WO2013015097A1 - Electricity storage system and system interconnection system using same - Google Patents

Electricity storage system and system interconnection system using same Download PDF

Info

Publication number
WO2013015097A1
WO2013015097A1 PCT/JP2012/067344 JP2012067344W WO2013015097A1 WO 2013015097 A1 WO2013015097 A1 WO 2013015097A1 JP 2012067344 W JP2012067344 W JP 2012067344W WO 2013015097 A1 WO2013015097 A1 WO 2013015097A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
circuit
storage battery
discharge
charging
Prior art date
Application number
PCT/JP2012/067344
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 平田
紘一郎 江阪
大祐 福田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2013525648A priority Critical patent/JP6043967B2/en
Publication of WO2013015097A1 publication Critical patent/WO2013015097A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Definitions

  • This invention relates to the electrical storage system connected to the line which connects a solar cell and a grid connection apparatus.
  • a solar power generation system having a solar cell and a grid interconnection device that converts DC power output from the solar cell into AC power and superimposes it on a commercial power system.
  • Such a grid-connected device of a photovoltaic power generation system can perform a self-sustained operation in which a solar cell is disconnected from a commercial power system and a power output from the solar cell is supplied to a load when a power failure occurs in the commercial power system. It has become.
  • the grid interconnection device cannot operate independently when a power failure occurs while the solar cell cannot output DC power (for example, at night). For this reason, a grid interconnection device is also proposed in which power from the storage battery can be input to the grid interconnection device, and in the event of a power failure, the power from the storage battery can be converted into AC power and supplied to the load. Yes. (Patent Document 1). JP 2008-54473 A
  • a storage battery is connected to a line connecting the solar battery and the inverter circuit, and a charge / discharge circuit for charging and discharging the storage battery is arranged between the storage battery and the line. ing.
  • the grid interconnection device detects that a power failure has occurred, the grid interconnection device gives a discharge command to the charge / discharge circuit, and supplies power from the storage battery to the inverter circuit.
  • the grid interconnection device can perform a self-sustained operation.
  • the grid interconnection device has a function that can be used in combination with the solar battery and the storage battery, but many grid interconnection devices that do not have such a function are also provided.
  • a circuit for notifying the power storage system of a power failure is separately required for the grid interconnection device, After all, there is a problem that a dedicated grid interconnection device is required.
  • the present invention has been made in view of such a point, and provides a power storage system that can assemble a solar power generation system that uses both a storage battery and a solar battery even when an existing grid interconnection device is used. .
  • the power storage system of the present invention comprises a storage battery, wherein the storage battery is connected to a grid interconnection device that converts the output power of the solar battery into alternating current power and outputs it to the commercial power system.
  • a charging circuit for charging the storage battery, a line connecting the solar battery and the grid interconnection device, and a discharge circuit connected between the storage battery and discharging from the storage battery to the grid interconnection device A power failure detection circuit for detecting a power failure in the commercial power system, and having a configuration that enables discharge from the storage battery to the grid interconnection device when the power failure is detected by the power failure detection circuit.
  • the power storage system supplies the DC power output from the storage battery to the grid interconnection device without receiving a power failure signal from the grid interconnection device in the event of a power failure. Then, the grid interconnection device receives this DC power, converts it to AC power, and can supply power to the load (becomes able to operate independently). In this manner, a solar power generation system that uses a storage battery and a solar battery in combination can be assembled even if an existing grid interconnection device is used.
  • the power failure detection circuit has an open / close circuit that opens a contact piece when power is supplied from a commercial power system, detects that the open / close circuit is closed, and detects the closed circuit from the storage battery. It discharges to a system apparatus, It is characterized by the above-mentioned.
  • the charging circuit and the discharging circuit are charging / discharging circuits that charge and discharge the storage battery via an insulating transformer.
  • the charging circuit and the discharging circuit are configured by a charging / discharging circuit using a non-insulated bidirectional chopper circuit, and have a switch between the charging / discharging circuit and the line, When the power failure detection circuit detects feeding of the commercial power system, the switch is opened.
  • the terminal that outputs power, the commercial power system, and a load connected to the grid interconnection device or the output from the commercial power system A switching circuit that outputs any one of the electric power to the load is provided, and when a power failure is detected, output power of the grid interconnection device is output to the load.
  • the storage battery when the power failure is detected by the power failure detection circuit and the output voltage of the solar battery is equal to or higher than a first predetermined value, the storage battery is charged by the charging circuit, and the power failure detection circuit causes the power failure to occur. And when the output voltage of the solar cell is less than a first predetermined value, the storage battery is discharged by the discharge circuit, the power failure detection circuit detects the feeding of the commercial power system, and the output of the solar cell. When the voltage is equal to or higher than a second predetermined value, the charging circuit charges the storage battery, the power failure detection circuit detects the power supply of the commercial power system, and the output voltage of the solar battery is less than the second predetermined value. In some cases, the charging circuit and the discharging circuit are stopped.
  • the grid interconnection system of the present invention includes the grid interconnection device and the above-described power storage system.
  • a power storage system capable of assembling a solar power generation system that uses a storage battery and a solar battery in combination using an existing grid interconnection device.
  • FIG. 1 is a configuration diagram illustrating a photovoltaic power generation system 100 according to the first embodiment.
  • the solar power generation system 100 includes a solar cell 1, a grid interconnection device 2, and a power storage system 3.
  • the solar cell 1 changes its power generation amount according to the amount of solar radiation.
  • the solar cell 1 includes a plurality of single cell solar cells, and is configured by connecting a plurality of single cell solar cells in series and / or in parallel.
  • the rated voltage is 250 V, 300 V, output 2.4 Kw, output 4.8 Kw, and the like.
  • the grid interconnection device 2 receives the DC power output from the solar cell 1, converts the input DC power into AC power, and outputs the AC power to the commercial power grid 5 via the grid interconnection relay 21 (linkage). System operation). Further, when the commercial power system 5 is out of power, the DC power output from the solar cell 1 and / or the power storage system 3 is input, the input DC power is converted into AC power, and this AC power is converted to a relay 22 for independent operation. Is supplied to the load 6 through (stand-alone operation).
  • the grid interconnection device 2 has a function of automatically switching between grid operation and independent operation by detecting a power failure in the commercial power system 5. It should be noted that the switching between the grid operation and the independent operation may be performed manually after the grid interconnection device 2 detects a power failure and stops.
  • the block diagram of the grid connection apparatus 2 in 1st Embodiment is shown in FIG.
  • the grid interconnection device 2 includes a booster circuit 23, an inverter circuit 24, a filter circuit 25, a grid interconnection control circuit 26, a grid interconnection relay 21, and a self-sustained operation relay 22.
  • the booster circuit 23 is composed of a booster chopper circuit having a reactor, a switch element, and a diode. By controlling the duty ratio of the switch element, the DC power input to the grid interconnection device 2 is obtained. Boost to desired voltage.
  • the inverter circuit 24 is composed of a plurality of switch elements connected in a full bridge. By performing PWM control of this switch element, the DC power output from the booster circuit 23 is converted into AC power. The inverter circuit 24 outputs the converted AC power to the filter circuit 25.
  • the filter circuit 25 includes two reactors and a capacitor, and removes a high-frequency component of AC power output from the inverter circuit 24.
  • the AC power from which the high frequency component has been removed is output to the commercial power system via the grid interconnection relay 21 or to the load 6 via the autonomous operation relay 22.
  • the grid interconnection control circuit 26 controls operations of the booster circuit 23, the inverter circuit 24, the grid interconnection relay 21, and the independent operation relay 22.
  • the grid interconnection control circuit 26 determines whether or not the commercial power system 5 has a power failure at the time of startup. When the commercial power system 5 has a power failure, the grid interconnection control circuit 26 opens the grid interconnection relay 21 and closes the autonomous operation relay 22 to perform autonomous operation. In addition, when the commercial power system 5 is supplying power, the grid interconnection control circuit 26 closes the grid interconnection relay 21 and opens the independent operation relay 22 to perform interconnection operation.
  • FIG. 3 shows a configuration diagram of the power storage system 3 in the first embodiment.
  • the perspective view of the electrical storage system 3 in 1st Embodiment is shown in FIG.
  • the power storage system 3 includes a storage battery 30, a charge / discharge circuit 31, a power storage system control circuit 32, and a power failure detection circuit 33.
  • the storage battery 30, the charging / discharging circuit 31, and the electrical storage system control circuit 32 are accommodated in the housing 35a.
  • the power failure detection circuit 33 is housed in a housing 35b different from the housing 35a, and is connected to the power storage system control circuit 32 in the housing 35a by a signal line 36.
  • the storage battery 30 is configured by using, for example, a lead storage battery and connecting cells in series and / or in parallel so that the rated voltage is 12 [V] to 240 [V].
  • the charging / discharging circuit 31 is configured to charge or discharge the storage battery 30 via the insulating transformer 31c.
  • two bridge circuits 31a and 31b in which a plurality of (four) switch elements (for example, an element such as an IGBT) in which diodes are connected in antiparallel are connected in a full bridge are connected to an insulating transformer 31c. Connected through.
  • the charge / discharge circuit 31 can perform both charge and discharge, it can be called a charge circuit or a discharge circuit.
  • the AC side of the bridge circuit 31a is connected to the insulation transformer 31c, and the DC side is connected to the line 7 connecting the solar cell 1 and the grid interconnection device 2.
  • the line 7 and the charge / discharge circuit 31 are connected by a connection line 38.
  • the AC side of the bridge circuit 31 b is connected to the insulating transformer 31 c, and the DC side is connected to the storage battery 30.
  • the switch element of the bridge circuit 31a is PWM-driven, and the switch element of the bridge circuit 31b is stopped (shut off) to operate as a diode rectifier circuit.
  • the output voltage from the solar cell 1 is stepped down to a voltage slightly higher than the rated output of the storage battery 30, and the storage battery 30 can be charged.
  • Charging is performed by constant current charging until the voltage of the storage battery 30 reaches a predetermined voltage value, and is charged by constant voltage when the voltage of the storage battery 30 is higher than the predetermined voltage value.
  • the switch element of the bridge circuit 31b When discharging the storage battery 30, the switch element of the bridge circuit 31b is PWM-driven, and the switch element of the bridge circuit 31a is stopped (cut off) to operate as a diode rectifier circuit. Thereby, the output voltage from the storage battery 30 is boosted to about the operating voltage of the solar battery 1 and supplied to the grid interconnection device 2.
  • An electromagnetic relay is used for the power failure detection circuit 33.
  • An AC relay that receives driving power from the commercial power system 5 is used as the electromagnetic relay.
  • the AC relay is installed near the distribution board that distributes the power of the commercial power system 5 (the casing 35b is arranged near the distribution board).
  • the AC relay is connected to the commercial power system 5 by wiring from the distribution board and supplied with AC power.
  • the AC relay opens the contact piece when power is supplied from the commercial power system 5, and closes the contact piece when power is not supplied.
  • the contact piece is connected to the power storage system control circuit 32 via the signal line 36, and the power storage system control circuit 32 detects a power failure by detecting a current flowing when the contact piece is closed. Conversely, the power storage system control circuit 32 detects that the commercial power system 5 supplies power when no current flows.
  • the power storage system control circuit 32 controls the operation of the charge / discharge circuit 31.
  • the operation of the charging / discharging circuit 31 is as follows: (1) When the commercial power system is out of power and the solar cell is sufficiently generating power, (2) The commercial power system is out of power and the solar cell is sufficiently When power is not generated, (3) When the commercial power system is feeding and the solar cell is generating power, (4) When the commercial power system is feeding and the solar cell is not generating power Divided into four ways.
  • the commercial power system 5 is in a state where the solar battery can sufficiently generate power, supply power to the load 6 for autonomous operation, and use the power for charging the storage battery during a power failure. is there.
  • the power storage system control circuit 32 detects a power failure of the commercial power system 5 by the power failure detection circuit 33, and the voltage of the connection line 38 (output voltage of the solar cell) is equal to or higher than a first predetermined value (for example, the load 6 for autonomous operation). This value is determined when the value is sufficient to supply power. In this case, the power storage system control circuit 32 instructs the charge / discharge circuit 31 to charge the solar battery 1 to the storage battery 30.
  • the case of (2) will be described.
  • the power storage system control circuit 32 detects the power failure of the commercial power system 5 by the power failure detection circuit 33, and the voltage of the connection line 38 (the output voltage of the solar cell) is less than a first predetermined value (for example, the load 6 for autonomous operation). This value is determined when the value is sufficient to supply power.
  • the power storage system control circuit 32 monitors the current flowing between the storage battery 30 and the charge / discharge circuit, and performs discharge by current control so that the current becomes a predetermined current value.
  • the power storage system control circuit 32 detects the power supply of the commercial power system 5 by the power failure detection circuit 33, and the voltage of the connection line 38 (the output voltage of the solar battery) is equal to or higher than a second predetermined value (for example, the rated voltage of the storage battery 30). In some cases, this state is determined. In this case, the power storage system control circuit 32 instructs the charge / discharge circuit 31 to charge the solar battery 1 to the storage battery 30.
  • the case of (4) will be described.
  • the power storage system control circuit 32 detects the power supply of the commercial power system 5 by the power failure detection circuit 33 and the voltage of the connection line 38 (output voltage of the solar battery) is less than a second predetermined value (for example, the rated voltage of the storage battery 30). In some cases, this state is determined. In this case, the power storage system control circuit 32 shuts off all the switch elements constituting the bridge circuit of the charge / discharge circuit 31 and stops the charge / discharge circuit 31.
  • the first predetermined value may be set higher than the second predetermined value. In this way, charging is performed when the threshold value is higher than that during power supply during a power failure, and therefore, power supply with priority to the load 6 can be performed during a power failure.
  • the power storage system control circuit 32 is configured to perform protection control such as overcharge protection and overdischarge protection in addition to the control performed in the cases (1) to (4).
  • the power storage system 3 detects a power failure by the power failure detection circuit 33 connected to the commercial power system 5 and supplies DC power from the storage battery 30 to the grid interconnection device 2. become.
  • the electrical storage system 3 supplies the direct current power which the storage battery 30 outputs to the grid connection apparatus 2, without receiving the signal of a power failure from the grid connection apparatus 2 at the time of a power failure.
  • the grid connection apparatus 2 receives this direct current power, converts it into alternating current power, and can supply electric power to the load 6 (becomes able to carry out a self-supporting operation).
  • a solar power generation system that uses a storage battery and a solar battery in combination can be assembled even if an existing grid interconnection device is used.
  • the charging / discharging circuit 31 performs charging and discharging of the storage battery 30 via an insulating transformer, the switching element of the charging / discharging circuit 31 is shut off (stopped) so as to be connected to the solar battery 1. Since the line 7 connecting the system device 2 and the storage battery 30 are disconnected, the commercial power system 5 supplies power, and the solar battery 1 is not generating power, the discharge from the storage battery 30 to the grid interconnection device 2 Can be prevented.
  • the charge / discharge circuit 31 discharges the storage battery 30 only when the commercial power system 5 has a power failure. As a result, only charging is performed when the commercial power system 5 is feeding, so that the storage battery 30 can be used with a charging capacity of almost 100% when the commercial power system 5 fails.
  • the power failure detection circuit 33 is accommodated in a housing 35b separate from the housing 35a, and the power storage system control circuit 32 and the power failure detection circuit in the housing 35a are connected by a signal line 36.
  • the power failure detection circuit 33 can be arrange
  • the charging / discharging circuit 31 that charges and discharges the storage battery 30 via an insulating transformer is adopted.
  • a non-insulating bidirectional chopper is used for the charging / discharging circuit. Is adopted.
  • the grid connection apparatus 2 of the grid connection apparatus 2 is The power storage system 3 is provided with a switching circuit that outputs power from the commercial power grid 5 to the load 6 during power feeding.
  • the structure similar to 1st Embodiment can be used description is abbreviate
  • FIG. 5 is a configuration diagram showing the solar power generation system 100 according to the second embodiment.
  • FIG. 6 is a configuration diagram illustrating a modified example of the power storage system 3 in the second embodiment.
  • FIG. 7 is a perspective view of the power storage system 3 in the second embodiment.
  • the charge / discharge circuit 31 d includes a plurality (two) of switch elements 131 and 132, a reactor 133, a switch 134, and a diode 135 in which diodes are connected in reverse parallel.
  • the switch element 131 By opening and closing the switch element 131 at a predetermined duty ratio, the output voltage from the solar cell 1 is stepped down to a voltage slightly higher than the rated output of the storage battery 30, and the storage battery 30 can be charged.
  • the charging is constant current charging until the voltage of the storage battery 30 reaches a predetermined voltage value, and constant voltage charging is performed when the voltage of the storage battery 30 is greater than the predetermined voltage value.
  • the switch element 132 When discharging the storage battery 30, the switch element 132 is opened and closed with a predetermined duty ratio. Thereby, the output voltage of the storage battery 30 is boosted to about the operating voltage of the solar battery 1 and supplied to the grid interconnection device 2.
  • the switch 134 and the diode 135 are connected in parallel, and the diode 135 is connected to flow a current from the charge / discharge circuit 31 to the storage battery 30.
  • a parallel circuit of the switch 134 and the diode 135 is provided between the charge / discharge circuit 31 and the storage battery 30 (or may be provided between the charge / discharge circuit 31 and the line 7).
  • the parallel circuit of the switch 134 and the diode 135 is for preventing this, and the switch 134 is opened when the commercial power system 5 is supplying power, and the switch 134 is closed and used in the event of a power failure. .
