WO2013016921A1 - 一种谐振腔及具有该谐振腔的滤波器 - Google Patents
一种谐振腔及具有该谐振腔的滤波器 Download PDFInfo
- Publication number
- WO2013016921A1 WO2013016921A1 PCT/CN2011/083817 CN2011083817W WO2013016921A1 WO 2013016921 A1 WO2013016921 A1 WO 2013016921A1 CN 2011083817 W CN2011083817 W CN 2011083817W WO 2013016921 A1 WO2013016921 A1 WO 2013016921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resonant cavity
- cavity
- artificial microstructure
- artificial
- resonant
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/207—Hollow waveguide filters
- H01P1/208—Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
- H01P1/2082—Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with multimode resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/06—Cavity resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/08—Strip line resonators
- H01P7/082—Microstripline resonators
Definitions
- the present invention relates to the field of wireless communications, and more particularly to a resonant cavity and a filter having the same. Background technique
- the resonant cavity is a resonant component that operates at a microwave frequency and includes an arbitrary shape of a cavity surrounded by a conductive wall (or a magnetically conductive wall) and capable of forming an electromagnetically oscillating dielectric region therein, which has a storage electromagnetic energy and a certain selection The characteristics of the frequency signal.
- the resonant frequency of the resonant cavity depends on the volume of the cavity. Generally, the larger the resonant cavity volume, the lower the resonant frequency, and the larger the resonant cavity volume, the higher the resonant frequency, so how to achieve the reduction without increasing the cavity size.
- the resonant frequency of the resonant cavity is of great significance for the miniaturization of the resonant cavity. Summary of the invention
- the technical problem to be solved by the present invention is to provide a resonator and a filter which can reduce the resonance frequency without increasing the size of the cavity.
- the present invention provides a resonant cavity including a cavity in which at least one artificial microstructure is disposed, the artificial microstructure being a planar or three-dimensional structure of a certain geometric shape composed of a wire.
- a cavity is disposed in the cavity, and the artificial microstructure is fixed on the support.
- the support is made of a wave transmissive material
- the support is provided with a slot, and the artificial microstructure is inserted in the card slot.
- the support is formed in a rectangular parallelepiped structure made of foam.
- each of the artificial microstructures is disposed in parallel in the cavity.
- the artificial microstructure comprises four branches of a common intersection, one end of any one of the branches is connected to the intersection, and the other end is a free end, and the branch includes at least one bent portion, any The branch road is rotated clockwise by 90 degrees, 180 degrees, and 270 degrees with the intersection as the center of rotation, and then coincides with the other three branches.
- the bent portion of the artificial microstructure is a right angle, a rounded corner or a sharp corner.
- any of the branches of the artificial microstructure is connected with a line segment.
- the free end of any of the branches of the artificial microstructure is connected to the midpoint of the line segment.
- the artificial microstructure is composed of a metal wire.
- the artificial microstructure is made of copper wire.
- the artificial microstructure is made of silver wire.
- the cross section of the metal wire constituting the artificial microstructure is a rectangle.
- the metal wire has a cross section of 0.1 mm ⁇ ⁇ .018 mm, a line width of 0.1 mm, and a thickness of 0.018 mm.
- an embodiment of the present invention further provides a filter including a housing, and an input end and an output end disposed on the housing, and further including at least one of the resonant cavities disposed in the housing.
- the housing further includes at least one partition wall provided with a slot, and the adjacent resonant cavity is isolated by the partition wall.
- a plurality of the artificial microstructures are disposed in the resonant cavity.
- the plurality of the artificial microstructures are parallel to each other.
- the technical solution of the present invention has the following beneficial effects: According to the technical solution of the present invention, the frequency of the resonant cavity can be reduced by providing an artificial microstructure in the resonant cavity, and the quality factor Q of the resonant cavity is improved, which is beneficial to improving the performance of the resonant cavity. And miniaturization of the resonant cavity is achieved, and at the same time, miniaturization of the filter is facilitated.
- the technical solution of the present invention the frequency of the resonant cavity can be reduced by providing an artificial microstructure in the resonant cavity, and the quality factor Q of the resonant cavity is improved, which is beneficial to improving the performance of the resonant cavity.
- miniaturization of the resonant cavity is achieved, and at the same time, miniaturization of the filter is facilitated.
- FIG. 1 is a schematic structural view of a resonant cavity according to a first embodiment of the present invention
- Figure 2 is a schematic view of the artificial microstructure 2 of Figure 1;
- 3 to 13 are schematic views showing possible structures of an artificial microstructure
- Fig. 14 is a view showing the configuration of a filter of a second embodiment of the present invention. Specific embodiment
- the invention relates to a resonant cavity, which mainly refers to a microwave resonant cavity.
