WO2013013489A1 - 一种监测催化裂化装置催化剂循环量的方法 - Google Patents

一种监测催化裂化装置催化剂循环量的方法 Download PDF

Info

Publication number
WO2013013489A1
WO2013013489A1 PCT/CN2012/000502 CN2012000502W WO2013013489A1 WO 2013013489 A1 WO2013013489 A1 WO 2013013489A1 CN 2012000502 W CN2012000502 W CN 2012000502W WO 2013013489 A1 WO2013013489 A1 WO 2013013489A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
temperature
control system
catalytic cracking
flow rate
Prior art date
Application number
PCT/CN2012/000502
Other languages
English (en)
French (fr)
Inventor
张忠东
柳召永
高雄厚
高永福
王智峰
马燕青
侯凯军
刘明霞
田爱珍
张志国
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2013013489A1 publication Critical patent/WO2013013489A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • C10G11/187Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • C10G11/182Regeneration

Definitions

  • the invention relates to a method for monitoring the circulation amount of a catalyst, and in particular to a method for monitoring the circulation amount of a catalyst in a catalytic cracking unit on-line.
  • the catalytic cracking unit is one of the most important heavy oil conversion units in petroleum refineries.
  • the feedstock oil cracks the heavy oil under the action of a hot catalyst and turns into a high-value product such as rich gas, gasoline and diesel.
  • a hot catalyst In terms of economic benefits, more than half of the benefits of refining companies are achieved by catalytic cracking. Therefore, the application of advanced optimization control technology to achieve smooth operation of the device and provide conditions for online optimization undoubtedly has important practical significance and obvious economic benefits.
  • the existing catalytic cracking optimization control scheme is mainly based on the reaction temperature (riser outlet temperature), but in fact, catalytic cracking is a reaction process, and the reaction depth to equipment operation and product distribution is the greatest.
  • the reaction temperature is only one factor affecting the depth of the reaction, and there are many factors affecting the depth of the reaction in the actual production process.
  • Yuan et al. Observation and Control of Catalytic Cracking Reaction Process, Chinese Patent: ZL90108193. 0
  • the macroscopic reaction heat combines various factors that affect the depth of the reaction, maintains the heat of the reaction to be stable, and makes the reaction depth stable, thus making the operation of the whole device relatively stable.
  • a key to achieving deep optimization control of catalytic cracking reactions based on macroscopic reaction heat is online real-time calculation of macroscopic reaction heat.
  • One of the important factors is the amount of recycled catalyst. Due to the dangers and complexity of the production process, the catalyst circulation cannot be measured directly with the measuring instrument.
  • the methods for calculating the catalyst circulation amount in the industry are mainly classified into three categories. 1. Calculate the catalyst circulation amount by using the steady-state heat balance relationship of the regenerator, such as Lin Shixiong et al. (Petroleum Refining Engineering (Third Edition) [M], 2007, 374-377); 2.
  • regenerator heat balance to calculate the catalyst circulation has higher precision, but the temperature and coke content have a certain time lag for the regenerator; the catalyst to be produced flows from the riser through the stripping section to the regenerator, its temperature and coke The content has a time lag of 1-2 minutes for the regenerator, and the real-time calculation can not meet the requirements for advanced control of the riser.
  • the invention provides a method for monitoring the catalyst circulation amount of the catalytic cracking unit by adding a processing unit 4 to the catalyst delivery line 5 between the catalytic cracking unit stripper 2 and the regenerator 3, and the processing unit 4 includes temperature control.
  • the system, flow control system, control module system 405, the processing unit 4 may be located at any position of the catalyst delivery line to be produced; in the processing unit 4, the catalyst to be generated flows from the inlet 401 at the bottom of the near stripper to the outlet near the regenerator end 402, the temperature is changed from T1 to T2, and the temperature is recorded by the temperature control system; the transport medium flows backward with the catalyst to be generated, the flow rate is Fl, the flow rate is measured by the flow control system, and the transport medium flows from the inlet 403 near the regenerator end.
  • Module 405 calculates the principle of catalyst circulation and calculates the amount of catalyst circulation by heat exchange of the delivery medium with the catalyst to be produced.
  • the transport medium is a stable gas or liquid, and the transport medium has stable properties at a high temperature of 400 to 600 °C.
  • the flow rate range is preferably 5IJh ⁇ 50t/h, and when the transport medium is gas, the flow rate range is preferably 200L/1! ⁇ 50t/h.