  • the switch 134 is opened, and discharge from the storage battery 30 to the grid interconnection device 2 can be prevented.
  • the switch 134 is closed to supply power from the storage battery 30 to the grid interconnection device 2.
  • the power storage system 3 includes a switching circuit 34 as shown in FIGS.
  • As the switching circuit 34 a switch circuit that switches between two contacts is used.
  • the switching circuit 34 is housed in the housing 35b shown in FIG. 7 together with the power failure detection circuit 33.
  • the switching circuit 34 is connected to the autonomous operation relay 22 of the grid interconnection device 2, the commercial power system 5, and the load 6.
  • the connection of the autonomous operation relay 22 and the load 6, and the commercial power system 5 and the load 6 are connected. Switch between connections.
  • the switching circuit 34 When the switching circuit 34 connects the autonomous operation relay 22 and the load 6, output power when the grid interconnection device 2 performs autonomous operation can be supplied to the load. Further, when the switching circuit 34 connects the commercial power system 5 and the load 6, the power of the commercial power system 5 can be supplied to the load.
  • a connection line 39 is used for connection between the autonomous operation relay 22 and the switching circuit 34.
  • the commercial power system 5 and the switching circuit 34 are connected by wiring from the distribution board.
  • the switching circuit 34 is connected to the load by using an outlet 37 provided in the housing 35b so that a household load can be easily connected.
  • the power storage system control circuit 32 switches the connection of the switching circuit 34 in addition to the control described in the first embodiment.
  • the power storage system control circuit 32 detects a power failure, the power storage system control circuit 32 connects the autonomous operation relay 22 and the load 6, and when the power failure is not detected (the commercial power system 5 is supplying power) The power system 5 and the load 6 are connected. Thereby, at the time of a power failure of the commercial power system 5, the power that the grid interconnection device operates independently is supplied to the load 6, and the power supplied from the commercial power system 5 is supplied to the load 6 when the commercial power system 5 is fed.
  • the power storage system 3 having such a switching circuit 34 is connected to a grid interconnection device capable of automatic switching between interconnection operation and independent operation, it is possible to continue supplying power to the load 6 even if a power failure occurs.
  • a grid interconnection device capable of automatic switching between interconnection operation and independent operation
  • FIG. 8 is a configuration diagram showing the solar power generation system 100 according to the third embodiment.
  • the charge / discharge circuit 31 has a solar cell side circuit 31a on the solar cell side of the insulating transformer 31c. And the solar cell side circuit 31a has the 1st switch element 41 which charges by repeating conduction
  • the solar cell side circuit 31 a is connected so as to bypass the first switch element 41 (for example, in parallel with the first switch element 41), and a first diode 44 that flows a current in a direction opposite to that of the first switch element 41.
  • the storage battery side circuit 31b is connected so as to bypass the second switch element 42 (for example, in parallel with the second switch element 42), and includes a second diode 45 that flows a current in the direction opposite to that of the second switch element 42.
  • the power storage system 3 further includes a parallel circuit 130 in which a switch 134 and a third diode 135 are connected in parallel between the charge / discharge circuit 31 and the storage battery 30.
  • the first switch element 41 is PWM-driven, whereby a current flows through the first switch element 41, the second diode 45, and the third diode 135, and the storage battery 30 is charged.
  • the storage system 3 opens the switch 134 and PWM-drives the second switch element 41, whereby a current flows through the switch 134, the second switch element 42, and the first diode 44, so that the storage battery 30 Discharge. That is, charging is performed by bypassing the switch during charging, and discharging is performed through the switch during discharging.
  • the power storage system 3 is provided with a manual switch 40 on a power line connecting the line 7 and the charge / discharge circuit 31, and when the power storage system 3 is used, the manual switch 40 is closed and used.
  • the power storage system 3 includes ground fault detection sensors CT1 and CT4 such as ZCT for detecting a ground fault, current sensors CT2 and CT3, and voltage sensors VS1 and VS2.
  • Ground fault detection sensor CT1 is arrange
  • the current sensor CT2 is disposed on the cathode side (storage battery side) of the third diode 135, and detects the charging current to the storage battery.
  • the current sensor CT3 is disposed on the storage battery side of the switch 134 and detects a discharge current from the storage battery.
  • the ground fault detection sensor CT4 is disposed between the parallel circuit 130 and the storage battery 30, and detects a ground fault therebetween.
  • the voltage sensor VS1 is disposed on the solar cell 1 side of the charge / discharge circuit 31 and detects the voltage of the solar cell 1.
  • the voltage sensor VS ⁇ b> 2 is connected to the storage battery 30 side of the charge / discharge circuit 31 and detects the voltage of the storage battery 30.
  • the outputs of these sensors CT1 to CT4 and voltage sensors VS1 and VS2 are input to the power storage system control circuit 32 and used when the power storage system 3 performs a protection operation.
  • the power storage system control circuit 32 includes a charge drive circuit 61 for driving the first switch element 41, a discharge drive circuit 62 for driving the second switch element 42, and a switch drive circuit for driving the switch 134. Have.
  • the charge drive circuit 61 inputs a gate block signal GB1 and a charge control signal S1, which will be described later, and drives the first switch element 41.
  • the charge control signal S1 is a signal for driving the first switch element 41 in order to charge the storage battery 30 in normal operation.
  • the charging current or charging voltage is set.
  • a PWM signal created by feedback is used.
  • “Hi” is input as the gate block signal GB1, the first switch element 41 is cut off (so-called gate block) regardless of what signal is input to the charge control signal S1. The switch element is prohibited from being turned on (maintained in a cut-off state).
  • the discharge drive circuit 62 receives the discharge control signal S2 and drives the second switch element 42.
  • the discharge control signal S2 is a signal for driving the second switch element 42 to discharge the storage battery 30 in a normal operation, and is generated by feeding back a discharge current and a charge voltage when discharging the storage battery 30. Use signals.
  • “Hi” is input as the gate block signal GB2
  • the transmission of the discharge control signal S2 is cut off, the second switch element 42 is cut off (so-called gate block), and the first switch element is always turned off. To do.
  • the power storage system control circuit 32 includes a PV undervoltage detection unit 51, a PV overvoltage detection unit 52, and a solar cell ground fault detection unit 53. In addition, the power storage system control circuit 32 includes a discharge overcurrent detection unit 54 that detects charging / discharging abnormality of the power storage system 3.
  • the power storage system control circuit 32 includes a storage battery overcharge detection unit 56 that detects an abnormality in the storage battery 30, a storage battery overdischarge detection unit 57, and a storage battery ground fault detection unit 58.
  • the PV undervoltage detection unit 51 detects the voltage of the solar cell 1 with the voltage sensor VS1, and outputs a PV undervoltage signal SA1 according to the detected voltage. Specifically, when the voltage of the solar cell 1 is lower than a predetermined voltage value, it is determined that the voltage of the solar cell 1 is low and the storage battery 30 cannot be charged (abnormal), and the PV undervoltage signal SA1 is “Hi”. Is output. Further, when the voltage of the solar cell 1 is higher than a predetermined voltage value, it is determined that the voltage of the solar cell 1 is high and the storage battery 30 can be charged (normal), and “Low” is output as the PV undervoltage signal SA1. .
  • the predetermined voltage value is set such that the charge / discharge circuit 31 can determine that the storage battery 30 cannot be charged.
  • the PV overvoltage detection unit 51 detects the voltage of the solar cell 1 with the voltage sensor VS1, and outputs a PV undervoltage signal SA1 according to the detected voltage. Specifically, when the voltage of the solar cell 1 is higher than a predetermined voltage value, an abnormality of the solar cell 1 is detected, and “Hi” is output as the PV overvoltage signal SA2. When the voltage of the solar cell 1 is lower than a predetermined voltage value, the solar cell 1 is determined to be normal, and “Low” is output as the PV undervoltage signal SA1.
  • a voltage value higher than a voltage for example, a rated voltage or a prescribed maximum voltage
  • the solar cell ground fault detector 53 detects the current flowing to the solar cell 1 side of the charge / discharge circuit 31 by the ground fault detection sensor CT1, and outputs a solar cell ground fault signal SA3 according to the detected current. Specifically, when the current detected by the ground fault detection sensor CT1 is higher than a predetermined current value, a ground fault (abnormality) of the solar battery is detected, and “Hi” is output as the solar battery ground fault signal SA3. To do. Further, when the current detected by the ground fault detection sensor CT1 is lower than a predetermined current value, it is determined that the solar battery 1 has no ground fault (normal), and “Low” is output as the solar battery ground fault signal SA3. .
  • the predetermined current value is set to a current value that does not flow when charging / discharging is normally performed by the charging / discharging circuit 31.
  • the discharge overcurrent detection unit 54 detects a current discharged from the storage battery 30 by the current sensor CT3, and outputs a discharge overcurrent signal SA4 according to the detected current. Specifically, when the current detected by the current sensor CT3 is higher than a predetermined current value, it is detected that the battery 30 is overdischarged (abnormal), and “Hi” is output as the discharge overcurrent signal SA4. To do. When the current detected by the current sensor CT3 is lower than a predetermined current value, it is detected as normal and “Low” is output as the discharge overcurrent signal SA4.
  • the predetermined current value is set to a current value higher than a current (for example, a rated discharge current or a maximum discharge current) that flows during normal discharge by the charge / discharge circuit 31.
  • the charging overcurrent detection unit 55 detects the current charged in the storage battery 30 by the current sensor CT2, and outputs the charging overcurrent signal SA5 according to the detected current. Specifically, when the current detected by the current sensor CT2 is higher than a predetermined current value, it is detected that the storage battery 30 is overcharged (abnormal), and “Hi” is output as the charge overcurrent signal SA5. To do. When the current detected by the current sensor CT2 is lower than a predetermined current value, it is detected as normal and “Low” is output as the charge overcurrent signal SA5.
  • a current value higher than a current for example, a rated charge current or a maximum charge current
  • the storage battery overcharge detection unit 56 detects the voltage of the storage battery 30 with the voltage sensor VS2, and outputs a storage battery overcharge signal SA6 according to the detected voltage. Specifically, when the voltage detected by voltage sensor VS2 is higher than a predetermined voltage value, it is detected that storage battery 30 is overcharged, and “Hi” is output as storage battery overcharge detection signal SA6. Further, when the voltage detected by the voltage sensor VS2 is lower than a predetermined voltage value, it is detected that the storage battery 30 is normal, and “Low” is output as the storage battery overcharge detection signal SA6.
  • the predetermined voltage value will be described.
  • the voltage (open voltage) of the storage battery 30 is high if it is high, and low if it is low, depending on the charge capacity (for example, in proportion).
  • the operating voltage of the storage battery is defined, and when this operating voltage is exceeded, it can be determined that the battery is overcharged. Therefore, the upper limit of the operating voltage is preferably set to the predetermined voltage value.
  • the storage battery overdischarge detection unit 57 detects the voltage of the storage battery 30 by the voltage sensor VS2, and outputs a storage battery overdischarge signal SA7 according to the detected voltage. Specifically, when the voltage detected by the voltage sensor VS2 is lower than a predetermined voltage value, it is detected that the storage battery 30 is overdischarged, and “Hi” is output as the storage battery overdischarge detection signal SA7. Further, when the voltage detected by the voltage sensor VS2 is higher than a predetermined voltage value, it is detected that the storage battery 30 is normal, and “Low” is output as the storage battery overdischarge detection signal SA7.
  • the predetermined voltage value may be set to the lower limit of the operating voltage of the storage battery 30.
  • the storage battery ground fault detection unit 58 detects a current flowing to the storage battery 30 side of the charge / discharge circuit 31 by the ground fault detection sensor CT4 and outputs a storage battery ground fault signal SA8. Specifically, when the current detected by the ground fault detection sensor CT4 is higher than a predetermined current value, the ground fault (abnormality) of the storage battery 30 is detected, and “Hi” is output as the storage battery ground fault signal SA8. . Further, when the current detected by the ground fault detection sensor CT4 is lower than a predetermined current value, it is determined that the storage battery 30 has no ground fault (normal), and “Low” is output as the storage battery ground fault signal SA8.
  • the predetermined current value is set to a current value that does not flow when charging / discharging is normally performed by the charging / discharging circuit 31.
  • the output signals SA1 to SA8 are input to the gate block signal generation circuit 64, and the gate block signals GB1 and GB2 are output to the charge drive circuit 61 and the discharge drive circuit 62, respectively, according to the input signals.
  • FIG. 9 is a diagram illustrating an operation pattern of the gate block signal generation circuit 64.
  • the gate block signal generation circuit 64 when any “Hi” signal of the signals SA1, SA2, SA3, SA5, SA6, and SA8 is input to the gate block signal generation circuit 64, the gate block signal generation circuit 64 The gate block signal GB1 is generated and output to the charge driving circuit 61. When any one of the signals SA2, SA3, SA4, SA7, and SA8 is input to the gate block signal generation circuit 64, the gate block signal generation circuit 64 receives the “Hi” gate block signal GB2. It is generated and output to the discharge drive circuit 62.
  • the abnormality of the solar cell 1, the storage battery 30, and the charge / discharge circuit 31 is judged, and when the abnormality is detected, the first switch element 41 or the second switch element 42 is gate-blocked.
  • the first switch element 41 is gate-blocked.
  • the solar cell 1 is overvoltage, when the solar cell 1 is grounded, when the current flowing during discharge is overcurrent, when the storage battery 30 is overdischarged, or when the storage battery 30 is grounded.
  • the power storage system 3 includes a power failure detection unit 59, a discharge operation unit 60, a logical product circuit AN1, and a negative circuit NO1.
  • the power failure detection unit 59 outputs a “Hi” signal when the power failure detection circuit 33 detects a power failure of the commercial power system 5, and a “Low” signal when the power failure detection circuit 33 detects power supply of the commercial power system 5. Output to AN1.
  • the discharge operation unit 60 accepts discharge from the user.
  • a button for accepting the discharge of the storage battery 30 may be prepared, and the user may accept the discharge when the button is pressed. If the discharge operation unit 60 accepts discharge, the discharge operation unit 60 outputs a “Hi” signal to the AND circuit AN1 if the discharge operation unit 60 does not accept discharge.
  • the AND circuit AN1 outputs a “Hi” signal when the “Hi” signal is input from the discharge operation unit 60 and the power failure detection unit 59, and “Low” if any one of the signals is “Low”. Output a signal.
  • the signal output from the AND circuit AN1 is input to the switch drive circuit 63 and the negative circuit NO1.
  • the switch driving circuit 63 closes the switch 134 when the “Hi” signal is input, and opens the switch 134 when the “Low” signal is input.
  • the input signal is inverted and the discharge inhibition signal SA9 is output to the gate block signal generation circuit 64. That is, when the “Hi” signal is input to the negative circuit NO1, the “Low” signal is output as the discharge inhibition signal, and when the “Low” signal is input, the “Hi” signal is output as the discharge inhibition signal.
  • the gate block signal generation circuit 64 When the “Hi” discharge inhibition signal is input, the gate block signal generation circuit 64 generates a “Hi” gate block signal GB 2 and outputs the gate block signal GB 2 to the discharge drive circuit 62.
  • the storage battery 30, or the charge / discharge circuit 31 when there is an abnormality in the solar cell 1, the storage battery 30, or the charge / discharge circuit 31, the first switch element or the second switch element is gate-blocked.
  • the charging / discharging operation of the charging / discharging circuit 31 is prohibited depending on the state, and the storage system 3 or the storage battery 30 can be protected.
  • the discharge of the storage battery 30 is blocked from the soft and hard surfaces by the gate block of the charging / discharging circuit 31 and the switch 134, the discharge of the storage battery 30 is not accidentally discharged and the self-supporting operation of the storage battery 30 is performed. A sufficient charging capacity can be secured.
  • the battery is charged by bypassing the switch when charging, and discharged through the switch when discharging. For this reason, it is not necessary to operate the switch 134 about the charging operation performed even when the commercial power system 5 is out of power or during power feeding, and can be easily executed only by the operation by software.
  • the first switch element 41 and the second switch element 42 are kept in the cutoff state by the gate block.
  • the output of the control signals S1 and S2 is reduced (for example, set to zero) so as to be in the cutoff state. It may be kept.
  • the charge / discharge circuit 31 is expressed as shown in FIG. 8 for simplicity.
  • the first switch element 41 is a switch element of the bridge circuit 31a.
  • the second switch element 42 corresponds to the switch element of the bridge circuit 31b, respectively, and the first diode corresponds to the switch element of the bridge circuit 31a. It can be said that it corresponds to a diode provided in parallel, and the second diode corresponds to a diode provided in anti-parallel to the switch element of the bridge circuit 31b.
  • the parallel circuit 130 is expressed as shown in FIG. 8 for the sake of simplicity, but can be connected as shown in FIG. 4, for example.
  • the charge / discharge circuit 31 using the insulation transformer 31c has been described.
  • a charge / discharge circuit 31d as shown in FIG. 4 that does not use the insulation transformer 31c can also be used.
  • the first switch element 41 corresponds to the switch element 131
  • the second switch element corresponds to the switch element 132
  • the first diode 44 is a diode provided in antiparallel with the first switch element.
  • the second diode 45 corresponds to a diode provided in antiparallel with the second switch element.
  • an electromagnetic relay that opens a contact piece when power is supplied from the commercial power system 5 is used to determine whether the commercial power system 5 is a power failure or power supply.
  • Various circuits can be used as long as the circuit opens and closes the contact piece.
  • a photocoupler or the like may be used.
  • the power failure detection circuit 33 uses an electromagnetic relay to open and close the contact piece to detect a power failure.
  • the contact piece is opened and closed by using an open / close circuit such as a photocoupler. You may detect whether the electric power grid
  • a lead storage battery is used as the storage battery 30
  • a lithium ion battery a nickel hydrogen battery, or the like can also be used.
  • the charge / discharge circuits (insulation type) 31a to 31c using the insulation transformer and the bidirectional chopper 31d are described as the charge / discharge circuit 31, but various configurations can be used.
  • a charging circuit and a discharging circuit may be arranged in parallel.
  • the charging circuit and the discharging circuit may be set to either an insulating type or a non-insulating type.
  • charging is performed from the solar battery 1, but it is also possible to charge using the commercial power system 5.
  • the charging circuit and the discharging circuit are separated, the discharging circuit is disposed between the line 7 and the storage battery 30, and the charging circuit is disposed between the commercial power system 5 and the storage battery 30.
  • the storage battery 30 can be charged, without using the bidirectional
  • the outlet 37 is provided in the housing 35b, but the outlet 37 is attached to a wall of a building and used by wiring from the switching circuit to the outlet 37 (for example, wiring from the inside of the wall). You may do it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

