WO2013015704A1 - Система доставки биологически активных веществ в организм и способ её получения - Google Patents

Система доставки биологически активных веществ в организм и способ её получения Download PDF

Info

Publication number
WO2013015704A1
WO2013015704A1 PCT/RU2011/000552 RU2011000552W WO2013015704A1 WO 2013015704 A1 WO2013015704 A1 WO 2013015704A1 RU 2011000552 W RU2011000552 W RU 2011000552W WO 2013015704 A1 WO2013015704 A1 WO 2013015704A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanodiamond
biologically active
chlorine
active substances
particles
Prior art date
Application number
PCT/RU2011/000552
Other languages
English (en)
French (fr)
Inventor
Руслан Юрьевич ЯКОВЛЕВ
Original Assignee
Закрытое Акционерное Общество "Алмаз Фарм"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "Алмаз Фарм" filed Critical Закрытое Акционерное Общество "Алмаз Фарм"
Priority to US14/235,052 priority Critical patent/US9511025B2/en
Priority to RU2013140654/15A priority patent/RU2560697C2/ru
Priority to PCT/RU2011/000552 priority patent/WO2013015704A1/ru
Priority to EP11869859.6A priority patent/EP2687207B1/de
Publication of WO2013015704A1 publication Critical patent/WO2013015704A1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5115Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B4/00Hydrogen isotopes; Inorganic compounds thereof prepared by isotope exchange, e.g. NH3 + D2 → NH2D + HD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less

