8~15,由于非接入层不做顺序确认以及重复包检查,这样造成用户设备应用层先收到包10~12再收到包8~9造成收包乱序,且包10~12是重复包。
发明内容
本发明提出一种资源控制连接的数据包重传方法,该数据包重传方法包括:用户设备在与网络侧重建连接的过程中,发送收包状态给网络侧,以使得所述网络侧在完成所述重建连接后,根据所述收包状态向所述用户设备重传数据包。
其中,所述收包状态包括:所述重建连接前收到的最后一个数据包的序号。
其中,所述发送收包状态给网络侧,包括:发送所述序号的最后5位值给所述网络侧。
其中,所述根据所述收包状态向所述用户设备重传数据包,包括:向所述用户设备传输所述序号加1后表示的数据包。
其中,所述用户设备在与网络侧重建连接的过程中,发送收包状态给网络侧,包括:所述用户设备在与网络侧重建连接的过程中,发送重建连接请求给所述网络侧时,在所述重建连接请求中附加所述收包状态。
其中,所述用户设备在与网络侧重建连接的过程中,发送收包状态给网络侧,包括:所述用户设备在与网络侧重建连接的过程中,发送重建连接完成信息给所述网络侧时,在所述重建连接完成信息中附加所述收包状态。
其中,所述数据包重传方法还包括:用户设备在与网络侧重建连接的过程中,根据固定值计算MAC值,并将所述MAC值发送至所述网络侧,所述MAC值用于与所述网络侧进行消息完整性保护校验。
其中,所述固定值为所述用户设备和所述网络侧的默认值。
其中,所述数据包重传方法还包括:用户设备在与网络侧重建连接的过程中,根据所述序号的最后5位值计算MAC值,并将所述MAC值发送至所述网络侧,所述MAC值用于与所述网络侧进行消息完整性保护校验。
其中,所述数据包重传方法包括:所述用户设备在与网络侧重建连接的过程中,所述用户设备的无线电链路控制层不将接收到的数据包传送给上层。
其中,所述收包状态包括已成功接收数据包的信息,以及未成功接收数据包的信息。
本发明提出另一种资源控制连接的数据包重传方法,该数据包重传方法包括:网络侧在与用户设备重建连接的过程中,发送收包状态给用户设备,以使得所述用户设备在完成所述重建连接后,根据所述收包状态向所述网络侧重传数据包。
其中,所述数据包重传方法还包括:所述网络侧在与用户设备重建连接的过程中,所述网络侧中的旧基站通过X2界面向新基站发送接收到的数据包。
其中,所述收包状态包括:所述重建连接前收到的最后一个数据包的序号。
其中,所述发送收包状态给用户设备,包括:发送所述序号的最后5位值给所述用户设备。
其中,所述根据所述收包状态向所述网络侧重传数据包,包括:向所述网络侧传输所述序号加1后表示的数据包。
其中,所述网络侧在与用户设备重建连接的过程中,发送收包状态给用户设备,包括:所述网络侧在与用户设备重建连接的过程中,发送重建连接信息给所述网络侧时,在所述重建连接信息中附加所述收包状态。
其中,所述数据包重传方法还包括:网络侧在与用户设备重建连接的过程中,接收用户设备传来的MAC值,根据固定值计算MAC-Ι值;将所述MAC值与所述MAC-Ι值比对,以与所述用户设备进行消息完整性保护校验。
其中,所述固定值为所述网络侧和所述用户设备的默认值。
其中,所述数据包重传方法还包括:用户设备在与网络侧重建连接的过程中,从用户设备接收用户设备在重建连接前收到的最后一个数据包的序号的低5位值和MAC值,根据所述用户设备收到的最后一个数据包的序号的低5位值计算出MAC-Ι值;将所述MAC值与所述MAC-Ι值比对,以与所述用户设备进行消息完整性保护校验。
其中,所述收包状态包括已成功接收数据包的信息,以及未成功接收数据包的信息。
附图说明
通过阅读以下的具体实施方式并参考附图,本发明可被完全理解,其中:
图1是3GPP协议规定的用户设备在无线电资源连接重建后上行非接入层数据包重传场景的示意图。
图2是3GPP协议规定的网络在无线电资源连接重建后下行非接入层数据包重传场景的示意图。
图3是3GPP协议规定的网络在无线电资源连接重建后下行非接入层数据包重传场景且乱序的示意图。
图4是根据本发明一实施例的优化后的用户设备在无线电资源连接重建后上行非接入层数据包重传方案的示意图,用户设备与网络同步通过last-Dl-NAS-Count与last-Ul-NAS-Count交换最新收到非接入层数据包的流程。其中last-Dl-NAS-Count传在RRC Connection Reestablishment Request-NB消息中,last-Ul-NAS-Count传在RRC Connection Reestablishment-NB消息中。