[Problem] To provide an electricity storage system in which an existing system interconnection device can be used to build a solar power generation system that uses a storage cell and a solar cell jointly. [Solution] An electricity storage system provided with a storage cell (30), for supplying the output of the storage cell (30) to a system interconnection device (2) for converting the output power of a solar cell (1) to alternating-current power and outputting to a commercial power system (5); the electricity storage system characterized in comprising: a charging circuit (31) for charging the storage cell (30); a line (7) for connecting the solar cell (1) and the system interconnection device (2); a discharging circuit (31) for discharging from the storage cell (30) to the system interconnection device (2), the discharging circuit being connected to the storage cell (30); and a power outage detection circuit (33) for detecting a power outage in the commercial power system (5); discharging from the storage cell (30) to the system interconnection device (2) being enabled when a power outage is detected by the power outage detection circuit (33).

Description

[規則26に基づく補充 30.07.2012] 蓄電システム、及びそれを利用した系統連系システム[Supplement based on Rule 26.07.2012] Power storage system and grid interconnection system using it
 本発明は、太陽電池と系統連系装置とを接続するラインに接続される蓄電システムに関する。 This invention relates to the electrical storage system connected to the line which connects a solar cell and a grid connection apparatus.
 近年、太陽電池と、この太陽電池から出力される直流電力を交流電力に変換して商用電力系統へ重畳する系統連系装置とを有する太陽光発電システムが提供されている。この様な太陽光発電システムの系統連系装置は、商用電力系統において停電が起きた場合に太陽電池を商用電力系統から切り離し、太陽電池から出力される電力を負荷へ供給する自立運転が行えるようになっている。 Recently, a solar power generation system having a solar cell and a grid interconnection device that converts DC power output from the solar cell into AC power and superimposes it on a commercial power system is provided. Such a grid-connected device of a photovoltaic power generation system can perform a self-sustained operation in which a solar cell is disconnected from a commercial power system and a power output from the solar cell is supplied to a load when a power failure occurs in the commercial power system. It has become.
 系統連系装置は、太陽電池が直流電力の出力ができない間(例えば、夜間等)、に停電がおきた場合は、自立運転することができない。このため、系統連系装置に、蓄電池からの電力も入力できるようにし、停電が起きた場合には、蓄電池からの電力を交流電力に変換して負荷へ供給できる系統連系装置も提案されている。(特許文献1)。
特開2008-54473
The grid interconnection device cannot operate independently when a power failure occurs while the solar cell cannot output DC power (for example, at night). For this reason, a grid interconnection device is also proposed in which power from the storage battery can be input to the grid interconnection device, and in the event of a power failure, the power from the storage battery can be converted into AC power and supplied to the load. Yes. (Patent Document 1).
JP 2008-54473 A
 特許文献1に記載の系統連系装置は、太陽電池とインバータ回路とを接続するラインに蓄電池が接続され、蓄電池とラインとの間には蓄電池の充電、及び放電を行う充放電回路が配置されている。これにより、停電が起きたことを系統連系装置が検出すると、系統連系装置は、充放電回路に放電指令を与え、蓄電池からインバータ回路へ電力を供給する。これにより、太陽電池が発電しない夜間でも、蓄電池が電源となり系統連系装置は自立運転を行うことができる。 In the grid interconnection device described in Patent Document 1, a storage battery is connected to a line connecting the solar battery and the inverter circuit, and a charge / discharge circuit for charging and discharging the storage battery is arranged between the storage battery and the line. ing. Thus, when the grid interconnection device detects that a power failure has occurred, the grid interconnection device gives a discharge command to the charge / discharge circuit, and supplies power from the storage battery to the inverter circuit. Thereby, even at night when the solar battery does not generate electricity, the storage battery becomes a power source, and the grid interconnection device can perform a self-sustained operation.
 しかしながら、上述のように系統連系装置に太陽電池と蓄電池と併用できる機能が予め設けられていれば良いが、この様な機能を有していない系統連系装置も数多く提供されている。また、この様な機能を有していない系統連系装置に、蓄電池と充放電回路とを有する蓄電システムをつけたとしても、停電を蓄電システムに知らせる回路が系統連系装置に別途必要となり、結局、専用の系統連系装置が必要になる問題がある。 However, as described above, it is sufficient that the grid interconnection device has a function that can be used in combination with the solar battery and the storage battery, but many grid interconnection devices that do not have such a function are also provided. In addition, even if a power storage system having a storage battery and a charge / discharge circuit is attached to a grid interconnection device that does not have such a function, a circuit for notifying the power storage system of a power failure is separately required for the grid interconnection device, After all, there is a problem that a dedicated grid interconnection device is required.
 本発明は、この様な点に鑑み成されたものであり、既存の系統連系装置を利用しても蓄電池と太陽電池とを併用する太陽光発電システムを組み上げることができる蓄電システムを提供する。 The present invention has been made in view of such a point, and provides a power storage system that can assemble a solar power generation system that uses both a storage battery and a solar battery even when an existing grid interconnection device is used. .
 上記目的を達成するために、本発明の蓄電システムは、蓄電池を備え、太陽電池の出力電力を交流電力に変換し商用電力系統へ出力する系統連系装置に前記蓄電池を接続する蓄電システムにおいて、前記蓄電池の充電を行う充電回路と、前記太陽電池及び前記系統連系装置を接続するラインと、前記蓄電池との間に接続され、前記蓄電池から前記系統連系装置への放電を行う放電回路と、前記商用電力系統の停電を検出する停電検出回路と、を備え、前記停電検出回路により、停電を検出した場合に前記蓄電池から前記系統連系装置への放電を可能とする構成を備えることを特徴とする。 In order to achieve the above object, the power storage system of the present invention comprises a storage battery, wherein the storage battery is connected to a grid interconnection device that converts the output power of the solar battery into alternating current power and outputs it to the commercial power system. A charging circuit for charging the storage battery, a line connecting the solar battery and the grid interconnection device, and a discharge circuit connected between the storage battery and discharging from the storage battery to the grid interconnection device A power failure detection circuit for detecting a power failure in the commercial power system, and having a configuration that enables discharge from the storage battery to the grid interconnection device when the power failure is detected by the power failure detection circuit. Features.
 この様にすることで、蓄電システムは、停電時に、系統連系装置から停電の信号を受け取ることなく、系統連系装置に蓄電池の出力する直流電力を供給する。そして、系統連系装置は、この直流電力を受けて交流電力に変換し、負荷へ電力を供給できるようになる(自立運転できるようになる)。この様に、既存の系統連系装置を利用しても蓄電池と太陽電池とを併用する太陽光発電システムを組み上げることができる。 In this way, the power storage system supplies the DC power output from the storage battery to the grid interconnection device without receiving a power failure signal from the grid interconnection device in the event of a power failure. Then, the grid interconnection device receives this DC power, converts it to AC power, and can supply power to the load (becomes able to operate independently). In this manner, a solar power generation system that uses a storage battery and a solar battery in combination can be assembled even if an existing grid interconnection device is used.
 また、上述の発明において、前記停電検出回路は、商用電力系統から電力が供給されると接片を開く開閉回路を有し、前記開閉回路が閉じたことを検出して前記蓄電池から前記系統連系装置への放電を行うことを特徴とする。 In the above-described invention, the power failure detection circuit has an open / close circuit that opens a contact piece when power is supplied from a commercial power system, detects that the open / close circuit is closed, and detects the closed circuit from the storage battery. It discharges to a system apparatus, It is characterized by the above-mentioned.
 また、上述の発明において、前記充電回路、及び前記放電回路は、絶縁トランスを介して前記蓄電池の充電、及び放電を行う充放電回路であることを特徴とする。 In the above-described invention, the charging circuit and the discharging circuit are charging / discharging circuits that charge and discharge the storage battery via an insulating transformer.
 また、上述の発明において、前記充電回路、及び前記放電回路は、非絶縁型の双方向チョッパ回路による充放電回路により構成され、前記充放電回路と前記ラインとの間に開閉器を有し、前記停電検出回路により、前記商用電力系統の給電を検出した場合に前記開閉器を開くことを特徴とする。 In the above-mentioned invention, the charging circuit and the discharging circuit are configured by a charging / discharging circuit using a non-insulated bidirectional chopper circuit, and have a switch between the charging / discharging circuit and the line, When the power failure detection circuit detects feeding of the commercial power system, the switch is opened.
 また、上述の発明において、前記系統連系装置が自立運転する場合に電力を出力する端子と、前記商用電力系統と、負荷に接続され、前記系統連系装置、或いは前記商用電力系統からの出力電力のいずれかを前記負荷へ出力する切替回路を有し、停電を検出した場合に、前記系統連系装置の出力電力を前記負荷へ出力することを特徴とする。 Further, in the above-described invention, when the grid interconnection device is operated independently, the terminal that outputs power, the commercial power system, and a load connected to the grid interconnection device or the output from the commercial power system A switching circuit that outputs any one of the electric power to the load is provided, and when a power failure is detected, output power of the grid interconnection device is output to the load.
 また、上述の発明において、前記停電検出回路により、停電を検出し、且つ太陽電池の出力電圧が第1所定値以上である場合に前記充電回路により蓄電池を充電し、前記停電検出回路により、停電を検出し、且つ太陽電池の出力電圧が第1所定値未満である場合に前記放電回路により蓄電池を放電し、前記停電検出回路により、前記商用電力系統の給電を検出し、且つ太陽電池の出力電圧が第2所定値以上である場合に前記充電回路により蓄電池を充電し、前記停電検出回路により、前記商用電力系統の給電を検出し、且つ太陽電池の出力電圧が第2所定値未満である場合に前記充電回路、及び前記放電回路を停止することを特徴とする。 Moreover, in the above-mentioned invention, when the power failure is detected by the power failure detection circuit and the output voltage of the solar battery is equal to or higher than a first predetermined value, the storage battery is charged by the charging circuit, and the power failure detection circuit causes the power failure to occur. And when the output voltage of the solar cell is less than a first predetermined value, the storage battery is discharged by the discharge circuit, the power failure detection circuit detects the feeding of the commercial power system, and the output of the solar cell When the voltage is equal to or higher than a second predetermined value, the charging circuit charges the storage battery, the power failure detection circuit detects the power supply of the commercial power system, and the output voltage of the solar battery is less than the second predetermined value. In some cases, the charging circuit and the discharging circuit are stopped.
 また、上記目的を達成するために、本発明の系統連系システムは、前記系統連系装置と、上述の蓄電システムとを備えることを特徴とする。 In order to achieve the above object, the grid interconnection system of the present invention includes the grid interconnection device and the above-described power storage system.
 本発明によれば、既存の系統連系装置を利用して蓄電池と太陽電池とを併用する太陽光発電システムを組み上げることができる蓄電システムを提供することができる。 According to the present invention, it is possible to provide a power storage system capable of assembling a solar power generation system that uses a storage battery and a solar battery in combination using an existing grid interconnection device.
第1の実施形態における太陽光発電システム100を示す構成図である。It is a lineblock diagram showing photovoltaic power generation system 100 in a 1st embodiment. 第1の実施形態における系統連系装置2の構成図である。It is a lineblock diagram of system interconnection device 2 in a 1st embodiment. 第1の実施形態における蓄電システム3の構成図である。It is a block diagram of the electrical storage system 3 in 1st Embodiment. 第1の実施形態における蓄電システム3の斜視図である。It is a perspective view of the electrical storage system 3 in 1st Embodiment. 第2の実施形態における太陽光発電システム100を示す構成図である。It is a block diagram which shows the solar energy power generation system 100 in 2nd Embodiment. 第2の実施形態における蓄電システム3の変形例を示す構成図である。It is a block diagram which shows the modification of the electrical storage system 3 in 2nd Embodiment. 第2の実施形態における蓄電システム3の斜視図である。It is a perspective view of the electrical storage system 3 in 2nd Embodiment. 第3の実施形態における太陽光発電システム100を示す構成図である。It is a block diagram which shows the solar energy power generation system 100 in 3rd Embodiment. ゲートブロック信号生成回路の動作パターンを示す図である。It is a figure which shows the operation | movement pattern of a gate block signal generation circuit.
(第1の実施形態)
 以下、図面に基づき本発明の第1の実施形態を詳述する。図1は第1の実施形態における太陽光発電システム100を示す構成図である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram illustrating a photovoltaic power generation system 100 according to the first embodiment.
 太陽光発電システム100は、太陽電池1、系統連系装置2、及び蓄電システム3により構成されている。 The solar power generation system 100 includes a solar cell 1, a grid interconnection device 2, and a power storage system 3.
 太陽電池1は、日射量に応じて発電量が変化する。また、太陽電池1は、複数の単セルの太陽電池を有し、複数の単セルの太陽電池を直列接続及び/又は並列接続することにより構成されている。例えば、定格電圧が250V、300V、出力2.4Kw、出力4.8Kwなどである。 The solar cell 1 changes its power generation amount according to the amount of solar radiation. The solar cell 1 includes a plurality of single cell solar cells, and is configured by connecting a plurality of single cell solar cells in series and / or in parallel. For example, the rated voltage is 250 V, 300 V, output 2.4 Kw, output 4.8 Kw, and the like.
 系統連系装置2は、太陽電池1から出力された直流電力を入力し、入力した直流電力を交流電力に変換して、系統連系用リレー21を介して商用電力系統5へ出力する(連系運転)。また、商用電力系統5が停電時には、太陽電池1及び/又は蓄電システム3から出力された直流電力を入力し、入力した直流電力を交流電力に変換して、この交流電力を自立運転用リレー22を介して負荷6へ供給する(自立運転)。系統連系装置2は、商用電力系統5の停電を検出して連系運転と自立運転の切り替えを自動で行う機能を有する。尚、連系運転と自立運転の切り替えは、系統連系装置2が停電を検出して停止した後、手動で行えるように構成しても良い。図2に第1の実施形態における系統連系装置2の構成図を示す。 The grid interconnection device 2 receives the DC power output from the solar cell 1, converts the input DC power into AC power, and outputs the AC power to the commercial power grid 5 via the grid interconnection relay 21 (linkage). System operation). Further, when the commercial power system 5 is out of power, the DC power output from the solar cell 1 and / or the power storage system 3 is input, the input DC power is converted into AC power, and this AC power is converted to a relay 22 for independent operation. Is supplied to the load 6 through (stand-alone operation). The grid interconnection device 2 has a function of automatically switching between grid operation and independent operation by detecting a power failure in the commercial power system 5. It should be noted that the switching between the grid operation and the independent operation may be performed manually after the grid interconnection device 2 detects a power failure and stops. The block diagram of the grid connection apparatus 2 in 1st Embodiment is shown in FIG.
 系統連系装置2は、昇圧回路23、インバータ回路24、フィルタ回路25、系統連系制御回路26、系統連系用リレー21、及び自立運転用リレー22を有している。 The grid interconnection device 2 includes a booster circuit 23, an inverter circuit 24, a filter circuit 25, a grid interconnection control circuit 26, a grid interconnection relay 21, and a self-sustained operation relay 22.