- a resonant cavity provided by a first embodiment of the present invention has a cavity 1 filled with a medium inside.
- the medium filled in the cavity 1 of the present invention is an artificial microstructure.
- the embodiment provides a resonant cavity, as shown in FIG. 1 , including a cavity 1 and six mutually parallel artificial microstructures 2 disposed in the cavity 1 , and further includes a support 3 , which is disposed on the support 3 a card slot 4, the artificial microstructure 2 is fixed in the cavity 1 by inserting a card slot 4, and the support 3 is a rectangular parallelepiped structure made of a wave permeable material such as foam, and the wave permeable material means permeable.
- the support 3 can also be other structures as long as the artificial microstructure 2 can be fixed.
- the artificial microstructure is a structure having a certain geometric shape composed of a wire, wherein the wire uses a copper wire, and the selected copper wire has a rectangular cross section, and the cross-sectional dimension is 0.1 mm ⁇ ⁇ .018 mm, wherein the wire width of the copper wire The thickness of the copper wire is 0.018 mm.
- the metal wire may also use other metal wires such as a silver wire.
- the cross section of the metal wire may also be cylindrical, flat or other shapes, and the size may also be other sizes.
- the artificial microstructure 2 is as shown in FIG. 2, and includes four branches of a common intersection, one end of which is connected to the intersection, the other end is a free end, and each branch includes 6 bends.
- the bent portion is a right angle, and any branch is rotated clockwise by 90 degrees, 180 degrees, and 270 degrees with the intersection point as a center of rotation, respectively, and coincides with the other three branches, and at the free end of each branch
- the connecting line has a line segment, and the free end is connected with the midpoint of the line segment.
- the artificial microstructure can also have various deformations. As shown in FIG. 3 to FIG. 8 , the bent portion can be rounded or pointed, and the free end can be connected to the line segment. You can not connect line segments.
- the structures in Figs. 3 to 8 are all drawn with thin lines, and in fact, the above structures all have a certain width.
- the artificial microstructure may also be shown in FIG. 9 to FIG. 13 , and of course, other geometric structures may also be used.
- the cavity 1 shown in Fig. 1 is a cube of 20 mm x 20 mm x 20 mm.
- the artificial microstructure is shown in Fig. 2.
- the resonance frequency of the cavity is 2.339 GHz and the quality factor Q is 7.0312xe 4 ;
- the resonant frequency of the cavity is 10.63 GHz, and the quality factor Q is 1.0451 xe 4 ;
- the cavity 1 is placed with the same size as the artificial microstructure
- the resonant frequency of the resonant cavity is 7.310 GHz, and the quality factor Q is 1.02 xe 4 ; when the size of the cavity is 92 mm x 92 mm x 30 mm, the resonant frequency of the cavity is 2.339 GHz, and the quality factor Q is 1.32 xe. 4 .
- the resonant frequency of the resonant cavity can be reduced without increasing the size of the resonant cavity, and the wire structure in this embodiment is lowered compared with the metal plate structure.
- the frequency effect is better; the cavity containing the metal microstructure at the same resonant frequency is much smaller than the cavity without the metal microstructure, which is advantageous for miniaturization of the cavity; and the quality factor is relative to the cavity or Compared with the cavity in which the metal piece is placed, the higher the Q value means that the loss of the cavity is smaller, so the performance of the cavity of the structure is significantly improved.
- a filter according to a second embodiment of the present invention includes a housing 101, a first resonant cavity A and a second resonant cavity B disposed in the housing 101, and is connected to the first resonant cavity A.
- the input end 105 and the output end 106 connected to the second resonant cavity B, and the partition wall 107 provided with the slot 108 between the first resonant cavity A and the second resonant cavity B are disposed in each resonant cavity.
- Six mutually parallel artificial microstructures 102 The artificial microstructure 102 is secured within the cavity 101 by a slot 104 that is inserted into the holder 103.
- the first resonant cavity A and the second resonant cavity B employ the resonant cavity in the first embodiment.
- the artificial microstructures 102 in the first cavity A in this embodiment are in the shape shown in Fig. 2.
- the artificial microstructure in the second resonant cavity B is as shown in FIG. 3, and is different from the artificial microstructure in the first resonant cavity A in that each branch includes eight bent portions.