图5是根据本发明一实施例的优化后的用户设备在无线电资源连接重建后上行非接入层数据包重传方案的示意图,其中last-Ul-NAS-Count传在RRC Connection Reestablishment-NB消息中,last-Dl-NAS-Count传在RRC Connection Reestablishment Complete-NB消息中。
图6是根据发明一实施例的优化后的用户设备在无线电资源连接重建后下行非接入层包重传方案的示意图,重建过程中增加了用户设备侧的无线电链路控制层不再重组出乱序的包给上层。
具体实施方式
以下描述为本发明实施的较佳实施例,且有些实施例通过附图进行了说明。为了解决上述问题,本发明人提出解决方案。
实施例1:last-Dl-NAS-Count与last-Ul-NAS-Count交换
本发明提出了非接入层解决方案。在无线电资源连接重建过程中,网络与客户端交换接收的NAS COUNT消息,这样用户设备和网络两侧都知道重建前收到的最后一个非接入层数据包的序号。例如用户设备可传送last-Dl-NAS-Count给网络,网络可传送last-Ul-NAS-Count给用户设备。其中last-Dl-NAS-Count值/last-Ul-NAS-Count值是终端与网络维护NAS COUNT值的低5位值(5 Least Significant Bits),而NAS COUNT是用来计算NAS-MAC值,其NAS-MAC值用来与网络非接入层消息完整性保护(完保)校验。
last-Dl-NAS-Count可以传在RRC Connection Reestablishment Request-NB消息或是RRC Connection Reestablishment Complete-NB消息中,last-Ul-NAS-Count可以传在RRC Connection Reestablishment-NB消息中。重建完成后,用户设备与网络自非接入层数据包的序号+1的NAS包开始重传。
实施例1-1:
图4是根据本发明一实施例的优化后的用户设备在无线电资源连接重建后上行非接入层数据包重传方案的示意图,控制面无线电资源连接重建前的流程没发生变化,关键是无线电资源连接重建过程中增加了用户设备与网络同步通过last-Dl-NAS-Count与last-Ul-NAS-Count交换最新收到非接入层数据包的流程。其中last-Dl-NAS-Count传在RRC Connection Reestablishment Request-NB消息中,last-Ul-NAS-Count传在RRC Connection Reestablishment-NB消息中。
无线电资源连接重建后,新基站会传送eNB CP Relocation Indication至MME,请求MME认证用户的重建请求,并且建立新基站与MME的UE S1连结。MME认证过UE后,会发起释放与旧基站的UE S1连结,旧基站收到MME CP RELOCATION INDICATION消息后,会停止下行NAS PDU传送给UE并且回报non-delivered NAS PDUs给MME。
此时,MME可能会收到来自UE的last-Dl-NAS-Count与来自旧基站的non-delivered NAS PDUs,这两个消息未必一致,若MME同时收到last-Dl-NAS-Count与non-delivered NAS PDUs时,应以用户设备接收端的接收状态last-Dl-NAS-Count为主重新传送依据。
实施例1-2:改变传输last-Dl-NAS-Count的时间
图5是是无线电资源连接重建过程中增加了用户设备与网络同步通过last-Dl-NAS-Count与last-Ul-NAS-Count交换最新收到非接入层数据包的流程。其中last-Ul-NAS-Count传在在RRC Connection Reestablishment-NB消息,last-Dl-NAS-Count传在RRC Connection Reestablishment Complete-NB消息,其目的是避免MME自新基站收到last-Dl-NAS-Count后,又从旧基站收到non-delivered NAS PDUs,造成混淆,因此last-Dl-NAS-Count送在non-delivered NAS PDUs后,并且MME应以用户设备接收端的接收状态last-Dl-NAS-Count为重新传送依据。
实施例2:无线电资源连接重建过程中UE ID的完保不占用UL NAS COUNT
其中在RRC重建的过程,由于AS security未被激活,RRC connection re-establishment消息中携带的Re-estabUE ID的完保需要用掉一个NAS COUNT,待传输的NAS包需要重新计算完保。