 昇圧回路23は、図2に示すように、リアクトル、スイッチ素子、ダイオードを有する昇圧チョッパ回路により構成され、スイッチ素子のデューティ比を制御することにより、系統連系装置2に入力された直流電力を所望の電圧に昇圧する。 As shown in FIG. 2, the booster circuit 23 is composed of a booster chopper circuit having a reactor, a switch element, and a diode. By controlling the duty ratio of the switch element, the DC power input to the grid interconnection device 2 is obtained. Boost to desired voltage.
 インバータ回路24は、フルブリッジ接続した複数のスイッチ素子により構成される。このスイッチ素子をPWM制御することにより、昇圧回路23の出力する直流電力を交流電力に変換する。インバータ回路24は変換した交流電力をフィルタ回路25に出力する。 The inverter circuit 24 is composed of a plurality of switch elements connected in a full bridge. By performing PWM control of this switch element, the DC power output from the booster circuit 23 is converted into AC power. The inverter circuit 24 outputs the converted AC power to the filter circuit 25.
 フィルタ回路25は、2つのリアクトルとコンデンサにより構成され、インバータ回路24の出力する交流電力の高周波成分を除去する。高周波成分が除去された交流電力は、系統連系用リレー21を介して商用電力系統へ、或いは自立運転用リレー22を介して負荷6へ出力される。 The filter circuit 25 includes two reactors and a capacitor, and removes a high-frequency component of AC power output from the inverter circuit 24. The AC power from which the high frequency component has been removed is output to the commercial power system via the grid interconnection relay 21 or to the load 6 via the autonomous operation relay 22.
 系統連系制御回路26は、昇圧回路23、インバータ回路24、系統連系用リレー21、自立運転用リレー22の動作を制御する。系統連系制御回路26は、起動時に商用電力系統5が停電しているか否かを判断する。系統連系制御回路26は、商用電力系統5が停電している場合は、系統連系用リレー21を開き、自立運転用リレー22を閉じ自立運転を行う。また、系統連系制御回路26は、商用電力系統5が給電している場合は、系統連系用リレー21を閉じ、自立運転用リレー22を開いて連系運転を行う。 The grid interconnection control circuit 26 controls operations of the booster circuit 23, the inverter circuit 24, the grid interconnection relay 21, and the independent operation relay 22. The grid interconnection control circuit 26 determines whether or not the commercial power system 5 has a power failure at the time of startup. When the commercial power system 5 has a power failure, the grid interconnection control circuit 26 opens the grid interconnection relay 21 and closes the autonomous operation relay 22 to perform autonomous operation. In addition, when the commercial power system 5 is supplying power, the grid interconnection control circuit 26 closes the grid interconnection relay 21 and opens the independent operation relay 22 to perform interconnection operation.
 蓄電システム3は、商用電力系統5が停電している場合に、系統連系装置2に電力を供給し、商用電力系統5が給電している場合は、太陽電池1の出力電力を利用して充電する。図3に第1の実施形態における蓄電システム3の構成図を示す。図4に第1の実施形態における蓄電システム3の斜視図を示す。 The power storage system 3 supplies power to the grid interconnection device 2 when the commercial power system 5 is out of power, and uses the output power of the solar cell 1 when the commercial power system 5 supplies power. Charge. FIG. 3 shows a configuration diagram of the power storage system 3 in the first embodiment. The perspective view of the electrical storage system 3 in 1st Embodiment is shown in FIG.
 蓄電システム3は、蓄電池30、充放電回路31、蓄電システム制御回路32、及び停電検出回路33を備える。蓄電池30、充放電回路31、及び蓄電システム制御回路32は、筺体35a内に収容される。また停電検出回路33は、筺体35aとは別の筺体35bに収容され、信号線36により筺体35a内の蓄電システム制御回路32に接続される。 The power storage system 3 includes a storage battery 30, a charge / discharge circuit 31, a power storage system control circuit 32, and a power failure detection circuit 33. The storage battery 30, the charging / discharging circuit 31, and the electrical storage system control circuit 32 are accommodated in the housing 35a. The power failure detection circuit 33 is housed in a housing 35b different from the housing 35a, and is connected to the power storage system control circuit 32 in the housing 35a by a signal line 36.
 蓄電池30は、例えば、鉛蓄電池が利用され、定格電圧が12[V]~240[V]になるように単電池を直列及び/又は並列に接続して構成される。 The storage battery 30 is configured by using, for example, a lead storage battery and connecting cells in series and / or in parallel so that the rated voltage is 12 [V] to 240 [V].
 充放電回路31は、絶縁トランス31cを介して蓄電池30の充電、或いは放電を行うように構成されている。具体的には、ダイオードが逆並列接続された複数(4つ)のスイッチ素子(例えば、IGBTのような素子が利用できる)をフルブリッジ接続した2つのブリッジ回路31a、31bを、絶縁トランス31cを介して接続している。尚、充放電回路31は、充電も放電も行うことができるため、充電回路とも放電回路とも言うことができる。 The charging / discharging circuit 31 is configured to charge or discharge the storage battery 30 via the insulating transformer 31c. Specifically, two bridge circuits 31a and 31b in which a plurality of (four) switch elements (for example, an element such as an IGBT) in which diodes are connected in antiparallel are connected in a full bridge are connected to an insulating transformer 31c. Connected through. In addition, since the charge / discharge circuit 31 can perform both charge and discharge, it can be called a charge circuit or a discharge circuit.
 ブリッジ回路31aの交流側は絶縁トランス31cに接続され、直流側は、太陽電池1と系統連系装置2とを接続するライン7に接続される。このライン7と充放電回路31は、接続ライン38により接続される。ブリッジ回路31bの交流側は絶縁トランス31cに接続され、直流側は蓄電池30に接続される。蓄電池30を充電する際は、ブリッジ回路31aのスイッチ素子をPWM駆動し、ブリッジ回路31bのスイッチ素子を停止(遮断)してダイオード整流回路として動作させる。これにより、太陽電池1からの出力電圧が蓄電池30の定格出力より少し高い電圧に降圧され、蓄電池30を充電することができる。充電は、蓄電池30の電圧が所定の電圧値までは定電流充電を行い、蓄電池30の電圧が所定の電圧値よりも大きい場合は、定電圧充電を行う。 The AC side of the bridge circuit 31a is connected to the insulation transformer 31c, and the DC side is connected to the line 7 connecting the solar cell 1 and the grid interconnection device 2. The line 7 and the charge / discharge circuit 31 are connected by a connection line 38. The AC side of the bridge circuit 31 b is connected to the insulating transformer 31 c, and the DC side is connected to the storage battery 30. When charging the storage battery 30, the switch element of the bridge circuit 31a is PWM-driven, and the switch element of the bridge circuit 31b is stopped (shut off) to operate as a diode rectifier circuit. Thereby, the output voltage from the solar cell 1 is stepped down to a voltage slightly higher than the rated output of the storage battery 30, and the storage battery 30 can be charged. Charging is performed by constant current charging until the voltage of the storage battery 30 reaches a predetermined voltage value, and is charged by constant voltage when the voltage of the storage battery 30 is higher than the predetermined voltage value.
 蓄電池30を放電する際は、ブリッジ回路31bのスイッチ素子をPWM駆動し、ブリッジ回路31aのスイッチ素子を停止(遮断)してダイオード整流回路として動作させる。これにより、蓄電池30からの出力電圧が太陽電池1の動作電圧程度に昇圧され、系統連系装置2に供給される。 When discharging the storage battery 30, the switch element of the bridge circuit 31b is PWM-driven, and the switch element of the bridge circuit 31a is stopped (cut off) to operate as a diode rectifier circuit. Thereby, the output voltage from the storage battery 30 is boosted to about the operating voltage of the solar battery 1 and supplied to the grid interconnection device 2.
 停電検出回路33には、電磁リレーが利用される。この電磁リレーには、駆動電力を商用電力系統5から供給を受けるACリレーが用いられる。ACリレーは、商用電力系統5の電力を分配する分電盤の近くに設置(筐体35bを分電盤の近くに配置)される。ACリレーはこの分電盤からの配線により、商用電力系統5と接続され、交流電力が供給される。ACリレーは、商用電力系統5から電力が供給されている場合は、接片を開き、電力の供給が無くなると接片を閉じる。この接片は、信号線36を介して蓄電システム制御回路32に接続されており、蓄電システム制御回路32は、接片が閉じることで流れる電流を検出して停電を検出する。また、逆に、蓄電システム制御回路32は、電流が流れない場合に商用電力系統5が給電と検出する。 An electromagnetic relay is used for the power failure detection circuit 33. An AC relay that receives driving power from the commercial power system 5 is used as the electromagnetic relay. The AC relay is installed near the distribution board that distributes the power of the commercial power system 5 (the casing 35b is arranged near the distribution board). The AC relay is connected to the commercial power system 5 by wiring from the distribution board and supplied with AC power. The AC relay opens the contact piece when power is supplied from the commercial power system 5, and closes the contact piece when power is not supplied. The contact piece is connected to the power storage system control circuit 32 via the signal line 36, and the power storage system control circuit 32 detects a power failure by detecting a current flowing when the contact piece is closed. Conversely, the power storage system control circuit 32 detects that the commercial power system 5 supplies power when no current flows.
 蓄電システム制御回路32は、充放電回路31の動作を制御する。充放電回路31の動作は、(1)商用電力系統が停電しており、且つ太陽電池が十分に発電している場合、(2)商用電力系統が停電しており、且つ太陽電池が十分に発電していない場合、(3)商用電力系統が給電しており、且つ太陽電池が発電している場合、(4)商用電力系統が給電しており、且つ太陽電池が発電していない場合の4通りに分かれる。 The power storage system control circuit 32 controls the operation of the charge / discharge circuit 31. The operation of the charging / discharging circuit 31 is as follows: (1) When the commercial power system is out of power and the solar cell is sufficiently generating power, (2) The commercial power system is out of power and the solar cell is sufficiently When power is not generated, (3) When the commercial power system is feeding and the solar cell is generating power, (4) When the commercial power system is feeding and the solar cell is not generating power Divided into four ways.
 (1)の場合について述べる。(1)の場合は、商用電力系統5が停電中、太陽電池が十分に発電を行い、自立運転用の負荷6に電力を供給でき、蓄電池への充電に電力を利用することができる状態である。蓄電システム制御回路32は、停電検出回路33により商用電力系統5の停電を検出し、接続ライン38の電圧(太陽電池の出力電圧)が第1所定値以上(例えば、自立運転用の負荷6に電力を十分に供給できる値)である場合にこの状態と判断する。この場合、蓄電システム制御回路32は、太陽電池1から蓄電池30への充電を充放電回路31に指示する。 The case of (1) will be described. In the case of (1), the commercial power system 5 is in a state where the solar battery can sufficiently generate power, supply power to the load 6 for autonomous operation, and use the power for charging the storage battery during a power failure. is there. The power storage system control circuit 32 detects a power failure of the commercial power system 5 by the power failure detection circuit 33, and the voltage of the connection line 38 (output voltage of the solar cell) is equal to or higher than a first predetermined value (for example, the load 6 for autonomous operation). This value is determined when the value is sufficient to supply power. In this case, the power storage system control circuit 32 instructs the charge / discharge circuit 31 to charge the solar battery 1 to the storage battery 30.
 (2)の場合について述べる。(2)の場合は、商用電力系統5が停電中、太陽電池は発電を行っているが、自立運転用の負荷6への電力供給が足りず、蓄電池の放電を利用して負荷電力の供給を行う状態である。蓄電システム制御回路32は、停電検出回路33により商用電力系統5の停電を検出し、接続ライン38の電圧(太陽電池の出力電圧)が第1所定値未満(例えば、自立運転用の負荷6に電力を十分に供給できる値)である場合にこの状態と判断する。この場合、蓄電システム制御回路32は、蓄電池30と充放電回路との間に流れる電流を監視し、この電流が所定の電流値になるように電流制御により放電を行う。 The case of (2) will be described. In the case of (2), while the commercial power system 5 is out of power, the solar cell is generating power, but the power supply to the load 6 for independent operation is insufficient, and supply of load power using the discharge of the storage battery It is in a state to perform. The power storage system control circuit 32 detects the power failure of the commercial power system 5 by the power failure detection circuit 33, and the voltage of the connection line 38 (the output voltage of the solar cell) is less than a first predetermined value (for example, the load 6 for autonomous operation). This value is determined when the value is sufficient to supply power. In this case, the power storage system control circuit 32 monitors the current flowing between the storage battery 30 and the charge / discharge circuit, and performs discharge by current control so that the current becomes a predetermined current value.
 (3)の場合について述べる。(3)の場合は、商用電力系統5が給電中、太陽電池1が蓄電池30を充電可能な状態である。蓄電システム制御回路32は、停電検出回路33により商用電力系統5の給電を検出し、接続ライン38の電圧(太陽電池の出力電圧)が第2所定値(例えば、蓄電池30の定格電圧)以上である場合にこの状態と判断する。この場合、蓄電システム制御回路32は、太陽電池1から蓄電池30への充電を充放電回路31に指示する。 The case of (3) will be described. In the case of (3), the commercial power system 5 is supplying power, and the solar battery 1 is in a state where the storage battery 30 can be charged. The power storage system control circuit 32 detects the power supply of the commercial power system 5 by the power failure detection circuit 33, and the voltage of the connection line 38 (the output voltage of the solar battery) is equal to or higher than a second predetermined value (for example, the rated voltage of the storage battery 30). In some cases, this state is determined. In this case, the power storage system control circuit 32 instructs the charge / discharge circuit 31 to charge the solar battery 1 to the storage battery 30.
 (4)の場合について述べる。(4)の場合は、商用電力系統5が給電中、太陽電池1が蓄電池30を充電ができない状態である。蓄電システム制御回路32は、停電検出回路33により商用電力系統5の給電を検出し、接続ライン38の電圧(太陽電池の出力電圧)が第2所定値(例えば、蓄電池30の定格電圧)未満である場合にこの状態と判断する。この場合、蓄電システム制御回路32は、充放電回路31のブリッジ回路を構成するスイッチ素子を全て遮断し、充放電回路31を停止する。 The case of (4) will be described. In the case of (4), while the commercial power system 5 is supplying power, the solar battery 1 cannot charge the storage battery 30. The power storage system control circuit 32 detects the power supply of the commercial power system 5 by the power failure detection circuit 33 and the voltage of the connection line 38 (output voltage of the solar battery) is less than a second predetermined value (for example, the rated voltage of the storage battery 30). In some cases, this state is determined. In this case, the power storage system control circuit 32 shuts off all the switch elements constituting the bridge circuit of the charge / discharge circuit 31 and stops the charge / discharge circuit 31.
 また、第1所定値は第2所定値より高い値に設定すると良い。このようにすることで、停電時に給電時と比較して高い閾値の場合に充電を行うことになるため、停電時に負荷6優先の電力供給を行うことができる。 Also, the first predetermined value may be set higher than the second predetermined value. In this way, charging is performed when the threshold value is higher than that during power supply during a power failure, and therefore, power supply with priority to the load 6 can be performed during a power failure.
 また、蓄電システム制御回路32は、(1)~(4)の場合に行う制御の他に、過充電保護や過放電保護などの保護制御も行うように構成されている。 The power storage system control circuit 32 is configured to perform protection control such as overcharge protection and overdischarge protection in addition to the control performed in the cases (1) to (4).
 以上の第1の実施形態によれば、蓄電システム3は、商用電力系統5へ接続される停電検出回路33により停電を検出して、系統連系装置2へ蓄電池30から直流電力を供給するようになる。この様にすることで、蓄電システム3は、停電時に系統連系装置2から停電の信号を受け取ることなく、系統連系装置2に蓄電池30の出力する直流電力を供給する。そして、系統連系装置2は、この直流電力を受けて交流電力に変換し、負荷6へ電力を供給できるようになる(自立運転できるようになる)。この様に、既存の系統連系装置を利用しても蓄電池と太陽電池とを併用する太陽光発電システムを組み上げることができる。 According to the first embodiment described above, the power storage system 3 detects a power failure by the power failure detection circuit 33 connected to the commercial power system 5 and supplies DC power from the storage battery 30 to the grid interconnection device 2. become. By doing in this way, the electrical storage system 3 supplies the direct current power which the storage battery 30 outputs to the grid connection apparatus 2, without receiving the signal of a power failure from the grid connection apparatus 2 at the time of a power failure. And the grid connection apparatus 2 receives this direct current power, converts it into alternating current power, and can supply electric power to the load 6 (becomes able to carry out a self-supporting operation). In this manner, a solar power generation system that uses a storage battery and a solar battery in combination can be assembled even if an existing grid interconnection device is used.
