WO2013012132A1 - Method for manufacturing porous scaffold of calcium phosphate cement - Google Patents

Method for manufacturing porous scaffold of calcium phosphate cement Download PDF

Info

Publication number
WO2013012132A1
WO2013012132A1 PCT/KR2011/008095 KR2011008095W WO2013012132A1 WO 2013012132 A1 WO2013012132 A1 WO 2013012132A1 KR 2011008095 W KR2011008095 W KR 2011008095W WO 2013012132 A1 WO2013012132 A1 WO 2013012132A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium phosphate
scaffold
phosphate cement
alginate
porous scaffold
Prior art date
Application number
PCT/KR2011/008095
Other languages
French (fr)
Korean (ko)
Inventor
김해원
이길수
Original Assignee
단국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 산학협력단 filed Critical 단국대학교 산학협력단
Publication of WO2013012132A1 publication Critical patent/WO2013012132A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention relates to a method for producing a porous scaffold of calcium phosphate cement, and more particularly, after preparing a suspension of calcium phosphate cement and alginate, the suspension is put into a mold filled with an aqueous solution of calcium ions, and then cured. It relates to a method of making a scaffold.
  • Rapid hardening cement is very useful for bone tissue regeneration as a direct filling or injectable material.
  • Calcium phosphate cements are one of the most widely studied bioactive ceramics for this purpose (Brown WE, et al., J Dent Res , 1983, 62, 672; Brown WE. Et al., J Dent Res , 1986 , 63, 200).
  • CPCs Calcium phosphate cements
  • CPCs are cell- and tissue-friendly, self-curable and useful as injectable materials that require minimally invasive surgery, and they can also contain therapeutic molecules in formulations (Planell JA. Et al., Biomater , 2006, 27 (10), 2171-7; Burger EH. Et al., J Dent Res , 2000, 79, 255).
  • Scaffolds with three-dimensional (3-D) porous networks provide effective matrix conditions for bone tissue engineering (Xu HHK. Et al., Biomater , 2009, 30, 2675-82; Barlow SK, et al. , Biotechnology , 1994, 7, 689-93; Hutraum DW., Biomater , 2000, 21, 2529-43).
  • Tissue cells are cultured in vitro in a scaffold to better mimic the structure and function of natural tissue than materials or cells alone (Hutraum DW., Biomater , 2000, 21, 2529-43; Vacanti JP. Et al., Science , 1993, 260, 920-6).
  • controlled release of therapeutic molecules, such as growth factors is beneficial to modulate cell function and promote bone formation.
  • CPC-based materials have been regarded as good candidates for delivery of therapeutic agents transported within these structures, as they self-cure under mild conditions, safely bind the therapeutics, and maintain a sustained release profile (Planell JA). et al., Biomater , 2006, 27 (10), 2171-7). In order to apply CPC-based materials to bone tissue engineering, it is necessary to develop them as 3-D scaffolds that support cell proliferation and cell-material composite structures.
  • a porous scaffold of calcium phosphate cement can be prepared by preparing a suspension of calcium phosphate cement and alginate and then curing the suspension into a mold filled with aqueous calcium ion solution. Completed.
  • Another object of the present invention is to provide a kit for preparing a porous scaffold of calcium phosphate cement.
  • the present invention provides a method for producing a porous scaffold of calcium phosphate cement comprising the following steps.
  • the method further comprises the step of mechanically compressing after step 2).
  • the term 'scaffold' refers to a structure that serves to provide an environment suitable for attachment, differentiation, and proliferation and differentiation of cells transferred from and around the seeded cells inside and outside the structure. It is one of the important basic elements in the field.
  • Step 1 is a step of preparing a suspension of calcium phosphate cement and alginate, a step of preparing a suspension by mixing powdered calcium phosphate cement with an alginate solution.
  • cement as used in the present invention means a cured body of a paste obtained by mixing a powdery solid phase and a liquid phase.
  • “Cure” of the cement refers to spontaneous curing of the paste, which is done without artificial treatment at room temperature or body temperature, wherein the paste is obtained as a result of mixing a solid phase and a liquid phase.
  • calcium phosphate cement means a cement in which the powdered solid phase consists of a calcium phosphate compound or a mixture of calcium and / or phosphate compounds.
  • the calcium phosphate cement is a material consisting of an aqueous solution containing a calcium phosphate particles, the main component of the powder and a substance that promotes hardening, such as phosphate.
  • a calcium phosphate compound precipitates and hardens by a chemical reaction of two components at the site of application, thereby filling a damaged bone and bone, or an empty space between bone and implant, to fix and stabilize the bone substitute.
  • the mixing ratio of the calcium phosphate cement and alginate is preferably a calcium phosphate cement: alginate ratio of 20: 1 to 500: 1 by weight.
  • the suspension may further comprise a biological protein or drug, wherein the biological protein is bovine serum albumin, lysozyme, growth factor and the like, and the drug may be an antibiotic, an anticancer agent, an anti-inflammatory agent, or the like.
  • the biological protein is bovine serum albumin, lysozyme, growth factor and the like
  • the drug may be an antibiotic, an anticancer agent, an anti-inflammatory agent, or the like.
  • step 2 the suspension is introduced into a mold filled with an aqueous solution of calcium ions and cured.
  • the suspension is introduced into a mold filled with an aqueous solution containing calcium ions to cure the suspension.
  • the concentration of the calcium ions is preferably 10 to 200 mM.
  • the shape of the mold may be cylindrical, hexahedral, or the like, but is not limited thereto.
  • the calcium phosphate compound may be, but is not limited to, tricalcium phosphate, monocalcium phosphate, tetracalcium phosphate, dicalcium phosphate, hydroxyapatite or a combination thereof.
  • Step 3 is a step of mechanically compressing the mechanically compressed scaffold formed by the self-curing to adjust the porosity or to optionally reassemble the shape.
  • the porosity of the scaffold can be arbitrarily adjusted, and in particular, it can be adjusted with a hand press, a machine that can apply a load.
  • the porosity can be adjusted from 10 to 90%, preferably from 14 to 54%.
  • the present invention also provides a material for producing a porous scaffold of calcium phosphate cement composed of calcium phosphate cement powder, alginate solution, and calcium ion aqueous solution, each packaged in a separate container; Provided are a kit for preparing a porous scaffold of calcium phosphate cement comprising a syringe.
  • the suspension was prepared by mixing calcium phosphate cement powder and alginate solution packaged in each individual container of the kit, and putting it in a syringe, and then injecting the suspension into a mold of a form filled with aqueous calcium ion solution to form a porous scavenger of calcium phosphate cement. Folds can be prepared on the fly.
  • the mold may be any one that can be easily obtained, but can be used to make the scaffold more conveniently when the mold further includes a mold for scaffold forming.
  • the kit may also further comprise a biological protein or drug, wherein the biological protein is bovine serum albumin, lysozyme and the like, and the drug may be an antibiotic, an anticancer agent, an anti-inflammatory agent, or the like.
  • the biological protein is bovine serum albumin, lysozyme and the like
  • the drug may be an antibiotic, an anticancer agent, an anti-inflammatory agent, or the like.
  • the present invention seeks to improve novel cell scaffold materials produced by using CPCs and sodium alginate in combination.
  • the composite suspension was directly deposited in Ca-containing solution to form a fibrous network.
  • the deposited suspension rapidly cures to form a gelled network in which alginate is present and crosslinked by Ca 2+ ions (Langer R. et al., Curr Top Dev Biol , 2004, 61, 113-34; Asaoka K et al., Biomater , 1995, 16, 527-32).
  • Cured porous scaffolds are cell friendly and useful for bone tissue engineering.
  • the scaffold has been shown to be able to load and deliver bioactive molecules contained within the structure. The following describes a method for making a CPC-alginate porous scaffold.
  • CPC suspensions in combination with alginate solutions effectively formed porous scaffolds by direct fibrous deposition into Ca-containing solutions.
  • CPC-alginate scaffolds were self-curing, moldable in a variety of forms, and controlled porosity.
  • the scaffolds have been shown to have advantageous 3-D matrix properties for MSCs adhesion and proliferation as well as their differentiation into osteoblasts.
  • tissue conformity and bone regeneration ability through pore shape were confirmed.
  • the scaffolds also showed the ability to safely load biological proteins (BSA and lysozyme) during manufacture and to release them in vitro over a month.
  • BSA and lysozyme biological proteins
  • the present invention can prepare a porous scaffold of calcium phosphate cement by preparing a suspension of calcium phosphate cement and alginate and then curing the suspension into a mold filled with aqueous calcium ion solution to stimulate bone regeneration during manufacture of the scaffold. There is an effect that can be provided to a tissue engineering construct that is loaded with biological molecules to deliver the biological molecules for stimulating bone regeneration.
  • CPC calcium phosphate cement
  • CPA alginate composite
  • Figure 2a is a graph showing the change in the diameter of the fiber according to the composition of the needle gauge and suspension.
  • Figure 2b is the result of investigating the pore structure of the 3-D composite scaffold by ⁇ CT.
  • 3A shows the results of investigating the microstructure of the scaffold after various immersion times after immersing the CPC-alginate 3-D pore scaffold in mock body fluids.
  • 3B is an XRD pattern for monitoring phase changes of CPC and CPC-alginate scaffolds during immersion test.
  • 3C shows the results of EDS analysis of CPC and CPC-alginate scaffolds during immersion test.
  • 5A-5C show the results of observation of the cell morphology on fibrous scaffolds with different resolution during incubation for 7 days and 14 days.
  • FIG. 6 shows the results of measuring basic phosphatase (ALP) activity as an indicator for in vitro osteogenic differentiation of MSCs in culture on CPC-alginate composite scaffolds.
  • ALP basic phosphatase
  • FIG. 7 shows the results of irradiating with a CT sample of tissue samples collected 6 weeks after transplanting the high porosity CPC-alginate scaffold into the rat.
  • ⁇ -tricalcium phosphate ( ⁇ -TCP) -based cement powders were prepared according to known methods (Kim HW. et al., J Mater Sci Mater Med , 2010, 21, 3019-27). Commercial calcium carbonate (Aldrich) and anhydrous dibasic calcium phosphate (Aldrich) were mixed and then thermally reacted at 1400 ° C. for 3 hours, followed by air quenching to complete the reaction to form an ⁇ -TCP phase (Kim HW. et al., J Mater Sci Mater Med , 2010, 21, 3019-27). The powder was ball milled and then sieved to 45 ⁇ m and then stored under vacuum for use.
  • ⁇ -TCP As measured using a particle size analyzer (Saturn DigiSizer 5200, Micromeritics, USA), the average particle size of ⁇ -TCP was 4.79 ⁇ m.
  • Sodium alginate solution was prepared using 5% Na 2 HPO 4 (distilled deionized water, DDW) as a solvent at a concentration of 2% by weight.
  • Cement powder was mixed with the alginate solution in an appropriate ratio to prepare a composite suspension.
  • Example 1 The possibility of direct deposition of the composite suspension prepared in Example 1 above was investigated by varying the mixing ratio of cement powder / alginate solution to 1.0 to 2.5 weight ratio. Above 2.0 weight ratio, the suspension had too high a viscosity to be difficult to enter through the nozzle. Thus, 1.0-2.0 weight ratio suspension was then used.
  • the mixed suspension was then placed in a syringe and then placed in a Ca-containing bath (150 mM CaCl 2 ) as shown schematically in FIG. 1 to rapidly solidify the deposit.
  • the input pressure was adjusted to 500 kPa using a regulator (IEI, AD2000C).
  • the size was controlled by different needle gauges 23-27G.
  • the height of the scaffold was varied to vary the porosity level (low porosity: 1.2 mm, medium porosity: 1.5 mm, altitude porosity: 2.0 mm).
  • scaffolds with different porosity levels can be made by varying the amount (weight) of scaffold material introduced while keeping the height of the scaffold constant (3 mm) (low porosity: 0.5 g, medium). Porosity: 0.4 g, altitude porosity: 0.3 g).
  • Cured scaffolds were then used for in vitro cell analysis and in vivo animal investigation without further treatment, such as immersion in water.
  • the diameter of the fiber could be adjusted by changing the composition of the needle gauge and suspension as shown in FIG. 2A.
  • different gauge needles 23, 25, 26 and 27 G
  • compositions CPA20 and CPA15
  • Fiber diameter decreased as the ratio of CPC powder to alginate liquid increased (1.5-2.0) and needle gauge increased (corresponding to needle internal diameter reduction of 23-27 G, 0.32-0.16 mm).
  • the stacked fibrous network structures were further molded into 3-D scaffolds by applying a compressive load. By varying the degree of compression it was easy to control the porosity of the scaffold. In the present invention, the porosity of the composite scaffold was changed to low, medium, and high levels.
  • the scaffolds produced in the present invention are characterized in that they are produced by new methods, namely by direct deposition of suspensions and by molding of 3-D structures. Using this process, the pore arrangement, including stem size and porosity, is controllable, and the scaffold can be manufactured into complex shapes by filling the appropriate amount into the desired mold. In the present invention, deposits are arbitrarily stacked to form a 3-D structure, but a clear 3-D shape can be manufactured through a process such as direct writing.
  • the composite scaffold obtained in Example 2 was thoroughly washed with distilled water, and then simulated body fluids (142.0 mM Na + , 5 mM K + , 1.5 mM Mg 2+ , 2.5 mM Ca 2+ , 147.8) at 37 ° C. for 7 days. immersion in mM Cl ⁇ , 4.2 mM HCO 3 ⁇ , 1.0 mM HPO 4 2- , 0.5 mM SO 4 2- containing SBF). The sample was washed and dried in vacuo and then morphologically examined by scanning electron microscopy (SEM) (Hitachi S-3000H).
  • SEM scanning electron microscopy
  • composition changes were monitored via an energy dispersive spectrometer (EDS) (Bruker SNE-3000 M) in a scanning electron microscope.
  • EDS energy dispersive spectrometer
  • the crystal phase change of the scaffold was measured using an X-ray diffractometer (Rigaku Ultima IV).
  • the pore structure of scaffolds with different porosities was analyzed by micro-computed tomography ( ⁇ CT) (Skyscan model 1172). Discs ( ⁇ 10 ⁇ 3 mm) of each sample were placed on the upper and lower surfaces parallel to the scan plane. Scanning was performed with an 11 Mp X-ray camera and 758 files were obtained with an image pixel size of 19.92 ⁇ m.
  • the surface charge of the ⁇ -TCP particles was investigated by measuring zeta potential (Zetasizer ZEN3600, Malvern Instruments).
  • the ⁇ -TCP particles were sieved (45 ⁇ m) and dispersed in distilled water at 1 mg ml ⁇ 1 , then at room temperature and at room temperature using a disposable capillary cell (DTS1060C) and Zetasizer software (v. 6.20).
  • Zeta potential was measured at pH 7.0. The measurement was repeated three times on different samples.
  • the modulus of elasticity of the scaffold was measured by a dynamic mechanical analyzer (DMA) (DMA25, Metravib, France). Samples with three different porosities were prepared with an area of 5 mm diameter x 10 mm height and subjected to dynamic compressive load. The dynamic modulus of the sample was recorded. Three samples were tested for each group.
  • DMA dynamic mechanical analyzer
  • the pore structure of the 3-D composite scaffold was examined by ⁇ CT and shown in FIG. 2B.
  • low porosity scaffolds porosity ⁇ 14%), some pores appeared to be blocked by compression.
  • Medium porosity scaffolds ⁇ 34% porosity
  • the pores of the high porosity scaffold (porosity of 54%) had large spaces and connected to each other to provide 3-D pore channels suitable for cell migration and tissue irrigation.
  • the microstructure of the scaffold was examined after various immersion times. The surface prior to immersion ('0d') was dense and had CPC particles embedded in the alginate matrix.
  • Phase change of the CPC and CPC-alginate scaffolds was monitored during the immersion test (FIG. 3B). Initially only ⁇ -TCP peaks appeared (closed circles). HA (asterisk) appeared as a new phase with soaking, and the intensity of the HA peak increased with soaking time. Therefore, it was found that the phase change from ⁇ -TCP to HA. After 7 days only HA phase was observed, indicating complete conversion.
  • the scaffolds of the present invention are converted to HA mineral-like HA phases in body fluids to maintain good bioactivity and allow bone-related cells to grow and develop into tissues It can be seen that it can provide favorable substrate conditions, and can play a significant role in the physiological response.
  • the range similar to the trabecular bone 50 ⁇ 500 MPa for the trabecular bone, 96 ⁇ 63 MPa for high porosity, 398 ⁇ 63 MPa for medium porosity, low porosity
  • the elastic modulus of the scaffold at 573 ⁇ 87 MPa was found to be applicable mainly for bone regeneration in the unloaded support region.
  • CPC-alginate scaffolds with three different porosity levels were prepared (low porosity: 13.6%, medium porosity: 34.0%, high porosity: 53.7%).
  • Mesenchymal stem cells (MSCs) derived from rat bone marrow were collected from the femur and tibia of 5 week old male rats. The femur and tibia were quickly dissected and placed in the ⁇ -minimum essential medium ( ⁇ -MEM). The injured bone was treated with collagenase and dispase solution for 30 minutes and then the bone marrow was removed and centrifuged at 1500 rpm.
  • MSCs Mesenchymal stem cells
  • the pellets are ground and contain a homeostatic / antifungal solution (10,000 U penicillin, 10,000 ⁇ g streptomycin, and 25 ⁇ g amphotericin B / m, Gibco) at 37 ° C. under an atmosphere of 5% CO 2 /95% air.
  • a homeostatic / antifungal solution 10,000 U penicillin, 10,000 ⁇ g streptomycin, and 25 ⁇ g amphotericin B / m, Gibco
  • ⁇ -MEM supplemented with 10% fetal calf serum
  • the cells were cultured under standard culture conditions. After 5 days of culture, non-adherent cells were removed and supplemented with fresh medium. Cells were maintained under standard culture conditions and then passaged three times before use for in vitro analysis.
  • MTS reagent tetrazolium salt
  • MTS tetrazolium salt
  • ALP activity was measured as an indicator for in vitro osteogenic differentiation of MSCs in culture on CPC-alginate composite scaffolds. After incubation for 7 days and 14 days in osteogenic medium, the cell layers were collected and treated with 0.1% Triton X-100 cell lysis medium followed by further grinding through sequential freezing and thawing. Total protein content was analyzed using a commercial DC protein analysis kit (Bio-Rad) and measured after standardizing the aliquots of reaction samples to total protein content. ALP activity of the cells was measured using an ALP assay kit (procedure No. ALP-10, Sigma). The p-nitrophenol produced in the presence of ALP was measured by absorbance at 405 nm. Three replicate samples were tested for ALP activity.
  • ALP activity measurement results are shown in FIG. 6. ALP activity was found to increase with increasing incubation time up to 21 days in all scaffolds. This increase was greater in scaffolds with high porosity. These results indicate that MSCs cultured in 3-D porosity scaffolds are stimulated to differentiate according to the osteogenic lineage, and this stimulation is greater in scaffolds with high porosity.
  • High porosity scaffolds provide space and substrate conditions for cells to migrate and multiply in three dimensions, making cell movement and action easier through open spaces.
  • the prepared scaffolds were implanted into cranial defects. Defects without implanted scaffolds were used as negative controls. Soft tissue was sutured for primary closure. Six weeks after transplantation, the animals were killed. Initial surgical defects and surrounding tissue areas were removed in batches, fixed with 10% neutral formalin solution and then demineralized. Tissues were embedded in paraffin blocks and subsequently incised using a microtome (Leica TM). Sections 4-6 ⁇ m thick were fixed on the microscope slides. Paraffin was removed from the slides with tissue sections and hydrated through a series of xylenes and alcohols. The tissue slides were stained with hematocillin and eosin (H & E) and Marthon's trichrome (MT) and examined under an optical microscope for histological observation.
  • H & E hematocillin and eosin
  • MT Marthon's trichrome
  • FIG. 8 shows the results of H & E (a and b) and MT (c and d) staining at different resolutions.
  • No inflammatory response or tissue rejection was observed in the implanted scaffold.
  • Connective bone tissue was shown to fill the pore channel of the scaffold through the bone defect area (FIG. 8A).
  • the magnified image showed the newly formed tissue (dark red) aligned with the fibrous stem (light red) of the scaffold (FIG. 88 b).
  • MT staining showed the formation of bone tissue with extracellular matrix that appeared in light blue or dark blue (FIGS. 8C and 8D).
  • MT staining was found in the CPC-alginate scaffold framework structure, indicating that the scaffold can be replaced with cells and tissues. Although most scaffolds did not appear to be biodegradable for 6 weeks after implantation into the rat cranial canal, the results showed that CPC or alginate or a combination of these combinations were biodegradable.
  • the in vivo tissue reaction results confirmed that the CPC-alginate porous scaffold has excellent tissue adhesion and regeneration of bone tissue, and thus can be used as an implantable material for bone regeneration.
  • Protein release from CPC-alginate porous scaffolds was investigated using bovine serum albumin (BSA) and lysozyme as model proteins. Loading of each protein was performed in two different ways. That is, one is adding the protein to the alginate solution and then mixing it with the CPC powder and then depositing it into the protein-containing porous scaffold (“loading method I”), and the other after adding the protein to the CPC suspension After incubation for 1 hour with gentle stirring, the solution was mixed with an alginate solution and then deposited into a porous scaffold ("loading mode II"). The protein content in each scaffold sample was adjusted to 33.3 ⁇ g mg scaffold- 1 . 1 g of protein-containing porous scaffold was used for protein release testing.
  • BSA bovine serum albumin
  • lysozyme and BSA were released initially (within 12 hours) under all loading conditions where the protein was loosely bound to the surface and allowed direct contact with the solution. After this initial burst, the release of both proteins continued at a slowed rate with time for 28 days.
  • the BSA release profile did not differ significantly between loading modes. However, for lysozyme, the release rate was significantly reduced in loading mode II compared to loading mode I. When loading of lysozyme in loading mode I was higher than BSA, the trend changed in loading mode II. Therefore, the interaction between the protein and the components of the scaffold, especially the CPC, was found to be different. In other words, CPC may better delay lysozyme release than BSA due to strong affinity or chemical binding.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