  • the ratio of the diameter of the conveying medium pipe to the catalyst conveying pipe to be produced is 1.5 to 20.
  • Figure 1 is a catalytic cracking reaction unit comprising a catalyst circulation treatment unit for monitoring a catalytic cracking unit of the present invention: 1-lift tube reactor, 2- stripper, 3-regenerator, 4-monitoring catalytic cracking unit catalyst circulation amount processing unit, 5-waiting catalyst transport line, 6-regenerated catalyst transport line, 7-flue gas outlet, 8-oil gas outlet; 4 is located in the feed catalyst transport line 5.
  • 2 is a treatment unit for monitoring the catalyst circulation amount of the catalytic cracking unit provided by the present invention: 4: 401-waiting catalyst inlet end; 402-waiting catalyst outlet end; 403-transport medium inlet end; 404 conveying medium outlet end.
  • a catalytic cracking reaction device shown in Figure 1 comprising a riser reactor 1, a stripper 2, a regenerator 3, a catalyst delivery line 5, a regenerated catalyst delivery line 6, a flue gas outlet 7, an oil and gas outlet 8; Adding a processing unit 4 (shown in FIG. 2) to the catalyst delivery line 5 between the catalytic cracker stripper 2 and the regenerator 3, including a temperature control system, a flow control system, and a control module system 405, The unit 4 can be located at any position of the catalyst delivery line to be produced: in the processing unit 4, the catalyst to be produced flows from the near stripper bottom 401 to the near regenerator end 402 on the standby conveyor line, and the temperature changes from T1 to T2.
  • the temperature is recorded by the temperature control system; the transport medium flows in a reverse direction with the catalyst to be produced, flowing from the inlet 403 near the regenerator end to the outlet 404 near the bottom of the stripper, and the flow rate is Fl when the temperature of the transport medium at the inlet 403 is ⁇ 3,
  • the flow rate is recorded by the flow control system, the temperature is changed from T3 to T4, and the temperature is recorded by the temperature control system; the control module 405 can When the amount of the catalyst shows the cycle.
  • the ratio of the diameter of the transport medium conduit to the catalyst transport conduit to be produced is 4.
  • the temperature of the inlet catalyst 401 is 438 ° C
  • the temperature of the outlet catalyst 402 is 365 ° C
  • the flow rate of the medium inlet 403 is 550 L / h
  • the temperature is 29 V.
  • the temperature of the medium outlet 404 is 375 ° C
  • the value of the control module 405 is 4.2 kg / h.
  • the ratio of the diameter of the transport medium conduit to the catalyst transport conduit to be produced is 10, and according to the normal riser catalytic cracking reaction, the temperature of the inlet catalyst 401 is 432 ° C, and the temperature of the outlet catalyst 402
  • the value of the control module 405 is 9.6 kg / h.
  • the temperature of the medium inlet 403 is 1300 Uh, the temperature is 32 ° C, the temperature of the medium outlet 404 is 368 ° C, the value of the control module 405 is 9. 6 kg / h.
  • the ratio of the diameter of the transport medium conduit to the catalyst transport conduit to be produced is 20, and according to the normal riser catalytic cracking reaction, the temperature of the inlet catalyst 401 is 425 ⁇ and the temperature of the outlet catalyst 402 is 310.
  • the temperature of the medium inlet 403 is 3100 L / h, the temperature is 11 (TC, the temperature of the medium outlet 404 is 355 ° C, and the value of the control module 405 is 12. 2 kg / h.
  • the present invention provides a method for online monitoring of the catalytic cracking catalyst catalytic cracking catalyst circulation amount.
  • a processing unit is added to the catalyst delivery pipeline to be monitored, and the circulation amount of the catalyst in the apparatus can be monitored online, and the catalyst is waiting for the catalyst.
  • the catalyst transport line does not undergo chemical changes on its own, nor does it chemically react with the transport medium, and does not produce enthalpy change. It can stably and accurately monitor the catalyst circulation amount without causing time lag effect;
  • the invention can monitor the catalyst circulation amount of the catalytic cracking device on-line, and the on-line monitoring of the catalyst circulation amount can be displayed in real time, so that the parameters of the catalytic cracking device can be optimized in real time, the severity of the reaction can be controlled, and the product distribution can be rationalized;
  • the invention has less investment, is easy to reform, and is conducive to promotion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种监测催化裂化装置催化剂循环量的方法:在催化裂化装置汽提器(2)和再生器(3)之间的待生催化剂输送线(5)上设有处理单元(4),处理单元(4)包括温度控制系统、流量控制系统、控制模块系统(405);在处理单元(4)内,待生催化剂由近汽提器底部的入口(401)流向近再生器端的出口(402),温度由T1变化为T2,温度由温度控制系统测量记录;输送介质与待生催化剂呈逆向流动,输送介质流量为F1,流量由流量控制系统测量记录,输送介质由近再生器端的入口(403)流向近汽提器底部的出口(404),温度由入口的T3变为出口的T4,温度由温度控制系统测量记录;控制模块(405)实时显示出催化剂循环量,模块(405)计算催化剂循环量的公式为:催化剂循环量=2xF1x[(T4-T3)/(T1-T2)]-1000。