- the housing 101 shown in FIG. 14 is a rectangular parallelepiped of 20 mm X 20 mm X 40 mm, and the artificial microstructure is as shown in FIG. 2 and FIG. 3.
- the simulation shows that the resonant frequency of the first cavity A is 2.339 GHz, and the second resonance
- the resonant frequency of cavity B is 2.213 GHz.
- the passband frequency of the filter shown in Figure 14 is 2.213 GHz to 2.39 GHz.
- the resonant frequency of the cavity is 10.63 GHz.
- the resonant frequency of the cavity is 7.310 GHz; when the cavity size is 92 mm ⁇ 92 mm ⁇ 30 mm, the resonant frequency of the cavity is 2.339 GHz. It can be seen from the above simulation results that by placing the artificial microstructure in the resonant cavity, the resonant frequency of the resonant cavity can be reduced without increasing the size of the resonant cavity, and the wire structure in this embodiment is lowered compared to the metal plate structure. Frequency effect is better; gold is included in the case of the same resonant frequency
- the microstructured housing is much smaller than the housing without the metal microstructure, so this technical solution facilitates miniaturization of the filter.
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明提供了一种谐振腔,包括腔体,其特征在于,在所述腔体内设置有至少一个人造微结构,所述人造微结构是由金属丝构成的具有一定几何形状的平面或者立体结构。根据本发明的技术方案,通过在谐振腔内设置人造微结构可以降低谐振腔的频率,提高谐振腔的品质因数Q,有利于改善谐振腔的性能和实现谐振腔的小型化。另,本发明还提供一种具有该谐振腔的滤波器。
Description
一种谐振腔及具有该谐振腔的滤波器
本申请要求于 2011年 7月 29日提交中国专利局、申请号为 201110216476.5 , 发明名称为 "一种谐振腔" 的中国专利申请的优先权, 2011年 7月 29日提交中 国专利局、 申请号为 201110216475.0, 发明名称为 "一种滤波器" 的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信领域, 更具体地说, 涉及一种谐振腔及具有该谐振腔 的滤波器。 背景技术
谐振腔是在微波频率下工作的谐振元件, 它包括一个任意形状的由导电壁 (或导磁壁) 包围的腔体, 并能在其中形成电磁振荡的介质区域, 它具有储存 电磁能及选择一定频率信号的特性。 谐振腔的谐振频率取决于该腔的容积, 一 般来说, 谐振腔容积越大谐振频率越低, 谐振腔容积减小谐振频率越高, 因此 如何实现在不增大谐振腔尺寸的情况下降低谐振腔的谐振频率对于谐振腔的小 型化具有重要的意义。 发明内容
本发明要解决的技术问题提供一种在不增大谐振腔尺寸的情况下可以降低 谐振频率的谐振腔及滤波器。
本发明提供一种谐振腔, 包括腔体, 在所述腔体内设置有至少一个人造微 结构, 所述人造微结构是由金属丝构成的具有一定几何形状的平面或者立体结 构。
其中, 所述腔体内设置有支座, 所述人造微结构固定在所述支座上。
其中, 所述支座由透波材料制成, 该支座设置有插槽, 所述人造微结构插 在所述卡槽中。
其中, 所述支座采用泡沫制成的长方体形结构。
其中, 所述各人造微结构平行设置在腔体中。
其中, 所述人造微结构包括共交点的四个支路, 任一所述支路的一端与所 述交点相连, 另一端为自由端, 所述支路包括至少一个弯折部, 任一所述支路 以所述交点为旋转中心依次顺时针旋转 90度、 180度和 270度后分别与其他三 个支路重合。
其中, 所述人造微结构的弯折部为直角、 圓角或者尖角。