Definitions

  • the invention relates to the field of pharmaceuticals, pharmaceutical nanotechnology and pharmacology, relates to a system for the delivery of biologically active substances, including drugs, into the body, the method for its preparation and can be used in medicine.
  • phospholipid nanoparticles with a size of 10-30 nm, including plant-derived phosphatidylcholine and maltose [1].
  • Medications containing nanoparticles can be prepared by incorporating a biologically active substance, or drug, during or after the preparation of the polymer dispersion. Active components dissolve, trap, or adsorb onto the surface of the nanoparticles. A combination of these mechanisms is also possible [2].
  • polymer nanoparticles can have significant drawbacks. With the exception of alkyl cyanoacrylate, most monomers form slowly biodegradable or biodegradable polymers. Also, the molecular weight of the polymer material cannot be completely controlled. Residues in the polymerization medium can be toxic and require subsequent purification of the colloidal system.
  • a known drug delivery system based on nanodiamonds with particle sizes of 5 nm, including the adsorbed antibiotic doxorubicin and hydrated water molecules [4].
  • a known nanodiamond-based drug delivery system comprising particles of a carboxylated nanodiamond with a particle size of 3-5 nm, onto the surface of which, during a series of chemical transformations, —CH 2 0 (CH 2 ) 6 NH 2 groups are grafted to which the antitumor paclitaxel antitumor binds [5].
  • modified fluorine particles of nanodiamonds with a size of 2-10 nm and a fluorine content of up to 5% at. [6].
  • the obtained modified fluorine nanodiamond was used to obtain conjugates with such substances as alkyl lithium compounds, diamines, amino acids. These conjugates can be used as binders in polymer compositions, abrasives and coatings, adsorbents, biosensors and nanoelectromechanical systems.
  • Chlorine-modified nanodiamond particles are known in which the chlorine content is up to 12% at., With a particle size in suspension of 70 nm one month after synthesis and 180 nm 9 months after synthesis, respectively [11]. These particles are larger than optimal for medical purposes. In this case, the maximum value of the content of chlorine atoms on the surface of the nanodiamond has not been reached in the work, which will not allow to obtain the limiting content of the drug substance on the surface of the nanodiamond in the future, which obviously reduces the efficiency of the delivery system.
  • Chlorination of nanodiamond particles is carried out by the method of liquid-phase chlorination of reduced nanodiamonds in a solution of CC1 4 saturated with chlorine at room temperature and with constant stirring for 72 h when exposed to light in the visible range. After chlorination, the nanodiamond particles are washed with dry CC1 4 , centrifuged and the precipitate is dried for 5-6 hours at a pressure of 13-26 Pa and a temperature of 70-80 ° C.
  • a variant of this method for producing nanodiamond particles modified with chlorine is that the chlorination is carried out in a plasma CC1 4 for 6 hours [11].
  • a system for delivering biologically active substances to the body which is an ultrafine powder (Fig. 1) of a gray nanodiamond with a particle size of 2-10 nm (Fig. 2), the surface of which is modified with chlorine at chlorine content up to 14% at. (Fig. 3).
  • the size distribution of the aggregates in the inventive delivery system in an aqueous suspension is 40-70 nm (Fig. 4).
  • FIG. 1 clearly shows the presence of the claimed delivery system of an ultrafine structure of particles with a size smaller than the resolution of the used device (from 20 nm).
  • Microphotographs were obtained using a Zeiss Ultra Plus field emission scanning electron microscope (Carl Zeiss, Germany). The shooting conditions are shown in microphotographs.
  • FIG. 2 shows that the inventive system for the delivery of biologically active substances has a particle size distribution of 2-10 nm.
  • the micrograph was obtained using a Jeol 1011 transmission electron microscope (JEOL, Japan).
  • FIG. 3 shows the XPS spectra of the claimed system for the delivery of biologically active substances. These spectra determine the nature, energy state, and number of surface atoms of nanodiamond particles.
  • a study of the surface of the inventive system for the delivery of biologically active substances was carried out on a LAS-3000 device (Riber, France) equipped with a hemispherical analyzer ORX-150.
  • the vacuum in the working chamber was 6.7 * 10 "8 Pa. An ion pump was used to obtain a high vacuum.
  • the elemental composition of the surface of the biologically active substance delivery system according to the XPS data is given in Table 1.
  • Table 1 The elemental composition and binding energies of surface atoms of the claimed system for the delivery of biologically active substances.
  • FIG. 4. shows the distribution curve of particle sizes in an aqueous suspension of the inventive system for the delivery of biologically active substances, the aggregate sizes of which are 40-70 nm.
  • the particle size distribution in the suspension of the inventive delivery system was measured by dynamic laser light scattering on a ZetaSizer instrument (Malvern Instruments, USA).
  • FIG. 5 a shows the IR spectrum of the claimed system for the delivery of biologically active substances with a chlorine content on the surface of 14% at.
  • the spectrum contains: an intense broad band with a maximum of 3430 cm “1 , a wide band with a maximum of 1262 cm “ 1 , five bands of medium intensity at 2929, 2892, 1331, 846, 680 cm “1 and a weak signal at 743 cm “ 1 .
  • This spectrum shows that on the surface of the claimed delivery system there are covalently bound chlorine atoms, whose characteristic valence frequencies are in the region of 650-850 cm "1 [12].
  • Fig. 56 shows the IR spectrum of the inventive delivery system of biologically active substances with a minimum content chlorine on its surface (0.1% at).
  • the spectrum contains: an intense broad band with a maximum of 3430 cm “1 , two broad bands with a maximum at 1136 and 621 cm “ 1 , two bands of medium intensity at 2929, 2892 cm '1 and weak signal at 1331 cm “1 .
  • IR spectra were recorded on a FTIRS IR200 Thermonicolet instrument (Thermo Scientific, USA). Resolution 2 cm “1 , the number of scans 64. For analysis, a sample of samples was mixed with KBg powder and pressed into a tablet.
  • the resulting system does not contain fluorine and its compounds that are dangerous for the human body and animal, which remain after the reactions of binding of biologically active substances to the surface of a nanodiamond, it can be effectively used to deliver biologically active compounds, including drugs, to the human body.
  • the invention is also the claimed method of obtaining a system for the delivery of biologically active substances, the scheme of which is shown in FIG. 6.
  • the inventive method of obtaining a system for delivering biologically active substances to the body is that the nanodiamond particles are annealed at a temperature of from 500 to 1200 ° C in a stream of hydrogen gas, followed by chlorination of the obtained annealed nanodiamond particles with molecular chlorine dissolved in CC1 4 when exposed to visible light and temperature from 50 to 70 ° C.
  • Annealing is carried out with a speed of gaseous hydrogen from 2 to 3 l / h
  • Chlorination is carried out mainly from 36 to 60 hours at a concentration of molecular chlorine in CC1 4 from 3 to 5% by weight, followed by centrifugation, washing with CC1 4 and drying.
  • the method consists in annealing the nanodiamond in a stream of hydrogen gas at a rate of 2-3 l / h at a temperature of 500 to 1200 ° C for 1 to 8 hours. Then, the annealed nanodiamond particles are subjected to liquid phase chlorination with molecular chlorine. To this end, chlorine obtained in the reaction between K 2 Cr 2 0 7 (or KMn0 4 ) and hydrochloric acid is dissolved in CC1 4 to 3-5% of the mass. The chlorination reaction is carried out by photochemical exposure visible light for 36-60 hours and a temperature of 50-70 ° C. Then the suspension is centrifuged at a speed above 6000 rpm, washed with CC1 4 , the process is repeated 3-5 times and dried under vacuum to constant weight.
  • conjugates with biologically active substances are prepared from various pharmacological groups: alkylating substances, in particular those containing ethylenediamines, auxiliary substances, reagents and intermediates, as well as amino acids.
  • the obtained particles of the inventive delivery system are suspended in dimethyl sulfoxide (CH 3 ) 2 SO, ethylene diamine is added, a few drops of pyridine are added dropwise and kept at 120 ° C for 24 hours [Fig. 7]. Then the conjugate of the nanodiamond with ethylene diamine is centrifuged at a speed above 6000 rpm, washed repeatedly with water and acetone and dried under vacuum to a constant weight.
  • CH 3 dimethyl sulfoxide
  • the resulting conjugate is used to deliver ethylenediamine to the body.
  • a tritium label was applied to it by thermal activation with tritium [13].
  • a conjugate of a delivery system with ethylene diamine is obtained.
  • the resulting conjugate with a radioactive label is administered intraperitoneally into the rat.
  • the animal is slaughtered, the organs are removed, their homogenization and the radioactivity of the resulting homogenate are measured on a liquid scintillation spectrometer.
  • glycine In the case of amino acids, for example, glycine, get its conjugate with a delivery system according to the following scheme (Fig. 8). For this, the obtained particles of the delivery system are dissolved in polar aqueous-organic solvent or in water. To the resulting suspension was added glycine in the form of aminoacetic acid NH 2 CH 2 COOH with the addition of a tertiary amine. As an organic solvent, it is preferable to use those in which glycine is soluble, for example, pyridine or lower aliphatic alcohols. The resulting mixture was sonicated (50 W) for 5-60 minutes and kept under constant stirring at a temperature of 50-80 ° C for 12-48 hours. The resulting product was centrifuged at a speed of 6000 rpm, washed with ethanol and the precipitate was dried under vacuum. at 70 ° C throughout the night.
  • the resulting conjugate is used to deliver glycine to the body.
  • an electron microscopic study of the interaction of the obtained conjugate with cell cultures using cell biology methods is used.
  • FIG. 1 Microphotographs of the ultrafine structure of the delivery system of biologically active substances obtained by scanning electron microscopy, and - an increase of 23.83 thousand times; b - an increase of 8.57 thousand times.
  • FIG. 2. A micrograph of particles of a biologically active substance delivery system obtained by transmission electron microscopy.
  • FIG. 4 The particle size distribution of the system for the delivery of biologically active substances in an aqueous suspension obtained by dynamic laser light scattering.
  • FIG. 5 The infrared spectrum of the delivery system of biologically active substances.
  • FIG. 6 Scheme for obtaining a delivery system of biologically active substances.
  • FIG. 7 Scheme for producing a conjugate of nanodiamond with ethylene diamine.
  • FIG. 8 Scheme for producing conjugate of nanodiamond with glycine.
  • FIG. 9. Raman spectrum of the conjugate of nanodiamonds with ethylene diamine.
  • FIG. 10. Biodistribution of a conjugate of nanodiamond with ethylenediamine in the rat.
  • FIG. 11 IR spectrum of the conjugate of nanodiamonds with glycine.
  • FIG. 12 A micrograph of a conjugate of nanodiamond with glycine obtained by transmission electron microscopy.
  • FIG. 13 A micrograph of the penetration of the conjugate of nanodiamonds with glycine into the cell of the lymphoblast MOLT-4. a, b - selected areas of penetration of particles into the cell.
  • 200 mg of a sample of nanodiamond are annealed in a stream of hydrogen gas at a rate of 2.5 l / h at 800 ° C for 5 hours.
  • Annealed nanodiamond particles are chlorinated in liquid phase with molecular chlorine (4.7% wt.) In 40 ml of CC1 4 when exposed to visible light for 48 hours and a temperature of 60 ° C. Then the suspension is centrifuged at a speed of 8000 rpm and washed with dry CC1 4 . The process is repeated 4 times and the resulting precipitate is dried under vacuum to constant weight.
  • the yield of the target product 181 mg (90.5%).
  • the resulting product is a gray ultrafine powder with a particle size of 2-10 nm, containing on its surface 14% at. chlorine, with aggregate sizes in an aqueous suspension of 50 nm and characterized by an IR spectrum: intense broad band with a maximum of 3430 cm “1 , wide band with a maximum of 1262 cm “ 1 , five bands of medium intensity at 2929, 2892, 1331, 846, 680 cm “1 and a weak signal at 743 cm “ 1 .