Description

一种监测催化裂化装置催化剂循环量的方法 技术领域
本发明涉及一种催化剂循环量的监测方法,具体涉及一种在线监测催化裂化 装置催化剂循环量的方法。
背景技术
催化裂化装置是石油炼厂中最重要的重质油转化装置之一。原料油在热的催 化剂的作用下使重质油发生裂化反应, 转变成富气、 汽油和柴油等高价值产品。 从经济效益而言,炼油企业中一半以上的效益是靠催化裂化取得的。因此应用先 进的优化控制技术实现装置的平稳运行,并为在线优化提供条件,无疑具有重要 的现实意义和明显的经济效益。
已有的催化裂化优化控制方案多是以反应温度(提升管出口温度)为主, 但 事实上催化裂化是一个反应过程, 对装置操作及产品分布影响最大的是反应深 度。反应温度只是影响反应深度的一个因素,在实际生产过程中还有很多影响反 应深度的因素。 为解决这一问题, 袁璞等(催化裂化反应过程的观察和控制, 中 国专利: ZL90108193. 0)提出宏观反应热(每公斤进料在裂化反应时所需的热量 KJ/kg )的概念。宏观反应热综合了影响反应深度的各种因素, 维持反应热平稳, 可使反应深度平稳, 从而使整个装置操作较平稳。
实现基于宏观反应热的催化裂化反应深度优化控制的一个关键就是宏观反 应热的在线实时计算。影响反应深度的因素很多,其中一个重要的因素是再生催 化剂循环量。 由于生产过程的危险性和复杂性,催化剂循环量不能用测量仪表直 接测量。 目前工业上计算催化剂循环量的方法主要分为三类。 1、 利用再生器稳 态热平衡关系计算催化剂循环量, 如林世雄等 (石油炼制工程 (第三版)) [M], 2007, 374-377) ; 2、利用再生器中碳的物料平衡计算催化剂循环量, 如魏飞 等 (FCC 催化剂循环量计算方法的比较, 炼油设计, 1990, 4 ( 1 ): 41-43); 3、 利用催化剂流动特性和再生阀门特性计算催化循环量,如袁璞等(催化裂化反应 过程的观测和控制, 中国专利: ZL 90108193. 0)。 黄德先等利用再生器热平衡计 算模型和再生阀门流量特性模型相结合的方式观测催化剂循环量的方式 (CN101859103A)。
但已有的计算方法面临如下问题: 1、 采用再生器热平衡、 再生器中碳的物料平衡、 再生阀门流量特性模型、 再生器热平衡计算模型和再生阀门流量特性模型相结合的方式等四种方法计算 催化剂循环量均为离线模式, 具有时间滞后性;
2、 采用再生器热平衡计算催化剂循环量具有较高的精度, 但温度和焦含量 对再生器均有一定的时间滞后;待生催化剂由提升管经汽提段流至再生器,其温 度和焦含量对再生器均有 1-2分钟的时间滞后,其计算的实时性不能满足对提升 管进行先进控制的要求。
3、 利用再生器和汽提器中碳的物料平衡计算催化剂循环量, 待生催化剂含 碳量、再生催化剂含碳量只能通过离线化验得到,具有相当大的时间滞后,因此, 利用碳平衡法计算催化剂循环量不能满足生产监控及控制的实时性要求。
4、 利用再生阀门流量特性模型计算催化剂循环量速度快, 但由于催化剂循 环量是关于滑阀开度的非线性函数,且与催化剂的流化状态及密度有关。当再生 阔门开度变化较大或催化剂流化状态发生变化时,若采用固定的再生阀门特性模 型进行计算, 其准确性将难以得到保证。
因此,设计一种计算相对准确且快速反映实际变化的催化剂循环量在线实时 计算方法, 实现反映深度在线计算,并在此基础上实现催化裂化装置反应深度控 制, 维持装置长期平稳运行, 是十分必要的。
发明内容
本发明的目的是提供一种在线监测催化剂循环量的方法,并且该方法准确性 好。
本发明提供的一种监测催化裂化装置催化剂循环量的方法是在催化裂化装 置汽提器 2和再生器 3之间的待生催化剂输送线 5上增加一个处理单元 4, 处理 单元 4包括温度控制系统、 流量控制系统、 控制模块系统 405, 处理单元 4可以 位于待生催化剂输送线的任何位置一段;在处理单元 4内,待生催化剂由近汽提 器底部的入口 401流向近再生器端的出口 402, 温度由 T1变化为 T2, 温度由温 度控制系统测量记录; 输送介质与待生催化剂呈逆向流动, 流量为 Fl, 其流量 由流量控制系统测量记录,输送介质由近再生器端的入口 403流向近汽提器底部 的出口 404, 温度由入口的 T3变为出口的 T4, 温度由温度控制系统测量记录; 控制模块 405上实时显示出催化剂循环量。 模块 405计算催化剂循环量的原理, 通过输送介质与待生催化剂的热交换, 计算催化剂循环量。