The present invention relates to a method for manufacturing a porous scaffold of a calcium phosphate cement, and more specifically, to a method for manufacturing a porous scaffold of a calcium phosphate cement by preparing a suspension of the calcium phosphate cement and alginate, and injecting the suspension into a mold, which is filled with a calcium ion aqueous solution, and hardening same.

Description

인산 칼슘 시멘트의 다공성 스캐폴드 제조방법Method for manufacturing porous scaffold of calcium phosphate cement
본 발명은 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법에 관한 것으로, 더욱 상세하게는 인산 칼슘 시멘트 및 알지네이트의 현탁액을 제조한 후 상기 현탁액을 칼슘 이온 수용액으로 채워진 주형 내로 투입하여 경화시킴으로써 인산 칼슘 시멘트의 다공성 스캐폴드를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a porous scaffold of calcium phosphate cement, and more particularly, after preparing a suspension of calcium phosphate cement and alginate, the suspension is put into a mold filled with an aqueous solution of calcium ions, and then cured. It relates to a method of making a scaffold.
급속 경화 시멘트는 직접적인 충진이나 주입가능한 재료로서 골 조직 재생에 매우 유용하다. 인산 칼슘 시멘트(CPCs)는 이러한 목적을 위해 가장 널리 연구되는 생체활성 세라믹 중의 하나이다(Brown WE, et al., J Dent Res, 1983, 62, 672; Brown WE. et al., J Dent Res, 1986, 63, 200). 기계적 특성, 거대 기공의 도입 및 분해 속도의 제어와 같은 몇몇의 개선되어야 할 문제들이 있지만, CPCs는 많은 매력적인 특성들을 갖기 때문에 골 결손 치료에 유용한 대체수단으로서 사용된다(Brown WE. et al., J Dent Res, 1986, 63, 200; Bohner M., J Mater Chem, 2007, 17, 3980-6). CPCs는 세포 및 조직에 대해 친화적이며, 자가경화 가능하여 최소한의 침습 수술을 필요로 하는 주입가능한 재료로서 유용하며, 또한 이들은 제형 내에 치료적 분자를 담을 수 있다(Planell JA. et al., Biomater, 2006, 27(10), 2171-7; Burger EH. et al., J Dent Res, 2000, 79, 255).Rapid hardening cement is very useful for bone tissue regeneration as a direct filling or injectable material. Calcium phosphate cements (CPCs) are one of the most widely studied bioactive ceramics for this purpose (Brown WE, et al., J Dent Res , 1983, 62, 672; Brown WE. Et al., J Dent Res , 1986 , 63, 200). There are some issues that need to be improved, such as mechanical properties, the introduction of macropores, and the control of the rate of degradation, but CPCs have many attractive properties and are therefore used as a useful alternative to treating bone defects (Brown WE. Et al., J Dent Res , 1986, 63, 200; Bohner M., J Mater Chem , 2007, 17, 3980-6). CPCs are cell- and tissue-friendly, self-curable and useful as injectable materials that require minimally invasive surgery, and they can also contain therapeutic molecules in formulations (Planell JA. Et al., Biomater , 2006, 27 (10), 2171-7; Burger EH. Et al., J Dent Res , 2000, 79, 255).
3차원적인(3-D) 다공성 망상구조를 갖는 스캐폴드는 골 조직 공학을 위한 효과적인 매트릭스 조건을 제공한다(Xu HHK. et al., Biomater, 2009, 30, 2675-82; Barlow SK, et al., Biotechnology, 1994, 7, 689-93; Hutmacher DW., Biomater, 2000, 21, 2529-43). 조직 세포는 재료 또는 세포 단독보다 천연 조직의 구조 및 기능을 더욱 잘 모방하도록 스캐폴드 내에서 생체 외 배양된다(Hutmacher DW., Biomater, 2000, 21, 2529-43; Vacanti JP. et al., Science, 1993, 260, 920-6). 생체 외 조직 공학 과정에서, 성장인자와 같은 치료용 분자의 제어 방출이 세포의 기능을 조정하고 골 형성을 촉진하는데 유리하다. 또한, CPC-기초의 재료는 온화한 조건 하에서 자가 경화되고, 치료제를 안전하게 결합하며, 서방형 방출 프로파일을 유지하기 때문에, 이들 구조 내에서 운반되는 치료제의 전달을 위한 우수한 후보군으로서 간주되어져 왔다(Planell JA. et al., Biomater, 2006, 27(10), 2171-7). CPC-기초의 재료를 골 조직 공학에 적용하기 위하여, 이들을 세포 증식 및 세포-재료 복합재 구조물을 지지하는 3-D 스캐폴드로서 개발하는 것이 필요하다.Scaffolds with three-dimensional (3-D) porous networks provide effective matrix conditions for bone tissue engineering (Xu HHK. Et al., Biomater , 2009, 30, 2675-82; Barlow SK, et al. , Biotechnology , 1994, 7, 689-93; Hutmacher DW., Biomater , 2000, 21, 2529-43). Tissue cells are cultured in vitro in a scaffold to better mimic the structure and function of natural tissue than materials or cells alone (Hutmacher DW., Biomater , 2000, 21, 2529-43; Vacanti JP. Et al., Science , 1993, 260, 920-6). In in vitro tissue engineering processes, controlled release of therapeutic molecules, such as growth factors, is beneficial to modulate cell function and promote bone formation. In addition, CPC-based materials have been regarded as good candidates for delivery of therapeutic agents transported within these structures, as they self-cure under mild conditions, safely bind the therapeutics, and maintain a sustained release profile (Planell JA). et al., Biomater , 2006, 27 (10), 2171-7). In order to apply CPC-based materials to bone tissue engineering, it is necessary to develop them as 3-D scaffolds that support cell proliferation and cell-material composite structures.
이러한 배경 하에서, 본 발명자들은 인산 칼슘 시멘트 및 알지네이트의 현탁액을 제조한 후 상기 현탁액을 칼슘 이온 수용액으로 채워진 주형 내로 투입하여 경화시킴으로써 인산 칼슘 시멘트의 다공성 스캐폴드를 제조할 수 있음을 확인함으로써 본 발명을 완성하였다.Under this background, the present inventors have made the present invention by confirming that a porous scaffold of calcium phosphate cement can be prepared by preparing a suspension of calcium phosphate cement and alginate and then curing the suspension into a mold filled with aqueous calcium ion solution. Completed.
본 발명의 목적은 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing a porous scaffold of calcium phosphate cement.
본 발명의 다른 목적은 인산 칼슘 시멘트의 다공성 스캐폴드 제조용 키트를 제공하는 것이다.Another object of the present invention is to provide a kit for preparing a porous scaffold of calcium phosphate cement.
상기 과제를 해결하기 위해, 본 발명은 하기 단계를 포함하는 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법을 제공한다.In order to solve the above problems, the present invention provides a method for producing a porous scaffold of calcium phosphate cement comprising the following steps.
1) 인산 칼슘 시멘트 및 알지네이트의 현탁액을 제조하는 단계; 및1) preparing a suspension of calcium phosphate cement and alginate; And
2) 상기 현탁액을 칼슘 이온 수용액으로 채워진 주형 내로 투입하여 경화시키는 단계.2) curing the suspension into a mold filled with aqueous calcium ion solution.
바람직하기로, 상기 단계 2) 이후에 기계적으로 압축시키는 단계를 추가로 포함한다.Preferably, the method further comprises the step of mechanically compressing after step 2).
본 발명에서 사용하는 용어 '스캐폴드'는 구조 내외에 파종된 세포의 부착, 분화 및 조직 주변으로부터 이동되는 세포의 증식과 분화에 적합한 환경을 제공하는 역할을 하는 구조물을 의미하는 것으로, 조직 재생 공학 분야에서 중요한 기본 요소 중의 하나이다.As used herein, the term 'scaffold' refers to a structure that serves to provide an environment suitable for attachment, differentiation, and proliferation and differentiation of cells transferred from and around the seeded cells inside and outside the structure. It is one of the important basic elements in the field.
상기 단계 1은, 인산 칼슘 시멘트 및 알지네이트의 현탁액을 제조하는 단계로서, 분말 상태의 인산 칼슘 시멘트를 알지네이트 용액과 혼합하여 현탁액을 제조하는 단계이다. Step 1 is a step of preparing a suspension of calcium phosphate cement and alginate, a step of preparing a suspension by mixing powdered calcium phosphate cement with an alginate solution.
본 발명에서 사용되는 용어 "시멘트"란, 분말형 고체상 및 액상의 혼합으로 얻은 페이스트의 경화체를 의미한다. 상기 시멘트의 "경화"는 실온 혹은 체온에서 인위적인 처리 없이 행해진 페이스트의 자발적 경화를 의미하며, 이때의 페이스트는 고체상과 액상을 혼합한 결과로 얻어진 것이다.The term "cement" as used in the present invention means a cured body of a paste obtained by mixing a powdery solid phase and a liquid phase. "Cure" of the cement refers to spontaneous curing of the paste, which is done without artificial treatment at room temperature or body temperature, wherein the paste is obtained as a result of mixing a solid phase and a liquid phase.
본 발명에서 사용되는 용어 "인산 칼슘 시멘트"는 분말형 고체상이 인산 칼슘 화합물 혹은 칼슘 및/또는 인산염 화합물의 혼합물로 구성되는 시멘트를 의미한다.As used herein, the term "calcium phosphate cement" means a cement in which the powdered solid phase consists of a calcium phosphate compound or a mixture of calcium and / or phosphate compounds.
상기 인산 칼슘 시멘트(calcium phosphate cement; CPC)는 인산 칼슘 입자들이 주성분인 분말과 인산염과 같은 경화를 촉진하는 물질을 함유한 수용액으로 구성되는 소재로, 시술 시 두 성분을 혼합하여 고점도의 액상 상태로 적용시키면 적용 부위에서 두 성분들의 화학 반응에 의해 인산칼슘 화합물이 침전되어 경화됨으로써, 손상된 뼈 및 뼈, 또는 뼈 및 임플란트 사이의 빈 공간을 채워주어 둘 사이를 고정하고 안정화시켜 주는 골 대체물질의 한 형태이다.The calcium phosphate cement (CPC) is a material consisting of an aqueous solution containing a calcium phosphate particles, the main component of the powder and a substance that promotes hardening, such as phosphate. When applied, a calcium phosphate compound precipitates and hardens by a chemical reaction of two components at the site of application, thereby filling a damaged bone and bone, or an empty space between bone and implant, to fix and stabilize the bone substitute. Form.
상기 인산 칼슘 시멘트와 알지네이트의 혼합 비율은 중량기준으로 인산 칼슘 시멘트: 알지네이트의 비율이 20:1 내지 500:1인 것이 바람직하다. The mixing ratio of the calcium phosphate cement and alginate is preferably a calcium phosphate cement: alginate ratio of 20: 1 to 500: 1 by weight.
상기 현탁액은 생물학적 단백질이나 약물을 추가로 포함할 수 있으며, 상기 생물학적 단백질은 소혈청 알부민, 라이소자임, 성장인자 등이고 약물은 항생제, 항암제, 항염증제 등을 예로 들 수 있다.The suspension may further comprise a biological protein or drug, wherein the biological protein is bovine serum albumin, lysozyme, growth factor and the like, and the drug may be an antibiotic, an anticancer agent, an anti-inflammatory agent, or the like.
상기 단계 2는, 상기 현탁액을 칼슘 이온 수용액으로 채워진 주형 내로 투입하여 경화시키는 단계로서, 상기 현탁액을 칼슘 이온이 함유된 수용액으로 채워진 주형 내로 투입하여 경화시킴으로써 자가 경화되도록 유도하는 단계이다.In step 2, the suspension is introduced into a mold filled with an aqueous solution of calcium ions and cured. The suspension is introduced into a mold filled with an aqueous solution containing calcium ions to cure the suspension.
상기 칼슘 이온의 농도는 10 내지 200 mM인 것이 바람직하다.The concentration of the calcium ions is preferably 10 to 200 mM.
상기 주형의 형상은 원통형, 육면체형 등일 수 있으며, 이에 제한되는 것은 아니다. The shape of the mold may be cylindrical, hexahedral, or the like, but is not limited thereto.
상기 인산 칼슘 화합물은 트리칼슘 포스페이트, 모노칼슘 포스페이트, 테트라칼슘 포스페이트, 디칼슘 포스페이트, 하이드록시 아파타이트 또는 이의 조합일 수 있으며, 이에 제한되는 것은 아니다. The calcium phosphate compound may be, but is not limited to, tricalcium phosphate, monocalcium phosphate, tetracalcium phosphate, dicalcium phosphate, hydroxyapatite or a combination thereof.
상기 단계 3은, 기계적으로 압축시키는 단계로서, 상기 자가 경화되어 형성된 유연한 물성을 가진 스캐폴드를 기계적으로 압축시켜 다공도를 조절하거나 형태를 임의로 재조립하는 단계이다. Step 3 is a step of mechanically compressing the mechanically compressed scaffold formed by the self-curing to adjust the porosity or to optionally reassemble the shape.
상기 압축을 통해 스캐폴드의 다공도를 임의로 조절할 수 있으며, 구체적으로 하중을 가할 수 있는 기계인 핸드프레스로 조절할 수 있다.Through the compression, the porosity of the scaffold can be arbitrarily adjusted, and in particular, it can be adjusted with a hand press, a machine that can apply a load.
상기 다공도는 10 내지 90%로 조절할 수 있으며, 바람직하기로 14 내지 54 %로 조절할 수 있다.The porosity can be adjusted from 10 to 90%, preferably from 14 to 54%.