  • the elemental composition of the surface includes ⁇ - 78, 1, ⁇ - 6.0, N - 1.9, ⁇ - 14% at., Respectively.
  • 250 mg of a sample of nanodiamond are annealed in a stream of hydrogen gas at a rate of 2.4 l / h at a temperature of 800 ° C for 5 hours.
  • Annealed nanodiamond particles are chlorinated with molecular phase chlorine (4.8%) mass.) in 50 ml of CC1 when exposed to visible light for 36 hours and a temperature of 60 ° C.
  • the suspension is centrifuged at a speed of 8000 rpm and washed with dry CC1 4 .
  • the process is repeated 3 times and the resulting precipitate is dried under vacuum to constant weight.
  • the yield of the target product is 198 mg (79.1%).
  • the resulting product is a gray ultrafine powder with a particle size of 2-10 nm, containing on its surface 4.2% at. chlorine, with aggregate sizes in an aqueous suspension of 67 nm and characterized by an IR spectrum: intense broad band with a maximum of 3430 cm '1 , wide band with a maximum of 1262 cm “1 , five bands of medium intensity at 2929, 2892, 1331, 846, 680 cm “1 and a weak signal at 743 cm. ” 1.
  • the elemental composition of the surface includes C — 87.9, O — 5.9, N — 2.0, C1 — 4.2% at., Respectively.
  • a sample of nanodiamond are annealed in a stream of hydrogen gas at a rate of 2.7 l / h at a temperature of 800 ° C for 5 hours.
  • Annealed nanodiamond particles are liquid-phase chlorinated with molecular chlorine (3.5 wt%) in 80 ml of CC1 4 when exposed to visible light for 60 hours and a temperature of 60 ° C.
  • the suspension is centrifuged at a speed of 7000 rpm and washed with dry CC1 4 .
  • the process is repeated 3 times and the resulting precipitate is dried under vacuum to constant weight.
  • the yield of the target product 339.6 mg (84.9%).
  • the resulting product is a gray ultrafine powder with a particle size of 2-10 nm, containing on its surface 7.8% at. chlorine, with aggregate sizes in an aqueous suspension of 56 nm and characterized by an IR spectrum: intense broad band with a maximum of 3430 cm “1 , wide band with a maximum of 1262 cm “ 1 , five bands of medium intensity at 2929, 2892, 1331, 846, 680 cm “1 and a weak signal at 743 cm “ 1 .
  • the elemental composition of the surface includes ⁇ - 84.1, ⁇ - 6.3, N - 1.8, ⁇ 1 - 7.8%) at., Respectively.
  • 200 mg of a sample of nanodiamond are annealed in a stream of hydrogen gas at a rate of 2.0 l / h at 800 ° C for 5 hours.
  • Annealed nanodiamond particles are chlorinated in liquid phase with molecular chlorine (5.0% wt.) In 40 ml of CC1 4 when exposed to visible light for 48 hours and a temperature of 50 ° C. Then the suspension is centrifuged at a speed of 6000 rpm and washed with dry CC1 4 . The process is repeated 5 times and the resulting precipitate is dried under vacuum to constant weight.
  • the yield of the target product 149.2 mg (74.6%).
  • the resulting product is a gray ultrafine powder with a particle size of 2-10 nm, containing on its surface 3.0% at. chlorine, with aggregate sizes in an aqueous suspension of 70 nm and characterized by an IR spectrum: intense broad band with a maximum of 3430 cm '1 , wide band with a maximum of 1262 cm ' 1 , five bands of medium intensity at 2929, 2892, 1331, 846, 680 cm “1 and a weak signal at 743 cm “ 1 .
  • the elemental composition of the surface includes ⁇ - 87.8, ⁇ - 7.1, N - 2.1, ⁇ 1 - 3.0% at., Respectively.
  • 200 mg of a sample of nanodiamond are annealed in a stream of hydrogen gas at a rate of 2.9 l / h at a temperature of 800 ° C for 5 hours.
  • Annealed nanodiamond particles are liquid-phase chlorinated with molecular chlorine (5.0% wt.) In 40 ml of CC1 4 when exposed to visible light for 48 hours and a temperature of 70 ° C. Then the suspension is centrifuged at a speed of 9000 rpm and washed with dry CC1 4 . The process is repeated 3 times and the resulting precipitate is dried under vacuum to constant weight.
  • the yield of the target product 144.6 mg (72.3%).
  • the resulting product is a gray ultrafine powder with a particle size of 2-10 nm, containing on its surface 9.4% at. chlorine, with aggregate sizes in an aqueous suspension of 61 nm and characterized by an IR spectrum: intense wide band with with a maximum of 3430 cm “1 , a wide band with a maximum of 1262 cm '1 , five bands of medium intensity at 2929, 2892, 1331, 846, 680 cm “ 1 and a weak signal at 743 cm "1.
  • the elemental composition of the surface includes C - 83.3 , O - 5.5, N - 1.8, C1 - 9.4% at., Respectively.
  • 500 mg of a sample of nanodiamond are annealed in a stream of hydrogen gas at a rate of 2.5 l / h at a temperature of 500 ° ⁇ for 5 h.
  • Annealed nanodiamond particles are chlorinated in liquid phase with molecular chlorine (5.0% wt.) In 100 ml of CC1 4 when exposed to visible light for 48 hours and a temperature of 60 ° C. Then the suspension is centrifuged at a speed of 6000 rpm and washed with dry CC1 4 . The process is repeated 5 times and the resulting precipitate is dried under vacuum to constant weight.
  • the yield of the target product 433.5 mg (86.7%).
  • the resulting product is a gray ultrafine powder with a particle size of 2-10 nm, containing on its surface 5.2% at. chlorine, with aggregate sizes in an aqueous suspension of 63 nm and characterized by an IR spectrum: intense broad band with a maximum of 3430 cm '1 , wide band with a maximum of 1262 cm “1 , five bands of medium intensity at 2929, 2892, 1331, 846, 680 cm “1 and a weak signal at 743 cm. ” 1.
  • the elemental composition of the surface includes C — 86.5, O — 6.1, N — 2.2, C1 — 5.2% at., Respectively.
  • 500 mg of a sample of nanodiamonds are annealed in a stream of hydrogen gas at a rate of 2.5 l / h at a temperature of 1200 ° C for 5 hours.
  • Annealed nanodiamond particles are chlorinated in liquid phase with molecular chlorine (3.3% wt.)
  • molecular chlorine 3.3% wt.
  • the suspension is centrifuged at a speed of 7000 rpm and washed with dry CC1 4 .
  • the process is repeated 4 times and the resulting precipitate is dried under vacuum to constant weight.
  • the yield of the target product is 370.5 mg (74.1%).
  • the resulting product is a gray ultrafine powder with a particle size of 2-10 nm, containing on its surface 8.8% at. chlorine, with aggregate sizes in an aqueous suspension of 58 nm and characterized by an IR spectrum: intense broad band with a maximum of 3430 cm “1 , wide band with a maximum of 1262 cm “ 1 , five bands of medium intensity at 2929, 2892, 1331, 846, 680 cm “1 and a weak signal at 743 cm '1.
  • the elemental composition of the surface includes C - 83.9, O - 5.5, N - 1.8, C1 - 8.8% at., Respectively.
  • 200 mg of a sample of nanodiamond is annealed in a stream of hydrogen gas at a speed of 2.0 l / h at a temperature of 800 ° ⁇ for 1 h.
  • Annealed nanodiamond particles are liquid-phase chlorinated with molecular chlorine (4.6% wt.) In 40 ml of CC1 4 when exposed to visible light for 48 hours and a temperature of 60 ° C. Then the suspension is centrifuged at a speed of 9000 rpm and washed with dry CC1 4 . The process is repeated 3 times and the resulting precipitate is dried under vacuum to constant weight. The yield of the target product 180 mg (90.0%).
  • the resulting product is a gray ultrafine powder with a particle size of 2-10 nm, containing on its surface 3.5% at. chlorine, with aggregate sizes in an aqueous suspension of 70 nm and characterized by an IR spectrum: intense broad band with a maximum of 3430 cm “1 , wide band with a maximum of 1262 cm “ 1 , five bands of medium intensity at 2929, 2892, 1331, 846, 680 cm “1 and a weak signal at 743 cm “ 1 .
  • the elemental composition of the surface includes ⁇ - 87.5, ⁇ - 6.9, N - 2.1, ⁇ 1 - 3.5% at., Respectively.
  • 300 mg of a sample of nanodiamond are annealed in a stream of hydrogen gas at a speed of 2.0 l / h at a temperature of 800 ° C for 8 hours.
  • Annealed nanodiamond particles are liquid-phase chlorinated with molecular chlorine (4.6% wt.) In 60 ml of CC1 4 when exposed to visible light for 48 hours and temperature 60 ° C. Then the suspension is centrifuged at a speed of 6000 rpm and washed with dry CC1 4 . The process is repeated 5 times and the resulting precipitate is dried under vacuum to constant weight.
  • the yield of the target product is 256.2 mg (85.4%).
  • the resulting product is a gray ultrafine powder with a particle size of 2-10 nm, containing on its surface 13.2% at. chlorine, with aggregate sizes in an aqueous suspension of 55 nm and characterized by an IR spectrum: intense broad band with a maximum of 3430 cm “1 , wide band with a maximum of 1262 cm “ 1 , five bands of medium intensity at 2929, 2892, 1331, 846, 680 cm “1 and a weak signal at 743 cm “ 1 .
  • the elemental composition of the surface includes ⁇ - 79.8, ⁇ - 5.2, N - 1.8, ⁇ 1 - 13.2% at., Respectively.
  • Table 2 A summary table of the characteristics of the claimed system for the delivery of biologically active substances and the conditions of the method for its preparation.
  • Example 10 500 mg of the inventive delivery system, obtained by the method described in example 1, is suspended in 50 ml of a solvent of dimethyl sulfoxide, 2.5 ml of ethylene diamine are added and 2 drops of pyridine are added dropwise and kept at a temperature of 120 ° C for 24 hours. Then, the resulting nanodiamond conjugate ethylene diamine is centrifuged at a speed of 6000 rpm, washed 5 times with water and acetone and dried under vacuum to constant weight.
  • the resulting conjugate is a gray ultrafine powder with a particle size of 2-10 nm, characterized by a Raman spectrum, which has strong luminescence, exceeding the intensity of the P-spectrum of nanodiamonds by more than 50 times (Fig. 9).
  • the elemental composition of the surface of the obtained conjugate includes: C - 86.4, O - 8.9, N - 4.7% at., Respectively.
  • the resulting conjugate was used to deliver ethylenediamine to the body.
  • a tritium label was deposited on it by thermal activation by tritium [13]. After treating the annealed nanodiamond with tritium atoms, it was kept for two days in water, centrifuged, the supernatant was separated, and a new portion of the solvent was added. As a result, an annealed nanodiamond preparation with a specific radioactivity of 90 GBq / g was obtained. Then, according to the claimed method receive a system for the delivery of biologically active substances, having on its surface a radioactive label.
  • a conjugate of a delivery system with ethylene diamine is obtained.
  • the resulting conjugate with a radioactive label is introduced into the body of a rat (not purebred white, male weighing 400 g) in the form of an aqueous suspension intraperitoneally. After 4 hours, the animal is slaughtered, organs and tissues are removed and weighed, they are homogenized in aqueous solutions of NaOH and H 2 0 2 and the radioactivity of the resulting homogenate is measured on liquid scintillation spectrometer RackBeta 1215 (Finland) (Table 3, Figure 10).
  • Table 3 List of seized rat organs for studying the distribution of the conjugate of nanodiamonds with ethylene diamine.
  • the resulting mixture was sonicated (50 W) for 40 minutes and kept under constant stirring and temperature of 65 ° C for 30 hours.
  • the resulting product is centrifuged at a speed of 6000 rpm, washed with ethanol and dried under vacuum at 70 ° C overnight.
  • the residual moisture content of the product is 2.2%.
  • the yield of the target product is 186 mg (93%).
  • the resulting product is a dark gray with a bluish tint ultrafine powder with primary particle sizes of 2-10 nm, having a shell of the surface layer of up to 1 nm (Fig. 11), and characterized by an IR spectrum: intense broad band with a maximum of 3400 cm '1 , strong signal at a frequency of 1621 cm “1 , six bands of medium intensity at 2924, 2881, 1383, 1306, 1212 and 1154 cm “ 1 and a weak characteristic signal at 504 cm “1 (Fig. 12).
  • the elemental composition of the conjugate surface includes: C - 91.5, O - 6.0, N - 2.5% at., Respectively.
  • the resulting conjugate was used to deliver glycine to the body.
  • the penetration of the conjugate of nanodiamond with glycine into the body is confirmed by electron microscopic studies of its interaction with the cell culture of lymphoblasts MOLT-4.
  • FIG. 13 it is seen that under the action of the conjugate, the invagination of the cell membrane of the lymphoblast cell occurs and its further penetration into the cytosol.
  • Nano-drugs The concept of drug delivery in nanoscience: Per. from English / ed. Alfa Lamprecht, M .: Scientific World, 2010.S. 10-20.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к области фармацевтики, фармацевтической нанотехнологии и фармакологии и касается системы доставки биологически активных веществ в организм, представляющая собой наноалмаз с размером частиц 2-10 нм, поверхность которых модифицирована хлором при содержании хлора до 14% ат. и способу её получения.