模块 405计算催
Figure imgf000005_0001
- 1000
输送介质为性质稳定的气体或液体, 输送介质在 400〜600°C的高温下也具 有稳定的性质。 输送介质为液体时, 流量范围优选为 5IJh〜50t/h, 输送介质为 气体时, 流量范围优选为 200L/1!〜 50t/h。 输送介质管道和待生催化剂输送管道 的管径比为 1.5〜20。
附图说明
图 1 含有本发明监测催化裂化装置催化剂循环量处理单元的催化裂化反应 装置: 1-提升管反应器, 2-汽提器, 3-再生器, 4-监测催化裂化装置催化剂循环 量处理单元, 5-待生催化剂输送线, 6-再生催化剂输送线, 7-烟气出口, 8-油气 出口; 4位于待生催化剂输送线 5。
图 2 本发明提供的监控催化裂化装置催化剂循环量的处理单元 4: 401-待生 催化剂入口端; 402-待生催化剂出口端; 403-输送介质入口端; 404输送介质出 口端。
具体实施方式:
一种图 1所示的催化裂化反应装置, 含有提升管反应器 1, 汽提器 2, 再生 器 3, 待生催化剂输送线 5, 再生催化剂输送线 6, 烟气出口 7, 油气出口 8; 在 催化裂化装置汽提器 2和再生器 3之间的待生催化剂输送线 5上增加一个处理单 元 4 (如图 2所示), 包括温度控制系统、 流量控制系统、 控制模块系统 405, 处 理单元 4可以位于待生催化剂输送线的任何位置一段: 在处理单元 4内,待生催 化剂在待生输送线上由近汽提器底部 401流向近再生器端 402, 温度由 T1变化 为 T2, 温度由温度控制系统测量记录; 输送介质与待生催化剂呈逆向流动, 由 近再生器端的入口 403流向近汽提器底部的出口 404, 输送介质在入口处 403温 度为 Τ3时流量为 Fl, 其流量由流量控制系统测量记录, 温度由 T3变为 T4, 温 度由温度控制系统测量记录; 控制模块 405上可以实时显示出催化剂循环量。
实施例 1
采用图 2给出的处理单元,输送介质管道和待生催化剂输送管道的管径比为 4, 依照正常的提升管催化裂化反应时, 入口催化剂 401 的温度为 438°C , 出口 催化剂 402的温度为 365 °C, 介质为空气时, 介质入口 403的流量为 550L/h, 温 度为 29V, 介质出口 404的温度为 375°C, 控制模块 405数值为 4.2kg/h。
实施例 2
采用图 2给出的处理单元,输送介质管道和待生催化剂输送管道的管径比为 10, 依照正常的提升管催化裂化反应时, 入口催化剂 401的温度为 432°C, 出口 催化剂 402的温度为 350°C, 介质为氮气时, 介质入口 403的流量为 1300Uh, 温度为 32°C, 介质出口 404的温度为 368°C, 控制模块 405数值为 9. 6kg/h。
实施例 3
采用图 2给出的处理单元,输送介质管道和待生催化剂输送管道的管径比为 20, 依照正常的提升管催化裂化反应时, 入口催化剂 401的温度为 425Ό , 出口 催化剂 402的温度为 310°C, 介质为水蒸汽时, 介质入口 403的流量为 3100L/h, 温度为 11(TC, 介质出口 404的温度为 355°C, 控制模块 405数值为 12. 2kg/h。
工业实用性
( 1 ) 本发明提供了一种在线监测催化裂化装置催化裂化催化剂循环量的方 法,在待生催化剂输送管线上增加一个处理单元,可以在线监测催化剂在装置内 的循环量,待生催化剂在待生催化剂输送线上自身不发生化学变化, 也没有与输 送介质发生化学反应, 没有产生焓变, 可以稳定、准确的监测催化剂循环量, 不 会产生时间滞后效应;
(2 ) 本发明可以在线监测催化裂化装置催化剂循环量, 在线监测催化剂循 环量可以实时显示,从而可以实时实现催化裂化装置的参数优化,控制反应的苛 刻度, 实现产物分布的合理化;
( 3 ) 本发明投资少, 改造容易, 利于推广。