其中, 所述人造微结构的任一所述支路的自由端连接有一线段。
其中, 所述人造微结构的任一所述支路的自由端与所述线段的中点相连。 其中, 所述人造微结构由金属线构成。
其中, 所述人造微结构由铜线制成。
其中, 所述人造微结构由银线制成。
其中, 构成所述人造微结构的所述金属线的横截面是长方形。
其中,所述金属线的横截面的尺寸为 0.1毫米 χθ.018毫米,线宽为 0.1毫米, 厚度为 0.018毫米。
其中, 构成所述人造微结构的所述金属线的横截面是圓柱状或扁平状。 相应地, 本发明实施例还提供了一种滤波器, 所述滤波器包括壳体、 以及 设置在壳体上的输入端和输出端, 还包括至少一个设置在壳体内的上述的谐振 腔。
其中, 所述壳体内还包括至少一个设置有槽孔的隔离墙、 相邻的所述谐振 腔通过所述隔离墙隔离。
其中, 所述谐振腔内设置多个所述人造微结构。
其中, 所述多个所述人造微结构相互平行。
实施本发明的技术方案, 具有以下有益效果: 根据本发明的技术方案, 通 过在谐振腔内设置人造微结构可以降低谐振腔的频率, 提高谐振腔的品质因数 Q , 有利于改善谐振腔的性能和实现谐振腔的小型化, 同时有利于实现滤波器的 小型化。 附图说明 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付
出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明第一实施例的谐振腔的结构示意图;
图 2是图 1中的人造微结构 2的示意图;
图 3至图 13是人造微结构的可能结构示意图;
图 14是本发明第二实施例的滤波器的结构示意图。 具体实施例
本发明涉及一种谐振腔, 主要是指微波谐振腔, 请参阅图 1 , 本发明第一实 施例提供的谐振腔, 其内部为填充介质的腔体 1。 本发明在腔体 1内填充的介质 为人造微结构。
本实施例提供一种谐振腔, 如图 1所示, 包括腔体 1和在腔体 1内设置的 6 个相互平行的人造微结构 2, 还包括支座 3 , 支座 3上设置有多个卡槽 4, 所述 人造微结构 2通过插入卡槽 4固定在腔体 1 内, 支座 3是采用透波材料比如泡 沫制成的长方体形结构, 所述透波材料是指能透过电磁波且几乎不改变电磁波 的性质 (包括能量) 的材料; 当然支座 3也可以为其他结构, 只要可以固定人 造微结构 2 即可。 人造微结构是由金属丝构成的具有一定几何形状的结构, 这 里金属丝使用铜线,选择铜线的横截面为长方形,横截面的尺寸为 0.1毫米 χθ.018 毫米, 其中铜线的线宽为 0.1毫米, 铜线的厚度为 0.018毫米, 当然金属线也可 以使用银线等其他金属线, 金属线的横截面也可以为圓柱状、 扁平状或者其他 形状, 其尺寸也可以为其他的尺寸。 在本实施例中人造微结构 2如图 2所示, 包括共交点的四个支路, 任一支路的一端与所述交点相连, 另一端为自由端, 各支路包括 6个弯折部, 弯折部为直角, 任一支路以所述交点为旋转中心依次 顺时针旋转 90度、 180度和 270度后分别与其他三个支路重合, 而且在每个支 路的自由端连接有一线段, 自由端与线段的中点相连, 该人造微结构还可以有 多种变形, 如图 3至图 8所示, 弯折部可以为圓角或者尖角, 自由端可以连接 线段也可以不连接线段。 为了筒化起见, 图 3至图 8中的结构都用细线来画出, 实际上, 上述结构都具有一定的宽度。 当然, 在其他实施例中, 所述人造微结 构还可以为图 9至图 13所示, 当然也可以是其他几何形状的结构,
图 1所示的腔体 1为 20毫米 x20毫米 x20毫米的立方体,人造微结构如图 2 所示, 通过仿真可知该谐振腔的谐振频率为 2.339GHz , 其品质因数 Q 为
7.0312xe4; 当腔体 1内不放置人造微结构 2时, 空腔的谐振频率为 10.63GHz, 其品质因数 Q为 1.0451xe4;当腔体 1内放置与人造微结构相同尺寸的金属板时, 该谐振腔的谐振频率为 7.310GHz, 其品质因数 Q为 1.02xe4; 当空腔的尺寸为 92毫米 x92毫米 x30毫米时该空腔的谐振频率为 2.339GHz, 其品质因数 Q为 1.32xe4。
由上述仿真结果可知, 通过在腔体中放置人造微结构可以在不增大谐振腔 尺寸的情况下降低谐振腔的谐振频率, 而且与金属板结构相比, 本实施例中的 金属丝结构降频效果更好; 在谐振频率相同的情况下包含金属微结构的腔体比 没有金属微结构的腔体的体积减小了很多, 有利于谐振腔的小型化; 同时品质 因数相对于空腔或者放置金属片的谐振腔相比有了大幅的提高, Q值越高意味 着谐振腔的损耗越小, 所以该结构的谐振腔的性能得到了明显的改善。
请参阅图 14, 为本发明第二实施例所提供的滤波器, 其包括壳体 101、 设 置在壳体 101内的第一谐振腔 A和第二谐振腔 B、 与第一谐振腔 A相连的输入 端 105和与第二谐振腔 B相连的输出端 106、 在第一谐振腔 A和第二谐振腔 B 之间还有设置了槽孔 108的隔离墙 107、在各谐振腔内设置了六个相互平行的人 造微结构 102。 所述人造微结构 102通过插入支座 103的插槽 104固定在腔体 101内。