 また、充放電回路31は、絶縁トランスを介して蓄電池30の充電、及び放電を行うようにしているため、充放電回路31のスイッチ素子を遮断する(停止する)ことで太陽電池1と系統連系装置2を接続するライン7と蓄電池30とが遮断されるため、商用電力系統5が電力を供給し、太陽電池1が発電していない場合に、蓄電池30から系統連系装置2への放電を防ぐことができる。 Moreover, since the charging / discharging circuit 31 performs charging and discharging of the storage battery 30 via an insulating transformer, the switching element of the charging / discharging circuit 31 is shut off (stopped) so as to be connected to the solar battery 1. Since the line 7 connecting the system device 2 and the storage battery 30 are disconnected, the commercial power system 5 supplies power, and the solar battery 1 is not generating power, the discharge from the storage battery 30 to the grid interconnection device 2 Can be prevented.
 また、充放電回路31は、商用電力系統5が停電している場合にのみ蓄電池30を放電する。これにより、商用電力系統5が給電している場合は充電しか行わないため、商用電力系統5が停電した場合に、ほぼ100%の充電容量にて蓄電池30を利用することができる。 In addition, the charge / discharge circuit 31 discharges the storage battery 30 only when the commercial power system 5 has a power failure. As a result, only charging is performed when the commercial power system 5 is feeding, so that the storage battery 30 can be used with a charging capacity of almost 100% when the commercial power system 5 fails.
 また、停電検出回路33を筺体35aと別体の筺体35bに収容し、信号線36にて筺体35a内の蓄電システム制御回路32と停電検出回路とを接続している。これにより、商用電力系統5の電力を分配する分電盤付近に停電検出回路33を配置でき、商用電力系統5と停電検出回路33を接続するラインを短くすることができる。このラインが短くなることで、このラインの断線を防ぎ、断線による蓄電池30の誤作動を防ぐことができる。 Further, the power failure detection circuit 33 is accommodated in a housing 35b separate from the housing 35a, and the power storage system control circuit 32 and the power failure detection circuit in the housing 35a are connected by a signal line 36. Thereby, the power failure detection circuit 33 can be arrange | positioned near the distribution board which distributes the electric power of the commercial power system 5, and the line which connects the commercial power system 5 and the power failure detection circuit 33 can be shortened. By shortening this line, disconnection of this line can be prevented and malfunction of the storage battery 30 due to disconnection can be prevented.
 また、ACリレーの接片が閉じた場合に停電を検出する構成になっているため、信号線36が断線したとしても停電と判断されず、蓄電池30が放電することがない。これにより、蓄電池30の予期せぬ放電(商用電力系統5が給電時の放電)を防ぐことができる。  Further, since the power failure is detected when the AC relay contact piece is closed, even if the signal line 36 is disconnected, it is not determined that the power failure occurs, and the storage battery 30 is not discharged. Thereby, the unexpected discharge (discharge when the commercial power system 5 is feeding) of the storage battery 30 can be prevented. *
(第2の実施形態)
 第1の実施形態において、充放電回路31に絶縁トランスを介して蓄電池30の充電、及び放電を行うものを採用したが、第2の実施形態では、充放電回路に非絶縁型の双方向チョッパを採用する。また、第2の実施形態では、系統連系装置2の自立運転用リレー22と商用電力系統5とに接続され、商用電力系統5の停電・給電に応じて、停電時に系統連系装置2の電力を、給電時に商用電力系統5の電力を負荷6へ出力する切替回路を蓄電システム3に設ける。その他の構成については、第1の実施形態と同様の構成を用いることができるため説明を省略する。
(Second Embodiment)
In the first embodiment, the charging / discharging circuit 31 that charges and discharges the storage battery 30 via an insulating transformer is adopted. However, in the second embodiment, a non-insulating bidirectional chopper is used for the charging / discharging circuit. Is adopted. Moreover, in 2nd Embodiment, it connects with the relay 22 for independent operation of the grid connection apparatus 2, and the commercial power grid 5, and according to the power failure and electric power feeding of the commercial power grid 5, the grid connection apparatus 2 of the grid connection apparatus 2 is The power storage system 3 is provided with a switching circuit that outputs power from the commercial power grid 5 to the load 6 during power feeding. About another structure, since the structure similar to 1st Embodiment can be used, description is abbreviate | omitted.
 図5は、第2の実施形態における太陽光発電システム100を示す構成図である。図6は、第2の実施形態における蓄電システム3の変形例を示す構成図である。図7は、第2の実施形態における蓄電システム3の斜視図である。 FIG. 5 is a configuration diagram showing the solar power generation system 100 according to the second embodiment. FIG. 6 is a configuration diagram illustrating a modified example of the power storage system 3 in the second embodiment. FIG. 7 is a perspective view of the power storage system 3 in the second embodiment.
 図6に示すように、充放電回路31dは、ダイオードが逆並列接続された複数(2つ)のスイッチ素子131、132、リアクトル133、開閉器134、及びダイオード135を有している。スイッチ素子131を所定のデューティ比にて開閉することで、太陽電池1からの出力電圧が蓄電池30の定格出力より少し高い電圧に降圧され、蓄電池30を充電することができる。第1の実施形態と同様に、充電は、蓄電池30の電圧が所定の電圧値までは定電流充電を行い、蓄電池30の電圧が所定の電圧値よりも大きい場合は、定電圧充電を行う。 As shown in FIG. 6, the charge / discharge circuit 31 d includes a plurality (two) of switch elements 131 and 132, a reactor 133, a switch 134, and a diode 135 in which diodes are connected in reverse parallel. By opening and closing the switch element 131 at a predetermined duty ratio, the output voltage from the solar cell 1 is stepped down to a voltage slightly higher than the rated output of the storage battery 30, and the storage battery 30 can be charged. As in the first embodiment, the charging is constant current charging until the voltage of the storage battery 30 reaches a predetermined voltage value, and constant voltage charging is performed when the voltage of the storage battery 30 is greater than the predetermined voltage value.
 蓄電池30を放電する場合は、スイッチ素子132を所定のデューティ比にて開閉する。これにより、蓄電池30の出力電圧が太陽電池1の動作電圧程度に昇圧され、系統連系装置2に供給される。 When discharging the storage battery 30, the switch element 132 is opened and closed with a predetermined duty ratio. Thereby, the output voltage of the storage battery 30 is boosted to about the operating voltage of the solar battery 1 and supplied to the grid interconnection device 2.
 開閉器134とダイオード135は並列に接続されており、ダイオード135は、充放電回路31から蓄電池30へ向かう電流を流すように接続されている。開閉器134とダイオード135の並列回路は、充放電回路31と蓄電池30との間に設けられる(或いは、充放電回路31とライン7との間に設けても良い)。非絶縁型の双方向チョッパを利用する場合、太陽電池1が発電していない場合は、充放電回路31のスイッチ素子を遮断していても、スイッチ素子131に逆並列に接続されているダイオードを通して系統連系装置2へ蓄電池30が放電されてしまう。 The switch 134 and the diode 135 are connected in parallel, and the diode 135 is connected to flow a current from the charge / discharge circuit 31 to the storage battery 30. A parallel circuit of the switch 134 and the diode 135 is provided between the charge / discharge circuit 31 and the storage battery 30 (or may be provided between the charge / discharge circuit 31 and the line 7). When a non-insulated bidirectional chopper is used, when the solar cell 1 is not generating power, even though the switch element of the charge / discharge circuit 31 is shut off, a diode connected in reverse parallel to the switch element 131 is used. The storage battery 30 is discharged to the grid interconnection device 2.
 開閉器134とダイオード135の並列回路はこれを防ぐためのものであり、商用電力系統5が給電している場合に開閉器134を開き、停電の際にはこの開閉器134を閉じて使用する。これにより、商用電力系統5が給電しており太陽電池1が発電していない場合に、開閉器134が開き、蓄電池30から系統連系装置2への放電を防ぐことができる。停電の場合は蓄電池30から系統連系装置2へ電力を供給するため、開閉器134は閉じられる。 The parallel circuit of the switch 134 and the diode 135 is for preventing this, and the switch 134 is opened when the commercial power system 5 is supplying power, and the switch 134 is closed and used in the event of a power failure. . Thereby, when the commercial power system 5 is supplying power and the solar cell 1 is not generating power, the switch 134 is opened, and discharge from the storage battery 30 to the grid interconnection device 2 can be prevented. In the case of a power failure, the switch 134 is closed to supply power from the storage battery 30 to the grid interconnection device 2.
 蓄電システム3は、図5、図6に示すように、切替回路34を備える。切替回路34は、2接点を切り替えるスイッチ回路が利用される。切替回路34は、停電検出回路33と一緒に図7に示す筺体35bに収容される。切替回路34は、系統連系装置2の自立運転用リレー22と、商用電力系統5と、負荷6に接続され、自立運転用リレー22及び負荷6の接続と、商用電力系統5及び負荷6の接続とを切り替える。 The power storage system 3 includes a switching circuit 34 as shown in FIGS. As the switching circuit 34, a switch circuit that switches between two contacts is used. The switching circuit 34 is housed in the housing 35b shown in FIG. 7 together with the power failure detection circuit 33. The switching circuit 34 is connected to the autonomous operation relay 22 of the grid interconnection device 2, the commercial power system 5, and the load 6. The connection of the autonomous operation relay 22 and the load 6, and the commercial power system 5 and the load 6 are connected. Switch between connections.
 切替回路34が、自立運転用リレー22と負荷6との接続を行うと、系統連系装置2が自立運転する際の出力電力を負荷へ供給可能になる。また、切替回路34が、商用電力系統5と負荷6との接続を行うと、商用電力系統5の電力を負荷へ供給可能になる。 When the switching circuit 34 connects the autonomous operation relay 22 and the load 6, output power when the grid interconnection device 2 performs autonomous operation can be supplied to the load. Further, when the switching circuit 34 connects the commercial power system 5 and the load 6, the power of the commercial power system 5 can be supplied to the load.
 自立運転用リレー22と切替回路34との接続には接続ライン39が用いられる。また、商用電力系統5と切替回路34との接続は、分電盤からの配線により行う。切替回路34の負荷との接続は、筺体35bに設けられるコンセント37を利用することで、家庭用負荷を容易に接続できるようになっている。 A connection line 39 is used for connection between the autonomous operation relay 22 and the switching circuit 34. The commercial power system 5 and the switching circuit 34 are connected by wiring from the distribution board. The switching circuit 34 is connected to the load by using an outlet 37 provided in the housing 35b so that a household load can be easily connected.
 蓄電システム制御回路32は、第1の実施形態で述べた制御に加えて、切替回路34の接続の切り替えを行う。蓄電システム制御回路32は、停電を検出した場合に、自立運転用リレー22と負荷6との接続を行い、停電を検出していない(商用電力系統5が給電している)場合には、商用電力系統5と負荷6との接続を行う。これにより、商用電力系統5の停電時には、系統連系装置が自立運転する電力を負荷6へ供給し、商用電力系統5の給電時には、商用電力系統5の供給する電力を負荷6へ供給する。 The power storage system control circuit 32 switches the connection of the switching circuit 34 in addition to the control described in the first embodiment. When the power storage system control circuit 32 detects a power failure, the power storage system control circuit 32 connects the autonomous operation relay 22 and the load 6, and when the power failure is not detected (the commercial power system 5 is supplying power) The power system 5 and the load 6 are connected. Thereby, at the time of a power failure of the commercial power system 5, the power that the grid interconnection device operates independently is supplied to the load 6, and the power supplied from the commercial power system 5 is supplied to the load 6 when the commercial power system 5 is fed.
 また、この様な切替回路34を有する蓄電システム3を、連系運転と自立運転の自動切り替えが可能な系統連系装置と接続すると、停電したとしても負荷6へ電力を供給し続けることができるようになる(UPSのような利用ができる)。 Further, when the power storage system 3 having such a switching circuit 34 is connected to a grid interconnection device capable of automatic switching between interconnection operation and independent operation, it is possible to continue supplying power to the load 6 even if a power failure occurs. (It can be used like a UPS).
(第3の実施形態)
 第1の実施形態、及び第2の実施形態では、通常の蓄電池の放電、及び充電の動作について説明したが、蓄電システム3は通常動作に加えて、蓄電システム、或いは蓄電池の保護動作を行うことができる。本実施形態では蓄電システム3の保護動作について述べる。
(Third embodiment)
In the first embodiment and the second embodiment, the operation of discharging and charging the normal storage battery has been described. However, the power storage system 3 performs the protection operation of the power storage system or the storage battery in addition to the normal operation. Can do. In the present embodiment, the protection operation of the power storage system 3 will be described.
 図8は、第3の実施形態における太陽光発電システム100を示す構成図である。充放電回路31は、絶縁トランス31cの太陽電池側には太陽電池側回路31a、を有している。そして、太陽電池側回路31aは、周期的に導通/遮断を繰り返す(PWM駆動する)ことにより充電を行う第1スイッチ素子41を有している。また、充放電回路31は、太陽電池の蓄電池側には、蓄電池側回路31bを有している。そして、蓄電池側回路31bは、周期的に導通/遮断を繰り返す(PWM駆動する)ことにより放電を行う第2スイッチ素子42を有している。 FIG. 8 is a configuration diagram showing the solar power generation system 100 according to the third embodiment. The charge / discharge circuit 31 has a solar cell side circuit 31a on the solar cell side of the insulating transformer 31c. And the solar cell side circuit 31a has the 1st switch element 41 which charges by repeating conduction | electrical_connection / interruption | blocking periodically (PWM drive). Moreover, the charging / discharging circuit 31 has the storage battery side circuit 31b in the storage battery side of a solar cell. And the storage battery side circuit 31b has the 2nd switch element 42 which discharges by repeating conduction | electrical_connection / interruption | blocking periodically (PWM drive).
 また、太陽電池側回路31aは、第1スイッチ素子41をバイパスする様に(例えば、第1スイッチ素子41と並列に)接続され、第1スイッチ素子41と逆方向の電流を流す第1ダイオード44を有している。また、蓄電池側回路31bは、第2スイッチ素子42をバイパスする様に(例えば、第2スイッチ素子42と並列に)接続され、第2スイッチ素子42と逆方向の電流を流す第2ダイオード45を有している。 The solar cell side circuit 31 a is connected so as to bypass the first switch element 41 (for example, in parallel with the first switch element 41), and a first diode 44 that flows a current in a direction opposite to that of the first switch element 41. have. Further, the storage battery side circuit 31b is connected so as to bypass the second switch element 42 (for example, in parallel with the second switch element 42), and includes a second diode 45 that flows a current in the direction opposite to that of the second switch element 42. Have.
 蓄電システム3はさらに、充放電回路31と蓄電池30との間に開閉器134と第3ダイオード135を並列に接続した並列回路130を備えている。これにより、蓄電システム3は、第1スイッチ素子41をPWM駆動することにより、第1スイッチ素子41、第2ダイオード45、及び第3ダイオード135を電流が流れて蓄電池30が充電する。また、蓄電システム3は、開閉器134を開放し、第2スイッチ素子41をPWM駆動することにより、開閉器134、第2スイッチ素子42、及び第1ダイオード44、を電流が流れて蓄電池30が放電する。即ち、充電時には開閉器を迂回して充電し、放電時には開閉器を通して放電する。 The power storage system 3 further includes a parallel circuit 130 in which a switch 134 and a third diode 135 are connected in parallel between the charge / discharge circuit 31 and the storage battery 30. Thus, in the power storage system 3, the first switch element 41 is PWM-driven, whereby a current flows through the first switch element 41, the second diode 45, and the third diode 135, and the storage battery 30 is charged. Further, the storage system 3 opens the switch 134 and PWM-drives the second switch element 41, whereby a current flows through the switch 134, the second switch element 42, and the first diode 44, so that the storage battery 30 Discharge. That is, charging is performed by bypassing the switch during charging, and discharging is performed through the switch during discharging.