Claims

权 利 要 求
1、 一种监测催化裂化装置催化剂循环量的方法, 其特征在于在催化裂化装置汽 提器 (2 ) 和再生器 (3 ) 之间的待生催化剂输送线 (5 ) 上设有处理单元 (4 ), 处理单元 (4) 包括温度控制系统、 流量控制系统、 控制模块系统 (405 ); 在处 理单元(4) 内, 待生催化剂 ώ近汽提器底部的入口 (401 )流向近再生器端的出 口 (402 ), 温度由 T1变化为 Τ2, 温度由温度控制系统测量记录; 输送介质与待 生催化剂呈逆向流动, 输送介质流量为 Fl, 流量由流量控制系统测量记录, 输 送介质由近再生器端的入口 (403 ) 流向近汽提器底部的出口 (404), 温度由入 口的 T3变为出口的 T4, 温度由温度控制系统测量记录; 控制模块 (405 ) 实时 显示出催化剂循环量, 模块 (405 ) 计算催化剂循环量的公式为:
催化剂循环量 = 2x - 1000。
Figure imgf000007_0001
2、根据权利要求 1所述的方法,其特征在于输送介质为性质稳定的气体或液体。
3、 根据权利要求 1 所述的方法, 其特征在于输送介质为液体时, 流量范围为 5L/h〜50t/h。
4、 根据权利要求 1 所述的方法, 其特征在于输送介质为气体时, 流量范围为 200L/h〜50t/h。
5、 根据权利要求 1所述的方法, 其特征在于输送介质管道和待生催化剂输送管 道的管径比为 1.5〜20。
替换页 (细则第 26条)
PCT/CN2012/000502 2011-07-25 2012-04-13 一种监测催化裂化装置催化剂循环量的方法 WO2013013489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110208802.8 2011-07-25
CN201110208802.8A CN102899068B (zh) 2011-07-25 2011-07-25 一种监测催化裂化装置催化剂循环量的方法

Publications (1)

Publication Number Publication Date
WO2013013489A1 true WO2013013489A1 (zh) 2013-01-31

Family

ID=47571564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000502 WO2013013489A1 (zh) 2011-07-25 2012-04-13 一种监测催化裂化装置催化剂循环量的方法

Country Status (2)