Description

(72) Автор:
Яковлев Руслан Юрьевич (RU)
(54) СИСТЕМА ДОСТАВКИ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ В ОРГАНИЗМ И СПОСОБ ЕЁ ПОЛУЧЕНИЯ
СИСТЕМА ДОСТАВКИ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ В ОРГАНИЗМ И СПОСОБ ЕЁ ПОЛУЧЕНИЯ
Изобретение относится к области фармацевтики, фармацевтической нанотехнологии и фармакологии, касается системы доставки биологически активных веществ, в том числе лекарственных веществ, в организм, способа ее получения и может быть использовано в медицине.
Известны системы для доставки биологически активных веществ, в том числе лекарственных веществ, в организм в форме фосфолипидных наночастиц размером 10-30 нм, включающая фосфатидилхолин растительного происхождения и мальтозу [1].
Известны системы доставки биологически активных веществ, в том числе лекарственных веществ, в организм в форме их комбинации с полимерным наполнителем. Лекарства, содержащие наночастицы, могут быть получены путем внедрения биологически активного вещества, или лекарственного вещества, во время или после получения полимерной дисперсии. Активные компоненты растворяются, захватываются или адсорбируются на поверхности наночастиц. Также возможна комбинация этих механизмов [2]. Однако, полимерные наночастицы могут обладать существенными недостатками. За исключением алкилцианакрилата, большинство мономеров образуют медленно биоразлагаемые или бионеразлагаемые полимеры. Также молекулярная масса полимерного материала не может контролироваться полностью. Остатки в среде полимеризации могут быть токсичны и требовать последующей очистки коллоидной системы. Часто в процессе полимеризации молекулы мономера могут взаимодействовать с молекулами лекарственного вещества, что приводит к их инактивации или деструкции [3]. Известна система доставки лекарственных веществ на основе наноалмаза с размерами частиц 5 нм, включающая адсорбированный антибиотик доксорубицин и гидратированные молекулы воды [4].
Известна система доставки лекарственных веществ на основе наноалмаза, включающая частицы карбоксилированного наноалмаза с размерами частиц 3-5 нм, на поверхность которого в ходе ряда химических превращений прививаются -CH20(CH2)6NH2 группы, с которыми ковалентно связывается противоопухолевый дитерпеноид паклитаксел [5].
Известны модифицированные фтором частицы наноалмаза с размером 2-10 нм и содержанием фтора до 5% ат. [6]. Полученный модифицированный фтором наноалмаз использовали для получения конъюгатов с такими веществами, как алкиллитиевые соединения, диамины, аминокислоты. Указанные конъюгаты могут найти применение в качестве связующих в полимерных композициях, абразивах и покрытиях, адсорбентах, биосенсорах и наноэлектромеханических системах.
Известен способ повышения эффективности лекарственных веществ путем химического (ковалентного) связывания молекул лекарственных веществ с частицами наноалмаза с размером менее 10 нм за счет атомов фтора и/или гидроксильных групп на их поверхности [7].
Присутствие в органическом веществе атомов фтора повышает его токсичность, в частности, такое вещество может поражать нервную систему, легкие и печень. Даже перфторированные органические вещества, несмотря на химическую инертность, изменяют показатели микросомальной системы биотрансформации ксенобиотиков (чужеродных веществ) в печени [8]. Так, показано, что ковалентное связывание атомов фтора с молекулой фуллерена Сбо, являющегося ближайшим углеродным наноструктурным аналогом наноалмаза, повышает его общую токсичность в 2,4-5 раз [9].
Поэтому получение частиц наноалмаза, не содержащего атомов фтора, которые могли бы использоваться в качестве систем доставки биологически активных веществ в организм, представляет собой актуальную и практически значимую для медицины и фармацевтической промышленности задачу.
Известен способ повышения эффективности лекарственных веществ путем химического (ковалентного) связывания молекул лекарственных веществ с частицами наноалмаза с размером менее 10 нм за счет амино- или ацилхлоридных групп на их поверхности [10].
Известны частицы наноалмаза, модифицированные хлором, в котором содержание хлора составляет до 12% ат., с размером частиц в суспензии 70 нм через месяц после синтеза и 180 нм - через 9 месяцев после синтеза, соответственно [11]. Эти частицы имеют большие размеры, чем оптимально необходимы для медицинских целей. При этом в работе не достигнуто максимальное значение содержания атомов хлора на поверхности наноалмаза, что не позволит в дальнейшем получить предельное содержание лекарственного вещества на поверхности наноалмаза, что заведомо снижает эффективность системы доставки. Хотя авторы работы [11] указывают, что анализ образцов наноалмаза, модифицированного хлором, методом рентгеновской фотоэлектронной спектроскопии (РФЭС) подтверждает связывание атомов хлора с поверхностными атомами углерода, однако подтверждающие данные не приводятся. Более того, анализ самими авторами приведенных в статье ИК-спектров не обнаруживает наличие таких химических связей. Это позволяет предположить, что атомы хлора на поверхности наноалмаза связаны адсорбционно, а не ковалентно. Следовательно, лекарственные вещества с такой поверхностью наноалмаза не будут связываться достаточно прочной химической связью и система доставки становится неэффективной.
Также известен способ получения таких модифицированных хлором частиц наноалмаза и его вариант, заключающиеся в следующем [11]. Хлорирование частиц наноалмаза проводят способом жидкофазного хлорирования восстановленного наноалмаза в насыщенном хлором растворе СС14 при комнатной температуре и постоянном перемешивании в течение 72 ч при облучении светом в видимом диапазоне. После хлорирования частицы наноалмаза отмывают сухим СС14, центрифугируют и высушивают осадок в течение 5-6 ч при давлении 13-26 Па и температуре 70-80 °С.
Вариант этого способа получения частиц наноалмаза, модифицированного хлором, заключается в том, что хлорирование проводят в плазме СС14 в течение 6 ч [11].
Авторами работы [11] сделан вывод, что полученная ими связь атомов хлора с наноалмазом менее стабильна на воздухе (из-за предполагаемой адсорбционной природы связи), чем связь наноалмаза с атомами фтора. При этом возможное количество связанных с поверхностью наноалмаза атомов фтора превышает количество атомов хлора, что делает хлорированные частицы наноалмаза менее благоприятными для проведения дальнейших реакций ковалентного связывания химических соединений по сравнению с фторированными частицами наноалмаза.
Таким образом, поставленная задача получения не содержащих фтора частиц наноалмаза, способных эффективно ковалентно связывать различные биологически активные, в том числе лекарственные, вещества, до настоящего времени решена лишь частично. Более того, наличие ковалентно связанных с поверхностью наноалмаза атомов хлора при их дальнейшей полной замене на молекулы биологически активных веществ позволяет получить перспективные системы доставки биологически активных веществ в организм, не содержащих на своей поверхности атомов галогенов, и, таким образом, избежать неконтролируемое повышение токсических свойств. Это требование является чрезвычайно важным для любых лекарственных средств и изделий медицинского назначения, применяемых в медицине и фармацевтической промышленности.
В соответствии с изобретением описывается система доставки биологически активных веществ в организм, представляющая собой ультрадисперсный порошок (Фиг. 1) наноалмаза серого цвета с размером частиц 2-10 нм (Фиг. 2), поверхность которых модифицирована хлором при содержании хлора до 14% ат. (Фиг. 3). Распределение размеров агрегатов в заявляемой системе доставки в водной суспензии составляет 40-70 нм (Фиг. 4).
На Фиг. 1 отчетливо видно наличие у заявляемой системы доставки ультрадисперсной структуры из частиц с размером, меньшим разрешающей способности использованного прибора (от 20 нм).
Микрофотографии получены с использованием автоэмиссионного сканирующего электронного микроскопа сверхвысокого разрешения Zeiss Ultra Plus (Carl Zeiss, Германия). Условия съемки приведены на микрофотографии.
На Фиг. 2 видно, что заявляемая система доставки биологически активных веществ имеет распределение размеров частиц 2-10 нм.
Микрофотография получена с использованием просвечивающего электронного микроскопа Jeol 1011 (JEOL, Япония).
На Фиг. 3 приведены спектры РФЭС заявляемой системы доставки биологически активных веществ. Данные спектры определяют природу, энергетическое состояние и количество поверхностных атомов частиц наноалмаза.
Исследование поверхности заявляемой системы доставки биологически активных веществ проводили на приборе LAS-3000 (Riber, Франция), оснащенном полусферическим анализатором ОРХ-150. Для возбуждения фотоэлектронов использовали немонохроматизированное рентгеновское излучение алюминиевого анода (А1Ка = 1486,6 эВ) при напряжении на трубке 12 кВ и токе эмиссии 20 мА. Калибровку фотоэлектронных пиков проводили по линии углерода С Is с энергией связи (Есв) 285 эВ. Вакуум в рабочей камере составлял 6,7* 10"8 Па. Для получения высокого вакуума был использован ионный насос.
Элементный состав поверхности системы доставки биологически активных веществ по данным РФЭС приведен в Таблице 1. Таблица 1. Элементный состав и энергии связи поверхностных атомов заявляемой системы доставки биологически активных веществ.
Figure imgf000008_0001
На Фиг. 4. приведена кривая распределения размеров частиц в водной суспензии заявляемой системы доставки биологически активных веществ, размеры агрегатов которой составляют 40-70 нм.
Измерение распределения размера частиц в суспензии заявляемой системы доставки проводили методом динамического лазерного светорассеяния на приборе ZetaSizer (Malvern Instruments, США).
На Фиг. 5 а приведен ИК-спектр заявляемой системы доставки биологически активных веществ с содержанием хлора на поверхности 14% ат. На спектре присутствуют: интенсивная широкая полоса с максимумом 3430 см"1, широкая полоса с максимумом 1262 см"1, пять полос средней интенсивности при 2929, 2892, 1331 , 846, 680 см"1 и слабый сигнал при 743 см"1. Данный спектр показывает, что на поверхности заявляемой системы доставки присутствуют ковалентно связанные атомы хлора, характеристические валентные частоты которых находятся в области 650-850 см"1 [12]. На Фиг. 56 приведен ИК-спектр заявляемой системы доставки биологически активных веществ с минимальным содержанием хлора на своей поверхности (0,1% ат). На спектре присутствуют: интенсивная широкая полоса с максимумом 3430 см"1, две широкие полосы с максимумом при 1136 и 621 см"1, две полосы средней интенсивности при 2929, 2892 см'1 и слабый сигнал при 1331 см"1. При такой низкой концентрации хлора на поверхности заявляемой системы доставки биологически активных веществ он не обнаруживается на ИК-спектре в области 650-850 см"1. ИК-спектры регистрировали на приборе FTIRS IR200 Thermonicolet (Thermo Scientific, США). Разрешение 2 см"1, количество сканов 64. Для анализа навески образцов смешивали с порошком КВг и прессовали в таблетку.