在RRC connection re-establishment消息中除了携带用于完保的UL_NAS_COUNT外,NAS MAC值也会一并带给网络,以验证双方用的密钥是否一致。为减少等待传送的NAS包需要重新计算完保,Re-estabUE ID的完保,可以通过一个不占UL NAS COUNT的值来完成。
实施例2-1:用于Re-estabUE ID的完保的COUNT可设为全为1,利用这个值来产生NAS MAC,并且将所产生的NAS MAC送给网络,网络侧用相同的COUNT产生NAS MAC与收到的NAS MAC比对,来验证网络跟客户端是否用相同的密钥来计算NAS MAC。如此可以减少或避免已经完保过的NAS包需要重新计算完保。此COUNT若是 双方默认值,则可能不需要通过网络传输,若非默认值,则传送端需与NAS MAC一起传送给接收端。
实施例2-2:用于Re-estabUE ID的完保的COUNT的可用实施例1中的last-Dl-NAS-Count当成输入的一部分,用last-Dl-NAS-Count当低5位值组合出的NAS COUNT,并且将last-Dl-NAS-Count与算出的NAS MAC一起传送给网络。当网络侧收到此低5位值的COUNT,知道是UE端所收到下行最后一个成功收到且按序的NAS包所用的NAS COUNT,如此一来,用户端不需要额外用5bits送last-Dl-NAS-Count给网络,并且此无线电资源连接重建过程中UE ID的完保不占用UL NAS COUNT。
实施例3:无线电链路控制层在无线电资源连接重建过程中停止重组NAS包传送到上层
此外,根据现行协议,客户端的无线电链路控制层收到对方无线电链路控制层包会根据序列号(SN,sequence number)依次送到上层。然而,在无线电资源连接重建过程中,如TS 36.322协议描述,承认模式无线电链路控制实体(AM RLC entity)的接收端在重建时,会重组(Reassemble)出那些能重组的无线电链路控制服务数据单元(RLC SDU),并且递交给上层,未考虑是否依照顺序传递,这行为将导致重建后的NAS包传送产生乱序与重复。
实施例3-1:图6是根据发明一实施例的优化后的用户设备在无线电资源连接重建后下行非接入层包重传方案的示意图。本发明提出的解决方案为,不变更控制面无线电资源连接重建前的流程,关键是重建过程中增加了用户设备侧的无线电链路控制层不再重组出乱序的包给上层,从而避免了应用层收到乱序的包,等待重建完成,非接入层重传后,再由无线电链路控制层组出顺序包传递。
实施例3-2:无线电链路控制层在无线电资源连接重建过程中重组NAS包传送到上层,通过状态报告(status report)指示缺漏的NAS包。
为了更进一步减少NAS包在空口的重传,用户设备侧的无线电链路控制层在无线电资源连接重建时,仍允许重组出不按序的包给上层,然而一个NAS包的接收状态报告必须传送给传送端,其中此状态报告包含一个位图(bitmap),用以指示哪些包已经成功收到,哪些包尚未收到。传送端需要重传尚未收到的NAS包。
实施例4:无线电资源连接重建过程中接入层交换接入层包的接收状态报告
某些应用场景NAS包到AS层可能会进一步切包,并且部分AS包可能在断线前已经成功在接收端被接收,为了避免已经接收的AS包重传,此实施例提出了接入层优化方案。
用户设备根据待传输在层2(L2,Layer 2)在无线电资源连接重建过程中,保留仍在接入层缓冲区的所有数据包,在连接重建完成后接入层负责重传在层2中的接入层数据包。在重建流程中,网络侧可以跟用户设备交换接收端的收包接收状态报告,其中状态报告包含成功收包的位图,用来指示接收端的收包状态。若重建过程中,旧基站与新基站间有X2界面(X2 interface),且旧基站可转传已收到的上行AS层包至新基站,并且将未传送的AS包组包送给MME由MME转送给新基站或直接通过X2接口送给新基站。则重建完成后,新基站可根据接收端收包的状态报告,传送未完成的AS层包,且客户端可根据新基站的收包的状态报告,传送未完成的AS层包。
即便旧基站与新基站间没有X2界面,接入层的重传仍可运作,只要在无线电资源连接重建过程中,用户设备与基站保留在接入层缓冲区的所有数据包,并且在重建流程中,网络侧可以跟用户设备交换接收端的收包接收状态报告来指示接收端的收包状态,则接入层可负责重传接入层缓冲区的数据包。若旧基站与新基站间没有X2界面,需重传的接入层数据包可能会多一些。
如此一来,无线电资源连接重建的数据包重传,可在接入层完成。
虽然本发明已就较佳实施例揭露如上,然其并非用以限制本发明。本发明所属技术领域中的本领域技术人员,在不脱离本发明的精神和范围内,当可作各种的变更和润饰。因此,本发明的保护范围当视权利要求书所界定为准。