Country Link
CN (1) CN102899068B (zh)
WO (1) WO2013013489A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487493B (zh) * 2014-09-17 2017-12-01 中国石油化工股份有限公司 铜溶化过程控制方法及系统
CN106226408B (zh) * 2016-07-22 2019-01-08 北京赛普泰克技术有限公司 一种汽油吸附脱硫装置的吸附剂的循环速率计算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828171A (en) * 1972-08-14 1974-08-06 Phillips Petroleum Co Process apparatus control system for optimizing objective variable quality
US4093537A (en) * 1975-08-27 1978-06-06 Mobil Oil Corporation FCC Catalyst section control
CN1060490A (zh) * 1990-10-12 1992-04-22 中国石油化工总公司 催化裂化反应深度的观测与控制方法
CN1563983A (zh) * 2004-04-15 2005-01-12 石油大学(北京) 一种催化裂化反应产率软测量方法
CN101650566A (zh) * 2009-09-14 2010-02-17 清华大学 催裂化装置常规再生的再生烟气成份动态软测量方法
CN101859103A (zh) * 2010-06-02 2010-10-13 清华大学 催化裂化反应深度在线计算和自适应非线性预测控制方法
JP2011106895A (ja) * 2009-11-16 2011-06-02 Diesel United:Kk Fcc触媒粒子の自動計測装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828171A (en) * 1972-08-14 1974-08-06 Phillips Petroleum Co Process apparatus control system for optimizing objective variable quality
US4093537A (en) * 1975-08-27 1978-06-06 Mobil Oil Corporation FCC Catalyst section control
CN1060490A (zh) * 1990-10-12 1992-04-22 中国石油化工总公司 催化裂化反应深度的观测与控制方法
CN1563983A (zh) * 2004-04-15 2005-01-12 石油大学(北京) 一种催化裂化反应产率软测量方法
CN101650566A (zh) * 2009-09-14 2010-02-17 清华大学 催裂化装置常规再生的再生烟气成份动态软测量方法
JP2011106895A (ja) * 2009-11-16 2011-06-02 Diesel United:Kk Fcc触媒粒子の自動計測装置
CN101859103A (zh) * 2010-06-02 2010-10-13 清华大学 催化裂化反应深度在线计算和自适应非线性预测控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAO ZHIKAI ET AL.: "Online Continuous Estimating of Catalyst Circulation Rate in Catalytic Cracking Unit", THE ACADEMIC EVENTS 7TH INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY OF CHINESE UNIVERSITIES, December 2000 (2000-12-01), pages 442 - 445 *
WILLIAM M. EDWARDS ET AL.: "Multiple Steady States in FCC Unit Operations", CHEMICAL ENGINEERING SCIENCE, vol. 43, no. 8, December 1988 (1988-12-01), pages 1825 - 1830 *

Also Published As

Publication number Publication date
CN102899068A (zh) 2013-01-30
CN102899068B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
Coletti et al. Crude oil fouling: deposit characterization, measurements, and modeling
US7431894B2 (en) Catalyst withdrawal apparatus for regulating catalyst inventory in a fluid catalyst cracking unit
Schietekat et al. Computational fluid dynamics‐based design of finned steam cracking reactors
Ajayi et al. Fouling phenomenon and its effect on heat exchanger: A review
Barazandeh et al. Investigation of coil outlet temperature effect on the performance of naphtha cracking furnace
Pei et al. Kinetic modeling of thermal oxidation and coking deposition in aviation fuel
MX2011002502A (es) Aparato y metodos para el retiro de material para la regulacion de inventario de material en una o mas unidades.
WO2013013489A1 (zh) 一种监测催化裂化装置催化剂循环量的方法
Wang et al. Thermal cracking and coke deposition characteristics of aviation kerosene RP-3 in an S-bend tube
Peyghambarzadeh et al. Experimental study of micro-particle fouling under forced convective heat transfer
Solaimany Nazar et al. Mathematical modeling of coke formation and deposition due to thermal cracking of petroleum fluids
JP4842498B2 (ja) コーカーのコークス槽蒸気管路の急冷方法及び装置
Yangkun et al. Outlet temperature correlation and prediction of transfer line exchanger in an industrial steam ethylene cracking process
CN106288934B (zh) 换热器在线除垢方法及装置
JP6899786B2 (ja) 弁機構のリーク率の測定方法、及び触媒反応装置
Lv et al. Study on the decomposition mechanism and kinetic model of natural gas hydrate slurry in water-in-oil emulsion flowing systems
CN105523556B (zh) 二氧化碳还原系统
CN220438105U (zh) 一种用于pmm监测技术验证的小型试验装置
CN203772321U (zh) 一种催化裂化催化剂循环量的测定装置
CN203990059U (zh) 一种高温导热油在线监测及实时精滤系统
Cowperthwaite Mathematical model for ethane pyrolysis in an industrial furnace
Fahiminia Initial fouling rate and delay time studies of aqueous calcium sulphate sealing under sensible heating conditions
CN108369162A (zh) 用于催化剂取样的方法和装置
CN203159567U (zh) 一种高钠煤提质浸泡式装置
Tian et al. Dynamic Simulation of FCCU under Abnormal Condition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817914

Country of ref document: EP

Kind code of ref document: A1