Поскольку полученная система не содержит опасного для организма человека и животного фтора и его соединений, которые остаются после осуществления реакций связывания биологически активных веществ с поверхностью наноалмаза, она может эффективно использоваться для доставки биологически активных соединений, в том числе лекарственных веществ, в организм человека.
Изобретением является также заявляемый способ получения системы доставки биологически активных веществ, схема которого приведена на Фиг. 6.
Заявляемый способ получения системы доставки биологически активных веществ в организм заключается в том, что отжиг частиц наноалмаза осуществляют при температуре от 500 до 1200 °С в токе газообразного водорода с последующим хлорированием полученных отожжённых частиц наноалмаза молекулярным хлором, растворенным в СС14, при воздействии видимого света и температуре от 50 до 70 °С. Отжиг проводят со скоростью газообразного водорода от 2 до 3 л/ч. Хлорирование осуществляют преимущественно от 36 до 60 ч при концентрации молекулярного хлора в СС14 от 3 до 5% масс, с последующим центрифугированием, промывкой СС14 и сушкой.
Более подробно способ заключается в том, что отжиг наноалмаза проводят в токе газообразного водорода со скоростью 2-3 л/ч при температуре от 500 до 1200 °С в течение от 1 до 8 ч. Затем отожжённые частицы наноалмаза подвергают жидкофазному хлорированию молекулярным хлором. С этой целью хлор, получаемый в процессе реакции между К2Сг207 (или КМп04) и соляной кислотой, растворяют в СС14 до 3-5% масс. Реакцию хлорирования проводят при фотохимическом воздействии видимым светом в течение 36-60 ч и температуре 50-70 °С. Затем суспензию центрифугируют со скоростью выше 6000 об/мин, промывают СС14, повторяют процесс 3-5 раз и высушивают под вакуумом до постоянного веса.
На основе полученной системы доставки готовят конъюгаты с биологически активными веществами, в том числе лекарственными веществами, из различных фармакологических групп: алкилирующих веществ, в частности, содержащих этилендиамины, вспомогательных веществ, реактивов и полупродуктов, а также аминокислот.
В случае диаминов полученные частицы заявляемой системы доставки суспендируют в диметилсульфоксиде (CH3)2SO, добавляют этилендиамин, прикапывают несколько капель пиридина и выдерживают при температуре 120 °С в течение 24 ч [Фиг. 7]. Затем полученный конъюгат наноалмаза с этилендиамином центрифугируют со скоростью выше 6000 об/мин, многократно промывают водой и ацетоном и высушивают под вакуумом до постоянного веса.
Полученный конъюгат используют для доставки этилендиамина в организм. Для доказательства решения поставленной задачи при получении системы доставки биологически активных веществ в организм после стадии отжига наноалмаза на него была нанесена тритиевая метка методом термической активации тритием [13]. После чего, по заявляемому способу получают систему доставки биологически активных веществ, имеющую на своей поверхности радиоактивную метку. Далее, по вышеописанному способу получают конъюгат системы доставки с этилендиамином. Полученный конъюгат с радиоактивной меткой вводят в организм крысы внутрибрюшинно. Производят забой животного, извлечение органов, их гомогенизацию и измерение радиоактивности полученного гомогената на жидкостном сцинтилляционном спектрометре.
В случае аминокислот, на примере глицина, получают его конъюгат с системой доставки по следующей схеме (Фиг. 8). Для этого полученные частицы системы доставки растворяют в полярном водно-органическом растворителе или в воде. К полученной суспензии добавляют глицин в виде аминоуксусной кислоты NH2CH2COOH с добавлением третичного амина. В качестве органического растворителя предпочтительно использовать те, в которых растворяется глицин, например, пиридин или низшие алифатические спирты. Полученную смесь обрабатывают ультразвуком (50 Вт) в течение 5- 60 мин и выдерживают при постоянном перемешивании и температуре 50-80 °С в течение 12-48 ч. Полученный продукт центрифугируют со скоростью 6000 об/мин, промывают этанолом и осадок высушивают под вакуумом при 70 °С в течение всей ночи.
Полученный конъюгат используют для доставки глицина в организм. С этой целью используют электронно-микроскопическое изучение взаимодействия полученного конъюгата с культурами клеток методами клеточной биологии.
Краткое описание графических материалов.
Фиг. 1. Микрофотографии ультрадисперсной структуры системы доставки биологически активных веществ, полученные методом сканирующей электронной микроскопии, а - увеличение в 23,83 тыс. раз; б - увеличение в 8,57 тыс. раз.
Фиг. 2. Микрофотография частиц системы доставки биологически активных веществ, полученная методом просвечивающей электронной микроскопии. Фиг. 3. С Is, О I s, N Is, CI 2р спектры РФЭС поверхности частиц системы доставки биологически активных веществ
Фиг. 4. Распределение по размеру частиц системы доставки биологически активных веществ в водной суспензии, полученное методом динамического лазерного светорассеяния.
Фиг. 5. ИК-спектр системы доставки биологически активных веществ.
Фиг. 6. Схема получения системы доставки биологически активных веществ.
Фиг. 7. Схема получения конъюгата наноалмаза с этилендиамином.
Фиг. 8. Схема получения конъюгата наноалмаза с глицином.
Фиг. 9. КР-спектр конъюгата наноалмаза с этилендиамином. Фиг. 10. Биораспределение конъюгата наноалмаза с этилендиамином в организме крысы.
Фиг. 11. ИК-спектр конъюгата наноалмаза с глицином.
Фиг. 12. Микрофотография конъюгата наноалмаза с глицином, полученная методом просвечивающей электронной микроскопии.
Фиг. 13. Микрофотография проникновения конъюгата наноалмаза с глицином в клетку лимфобласта MOLT-4. а,б - выделенные области проникновения частиц в клетку.
Изобретение иллюстрируется следующими примерами.
Пример 1.
200 мг навески наноалмаза отжигают в токе газообразного водорода со скоростью 2,5 л/ч при температуре 800 °С в течение 5 ч. Отожжённые частицы наноалмаза жидкофазно хлорируют молекулярным хлором (4,7% масс.) в 40 мл СС14 при воздействии видимым светом в течение 48 ч и температуре 60 °С. Затем суспензию центрифугируют со скоростью 8000 об/мин и промывают сухим СС14. Повторяют процесс 4 раза и полученный осадок высушивают под вакуумом до постоянного веса. Выход целевого продукта 181 мг (90,5%).
Полученный продукт представляет собой серый ультрадисперсный порошок с размером частиц 2-10 нм, содержащий на своей поверхности 14% ат. хлора, с размерами агрегатов в водной суспензии 50 нм и характеризующийся ИК-спектром: интенсивная широкая полоса с максимумом 3430 см"1, широкая полоса с максимумом 1262 см"1, пять полос средней интенсивности при 2929, 2892, 1331, 846, 680 см"1 и слабый сигнал при 743 см"1. Элементный состав поверхности включает С - 78, 1 , О - 6,0, N - 1,9, О - 14% ат., соответственно.
Пример 2.
250 мг навески наноалмаза отжигают в токе газообразного водорода со скоростью 2,4 л/ч при температуре 800 °С в течение 5 ч. Отожжённые частицы наноалмаза жидкофазно хлорируют молекулярным хлором (4,8% масс.) в 50 мл СС1 при воздействии видимым светом в течение 36 ч и температуре 60 °С. Затем суспензию центрифугируют со скоростью 8000 об/мин и промывают сухим СС14. Повторяют процесс 3 раза и полученный осадок высушивают под вакуумом до постоянного веса. Выход целевого продукта 198 мг (79,1%).
Полученный продукт представляет собой серый ультрадисперсный порошок с размером частиц 2-10 нм, содержащий на своей поверхности 4,2% ат. хлора, с размерами агрегатов в водной суспензии 67 нм и характеризующийся ИК-спектром: интенсивная широкая полоса с максимумом 3430 см'1, широкая полоса с максимумом 1262 см"1, пять полос средней интенсивности при 2929, 2892, 1331, 846, 680 см"1 и слабый сигнал при 743 см"1. Элементный состав поверхности включает С - 87,9, О - 5,9, N - 2,0, С1 - 4,2% ат., соответственно.
Пример 3.
400 мг навески наноалмаза отжигают в токе газообразного водорода со скоростью 2,7 л/ч при температуре 800 °С в течение 5 ч. Отожжённые частицы наноалмаза жидкофазно хлорируют молекулярным хлором (3,5% масс.) в 80 мл СС14 при воздействии видимым светом в течение 60 ч и температуре 60 °С. Затем суспензию центрифугируют со скоростью 7000 об/мин и промывают сухим СС14. Повторяют процесс 3 раза и полученный осадок высушивают под вакуумом до постоянного веса. Выход целевого продукта 339,6 мг (84,9%).
Полученный продукт представляет собой серый ультрадисперсный порошок с размером частиц 2-10 нм, содержащий на своей поверхности 7,8% ат. хлора, с размерами агрегатов в водной суспензии 56 нм и характеризующийся ИК-спектром: интенсивная широкая полоса с максимумом 3430 см"1, широкая полоса с максимумом 1262 см"1, пять полос средней интенсивности при 2929, 2892, 1331, 846, 680 см"1 и слабый сигнал при 743 см"1. Элементный состав поверхности включает С - 84,1 , О - 6,3, N - 1,8, С1 - 7,8%) ат., соответственно. Пример 4.
200 мг навески наноалмаза отжигают в токе газообразного водорода со скоростью 2,0 л/ч при температуре 800 °С в течение 5 ч. Отожженные частицы наноалмаза жидкофазно хлорируют молекулярным хлором (5,0% масс.) в 40 мл СС14 при воздействии видимым светом в течение 48 ч и температуре 50 °С. Затем суспензию центрифугируют со скоростью 6000 об/мин и промывают сухим СС14. Повторяют процесс 5 раз и полученный осадок высушивают под вакуумом до постоянного веса. Выход целевого продукта 149,2 мг (74,6%).
Полученный продукт представляет собой серый ультрадисперсный порошок с размером частиц 2-10 нм, содержащий на своей поверхности 3,0% ат. хлора, с размерами агрегатов в водной суспензии 70 нм и характеризующийся ИК-спектром: интенсивная широкая полоса с максимумом 3430 см'1, широкая полоса с максимумом 1262 см'1, пять полос средней интенсивности при 2929, 2892, 1331, 846, 680 см"1 и слабый сигнал при 743 см"1. Элементный состав поверхности включает С - 87,8, О - 7,1 , N - 2,1, С1 - 3,0% ат., соответственно.
Пример 5.