또한, 본 발명은 각각 개별 용기에 포장된 인산 칼슘 시멘트 분말, 알지네이트 용액, 및 칼슘 이온 수용액으로 구성된 인산 칼슘 시멘트의 다공성 스캐폴드 제조용 재료와; 주사기를 포함하는 인산 칼슘 시멘트의 다공성 스캐폴드 제조용 키트를 제공한다.The present invention also provides a material for producing a porous scaffold of calcium phosphate cement composed of calcium phosphate cement powder, alginate solution, and calcium ion aqueous solution, each packaged in a separate container; Provided are a kit for preparing a porous scaffold of calcium phosphate cement comprising a syringe.
상기 키트의 각각 개별 용기에 포장된 인산 칼슘 시멘트 분말과 알지네이트 용액을 혼합하여 현탁액을 제조하고 이를 주사기에 넣은 다음, 상기 현탁액을 칼슘 이온 수용액으로 채워진 일정 형태의 주형 내로 투입하여 인산 칼슘 시멘트의 다공성 스캐폴드를 즉석으로 제조할 수 있다.The suspension was prepared by mixing calcium phosphate cement powder and alginate solution packaged in each individual container of the kit, and putting it in a syringe, and then injecting the suspension into a mold of a form filled with aqueous calcium ion solution to form a porous scavenger of calcium phosphate cement. Folds can be prepared on the fly.
상기 주형은 용이하게 구할 수 있는 임의의 것을 사용할 수 있으나, 키트 내에 스캐폴드 성형용 주형을 추가로 포함할 경우 보다 편리하게 스캐폴드 제조에 사용할 수 있다.The mold may be any one that can be easily obtained, but can be used to make the scaffold more conveniently when the mold further includes a mold for scaffold forming.
상기 키트는 또한 생물학적 단백질이나 약물을 추가로 포함할 수 있으며, 상기 생물학적 단백질은 소혈청 알부민, 라이소자임 등이고 약물은 항생제, 항암제, 항염증제 등을 예로 들 수 있다.The kit may also further comprise a biological protein or drug, wherein the biological protein is bovine serum albumin, lysozyme and the like, and the drug may be an antibiotic, an anticancer agent, an anti-inflammatory agent, or the like.
본 발명에서는 CPCs와 소듐 알지네이트를 조합하여 이용함으로써 제조된 신규한 세포 스캐폴드 재료를 제고하고자 한다. 특히, Ca-함유 용액에 복합재 현탁액을 직접적으로 침적시켜 섬유상 망상구조를 형성시켰다. 침적된 현탁액은 급속하게 경화하여 알지네이트가 존재하는 겔화된 망상구조를 형성하고 Ca2+ 이온에 의하여 가교된다(Langer R. et al., Curr Top Dev Biol, 2004, 61, 113-34; Asaoka K. et al., Biomater, 1995, 16, 527-32). 경화된 다공성 스캐폴드는 세포 친화적이며 골 조직 공학에 유용하였다. 또한, 상기 스캐폴드는 구조 내에 함유되어 있는 생체활성 분자를 로딩하고 전달할 수 있는 것으로 나타났다. 이하에 CPC-알지네이트 다공성 스캐폴드를 제조하기 위한 방법을 기술한다. 또한, 이들을 골 조직 공학에 적용하기에 앞서, 상기 스캐폴드에 대한 래트 골수 유래의 간엽 줄기세포(MSCs)의 시험관내 세포 반응을 조사하였다. 더 나아가, 생체내 사전 조사 (pilot study)를 수행하여 조직 적합성을 평가하고, 상기 스캐폴드의 약물 전달 가능성을 2개의 다른 모델 단백질을 이용하여 조사하였다.The present invention seeks to improve novel cell scaffold materials produced by using CPCs and sodium alginate in combination. In particular, the composite suspension was directly deposited in Ca-containing solution to form a fibrous network. The deposited suspension rapidly cures to form a gelled network in which alginate is present and crosslinked by Ca 2+ ions (Langer R. et al., Curr Top Dev Biol , 2004, 61, 113-34; Asaoka K et al., Biomater , 1995, 16, 527-32). Cured porous scaffolds are cell friendly and useful for bone tissue engineering. In addition, the scaffold has been shown to be able to load and deliver bioactive molecules contained within the structure. The following describes a method for making a CPC-alginate porous scaffold. In addition, in vitro cell responses of rat bone marrow-derived mesenchymal stem cells (MSCs) to the scaffold were examined prior to their application to bone tissue engineering. Furthermore, in vivo pilot studies were performed to assess tissue suitability and the drug delivery potential of the scaffold was investigated using two different model proteins.
알지네이트 용액과 조합된 CPC 현탁액은 Ca-함유 용액 내로 직접적인 섬유상 침적에 의하여 다공성 스캐폴드를 효과적으로 형성하였다. CPC-알지네이트 스캐폴드는 자가 경화되었으며, 다양한 형태로 몰딩 가능하고, 다공도도 조절 가능하였다. 상기 스캐폴드는 MSCs 부착 및 증식은 물론 이들의 골아세포로의 분화를 위한 유리한 3-D 매트릭스 특성을 가지는 것으로 나타났다. 상기 스캐폴드를 래트 두개관 결손 부위에 이식한 경우 기공 형상을 통한 조직 적합성 및 골 재생 능력을 확인할 수 있었다. 또한, 상기 스캐폴드는 제조 중에 생물학적 단백질(BSA 및 라이소자임)을 안전하게 로딩할 수 있는 능력과 한 달에 걸친 시험관 내에 이들을 방출할 수 있는 능력을 보였다. 따라서, CPC-알지네이트 스캐폴드는 골 재생을 자극하기 위한 생물학적 분자를 전달하는 조직 공학적 구조물로 제공될 수 있음을 알 수 있다.CPC suspensions in combination with alginate solutions effectively formed porous scaffolds by direct fibrous deposition into Ca-containing solutions. CPC-alginate scaffolds were self-curing, moldable in a variety of forms, and controlled porosity. The scaffolds have been shown to have advantageous 3-D matrix properties for MSCs adhesion and proliferation as well as their differentiation into osteoblasts. When the scaffold was implanted in the rat cranial defect, tissue conformity and bone regeneration ability through pore shape were confirmed. The scaffolds also showed the ability to safely load biological proteins (BSA and lysozyme) during manufacture and to release them in vitro over a month. Thus, it can be seen that the CPC-alginate scaffold can be provided as a tissue engineering construct that delivers biological molecules to stimulate bone regeneration.
본 발명은 인산 칼슘 시멘트 및 알지네이트의 현탁액을 제조한 후 상기 현탁액을 칼슘 이온 수용액으로 채워진 주형 내로 투입하여 경화시킴으로써 인산 칼슘 시멘트의 다공성 스캐폴드를 제조할 수 있으며 상기 스캐폴드의 제조 도중에 골 재생을 자극하기 위한 생물학적 분자를 함께 로딩시켜 골 재생을 자극하기 위한 생물학적 분자를 전달하는 조직 공학적 구조물로 제공될 수 있는 효과가 있다.The present invention can prepare a porous scaffold of calcium phosphate cement by preparing a suspension of calcium phosphate cement and alginate and then curing the suspension into a mold filled with aqueous calcium ion solution to stimulate bone regeneration during manufacture of the scaffold. There is an effect that can be provided to a tissue engineering construct that is loaded with biological molecules to deliver the biological molecules for stimulating bone regeneration.
도 1은 인산 칼슘 시멘트(CPC)/알지네이트 복합재(CPA) 섬유상 망상구조를 제조하기 위한 공정 기구를 도식적으로 나타낸 것이다.1 is a schematic representation of a process tool for producing a calcium phosphate cement (CPC) / alginate composite (CPA) fibrous network.
도 2a는 니들 게이지와 현탁액의 조성을 변화시킴에 따른 섬유의 직경의 변화를 나타낸 그래프이다.Figure 2a is a graph showing the change in the diameter of the fiber according to the composition of the needle gauge and suspension.
도 2b는 3-D 복합재 스캐폴드의 기공 구조를 μCT로 조사한 결과이다.Figure 2b is the result of investigating the pore structure of the 3-D composite scaffold by μCT.
도 3a는 CPC-알지네이트 3-D 기공 스캐폴드를 모의 체액에 침지시킨 후 다양한 침지 시간 후 스캐폴드의 마이크로 구조를 조사한 결과이다.3A shows the results of investigating the microstructure of the scaffold after various immersion times after immersing the CPC-alginate 3-D pore scaffold in mock body fluids.
도 3b는 침지 테스트 동안 CPC 및 CPC-알지네이트 스캐폴드의 상 변화를 모니터링하기 위한 XRD 패턴이다.3B is an XRD pattern for monitoring phase changes of CPC and CPC-alginate scaffolds during immersion test.
도 3c는 침지 테스트 동안 CPC 및 CPC-알지네이트 스캐폴드의 EDS 분석 결과이다.3C shows the results of EDS analysis of CPC and CPC-alginate scaffolds during immersion test.
도 4는 간엽 줄기 세포 성장을 세포의 미토콘드리아 활성으로서 측정한 결과이다.4 is a result of measuring mesenchymal stem cell growth as the mitochondrial activity of the cells.
도 5a 내지 도 5c는 섬유상 스캐폴드 상에서의 세포 형태를 7일 및 14일 동안 배양하는 도중에 다른 해상도로 SEM을 이용하여 관찰한 결과이다.5A-5C show the results of observation of the cell morphology on fibrous scaffolds with different resolution during incubation for 7 days and 14 days.
도 6은 CPC-알지네이트 복합재 스캐폴드 상에서의 배양 중 MSCs의 시험관내 골형성 분화에 대한 지표로서, 염기성 포스파타제 (ALP) 활성을 측정한 결과이다.FIG. 6 shows the results of measuring basic phosphatase (ALP) activity as an indicator for in vitro osteogenic differentiation of MSCs in culture on CPC-alginate composite scaffolds.
도 7은 고도 다공도의 CPC-알지네이트 스캐폴드를 래트에 이식한 후 6주 뒤에 조직 시료를 수집하여 μCT로 조사한 결과이다.FIG. 7 shows the results of irradiating with a CT sample of tissue samples collected 6 weeks after transplanting the high porosity CPC-alginate scaffold into the rat.
도 8은 각기 다른 해상도의 H&E(a 및 b) 및 MT(c 및 d) 염색 결과를 보여준다.8 shows the results of H & E (a and b) and MT (c and d) staining at different resolutions.
도 9는 28일 동안 측정된 PBS 중 단백질의 방출 프로파일을 보여준다.9 shows the release profile of protein in PBS measured over 28 days.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention more specifically, but the scope of the present invention is not limited by these examples.
실시예 1: 인산 칼슘 시멘트-알지네이트 복합재 현탁액의 제조Example 1 Preparation of Calcium Phosphate Cement-Alginate Composite Suspension
α-트리칼슘 포스페이트(α-TCP)-기초의 시멘트 분말을 공지된 방법에 따라 제조하였다(Kim HW. et al., J Mater Sci Mater Med, 2010, 21, 3019-27). 상업용 탄산 칼슘(Aldrich)과 무수 제2인산 칼슘(Aldrich)을 혼합한 후, 3 시간 동안 1400 ℃에서 열적으로 반응시킨 다음, 공기 급냉시켜 반응을 완료하여 α-TCP 상을 형성시켰다(Kim HW. et al., J Mater Sci Mater Med, 2010, 21, 3019-27). 상기 분말을 볼밀링한 다음 45 ㎛로 체에 내린 다음, 이후 사용을 위하여 진공 하에 보관하였다. 입자 크기 분석기 (Saturn DigiSizer 5200, Micromeritics, USA)를 이용하여 측정한 결과, α-TCP의 평균 입자 크기는 4.79 ㎛이었다. 소듐 알지네이트 용액은 2 중량%의 농도로 5% Na2HPO4 (distilled deionized water, D.D.W)를 용매로 하여 제조하였다. 시멘트 분말을 적정 비율로 상기 알지네이트 용액과 혼합하여 복합재 현탁액을 제조하였다.α-tricalcium phosphate (α-TCP) -based cement powders were prepared according to known methods (Kim HW. et al., J Mater Sci Mater Med , 2010, 21, 3019-27). Commercial calcium carbonate (Aldrich) and anhydrous dibasic calcium phosphate (Aldrich) were mixed and then thermally reacted at 1400 ° C. for 3 hours, followed by air quenching to complete the reaction to form an α-TCP phase (Kim HW. et al., J Mater Sci Mater Med , 2010, 21, 3019-27). The powder was ball milled and then sieved to 45 μm and then stored under vacuum for use. As measured using a particle size analyzer (Saturn DigiSizer 5200, Micromeritics, USA), the average particle size of α-TCP was 4.79 μm. Sodium alginate solution was prepared using 5% Na 2 HPO 4 (distilled deionized water, DDW) as a solvent at a concentration of 2% by weight. Cement powder was mixed with the alginate solution in an appropriate ratio to prepare a composite suspension.
실시예 2: 직접 침적을 통한 스캐폴드의 제조Example 2: Preparation of Scaffolds by Direct Deposit
시멘트 분말/알지네이트 용액의 혼합 비율을 1.0 내지 2.5 중량비로 변화시킴에 따른 상기 실시예 1에서 제조한 복합재 현탁액의 직접 침적 가능성을 조사하였다. 2.0 중량비 이상에서, 상기 현탁액은 너무 큰 점도를 가져 노즐을 통해 투입되기 어려웠다. 따라서, 이후 1.0-2.0 중량비의 현탁액을 사용하였다. The possibility of direct deposition of the composite suspension prepared in Example 1 above was investigated by varying the mixing ratio of cement powder / alginate solution to 1.0 to 2.5 weight ratio. Above 2.0 weight ratio, the suspension had too high a viscosity to be difficult to enter through the nozzle. Thus, 1.0-2.0 weight ratio suspension was then used.
그 다음 도 1에 도식적으로 나타낸 바와 같이 상기 혼합된 현탁액을 시린지에 넣은 다음 Ca-함유 배쓰(150 mM CaCl2)에 투입하여 침적물을 급속하게 고형화시켰다. 상기 투입 압력을 조절기(IEI, AD2000C)를 이용하여 500 kPa로 조절하였다. 크기는 다른 니들 게이지(23-27 G)에 의하여 제어되었다. 상기 재료를 원통형 주형(φ = 10 mm) 내의 10 ml의 Ca-함유 용액 내로 투입한 후, 섬유상 침적물을 추가로 기계적으로 압축시켜 특정 높이의 디스크-형태의 스캐폴드를 제조하였다. Ca-함유 배쓰 내에 스캐폴드를 침적시키는 과정은 약 1분이 걸렸다. 스캐폴드의 높이는 다공도 수준을 다르게 하기 위하여 변화시켰다(저도 다공도: 1.2 mm, 중간 다공도: 1.5 mm, 고도 다공도: 2.0 mm). 이와 유사하게, 스캐폴드의 높이를 일정하게(3 mm) 유지하면서 투입되는 스캐폴드 재료의 양(중량)을 변화시켜 다른 다공도 수준을 가진 스캐폴드를 제조할 수 있다(저도 다공도: 0.5 g, 중간 다공도: 0.4 g, 고도 다공도: 0.3 g). 경화된 스캐폴드는 물에 침지시키는 것과 같은 추가 처리없이, 이후 시험관내 세포 분석 및 생체내 동물 조사에 사용하였다.The mixed suspension was then placed in a syringe and then placed in a Ca-containing bath (150 mM CaCl 2 ) as shown schematically in FIG. 1 to rapidly solidify the deposit. The input pressure was adjusted to 500 kPa using a regulator (IEI, AD2000C). The size was controlled by different needle gauges 23-27G. The material was introduced into 10 ml of Ca-containing solution in a cylindrical mold ( φ = 10 mm), and then the fibrous deposits were further mechanically compressed to produce disc-shaped scaffolds of specific height. The process of depositing the scaffold in the Ca-containing bath took about 1 minute. The height of the scaffold was varied to vary the porosity level (low porosity: 1.2 mm, medium porosity: 1.5 mm, altitude porosity: 2.0 mm). Similarly, scaffolds with different porosity levels can be made by varying the amount (weight) of scaffold material introduced while keeping the height of the scaffold constant (3 mm) (low porosity: 0.5 g, medium). Porosity: 0.4 g, altitude porosity: 0.3 g). Cured scaffolds were then used for in vitro cell analysis and in vivo animal investigation without further treatment, such as immersion in water.
혼합물 현탁액을 Ca-함유 배쓰로 침적시킴에 따라, 소듐 알지네이트와 Ca2+의 반응으로 인하여 급속한 경화가 일어났다. 그러므로, 침적된 그대로의 형태가 상기 과정 중에 유지될 수 있어, 결과적으로 3-D 망상 구조가 되었다. 사실상, CPC 복합재 중에 알지네이트 없이는 급속한 경화가 불가능하여, 투입 도중 스캐폴드가 완전히 붕괴되었다. 노즐을 통해 주입가능하기 위해 필요한, 본 발명에서 사용한 액체 대비 분말의 비율(1.0-2.0)을 이용하더라도, 알지네이트가 없는 CPC 현탁액에서는 수 시간 이후라도 경화되는 것이 관찰되지 않았다. 그러나, 이러한 어려움은 침적 배쓰 내 Ca2+ 이온과 급속한 가교 반응을 하는 알지네이트를 사용함으로써 극복할 수 있었다. 그러므로, CPC 복합재에 알지네이트를 첨가하는 것과 액체 대비 분말의 적절한 비율을 사용하는 것이 주입가능성 및 경화가능성 모두의 관점에서 필수적인 가공 고려사항이었다.As the mixture suspension was deposited into a Ca-containing bath, rapid curing occurred due to the reaction of sodium alginate with Ca 2+ . Therefore, the deposited form can be maintained during the process, resulting in a 3-D network structure. In fact, rapid curing without alginate in the CPC composite was not possible, causing the scaffold to collapse completely during dosing. Even with the ratio of powder to liquid used in the present invention (1.0-2.0), which is required to be injectable through the nozzle, no hardening was observed after several hours in the CPC suspension without alginate. However, this difficulty could be overcome by using alginate which has a rapid crosslinking reaction with Ca 2+ ions in the deposition bath. Therefore, the addition of alginate to the CPC composite and the use of an appropriate ratio of powder to liquid was an essential processing consideration in terms of both injectability and curability.
섬유의 직경은 도 2a에서 보여주는 바와 같이 니들 게이지와 현탁액의 조성을 변화시킴으로써 조정할 수 있었다. 본 발명에서는 다른 게이지 니들(23, 25, 26 및 27 G) 및 조성(CPA20 및 CPA15)으로 ~200-600 ㎛ 범위의 섬유 직경을 얻을 수 있었다. 섬유 직경은 알지네이트 액체 대비 CPC 분말의 비율이 증가하고(1.5 내지 2.0) 니들 게이지가 증가함에 따라(23 내지 27 G, 0.32 내지 0.16 mm의 니들 내부 직경 감소에 해당) 감소하였다. 쌓인 섬유상 망상 구조는 압축 하중을 가함으로써 3-D 스캐폴드로 추가로 성형하였다. 압축 정도를 변화시킴으로써 스캐폴드의 다공도를 쉽게 제어할 수 있었다. 본 발명에서는 복합재 스캐폴드의 다공도를 저도, 중간, 고도 수준으로 변화시켰다. 사실상, 다른 타입의 생체 세라믹에 비교하여, CPC 복합재 기초의 다공성 스캐폴드를 제조한 예는 거의 없었다. 최근 몇몇의 연구에서 CPC-기초의 스캐폴드가 자가 경화 특성을 가지기 때문에 잠재적인 약물 전달 시스템으로서의 중요성을 부각하였다(Mestres G. et al., Acta Biomater, 2010, 6, 2863-73; Montufar EB, et al. Acta Biomater, 2009, 5, 2752-62). 스캐폴드 제작에 대한 몇몇의 연구에서는 키토산 및 폴리(락트산)/알지네이트와 같은 생체고분자 상을 CPC 내에 포함시키고 통상의 스캐폴딩 방법을 적용하였다(Wang Y. et al., J Biomed Mater Res A, 2009, 89, 980-7). 이러한 이전 연구와 비교하여, 본 발명에서 제조한 스캐폴드는 새로운 방법 즉, 현탁액의 직접 침적 및 3-D 구조의 성형 방법으로 제조된다는 점에서 특징을 갖는다. 이러한 과정을 이용하여, 줄기 크기와 다공도를 포함하는 기공 배열이 제어가능하며, 스캐폴드를 원하는 주형 내에 적적한 양으로 채워 복합 형상으로 제조할 수 있다. 본 발명에서는 임의로 침적물을 쌓아 3-D 구조물을 형성하였지만, 다이렉트 라이팅(direct writing)과 같은 과정을 통해 명확한 3-D 형상을 제조할 수 있다.The diameter of the fiber could be adjusted by changing the composition of the needle gauge and suspension as shown in FIG. 2A. In the present invention, different gauge needles (23, 25, 26 and 27 G) and compositions (CPA20 and CPA15) were able to obtain fiber diameters in the range of 200-600 μm. Fiber diameter decreased as the ratio of CPC powder to alginate liquid increased (1.5-2.0) and needle gauge increased (corresponding to needle internal diameter reduction of 23-27 G, 0.32-0.16 mm). The stacked fibrous network structures were further molded into 3-D scaffolds by applying a compressive load. By varying the degree of compression it was easy to control the porosity of the scaffold. In the present invention, the porosity of the composite scaffold was changed to low, medium, and high levels. In fact, few examples have fabricated porous scaffolds based on CPC composites compared to other types of bioceramic. Recent studies have highlighted the importance as a potential drug delivery system because CPC-based scaffolds have self-curing properties (Mestres G. et al., Acta Biomater , 2010, 6, 2863-73; Montufar EB, et al. Acta Biomater , 2009, 5, 2752-62). Some studies on scaffold fabrication have included biopolymer phases such as chitosan and poly (lactic acid) / alginate in CPC and applied conventional scaffolding methods (Wang Y. et al., J Biomed Mater Res A, 2009 , 89, 980-7). Compared with this previous study, the scaffolds produced in the present invention are characterized in that they are produced by new methods, namely by direct deposition of suspensions and by molding of 3-D structures. Using this process, the pore arrangement, including stem size and porosity, is controllable, and the scaffold can be manufactured into complex shapes by filling the appropriate amount into the desired mold. In the present invention, deposits are arbitrarily stacked to form a 3-D structure, but a clear 3-D shape can be manufactured through a process such as direct writing.
실험예 1: 3-D 다공성 스캐폴드의 특성 조사Experimental Example 1: Investigation of the properties of the 3-D porous scaffold
상기 실시예 2에서 얻은 복합재 스캐폴드를 증류수로 철저하게 세척한 다음, 7 일 동안 37 ℃에서 모의 체액(142.0 mM Na+, 5 mM K+, 1.5 mM Mg2+, 2.5 mM Ca2+, 147.8 mM Cl-, 4.2 mM HCO3 - , 1.0 mM HPO4 2-, 0.5 mM SO4 2- 함유 SBF) 중에 침지시켰다. 시료를 세척하고 진공 건조시킨 다음 그 형태를 주사 전자 현미경(SEM) (Hitachi S-3000H)으로 조사하였다. 조성 변화를 주사 전자 현미경 내 에너지 분산 분광기(EDS) (Bruker SNE-3000 M)를 통해 모니터링하였다. X-선 회절기(Rigaku Ultima IV)를 사용하여 스캐폴드의 결정 상 변화를 측정하였다. 다른 다공도를 갖는 스캐폴드의 기공 구조를 마이크로-전산화 단층촬영(μCT) (Skyscan model 1172)으로 분석하였다. 각 시료의 디스크 (φ 10 × 3 mm)를 스캔 면에 평행한 상부 및 하부 표면에 배치하였다. 11 Mp X-선 카메라로 스캔을 수행하고 758개의 파일을 19.92 ㎛의 이미지 픽셀 크기로 얻었다. α-TCP 입자의 표면 전하를 제타 전위(Zetasizer ZEN3600, Malvern Instruments) 측정을 통해 조사하였다. α-TCP 입자를 체로 거르고(45 ㎛), 1 mg ml-1으로 증류수 중에 분산시킨 후, 1회용 모세관 셀 (DTS1060C)과 제타사이저 소프트웨어(Zetasizer software) (v. 6.20)를 이용하여 상온 및 pH 7.0에서 제타 전위를 측정하였다. 상기 측정은 3회 다른 시료 상에서 반복하였다.The composite scaffold obtained in Example 2 was thoroughly washed with distilled water, and then simulated body fluids (142.0 mM Na + , 5 mM K + , 1.5 mM Mg 2+ , 2.5 mM Ca 2+ , 147.8) at 37 ° C. for 7 days. immersion in mM Cl , 4.2 mM HCO 3 , 1.0 mM HPO 4 2- , 0.5 mM SO 4 2- containing SBF). The sample was washed and dried in vacuo and then morphologically examined by scanning electron microscopy (SEM) (Hitachi S-3000H). Composition changes were monitored via an energy dispersive spectrometer (EDS) (Bruker SNE-3000 M) in a scanning electron microscope. The crystal phase change of the scaffold was measured using an X-ray diffractometer (Rigaku Ultima IV). The pore structure of scaffolds with different porosities was analyzed by micro-computed tomography (μCT) (Skyscan model 1172). Discs ( φ 10 × 3 mm) of each sample were placed on the upper and lower surfaces parallel to the scan plane. Scanning was performed with an 11 Mp X-ray camera and 758 files were obtained with an image pixel size of 19.92 μm. The surface charge of the α-TCP particles was investigated by measuring zeta potential (Zetasizer ZEN3600, Malvern Instruments). The α-TCP particles were sieved (45 μm) and dispersed in distilled water at 1 mg ml −1 , then at room temperature and at room temperature using a disposable capillary cell (DTS1060C) and Zetasizer software (v. 6.20). Zeta potential was measured at pH 7.0. The measurement was repeated three times on different samples.
상기 스캐폴드의 탄성률을 동적 기계 분석기(DMA) (DMA25, Metravib, France)를 통해 측정하였다. 3개의 다른 다공도를 갖는 시료를 5 mm 직경 × 10 mm 높이의 면적으로 준비하고 여기에 동적 압축 하중을 가하였다. 시료의 동적 탄성률을 기록하였다. 각 군에 대하여 3개 시료를 테스트하였다.The modulus of elasticity of the scaffold was measured by a dynamic mechanical analyzer (DMA) (DMA25, Metravib, France). Samples with three different porosities were prepared with an area of 5 mm diameter x 10 mm height and subjected to dynamic compressive load. The dynamic modulus of the sample was recorded. Three samples were tested for each group.
3-D 복합재 스캐폴드의 기공 구조를 μCT로 조사한 결과를 도 2b에 나타내었다. 저급 다공도 스캐폴드의 경우(다공도 ~14%), 몇몇의 기공이 압축에 의해 막힌 것으로 나타났다. 중간 다공도 스캐폴드(다공도 ~34%)는 더욱 큰 기공 공간을 가졌으며 기공 연결망이 더욱 발달해 있었다. 고도 다공도 스캐폴드(다공도 ~54%)의 기공은 큰 공간을 가졌으며 서로 연결되어 세포 이동 및 조직 관주에 적합한 3-D 기공 채널을 제공하였다. CPC-알지네이트 3-D 기공 스캐폴드를 모의 체액에 침지시킨 후 다양한 침지 시간 후 스캐폴드의 마이크로 구조를 조사한 결과를 도 3a에 나타내었다. 침지 전('0d') 표면은 치밀하였으며, 알지네이트 매트릭스 내에 임베딩된 CPC 입자를 가졌다. 1일 동안 침지 후('1d') 몇몇의 작은 결정이 표면에 형성되기 시작하였다. 3일 후('3d') 결정상은 성장하여 판상 결정의 균일한 망상조직을 형성하였다. 7일 후('7d') 나노결정 형성이 더욱 커졌으며, 서로 층을 이루고 합쳐져서 마이크론 크기의 섬을 형성하였다. The pore structure of the 3-D composite scaffold was examined by μCT and shown in FIG. 2B. For low porosity scaffolds (porosity ~ 14%), some pores appeared to be blocked by compression. Medium porosity scaffolds (~ 34% porosity) had larger pore spaces and more advanced pore networks. The pores of the high porosity scaffold (porosity of 54%) had large spaces and connected to each other to provide 3-D pore channels suitable for cell migration and tissue irrigation. After the CPC-alginate 3-D pore scaffold was immersed in the simulated body fluids, the microstructure of the scaffold was examined after various immersion times. The surface prior to immersion ('0d') was dense and had CPC particles embedded in the alginate matrix. After soaking for one day ('1d') some small crystals began to form on the surface. After 3 days ('3d') the crystal phase grew to form a uniform network of plate crystals. After 7 days ('7d') the nanocrystal formation was even larger and layered and merged together to form micron sized islands.
침지 테스트 동안 CPC 및 CPC-알지네이트 스캐폴드의 상 변화를 모니터링하였다(도 3b). 초기에는 단지 α-TCP 피크만이 나타났다(닫힌 원). 침지에 따라 HA(별표)가 새로운 상으로서 나타났으며, 침지 시간이 증가함에 따라 HA 피크의 세기가 증가하였다. 따라서, 이를 통해 α-TCP로부터 HA로의 상 전환을 알 수 있었다. 7일 후에는 단지 HA 상만이 관찰되어, 완전한 전환이 이루어졌음을 알 수 있었다. Phase change of the CPC and CPC-alginate scaffolds was monitored during the immersion test (FIG. 3B). Initially only α-TCP peaks appeared (closed circles). HA (asterisk) appeared as a new phase with soaking, and the intensity of the HA peak increased with soaking time. Therefore, it was found that the phase change from α-TCP to HA. After 7 days only HA phase was observed, indicating complete conversion.
EDS 분석을 통해 Ca/P 비율이 1.517 (α-TCP 유사값)로부터 1.659 (HA 유사값)로 증가함을 확인함으로써 α-TCP로부터 HA로의 상 전환을 다시 확인할 수 있었다(도 3c). 이러한 모의 체액 조건 하에서의 CPC-알지네이트의 상 전개에 기초하여, 본 발명의 스캐폴드가 체액 내에서 골 미네랄과 유사한 HA 상으로 전환되어 우수한 생체활성을 유지하고 골-관련 세포가 성장하고 조직으로 발달하기 위한 유리한 기질 조건을 제공할 수 있으며, 생리학적 반응에 상당한 역할을 할 수 있음을 알 수 있었다.The EDS analysis confirmed that the Ca / P ratio increased from 1.517 (α-TCP like) to 1.659 (HA like) to confirm the phase shift from α-TCP to HA again (FIG. 3C). Based on the phase development of CPC-alginate under these simulated humoral conditions, the scaffolds of the present invention are converted to HA mineral-like HA phases in body fluids to maintain good bioactivity and allow bone-related cells to grow and develop into tissues It can be seen that it can provide favorable substrate conditions, and can play a significant role in the physiological response.
한편, CPC-알지네이트 스캐폴드의 기계적 특성을 조사하기 위하여, 섬유주 골과 유사한 범위(섬유주 골에 대한 50-500 MPa 대비 고도 다공도의 경우 96 ± 63 MPa, 중간 다공도의 경우 398 ± 63 MPa, 저도 다공도의 경우 573 ± 87 MPa)로 상기 스캐폴드의 탄성률을 측정한 결과, 비하중지지 영역에서 주로 골 재생을 위하여 적용가능할 것으로 나타났다.On the other hand, in order to investigate the mechanical properties of the CPC-alginate scaffold, the range similar to the trabecular bone (50 ± 500 MPa for the trabecular bone, 96 ± 63 MPa for high porosity, 398 ± 63 MPa for medium porosity, low porosity The elastic modulus of the scaffold at 573 ± 87 MPa) was found to be applicable mainly for bone regeneration in the unloaded support region.
실험예 2: 시험관내 골아세포 증식 및 ALP 활성 측정Experimental Example 2: Measurement of in vitro osteoblast proliferation and ALP activity
세포 반응 테스트를 위하여, 3개의 다른 다공도 수준를 갖는 CPC-알지네이트 스캐폴드를 제조하였다 (저도 다공도: 13.6%, 중간 다공도: 34.0%, 고도 다공도: 53.7%). 래트 골수 유래의 간엽 줄기세포 (MSCs)를 5주령의 수컷 래트의 대퇴골 및 경골로부터 수집하였다. 대퇴골 및 경골은 재빨리 절개하고 α-최소 필수 배지(α-MEM)에 넣었다. 절개된 골을 30분 동안 콜라게나제 및 디스파제 용액으로 처리한 다음 상기 골수를 꺼내어 1500 r.p.m으로 원심분리하였다. 상기 펠렛을 분쇄하고, 5% CO2/95% 공기의 대기 하에 37℃에서 항상제/항진균제 용액(10,000 U 페니실린, 10,000 ㎍ 스트렙토마이신, 및 25 ㎍ 암포테리신 B/m, Gibco)을 함유하는 10% 우태아 혈청으로 보충된 α-MEM 중에서, 표준 배양 조건으로 배양하였다. 배양 5일 후, 비부착 세포를 제거하고 새로운 배지로 보충하였다. 세포를 표준 배양 조건 하에서 유지하고 이후 시험관내 분석을 위하여 사용 전에 3번 계대배양 하였다.For cell response testing, CPC-alginate scaffolds with three different porosity levels were prepared (low porosity: 13.6%, medium porosity: 34.0%, high porosity: 53.7%). Mesenchymal stem cells (MSCs) derived from rat bone marrow were collected from the femur and tibia of 5 week old male rats. The femur and tibia were quickly dissected and placed in the α-minimum essential medium (α-MEM). The injured bone was treated with collagenase and dispase solution for 30 minutes and then the bone marrow was removed and centrifuged at 1500 rpm. The pellets are ground and contain a homeostatic / antifungal solution (10,000 U penicillin, 10,000 μg streptomycin, and 25 μg amphotericin B / m, Gibco) at 37 ° C. under an atmosphere of 5% CO 2 /95% air. In α-MEM supplemented with 10% fetal calf serum, the cells were cultured under standard culture conditions. After 5 days of culture, non-adherent cells were removed and supplemented with fresh medium. Cells were maintained under standard culture conditions and then passaged three times before use for in vitro analysis.
스캐폴드 시료를 24-웰 플레이트의 각 웰에 넣고 각 시료에 1 × 105 세포 현탁액을 접종하였다. 세포를 골형성 인자(50 ㎍ ml-1 아스코르브산, 100 nM 덱사메타손 및 10 mM β-글리세로포스페이트)의 영향 하에서 14일 동안 배양하였다. 그 다음 세포 증식을 3-(4,5-디메틸티아졸-2-일)-5-(3-카복시메톡시페닐)-2-(4-설포페닐)-2H-테트라졸리움 (MTS) 방법을 이용하여 측정하였다. MTS 시약 (테트라졸리움 염)을 살아있는 세포에 가하면, 이는 세포에 의해 배양 배지 중에 용해되는 착색된 포마잔 생성물로 환원된다. 살아있는 세포의 수에 직접적으로 비례하는, 포마잔 생성물의 양을 ELISA 플레이트 리더(iMARK, BioRad)를 이용하여 490 nm에서의 흡광도로 측정하였다. 3개의 반복 시료로 MTS 분석을 실시하였다.Scaffold samples were placed in each well of a 24-well plate and each sample was inoculated with a 1 × 10 5 cell suspension. Cells were incubated for 14 days under the influence of osteogenic factors (50 μg ml −1 ascorbic acid, 100 nM dexamethasone and 10 mM β-glycerophosphate). Cell proliferation was then performed using the 3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethoxyphenyl) -2- (4-sulfophenyl) -2H-tetrazolium (MTS) method. It measured using. When MTS reagent (tetrazolium salt) is added to living cells, it is reduced to the colored formazan product that is lysed in the culture medium by the cells. The amount of formazan product, directly proportional to the number of living cells, was measured by absorbance at 490 nm using an ELISA plate reader (iMARK, BioRad). MTS analysis was performed with three replicate samples.
CPC-알지네이트 복합재 스캐폴드 상에서의 배양 중 MSCs의 시험관내 골형성 분화에 대한 지표로서, 염기성 포스파타제 (ALP) 활성을 측정하였다. 골형성 배지에서 7일 및 14일 동안 배양한 후, 세포층을 수집하고 0.1% 트리톤 X-100 세포 용해 배지로 처리한 후 순차적인 냉동 및 해동을 통해 추가 분쇄시켰다. 총 단백질 함량을 상용 DC 단백질 분석 키트 (Bio-Rad)를 이용하여 분석하고, 반응 시료의 앨리쿼트를 총 단백질 함량으로 표준화한 후 측정하였다. 세포의 ALP 활성을 ALP 분석 키트(procedure No. ALP-10, Sigma)를 이용하여 측정하였다. ALP 존재 하에서 생성된 p-니트로페놀을 405 nm에서의 흡광도로 측정하였다. 3개의 반복 시료를 ALP 활성에 대해 테스트하였다.Basic phosphatase (ALP) activity was measured as an indicator for in vitro osteogenic differentiation of MSCs in culture on CPC-alginate composite scaffolds. After incubation for 7 days and 14 days in osteogenic medium, the cell layers were collected and treated with 0.1% Triton X-100 cell lysis medium followed by further grinding through sequential freezing and thawing. Total protein content was analyzed using a commercial DC protein analysis kit (Bio-Rad) and measured after standardizing the aliquots of reaction samples to total protein content. ALP activity of the cells was measured using an ALP assay kit (procedure No. ALP-10, Sigma). The p-nitrophenol produced in the presence of ALP was measured by absorbance at 405 nm. Three replicate samples were tested for ALP activity.
세포 테스트 데이터를 평균 ± 표준 편차(SD)로 나타내고, 일원 분산분석(ANOVA)을 통해 통계 분석을 수행하였다. 통계적인 유의성은 P < 0.05으로 하였다.Cell test data are expressed as mean ± standard deviation (SD) and statistical analysis was performed via one-way ANOVA. Statistical significance was set to P <0.05.
세포 성장을 세포의 미토콘드리아 활성으로서 측정한 결과를 도 4에 나타내었다. 배양 시간에 따라 MTS 수준의 증가가 일어나는 것으로 나타나, MSC는 3가지 타입의 스캐폴드 모두에서 잘 증식함을 알 수 있었다. 초기 3일째, 세포 증식은 저도 다공도 스캐폴드 및 중간 다공도 스캐폴드와 비교하여 고도 다공도 스캐폴드에서 유의적으로 더 높았으며(P < 0.05), 이는 7일째까지 유지되었다. 14일째, 상기 스캐폴드 간의 세포증식 차이는 감소하였다. 섬유상 스캐폴드 상에서의 세포 형태를 7일 및 14일 동안 배양하는 도중에 다른 해상도로 SEM을 이용하여 관찰한 결과를 도 5에 나타내었다. 이때 a는 저도 다공도, b는 중간 다공도, c는 고도 다공도 스캐폴드를 나타낸다. 7일째 세포는 기저 섬유 줄기에 잘 부착된 길게 늘어난 형태를 보였다. 14일째 세포는 상기 줄기 표면 대부분을 완전히 덮는 보다 더 광대한 세포골격 진행을 보였다. 횡단면의 내부 표면을 관찰한 결과, 특히 고도의 다공도 스캐폴드에서, 다수의 세포가 기공 채널 깊은 곳에서 발견되었다. 이러한 결과에 기초하여, 기저의 CPC-알지네이트 매트릭스가 장기간의 배양에 따라 세포의 우수한 부착, 활발한 미세돌기 분화 및 세포수의 증가에 유리함을 알 수 있었다.The results of measuring cell growth as the mitochondrial activity of the cells are shown in FIG. 4. Increasing MTS levels occurred with incubation time, indicating that MSCs proliferated well in all three types of scaffolds. At early 3 days, cell proliferation was significantly higher in the high porosity scaffolds compared to the low porosity scaffolds and the medium porosity scaffolds (P <0.05), which remained until day 7. On day 14, cell proliferation differences between the scaffolds decreased. The cell morphology on the fibrous scaffolds was observed using SEM at different resolutions during 7 and 14 days of incubation. Where a is low porosity, b is medium porosity, and c is high porosity scaffold. On day 7, the cells showed a long elongated form that adhered well to the basal fiber stem. Day 14 cells showed more extensive cytoskeletal progression that completely covered most of the stem surface. Observation of the inner surface of the cross section revealed a large number of cells deep in the pore channel, especially in the highly porous scaffolds. Based on these results, it can be seen that the underlying CPC-alginate matrix is advantageous for good adhesion of cells, active microprogenitor differentiation and increase in cell number with prolonged culture.
ALP 활성 측정 결과를 도 6에 나타내었다. ALP 활성은 모든 스캐폴드에서 21일까지 배양 시간이 증가함에 따라 함께 증가하는 것으로 나타났다. 이러한 증가는 고도의 다공도를 갖는 스캐폴드에서 더욱 컸다. 이러한 결과를 통해 3-D 다공도 스캐폴드에서 배양된 MSCs가 골형성 계통에 따라 분화되도록 자극되며 고도의 다공도를 갖는 스캐폴드에서 이러한 자극이 더욱 큼을 알 수 있었다. ALP activity measurement results are shown in FIG. 6. ALP activity was found to increase with increasing incubation time up to 21 days in all scaffolds. This increase was greater in scaffolds with high porosity. These results indicate that MSCs cultured in 3-D porosity scaffolds are stimulated to differentiate according to the osteogenic lineage, and this stimulation is greater in scaffolds with high porosity.
상기 세포 증식 및 ALP 활성 결과를 통해, 고도의 다공도를 갖는 스캐폴드를 사용함으로써 3-D 섬유상 망상구조 하에서 시험관내 MSC 작용이 더욱 우수하였으며, 궁극적으로 골 조직 공학을 위한 생체 외 조직 공학 구조물의 제조를 위해 유용함을 알 수 있었다. 고도 다공도의 스캐폴드는 세포가 이동하고 3차원적으로 증식되기 위한 공간과 기질 조건을 제공하여, 개방된 공간을 통해 세포 이동 및 작용이 더욱 쉽게 하였다. Through the cell proliferation and ALP activity results, the use of scaffolds with high porosity resulted in better in vitro MSC action in 3-D fibrous network, ultimately making in vitro tissue engineering constructs for bone tissue engineering. It can be useful for. High porosity scaffolds provide space and substrate conditions for cells to migrate and multiply in three dimensions, making cell movement and action easier through open spaces.
실험예 3: 골 친화성에 대한 생체내 사전 조사Experimental Example 3: In vivo preliminary examination for bone affinity
10주령의 수컷 스프라그 다우리 래트를 생체 내 분석을 위해 사용하였다. 외과적 프로토콜은 대한민국 단국대학교의 실험동물윤리위원회의 지침에 따랐다. 동물은 케타민 (80 mg kg-1)과 자일라진 (10 mg kg-1)을 사용하여 근육내 주사로 마취시켰다. 두개관의 전두 영역을 절개하고 5 mm 직경의 임계 크기 전층 골 결손을 지속적인 멸균 식염수 관주 하에 트레핀 드릴을 이용하여 형성시켰다. 생체 내 테스트를 위하여, 5 mm 직경 × 2 mm 높이의 크기를 갖는 테스트 스캐폴드를 다른 크기의 주형을 이용하여 제조하고 침적되는 복합재의 양을 또한 높은 다공도(53.7%)를 갖는 스캐폴드를 제조하기 위하여 조정하였다. 제조된 스캐폴드를 두개관 결손 내에 이식하였다. 이식된 스캐폴드가 없는 결손을 음성 대조군으로서 사용하였다. 연성 조직을 일차적인 폐쇄를 위하여 봉합하였다. 이식 6주 후, 동물을 치사하였다. 최초 외과적 결손과 주위 조직 영역을 일괄적으로 제거하고 10% 중성 포르말린 용액으로 고정시킨 다음 탈회시켰다. 조직을 파라핀 블록 내에 임베딩시킨 다음 마이크로톰 (Leica™)을 이용하여 연속적으로 절개하였다. 4-6 ㎛ 두께의 절편을 현미경 슬라이드 상에 고정시켰다. 조직 절편을 갖는 슬라이드로부터 파라핀을 제거하고 일련의 자일렌과 알코올을 통해 수화시켰다. 상기 조직 슬라이드를 헤마토실린과 에오신(H&E) 및 마쏜스 트리크롬(MT)으로 염색하고, 조직학적인 관찰을 위하여 광학 현미경 하에서 조사하였다.Ten week old male Sprague Dawley rats were used for in vivo analysis. Surgical protocols followed the guidelines of the Experimental Animal Ethics Committee of Dankook University. Animals were anesthetized by intramuscular injection using ketamine (80 mg kg −1 ) and xylazine (10 mg kg −1 ). The frontal region of the cranial tube was incised and a 5 mm diameter critical size penetrating bone defect was formed using a trepin drill under continuous sterile saline irrigation. For in vivo testing, test scaffolds with dimensions of 5 mm diameter × 2 mm height were prepared using different size molds and the amount of composite deposited was also produced with scaffolds with high porosity (53.7%). To adjust. The prepared scaffolds were implanted into cranial defects. Defects without implanted scaffolds were used as negative controls. Soft tissue was sutured for primary closure. Six weeks after transplantation, the animals were killed. Initial surgical defects and surrounding tissue areas were removed in batches, fixed with 10% neutral formalin solution and then demineralized. Tissues were embedded in paraffin blocks and subsequently incised using a microtome (Leica ™). Sections 4-6 μm thick were fixed on the microscope slides. Paraffin was removed from the slides with tissue sections and hydrated through a series of xylenes and alcohols. The tissue slides were stained with hematocillin and eosin (H & E) and Marthon's trichrome (MT) and examined under an optical microscope for histological observation.
고도 다공도의 CPC-알지네이트 스캐폴드를 래트에 이식한 후 6주 뒤에 조직 시료를 수집하여 μCT로 조사한 결과를 도 7에 나타내었다. 먼저, X-선으로 관찰한 결과, 비어 있는 골 결손에서는 거의 밝은 이미지인 반면(음성 대조군) 스캐폴드에서는 2-D 섬유상 망상조직의 희미한 이미지를 보여주었다(도 7a). 2-D μCT 이미지에서는, 대조구의 경우 거의 채워져 있지 않는 반면, 스캐폴드의 경우 골 결손 영역이 스캐폴드 시료로 완전히 채워져 있는 것으로 나타났다(도 7b). 재건된 3-D μCT 이미지는 다공성 스캐폴드의 3-D 구조 및 골 결손 영역 내에서 성장한 골 모습을 보여주었다(도 7c). 음성 대조군에서는 골 재생이 거의 일어나지 않았으며, 이로써 임계 크기 골 결손임을 알 수 있었다(도 7d).6 weeks after the highly porous CPC-alginate scaffolds were implanted into rats, tissue samples were collected and examined by μCT. First, X-ray observation showed a nearly bright image in the empty bone defect (negative control), while a scaffold showed a faint image of the 2-D fibrous reticulum (FIG. 7A). In 2-D μCT images, the control area was hardly filled, whereas for the scaffold, the bone defect area was completely filled with the scaffold sample (FIG. 7B). The reconstructed 3-D μCT image showed bone growth grown within the 3-D structure and bone defect area of the porous scaffold (FIG. 7C). Little bone regeneration occurred in the negative control group, indicating a critical size bone defect (FIG. 7D).
다른 한편으로, 스캐폴드 시료에서 새롭게 성장한 골은 잔존하는 재료로부터 확실히 분화될 수 없었다. 다공성 스캐폴드를 함유하는 외식편을 조직공학적으로 염색한 후 관찰한 결과, 수술 6주 후 조직 특성 및 골 형성을 나타내었다.On the other hand, newly grown bones in the scaffold sample could not be surely differentiated from the remaining material. Explants containing porous scaffolds were stained and histologically observed to show tissue characteristics and bone formation 6 weeks after surgery.
도 8은 각기 다른 해상도의 H&E(a 및 b) 및 MT(c 및 d) 염색 결과를 보여준다. 이식된 스캐폴드에서 염증성 반응이나 조직 거부가 관찰되지 않았다. 연결 골 조직이 골 결손 영역을 통해 스캐폴드의 기공 채널을 채우는 것으로 나타났다(도 8a). 확대된 이미지는 스캐폴드의 섬유 줄기(담적색)에 정렬된 새롭게 형성된 조직(암적색)을 보여주었다(도 88b). MT 염색은 담청색 또는 암청색으로 나타나는 세포외 매트릭스와 함께 골조직의 형성을 보여주었다(도 8c 및 도 8d). 조직공학적 이미지에서 MT 염색은 CPC-알지네이트 스캐폴드 틀 구조 내에서 발견되어졌으며, 이로써 상기 스캐폴드가 세포와 조직으로 대체 가능함을 알 수 있었다. 비록 대부분의 스캐폴드가 래트 두개관에 이식 후 6주 동안 생분해되지 않는 것으로 나타났을지라도, 상기 결과는 CPC 또는 알지네이트 또는 이들 조합의 복합재가 생체 내 분해 가능함을 보여주었다.8 shows the results of H & E (a and b) and MT (c and d) staining at different resolutions. No inflammatory response or tissue rejection was observed in the implanted scaffold. Connective bone tissue was shown to fill the pore channel of the scaffold through the bone defect area (FIG. 8A). The magnified image showed the newly formed tissue (dark red) aligned with the fibrous stem (light red) of the scaffold (FIG. 88 b). MT staining showed the formation of bone tissue with extracellular matrix that appeared in light blue or dark blue (FIGS. 8C and 8D). MT staining was found in the CPC-alginate scaffold framework structure, indicating that the scaffold can be replaced with cells and tissues. Although most scaffolds did not appear to be biodegradable for 6 weeks after implantation into the rat cranial canal, the results showed that CPC or alginate or a combination of these combinations were biodegradable.
따라서, 상기 생체 내 조직 반응 결과를 통해 CPC-알지네이트 다공성 스캐폴드가 우수한 조직 접합성과 골 조직의 재생 가능성을 가지며, 이에 따라 골 재생을 위한 이식 가능한 재료로서 사용 가능함을 확인할 수 있었다. Therefore, the in vivo tissue reaction results confirmed that the CPC-alginate porous scaffold has excellent tissue adhesion and regeneration of bone tissue, and thus can be used as an implantable material for bone regeneration.
실험예 4: 단백질 전달 능력 조사Experimental Example 4: Investigation of Protein Delivery Capacity
CPC-알지네이트 다공성 스캐폴드로부터의 단백질 방출을 모델 단백질로서 소혈청 알부민(BSA) 및 라이소자임을 이용하여 조사하였다. 각 단백질의 로딩은 2가지의 다른 방식으로 수행하였다. 즉, 하나는 단백질을 알지네이트 용액에 첨가한 다음 이를 CPC 분말과 혼합하고, 이어서 단백질-함유 다공성 스캐폴드로 침적시키는 방식("로딩 방식 I")이고, 다른 하나는 단백질을 CPC 현탁액에 첨가한 후, 부드럽게 교반하면서 1 시간 동안 배양시킨 다음 상기 용액을 알지네이트 용액과 혼합한 뒤 다공성 스캐폴드로 침적시키는 방식("로딩 방식 II")이었다. 각 스캐폴드 시료 내 단백질 함량은 33.3 ㎍ mg 스캐폴드-1로 조정하였다. 1 g의 단백질-함유 다공성 스캐폴드를 단백질 방출 테스트에 사용하였다. 이는 1.4 g의 현탁액 침적을 통해 1 g (± 0.039 g)의 최종 스캐폴드 시료를 제조할 수 있음을 보여준 사전 조사에 기초하였다. 각 시료를 28일 동안 pH 7 및 37 ℃에서 10 ml의 인산염 완충 식염수(PBS) 중에 침지시켰다. 각 측정 시간마다(1, 2, 3, 6 및 24 시간, 및 2, 3, 7, 10, 14, 21 및 28 일), 스캐폴드를 제거하고 잔류 배지를 바이신코닌산 (BCA) 법을 통하여 분석하였다. 각 측정마다, 배지를 새롭게 교환하였다.Protein release from CPC-alginate porous scaffolds was investigated using bovine serum albumin (BSA) and lysozyme as model proteins. Loading of each protein was performed in two different ways. That is, one is adding the protein to the alginate solution and then mixing it with the CPC powder and then depositing it into the protein-containing porous scaffold (“loading method I”), and the other after adding the protein to the CPC suspension After incubation for 1 hour with gentle stirring, the solution was mixed with an alginate solution and then deposited into a porous scaffold ("loading mode II"). The protein content in each scaffold sample was adjusted to 33.3 μg mg scaffold- 1 . 1 g of protein-containing porous scaffold was used for protein release testing. This was based on preliminary investigations showing that 1 g (± 0.039 g) final scaffold samples could be prepared via 1.4 g suspension deposition. Each sample was immersed in 10 ml of phosphate buffered saline (PBS) at pH 7 and 37 ° C. for 28 days. At each measurement time (1, 2, 3, 6 and 24 hours, and 2, 3, 7, 10, 14, 21 and 28 days), the scaffold was removed and the residual medium was passed through the bicinconic acid (BCA) method. Analyzed. For each measurement, the medium was freshly replaced.
도 9는 28일 동안 측정된 PBS 중 단백질의 방출 프로파일을 보여준다.9 shows the release profile of protein in PBS measured over 28 days.
단백질이 표면에 헐겁게 결합되어 용액과 직접적인 접촉이 가능한 모든 로딩 조건에서, 초기(12시간 이내)에 약 20-30%의 라이소자임과 BSA가 방출되었다. 이러한 초기 버스트 이후에, 두 단백질의 방출은 28일 동안 시간에 따라 감소된 속도로 지속되었다. BSA 방출 프로파일은 로딩 방식 간에 큰 차이가 없었다. 그러나, 라이소자임의 경우 방출 속도가 로딩 방식 I에 비해 로딩 방식 II에서 크게 감소하였다. 로딩 방식 I에서 라이소자임의 방출이 BSA 보다 더 높은 때, 로딩 방식 II에서 상기 경향은 바뀌었다. 그러므로, 단백질과 스캐폴드의 성분, 특히 CPC와의 상호작용이 차이가 남을 알 수 있었다. 즉, CPC는 강한 친화력 또는 화학적 결합으로 인하여 BSA보다 라이소자임의 방출을 더 잘 지연시킬 수 있다. About 20-30% of lysozyme and BSA were released initially (within 12 hours) under all loading conditions where the protein was loosely bound to the surface and allowed direct contact with the solution. After this initial burst, the release of both proteins continued at a slowed rate with time for 28 days. The BSA release profile did not differ significantly between loading modes. However, for lysozyme, the release rate was significantly reduced in loading mode II compared to loading mode I. When loading of lysozyme in loading mode I was higher than BSA, the trend changed in loading mode II. Therefore, the interaction between the protein and the components of the scaffold, especially the CPC, was found to be different. In other words, CPC may better delay lysozyme release than BSA due to strong affinity or chemical binding.
이러한 현상의 이유를 조사하기 위하여, α-TCP 분말과 단백질의 표면 전하를 제타 전위 측정을 통하여 측정하고 그 결과를 하기 표 1에 나타내었다.To investigate the reason for this phenomenon, the surface charges of α-TCP powder and protein were measured by zeta potential measurement and the results are shown in Table 1 below.
표 1
시료 CPC 분말 라이소자임 BSA
제타 전위(pH 7) -18.14 2.53 -16.84
Table 1
sample CPC Powder Lysozyme BSA
Zeta potential (pH 7) -18.14 2.53 -16.84
pH 7에서 α-TCP 및 BSA가 음으로 하전된 반면, 라이소자임은 양으로 하전되어 있었다. 이를 기반으로, CPC 분말에 대한 정전기적 인력이 BSA에 비해 라이소자임에서 더욱 높음을 알 수 있었다. 알지네이트가 또한 음으로 하전되어 있어 라이소자임과 다소 이온성 상호작용을 할지라도, 이의 하이드로겔 성질은 CPC보다 개방형 구조를 가질 수 있으며, 이에 따라 물 투과가 가능하며 이를 통해 상기 구조로부터의 단백질 방출 경로를 제공할 수 있다. 또한, 알지네이트와 CPC의 분해 거동 차이가 또한 라이소자임의 방출 속도에 영향을 줄 수 있다. 이러한 결과를 통해, CPC-알지네이트 스캐폴드가 염기성 섬유모세포 성장인자와 같은 양으로 하전된 성장인자의 전달에 효과적임을 알 수 있었다. 즉, 시험관 내 단백질 방출에 대한 이러한 결과를 통해 생물학적 분자가 스캐폴드 내에 쉽고 안전하게 로딩되며 상기 다공성 스캐폴드가 특히 양으로 하전된 생물학적 분자를 적어도 한 달 동안 방출할 수 있는, 서방형 단백질 방출을 위해 사용 가능함을 확인할 수 있었다.At pH 7, α-TCP and BSA were negatively charged, while lysozyme was positively charged. Based on this, the electrostatic attraction to the CPC powder was found to be higher in the lysozyme compared to the BSA. Although alginates are also negatively charged and thus have some ionic interactions with lysozyme, their hydrogel properties may have an open structure than CPC, thus allowing water permeation and thereby blocking the protein release pathway from the structure. Can provide. In addition, differences in degradation behavior of alginate and CPC can also affect the release rate of lysozyme. These results indicate that the CPC-alginate scaffold is effective for the transfer of positively charged growth factors in the same basic fibroblast growth factor. In other words, these results for in vitro protein release allow for easy and safe loading of biological molecules into the scaffold and for the release of sustained release proteins, where the porous scaffold can release particularly positively charged biological molecules for at least a month. It could be confirmed that it can be used.

Claims (15)

  1. 인산 칼슘 시멘트 및 알지네이트의 현탁액을 제조하는 단계(단계 1); 및Preparing a suspension of calcium phosphate cement and alginate (step 1); And
    상기 현탁액을 칼슘 이온 수용액으로 채워진 주형 내로 투입하여 경화시키는 단계(단계 2)를 포함하는 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법.A method for producing a porous scaffold of calcium phosphate cement comprising the step of injecting the suspension into a mold filled with an aqueous solution of calcium ions (step 2).
  2. 제1항에 있어서, 상기 단계 2) 이후에 기계적으로 압축시키는 단계를 추가로 포함하는, 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법.The method of claim 1, further comprising mechanically compressing after step 2).
  3. 제1항에 있어서, 상기 인산 칼슘 시멘트와 알지네이트의 혼합 비율은 중량기준으로 인산 칼슘 시멘트: 알지네이트의 비율이 20:1 내지 500:1인, 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법.The method of claim 1, wherein the mixing ratio of the calcium phosphate cement and alginate is calcium phosphate cement: alginate ratio of 20: 1 to 500: 1 by weight.
  4. 제1항에 있어서, 상기 칼슘 이온의 농도는 10 내지 200 mM인, 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법.The method of claim 1, wherein the concentration of calcium ions is 10 to 200 mM, the method of producing a porous scaffold of calcium phosphate cement.
  5. 제1항에 있어서, 상기 주형의 형상은 원통형 또는 육면체형인, 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법.The method of claim 1, wherein the shape of the mold is cylindrical or hexahedral.
  6. 제1항에 있어서, 상기 인산 칼슘 화합물은 트리칼슘 포스페이트, 모노칼슘 포스페이트, 테트라칼슘 포스페이트, 디칼슘 포스페이트, 하이드록시 아파타이트 또는 이의 조합인, 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법.The method of claim 1, wherein the calcium phosphate compound is tricalcium phosphate, monocalcium phosphate, tetracalcium phosphate, dicalcium phosphate, hydroxyapatite or a combination thereof.
  7. 제2항에 있어서, 상기 압축을 통해 스캐폴드의 다공도를 10 내지 90 %로 조절하는, 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법.The method of claim 2, wherein the porosity of the scaffold is adjusted to 10 to 90% through compression.
  8. 제1항에 있어서, 상기 현탁액은 생물학적 단백질, 약물 또는 이의 조합을 추가로 포함하는, 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법.The method of claim 1, wherein the suspension further comprises a biological protein, a drug, or a combination thereof.
  9. 제8항에 있어서, 상기 생물학적 단백질은 소혈청 알부민, 라이소자임, 성장인자 또는 이의 조합인, 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법.The method of claim 8, wherein the biological protein is bovine serum albumin, lysozyme, growth factor, or a combination thereof.
  10. 제8항에 있어서, 상기 약물은 항생제, 항암제, 항염증제 또는 이의 조합인, 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법.The method of claim 8, wherein the drug is an antibiotic, an anticancer agent, an anti-inflammatory agent, or a combination thereof.
  11. 각각 개별 용기에 포장된 인산 칼슘 시멘트 분말, 알지네이트 용액, 및 칼슘 이온 수용액으로 구성된 인산 칼슘 시멘트의 다공성 스캐폴드 제조용 재료와; 주사기를 포함하는 인산 칼슘 시멘트의 다공성 스캐폴드 제조용 키트.A material for producing a porous scaffold of calcium phosphate cement composed of calcium phosphate cement powder, alginate solution, and calcium ion aqueous solution, each packaged in a separate container; Kit for the preparation of porous scaffolds of calcium phosphate cement comprising a syringe.
  12. 제11항에 있어서, 스캐폴드 성형용 주형을 추가로 포함하는, 인산 칼슘 시멘트의 다공성 스캐폴드 제조용 키트.12. The kit for preparing a porous scaffold of calcium phosphate cement according to claim 11, further comprising a mold for scaffold forming.
  13. 제11항에 있어서, 생물학적 단백질, 약물 또는 이의 조합을 추가로 포함하는, 인산 칼슘 시멘트의 다공성 스캐폴드 제조용 키트.The kit for preparing a porous scaffold of calcium phosphate cement according to claim 11, further comprising a biological protein, a drug, or a combination thereof.
  14. 제13항에 있어서, 상기 생물학적 단백질은 소혈청 알부민, 라이소자임, 성장인자 또는 이의 조합인, 인산 칼슘 시멘트의 다공성 스캐폴드 제조용 키트.The kit for preparing a porous scaffold of calcium phosphate cement of claim 13, wherein the biological protein is bovine serum albumin, lysozyme, growth factor, or a combination thereof.
  15. 제13항에 있어서, 상기 약물은 항생제, 항암제, 항염증제 또는 이의 조합인, 인산 칼슘 시멘트의 다공성 스캐폴드 제조용 키트.The kit for preparing a porous scaffold of calcium phosphate cement according to claim 13, wherein the drug is an antibiotic, an anticancer agent, an anti-inflammatory agent or a combination thereof.
PCT/KR2011/008095 2011-07-15 2011-10-27 Method for manufacturing porous scaffold of calcium phosphate cement WO2013012132A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0070630 2011-07-15
KR1020110070630A KR101686683B1 (en) 2011-07-15 2011-07-15 A preparation method of porous scaffolds of calcium phosphate cement

Publications (1)

Publication Number Publication Date
WO2013012132A1 true WO2013012132A1 (en) 2013-01-24

Family

ID=47558289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008095 WO2013012132A1 (en) 2011-07-15 2011-10-27 Method for manufacturing porous scaffold of calcium phosphate cement

Country Status (2)

Country Link
KR (1) KR101686683B1 (en)
WO (1) WO2013012132A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109836594A (en) * 2017-11-24 2019-06-04 杭州德柯医疗科技有限公司 A kind of preparation method and applications of hydrogel, hydrogel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101712555B1 (en) 2015-10-27 2017-03-07 주식회사 썬메디칼 Porous scaffold compositions for tissue engineering and process for preparing thereof
KR20180062132A (en) * 2016-11-30 2018-06-08 안동대학교 산학협력단 Composition for three-dimensional ceramic scaffold having dual-pore
KR102422432B1 (en) * 2019-11-29 2022-07-19 단국대학교 천안캠퍼스 산학협력단 silicate-shell hydrogel fiber scaffold and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030082808A1 (en) * 1998-11-13 2003-05-01 Limin Guan Composite biodegradable polymer scaffold
US20090048145A1 (en) * 2004-06-09 2009-02-19 Scil Technology Gmbh In situ hardening paste, its manufacturing and use
WO2010021601A1 (en) * 2008-08-22 2010-02-25 Agency For Science, Technology And Research Manufacturing and use of composite scaffolds
US20110066242A1 (en) * 2007-02-12 2011-03-17 The Trustees Of Columbia University In The City Of New York Biomimmetic nanofiber scaffold for soft tissue and soft tissue-to-bone repair, augmentation and replacement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030082808A1 (en) * 1998-11-13 2003-05-01 Limin Guan Composite biodegradable polymer scaffold
US20090048145A1 (en) * 2004-06-09 2009-02-19 Scil Technology Gmbh In situ hardening paste, its manufacturing and use
US20110066242A1 (en) * 2007-02-12 2011-03-17 The Trustees Of Columbia University In The City Of New York Biomimmetic nanofiber scaffold for soft tissue and soft tissue-to-bone repair, augmentation and replacement
WO2010021601A1 (en) * 2008-08-22 2010-02-25 Agency For Science, Technology And Research Manufacturing and use of composite scaffolds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GIL-SU LEE ET AL.: "Alginate combined calcium phosphate cements: mechanical properties and in vitro rat bone marrow stromal cell responeses", J MATER SCI: MATER MED, vol. 22, 2011, pages 1257 - 1268 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109836594A (en) * 2017-11-24 2019-06-04 杭州德柯医疗科技有限公司 A kind of preparation method and applications of hydrogel, hydrogel

Also Published As

Publication number Publication date
KR20130009477A (en) 2013-01-23
KR101686683B1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
Lee et al. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering
Miao et al. Engineering natural matrices with black phosphorus nanosheets to generate multi-functional therapeutic nanocomposite hydrogels
US9889234B2 (en) Scaffold for hard tissue regeneration containing active ingredient for treating osteoporosis and preparing method thereof
Park et al. Calcium phosphate combination biomaterials as human mesenchymal stem cell delivery vehicles for bone repair
Wang et al. A biomimetic piezoelectric scaffold with sustained Mg2+ release promotes neurogenic and angiogenic differentiation for enhanced bone regeneration
CN111214698B (en) Composite bone repair material and preparation method thereof
WO2013012132A1 (en) Method for manufacturing porous scaffold of calcium phosphate cement
WO2020206799A1 (en) Method for preparing three-dimensional bioprinting ink and application thereof
Borhan et al. Evaluation of colloidal silica suspension as efficient additive for improving physicochemical and in vitro biological properties of calcium sulfate-based nanocomposite bone cement
He et al. An antibacterial ε-poly-L-lysine-derived bioink for 3D bioprinting applications
Lei et al. Biphasic ceramic biomaterials with tunable spatiotemporal evolution for highly efficient alveolar bone repair
WO2021040249A1 (en) Foraminifera-derived bone graft material
WO2015129972A1 (en) High strength synthetic bone for bone replacement for increasing compressive strength and facilitating blood circulation, and manufacturing method therefor
CN106730009B (en) Bone repair support and preparation method thereof
Dong et al. Porous gelatin microsphere-based scaffolds containing MC3T3-E1 cells and calcitriol for the repair of skull defect
CN111467565A (en) Microtubule scaffold, preparation method and application thereof
Mehnath et al. Biomimetic and osteogenic natural HAP coated three dimensional implant for orthopaedic application
Dong et al. Silk fibroin hydrogels induced and reinforced by acidic calcium phosphate–A simple way of producing bioactive and drug-loadable composites for biomedical applications
Zhang et al. Multifunctional silicon calcium phosphate composite scaffolds promote stem cell recruitment and bone regeneration
CN110624129B (en) Corrosion-resistant osteoinductive silk fibroin/hydroxyapatite/magnesium oxide gel sponge and preparation method thereof
WO2020207114A1 (en) Biologically active bone cement and preparation method therefor
CN109106984B (en) Hydroxyapatite porous scaffold and preparation method thereof
KR101938339B1 (en) A composition for delivering bioactive material comprising Alginate-Microencapsule
Li et al. 3D printed hydroxyapatite/silk fibroin/polycaprolactone artificial bone scaffold and bone tissue engineering materials constructed with double-transfected bone morphogenetic protein-2 and vascular endothelial growth factor mesenchymal stem cells to repair rabbit radial bone defects
CN1304063C (en) Self solidified in situ biological activity material, preparation and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869753

Country of ref document: EP

Kind code of ref document: A1