 また、蓄電システム3は、手動スイッチ40をライン7と充放電回路31とをつなぐ電力線に備えられ、蓄電システム3を利用する際には、手動スイッチ40を閉じて利用する。また、蓄電システム3は、地絡を検知するZCTなどの地絡検知センサCT1、CT4、電流センサCT2、CT3、電圧センサVS1、VS2を有している。地絡検知センサCT1は、ライン7と充放電回路31との間に配置され、この間の地絡を検出する。電流センサCT2は、第3ダイオード135のカソード側(蓄電池側)に配置され、蓄電池への充電電流を検出する。電流センサCT3は、開閉器134の蓄電池側に配置され、蓄電池からの放電電流を検出する。地絡検知センサCT4は、並列回路130と蓄電池30との間に配置され、この間の地絡を検出する。電圧センサVS1は充放電回路31の太陽電池1側に配置され、太陽電池1の電圧を検出する。電圧センサVS2は、充放電回路31の蓄電池30側に接続され、蓄電池30の電圧を検出する。 In addition, the power storage system 3 is provided with a manual switch 40 on a power line connecting the line 7 and the charge / discharge circuit 31, and when the power storage system 3 is used, the manual switch 40 is closed and used. The power storage system 3 includes ground fault detection sensors CT1 and CT4 such as ZCT for detecting a ground fault, current sensors CT2 and CT3, and voltage sensors VS1 and VS2. Ground fault detection sensor CT1 is arrange | positioned between the line 7 and the charging / discharging circuit 31, and detects the ground fault in the meantime. The current sensor CT2 is disposed on the cathode side (storage battery side) of the third diode 135, and detects the charging current to the storage battery. The current sensor CT3 is disposed on the storage battery side of the switch 134 and detects a discharge current from the storage battery. The ground fault detection sensor CT4 is disposed between the parallel circuit 130 and the storage battery 30, and detects a ground fault therebetween. The voltage sensor VS1 is disposed on the solar cell 1 side of the charge / discharge circuit 31 and detects the voltage of the solar cell 1. The voltage sensor VS <b> 2 is connected to the storage battery 30 side of the charge / discharge circuit 31 and detects the voltage of the storage battery 30.
 これらのセンサCT1~CT4、電圧センサVS1、VS2の出力は、蓄電システム制御回路32に入力され、蓄電システム3が保護動作を行う際に利用される。 The outputs of these sensors CT1 to CT4 and voltage sensors VS1 and VS2 are input to the power storage system control circuit 32 and used when the power storage system 3 performs a protection operation.
 蓄電システム制御回路32は、第1スイッチ素子41を駆動するための充電駆動回路61、第2スイッチ素子42を駆動するための放電駆動回路62、開閉器134を駆動するための開閉器駆動回路を有している。 The power storage system control circuit 32 includes a charge drive circuit 61 for driving the first switch element 41, a discharge drive circuit 62 for driving the second switch element 42, and a switch drive circuit for driving the switch 134. Have.
 充電駆動回路61は、後述するゲートブロック信号GB1と、充電制御信号S1とを入力し、第1スイッチ素子41を駆動する。充電制御信号S1は、通常動作において蓄電池30を充電するために第1スイッチ素子41を駆動するための信号であり、蓄電池30を定電流充電や定電圧充電を行う際に充電電流や充電電圧をフィードバックして作成されるPWM信号を利用する。また、ゲートブロック信号GB1として「Hi」が入力されている場合は、充電制御信号S1にどのような信号が入力されたとしても第1スイッチ素子41を遮断し(所謂、ゲートブロック)、第1スイッチ素子のON動作を禁止する(遮断状態に保つ)。 The charge drive circuit 61 inputs a gate block signal GB1 and a charge control signal S1, which will be described later, and drives the first switch element 41. The charge control signal S1 is a signal for driving the first switch element 41 in order to charge the storage battery 30 in normal operation. When the storage battery 30 is subjected to constant current charging or constant voltage charging, the charging current or charging voltage is set. A PWM signal created by feedback is used. When “Hi” is input as the gate block signal GB1, the first switch element 41 is cut off (so-called gate block) regardless of what signal is input to the charge control signal S1. The switch element is prohibited from being turned on (maintained in a cut-off state).
 放電駆動回路62は、放電制御信号S2を入力し、第2スイッチ素子42を駆動する。放電制御信号S2は、通常動作において蓄電池30を放電するために第2スイッチ素子42を駆動するための信号であり、蓄電池30を放電する際に放電電流や充電電圧をフィードバックして作成されるPWM信号を利用する。また、ゲートブロック信号GB2として「Hi」が入力されている場合は、放電制御信号S2の伝達が遮断され第2スイッチ素子42を遮断し(所謂、ゲートブロック)、第1スイッチ素子の常にOFFにする。 The discharge drive circuit 62 receives the discharge control signal S2 and drives the second switch element 42. The discharge control signal S2 is a signal for driving the second switch element 42 to discharge the storage battery 30 in a normal operation, and is generated by feeding back a discharge current and a charge voltage when discharging the storage battery 30. Use signals. When “Hi” is input as the gate block signal GB2, the transmission of the discharge control signal S2 is cut off, the second switch element 42 is cut off (so-called gate block), and the first switch element is always turned off. To do.
 また、蓄電システム制御回路32は、PV不足電圧検出部51、PV過電圧検出部52、太陽電池地絡検出部53を有している。また、蓄電システム制御回路32は、蓄電システム3の充放電の異常を検出する放電過電流検出部54を有している。また蓄電システム制御回路32は、蓄電池30の異常を検出する蓄電池過充電検出部56、蓄電池過放電検出部57、蓄電池地絡検出部58を有している。 The power storage system control circuit 32 includes a PV undervoltage detection unit 51, a PV overvoltage detection unit 52, and a solar cell ground fault detection unit 53. In addition, the power storage system control circuit 32 includes a discharge overcurrent detection unit 54 that detects charging / discharging abnormality of the power storage system 3. The power storage system control circuit 32 includes a storage battery overcharge detection unit 56 that detects an abnormality in the storage battery 30, a storage battery overdischarge detection unit 57, and a storage battery ground fault detection unit 58.
 PV不足電圧検出部51は、電圧センサVS1により太陽電池1の電圧を検出し、検出した電圧に応じてPV不足電圧信号SA1を出力する。具体的には、太陽電池1の電圧が所定の電圧値よりも低い場合に、太陽電池1の電圧が低く蓄電池30の充電が不可能(異常)と判定し、PV不足電圧信号SA1として「Hi」を出力する。また、太陽電池1の電圧が所定の電圧値よりも高い場合に、太陽電池1の電圧が高く蓄電池30の充電が可能(正常)と判定し、PV不足電圧信号SA1として「Low」を出力する。ここで所定の電圧値は、充放電回路31により蓄電池30充電を行うことができないと判断できる電圧値が設定される。 The PV undervoltage detection unit 51 detects the voltage of the solar cell 1 with the voltage sensor VS1, and outputs a PV undervoltage signal SA1 according to the detected voltage. Specifically, when the voltage of the solar cell 1 is lower than a predetermined voltage value, it is determined that the voltage of the solar cell 1 is low and the storage battery 30 cannot be charged (abnormal), and the PV undervoltage signal SA1 is “Hi”. Is output. Further, when the voltage of the solar cell 1 is higher than a predetermined voltage value, it is determined that the voltage of the solar cell 1 is high and the storage battery 30 can be charged (normal), and “Low” is output as the PV undervoltage signal SA1. . Here, the predetermined voltage value is set such that the charge / discharge circuit 31 can determine that the storage battery 30 cannot be charged.
 PV過電圧検出部51は、電圧センサVS1により太陽電池1の電圧を検出し、検出した電圧に応じてPV不足電圧信号SA1を出力する。具体的には、太陽電池1の電圧が所定の電圧値よりも高い場合に、太陽電池1の異常を検出し、PV過電圧信号SA2として「Hi」を出力する。また、太陽電池1の電圧が所定の電圧値よりも低い場合に、太陽電池1が正常と判定し、PV不足電圧信号SA1として「Low」を出力する。ここで、所定の電圧値は、太陽電池1が通常動作を行う電圧(例えば、定格電圧や規定されている最大電圧)よりも高い電圧値が設定される。 The PV overvoltage detection unit 51 detects the voltage of the solar cell 1 with the voltage sensor VS1, and outputs a PV undervoltage signal SA1 according to the detected voltage. Specifically, when the voltage of the solar cell 1 is higher than a predetermined voltage value, an abnormality of the solar cell 1 is detected, and “Hi” is output as the PV overvoltage signal SA2. When the voltage of the solar cell 1 is lower than a predetermined voltage value, the solar cell 1 is determined to be normal, and “Low” is output as the PV undervoltage signal SA1. Here, as the predetermined voltage value, a voltage value higher than a voltage (for example, a rated voltage or a prescribed maximum voltage) at which the solar cell 1 performs a normal operation is set.
 太陽電池地絡検出部53は、地絡検知センサCT1により充放電回路31の太陽電池1側に流れる電流を検出し、検出した電流に応じて太陽電池地絡信号SA3を出力する。具体的には、地絡検知センサCT1により検出される電流が所定の電流値よりも高い場合に、太陽電池の地絡(異常)を検出し、太陽電池地絡信号SA3として「Hi」を出力する。また、地絡検知センサCT1により検出される電流が所定の電流値よりも低い場合に、太陽電池1に地絡なし(正常)と判定し、太陽電池地絡信号SA3として「Low」を出力する。ここで、所定の電流値は、充放電回路31により正常に充放電を行う際に流れることのない電流値が設定される。 The solar cell ground fault detector 53 detects the current flowing to the solar cell 1 side of the charge / discharge circuit 31 by the ground fault detection sensor CT1, and outputs a solar cell ground fault signal SA3 according to the detected current. Specifically, when the current detected by the ground fault detection sensor CT1 is higher than a predetermined current value, a ground fault (abnormality) of the solar battery is detected, and “Hi” is output as the solar battery ground fault signal SA3. To do. Further, when the current detected by the ground fault detection sensor CT1 is lower than a predetermined current value, it is determined that the solar battery 1 has no ground fault (normal), and “Low” is output as the solar battery ground fault signal SA3. . Here, the predetermined current value is set to a current value that does not flow when charging / discharging is normally performed by the charging / discharging circuit 31.
 放電過電流検出部54は、電流センサCT3により蓄電池30が放電する電流を検出し、検出した電流に応じて放電過電流信号SA4を出力する。具体的には、電流センサCT3により検出される電流が所定の電流値よりも高い場合に、蓄電池30から過放電されている(異常)と検出し、放電過電流信号SA4として「Hi」を出力する。また、電流センサCT3により検出される電流が所定の電流値よりも低い場合に、正常と検出し、放電過電流信号SA4として「Low」を出力する。ここで、所定の電流値は、充放電回路31により、正常に放電を行う際に流れる電流(例えば、定格放電電流や最大放電電流)よりも高い電流値が設定される。 The discharge overcurrent detection unit 54 detects a current discharged from the storage battery 30 by the current sensor CT3, and outputs a discharge overcurrent signal SA4 according to the detected current. Specifically, when the current detected by the current sensor CT3 is higher than a predetermined current value, it is detected that the battery 30 is overdischarged (abnormal), and “Hi” is output as the discharge overcurrent signal SA4. To do. When the current detected by the current sensor CT3 is lower than a predetermined current value, it is detected as normal and “Low” is output as the discharge overcurrent signal SA4. Here, the predetermined current value is set to a current value higher than a current (for example, a rated discharge current or a maximum discharge current) that flows during normal discharge by the charge / discharge circuit 31.
 充電過電流検出部55は、電流センサCT2により蓄電池30に充電する電流を検出し、検出した電流に応じて充電過電流信号SA5を出力する。具体的には、電流センサCT2により検出される電流が所定の電流値よりも高い場合に、蓄電池30に過充電されている(異常)と検出し、充電過電流信号SA5として「Hi」を出力する。また、電流センサCT2により検出される電流が所定の電流値よりも低い場合に、正常と検出し、充電過電流信号SA5として「Low」を出力する。ここで、所定の電流値は、充放電回路31により、正常に充電を行う際に流れる電流(例えば、定格充電電流や最大充電電流)よりも高い電流値が設定される。 The charging overcurrent detection unit 55 detects the current charged in the storage battery 30 by the current sensor CT2, and outputs the charging overcurrent signal SA5 according to the detected current. Specifically, when the current detected by the current sensor CT2 is higher than a predetermined current value, it is detected that the storage battery 30 is overcharged (abnormal), and “Hi” is output as the charge overcurrent signal SA5. To do. When the current detected by the current sensor CT2 is lower than a predetermined current value, it is detected as normal and “Low” is output as the charge overcurrent signal SA5. Here, as the predetermined current value, a current value higher than a current (for example, a rated charge current or a maximum charge current) that flows when charging is normally performed by the charge / discharge circuit 31 is set.
 蓄電池過充電検出部56は、電圧センサVS2により蓄電池30の電圧を検出し、検出した電圧に応じて蓄電池過充電信号SA6を出力する。具体的には、電圧センサVS2により検出される電圧が所定の電圧値よりも高い場合に、蓄電池30が過充電であることを検出し、蓄電池過充電検出信号SA6として「Hi」を出力する。また、電圧センサVS2により検出される電圧が所定の電圧値よりも低い場合に、蓄電池30が正常であることを検出し、蓄電池過充電検出信号SA6として「Low」を出力する。ここで所定の電圧値について説明する。蓄電池30の電圧(開放電圧)は、充電容量に応じて(例えば、比例して)、高ければ高く、低ければ低くなる。蓄電池30が動作する充電容量を定めることにより、蓄電池の動作電圧が規定され、この動作電圧を超えると過充電と判断できる。したがって、所定の電圧値には、この動作電圧の上限を設定すると良い。 The storage battery overcharge detection unit 56 detects the voltage of the storage battery 30 with the voltage sensor VS2, and outputs a storage battery overcharge signal SA6 according to the detected voltage. Specifically, when the voltage detected by voltage sensor VS2 is higher than a predetermined voltage value, it is detected that storage battery 30 is overcharged, and “Hi” is output as storage battery overcharge detection signal SA6. Further, when the voltage detected by the voltage sensor VS2 is lower than a predetermined voltage value, it is detected that the storage battery 30 is normal, and “Low” is output as the storage battery overcharge detection signal SA6. Here, the predetermined voltage value will be described. The voltage (open voltage) of the storage battery 30 is high if it is high, and low if it is low, depending on the charge capacity (for example, in proportion). By determining the charging capacity at which the storage battery 30 operates, the operating voltage of the storage battery is defined, and when this operating voltage is exceeded, it can be determined that the battery is overcharged. Therefore, the upper limit of the operating voltage is preferably set to the predetermined voltage value.
 蓄電池過放電検出部57は、電圧センサVS2により蓄電池30の電圧を検出し、検出した電圧に応じて蓄電池過放電信号SA7を出力する。具体的には、電圧センサVS2により検出される電圧が所定の電圧値よりも低い場合に、蓄電池30が過放電であることを検出し、蓄電池過放電検出信号SA7として「Hi」を出力する。また、電圧センサVS2により検出される電圧が所定の電圧値よりも高い場合に、蓄電池30が正常であることを検出し、蓄電池過放電検出信号SA7として「Low」を出力する。ここで所定の電圧値は、蓄電池30の動作電圧の下限を設定すると良い。 The storage battery overdischarge detection unit 57 detects the voltage of the storage battery 30 by the voltage sensor VS2, and outputs a storage battery overdischarge signal SA7 according to the detected voltage. Specifically, when the voltage detected by the voltage sensor VS2 is lower than a predetermined voltage value, it is detected that the storage battery 30 is overdischarged, and “Hi” is output as the storage battery overdischarge detection signal SA7. Further, when the voltage detected by the voltage sensor VS2 is higher than a predetermined voltage value, it is detected that the storage battery 30 is normal, and “Low” is output as the storage battery overdischarge detection signal SA7. Here, the predetermined voltage value may be set to the lower limit of the operating voltage of the storage battery 30.