200 мг навески наноалмаза отжигают в токе газообразного водорода со скоростью 2,9 л/ч при температуре 800 °С в течение 5 ч. Отожженные частицы наноалмаза жидкофазно хлорируют молекулярным хлором (5,0% масс.) в 40 мл СС14 при воздействии видимым светом в течение 48 ч и температуре 70 °С. Затем суспензию центрифугируют со скоростью 9000 об/мин и промывают сухим СС14. Повторяют процесс 3 раза и полученный осадок высушивают под вакуумом до постоянного веса. Выход целевого продукта 144,6 мг (72,3%).
Полученный продукт представляет собой серый ультрадисперсный порошок с размером частиц 2-10 нм, содержащий на своей поверхности 9,4% ат. хлора, с размерами агрегатов в водной суспензии 61 нм и характеризующийся ИК-спектром: интенсивная широкая полоса с максимумом 3430 см"1, широкая полоса с максимумом 1262 см'1, пять полос средней интенсивности при 2929, 2892, 1331 , 846, 680 см"1 и слабый сигнал при 743 см"1. Элементный состав поверхности включает С - 83,3, О - 5,5, N - 1,8, С1 - 9,4% ат., соответственно.
Пример 6.
500 мг навески наноалмаза отжигают в токе газообразного водорода со скоростью 2,5 л/ч при температуре 500 °С в течение 5 ч. Отожженные частицы наноалмаза жидкофазно хлорируют молекулярным хлором (5,0% масс.) в 100 мл СС14 при воздействии видимым светом в течение 48 ч и температуре 60 °С. Затем суспензию центрифугируют со скоростью 6000 об/мин и промывают сухим СС14. Повторяют процесс 5 раз и полученный осадок высушивают под вакуумом до постоянного веса. Выход целевого продукта 433,5 мг (86,7%).
Полученный продукт представляет собой серый ультрадисперсный порошок с размером частиц 2-10 нм, содержащий на своей поверхности 5,2% ат. хлора, с размерами агрегатов в водной суспензии 63 нм и характеризующийся ИК-спектром: интенсивная широкая полоса с максимумом 3430 см'1, широкая полоса с максимумом 1262 см"1, пять полос средней интенсивности при 2929, 2892, 1331, 846, 680 см"1 и слабый сигнал при 743 см"1. Элементный состав поверхности включает С - 86,5, О - 6,1 , N - 2,2, С1 - 5,2% ат., соответственно.
Пример 7.
500 мг навески наноалмаза отжигают в токе газообразного водорода со скоростью 2,5 л/ч при температуре 1200 °С в течение 5 ч. Отожженные частицы наноалмаза жидкофазно хлорируют молекулярным хлором (3,3% масс.) в 100 мл СС14 при воздействии видимым светом в течение 48 ч и температуре 60 °С. Затем суспензию центрифугируют со скоростью 7000 об/мин и промывают сухим СС14. Повторяют процесс 4 раза и полученный осадок высушивают под вакуумом до постоянного веса. Выход целевого продукта 370,5 мг (74,1%). Полученный продукт представляет собой серый ультрадисперсный порошок с размером частиц 2-10 нм, содержащий на своей поверхности 8,8% ат. хлора, с размерами агрегатов в водной суспензии 58 нм и характеризующийся ИК-спектром: интенсивная широкая полоса с максимумом 3430 см"1, широкая полоса с максимумом 1262 см"1, пять полос средней интенсивности при 2929, 2892, 1331, 846, 680 см"1 и слабый сигнал при 743 см'1. Элементный состав поверхности включает С - 83,9, О - 5,5, N - 1,8, С1 - 8,8% ат., соответственно.
Пример 8.
200 мг навески наноалмаза отжигают в токе газообразного водорода со скоростью 2,0 л/ч при температуре 800 °С в течение 1 ч. Отожженные частицы наноалмаза жидкофазно хлорируют молекулярным хлором (4,6% масс.) в 40 мл СС14 при воздействии видимым светом в течение 48 ч и температуре 60 °С. Затем суспензию центрифугируют со скоростью 9000 об/мин и промывают сухим СС14. Повторяют процесс 3 раза и полученный осадок высушивают под вакуумом до постоянного веса. Выход целевого продукта 180 мг (90,0%).
Полученный продукт представляет собой серый ультрадисперсный порошок с размером частиц 2-10 нм, содержащий на своей поверхности 3,5% ат. хлора, с размерами агрегатов в водной суспензии 70 нм и характеризующийся ИК-спектром: интенсивная широкая полоса с максимумом 3430 см"1, широкая полоса с максимумом 1262 см"1, пять полос средней интенсивности при 2929, 2892, 1331, 846, 680 см"1 и слабый сигнал при 743 см"1. Элементный состав поверхности включает С - 87,5, О - 6,9, N - 2,1, С1 - 3,5% ат., соответственно.
Пример 9.
300 мг навески наноалмаза отжигают в токе газообразного водорода со скоростью 2,0 л/ч при температуре 800 °С в течение 8 ч. Отожженные частицы наноалмаза жидкофазно хлорируют молекулярным хлором (4,6% масс.) в 60 мл СС14 при воздействии видимым светом в течение 48 ч и температуре 60 °C. Затем суспензию центрифугируют со скоростью 6000 об/мин и промывают сухим СС14. Повторяют процесс 5 раз и полученный осадок высушивают под вакуумом до постоянного веса. Выход целевого продукта 256,2 мг (85,4%).
Полученный продукт представляет собой серый ультрадисперсный порошок с размером частиц 2-10 нм, содержащий на своей поверхности 13,2% ат. хлора, с размерами агрегатов в водной суспензии 55 нм и характеризующийся ИК-спектром: интенсивная широкая полоса с максимумом 3430 см"1, широкая полоса с максимумом 1262 см"1, пять полос средней интенсивности при 2929, 2892, 1331, 846, 680 см"1 и слабый сигнал при 743 см"1. Элементный состав поверхности включает С - 79,8, О - 5,2, N - 1,8, С1 - 13,2% ат., соответственно.
Характеристики системы доставки биологически активных веществ и параметры способа ее получения для каждого примера сведены в Таблице 2.
Таблица 2. Сводная таблица характеристик заявляемой системы доставки биологически активных веществ и условий способа ее получения.
Figure imgf000017_0001
Пример 10. 500 мг заявляемой системы доставки, полученной по способу, описанному в примере 1, суспендируют в 50 мл растворителя диметилсульфоксида, добавляют 2,5 мл этилендиамина и прикапывают 2 капли пиридина и выдерживают при температуре 120 °С в течение 24 ч. Затем полученный конъюгат наноалмаза с этилендиамином центрифугируют со скоростью 6000 об/мин, 5 раз промывают водой и ацетоном и высушивают под вакуумом до постоянного веса.
Полученный конъюгат представляет собой серый ультрадисперсный порошок с размером частиц 2-10 нм, характеризующийся спектром комбинационного рассеяния света, который обладает сильной люминесценцией, превышающий интенсивность Р-спектра наноалмаза более чем в 50 раз (Фиг. 9). Элементный состав поверхности полученного конъюгата включает: С - 86,4, О - 8,9, N - 4,7% ат., соответственно.
Полученный конъюгат использовали для доставки этилендиамина в организм.
Для решения этой задачи при получении системы доставки биологически активных веществ после отжига наноалмаза на него была нанесена тритиевая метка методом термической активации тритием [13]. После обработки отожжённого наноалмаза атомами трития его выдерживали двое суток в воде, центрифугировали, отделяли супернатант и добавляли новую порцию растворителя. В результате был получен препарат отожжённого наноалмаза с удельной радиоактивностью 90 ГБк/г. После чего, по заявляемому способу получают систему доставки биологически активных веществ, имеющую на своей поверхности радиоактивную метку. Далее, по вышеописанному способу получают конъюгат системы доставки с этилендиамином. Полученный конъюгат с радиоактивной меткой вводят в организм крысы (белая беспородная, самец массой 400 г) в виде водной суспензии внутрибрюшинно. Через 4 ч производят забой животного, изъятие и взвешивание органов и тканей, их гомогенизацию в водных растворах NaOH и Н202 и измерение радиоактивности полученного гомогената на жидкостном сцинтилляционном спектрометре RackBeta 1215 (Финляндия) (Табл. 3, Фиг. 10).
Таблица 3. Список изъятых органов крысы для изучения распределения конъюгата наноалмаза с этилендиамином.
Figure imgf000019_0001
Из Фиг. 10 следует, что конъюгат наноалмаза с этилендиамином распределяется практически во всех жизненно важных органах, при этом минует гематоэнцефалический барьер, в различных количественных соотношениях.
Пример 11.
Из 200 мг заявляемой системы доставки, полученной по способу, описанному в примере 1, получают суспензию, используя 40 мл водно- спиртовой смеси (вода:метанол = 1 : 1), в которую вносят 300 мг глицина в виде свободной аминокислоты NH2CH2COOH с добавлением 1 мл триэтиламина. Полученную смесь обрабатывают ультразвуком (50 Вт) в течение 40 мин и выдерживают при постоянном перемешивании и температуре 65 °C в течение 30 ч. Полученный продукт центрифугируют со скоростью 6000 об/мин, промывают этанолом и высушивают под вакуумом при 70 °С в течение всей ночи. Остаточная влажность продукта составляет 2,2%. Выход целевого продукта 186 мг (93 %).
Полученный продукт представляет собой темно-серый с синеватым оттенком ультрадисперсный порошок с размерами первичных частиц 2-10 нм, имеющих оболочку поверхностного слоя до 1 нм (Фиг. 11), и характеризующийся ИК-спектром: интенсивная широкая полоса с максимумом 3400 см'1, сильный сигнал при частоте 1621 см"1, шесть полос средней интенсивности при 2924, 2881 , 1383, 1306, 1212 и 1154 см"1 и слабый характеристический сигнал при 504 см"1 (Фиг. 12). Элементный состав поверхности конъюгата включает: С - 91,5, О - 6,0, N - 2,5% ат., соответственно.
Полученный конъюгат использовали для доставки глицина в организм. Проникновение конъюгата наноалмаза с глицином в организм подтверждается электронно-микроскопическими исследованиями его взаимодействия с культурой клеток лимфобластов MOLT-4. На Фиг. 13 видно, что под действием конъюгата происходят инвагинации клеточной мембраны клетки лимфобласта и дальнейшее его проникновением в цитозоль.
Список литературы
ПатРФ RU 2391966, С1 20.06.2010 г.
Нанолекарства. Концепции доставки лекарств в нанонауке: пер. с англ. / под ред. Алфа Лампрехта, М.: Научный Мир, 2010. С. 10-20.
J.L. Grangier, М. Puygrenier, J.C. Gautier, P. Couvreur. Nanoparticles as carriers for growth hormone releasing factors // J. Control. Rel. 1991. V.15. P. 3-13.
A. Adnant, R. Lam, H. Chen et al. Atomistic Simulation and Measurement of pH Dependent Cancer Therapeutic Interactions with Nanodiamond Carrier // Mol. Pharmaceutics. 2001. V. 8. . P. 368-374.
K.-K. Liy, W.-W. Zheng, C.-C. Wang et al. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy // Nanotechnology. 2010. V. 21. JY° 315106. 14 pp.
USPat 2005/0158549 Al, 21.07.2005.
USPat 2010/0129457 Al, 27.05.2010.
Российская энциклопедия по охране труда. В 3 т. 2-е изд., перераб. и доп. Т. 3. -М.: изд. НЦ ЭНАС. 2007. С. 181.
Н.Н. Каркищенко. Наноинженерные лекарства: новые биомедицинские инициативы в фармакологии // Биомедицина. 2009. N«2. С. 5-26.
USPat 2009/0226495 Al , 10.09.2009.
G.V. Lisichkin, I.I. Kulakova, Y.A. Gerasimov et al. Halogenation of detonation-synthesised nanodiamond surfaces. Mendeleev Commun. 2009. V. 19. P. 309-310.
А. Смит. Прикладная ИК-спектроскопия. Пер. с англ. - М.: Мир, 1982. С. 307.
Г. А. Бадун. Меченные тритием соединения / Метод, руководство. - М.: МГУ, 2008. С. 36-37.