所述第一谐振腔 A和第二谐振腔 B采用第一实施例中的谐振腔。 在本实施 例中第一谐振腔 A中的人造微结构 102为图 2所示的形状。 所述第二谐振腔 B 中的人造微结构如图 3所示, 与第一谐振腔 A中的人造微结构的区别是: 每一 支路包括 8个弯折部。
图 14所示的壳体 101为 20毫米 X 20毫米 X 40毫米的长方体, 人造微结构 如图 2和图 3所示, 通过仿真可知第一谐振腔 A的谐振频率为 2.339GHz, 第二 谐振腔 B 的谐振频率为 2.213GHz , 图 14 所示的滤波器其通带频段为 2.213GHz~2.339GHz, 当第一谐振腔内不放置人造微结构时, 空腔的谐振频率为 10.63GHz; 当各谐振腔内放置与人造微结构相同尺寸的金属板时, 谐振腔的谐 振频率为 7.310GHz; 当空腔的尺寸为 92毫米 χ 92毫米 χ 30毫米时该空腔的谐 振频率为 2.339GHz。 由上述仿真结果可知, 通过在谐振腔中放置人造微结构可 以在不增大谐振腔尺寸的情况下降低谐振腔的谐振频率, 而且与金属板结构相 比, 本实施例中的金属丝结构降频效果更好; 在谐振频率相同的情况下包含金
属微结构的壳体比没有金属微结构的壳体的体积减小了很多, 因此该技术方案 有利于滤波器的小型化。
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。
Claims
1. 一种谐振腔, 包括腔体, 其特征在于, 在所述腔体内设置有至少一个人 造微结构, 所述人造微结构是由金属丝构成的具有一定几何形状的平面或者立 体结构。
2. 如权利要求 1所述的谐振腔, 其特征在于, 所述腔体内设置有支座, 所 述人造微结构固定在所述支座上。
3. 如权利要求 2所述的谐振腔, 其特征在于, 所述支座由透波材料制成, 该支座设置有插槽, 所述人造微结构插在所述卡槽中。
4. 如权利要求 3所述的谐振腔, 其特征在于, 所述支座采用泡沫制成的长 方体形结构。
5. 如权利要求 1-4任一项所述的谐振腔, 其特征在于, 所述各人造微结构 平行设置在腔体中。
6. 如权利要求 1-4任一项所述的谐振腔, 其特征在于, 所述人造微结构为 工字形或者工字形的衍生形。
7. 如权利要求 1-4任一项所述的谐振腔, 其特征在于, 所述人造微结构包 括共交点的四个支路, 任一所述支路的一端与所述交点相连, 另一端为自由端, 所述支路包括至少一个弯折部, 任一所述支路以所述交点为旋转中心依次顺时 针旋转 90度、 180度和 270度后分别与其他三个支路重合。
8. 如权利要求 7所述的谐振腔, 其特征在于, 所述人造微结构的弯折部为 直角、 圓角或者尖角。
9. 如权利要求 7所述的谐振腔, 其特征在于, 所述人造微结构的任一所述 支路的自由端连接有一线段。
10. 如权利要求 9所述的谐振腔, 其特征在于, 所述人造微结构的任一所述 支路的自由端与所述线段的中点相连。
11. 如权利要求 1-4任一项所述的谐振腔, 其特征在于, 所述人造微结构由 金属线构成。
12. 如权利要求 11所述的谐振腔, 其特征在于, 所述人造微结构由铜线制 成。
13. 如权利要求 11所述的谐振腔, 其特征在于, 所述人造微结构由银线制 成。
14. 如权利要求 12所述的谐振腔, 其特征在于, 构成所述人造微结构的所 述金属线的横截面是长方形。
15. 如权利要求 14所述的谐振腔, 其特征在于, 所述金属线的横截面的尺 寸为 0.1毫米 χθ.018毫米, 线宽为 0.1毫米, 厚度为 0.018毫米。
16. 如权利要求 11所述的谐振腔, 其特征在于, 构成所述人造微结构的所 述金属线的横截面是圓柱状或扁平状。
17. 一种滤波器, 所述滤波器包括壳体、 以及设置在壳体上的输入端和输出 端, 还包括至少一个设置在壳体内的如权利要求 1-16任一项所述的谐振腔。
18. 如权利要求 17所述的滤波器, 其特征在于, 所述壳体内还包括至少一 个设置有槽孔的隔离墙、 相邻的所述谐振腔通过所述隔离墙隔离。
19. 如权利要求 17所述的滤波器, 其特征在于, 所述谐振腔内设置多个所 述人造微结构。
20. 如权利要求 19所述的滤波器, 其特征在于, 所述多个所述人造微结构 相互平行。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110216475.0A CN102903988B (zh) | 2011-07-29 | 2011-07-29 | 一种滤波器 |
CN201110216476.5A CN102903998B (zh) | 2011-07-29 | 2011-07-29 | 一种谐振腔 |
CN201110216476.5 | 2011-07-29 | ||
CN201110216475.0 | 2011-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013016921A1 true WO2013016921A1 (zh) | 2013-02-07 |
Family