 蓄電池地絡検出部58は、地絡検知センサCT4により充放電回路31の蓄電池30側に流れる電流を検出し蓄電池地絡信号SA8を出力する。具体的には、地絡検知センサCT4により検出される電流が所定の電流値よりも高い場合に、蓄電池30の地絡(異常)を検出し、蓄電池地絡信号SA8として「Hi」を出力する。また、地絡検知センサCT4により検出される電流が所定の電流値よりも低い場合に、蓄電池30に地絡なし(正常)と判定し、蓄電池地絡信号SA8として「Low」を出力する。ここで、所定の電流値は、充放電回路31により正常に充放電を行う際に流れることのない電流値が設定される。 The storage battery ground fault detection unit 58 detects a current flowing to the storage battery 30 side of the charge / discharge circuit 31 by the ground fault detection sensor CT4 and outputs a storage battery ground fault signal SA8. Specifically, when the current detected by the ground fault detection sensor CT4 is higher than a predetermined current value, the ground fault (abnormality) of the storage battery 30 is detected, and “Hi” is output as the storage battery ground fault signal SA8. . Further, when the current detected by the ground fault detection sensor CT4 is lower than a predetermined current value, it is determined that the storage battery 30 has no ground fault (normal), and “Low” is output as the storage battery ground fault signal SA8. Here, the predetermined current value is set to a current value that does not flow when charging / discharging is normally performed by the charging / discharging circuit 31.
 出力された信号SA1~SA8は、ゲートブロック信号生成回路64に入力され、入力された信号に応じて、ゲートブロック信号GB1、GB2を、夫々充電駆動回路61、放電駆動回路62に出力する。図9は、ゲートブロック信号生成回路64の動作パターンを示す図である。 The output signals SA1 to SA8 are input to the gate block signal generation circuit 64, and the gate block signals GB1 and GB2 are output to the charge drive circuit 61 and the discharge drive circuit 62, respectively, according to the input signals. FIG. 9 is a diagram illustrating an operation pattern of the gate block signal generation circuit 64.
 図9に示すように、信号SA1、SA2、SA3、SA5、SA6、SA8の何れかの「Hi」信号がゲートブロック信号生成回路64に入力されると、ゲートブロック信号生成回路64は、「Hi」のゲートブロック信号GB1を生成して充電駆動回路61へ出力する。また、信号SA2、SA3、SA4、SA7、SA8の何れかの「Hi」信号がゲートブロック信号生成回路64に入力されると、ゲートブロック信号生成回路64は、「Hi」のゲートブロック信号GB2を生成して放電駆動回路62へ出力する。 As shown in FIG. 9, when any “Hi” signal of the signals SA1, SA2, SA3, SA5, SA6, and SA8 is input to the gate block signal generation circuit 64, the gate block signal generation circuit 64 The gate block signal GB1 is generated and output to the charge driving circuit 61. When any one of the signals SA2, SA3, SA4, SA7, and SA8 is input to the gate block signal generation circuit 64, the gate block signal generation circuit 64 receives the “Hi” gate block signal GB2. It is generated and output to the discharge drive circuit 62.
 これにより、太陽電池1、蓄電池30、充放電回路31の異常を判断し、異常が検出された場合に第1スイッチ素子41、或いは第2スイッチ素子42をゲートブロックする。具体的には、太陽電池1が電圧不足の場合、太陽電池1が過電圧の場合、太陽電池1が地絡している場合、充電時に流れる電流が過電流である場合、蓄電池が過充電の場合、蓄電池が地絡している場合に第1スイッチ素子41のゲートブロックを行う。また、太陽電池1が過電圧の場合、太陽電池1が地絡している場合、放電時に流れる電流が過電流である場合、蓄電池30が過放電の場合、蓄電池30が地絡している場合に第2スイッチ素子42のゲートブロックを行う。 Thereby, the abnormality of the solar cell 1, the storage battery 30, and the charge / discharge circuit 31 is judged, and when the abnormality is detected, the first switch element 41 or the second switch element 42 is gate-blocked. Specifically, when the solar cell 1 is insufficient in voltage, when the solar cell 1 is overvoltage, when the solar cell 1 is grounded, when the current flowing during charging is overcurrent, or when the storage battery is overcharged When the storage battery is grounded, the first switch element 41 is gate-blocked. Further, when the solar cell 1 is overvoltage, when the solar cell 1 is grounded, when the current flowing during discharge is overcurrent, when the storage battery 30 is overdischarged, or when the storage battery 30 is grounded The gate block of the second switch element 42 is performed.
 蓄電システム3は、停電検出部59、放電操作部60、論理積回路AN1、否定回路NO1を有している。 The power storage system 3 includes a power failure detection unit 59, a discharge operation unit 60, a logical product circuit AN1, and a negative circuit NO1.
 停電検出部59は、停電検出回路33が商用電力系統5の停電を検出すると、「Hi」信号を、停電検出回路33が商用電力系統5の給電を検出すると、「Low」信号を論理積回路AN1に出力する。 The power failure detection unit 59 outputs a “Hi” signal when the power failure detection circuit 33 detects a power failure of the commercial power system 5, and a “Low” signal when the power failure detection circuit 33 detects power supply of the commercial power system 5. Output to AN1.
 放電操作部60では、ユーザーから放電の受付を行う。例えば、蓄電池30の放電を受け付けるためのボタンを用意しておき、そのボタンが押されることによりユーザーから放電の受付を行うなどすると良い。放電操作部60に放電の受付があれば、放電操作部60は、「Hi」信号を、放電操作部60に放電の受付がなければ「Low」信号を論理積回路AN1へ出力する。 The discharge operation unit 60 accepts discharge from the user. For example, a button for accepting the discharge of the storage battery 30 may be prepared, and the user may accept the discharge when the button is pressed. If the discharge operation unit 60 accepts discharge, the discharge operation unit 60 outputs a “Hi” signal to the AND circuit AN1 if the discharge operation unit 60 does not accept discharge.
 論理積回路AN1は、放電操作部60、及び停電検出部59から「Hi」信号を入力すると、「Hi」信号を出力し、どちらかの信号が1つでも「Low」であれば「Low」信号を出力する。論理積回路AN1から出力された信号は、開閉器駆動回路63と否定回路NO1に入力される。 The AND circuit AN1 outputs a “Hi” signal when the “Hi” signal is input from the discharge operation unit 60 and the power failure detection unit 59, and “Low” if any one of the signals is “Low”. Output a signal. The signal output from the AND circuit AN1 is input to the switch drive circuit 63 and the negative circuit NO1.
 開閉器駆動回路63は、「Hi」信号が入力されると、開閉器134を閉じ、「Low」信号が入力されると開閉器134を開く。 The switch driving circuit 63 closes the switch 134 when the “Hi” signal is input, and opens the switch 134 when the “Low” signal is input.
 否定回路NO1では、入力された信号を反転して放電禁止信号SA9をゲートブロック信号生成回路64へ出力する。即ち、否定回路NO1に「Hi」信号が入力されると、放電禁止信号として「Low」信号を出力し、「Low」信号が入力されると、放電禁止信号として「Hi」信号を出力する。 In the negative circuit NO1, the input signal is inverted and the discharge inhibition signal SA9 is output to the gate block signal generation circuit 64. That is, when the “Hi” signal is input to the negative circuit NO1, the “Low” signal is output as the discharge inhibition signal, and when the “Low” signal is input, the “Hi” signal is output as the discharge inhibition signal.
 ゲートブロック信号生成回路64は、「Hi」の放電禁止信号が入力されると、「Hi」のゲートブロック信号GB2を生成し、放電駆動回路62へ出力する。 When the “Hi” discharge inhibition signal is input, the gate block signal generation circuit 64 generates a “Hi” gate block signal GB 2 and outputs the gate block signal GB 2 to the discharge drive circuit 62.
 これにより、放電操作部60に放電の受付のない場合、或いは、停電検出回路33により商用電力系統5の給電を検出した場合に、第2スイッチ素子42をゲートブロックすると共に、開閉器134を開いて充放電回路31による放電を2重に禁止している。逆に、放電操作部60に放電の受付があり、且つ、停電検出回路33により商用電力系統5の停電を検出した場合に、第2スイッチ素子42を、ゲートブロックを解除すると共に、開閉器134が閉じて充放電回路31による放電が可能になる。 As a result, when the discharge operation unit 60 does not accept discharge or when the power failure detection circuit 33 detects feeding of the commercial power system 5, the second switch element 42 is gate-blocked and the switch 134 is opened. Thus, the discharge by the charge / discharge circuit 31 is prohibited twice. On the contrary, when the discharge operation unit 60 accepts the discharge and the power failure detection circuit 33 detects the power failure of the commercial power system 5, the second switch element 42 is released from the gate block and the switch 134. Is closed and discharging by the charge / discharge circuit 31 becomes possible.
 以上、第3の実施形態によれば、太陽電池1、蓄電池30、或いは充放電回路31に異常がある場合は、前記第1スイッチ素子、或いは前記第2スイッチ素子をゲートブロックするため、異常な状態により充放電回路31の充電動作、放電動作が禁止され、蓄電システム3、或いは蓄電池30の保護を行うことができる。 As described above, according to the third embodiment, when there is an abnormality in the solar cell 1, the storage battery 30, or the charge / discharge circuit 31, the first switch element or the second switch element is gate-blocked. The charging / discharging operation of the charging / discharging circuit 31 is prohibited depending on the state, and the storage system 3 or the storage battery 30 can be protected.
 また、蓄電池30の放電は、充放電回路31のゲートブロックと、開閉器134によりソフトとハードの面からブロックするため、誤って放電されることが無く、自立運転を行う際の、蓄電池30の充電容量を十分に確保することができる。 Moreover, since the discharge of the storage battery 30 is blocked from the soft and hard surfaces by the gate block of the charging / discharging circuit 31 and the switch 134, the discharge of the storage battery 30 is not accidentally discharged and the self-supporting operation of the storage battery 30 is performed. A sufficient charging capacity can be secured.
 また、充電時には開閉器を迂回して充電し、放電時には開閉器を通して放電する。このため、商用電力系統5が停電のときも、給電のときも行う充電動作について、開閉器134を動作させる必要がなく、ソフトによる動作のみで容易に実行することができる。 In addition, the battery is charged by bypassing the switch when charging, and discharged through the switch when discharging. For this reason, it is not necessary to operate the switch 134 about the charging operation performed even when the commercial power system 5 is out of power or during power feeding, and can be easily executed only by the operation by software.
 第3の実施形態では、ゲートブロックにより第1スイッチ素子41、及び第2スイッチ素子42を遮断状態に保っていたが、制御信号S1、S2の出力を絞って(例えば、ゼロにして)遮断状態に保っても良い。 In the third embodiment, the first switch element 41 and the second switch element 42 are kept in the cutoff state by the gate block. However, the output of the control signals S1 and S2 is reduced (for example, set to zero) so as to be in the cutoff state. It may be kept.
 第3の実施形態では、簡単のため充放電回路31を図8のように表現したが、第1の実施形態における充放電回路31においては、第1スイッチ素子41は、ブリッジ回路31aのスイッチ素子が夫々第1スイッチ素子41に相当し、第2のスイッチ素子42は、ブリッジ回路31bのスイッチ素子が夫々第2スイッチ素子42に相当し、第1ダイオードは、ブリッジ回路31aのスイッチ素子に夫々逆並列に設けられるダイオードに相当し、第2ダイオードは、ブリッジ回路31bのスイッチ素子に夫々逆並列に設けられるダイオードに相当すると言える。 In the third embodiment, the charge / discharge circuit 31 is expressed as shown in FIG. 8 for simplicity. However, in the charge / discharge circuit 31 in the first embodiment, the first switch element 41 is a switch element of the bridge circuit 31a. Corresponds to the first switch element 41, the second switch element 42 corresponds to the switch element of the bridge circuit 31b, respectively, and the first diode corresponds to the switch element of the bridge circuit 31a. It can be said that it corresponds to a diode provided in parallel, and the second diode corresponds to a diode provided in anti-parallel to the switch element of the bridge circuit 31b.
 また、第3の実施形態では、簡単のため並列回路130を図8のように表現したが、例えば、図4に示すように接続することができる。 In the third embodiment, the parallel circuit 130 is expressed as shown in FIG. 8 for the sake of simplicity, but can be connected as shown in FIG. 4, for example.
 また、第3の実施形態では、絶縁トランス31cを用いる充放電回路31について述べたが、絶縁トランス31cを用いない、例えば、図4のような充放電回路31dを利用することもできる。図4の場合、第1スイッチ素子41は、スイッチ素子131に相当し、第2スイッチ素子は、スイッチ素子132に相当し、第1ダイオード44は、第1スイッチ素子に逆並列に設けられるダイオードに相当し、第2ダイオード45は、第2スイッチ素子に逆並列に設けられるダイオードに相当する。 In the third embodiment, the charge / discharge circuit 31 using the insulation transformer 31c has been described. However, for example, a charge / discharge circuit 31d as shown in FIG. 4 that does not use the insulation transformer 31c can also be used. In the case of FIG. 4, the first switch element 41 corresponds to the switch element 131, the second switch element corresponds to the switch element 132, and the first diode 44 is a diode provided in antiparallel with the first switch element. The second diode 45 corresponds to a diode provided in antiparallel with the second switch element.
 以上、本発明の一実施形態について説明したが、以上の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。 As mentioned above, although one embodiment of the present invention was described, the above explanation is for making an understanding of the present invention easy, and does not limit the present invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof.
 例えば、本実施形態では、商用電力系統5から電力が供給されると接片を開く電磁リレーを使用し、商用電力系統5が停電か給電かを判断していたが、電力の供給/遮断により接片を開閉する開閉回路であれば様々なものが利用できる。例えば、フォトカプラなどを利用しても良い。 For example, in this embodiment, an electromagnetic relay that opens a contact piece when power is supplied from the commercial power system 5 is used to determine whether the commercial power system 5 is a power failure or power supply. Various circuits can be used as long as the circuit opens and closes the contact piece. For example, a photocoupler or the like may be used.
 また、例えば、停電検出回路33に電磁リレーを用いて接片の開閉を行って停電の検出を行っていたが、フォトカプラ等の様な開閉回路を利用して、接片の開閉を行い商用電力系統5が電力を供給しているか否かを検出しても良い。 In addition, for example, the power failure detection circuit 33 uses an electromagnetic relay to open and close the contact piece to detect a power failure. However, the contact piece is opened and closed by using an open / close circuit such as a photocoupler. You may detect whether the electric power grid | system 5 is supplying electric power.
 また、例えば、本実施形態では、蓄電池30として鉛蓄電池を用いる例を示したが、リチウムイオン電池、ニッケル水素電池等も利用することができる。 For example, in the present embodiment, an example in which a lead storage battery is used as the storage battery 30 has been shown, but a lithium ion battery, a nickel hydrogen battery, or the like can also be used.
 また、例えば、本実施形態では、絶縁トランスを用いた充放電回路(絶縁型)31a~31cと、双方向チョッパ31dとを充放電回路31として記載したが、様々な構成を用いることができる。例えば、充電回路と放電回路とを並列に配置しても良い。また、充電回路、及び放電回路は、絶縁型、非絶縁型の何れに設定してもかまわない。 Further, for example, in this embodiment, the charge / discharge circuits (insulation type) 31a to 31c using the insulation transformer and the bidirectional chopper 31d are described as the charge / discharge circuit 31, but various configurations can be used. For example, a charging circuit and a discharging circuit may be arranged in parallel. Further, the charging circuit and the discharging circuit may be set to either an insulating type or a non-insulating type.
 また、例えば、本実施形態では、充電を太陽電池1から行っていたが、商用電力系統5を用いて充電することも可能である。この場合、充電回路と放電回路とを分け放電回路をライン7と蓄電池30との間に配置し、充電回路を商用電力系統5と蓄電池30との間に配置する。この様にすることで、双方向の系統連系装置2(専用の系統連系装置)を用いることなく、蓄電池30を充電することができる。 Further, for example, in this embodiment, charging is performed from the solar battery 1, but it is also possible to charge using the commercial power system 5. In this case, the charging circuit and the discharging circuit are separated, the discharging circuit is disposed between the line 7 and the storage battery 30, and the charging circuit is disposed between the commercial power system 5 and the storage battery 30. By doing in this way, the storage battery 30 can be charged, without using the bidirectional | two-way grid connection apparatus 2 (dedicated grid connection apparatus).
 また、例えば、本実施形態では、コンセント37を筺体35bに設けたが、コンセント37を建物の壁等に取り付け、切替回路からコンセント37まで配線(例えば、壁の内側から配線するなど)して利用しても良い。 Further, for example, in the present embodiment, the outlet 37 is provided in the housing 35b, but the outlet 37 is attached to a wall of a building and used by wiring from the switching circuit to the outlet 37 (for example, wiring from the inside of the wall). You may do it.
 1  太陽電池
 2  系統連系装置
 3  蓄電システム
 5  商用電力系統
 6  負荷
 7    ライン
 8  連系用ブレーカ
 21 系統連系用リレー
 22  自立運転用リレー
 23 系統連系制御回路
 24 インバータ回路
 25 フィルタ回路
 26 系統連系制御回路
 30 蓄電池
 31  充放電回路
 32 蓄電システム制御回路
 33 停電検出回路
 34 切替回路
35 筺体
 36 信号線
 37 コンセント
 38 接続ライン
 39 接続ライン
 40 手動スイッチ
 41 第1スイッチ素子(充電スイッチ素子)
 42 第2スイッチ素子(放電スイッチ素子)
 44 第1ダイオード
 45 第2ダイオード
 48 ブレーカ
 130 並列回路
 134 開閉器
 135 第3ダイオード
 CT1~CT4 電流センサ
 VS1、VS2 電圧センサ
 