Claims

Формула изобретения
1. Система доставки биологически активных веществ в организм, представляющая собой наноалмаз с размером частиц 2-10 нм, поверхность которых модифицирована хлором при содержании хлора до 14% ат.
2. Способ получения системы доставки биологически активных веществ в организм по п.1 , характеризующийся тем, что осуществляют отжиг частиц наноалмаза при температуре 500-1200 °С в токе газообразного водорода с последующим жидкофазным хлорированием полученных частиц молекулярным хлором, растворенным в четырёххлористом углероде, при фотохимическом воздействии видимого света и температуре от 50 до 70 °С.
3. Способ по п.2, характеризующийся тем, что отжиг исходного наноалмаза проводят со скоростью газообразного водорода от 2 до 3 л/ч.
4. Способ по п.2, характеризующийся тем, что хлорирование ведут в течение от 36 до 60 ч при концентрации молекулярного хлора в четырёххлористом углероде от 3 до 5% масс, с последующим центрифугированием, промывкой четырёххлористом углеродом и сушкой.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2011/000552 2011-07-26 2011-07-26 Система доставки биологически активных веществ в организм и способ её получения WO2013015704A1 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/235,052 US9511025B2 (en) 2011-07-26 2011-07-26 System for the delivery of biologically active compounds into an organism and method for the preparation of said system
RU2013140654/15A RU2560697C2 (ru) 2011-07-26 2011-07-26 Система доставки биологически активных веществ в организм и способ ее получения
PCT/RU2011/000552 WO2013015704A1 (ru) 2011-07-26 2011-07-26 Система доставки биологически активных веществ в организм и способ её получения
EP11869859.6A EP2687207B1 (de) 2011-07-26 2011-07-26 System zur freisetzung von biologischen wirkstoffen in einem organismus und verfahren zur herstellung des systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2011/000552 WO2013015704A1 (ru) 2011-07-26 2011-07-26 Система доставки биологически активных веществ в организм и способ её получения