Claims (21)

  1. 一种资源控制连接的数据包重传方法,其特征在于,所述数据包重传方法包括:
    用户设备在与网络侧重建连接的过程中,发送收包状态给网络侧,以使得所述网络侧在完成所述重建连接后,根据所述收包状态向所述用户设备重传数据包。
  2. 根据权利要求1所述的数据包重传方法,其特征在于,所述收包状态包括:所述重建连接前收到的最后一个数据包的序号。
  3. 根据权利要求2所述的数据包重传方法,其特征在于,所述发送收包状态给网络侧,包括:
    发送所述序号的最后5位值给所述网络侧。
  4. 根据权利要求2所述的数据包重传方法,其特征在于,所述根据所述收包状态向所述用户设备重传数据包,包括:
    向所述用户设备传输所述序号加1后表示的数据包。
  5. 根据权利要求1所述的数据包重传方法,其特征在于,所述用户设备在与网络侧重建连接的过程中,发送收包状态给网络侧包括:
    所述用户设备在与网络侧重建连接的过程中,发送重建连接请求给所述网络侧时,在所述重建连接请求中附加所述收包状态。
  6. 根据权利要求1所述的数据包重传方法,其特征在于,所述用户设备在与网络侧重建连接的过程中,发送收包状态给网络侧,包括:
    所述用户设备在与网络侧重建连接的过程中,发送重建连接完成信息给所述网络侧时,在所述重建连接完成信息中附加所述收包状态。
  7. 根据权利要求1所述的数据包重传方法,其特征在于,所述数据包重传方法还包括:
    用户设备在与网络侧重建连接的过程中,根据固定值计算MAC值,并将所述MAC值发送至所述网络侧,所述MAC值用于与所述网络侧进行消息完整性保护校验。
  8. 根据权利要求7所述的数据包重传方法,其特征在于,所述固定值为所述用户设备和所述网络侧的默认值。
  9. 根据权利要求3所述的数据包重传方法,其特征在于,所述数据包重传方法还包括:
    用户设备在与网络侧重建连接的过程中,根据所述序号的最后5位值计算MAC值,并将所述MAC值发送至所述网络侧,所述MAC值用于与所述网络侧进行消息完整性保护校验。
  10. 根据权利要求1所述的数据包重传方法,其特征在于,所述数据包重传方法包括:
    所述用户设备在与网络侧重建连接的过程中,所述用户设备的无线电链路控制层不将接收到的数据包传送给上层。
  11. 根据权利要求1所述的数据包重传方法,其特征在于,所述收包状态包括已成功接收数据包的信息,以及未成功接收数据包的信息。
  12. 一种资源控制连接的数据包重传方法,其特征在于,所述数据包重传方法包括:
    网络侧在与用户设备重建连接的过程中,发送收包状态给用户设备,以使得所述用户设备在完成所述重建连接后,根据所述收包状态向所述网络侧重传数据包。
  13. 根据权利要求12所述的数据包重传方法,其特征在于,所述数据包重传方法还包括:
    所述网络侧在与用户设备重建连接的过程中,所述网络侧中的旧基站通过X2界面向新基站发送接收到的数据包。
  14. 根据权利要求12所述的数据包重传方法,其特征在于,所述收包状态包括:所述重建连接前收到的最后一个数据包的序号。
  15. 根据权利要求14所述的数据包重传方法,其特征在于,所述发送收包状态给用户设备,包括:
    发送所述序号的最后5位值给所述用户设备。
  16. 根据权利要求14所述的数据包重传方法,其特征在于,所述根据所述收包状态向所述网络侧重传数据包,包括:
    向所述网络侧传输所述序号加1后表示的数据包。
  17. 根据权利要求12所述的数据包重传方法,其特征在于,所述网络侧在与用户设备重建连接的过程中,发送收包状态给用户设备,包括:
    所述网络侧在与用户设备重建连接的过程中,发送重建连接信息给所述网络侧时,在所述重建连接信息中附加所述收包状态。
  18. 根据权利要求12所述的数据包重传方法,其特征在于,所述数据包重传方法还包括:
    网络侧在与用户设备重建连接的过程中,接收用户设备传来的MAC值,根据固定值计算MAC-Ι值;将所述MAC值与所述MAC-Ι值比对,以与所述用户设备进行消息完整性保护校验。
  19. 根据权利要求18所述的数据包重传方法,其特征在于,所述固定值为所述网络侧和所述用户设备的默认值。
  20. 根据权利要求12所述的数据包重传方法,其特征在于,所述数据包重传方法还包括:
    用户设备在与网络侧重建连接的过程中,从用户设备接收用户设备在重建连接前收到的最后一个数据包的序号的低5位值和MAC值,根据所述用户设备收到的最后一个数据包的序号的低5位值计算出MAC-Ι值;将所述MAC值与所述MAC-Ι值比对,以与所述用户设备进行消息完整性保护校验。
  21. 根据权利要求12所述的数据包重传方法,其特征在于,所述收包状态包括已成功接收数据包的信息,以及未成功接收数据包的信息。
PCT/CN2019/110711 2018-10-12 2019-10-12 资源控制连接的数据包重传方法 WO2020073997A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980066163.0A CN112997577A (zh) 2018-10-12 2019-10-12 资源控制连接的数据包重传方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811190330.6 2018-10-12
CN201811190330.6A CN111050420A (zh) 2018-10-12 2018-10-12 无线电资源控制连接重建非接入层数据包重传方法

Publications (1)

Publication Number Publication Date
WO2020073997A1 true WO2020073997A1 (zh) 2020-04-16

Family

ID=70163596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110711 WO2020073997A1 (zh) 2018-10-12 2019-10-12 资源控制连接的数据包重传方法

Country Status (2)

Country Link
CN (2) CN111050420A (zh)
WO (1) WO2020073997A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888675A (zh) * 2009-05-14 2010-11-17 中兴通讯股份有限公司 一种长期演进系统中跨基站切换方法及系统
CN105594251A (zh) * 2013-08-09 2016-05-18 松下电器(美国)知识产权公司 用于移动性期间的双连接性中的用户终端的高效状态报告

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104469859B (zh) * 2013-09-23 2018-06-01 联芯科技有限公司 一种提高数据传输性能的方法和系统
US10462837B2 (en) * 2016-11-04 2019-10-29 Qualcomm Incorporated Method, apparatus, and system for reestablishing radio communication links due to radio link failure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888675A (zh) * 2009-05-14 2010-11-17 中兴通讯股份有限公司 一种长期演进系统中跨基站切换方法及系统
CN105594251A (zh) * 2013-08-09 2016-05-18 松下电器(美国)知识产权公司 用于移动性期间的双连接性中的用户终端的高效状态报告

Also Published As

Publication number Publication date
CN112997577A (zh) 2021-06-18
CN111050420A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
EP2432293B1 (en) Methods for synchronizing PDCP operations after RRC connection re-establishment in a wireless communication system and related apparatuses thereof
US8897229B2 (en) Method and apparatus for delivery notification of non-access stratum retransmission
FI123841B (fi) Radiolinkkiohjauksen muodostaminen langattomissa viestintäverkoissa
CN102056226B (zh) Pdcp状态报告的获取方法和pdcp实体
TWI406576B (zh) 執行交接程序及建立資料之方法
US20090103445A1 (en) Method and apparatus for enhancing various pdcp and layer 2 operations
US8416678B2 (en) Method for repairing an error depending on a radio bearer type
KR102320568B1 (ko) 데이터 처리 방법과 장치, 및 컴퓨터 저장 매체
JP2012105291A (ja) 移動通信システムにおけるパケットデータコンバージェンスプロトコル(pdcp)リオーダリングを用いてハンドオーバを行う方法及び装置
CN109246848B (zh) 一种rlc实体的重建立方法及装置
WO2008072911A1 (en) Apparatus and method for transmitting/receiving data in a mobile communication system
CN109076475B (zh) 一种用于保持无连接传输中同步的方法和系统
CN101621832B (zh) 向上层传送pdcp数据单元的方法
TW201029488A (en) Method of generating a buffer status for a wireless communication system and related device
WO2014166053A1 (zh) 一种通讯方法和终端
WO2017133595A1 (zh) 数据处理的方法及装置
WO2020073997A1 (zh) 资源控制连接的数据包重传方法
KR20100008232A (ko) 무선연결 설정방법
WO2022120744A1 (zh) 数据传输处理方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870852

Country of ref document: EP

Kind code of ref document: A1