 
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Grid connection apparatus 3 Power storage system 5 Commercial power grid 6 Load 7 Line 8 Link breaker 21 Grid connection relay 22 Self-sustained operation relay 23 Grid connection control circuit 24 Inverter circuit 25 Filter circuit 26 Grid connection System control circuit 30 Storage battery 31 Charge / discharge circuit 32 Storage system control circuit 33 Power failure detection circuit 34 Switching circuit 35 Housing 36 Signal line 37 Outlet 38 Connection line 39 Connection line 40 Manual switch 41 First switch element (charge switch element)
42 Second switch element (discharge switch element)
44 First diode 45 Second diode 48 Breaker 130 Parallel circuit 134 Switch 135 Third diode CT1 to CT4 Current sensor VS1, VS2 Voltage sensor

Claims (12)

  1.  蓄電池を備え、太陽電池の出力電力を交流電力に変換し商用電力系統へ出力する系統連系装置に前記蓄電池の出力を供給する蓄電システムにおいて、
     前記蓄電池の充電を行う充電回路と、
     前記太陽電池及び前記系統連系装置を接続するラインと、前記蓄電池との間に接続され、前記蓄電池から前記系統連系装置への放電を行う放電回路と、
     前記商用電力系統の停電を検出する停電検出回路と、を備え、
     前記停電検出回路により、停電を検出した場合に前記蓄電池から前記系統連系装置への放電を可能とする構成を備えることを特徴とする蓄電システム。
    In a power storage system that includes a storage battery and supplies the output of the storage battery to a grid interconnection device that converts the output power of the solar battery into alternating current power and outputs it to a commercial power system,
    A charging circuit for charging the storage battery;
    A discharge circuit connected between the storage battery and a line connecting the solar battery and the grid interconnection device, and discharging from the storage battery to the grid interconnection device;
    A power failure detection circuit for detecting a power failure in the commercial power system,
    A power storage system comprising a configuration that enables discharge from the storage battery to the grid interconnection device when a power failure is detected by the power failure detection circuit.
  2.  前記停電検出回路は、商用電力系統から電力が供給されると接片を開く開閉回路を有し、
     前記開閉回路が閉じたことを検出して前記蓄電池から前記系統連系装置への放電を行うことを特徴とする請求項1に記載の蓄電システム。
    The power failure detection circuit has an open / close circuit that opens a contact when power is supplied from a commercial power system,
    2. The power storage system according to claim 1, wherein discharging from the storage battery to the grid interconnection device is performed by detecting that the open / close circuit is closed.
  3.  前記充電回路、及び前記放電回路は、絶縁トランスを介して前記蓄電池の充電、及び放電を行う充放電回路であることを特徴とする請求項1又は2に記載の蓄電システム。 The power storage system according to claim 1 or 2, wherein the charging circuit and the discharging circuit are charging / discharging circuits that charge and discharge the storage battery via an insulating transformer.
  4.  前記充電回路、及び前記放電回路は、非絶縁型の双方向チョッパ回路による充放電回路により構成され、
     前記充放電回路と前記ラインとの間、或いは前記充放電回路と前記蓄電池との間に開閉器を有し、
     前記停電検出回路により、前記商用電力系統の給電を検出した場合に前記開閉器を開くことを特徴とする請求項1又は請求項2に記載の蓄電システム。
    The charging circuit and the discharging circuit are constituted by a charging / discharging circuit by a non-insulated bidirectional chopper circuit,
    Having a switch between the charge / discharge circuit and the line, or between the charge / discharge circuit and the storage battery,
    3. The power storage system according to claim 1, wherein the switch is opened when the power failure detection circuit detects feeding of the commercial power system. 4.
  5.  前記系統連系装置が自立運転する場合に電力を出力する端子と、前記商用電力系統と、負荷に接続され、前記系統連系装置、或いは前記商用電力系統からの出力電力のいずれかを前記負荷へ出力する切替回路を有し、
     停電を検出した場合に、前記系統連系装置の出力電力を前記負荷へ出力することを特徴とする請求項1乃至請求項4に記載の蓄電システム。
    The grid interconnection device is connected to a terminal that outputs power when the grid interconnection device operates independently, the commercial power system, and a load, and either the grid interconnection device or the output power from the commercial power system is connected to the load. A switching circuit that outputs to
    The power storage system according to any one of claims 1 to 4, wherein when a power failure is detected, output power of the grid interconnection device is output to the load.
  6.  前記停電検出回路により、停電を検出し、且つ太陽電池の出力電圧が第1所定値以上である場合に前記充電回路により蓄電池を充電し、
     前記停電検出回路により、停電を検出し、且つ太陽電池の出力電圧が第1所定値未満である場合に前記放電回路により蓄電池を放電し、
     前記停電検出回路により、前記商用電力系統の給電を検出し、且つ太陽電池の出力電圧が第2所定値以上である場合に前記充電回路により蓄電池を充電し、
     前記停電検出回路により、前記商用電力系統の給電を検出し、且つ太陽電池の出力電圧が第2所定値未満である場合に前記充電回路、及び前記放電回路を停止することを特徴とする蓄電システム。
    When the power failure detection circuit detects a power failure and the output voltage of the solar battery is equal to or higher than a first predetermined value, the charging circuit charges the storage battery.
    When the power failure detection circuit detects a power failure and the output voltage of the solar battery is less than a first predetermined value, the discharge circuit discharges the storage battery,
    When the power failure detection circuit detects feeding of the commercial power system, and the output voltage of the solar battery is equal to or higher than a second predetermined value, the charging circuit charges the storage battery,
    The power failure detection circuit detects power supply of the commercial power system, and stops the charging circuit and the discharging circuit when the output voltage of the solar battery is less than a second predetermined value. .
  7.  前記充電回路は、周期的に導通/遮断を繰り返すことにより前記充電を行う第1スイッチ素子を有し、
     前記放電回路は、周期的に導通/遮断を繰り返すことにより前記放電を行う第2スイッチ素子を有し、
     前記第1スイッチ素子をバイパスする様に接続され、前記第1スイッチ素子と逆方向の電流を流す第1ダイオードと、
     前記第2スイッチ素子をバイパスする様に接続され、前記第2スイッチ素子と逆方向の電流を流す第2ダイオードと、
     前記放電回路と前記蓄電池との間に開閉器と第3ダイオードを並列に接続した並列回路と、を備え、
     充電の際には前記第1スイッチ素子、前記第2ダイオード、及び前記第3ダイオードを電流が流れて充電し、放電の際には、前記開閉器、前記第2スイッチ素子、及び前記第1ダイオードを電流が流れて放電することを特徴とする請求項1に記載の蓄電システム。
    The charging circuit includes a first switch element that performs the charging by periodically repeating conduction / cutoff,
    The discharge circuit includes a second switch element that performs the discharge by periodically repeating conduction / cutoff,
    A first diode connected so as to bypass the first switch element and flowing a current in a direction opposite to the first switch element;
    A second diode connected so as to bypass the second switch element and flowing a current in a direction opposite to the second switch element;
    A parallel circuit in which a switch and a third diode are connected in parallel between the discharge circuit and the storage battery;
    When charging, the first switch element, the second diode, and the third diode are charged with current flowing, and when discharging, the switch, the second switch element, and the first diode are charged. The power storage system according to claim 1, wherein a current flows through the battery and discharges the battery.
  8.  前記放電の受付を行う放電操作部を備え、
     前記放電操作部に前記放電の受付のない場合、或いは、前記停電検出回路により前記商用電力系統の給電を検出した場合に、前記第2スイッチ素子をゲートブロックすると共に、前記開閉器を開くことを特徴とする請求項7に記載の蓄電システム。
    A discharge operation unit for receiving the discharge;
    When the discharge operation unit does not accept the discharge, or when the power failure detection circuit detects feeding of the commercial power system, the second switch element is gate-blocked and the switch is opened. The power storage system according to claim 7, which is characterized by:
  9.  前記太陽電池、前記蓄電池、前記放電回路、及び前記充電回路の異常を判断し、
     前記異常が検出された場合に前記第1スイッチ素子、或いは前記第2スイッチ素子をゲートブロックすることを特徴とする請求項7又は請求項8に記載の蓄電システム。
    Determining an abnormality of the solar cell, the storage battery, the discharge circuit, and the charging circuit;
    The power storage system according to claim 7 or 8, wherein when the abnormality is detected, the first switch element or the second switch element is gate-blocked.
  10.  前記太陽電池の電圧不足の場合、前記太陽電池が過電圧の場合、前記太陽電池が地絡している場合、前記充電時に流れる電流が過電流である場合、前記蓄電池が過充電の場合、前記蓄電池が地絡している場合に前記第1スイッチ素子のゲートブロックを行うことを特徴とする請求項9に記載の蓄電システム。 In the case where the voltage of the solar battery is insufficient, the solar battery is overvoltage, the solar battery is grounded, the current flowing during charging is an overcurrent, the storage battery is overcharged, the storage battery The power storage system according to claim 9, wherein a gate block of the first switch element is performed when a ground fault occurs.
  11.  前記太陽電池が過電圧の場合、前記太陽電池が地絡している場合、前記放電時に流れる電流が過電流である場合、前記蓄電池が過放電の場合、前記蓄電池が地絡している場合に前記第2スイッチ素子のゲートブロックを行うことを特徴とする請求項9又は10に記載の蓄電システム。 When the solar cell is overvoltage, when the solar cell is grounded, when the current flowing during the discharge is overcurrent, when the storage battery is overdischarged, when the storage battery is grounded The power storage system according to claim 9 or 10, wherein the gate block of the second switch element is performed.
  12.  前記系統連系装置と、請求項1乃至請求項11の何れかに記載の蓄電システムとを備えることを特徴とする系統連系システム。
     
    A grid interconnection system comprising the grid interconnection device and the power storage system according to any one of claims 1 to 11.
PCT/JP2012/067344 2011-07-22 2012-07-06 Electricity storage system and system interconnection system using same WO2013015097A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013525648A JP6043967B2 (en) 2011-07-22 2012-07-06 Power storage system and grid interconnection system using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011160944 2011-07-22
JP2011-160944 2011-07-22
JP2011-283328 2011-12-26
JP2011283328 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013015097A1 true WO2013015097A1 (en) 2013-01-31

Family

ID=47600951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067344 WO2013015097A1 (en) 2011-07-22 2012-07-06 Electricity storage system and system interconnection system using same

Country Status (2)

Country Link
JP (1) JP6043967B2 (en)
WO (1) WO2013015097A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201893A (en) * 2015-04-09 2016-12-01 アイシン精機株式会社 Interconnection system
JP2017070210A (en) * 2013-06-28 2017-04-06 東芝ライテック株式会社 Power storage system, control device, control method, and power generation/storage system
WO2018142737A1 (en) * 2017-02-02 2018-08-09 パナソニックIpマネジメント株式会社 Power conversion device and power conversion system
CN109640445A (en) * 2018-12-24 2019-04-16 江阴华慧源电子技术有限公司 A kind of solar street lamp controller and its control method based on MPPT
KR20210067037A (en) * 2019-11-29 2021-06-08 주식회사 이엘티 Decentralized Power System That Can Be Linked To LVDC and Commercial AC-based Systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3996240B1 (en) * 2019-07-03 2024-02-14 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07184331A (en) * 1993-12-24 1995-07-21 Hitachi Ltd Refrigerator
JPH1198829A (en) * 1997-09-18 1999-04-09 Tdk Corp Switching power source
JPH11136852A (en) * 1997-10-27 1999-05-21 Nippon Telegr & Teleph Corp <Ntt> Power storage system
JP2000209786A (en) * 1999-01-18 2000-07-28 Hitachi Ltd Charging/discharging device for electric power storing means and manufacture of electric power storing means using the same
JP2003199203A (en) * 2001-12-25 2003-07-11 Toshiba Corp Protection method for regenerated-energy accumulator and regenerated-energy accumulator
JP2004248345A (en) * 2003-02-10 2004-09-02 Toshiba Corp Distributed power source system
JP2005086870A (en) * 2003-09-05 2005-03-31 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply device and system
JP2007014073A (en) * 2005-06-29 2007-01-18 Chugoku Electric Power Co Inc:The Charge/discharge time control system and power storage system for power storage battery
WO2008026425A1 (en) * 2006-08-28 2008-03-06 Sharp Kabushiki Kaisha Power conditioner
JP2008295133A (en) * 2007-05-22 2008-12-04 Showa Shell Sekiyu Kk Photovoltaic power generating system capable with power failure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11127546A (en) * 1997-10-23 1999-05-11 Mitsubishi Electric Corp Photovoltaic power generating system
JP2002354677A (en) * 2001-05-28 2002-12-06 Japan Storage Battery Co Ltd Power conditioner for solar energy generation
JP3964852B2 (en) * 2003-10-22 2007-08-22 大阪瓦斯株式会社 Distributed power generation system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07184331A (en) * 1993-12-24 1995-07-21 Hitachi Ltd Refrigerator
JPH1198829A (en) * 1997-09-18 1999-04-09 Tdk Corp Switching power source
JPH11136852A (en) * 1997-10-27 1999-05-21 Nippon Telegr & Teleph Corp <Ntt> Power storage system
JP2000209786A (en) * 1999-01-18 2000-07-28 Hitachi Ltd Charging/discharging device for electric power storing means and manufacture of electric power storing means using the same
JP2003199203A (en) * 2001-12-25 2003-07-11 Toshiba Corp Protection method for regenerated-energy accumulator and regenerated-energy accumulator
JP2004248345A (en) * 2003-02-10 2004-09-02 Toshiba Corp Distributed power source system
JP2005086870A (en) * 2003-09-05 2005-03-31 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply device and system
JP2007014073A (en) * 2005-06-29 2007-01-18 Chugoku Electric Power Co Inc:The Charge/discharge time control system and power storage system for power storage battery
WO2008026425A1 (en) * 2006-08-28 2008-03-06 Sharp Kabushiki Kaisha Power conditioner
JP2008054473A (en) * 2006-08-28 2008-03-06 Sharp Corp Power conditioner having electric storage function
JP2008295133A (en) * 2007-05-22 2008-12-04 Showa Shell Sekiyu Kk Photovoltaic power generating system capable with power failure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070210A (en) * 2013-06-28 2017-04-06 東芝ライテック株式会社 Power storage system, control device, control method, and power generation/storage system
JP2018170956A (en) * 2013-06-28 2018-11-01 東芝ライテック株式会社 Power storage system, control device, control method, and power generation/storage system
JP2016201893A (en) * 2015-04-09 2016-12-01 アイシン精機株式会社 Interconnection system
WO2018142737A1 (en) * 2017-02-02 2018-08-09 パナソニックIpマネジメント株式会社 Power conversion device and power conversion system
JP2018126013A (en) * 2017-02-02 2018-08-09 パナソニックIpマネジメント株式会社 Power conversion device and power conversion system
CN109640445A (en) * 2018-12-24 2019-04-16 江阴华慧源电子技术有限公司 A kind of solar street lamp controller and its control method based on MPPT
CN109640445B (en) * 2018-12-24 2023-10-24 江阴华慧源电子技术有限公司 MPPT-based solar street lamp controller and control method thereof
KR20210067037A (en) * 2019-11-29 2021-06-08 주식회사 이엘티 Decentralized Power System That Can Be Linked To LVDC and Commercial AC-based Systems
KR102298844B1 (en) * 2019-11-29 2021-09-07 주식회사 이엘티 Decentralized Power System That Can Be Linked To LVDC and Commercial AC-based Systems

Also Published As

Publication number Publication date
JP6043967B2 (en) 2016-12-14
JPWO2013015097A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5903622B2 (en) Power supply system and charge / discharge power conditioner
WO2011065375A1 (en) Power conversion apparatus, power generating system, and charge/discharge control method
JP6043967B2 (en) Power storage system and grid interconnection system using the same
US9899871B2 (en) Islanded operating system
US11316471B2 (en) Manual transfer switch for onsite energy generation and storage systems
US10298006B2 (en) Energy storage system and method of driving the same
EP3342021B1 (en) High efficiency high voltage battery pack for onsite power generation systems
JP2011109901A (en) Power control system and grid-connected energy storage system with the same
WO2011152249A1 (en) Utility interconnection system and distributor
JP2011109901A5 (en)
US10177586B2 (en) Electric energy storage apparatus
JP2012175864A (en) Power storage system
US10797485B2 (en) Power conditioner, power supply system, and current control method
JP2017135889A (en) Power conversion device, and power conversion system
WO2013065588A1 (en) Power conversion device, and electricity storage system and method for controlling same
JP6190224B2 (en) Power storage system
JP6867331B2 (en) Power storage system compatible with full-load distribution boards and full-load distribution boards
JP2017118598A (en) Power supply system
JP4405654B2 (en) Power converter and power generator
JP2014131422A (en) Power supply system, and power conditioner
JP6391473B2 (en) Battery system
EP3540897B1 (en) Energy storage apparatus
JP2014087073A (en) Power conditioner device and multi-power conditioner system provided with the same
JP2013093972A (en) Distributed power supply system and cable run switching device
JP3633123B2 (en) Distributed power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525648

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817194

Country of ref document: EP

Kind code of ref document: A1