ID=47628634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/083817 WO2013016921A1 (zh) | 2011-07-29 | 2011-12-12 | 一种谐振腔及具有该谐振腔的滤波器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013016921A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101626108A (zh) * | 2008-07-11 | 2010-01-13 | 西北工业大学 | 一种2~3GHz频段的负磁导率材料微带天线 |
US20100141358A1 (en) * | 2005-01-18 | 2010-06-10 | University Of Massachusetts Lowell | Chiral Metamaterials |
CN102017404A (zh) * | 2007-11-16 | 2011-04-13 | 雷斯潘公司 | 基于超材料结构的滤波器设计方法和滤波器 |
CN102074777A (zh) * | 2011-01-05 | 2011-05-25 | 华东师范大学 | 一种基于微带矩形双环缝谐振器的频率选择性表面结构 |
-
2011
- 2011-12-12 WO PCT/CN2011/083817 patent/WO2013016921A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100141358A1 (en) * | 2005-01-18 | 2010-06-10 | University Of Massachusetts Lowell | Chiral Metamaterials |
CN102017404A (zh) * | 2007-11-16 | 2011-04-13 | 雷斯潘公司 | 基于超材料结构的滤波器设计方法和滤波器 |
CN101626108A (zh) * | 2008-07-11 | 2010-01-13 | 西北工业大学 | 一种2~3GHz频段的负磁导率材料微带天线 |
CN102074777A (zh) * | 2011-01-05 | 2011-05-25 | 华东师范大学 | 一种基于微带矩形双环缝谐振器的频率选择性表面结构 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202150533U (zh) | 一种谐振腔 | |
JP2011041100A (ja) | マイクロ波共振器装置とその調整方法及びそれを用いたアンテナ装置 | |
CN103296343B (zh) | 一种滤波器 | |
CN104064840A (zh) | 小型化带阻型频率选择表面 | |
US20160006103A1 (en) | Controlling Coupling in a Filter by Aperture Design | |
CN105406158A (zh) | 一种基于金属贴片控制频率和耦合的双模介质滤波器 | |
CN102593595A (zh) | 一种负磁导率超材料 | |
US10109907B2 (en) | Multi-mode cavity filter | |
CN101847772A (zh) | 双频微波谐振器 | |
WO2012139370A1 (zh) | 一种人造微结构及其应用的磁谐振超材料 | |
CN202434684U (zh) | 一种谐振腔 | |
CN106410420B (zh) | 一种等效介电常数与等效磁导率均为负数的新型超材料 | |
WO2013016921A1 (zh) | 一种谐振腔及具有该谐振腔的滤波器 | |
CN205335401U (zh) | 一种基于金属贴片控制频率和耦合的双模介质滤波器 | |
JP6082938B2 (ja) | 3次元メタマテリアル | |
CN202275915U (zh) | 一种谐振腔 | |
WO2013023424A1 (zh) | 一种谐振腔及具有该谐振腔的滤波器 | |
WO2013016924A1 (zh) | 一种谐振腔及具有该谐振腔的滤波器 | |
CN103296371A (zh) | 一种谐振腔 | |
WO2013016922A1 (zh) | 一种谐振腔及具有该谐振腔的滤波器 | |
CN103187609B (zh) | 一种谐振腔 | |
WO2013023423A1 (zh) | 一种谐振腔及具有该谐振腔的滤波器 | |
CN103296369B (zh) | 一种谐振腔 | |
CN102593602A (zh) | 一种负磁导率超材料 | |
CN202275901U (zh) | 一种滤波器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11870367 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11870367 Country of ref document: EP Kind code of ref document: A1 |