Publications (1)

Publication Number Publication Date
WO2013015704A1 true WO2013015704A1 (ru) 2013-01-31

Family

ID=47601344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2011/000552 WO2013015704A1 (ru) 2011-07-26 2011-07-26 Система доставки биологически активных веществ в организм и способ её получения

Country Status (4)

Country Link
US (1) US9511025B2 (ru)
EP (1) EP2687207B1 (ru)
RU (1) RU2560697C2 (ru)
WO (1) WO2013015704A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2662080B1 (de) * 2011-07-26 2016-02-24 Zakrytoe Aktsionernoe Obschestvo "Almaz Pharm" Nanodiamantkonjugat mit glycin und verfahren zur herstellung dieses konjugats

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050158549A1 (en) 2003-11-26 2005-07-21 William Marsh Rice University Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions
US20090226495A1 (en) 2007-07-17 2009-09-10 Picardi Salvatore Charles Nanodiamond enhanced efficacy
US20100129457A1 (en) 2008-11-26 2010-05-27 Ali Razavi Nanodiamond Enhanced Drugs
RU2391966C1 (ru) 2009-02-13 2010-06-20 ООО "ЭкоБиоФарм" Наносистема на основе растительных фосфолипидов для включения биологически активных соединений и способ ее получения (варианты)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160746A (en) * 1978-05-23 1979-07-10 Malcon Research & Development Corporation Catalyst for hydrogenation of acetophenone
US20030125283A1 (en) * 2002-09-16 2003-07-03 Gatenby Robert A. Therapy of proliferative disorders by direct irradiation of cell nuclei with tritiated nuclear targetting agents
US7491554B2 (en) * 2003-04-23 2009-02-17 Tadamasa Fujimura Carrier of a diamond fine particle for immobilizing virus
JP5167696B2 (ja) * 2006-06-05 2013-03-21 セントラル硝子株式会社 フッ素化ナノダイヤモンド分散液の作製方法
US7569205B1 (en) * 2006-09-08 2009-08-04 International Technology Center Nanodiamond fractional and the products thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050158549A1 (en) 2003-11-26 2005-07-21 William Marsh Rice University Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions
US7820130B2 (en) * 2003-11-26 2010-10-26 William Marsh Rice University Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions
US20090226495A1 (en) 2007-07-17 2009-09-10 Picardi Salvatore Charles Nanodiamond enhanced efficacy
US20100129457A1 (en) 2008-11-26 2010-05-27 Ali Razavi Nanodiamond Enhanced Drugs
RU2391966C1 (ru) 2009-02-13 2010-06-20 ООО "ЭкоБиоФарм" Наносистема на основе растительных фосфолипидов для включения биологически активных соединений и способ ее получения (варианты)

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Nautchny Mir", 2010, article "Nano-Heilmittel. Konzepte über die Heilmittelförderung in der Nano-Wissenschaft: Übersetzung aus dem Englischen", pages: 10 - 20
"Russisches Sammelbuch für Arbeitsschutz", vol. 2, 3, 2007, VERLAG NZ ENAS, pages: 181
A. ADNANT; R. LAM; H. CHEN ET AL.: "Atomistic Simulation and Measurement of pH Dependent Cancer Therapeutic Interactions with Nanodiamond Carrier", MOL. PHARMACEUTICS., vol. 8, 2001, pages 368 - 374
A. SMITH, ANGEWANDTE IR-SPEKTROSKOPIE. ÜBERSETZUNG AUS DEM ENGLISCHEN - M.: MIR, 1982, pages 307
G. A. BADUN, TRITIUMMARKIERTE VERBINDUNGEN / VERFAHREN, ANLEITUNG. - M.: MGU, 2008, pages 36 - 37
G.V. LISICHKIN; I.I. KULAKOVA; Y.A. GERASIMOV ET AL.: "Halogenation of detonationsynthesised nanodiamond surfaces", MENDELEEV COMMUN, vol. 19, 2009, pages 309 - 310
J.L. GRANGIER; M. PUYGRENIER; J.C. GAUTIER; P. COUVREUR: "Nanoparticles as carriers for growth hormone releasing factors", J. CONTROL. REL., vol. 15, 1991, pages 3 - 13
K.-K. LIY; W.-W. ZHENG; C.-C. WANG ET AL.: "Covalent linkage of nanodiamondpaclitaxel for drug delivery and cancer therapy", NANOTECHNOLOGY, vol. 21, 2010, pages 14
KULAKOVA . ET AL.: "Stroenie chastits khimicheski modifitsirovannogo nanoalmaza detonatsionnogo sinteza", ROSSIISKIE NANOTEKHNOLOGII, vol. 5, no. 7-8, 2010, pages 66 - 73, XP008168220 *
LISICHKIN G.V.: "Halogenation of detonation-synthesised nanodiamond surfaces", MENDELEEV COMMUN., vol. 19, 2009, pages 309 - 310, XP026770054 *
N.N. KARKISCHSCHENKO: "Heilmittel aus dem Bereich Nanoengineering: Neue biomedizinische Initiativen in Pharmakologie", BIOMEDIZINA, 2009, pages 5 - 26
See also references of EP2687207A4 *

Also Published As

Publication number Publication date
EP2687207A4 (de) 2014-01-22
EP2687207B1 (de) 2015-01-14
US9511025B2 (en) 2016-12-06
EP2687207A1 (de) 2014-01-22
RU2013140654A (ru) 2015-04-20
RU2560697C2 (ru) 2015-08-20
US20140328920A1 (en) 2014-11-06

Similar Documents

Publication Publication Date Title
Chauhan et al. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents
Dowaidar et al. Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery
Lim et al. Functional graphene oxide-based nanosheets for photothermal therapy
Rabiee et al. CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin
Klesing et al. Positively charged calcium phosphate/polymer nanoparticles for photodynamic therapy
Yakovlev et al. Detonation diamond—a perspective carrier for drug delivery systems
WO2007122956A1 (ja) 酸化チタン複合体粒子、その分散液、およびそれらの製造方法
Bagherzadeh et al. Zn-rich (GaN) 1− x (ZnO) x: a biomedical friend?
Adach et al. Studies on the cytotoxicity of diamond nanoparticles against human cancer cells and lymphocytes
Lau et al. Facile and mild strategy toward biopolymer-coated boron nitride nanotubes via a glycine-assisted interfacial process
Gwak et al. Efficient doxorubicin delivery using deaggregated and carboxylated nanodiamonds for cancer cell therapy
Mayerhoefer et al. Surface control of nanodiamond: from homogeneous termination to complex functional architectures for biomedical applications
Spinato et al. Different chemical strategies to aminate oxidised multi-walled carbon nanotubes for siRNA complexation and delivery
Farshi Azhar et al. The effect of montmorillonite in graphene oxide/chitosan nanocomposite on controlled release of gemcitabine
Akiladevi et al. Carbon nanotubes (CNTs) production, characterisation and its applications
Mumtaz et al. Multifunctional nanodiamonds as emerging platforms for cancer treatment, and targeted delivery of genetic factors and protein medications—a review
Yin et al. Simultaneous delivery of DNA vaccine and hydrophobic adjuvant using reducible polyethylenimine-functionalized graphene oxide for activation of dendritic cells
Padovani et al. Mechanisms of colloidal stabilization of oxidized nanocarbons in the presence of polymers: obtaining highly stable colloids in physiological media
Han et al. pH-responsive phototherapeutic poly (acrylic acid)-calcium phosphate passivated TiO2 nanoparticle-based drug delivery system for cancer treatment applications
Levina et al. Design of TiO 2~ DNA nanocomposites for penetration into cells
Pieklarz et al. Current progress in biomedical applications of chitosan-carbon nanotube nanocomposites: a review
RU2560697C2 (ru) Система доставки биологически активных веществ в организм и способ ее получения
Bhosale et al. Nanodiamonds: a new-fangled drug delivery system
Devanshi et al. Graphene-Functionalized Titanium Carbide Synthesis and Characterization and Its Cytotoxic Effect on Cancer Cell Lines
WO2007004545A1 (ja) ナノ炭素担持体とその製造方法並びにそのdds薬剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011869859

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013140654

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14235052

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE