WO2013011580A1 - Controller for internal combustion engine - Google Patents

Controller for internal combustion engine Download PDF

Info

Publication number
WO2013011580A1
WO2013011580A1 PCT/JP2011/066470 JP2011066470W WO2013011580A1 WO 2013011580 A1 WO2013011580 A1 WO 2013011580A1 JP 2011066470 W JP2011066470 W JP 2011066470W WO 2013011580 A1 WO2013011580 A1 WO 2013011580A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
cetane number
internal combustion
combustion engine
control
Prior art date
Application number
PCT/JP2011/066470
Other languages
French (fr)
Japanese (ja)
Inventor
守 谷口
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to PCT/JP2011/066470 priority Critical patent/WO2013011580A1/en
Publication of WO2013011580A1 publication Critical patent/WO2013011580A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables

Definitions

  • the present invention relates to a control device for an internal combustion engine that estimates the cetane number of fuel supplied to the internal combustion engine and executes engine operation control based on the estimated cetane number.
  • a compression ignition type internal combustion engine fuel injected into a cylinder by a fuel injection valve is ignited after a predetermined time (so-called ignition delay) has elapsed since injection.
  • ignition delay a predetermined time
  • a control device that controls the execution mode of engine control such as injection timing and injection amount in fuel injection in consideration of such ignition delay is widely adopted.
  • the engine operation control is returned to the execution mode before the switching, that is, the execution mode based on the estimated cetane number, because the misfire does not occur after the execution mode of the engine operation control is once switched due to the occurrence of the misfire. Then, the operating state of the internal combustion engine returns to the original state. In this case, there is a high possibility that misfire will occur again.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a control device for an internal combustion engine that can suitably suppress the occurrence of misfire.
  • the estimation unit estimates the cetane number of the fuel supplied to the internal combustion engine, and the first control unit responds to the estimated estimation cetane number.
  • Combustion control related to fuel combustion is executed in the first execution mode. Thereby, combustion control can be executed in a manner corresponding to the cetane number of the fuel supplied to the internal combustion engine.
  • the misfire determination unit determines whether or not misfire has occurred in the internal combustion engine.
  • the combustion control is executed in a second execution mode corresponding to fuel having a cetane number lower than the estimated cetane number estimated by the estimation unit. Therefore, even if a misfire occurs during the execution of the combustion control in the first execution mode, the subsequent misfire occurrence is suppressed.
  • the execution mode of the combustion control is once switched to the second execution mode, unless the fuel supply determination unit determines that there is fuel supply, that is, unless the cetane number of the fuel stored in the fuel tank changes. Switching from the second execution mode of combustion control to the first execution mode according to the estimated cetane number is prohibited. As a result, after the occurrence of misfire has temporarily subsided with the switching of the execution mode of the combustion control to the second execution mode, the execution mode of the combustion control is returned to the first execution mode causing the occurrence of misfire, thereby again. A situation in which a misfire occurs is avoided.
  • the estimation unit estimates which region of the plurality of cetane number regions the cetane number of the fuel supplied to the internal combustion engine belongs to, and the first control unit estimates the cetane number estimated by the estimation unit.
  • the combustion control is executed in the first execution mode corresponding to the region, and the second control unit executes the combustion control in the second execution mode corresponding to the region on the cetane number side lower than the cetane number region estimated by the estimation unit.
  • the estimation unit performs auxiliary injection for performing fuel injection for estimating the cetane number of fuel separately from basic injection control in which fuel injection is performed in an amount corresponding to the operating state of the internal combustion engine. While executing the control, an index value of the engine torque generated along with the execution of the auxiliary injection control is detected, and the detected index value is stored as the estimated cetane number.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of a control device for an internal combustion engine according to an embodiment of the present invention.
  • Sectional drawing which shows the cross-section of a fuel injection valve.
  • the time chart which shows the relationship between transition of fuel pressure and the detection time waveform of a fuel injection rate.
  • the flowchart which shows the execution procedure of a correction process.
  • the time chart which shows an example of the relationship between a detection time waveform and a basic time waveform.
  • the flowchart which shows the specific execution procedure of an index value detection process. Explanatory drawing explaining the calculation method of rotation fluctuation amount.
  • the flowchart which shows the execution procedure of flag operation processing.
  • the flowchart which shows the execution procedure of a cetane number area
  • the timing chart which shows an example of the execution aspect of a cetane number area
  • the vehicle 10 is equipped with an internal combustion engine 11 as a drive source.
  • a crankshaft 12 of the internal combustion engine 11 is connected to wheels 15 via a clutch mechanism 13 and a manual transmission 14.
  • a clutch operating member for example, a clutch pedal
  • the clutch mechanism 13 is in an operating state in which the connection between the crankshaft 12 and the manual transmission 14 is released.
  • An intake passage 17 is connected to the cylinder 16 of the internal combustion engine 11. Air is sucked into the cylinder 16 of the internal combustion engine 11 through the intake passage 17.
  • the internal combustion engine 11 one having a plurality of (four [# 1 to # 4] in the present embodiment) cylinders 16 is employed.
  • a direct injection type fuel injection valve 20 that directly injects fuel into the cylinder 16, in this embodiment, diesel fuel, is attached to each cylinder 16.
  • the fuel injected by opening the fuel injection valve 20 is ignited and burned in contact with the intake air compressed and heated in the cylinder 16 of the internal combustion engine 11.
  • the piston 18 is pushed down by the energy generated by the combustion of fuel in the cylinder 16, and the crankshaft 12 is forcibly rotated. Combustion gas burned in the cylinder 16 of the internal combustion engine 11 is discharged as an exhaust gas into an exhaust passage 19 of the internal combustion engine 11.
  • Each fuel injection valve 20 is individually connected to a common rail 34 via a branch passage 31a, and the common rail 34 is connected to a fuel tank 32 via a supply passage 31b.
  • a fuel pump 33 that pumps fuel is provided in the supply passage 31b.
  • the fuel boosted by the pumping by the fuel pump 33 is stored in the common rail 34 and supplied to each fuel injection valve 20.
  • a return passage 35 is connected to each fuel injection valve 20, and each return passage 35 is connected to a fuel tank 32. Part of the fuel inside the fuel injection valve 20 is returned to the fuel tank 32 through the return passage 35.
  • a needle valve 22 is provided inside the housing 21 of the fuel injection valve 20.
  • the needle valve 22 is provided in a state capable of reciprocating in the housing 21 (moving up and down in the figure).
  • a spring 24 that constantly urges the needle valve 22 toward the injection hole 23 (the lower side in the figure).
  • a nozzle chamber 25 is formed in the housing 21 at a position on one side (lower side in the figure) with the needle valve 22 interposed therebetween, and on the other side (upper side in the figure).
  • a pressure chamber 26 is formed.
  • the nozzle chamber 25 is formed with a plurality of injection holes 23 that communicate the inside with the outside of the housing 21, and fuel is supplied from the branch passage 31 a (common rail 34) through the introduction passage 27.
  • the pressure chamber 26 is connected to the nozzle chamber 25 and the branch passage 31a (common rail 34) via a communication passage 28.
  • the pressure chamber 26 is connected to a return passage 35 (fuel tank 32) via a discharge passage 30.
  • the fuel injection valve 20 employs an electrically driven type, and a piezoelectric actuator 29 in which a plurality of piezoelectric elements (for example, piezo elements) that expand and contract by input of a drive signal is provided in the housing 21. It has been.
  • a valve body 29 a is attached to the piezoelectric actuator 29, and the valve body 29 a is provided inside the pressure chamber 26. Then, through the movement of the valve element 29 a by the operation of the piezoelectric actuator 29, one of the communication path 28 (nozzle chamber 25) and the discharge path 30 (return path 35) is selectively communicated with the pressure chamber 26. It has become.
  • the piezoelectric actuator 29 expands to move the valve element 29a, the communication between the communication passage 28 and the pressure chamber 26 is cut off, and the return passage. 35 and the pressure chamber 26 are in communication with each other.
  • part of the fuel in the pressure chamber 26 is returned to the fuel tank 32 via the return passage 35 in a state where fuel outflow from the nozzle chamber 25 to the pressure chamber 26 is prohibited.
  • the pressure of the fuel in the pressure chamber 26 decreases and the pressure difference between the pressure chamber 26 and the nozzle chamber 25 increases, and the pressure difference causes the needle valve 22 to move against the biasing force of the spring 24 and inject.
  • the fuel injection valve 20 is in a state in which fuel is injected (opened state) at this time.
  • the fuel injection valve 20 is integrally attached with a pressure sensor 41 that outputs a signal corresponding to the fuel pressure PQ inside the introduction passage 27. For this reason, for example, the fuel in a portion near the injection hole 23 of the fuel injection valve 20 as compared with a device that detects the fuel pressure at a position away from the fuel injection valve 20 such as the fuel pressure in the common rail 34 (see FIG. 1). The pressure can be detected, and the change in the fuel pressure inside the fuel injection valve 20 accompanying the opening of the fuel injection valve 20 can be detected with high accuracy.
  • One pressure sensor 41 is provided for each fuel injection valve 20, that is, for each cylinder 16 of the internal combustion engine 11.
  • the internal combustion engine 11 is provided with various sensors as peripheral devices for detecting an operation state.
  • these sensors in addition to the pressure sensor 41, for example, the crank sensor 42 for detecting the rotational phase and rotational speed (engine rotational speed NE) of the crankshaft 12, and the operation amount of an accelerator operating member (for example, an accelerator pedal).
  • An accelerator sensor 43 for detecting (accelerator operation amount ACC) is provided.
  • a clutch switch 45 for detecting whether or not the clutch operating member is operated, and the amount of fuel stored in the fuel tank 32 (the amount of stored fuel)
  • a stockpiling amount sensor 46 for detecting SP is provided.
  • an operation switch 47 that is turned on when the operation of the internal combustion engine 11 is started and turned off when the operation is stopped is also provided.
  • an electronic control unit 40 configured with a microcomputer.
  • the electronic control unit 40 functions as an estimation unit, a first control unit, a second control unit, a misfire determination unit, a replenishment determination unit, and a prohibition unit.
  • the electronic control unit 40 captures output signals of various sensors and performs various types based on the output signals. And various controls relating to the operation of the internal combustion engine 11 such as drive control (fuel injection control) of the fuel injection valve 20 are executed according to the calculation result.
  • the fuel injection control of this embodiment is basically executed as follows.
  • a control target value (required injection amount TAU) for the fuel injection amount for operation of the internal combustion engine 11 is calculated based on the accelerator operation amount ACC, the engine speed NE, and the like. Thereafter, a control target value for fuel injection timing (required injection timing Tst) and a control target value for fuel injection time (required injection time Ttm) are calculated based on the required injection amount TAU and the engine speed NE. Based on the required injection timing Tst and the required injection time Ttm, the valve opening drive of each fuel injection valve 20 is executed. Thereby, an amount of fuel commensurate with the operation state of the internal combustion engine 11 at that time is injected from each fuel injection valve 20 and supplied into each cylinder 16 of the internal combustion engine 11. In the present embodiment, the drive control of each fuel injection valve 20 based on the required injection timing Tst and the required injection time Ttm functions as equivalent to the basic injection control.
  • control for temporarily stopping fuel injection for operation of the internal combustion engine 11 is executed.
  • the fuel injection control of the present embodiment three regions are set, a region where the cetane number of the fuel is low (low cetane number region), a medium region (medium cetane number region), and a high region (high cetane number region).
  • the fuel injection control is executed in a different execution mode for each region.
  • the required injection timing Tst is set to the advance timing for the region with the lower cetane number.
  • the relationship between the engine operating state determined by the required injection amount TAU and the engine speed NE and the required injection timing Tst corresponding to the cetane number region is the result of various experiments and simulations.
  • the same relationship is stored in the electronic control unit 40 as a calculation map (ML, MM, MH). Then, based on the required injection amount TAU and the engine speed NE at that time, the calculation map ML is used for the low cetane number region, the calculation map MM is used for the medium cetane number region, and the calculation is performed for the high cetane number region.
  • the required injection timing Tst is calculated from each map MH.
  • the fuel injection from the fuel injection valve 20 is executed in this way, an error may occur in the execution timing and the injection amount due to the initial individual difference of the fuel injection valve 20 and the change over time. Such an error is undesirable because it changes the output torque of the internal combustion engine 11. Therefore, in the present embodiment, in order to properly execute the fuel injection from each fuel injection valve 20 according to the operating state of the internal combustion engine 11, the fuel injection is performed based on the fuel pressure PQ detected by the pressure sensor 41. A correction process for forming the rate detection time waveform and correcting the required injection timing Tst and the required injection time Ttm based on the detection time waveform is executed. This correction process is executed separately for each cylinder 16 of the internal combustion engine 11.
  • the fuel pressure inside the fuel injection valve 20 is reduced when the fuel injection valve 20 is opened, and then increased when the fuel injection valve 20 is closed. It fluctuates with it. Therefore, by monitoring the fluctuation waveform of the fuel pressure inside the fuel injection valve 20 at the time of fuel injection execution, the actual operation characteristics of the fuel injection valve 20 (for example, the actual fuel injection amount and the valve opening operation are started). And when the valve closing operation is started). Therefore, by correcting the required injection timing Tst and the required injection time Ttm based on the actual operating characteristics of the fuel injection valve 20, the fuel injection timing and the fuel injection amount can be accurately adjusted in accordance with the operating state of the internal combustion engine 11. Can be set.
  • FIG. 3 shows the relationship between the transition of the fuel pressure PQ and the detection time waveform of the fuel injection rate.
  • valve opening operation start timing Tos a timing at which the valve opening operation of the fuel injection valve 20 (specifically, movement of the needle valve 22 toward the valve opening side) is started (valve opening operation start timing Tos), fuel When the injection rate becomes maximum (maximum injection rate arrival time Toe), when the fuel injection rate starts to decrease (injection rate decrease start time Tcs), and when the fuel injection valve 20 is closed (specifically, the needle valve 22
  • Tce valve closing operation completion timing
  • the average value of the fuel pressure PQ in the predetermined period T1 immediately before the start of the valve opening operation of the fuel injection valve 20 is calculated, and the average value is stored as the reference pressure Pbs.
  • the reference pressure Pbs is used as a pressure corresponding to the fuel pressure inside the fuel injection valve 20 when the valve is closed.
  • the predetermined pressure P1 corresponds to the change in the fuel pressure PQ, that is, the movement of the needle valve 22 even when the needle valve 22 is in the closed position when the fuel injection valve 20 is driven to open or close. This is a pressure corresponding to a change in the fuel pressure PQ that does not contribute.
  • a first-order differential value d (PQ) / dt is calculated according to the time of the fuel pressure PQ in a period in which the fuel pressure PQ drops immediately after the start of fuel injection. Then, the tangent L1 of the time waveform of the fuel pressure PQ at the point where the first-order differential value becomes the minimum, that is, the point where the downward slope of the fuel pressure PQ becomes the largest is obtained, and the intersection of the tangent L1 and the operating pressure Pac is obtained. A is calculated. The timing corresponding to the point AA where the intersection A is returned to the past timing by the following detection delay of the fuel pressure PQ is specified as the valve opening operation start timing Tos.
  • the detection delay is a period corresponding to the delay of the change timing of the fuel pressure PQ with respect to the pressure change timing of the nozzle chamber 25 (see FIG. 2) of the fuel injection valve 20, and the distance between the nozzle chamber 25 and the pressure sensor 41. This is a delay caused by the above.
  • the first-order differential value of the fuel pressure PQ during the period in which the fuel pressure PQ rises after dropping once immediately after the start of fuel injection is calculated.
  • the tangent L2 of the time waveform of the fuel pressure PQ at the point where the first-order differential value becomes the maximum is obtained, and the intersection of the tangent L2 and the operating pressure Pac B is calculated.
  • the timing corresponding to the point BB where the intersection B is returned to the past timing by the detection delay is specified as the valve closing operation completion timing Tce.
  • a time CC at which the intersection C is returned to the past time by the detection delay is calculated, and a point D at which the virtual maximum fuel injection rate VRt is reached at the same time CC is specified.
  • the timing corresponding to the intersection E between the straight line L3 connecting the point D and the valve opening operation start timing Tos (specifically, the point at which the fuel injection rate becomes “0” at the same time Tos) and the maximum injection rate Rt is obtained. It is specified as the maximum injection rate arrival time Toe.
  • the timing corresponding to the intersection F between the straight line L4 and the maximum injection rate Rt connecting the point D and the valve closing operation completion timing Tce (specifically, the point at which the fuel injection rate becomes “0” at the same time Tce) is injected. It is specified as the rate drop start time Tcs.
  • the trapezoidal time waveform formed by the valve opening operation start timing Tos, the maximum injection rate arrival timing Toe, the injection rate drop start timing Tcs, the valve closing operation completion timing Tce and the maximum injection rate Rt is a fuel injection rate in fuel injection. Is used as a detection time waveform.
  • FIG. 4 is a flowchart showing a specific processing procedure of the correction processing.
  • the series of processes shown in this flowchart conceptually shows the execution procedure of the correction process, and the actual process is executed by the electronic control unit 40 as an interrupt process at predetermined intervals.
  • FIG. 5 shows an example of the relationship between the detection time waveform and the following basic time waveform.
  • a detection time waveform at the time of execution of fuel injection is formed based on the fuel pressure PQ (step S101). Further, based on the operating state of the internal combustion engine 11 such as the accelerator operation amount ACC and the engine speed NE, a basic value (basic time waveform) for the time waveform of the fuel injection rate at the time of execution of fuel injection is set (step). S102).
  • the relationship between the operating state of the internal combustion engine 11 and the basic time waveform suitable for the operating state is obtained in advance based on the results of experiments and simulations and stored in the electronic control unit 40.
  • a basic time waveform is set from the above relationship based on the operating state of the internal combustion engine 11 at that time.
  • the basic time waveform (one-dot chain line) includes the valve opening operation start timing Tosb, the maximum injection rate arrival timing Toeb, the injection rate drop start timing Tcsb, the valve closing operation completion timing Tceb, and the maximum injection rate.
  • the specified trapezoidal time waveform is set.
  • the basic time waveform and the detection time waveform (solid line) are compared, and a correction term for correcting the control target value (the required injection timing Tst) of the fuel injection start timing based on the comparison result.
  • K1 and a correction term K2 for correcting the control target value (required injection time Ttm) of the execution time of the same fuel injection are respectively calculated.
  • a value obtained by correcting the required injection timing Tst by the correction term K1 (in this embodiment, a value obtained by adding the correction term K1 to the required injection timing Tst) is calculated as the final required injection timing Tst.
  • a value obtained by correcting the required injection time Ttm by the correction term K2 (in this embodiment, a value obtained by adding the correction term K2 to the required injection time Ttm) is calculated as the final required injection time Ttm.
  • the required injection timing Tst is based on the difference between the actual operating characteristic (specifically, the detection time waveform) of the fuel injection valve 20 and the predetermined basic operating characteristic (specifically, the basic time waveform). Since the required injection time Ttm is corrected, the deviation between the actual operating characteristics of the fuel injection valve 20 and the basic operating characteristics (the operating characteristics of the fuel injection valve having standard characteristics) can be suppressed. Therefore, the injection timing and the injection amount in the fuel injection from each fuel injection valve 20 are set appropriately so as to match the operating state of the internal combustion engine 11.
  • control for detecting the cetane number index value of the fuel to be used for combustion in the internal combustion engine 11 is executed.
  • the outline of the index value detection process will be described below.
  • an execution condition including a condition that the above-described fuel cut control is being executed ([Condition 1] described later) is set. Then, when this execution condition is satisfied, fuel injection to the internal combustion engine 11 at a predetermined small predetermined amount FQ (for example, several cubic millimeters) is executed, and the internal combustion generated along with the execution of the fuel injection
  • FQ a predetermined small predetermined amount
  • An index value of the output torque of the engine 11 (rotational fluctuation amount ⁇ NE described later) is detected as a fuel cetane number index value. As the rotational fluctuation amount ⁇ NE, a larger value is detected as a larger output torque is generated in the internal combustion engine 11.
  • the cetane number index value of the fuel is detected based on the relationship between the cetane number of the fuel and the output torque of the internal combustion engine 11.
  • FIG. 6 is a flowchart showing a specific execution procedure of the index value detection process. Note that the series of processes shown in this flowchart conceptually shows the execution procedure of the index value detection process, and the actual process is executed by the electronic control unit 40 as an interrupt process at predetermined intervals.
  • step S201 it is first determined whether or not an execution condition is satisfied.
  • the execution condition is satisfied when all of the following [Condition 1] to [Condition 3] are satisfied.
  • [Condition 1] The fuel cut control is executed.
  • [Condition 2] The clutch mechanism 13 is in an operating state in which the connection between the crankshaft 12 and the manual transmission 14 is released. Specifically, the clutch operating member is operated.
  • [Condition 3] The correction process is properly executed. Specifically, each correction term K1, K2 calculated in the correction process is neither an upper limit nor a lower limit.
  • step S201 NO
  • this process is temporarily terminated without executing the following process, that is, the process of detecting the cetane number index value of the fuel.
  • step S201 YES
  • execution of the process for detecting the cetane number index value of the fuel is started.
  • a predetermined control target value for fuel injection timing (target injection timing TQst) and a control target value for fuel injection time (target injection time TQtm) are obtained by the correction processing described above with reference to FIGS.
  • Correction is performed by the calculated correction terms K1 and K2 (step S202 in FIG. 6).
  • a value obtained by adding the correction term K1 to the target injection timing TQst is set as a new target injection timing TQst
  • a value obtained by adding the correction term K2 to the target injection time TQtm is set as a new target injection time TQtm.
  • step S203 drive control of the fuel injection valve 20 based on the target injection timing TQst and the target injection time TQtm is executed, and fuel injection from the fuel injection valve 20 is executed (step S203).
  • a predetermined amount FQ of fuel is injected from the fuel injection valve 20 at a timing at which variations in the rotational fluctuation amount ⁇ NE are suppressed.
  • the fuel injection in the process of step S203 uses a predetermined one of the plurality of fuel injection valves 20 (in this embodiment, the fuel injection valve 20 attached to the cylinder 16 [# 1]). Executed.
  • the correction terms K1 and K2 used in the present processing are also set to predetermined ones of the fuel injection valves 20 (in this embodiment, the fuel injection valves 20 attached to the cylinder 16 [# 1]). Correspondingly calculated values are used.
  • the drive control of the fuel injection valve 20 based on the target injection timing TQst and the target injection time TQtm by the process of step S203 functions as equivalent to the auxiliary injection control.
  • the present process is temporarily terminated.
  • the low cetane number region, the medium cetane number region, or the high cetane number region is specified based on the rotational fluctuation amount ⁇ NE detected through the index value detection process.
  • the specified area is stored in the electronic control unit 40. Specifically, when the rotational fluctuation amount ⁇ NE is less than the predetermined value PL ( ⁇ NE ⁇ PL), it is determined that the region is in the low cetane number region, and when the rotational fluctuation amount ⁇ NE is less than the predetermined value PH (PL ⁇ ⁇ NE ⁇ PH).
  • misfire determination processing for determining whether or not misfire has occurred in the internal combustion engine 11 is executed.
  • the cetane number region stored in the electronic control unit 40 when a misfire has occurred despite the execution of fuel injection control in accordance with the cetane number region stored in the electronic control unit 40, the cetane number region stored at this time.
  • the fuel injection control is executed in an execution manner corresponding to a lower cetane number region.
  • the execution mode of the fuel injection control is an execution mode corresponding to the cetane number region stored in the electronic control unit 40, that is, the execution mode that has caused the misfire.
  • the first execution mode is switched to the execution mode (second execution mode) corresponding to the low cetane number fuel.
  • the fuel supply determination process for determining whether or not fuel is supplied to the fuel tank 32 is executed, and it is determined that fuel supply is performed through the fuel supply determination process when the fuel injection control is performed in the second execution mode. In the meantime, switching from the second execution mode of the fuel injection control to the first execution mode is prohibited.
  • Fig. 8 shows the specific execution procedure of the flag operation process.
  • a series of processes shown in the flowchart of FIG. 6 is executed by the electronic control unit 40 as an interrupt process at predetermined intervals.
  • step S301 when it is determined that misfire has occurred through the misfire determination process described above (step S301: YES), the misfire detection flag is turned on (step S302).
  • the refueling flag is turned on when it is determined that the fuel tank 32 is refueled through the refueling determination process.
  • the reserve fuel amount SP detected by the reserve amount sensor 46 when the operation switch 47 is turned off is the amount of fuel stored in the fuel tank 32 at the start of fuel supply (the reserve amount V1 before supply). ) Is stored in the electronic control unit 40. Further, the stored fuel amount SP detected by the stored amount sensor 46 when the operation switch 47 is turned on is used as the amount of fuel stored in the fuel tank 32 after refueling (replenished stock amount VP).
  • step S303 When the fuel tank 32 is refueled and the refueling flag is turned on (step S303: YES), the misfire detection flag is turned off (step S304), and then the refueling flag is turned off (step S304). Step S305).
  • the misfire detection flag is turned on when a misfire occurs in the internal combustion engine 11 and is turned off when fuel is supplied to the fuel tank 32 thereafter. Is called.
  • the execution mode of the fuel injection control is switched according to the operation state of the misfire detection flag.
  • Figure 9 shows the execution procedure of the cetane number area identification process.
  • the series of processes shown in the flowchart of FIG. 6 is executed by the electronic control unit 40 as an interrupt process at predetermined intervals.
  • step S401 it is determined whether or not the misfire detection flag is turned off.
  • step S401: YES it is stored in the electronic control unit 40 every time the rotational fluctuation amount ⁇ NE is calculated, assuming that no misfire has occurred in the internal combustion engine 11 at this time.
  • a process for updating the cetane number area is executed. Specifically, when the rotational fluctuation amount ⁇ NE is newly calculated and stored between the previous execution of this process and the current execution (step S402: YES), cetane is set based on the rotational fluctuation amount ⁇ NE.
  • a valence area is specified and stored in the electronic control unit 40 (step S403). In this case, the fuel injection control is executed in the first execution mode corresponding to the cetane number region specified and stored based on the rotational fluctuation amount ⁇ NE.
  • step S401: NO it is determined that a misfire has occurred between the previous execution of this process and the current execution (step S401).
  • step S404: YES the cetane number region stored in the electronic control unit 40 is changed to a region on the low cetane number side by one step (step S406). Specifically, when the high cetane number region is stored in the electronic control unit 40, the medium cetane number region is changed to be stored in the electronic control unit 40, and the medium cetane number region is stored in the electronic control unit 40. Sometimes, the low cetane number region is changed to be stored in the electronic control unit 40.
  • step S405 YES
  • step S405 YES
  • step S404 YES
  • the cetane number area is changed to the low cetane number area and then it is determined again that misfire has occurred through the misfire determination process (step S404: YES)
  • it is stored in the electronic control unit 40.
  • the existing cetane number region is further changed to a region on the low cetane number side by one step (step S406). Specifically, once the cetane number region is changed from the high cetane number region to the medium cetane number region, if it is determined again that misfire has occurred through the misfire determination process, the medium cetane number region is changed to the low cetane number region. .
  • step S401 YES
  • the cetane number region is specified based on the rotational fluctuation amount ⁇ NE every time the rotational fluctuation amount ⁇ NE is calculated.
  • the storing process is executed (step S402 and step S403). That is, in this case, assuming that the fuel tank 32 has been refueled with the occurrence of misfire in the internal combustion engine 11, switching to the fuel injection control in the first execution mode based on the rotational fluctuation amount ⁇ NE is permitted. Is done.
  • FIG. 10 shows an example of an execution mode of the cetane number region specifying process.
  • the misfire detection flag is turned off because no misfire has occurred in the internal combustion engine 11, and the refueling flag is turned off. Further, since fuel with a relatively high cetane number is stored in the fuel tank 32, a high cetane number region is specified based on the rotational fluctuation amount ⁇ NE and stored in the electronic control unit 40.
  • the misfire detection flag is turned on, and the cetane number region is changed to a region on the low cetane number side (medium cetane number region) by one step.
  • the execution mode of the fuel injection control is switched from the first execution mode based on the rotational fluctuation amount ⁇ NE to the second execution mode commensurate with the low cetane number fuel.
  • the cetane number region is specified and stored based on the rotational fluctuation amount ⁇ NE. Specifically, a high cetane number region is specified based on the rotational fluctuation amount ⁇ NE and stored in the electronic control unit 40. Thereafter, the fuel injection control in the first execution mode based on the rotational fluctuation amount ⁇ NE is executed.
  • the target injection timing TQst and the target injection time TQtm are corrected by the correction terms K1, K2. May be omitted (step S202 in FIG. 6).
  • the control device is a device for determining which of the two cetane number regions divided by the fuel cetane number index value (rotational fluctuation amount ⁇ NE) or four or more cetane numbers.
  • the present invention can also be applied to a device that determines which area of the area the structure is changed as appropriate.
  • EGR control or pilot injection Control for changing the execution mode according to the cetane number region stored in the electronic control unit 40, instead of or in addition to adopting control for setting the required injection timing Tst, EGR control or pilot injection Control or the like may be employed.
  • the combustion control related to the combustion of fuel in the internal combustion engine 11 in other words, the combustion control for adjusting the combustion state of the fuel in the internal combustion engine 11, is adopted as the control for changing the execution mode according to the cetane number region.
  • the EGR control may be executed so that the EGR amount decreases as it is in the low cetane number region.
  • pilot injection control may be executed so that the pilot injection amount increases, for example, when the region is on the low cetane number side.
  • the control apparatus concerning the said embodiment determines the execution aspect of fuel-injection control according to the rotation fluctuation amount (SIGMA) ⁇ NE itself, without specifying a cetane number area
  • the present invention can also be applied to the apparatus after changing its configuration as appropriate.
  • the rotational fluctuation amount ⁇ NE stored in the electronic control unit 40 when the misfire occurrence determination is determined through the misfire determination process is corrected by a predetermined amount, and thereafter the fuel tank 32 is corrected. Until the fuel is refueled, the cancellation of the reduction correction of the rotation fluctuation amount ⁇ NE may be prohibited.
  • the control device estimates the cetane number of the fuel itself based on the rotational fluctuation amount ⁇ NE stored in the electronic control unit 40 and executes the fuel injection control in an execution mode corresponding to the estimated cetane number.
  • the present invention can also be applied to an apparatus that changes the configuration as appropriate. In such an apparatus, for example, when it is determined that misfire has occurred through misfire determination processing, the estimated cetane number stored in the electronic control unit 40 is corrected to a value on the cetane number side lower by a predetermined value, Thereafter, cancellation of the correction of the estimated cetane number may be prohibited until the fuel tank 32 is refueled.
  • a value other than the rotational fluctuation amount ⁇ NE may be calculated as an index value of the output torque of the internal combustion engine 11. For example, during the execution of the index value detection process, the engine rotational speed NE at the time of execution of fuel injection and the engine rotational speed NE immediately before the execution of the fuel injection are respectively detected and the difference between these speeds is calculated. It can be used as an index value.
  • the pressure sensor 41 is mounted in an appropriate manner so that the fuel pressure indicator in the fuel injection valve 20 (specifically, in the nozzle chamber 25), in other words, the fuel pressure that changes with the change in the fuel pressure is appropriately set.
  • the present invention is not limited to the mode of being directly attached to the fuel injection valve 20, but can be arbitrarily changed.
  • the pressure sensor may be attached to the branch passage 31 a or the common rail 34.
  • a type of fuel injection valve 20 driven by the piezoelectric actuator 29 for example, a type of fuel injection valve driven by an electromagnetic actuator provided with a solenoid coil or the like may be employed.
  • the control device can be applied not only to the vehicle 10 on which the clutch mechanism 13 and the manual transmission 14 are mounted, but also to a vehicle on which a torque converter and an automatic transmission are mounted.
  • fuel injection for estimating the cetane number of fuel may be executed.
  • [Condition 4] that the lockup clutch is not engaged is newly set and the [Condition 4] is satisfied.
  • the fuel injection for detecting the cetane number index value of the fuel may be executed on the condition that
  • the present invention is not limited to a device that performs fuel injection (auxiliary fuel injection) for estimating the cetane number, and estimates the cetane number of the fuel supplied to the internal combustion engine 11 and responds to the estimated cetane number.
  • Any device that performs combustion control in an execution mode can be applied. Examples of such a device include the following devices. That is, first, when the fuel injection for the operation of the internal combustion engine is executed when the predetermined execution condition is satisfied, the pressure in the cylinder (in-cylinder pressure) of the internal combustion engine is detected by the in-cylinder pressure sensor. Based on this in-cylinder pressure, the time when the fuel is actually ignited is calculated, and the ignition delay time is calculated based on the same period. Thereafter, an average value of the calculated ignition delay time is calculated, and a cetane number index value is calculated based on the average value. And combustion control is performed in the execution mode according to this cetane number index value.
  • the present invention is not limited to an internal combustion engine having four cylinders, but also to a single cylinder internal combustion engine, an internal combustion engine having two cylinders, an internal combustion engine having three cylinders, or an internal combustion engine having five or more cylinders. Can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

An estimate is made of a cetane value region to which fuel supplied to an internal combustion engine belongs, and fuel-injection control is performed (before (t11)) in a first performance mode according to the estimated cetane value region. Whether or not misfiring in the internal combustion engine has occurred is determined; and, if a misfire is determined to have occurred (t11), fuel-injection control is performed in a second performance mode according to a cetane value region that is lower than the estimated cetane value region. It is then determined if any fuel has been supplied to the fuel tank. Until it is determined that fuel has been supplied when fuel-injection control is performed in the second performance mode ((t11) to (t15)), switching from the second performance mode to the first performance mode for controlling fuel injection is prohibited.

Description

内燃機関の制御装置Control device for internal combustion engine
 本発明は、内燃機関に供給される燃料のセタン価を推定するとともにその推定したセタン価に基づいて機関運転制御を実行する内燃機関の制御装置に関するものである。 The present invention relates to a control device for an internal combustion engine that estimates the cetane number of fuel supplied to the internal combustion engine and executes engine operation control based on the estimated cetane number.
 圧縮着火式の内燃機関では、燃料噴射弁によって気筒内に噴射された燃料が、噴射されてから所定の時間(いわゆる着火遅れ)が経過した後に着火される。内燃機関の出力性能やエミッション性能の向上を図るために、そうした着火遅れを考慮した上で、燃料噴射における噴射時期や噴射量などといった機関制御の実行態様を制御する制御装置が広く採用されている。 In a compression ignition type internal combustion engine, fuel injected into a cylinder by a fuel injection valve is ignited after a predetermined time (so-called ignition delay) has elapsed since injection. In order to improve the output performance and emission performance of an internal combustion engine, a control device that controls the execution mode of engine control such as injection timing and injection amount in fuel injection in consideration of such ignition delay is widely adopted. .
 上記内燃機関では、使用される燃料のセタン価が低いときほどその着火遅れが長くなる。そのため、例えば内燃機関の出荷時において標準的なセタン価の燃料が用いられる状況を想定して機関制御の実行態様を設定したとしても、冬期燃料等、セタン価が相対的に低い燃料が燃料タンクに補給された場合には燃料の着火時期が遅くなるとともにその燃焼状態が悪化するようになり、場合によっては失火が発生してしまう。 In the internal combustion engine, the lower the cetane number of the fuel used, the longer the ignition delay. For this reason, for example, even if the engine control execution mode is set assuming that a standard cetane number fuel is used at the time of shipment of the internal combustion engine, a fuel with a relatively low cetane number such as winter fuel is used as a fuel tank. When the fuel is replenished, the ignition timing of the fuel is delayed and the combustion state is deteriorated. In some cases, misfire occurs.
 そこで従来、特許文献1に記載の装置のように、内燃機関の気筒内に噴射される燃料のセタン価を推定するとともにその推定したセタン価に応じたかたちで機関運転制御を実行することが提案されている。また特許文献1に記載の装置では、推定セタン価に応じて機関運転制御を実行したにも拘わらず失火が発生してしまった場合に、このときの推定セタン価によることなく、想定範囲内において最も低いセタン価に見合う実行態様での機関運転制御が実行される。 Therefore, conventionally, as in the apparatus described in Patent Document 1, it has been proposed to estimate the cetane number of the fuel injected into the cylinder of the internal combustion engine and to execute the engine operation control in accordance with the estimated cetane number. Has been. Moreover, in the apparatus described in Patent Document 1, when misfiring has occurred despite the engine operation control being executed in accordance with the estimated cetane number, the estimated cetane number does not depend on the estimated range. The engine operation control is executed in an execution mode commensurate with the lowest cetane number.
特開2007-56776号公報JP 2007-56776 A
 特許文献1に記載の装置では、失火が発生してしまった場合に、機関運転制御の実行態様が推定セタン価に応じた実行態様から低セタン価燃料に応じた実行態様に切り替えられるため、着火遅れが想定した時間より長くなることが抑えられる。これにより、燃料の燃焼状態の悪化が抑えられて失火の発生が抑えられる。 In the device described in Patent Document 1, when a misfire has occurred, the execution mode of engine operation control is switched from the execution mode according to the estimated cetane number to the execution mode according to the low cetane number fuel. It is possible to prevent the delay from becoming longer than the expected time. Thereby, the deterioration of the combustion state of the fuel is suppressed and the occurrence of misfire is suppressed.
 しかしながら、そうした装置では、失火発生に伴って一旦機関運転制御の実行態様を切り替えた後に失火が発生しなくなることによって機関運転制御が切り替え前の実行態様、すなわち推定セタン価に基づく実行態様に戻されると、内燃機関の運転状態が元の状態に戻ってしまう。そして、この場合には再び失火の発生を招く可能性が高い。 However, in such a device, the engine operation control is returned to the execution mode before the switching, that is, the execution mode based on the estimated cetane number, because the misfire does not occur after the execution mode of the engine operation control is once switched due to the occurrence of the misfire. Then, the operating state of the internal combustion engine returns to the original state. In this case, there is a high possibility that misfire will occur again.
 本発明は、そうした実情に鑑みてなされたものであり、その目的は、失火発生を好適に抑えることのできる内燃機関の制御装置を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide a control device for an internal combustion engine that can suitably suppress the occurrence of misfire.
 上記目的を達成するため、本発明に従う内燃機関の制御装置では、推定部によって内燃機関に供給される燃料のセタン価が推定されるとともに、第1制御部により、推定した推定セタン価に応じた第1実行態様で燃料の燃焼に関する燃焼制御が実行される。これにより、内燃機関に供給される燃料のセタン価に応じたかたちで燃焼制御を実行することができる。 In order to achieve the above object, in the control device for an internal combustion engine according to the present invention, the estimation unit estimates the cetane number of the fuel supplied to the internal combustion engine, and the first control unit responds to the estimated estimation cetane number. Combustion control related to fuel combustion is executed in the first execution mode. Thereby, combustion control can be executed in a manner corresponding to the cetane number of the fuel supplied to the internal combustion engine.
 また上記装置では、失火判定部によって内燃機関における失火発生の有無が判定される。そして、この失火判定部により失火発生有りと判定したときに、推定部により推定した推定セタン価より低いセタン価の燃料に応じた第2実行態様で燃焼制御が実行される。そのため、第1実行態様での燃焼制御の実行に際して失火が発生した場合であれ、その後における失火発生が抑えられる。 In the above apparatus, the misfire determination unit determines whether or not misfire has occurred in the internal combustion engine. When the misfire determination unit determines that misfire has occurred, the combustion control is executed in a second execution mode corresponding to fuel having a cetane number lower than the estimated cetane number estimated by the estimation unit. Therefore, even if a misfire occurs during the execution of the combustion control in the first execution mode, the subsequent misfire occurrence is suppressed.
 しかも、燃焼制御の実行態様が一旦第2実行態様に切り替えられた後においては、補給判定部によって燃料補給有りと判定されない限り、すなわち燃料タンク内に備蓄されている燃料のセタン価が変化しない限り、燃焼制御の第2実行態様から推定セタン価に応じた第1実行態様への切り替えが禁止される。これにより、燃焼制御の実行態様の第2実行態様への切り替えに伴って失火発生が一旦収まった後において、同燃焼制御の実行態様が失火発生を招いた第1実行態様に戻されることによって再度失火発生を招いてしまうといった状況になることが回避される。 Moreover, after the execution mode of the combustion control is once switched to the second execution mode, unless the fuel supply determination unit determines that there is fuel supply, that is, unless the cetane number of the fuel stored in the fuel tank changes. Switching from the second execution mode of combustion control to the first execution mode according to the estimated cetane number is prohibited. As a result, after the occurrence of misfire has temporarily subsided with the switching of the execution mode of the combustion control to the second execution mode, the execution mode of the combustion control is returned to the first execution mode causing the occurrence of misfire, thereby again. A situation in which a misfire occurs is avoided.
 したがって上記装置によれば、内燃機関における失火発生を好適に抑えることができるようになる。 Therefore, according to the above apparatus, it is possible to suitably suppress the occurrence of misfire in the internal combustion engine.
 本発明の一態様では、前記推定部は内燃機関に供給される燃料のセタン価が複数のセタン価領域の何れの領域に属するのかを推定し、第1制御部は推定部により推定したセタン価領域に応じた第1実行態様で燃焼制御を実行し、第2制御部は、推定部により推定したセタン価領域より低セタン価側の領域に応じた第2実行態様で燃焼制御を実行する。 In one aspect of the present invention, the estimation unit estimates which region of the plurality of cetane number regions the cetane number of the fuel supplied to the internal combustion engine belongs to, and the first control unit estimates the cetane number estimated by the estimation unit. The combustion control is executed in the first execution mode corresponding to the region, and the second control unit executes the combustion control in the second execution mode corresponding to the region on the cetane number side lower than the cetane number region estimated by the estimation unit.
 本発明の一態様では、前記推定部は、内燃機関の運転状態に応じた量での燃料噴射が行われる基本噴射制御とは別に、燃料のセタン価の推定のための燃料噴射を行う補助噴射制御を実行するとともに、同補助噴射制御の実行に伴い発生した機関トルクの指標値を検出し、その検出した指標値を前記推定セタン価として記憶する。 In one aspect of the present invention, the estimation unit performs auxiliary injection for performing fuel injection for estimating the cetane number of fuel separately from basic injection control in which fuel injection is performed in an amount corresponding to the operating state of the internal combustion engine. While executing the control, an index value of the engine torque generated along with the execution of the auxiliary injection control is detected, and the detected index value is stored as the estimated cetane number.
本発明を具体化した一実施形態にかかる内燃機関の制御装置の概略構成を示す略図。1 is a schematic diagram illustrating a schematic configuration of a control device for an internal combustion engine according to an embodiment of the present invention. 燃料噴射弁の断面構造を示す断面図。Sectional drawing which shows the cross-section of a fuel injection valve. 燃料圧力の推移と燃料噴射率の検出時間波形との関係を示すタイムチャート。The time chart which shows the relationship between transition of fuel pressure and the detection time waveform of a fuel injection rate. 補正処理の実行手順を示すフローチャート。The flowchart which shows the execution procedure of a correction process. 検出時間波形と基本時間波形との関係の一例を示すタイムチャート。The time chart which shows an example of the relationship between a detection time waveform and a basic time waveform. 指標値検出処理の具体的な実行手順を示すフローチャート。The flowchart which shows the specific execution procedure of an index value detection process. 回転変動量の算出方法を説明する説明図。Explanatory drawing explaining the calculation method of rotation fluctuation amount. フラグ操作処理の実行手順を示すフローチャート。The flowchart which shows the execution procedure of flag operation processing. セタン価領域特定処理の実行手順を示すフローチャート。The flowchart which shows the execution procedure of a cetane number area | region specific process. セタン価領域特定処理の実行態様の一例を示すタイミングチャート。The timing chart which shows an example of the execution aspect of a cetane number area | region specific process.
 以下、本発明を具体化した一実施形態にかかる内燃機関の制御装置について説明する。 Hereinafter, a control device for an internal combustion engine according to an embodiment of the present invention will be described.
 図1に示すように、車両10には、駆動源としての内燃機関11が搭載されている。内燃機関11のクランクシャフト12は、クラッチ機構13、手動変速機14を介して車輪15に連結されている。車両10では乗員によってクラッチ操作部材(例えばクラッチペダル)が操作されると、上記クラッチ機構13がクランクシャフト12と手動変速機14との連結を解除する作動状態になる。 As shown in FIG. 1, the vehicle 10 is equipped with an internal combustion engine 11 as a drive source. A crankshaft 12 of the internal combustion engine 11 is connected to wheels 15 via a clutch mechanism 13 and a manual transmission 14. In the vehicle 10, when a clutch operating member (for example, a clutch pedal) is operated by an occupant, the clutch mechanism 13 is in an operating state in which the connection between the crankshaft 12 and the manual transmission 14 is released.
 内燃機関11の気筒16には吸気通路17が接続されている。内燃機関11の気筒16内には吸気通路17を介して空気が吸入される。また、この内燃機関11としては複数(本実施形態では四つ[♯1~♯4])の気筒16を有するものが採用されている。内燃機関11には、気筒16毎に、同気筒16内に燃料、本実施形態ではディーゼル燃料を直接噴射する直噴タイプの燃料噴射弁20が取り付けられている。この燃料噴射弁20の開弁駆動によって噴射された燃料は内燃機関11の気筒16内において圧縮加熱された吸入空気に触れて着火および燃焼する。そして内燃機関11では、気筒16内における燃料の燃焼に伴い発生するエネルギによってピストン18が押し下げられてクランクシャフト12が強制回転されるようになる。内燃機関11の気筒16において燃焼した燃焼ガスは排気として内燃機関11の排気通路19に排出される。 An intake passage 17 is connected to the cylinder 16 of the internal combustion engine 11. Air is sucked into the cylinder 16 of the internal combustion engine 11 through the intake passage 17. As the internal combustion engine 11, one having a plurality of (four [# 1 to # 4] in the present embodiment) cylinders 16 is employed. In the internal combustion engine 11, a direct injection type fuel injection valve 20 that directly injects fuel into the cylinder 16, in this embodiment, diesel fuel, is attached to each cylinder 16. The fuel injected by opening the fuel injection valve 20 is ignited and burned in contact with the intake air compressed and heated in the cylinder 16 of the internal combustion engine 11. In the internal combustion engine 11, the piston 18 is pushed down by the energy generated by the combustion of fuel in the cylinder 16, and the crankshaft 12 is forcibly rotated. Combustion gas burned in the cylinder 16 of the internal combustion engine 11 is discharged as an exhaust gas into an exhaust passage 19 of the internal combustion engine 11.
 各燃料噴射弁20は分岐通路31aを介してコモンレール34に各別に接続されており、同コモンレール34は供給通路31bを介して燃料タンク32に接続されている。この供給通路31bには、燃料を圧送する燃料ポンプ33が設けられている。本実施形態では、燃料ポンプ33による圧送によって昇圧された燃料がコモンレール34に蓄えられるとともに各燃料噴射弁20の内部に供給される。また、各燃料噴射弁20にはリターン通路35が接続されており、同リターン通路35はそれぞれ燃料タンク32に接続されている。このリターン通路35を介して燃料噴射弁20内部の燃料の一部が燃料タンク32に戻される。 Each fuel injection valve 20 is individually connected to a common rail 34 via a branch passage 31a, and the common rail 34 is connected to a fuel tank 32 via a supply passage 31b. A fuel pump 33 that pumps fuel is provided in the supply passage 31b. In the present embodiment, the fuel boosted by the pumping by the fuel pump 33 is stored in the common rail 34 and supplied to each fuel injection valve 20. A return passage 35 is connected to each fuel injection valve 20, and each return passage 35 is connected to a fuel tank 32. Part of the fuel inside the fuel injection valve 20 is returned to the fuel tank 32 through the return passage 35.
 以下、燃料噴射弁20の内部構造について説明する。 Hereinafter, the internal structure of the fuel injection valve 20 will be described.
 図2に示すように、燃料噴射弁20のハウジング21の内部にはニードル弁22が設けられている。このニードル弁22はハウジング21内において往復移動(同図の上下方向に移動)することの可能な状態で設けられている。ハウジング21の内部には上記ニードル弁22を噴射孔23側(同図の下方側)に常時付勢するスプリング24が設けられている。またハウジング21の内部には、上記ニードル弁22を間に挟んで一方側(同図の下方側)の位置にノズル室25が形成されており、他方側(同図の上方側)の位置に圧力室26が形成されている。 As shown in FIG. 2, a needle valve 22 is provided inside the housing 21 of the fuel injection valve 20. The needle valve 22 is provided in a state capable of reciprocating in the housing 21 (moving up and down in the figure). Inside the housing 21 is provided a spring 24 that constantly urges the needle valve 22 toward the injection hole 23 (the lower side in the figure). A nozzle chamber 25 is formed in the housing 21 at a position on one side (lower side in the figure) with the needle valve 22 interposed therebetween, and on the other side (upper side in the figure). A pressure chamber 26 is formed.
 ノズル室25には、その内部とハウジング21の外部とを連通する複数の噴射孔23が形成されており、導入通路27を介して上記分岐通路31a(コモンレール34)から燃料が供給されている。圧力室26には連通路28を介して上記ノズル室25および分岐通路31a(コモンレール34)が接続されている。また圧力室26は排出路30を介してリターン通路35(燃料タンク32)に接続されている。 The nozzle chamber 25 is formed with a plurality of injection holes 23 that communicate the inside with the outside of the housing 21, and fuel is supplied from the branch passage 31 a (common rail 34) through the introduction passage 27. The pressure chamber 26 is connected to the nozzle chamber 25 and the branch passage 31a (common rail 34) via a communication passage 28. The pressure chamber 26 is connected to a return passage 35 (fuel tank 32) via a discharge passage 30.
 上記燃料噴射弁20としては電気駆動式のものが採用されており、そのハウジング21の内部には駆動信号の入力によって伸縮する複数の圧電素子(例えばピエゾ素子)が積層された圧電アクチュエータ29が設けられている。この圧電アクチュエータ29には弁体29aが取り付けられており、同弁体29aは圧力室26の内部に設けられている。そして、圧電アクチュエータ29の作動による弁体29aの移動を通じて、連通路28(ノズル室25)と排出路30(リターン通路35)とのうちの一方が選択的に圧力室26に連通されるようになっている。 The fuel injection valve 20 employs an electrically driven type, and a piezoelectric actuator 29 in which a plurality of piezoelectric elements (for example, piezo elements) that expand and contract by input of a drive signal is provided in the housing 21. It has been. A valve body 29 a is attached to the piezoelectric actuator 29, and the valve body 29 a is provided inside the pressure chamber 26. Then, through the movement of the valve element 29 a by the operation of the piezoelectric actuator 29, one of the communication path 28 (nozzle chamber 25) and the discharge path 30 (return path 35) is selectively communicated with the pressure chamber 26. It has become.
 この燃料噴射弁20では、圧電アクチュエータ29に閉弁信号が入力されると、圧電アクチュエータ29が収縮して弁体29aが移動し、連通路28と圧力室26とが連通された状態になるとともに、リターン通路35と圧力室26との連通が遮断された状態になる。これにより、圧力室26内の燃料のリターン通路35(燃料タンク32)への排出が禁止された状態で、ノズル室25と圧力室26とが連通されるようになる。そのため、ノズル室25と圧力室26との圧力差がごく小さくなり、ニードル弁22がスプリング24の付勢力によって噴射孔23を塞ぐ位置に移動して、このとき燃料噴射弁20は燃料が噴射されない状態(閉弁状態)になる。 In this fuel injection valve 20, when a valve closing signal is input to the piezoelectric actuator 29, the piezoelectric actuator 29 contracts and the valve body 29 a moves, and the communication path 28 and the pressure chamber 26 are in communication with each other. The communication between the return passage 35 and the pressure chamber 26 is cut off. Thereby, the nozzle chamber 25 and the pressure chamber 26 are communicated with each other in a state where the discharge of the fuel in the pressure chamber 26 to the return passage 35 (fuel tank 32) is prohibited. Therefore, the pressure difference between the nozzle chamber 25 and the pressure chamber 26 becomes very small, and the needle valve 22 moves to a position where the injection hole 23 is closed by the urging force of the spring 24. At this time, the fuel injection valve 20 does not inject fuel. State (valve closed).
 一方、圧電アクチュエータ29に開弁信号が入力されると、圧電アクチュエータ29が伸長して弁体29aが移動し、連通路28と圧力室26との連通が遮断された状態になるとともに、リターン通路35と圧力室26とが連通された状態になる。これにより、ノズル室25から圧力室26への燃料の流出が禁止された状態で、圧力室26内の燃料の一部がリターン通路35を介して燃料タンク32に戻されるようになる。そのため圧力室26内の燃料の圧力が低下して同圧力室26とノズル室25との圧力差が大きくなり、この圧力差によってニードル弁22がスプリング24の付勢力に抗して移動して噴射孔23から離れて、このとき燃料噴射弁20は燃料が噴射される状態(開弁状態)になる。 On the other hand, when a valve opening signal is input to the piezoelectric actuator 29, the piezoelectric actuator 29 expands to move the valve element 29a, the communication between the communication passage 28 and the pressure chamber 26 is cut off, and the return passage. 35 and the pressure chamber 26 are in communication with each other. As a result, part of the fuel in the pressure chamber 26 is returned to the fuel tank 32 via the return passage 35 in a state where fuel outflow from the nozzle chamber 25 to the pressure chamber 26 is prohibited. As a result, the pressure of the fuel in the pressure chamber 26 decreases and the pressure difference between the pressure chamber 26 and the nozzle chamber 25 increases, and the pressure difference causes the needle valve 22 to move against the biasing force of the spring 24 and inject. Apart from the hole 23, the fuel injection valve 20 is in a state in which fuel is injected (opened state) at this time.
 燃料噴射弁20には、上記導入通路27の内部の燃料圧力PQに応じた信号を出力する圧力センサ41が一体に取り付けられている。そのため、例えばコモンレール34(図1参照)内の燃料圧力などの燃料噴射弁20から離れた位置の燃料圧力が検出される装置と比較して、燃料噴射弁20の噴射孔23に近い部位の燃料圧力を検出することができ、燃料噴射弁20の開弁に伴う同燃料噴射弁20の内部の燃料圧力の変化を精度良く検出することができる。なお上記圧力センサ41は各燃料噴射弁20に一つずつ、すなわち内燃機関11の気筒16毎に設けられている。 The fuel injection valve 20 is integrally attached with a pressure sensor 41 that outputs a signal corresponding to the fuel pressure PQ inside the introduction passage 27. For this reason, for example, the fuel in a portion near the injection hole 23 of the fuel injection valve 20 as compared with a device that detects the fuel pressure at a position away from the fuel injection valve 20 such as the fuel pressure in the common rail 34 (see FIG. 1). The pressure can be detected, and the change in the fuel pressure inside the fuel injection valve 20 accompanying the opening of the fuel injection valve 20 can be detected with high accuracy. One pressure sensor 41 is provided for each fuel injection valve 20, that is, for each cylinder 16 of the internal combustion engine 11.
 図1に示すように、内燃機関11には、その周辺機器として、運転状態を検出するための各種センサ類が設けられている。それらセンサ類としては、上記圧力センサ41の他、例えばクランクシャフト12の回転位相および回転速度(機関回転速度NE)を検出するためのクランクセンサ42や、アクセル操作部材(例えばアクセルペダル)の操作量(アクセル操作量ACC)を検出するためのアクセルセンサ43が設けられている。また、車両10の走行速度を検出するための車速センサ44や、前記クラッチ操作部材の操作の有無を検出するためのクラッチスイッチ45、燃料タンク32内に備蓄されている燃料の量(備蓄燃料量SP)を検出するための備蓄量センサ46が設けられている。その他、内燃機関11の運転開始に際してオン操作されるとともに運転停止に際してオフ操作される運転スイッチ47なども設けられている。 As shown in FIG. 1, the internal combustion engine 11 is provided with various sensors as peripheral devices for detecting an operation state. As these sensors, in addition to the pressure sensor 41, for example, the crank sensor 42 for detecting the rotational phase and rotational speed (engine rotational speed NE) of the crankshaft 12, and the operation amount of an accelerator operating member (for example, an accelerator pedal). An accelerator sensor 43 for detecting (accelerator operation amount ACC) is provided. Further, a vehicle speed sensor 44 for detecting the traveling speed of the vehicle 10, a clutch switch 45 for detecting whether or not the clutch operating member is operated, and the amount of fuel stored in the fuel tank 32 (the amount of stored fuel) A stockpiling amount sensor 46 for detecting SP) is provided. In addition, an operation switch 47 that is turned on when the operation of the internal combustion engine 11 is started and turned off when the operation is stopped is also provided.
 また内燃機関11の周辺機器としては、例えばマイクロコンピュータを備えて構成された電子制御ユニット40なども設けられている。この電子制御ユニット40は推定部、第1制御部、第2制御部、失火判定部、補給判定部、および禁止部として機能し、各種センサの出力信号を取り込むとともにそれら出力信号をもとに各種の演算を行い、その演算結果に応じて燃料噴射弁20の駆動制御(燃料噴射制御)などの内燃機関11の運転にかかる各種制御を実行する。 Further, as a peripheral device of the internal combustion engine 11, for example, an electronic control unit 40 configured with a microcomputer is also provided. The electronic control unit 40 functions as an estimation unit, a first control unit, a second control unit, a misfire determination unit, a replenishment determination unit, and a prohibition unit. The electronic control unit 40 captures output signals of various sensors and performs various types based on the output signals. And various controls relating to the operation of the internal combustion engine 11 such as drive control (fuel injection control) of the fuel injection valve 20 are executed according to the calculation result.
 本実施形態の燃料噴射制御は、基本的には、以下のように実行される。 The fuel injection control of this embodiment is basically executed as follows.
 先ず、アクセル操作量ACCや機関回転速度NEなどに基づいて、内燃機関11の運転のための燃料噴射量についての制御目標値(要求噴射量TAU)が算出される。その後、要求噴射量TAUおよび機関回転速度NEに基づいて燃料噴射時期の制御目標値(要求噴射時期Tst)や燃料噴射時間の制御目標値(要求噴射時間Ttm)が算出される。そして、それら要求噴射時期Tstおよび要求噴射時間Ttmに基づいて各燃料噴射弁20の開弁駆動が実行される。これにより、そのときどきの内燃機関11の運転状態に見合う量の燃料が各燃料噴射弁20から噴射されて内燃機関11の各気筒16内に供給されるようになる。本実施形態では、要求噴射時期Tstおよび要求噴射時間Ttmに基づく各燃料噴射弁20の駆動制御が基本噴射制御に相当するとして機能する。 First, a control target value (required injection amount TAU) for the fuel injection amount for operation of the internal combustion engine 11 is calculated based on the accelerator operation amount ACC, the engine speed NE, and the like. Thereafter, a control target value for fuel injection timing (required injection timing Tst) and a control target value for fuel injection time (required injection time Ttm) are calculated based on the required injection amount TAU and the engine speed NE. Based on the required injection timing Tst and the required injection time Ttm, the valve opening drive of each fuel injection valve 20 is executed. Thereby, an amount of fuel commensurate with the operation state of the internal combustion engine 11 at that time is injected from each fuel injection valve 20 and supplied into each cylinder 16 of the internal combustion engine 11. In the present embodiment, the drive control of each fuel injection valve 20 based on the required injection timing Tst and the required injection time Ttm functions as equivalent to the basic injection control.
 なお本実施形態の燃料噴射制御では、アクセル操作部材の操作解除(アクセル操作量ACC=「0」)による車両10の走行速度および機関回転速度NEの減速中において同機関回転速度NEが所定の速度範囲内になると、内燃機関11の運転のための燃料噴射を一時的に停止させる制御(いわゆる燃料カット制御)が実行される。 In the fuel injection control of the present embodiment, the engine rotational speed NE is set to a predetermined speed while the traveling speed of the vehicle 10 and the engine rotational speed NE are decelerated by releasing the operation of the accelerator operation member (accelerator operation amount ACC = “0”). When it falls within the range, control (so-called fuel cut control) for temporarily stopping fuel injection for operation of the internal combustion engine 11 is executed.
 また本実施形態の燃料噴射制御では、燃料のセタン価が低い領域(低セタン価領域)と中程度の領域(中セタン価領域)と高い領域(高セタン価領域)との三つの領域が設定されるとともに、それら領域毎に異なる実行態様で燃料噴射制御が実行される。例えば要求噴射時期Tstがセタン価の低い側の領域ほど進角側の時期に設定される。具体的には、三つのセタン価領域毎に、要求噴射量TAUおよび機関回転速度NEにより定まる機関運転状態とセタン価領域に見合う要求噴射時期Tstとの関係が各種の実験やシミュレーションの結果をもとに予め求められるとともに、同関係が演算マップ(ML,MM,MH)として電子制御ユニット40に記憶されている。そして、そのときどきの要求噴射量TAUおよび機関回転速度NEに基づいて、低セタン価領域であるときには演算マップMLから、中セタン価領域であるときには演算マップMMから、高セタン価領域であるときには演算マップMHから、それぞれ要求噴射時期Tstが算出される。 In the fuel injection control of the present embodiment, three regions are set, a region where the cetane number of the fuel is low (low cetane number region), a medium region (medium cetane number region), and a high region (high cetane number region). At the same time, the fuel injection control is executed in a different execution mode for each region. For example, the required injection timing Tst is set to the advance timing for the region with the lower cetane number. Specifically, for each of the three cetane number regions, the relationship between the engine operating state determined by the required injection amount TAU and the engine speed NE and the required injection timing Tst corresponding to the cetane number region is the result of various experiments and simulations. And the same relationship is stored in the electronic control unit 40 as a calculation map (ML, MM, MH). Then, based on the required injection amount TAU and the engine speed NE at that time, the calculation map ML is used for the low cetane number region, the calculation map MM is used for the medium cetane number region, and the calculation is performed for the high cetane number region. The required injection timing Tst is calculated from each map MH.
 このようにして燃料噴射弁20からの燃料噴射を実行する場合、同燃料噴射弁20の初期個体差や経時変化などに起因して、その実行時期や噴射量に誤差が生じることがある。そうした誤差は、内燃機関11の出力トルクを変化させるため好ましくない。そのため本実施形態では、各燃料噴射弁20からの燃料噴射を内燃機関11の運転状態に応じたかたちで適正に実行するために、圧力センサ41により検出される燃料圧力PQをもとに燃料噴射率の検出時間波形を形成するとともに同検出時間波形に基づいて要求噴射時期Tstおよび要求噴射時間Ttmを補正する補正処理が実行される。この補正処理は、内燃機関11の各気筒16について各別に実行される。 When the fuel injection from the fuel injection valve 20 is executed in this way, an error may occur in the execution timing and the injection amount due to the initial individual difference of the fuel injection valve 20 and the change over time. Such an error is undesirable because it changes the output torque of the internal combustion engine 11. Therefore, in the present embodiment, in order to properly execute the fuel injection from each fuel injection valve 20 according to the operating state of the internal combustion engine 11, the fuel injection is performed based on the fuel pressure PQ detected by the pressure sensor 41. A correction process for forming the rate detection time waveform and correcting the required injection timing Tst and the required injection time Ttm based on the detection time waveform is executed. This correction process is executed separately for each cylinder 16 of the internal combustion engine 11.
 燃料噴射弁20内部の燃料圧力は、燃料噴射弁20の開弁に伴って低下するとともにその後における同燃料噴射弁20の閉弁に伴って上昇するといったように、燃料噴射弁20の開閉動作に伴い変動する。そのため、燃料噴射の実行時における燃料噴射弁20内部の燃料圧力の変動波形を監視することにより、同燃料噴射弁20の実動作特性(例えば、実際の燃料噴射量や、開弁動作が開始される時期、閉弁動作が開始される時期など)を精度良く把握することができる。したがって、そうした燃料噴射弁20の実作動特性に基づいて要求噴射時期Tstや要求噴射時間Ttmを補正することにより、燃料噴射時期や燃料噴射量を内燃機関11の運転状態に応じたかたちで精度よく設定することができるようになる。 The fuel pressure inside the fuel injection valve 20 is reduced when the fuel injection valve 20 is opened, and then increased when the fuel injection valve 20 is closed. It fluctuates with it. Therefore, by monitoring the fluctuation waveform of the fuel pressure inside the fuel injection valve 20 at the time of fuel injection execution, the actual operation characteristics of the fuel injection valve 20 (for example, the actual fuel injection amount and the valve opening operation are started). And when the valve closing operation is started). Therefore, by correcting the required injection timing Tst and the required injection time Ttm based on the actual operating characteristics of the fuel injection valve 20, the fuel injection timing and the fuel injection amount can be accurately adjusted in accordance with the operating state of the internal combustion engine 11. Can be set.
 以下、そうした補正処理について詳しく説明する。 Hereinafter, such correction processing will be described in detail.
 ここでは先ず、燃料噴射の実行時における燃料圧力の変動態様(本実施形態では、燃料噴射率の検出時間波形)を形成する手順について説明する。 Here, first, the procedure for forming the fuel pressure fluctuation mode (in this embodiment, the detection time waveform of the fuel injection rate) during execution of fuel injection will be described.
 図3に、燃料圧力PQの推移と燃料噴射率の検出時間波形との関係を示す。 FIG. 3 shows the relationship between the transition of the fuel pressure PQ and the detection time waveform of the fuel injection rate.
 同図3に示すように、本実施形態では、燃料噴射弁20の開弁動作(詳しくはニードル弁22の開弁側への移動)が開始される時期(開弁動作開始時期Tos)、燃料噴射率が最大になる時期(最大噴射率到達時期Toe)、燃料噴射率の降下が開始される時期(噴射率降下開始時期Tcs)、燃料噴射弁20の閉弁動作(詳しくはニードル弁22の閉弁側への移動)が完了する時期(閉弁動作完了時期Tce)がそれぞれ検出される。 As shown in FIG. 3, in the present embodiment, a timing at which the valve opening operation of the fuel injection valve 20 (specifically, movement of the needle valve 22 toward the valve opening side) is started (valve opening operation start timing Tos), fuel When the injection rate becomes maximum (maximum injection rate arrival time Toe), when the fuel injection rate starts to decrease (injection rate decrease start time Tcs), and when the fuel injection valve 20 is closed (specifically, the needle valve 22 The timing at which the movement toward the valve closing side is completed (valve closing operation completion timing Tce) is detected.
 先ず、燃料噴射弁20の開弁動作が開始される直前の所定期間T1における燃料圧力PQの平均値が算出されるとともに、同平均値が基準圧力Pbsとして記憶される。この基準圧力Pbsは、閉弁時における燃料噴射弁20内部の燃料圧力に相当する圧力として用いられる。 First, the average value of the fuel pressure PQ in the predetermined period T1 immediately before the start of the valve opening operation of the fuel injection valve 20 is calculated, and the average value is stored as the reference pressure Pbs. The reference pressure Pbs is used as a pressure corresponding to the fuel pressure inside the fuel injection valve 20 when the valve is closed.
 次に、この基準圧力Pbsから所定圧力P1を減算した値が動作圧力Pac(=Pbse-P1)として算出される。この所定圧力P1は、燃料噴射弁20の開弁駆動あるいは閉弁駆動に際してニードル弁22が閉弁位置にある状態であるにも関わらず燃料圧力PQが変化する分、すなわちニードル弁22の移動に寄与しない燃料圧力PQの変化分に相当する圧力である。 Next, a value obtained by subtracting the predetermined pressure P1 from the reference pressure Pbs is calculated as the operating pressure Pac (= Pbse−P1). The predetermined pressure P1 corresponds to the change in the fuel pressure PQ, that is, the movement of the needle valve 22 even when the needle valve 22 is in the closed position when the fuel injection valve 20 is driven to open or close. This is a pressure corresponding to a change in the fuel pressure PQ that does not contribute.
 その後、燃料噴射の実行開始直後において燃料圧力PQが降下する期間における同燃料圧力PQの時間による一階微分値d(PQ)/dtが算出される。そして、この一階微分値が最小になる点つまり燃料圧力PQの下向きの傾きが最も大きくなる点における燃料圧力PQの時間波形の接線L1が求められるとともに同接線L1と上記動作圧力Pacとの交点Aが算出される。この交点Aを燃料圧力PQの下記の検出遅れ分だけ過去の時期に戻した点AAに対応する時期が開弁動作開始時期Tosとして特定される。なお上記検出遅れ分は、燃料噴射弁20のノズル室25(図2参照)の圧力変化タイミングに対する燃料圧力PQの変化タイミングの遅れに相当する期間であり、ノズル室25と圧力センサ41との距離などに起因して生じる遅れ分である。 Thereafter, a first-order differential value d (PQ) / dt is calculated according to the time of the fuel pressure PQ in a period in which the fuel pressure PQ drops immediately after the start of fuel injection. Then, the tangent L1 of the time waveform of the fuel pressure PQ at the point where the first-order differential value becomes the minimum, that is, the point where the downward slope of the fuel pressure PQ becomes the largest is obtained, and the intersection of the tangent L1 and the operating pressure Pac is obtained. A is calculated. The timing corresponding to the point AA where the intersection A is returned to the past timing by the following detection delay of the fuel pressure PQ is specified as the valve opening operation start timing Tos. The detection delay is a period corresponding to the delay of the change timing of the fuel pressure PQ with respect to the pressure change timing of the nozzle chamber 25 (see FIG. 2) of the fuel injection valve 20, and the distance between the nozzle chamber 25 and the pressure sensor 41. This is a delay caused by the above.
 また、燃料噴射の実行開始直後において燃料圧力PQが一旦降下した後に上昇する期間における同燃料圧力PQの一階微分値が算出される。そして、この一階微分値が最大になる点つまり燃料圧力PQの上向きの傾きが最も大きくなる点における燃料圧力PQの時間波形の接線L2が求められるとともに同接線L2と上記動作圧力Pacとの交点Bが算出される。この交点Bを検出遅れ分だけ過去の時期に戻した点BBに対応する時期が閉弁動作完了時期Tceとして特定される。 Also, the first-order differential value of the fuel pressure PQ during the period in which the fuel pressure PQ rises after dropping once immediately after the start of fuel injection is calculated. Then, the tangent L2 of the time waveform of the fuel pressure PQ at the point where the first-order differential value becomes the maximum, that is, the point where the upward slope of the fuel pressure PQ becomes the largest, is obtained, and the intersection of the tangent L2 and the operating pressure Pac B is calculated. The timing corresponding to the point BB where the intersection B is returned to the past timing by the detection delay is specified as the valve closing operation completion timing Tce.
 さらに、接線L1と接線L2との交点Cが算出されるとともに同交点Cにおける燃料圧力PQと動作圧力Pacとの差(仮想圧力低下分ΔP[=Pac-PQ])が求められる。また、この仮想圧力低下分ΔPに要求噴射量TAUに基づき設定されるゲインG1を乗算した値が仮想最大燃料噴射率VRt(=ΔP×G1)として算出される。さらに、この仮想最大燃料噴射率VRtに要求噴射量TAUに基づき設定されるゲインG2を乗算した値が最大噴射率Rt(=VRt×G2)として算出される。 Furthermore, the intersection C between the tangent line L1 and the tangent line L2 is calculated, and the difference (virtual pressure drop ΔP [= Pac−PQ]) between the fuel pressure PQ and the operating pressure Pac at the intersection C is obtained. Further, a value obtained by multiplying the virtual pressure drop ΔP by a gain G1 set based on the required injection amount TAU is calculated as a virtual maximum fuel injection rate VRt (= ΔP × G1). Further, a value obtained by multiplying the virtual maximum fuel injection rate VRt by a gain G2 set based on the required injection amount TAU is calculated as the maximum injection rate Rt (= VRt × G2).
 その後、上記交点Cを検出遅れ分だけ過去の時期に戻した時期CCが算出されるとともに、同時期CCにおいて仮想最大燃料噴射率VRtになる点Dが特定される。そして、この点Dおよび開弁動作開始時期Tos(詳しくは、同時期Tosにおいて燃料噴射率が「0」になる点)を繋ぐ直線L3と前記最大噴射率Rtとの交点Eに対応する時期が最大噴射率到達時期Toeとして特定される。 Thereafter, a time CC at which the intersection C is returned to the past time by the detection delay is calculated, and a point D at which the virtual maximum fuel injection rate VRt is reached at the same time CC is specified. The timing corresponding to the intersection E between the straight line L3 connecting the point D and the valve opening operation start timing Tos (specifically, the point at which the fuel injection rate becomes “0” at the same time Tos) and the maximum injection rate Rt is obtained. It is specified as the maximum injection rate arrival time Toe.
 また、上記点Dおよび閉弁動作完了時期Tce(詳しくは、同時期Tceにおいて燃料噴射率が「0」になる点)を繋ぐ直線L4と最大噴射率Rtとの交点Fに対応する時期が噴射率降下開始時期Tcsとして特定される。 Further, the timing corresponding to the intersection F between the straight line L4 and the maximum injection rate Rt connecting the point D and the valve closing operation completion timing Tce (specifically, the point at which the fuel injection rate becomes “0” at the same time Tce) is injected. It is specified as the rate drop start time Tcs.
 さらに、開弁動作開始時期Tos、最大噴射率到達時期Toe、噴射率降下開始時期Tcs、閉弁動作完了時期Tceおよび最大噴射率Rtによって形成される台形形状の時間波形が燃料噴射における燃料噴射率についての検出時間波形として用いられる。 Further, the trapezoidal time waveform formed by the valve opening operation start timing Tos, the maximum injection rate arrival timing Toe, the injection rate drop start timing Tcs, the valve closing operation completion timing Tce and the maximum injection rate Rt is a fuel injection rate in fuel injection. Is used as a detection time waveform.
 次に、図4および図5を参照しつつ、そうした検出時間波形に基づいて燃料噴射制御の各種制御目標値を補正する処理(補正処理)の処理手順について詳細に説明する。 Next, with reference to FIGS. 4 and 5, a processing procedure of correcting (controlling) various control target values for fuel injection control based on such a detection time waveform will be described in detail.
 なお図4は上記補正処理の具体的な処理手順を示すフローチャートである。このフローチャートに示される一連の処理は、補正処理の実行手順を概念的に示したものであり、実際の処理は所定周期毎の割り込み処理として電子制御ユニット40により実行される。また、図5は、検出時間波形と下記の基本時間波形との関係の一例を示している。 FIG. 4 is a flowchart showing a specific processing procedure of the correction processing. The series of processes shown in this flowchart conceptually shows the execution procedure of the correction process, and the actual process is executed by the electronic control unit 40 as an interrupt process at predetermined intervals. FIG. 5 shows an example of the relationship between the detection time waveform and the following basic time waveform.
 図4に示すように、この補正処理では先ず、上述したように燃料圧力PQに基づいて燃料噴射の実行時における検出時間波形が形成される(ステップS101)。また、アクセル操作量ACCおよび機関回転速度NEなどといった内燃機関11の運転状態に基づいて、燃料噴射の実行時における燃料噴射率の時間波形についての基本値(基本時間波形)が設定される(ステップS102)。本実施形態では、内燃機関11の運転状態と同運転状態に適した基本時間波形との関係が実験やシミュレーションの結果に基づき予め求められて電子制御ユニット40に記憶されている。ステップS102の処理では、そのときどきの内燃機関11の運転状態に基づいて上記関係から基本時間波形が設定される。 As shown in FIG. 4, in this correction process, first, as described above, a detection time waveform at the time of execution of fuel injection is formed based on the fuel pressure PQ (step S101). Further, based on the operating state of the internal combustion engine 11 such as the accelerator operation amount ACC and the engine speed NE, a basic value (basic time waveform) for the time waveform of the fuel injection rate at the time of execution of fuel injection is set (step). S102). In the present embodiment, the relationship between the operating state of the internal combustion engine 11 and the basic time waveform suitable for the operating state is obtained in advance based on the results of experiments and simulations and stored in the electronic control unit 40. In the process of step S102, a basic time waveform is set from the above relationship based on the operating state of the internal combustion engine 11 at that time.
 図5に示すように、上記基本時間波形(一点鎖線)としては、開弁動作開始時期Tosb、最大噴射率到達時期Toeb、噴射率降下開始時期Tcsb、閉弁動作完了時期Tceb、最大噴射率により規定される台形の時間波形が設定される。 As shown in FIG. 5, the basic time waveform (one-dot chain line) includes the valve opening operation start timing Tosb, the maximum injection rate arrival timing Toeb, the injection rate drop start timing Tcsb, the valve closing operation completion timing Tceb, and the maximum injection rate. The specified trapezoidal time waveform is set.
 そして、そうした基本時間波形と前記検出時間波形(実線)とが比較されるとともに、その比較結果に基づいて燃料噴射の開始時期の制御目標値(前記要求噴射時期Tst)を補正するための補正項K1と同燃料噴射の実行時間の制御目標値(要求噴射時間Ttm)を補正するための補正項K2とがそれぞれ算出される。具体的には、基本時間波形における開弁動作開始時期Tosbと検出時間波形における開弁動作開始時期Tosとの差ΔTos(=Tosb-Tos)が算出されるとともに同差ΔTosが補正項K1として記憶される(図4のステップS103)。また、基本時間波形における噴射率降下開始時期Tcsb(図5)と検出時間波形における噴射率降下開始時期Tcsとの差ΔTcs(=Tcsb-Tcs)が算出されるとともに、同差ΔTcsが補正項K2として記憶される(図4のステップS104)。 Then, the basic time waveform and the detection time waveform (solid line) are compared, and a correction term for correcting the control target value (the required injection timing Tst) of the fuel injection start timing based on the comparison result. K1 and a correction term K2 for correcting the control target value (required injection time Ttm) of the execution time of the same fuel injection are respectively calculated. Specifically, a difference ΔTos (= Tosb−Tos) between the valve opening operation start timing Tosb in the basic time waveform and the valve opening operation start timing Tos in the detection time waveform is calculated, and the difference ΔTos is stored as the correction term K1. (Step S103 in FIG. 4). Further, a difference ΔTcs (= Tcsb−Tcs) between the injection rate decrease start timing Tcsb (FIG. 5) in the basic time waveform and the injection rate decrease start timing Tcs in the detection time waveform is calculated, and the difference ΔTcs is corrected by the correction term K2. (Step S104 in FIG. 4).
 このようにして各補正項K1,K2が算出された後、本処理は一旦終了される。 After the correction terms K1 and K2 are calculated in this way, this process is temporarily terminated.
 燃料噴射制御の実行に際しては、要求噴射時期Tstを補正項K1によって補正した値(本実施形態では、要求噴射時期Tstに補正項K1を加算した値)が最終的な要求噴射時期Tstとして算出される。このようにして要求噴射時期Tstを算出することにより、基本時間波形における開弁動作開始時期Tosbと検出時間波形における開弁動作開始時期Tosとの間のずれが小さく抑えられるようになるため、燃料噴射の開始時期が内燃機関11の運転状態に応じたかたちで精度よく設定されるようになる。 When the fuel injection control is executed, a value obtained by correcting the required injection timing Tst by the correction term K1 (in this embodiment, a value obtained by adding the correction term K1 to the required injection timing Tst) is calculated as the final required injection timing Tst. The By calculating the required injection timing Tst in this way, the deviation between the valve opening operation start timing Tosb in the basic time waveform and the valve opening operation start timing Tos in the detection time waveform can be suppressed to be small. The start timing of injection is accurately set according to the operating state of the internal combustion engine 11.
 また、要求噴射時間Ttmを上記補正項K2によって補正した値(本実施形態では、要求噴射時間Ttmに補正項K2を加算した値)が最終的な要求噴射時間Ttmとして算出される。このようにして要求噴射時間Ttmを算出することにより、基本時間波形における噴射率降下開始時期Tcsbと検出時間波形における噴射率降下開始時期Tcsとの間のずれが小さく抑えられるようになるために、燃料噴射において燃料噴射率が低下し始める時期が内燃機関11の運転状態に応じたかたちで精度よく設定されるようになる。 Also, a value obtained by correcting the required injection time Ttm by the correction term K2 (in this embodiment, a value obtained by adding the correction term K2 to the required injection time Ttm) is calculated as the final required injection time Ttm. By calculating the required injection time Ttm in this way, the deviation between the injection rate decrease start timing Tcsb in the basic time waveform and the injection rate decrease start timing Tcs in the detection time waveform can be suppressed to be small. The timing at which the fuel injection rate starts to decrease in the fuel injection is set with high accuracy in accordance with the operating state of the internal combustion engine 11.
 このように本実施形態では、燃料噴射弁20の実動作特性(詳しくは、検出時間波形)と予め定められた基本動作特性(詳しくは、基本時間波形)との差に基づいて要求噴射時期Tstや要求噴射時間Ttmが補正されるために、燃料噴射弁20の実動作特性と基本動作特性(標準的な特性を有する燃料噴射弁の動作特性)とのずれが抑えられる。そのため各燃料噴射弁20からの燃料噴射における噴射時期や噴射量がそれぞれ内燃機関11の運転状態に見合うように適正に設定されるようになる。 As described above, in the present embodiment, the required injection timing Tst is based on the difference between the actual operating characteristic (specifically, the detection time waveform) of the fuel injection valve 20 and the predetermined basic operating characteristic (specifically, the basic time waveform). Since the required injection time Ttm is corrected, the deviation between the actual operating characteristics of the fuel injection valve 20 and the basic operating characteristics (the operating characteristics of the fuel injection valve having standard characteristics) can be suppressed. Therefore, the injection timing and the injection amount in the fuel injection from each fuel injection valve 20 are set appropriately so as to match the operating state of the internal combustion engine 11.
 本実施形態では、内燃機関11での燃焼に供される燃料のセタン価指標値を検出する制御(指標値検出処理)が実行される。以下、この指標値検出処理の概要を説明する。 In this embodiment, control (index value detection processing) for detecting the cetane number index value of the fuel to be used for combustion in the internal combustion engine 11 is executed. The outline of the index value detection process will be described below.
 この指標値検出処理では、前述の燃料カット制御が実行されているとの条件(後述する[条件1])を含む実行条件が設定されている。そして、この実行条件の成立時に、予め定められた少量の所定量FQ(例えば、数立方ミリメートル)での内燃機関11への燃料噴射が実行されるとともに、その燃料噴射の実行に伴い発生する内燃機関11の出力トルクの指標値(後述する回転変動量ΣΔNE)が燃料のセタン価指標値として検出される。なお上記回転変動量ΣΔNEとしては、内燃機関11において大きな出力トルクが発生したときほど大きい値が検出される。 In this index value detection process, an execution condition including a condition that the above-described fuel cut control is being executed ([Condition 1] described later) is set. Then, when this execution condition is satisfied, fuel injection to the internal combustion engine 11 at a predetermined small predetermined amount FQ (for example, several cubic millimeters) is executed, and the internal combustion generated along with the execution of the fuel injection An index value of the output torque of the engine 11 (rotational fluctuation amount ΣΔNE described later) is detected as a fuel cetane number index value. As the rotational fluctuation amount ΣΔNE, a larger value is detected as a larger output torque is generated in the internal combustion engine 11.
 内燃機関11に供給される燃料のセタン価が高いときほど、燃料が着火し易く同燃料の燃え残りが少なくなるために、燃料の燃焼に伴って発生する機関トルクが大きくなる。本実施形態の推定制御では、そうした燃料のセタン価と内燃機関11の出力トルクとの関係をもとに同燃料のセタン価指標値が検出される。 The higher the cetane number of the fuel supplied to the internal combustion engine 11, the easier it is to ignite the fuel, and the less unburned fuel of the fuel decreases, so the engine torque generated as the fuel burns increases. In the estimation control of this embodiment, the cetane number index value of the fuel is detected based on the relationship between the cetane number of the fuel and the output torque of the internal combustion engine 11.
 以下、指標値検出処理の実行手順について詳細に説明する。 Hereinafter, the execution procedure of the index value detection process will be described in detail.
 図6は、上記指標値検出処理の具体的な実行手順を示すフローチャートである。なお、このフローチャートに示される一連の処理は、指標値検出処理の実行手順を概念的に示したものであり、実際の処理は所定周期毎の割り込み処理として電子制御ユニット40により実行される。 FIG. 6 is a flowchart showing a specific execution procedure of the index value detection process. Note that the series of processes shown in this flowchart conceptually shows the execution procedure of the index value detection process, and the actual process is executed by the electronic control unit 40 as an interrupt process at predetermined intervals.
 図6に示すように、この処理では先ず、実行条件が成立しているか否かが判断される(ステップS201)。ここでは、以下の[条件1]~[条件3]が全て満たされることをもって実行条件が成立していると判断される。
[条件1]前記燃料カット制御が実行されていること。
[条件2]クラッチ機構13がクランクシャフト12と手動変速機14との連結を解除する作動状態になっていること。具体的には、クラッチ操作部材が操作されていること。
[条件3]補正処理が適正に実行されていること。具体的には、補正処理において算出されている各補正項K1,K2が上限値にも下限値にもなっていないこと。
As shown in FIG. 6, in this process, it is first determined whether or not an execution condition is satisfied (step S201). Here, it is determined that the execution condition is satisfied when all of the following [Condition 1] to [Condition 3] are satisfied.
[Condition 1] The fuel cut control is executed.
[Condition 2] The clutch mechanism 13 is in an operating state in which the connection between the crankshaft 12 and the manual transmission 14 is released. Specifically, the clutch operating member is operated.
[Condition 3] The correction process is properly executed. Specifically, each correction term K1, K2 calculated in the correction process is neither an upper limit nor a lower limit.
 上記実行条件が成立していない場合には(ステップS201:NO)、以下の処理、すなわち燃料のセタン価指標値を検出する処理を実行することなく、本処理は一旦終了される。 If the above execution condition is not satisfied (step S201: NO), this process is temporarily terminated without executing the following process, that is, the process of detecting the cetane number index value of the fuel.
 その後、本処理が繰り返し実行されて上記実行条件が成立すると(ステップS201:YES)、燃料のセタン価指標値を検出する処理の実行が開始される。 Thereafter, when this process is repeatedly executed and the above execution condition is satisfied (step S201: YES), execution of the process for detecting the cetane number index value of the fuel is started.
 具体的には先ず、予め定められた燃料噴射時期の制御目標値(目標噴射時期TQst)と燃料噴射時間の制御目標値(目標噴射時間TQtm)とが図4と図5で前述した補正処理により算出されている補正項K1,K2によって補正される(図6のステップS202)。詳しくは、補正項K1を目標噴射時期TQstに加算した値が新たな目標噴射時期TQstとして設定されるとともに、補正項K2を目標噴射時間TQtmに加算した値が新たな目標噴射時間TQtmとして設定される。 Specifically, first, a predetermined control target value for fuel injection timing (target injection timing TQst) and a control target value for fuel injection time (target injection time TQtm) are obtained by the correction processing described above with reference to FIGS. Correction is performed by the calculated correction terms K1 and K2 (step S202 in FIG. 6). Specifically, a value obtained by adding the correction term K1 to the target injection timing TQst is set as a new target injection timing TQst, and a value obtained by adding the correction term K2 to the target injection time TQtm is set as a new target injection time TQtm. The
 そして、目標噴射時期TQstおよび目標噴射時間TQtmに基づく燃料噴射弁20の駆動制御が実行されて、同燃料噴射弁20からの燃料噴射が実行される(ステップS203)。こうした燃料噴射弁20の駆動制御を通じて、回転変動量ΣΔNEのばらつきが抑えられるタイミングで所定量FQの燃料が燃料噴射弁20から噴射されるようになる。なお本実施形態では、ステップS203の処理における燃料噴射が複数の燃料噴射弁20のうちの予め定めたもの(本実施形態では、気筒16[♯1]に取り付けられた燃料噴射弁20)を用いて実行される。また、本処理において用いられる補正項K1,K2についても同様に、燃料噴射弁20のうちの予め定めたもの(本実施形態では、気筒16[♯1]に取り付けられた燃料噴射弁20)に対応して算出された値が用いられる。本実施形態においてでは、このステップS203の処理による目標噴射時期TQstおよび目標噴射時間TQtmに基づく燃料噴射弁20の駆動制御が補助噴射制御に相当するとして機能する。 Then, drive control of the fuel injection valve 20 based on the target injection timing TQst and the target injection time TQtm is executed, and fuel injection from the fuel injection valve 20 is executed (step S203). Through such drive control of the fuel injection valve 20, a predetermined amount FQ of fuel is injected from the fuel injection valve 20 at a timing at which variations in the rotational fluctuation amount ΣΔNE are suppressed. In the present embodiment, the fuel injection in the process of step S203 uses a predetermined one of the plurality of fuel injection valves 20 (in this embodiment, the fuel injection valve 20 attached to the cylinder 16 [# 1]). Executed. Similarly, the correction terms K1 and K2 used in the present processing are also set to predetermined ones of the fuel injection valves 20 (in this embodiment, the fuel injection valves 20 attached to the cylinder 16 [# 1]). Correspondingly calculated values are used. In the present embodiment, the drive control of the fuel injection valve 20 based on the target injection timing TQst and the target injection time TQtm by the process of step S203 functions as equivalent to the auxiliary injection control.
 その後、上記所定量FQでの燃料噴射に伴い発生した内燃機関11の出力トルクの指標値として前記回転変動量ΣΔNEが検出されて記憶された後(ステップS204)、本処理は一旦終了される。この回転変動量ΣΔNEの検出は具体的には次のように行われる。図7に示すように、本実施形態にかかる装置では、所定時間おきに機関回転速度NEが検出されるとともに、その検出の度に同機関回転速度NEと複数回前(本実施形態では、三回前)に検出された機関回転速度NEiとの差ΔNE(=NE-NEi)が算出される。そして、上記燃料噴射の実行に伴う上記差ΔNEの変化分についての積算値(同図7中に斜線で示す部分の面積に相当する値)が算出されるとともに、この積算値が上記回転変動量ΣΔNEとして記憶される。なお図7に示す機関回転速度NEや差ΔNEの推移は、回転変動量ΣΔNEの算出方法の理解を容易にするべく簡略化して示しているため実際の推移とは若干異なる。 Thereafter, after the rotational fluctuation amount ΣΔNE is detected and stored as an index value of the output torque of the internal combustion engine 11 generated by the fuel injection at the predetermined amount FQ (step S204), the present process is temporarily terminated. Specifically, the rotation fluctuation amount ΣΔNE is detected as follows. As shown in FIG. 7, in the apparatus according to the present embodiment, the engine rotational speed NE is detected every predetermined time, and at each detection, the engine rotational speed NE and the engine rotational speed NE are detected several times before (in this embodiment, three times). A difference ΔNE (= NE−NEi) with respect to the engine speed NEi detected before the rotation is calculated. Then, an integrated value (a value corresponding to the area of the hatched portion in FIG. 7) for the change in the difference ΔNE accompanying the execution of the fuel injection is calculated, and this integrated value is calculated as the rotational fluctuation amount. Stored as ΣΔNE. Note that the transition of the engine speed NE and the difference ΔNE shown in FIG. 7 are slightly different from the actual transition because they are shown in a simplified manner to facilitate understanding of the calculation method of the rotational fluctuation amount ΣΔNE.
 本実施形態では、基本的に、指標値検出処理を通じて検出された回転変動量ΣΔNEに基づいて低セタン価領域、中セタン価領域および高セタン価領域のいずれの領域であるかが特定されるとともに、特定された領域が電子制御ユニット40に記憶される。詳しくは、回転変動量ΣΔNEが所定値PL未満である場合(ΣΔNE<PL)には低セタン価領域であると判断され、所定値PL以上所定値PH未満である場合(PL≦ΣΔNE<PH)には中セタン価領域であると判断され、所定値PH以上である場合(ΣΔNE≧PH)には高セタン価領域であると判断される。そして、そのように特定されたセタン価領域に見合う実行態様で燃料噴射制御が実行される。 In the present embodiment, basically, the low cetane number region, the medium cetane number region, or the high cetane number region is specified based on the rotational fluctuation amount ΣΔNE detected through the index value detection process. The specified area is stored in the electronic control unit 40. Specifically, when the rotational fluctuation amount ΣΔNE is less than the predetermined value PL (ΣΔNE <PL), it is determined that the region is in the low cetane number region, and when the rotational fluctuation amount ΣΔNE is less than the predetermined value PH (PL ≦ ΣΔNE <PH). Is determined to be in the medium cetane number region, and if it is equal to or greater than the predetermined value PH (ΣΔNE ≧ PH), it is determined to be in the high cetane number region. Then, the fuel injection control is executed in an execution manner commensurate with the cetane number region thus specified.
 また本実施形態では、内燃機関11における失火発生の有無を判定する失火判定処理が実行される。この失火判定処理では先ず、内燃機関11の各気筒の燃焼行程において、その圧縮上死点を始点としてクランクシャフト12が30°CA回転するのに要する時間Tが検出される。そして、この時間Tと前回検出された同時間(Ti)との差ΔT(=T-Ti)が算出される。そして、この差ΔTが所定の閾値を超えたことをもって失火が発生した旨の判定がなされる。 Further, in the present embodiment, misfire determination processing for determining whether or not misfire has occurred in the internal combustion engine 11 is executed. In this misfire determination process, first, in the combustion stroke of each cylinder of the internal combustion engine 11, a time T required for the crankshaft 12 to rotate 30 ° CA starting from the compression top dead center is detected. Then, a difference ΔT (= T−Ti) between this time T and the same time (Ti) detected last time is calculated. Then, it is determined that misfire has occurred when the difference ΔT exceeds a predetermined threshold.
 そして本実施形態では、電子制御ユニット40に記憶されているセタン価領域に応じて燃料噴射制御を実行したにも拘わらず失火が発生してしまった場合に、このとき記憶されていたセタン価領域より低いセタン価領域に応じた実行態様で燃料噴射制御を実行するようにしている。これにより、内燃機関11において失火が発生した場合に、燃料噴射制御の実行態様が、電子制御ユニット40に記憶されていたセタン価領域に応じた実行態様、すなわち失火発生を招いてしまった実行態様(第1実行態様)から低セタン価燃料に応じた実行態様(第2実行態様)に切り替えられるようになる。そのため、実行態様の切り替え前と比較して着火遅れが長い状況を想定して燃料噴射制御を実行することができ、燃料の燃焼状態の改善を図ることができる。したがって、第1実行態様での燃料噴射制御の実行に際して失火が発生した場合であれ、その後における失火発生を抑えることができるようになる。 In the present embodiment, when a misfire has occurred despite the execution of fuel injection control in accordance with the cetane number region stored in the electronic control unit 40, the cetane number region stored at this time. The fuel injection control is executed in an execution manner corresponding to a lower cetane number region. Thereby, when misfire occurs in the internal combustion engine 11, the execution mode of the fuel injection control is an execution mode corresponding to the cetane number region stored in the electronic control unit 40, that is, the execution mode that has caused the misfire. The first execution mode is switched to the execution mode (second execution mode) corresponding to the low cetane number fuel. Therefore, it is possible to execute the fuel injection control on the assumption that the ignition delay is longer than before the change of the execution mode, and it is possible to improve the combustion state of the fuel. Therefore, even if a misfire occurs during the execution of the fuel injection control in the first execution mode, the subsequent misfire can be suppressed.
 ところで、こうした燃料噴射制御の実行態様の切り替えによって内燃機関11における失火発生が抑えられた場合に、その後において燃料噴射制御の第2実行態様から元の第1実行態様への復帰が適切なタイミングで行われないと、次のような不都合を招くおそれがある。すなわち、内燃機関11における失火発生に伴って一旦燃料噴射制御が第2実行態様に切り替えられた後に、失火が発生しなくなることによって直ちに燃料噴射制御が切り替え前の第1実行態様に戻されると、内燃機関11の運転状態が元の状態に戻ってしまうために、再び失火の発生を招く可能性が高い。 By the way, when the occurrence of misfire in the internal combustion engine 11 is suppressed by switching the execution mode of the fuel injection control, the return from the second execution mode of the fuel injection control to the original first execution mode is performed at an appropriate timing thereafter. Failure to do so may lead to the following inconveniences. That is, once the fuel injection control is switched to the second execution mode in association with the occurrence of misfire in the internal combustion engine 11, when the fuel injection control is immediately returned to the first execution mode before the switching because the misfire does not occur, Since the operating state of the internal combustion engine 11 returns to the original state, there is a high possibility that misfire will occur again.
 そこで本実施形態では、燃料タンク32への燃料補給の有無を判定する給油判定処理を実行するとともに、第2実行態様での燃料噴射制御の実行時において給油判定処理を通じて燃料補給有りと判定されるまでの間、燃料噴射制御の第2実行態様から第1実行態様への切り替えを禁止するようにしている。 Therefore, in the present embodiment, the fuel supply determination process for determining whether or not fuel is supplied to the fuel tank 32 is executed, and it is determined that fuel supply is performed through the fuel supply determination process when the fuel injection control is performed in the second execution mode. In the meantime, switching from the second execution mode of the fuel injection control to the first execution mode is prohibited.
 これにより、燃料噴射制御の実行態様が一旦第2実行態様に切り替えられた後においては、燃料タンク32への燃料補給が行われない限り、すなわち燃料タンク32内に備蓄されている燃料のセタン価が変化しない限り、燃料噴射制御についての第2実行態様から第1実行態様への切り替えが禁止される。そのため、燃料噴射制御の第2実行態様への切り替えに伴って失火発生が一旦収まった後において、同燃料噴射制御の実行態様が失火発生を招いた第1実行態様に戻されることによって再度失火発生を招いてしまうといった状況になることを回避することができ、内燃機関11における失火発生を好適に抑えることができる。 Thereby, after the execution mode of the fuel injection control is once switched to the second execution mode, unless the fuel tank 32 is refueled, that is, the cetane number of the fuel stored in the fuel tank 32. As long as does not change, switching from the second execution mode to the first execution mode for fuel injection control is prohibited. Therefore, after the misfire occurrence has temporarily subsided with the switching to the second execution mode of the fuel injection control, the misfire occurs again by returning the execution mode of the fuel injection control to the first execution mode causing the misfire occurrence. Can be avoided, and the occurrence of misfire in the internal combustion engine 11 can be suitably suppressed.
 以下、そうした燃料噴射制御の実行態様の切り替えにかかる処理の実行手順について詳しく説明する。 Hereinafter, the execution procedure of the processing related to switching of the execution mode of such fuel injection control will be described in detail.
 ここでは先ず、燃料タンク32への燃料補給の有無を判定するための給油フラグ、および失火発生の有無を判定するための失火検出フラグを操作する処理(フラグ操作処理)について説明する。 Here, first, a process (flag operation process) for operating a refueling flag for determining whether or not fuel has been supplied to the fuel tank 32 and a misfire detection flag for determining whether or not misfiring has occurred will be described.
 図8に、フラグ操作処理の具体的な実行手順を示す。同図のフローチャートに示される一連の処理は、所定周期毎の割り込み処理として、電子制御ユニット40により実行される。 Fig. 8 shows the specific execution procedure of the flag operation process. A series of processes shown in the flowchart of FIG. 6 is executed by the electronic control unit 40 as an interrupt process at predetermined intervals.
 同図8に示すように、前述した失火判定処理を通じて失火発生有りと判定されたときに(ステップS301:YES)失火検出フラグがオン操作される(ステップS302)。 As shown in FIG. 8, when it is determined that misfire has occurred through the misfire determination process described above (step S301: YES), the misfire detection flag is turned on (step S302).
 また給油フラグは、上記給油判定処理を通じて燃料タンク32への燃料補給有りと判定されたときにオン操作される。 The refueling flag is turned on when it is determined that the fuel tank 32 is refueled through the refueling determination process.
 この給油判定処理は次のような考えのもとに実行される。本実施形態では、運転スイッチ47のオフ操作時に備蓄量センサ46によって検出された備蓄燃料量SPが、燃料補給の開始時において燃料タンク32内に備蓄されていた燃料の量(補給前備蓄量V1)として電子制御ユニット40に記憶されている。また、運転スイッチ47のオン操作時に備蓄量センサ46によって検出される備蓄燃料量SPが、燃料補給後に燃料タンク32内に備蓄されている燃料の量(補給後備蓄量VP)として用いられる。そして、運転スイッチ47のオン操作時に、それら補給前備蓄量V1および補給後備蓄量VPから、燃料タンク32に補給された燃料の量(燃料補給量V2[=VP-V1])と備蓄量変化率RP(=VP/V1)とがそれぞれ算出される。この燃料補給量V2が所定量以上であるときや、備蓄量変化率RPが所定値以上であるときに、燃料補給が行われたと判断される。 This refueling determination process is executed based on the following idea. In this embodiment, the reserve fuel amount SP detected by the reserve amount sensor 46 when the operation switch 47 is turned off is the amount of fuel stored in the fuel tank 32 at the start of fuel supply (the reserve amount V1 before supply). ) Is stored in the electronic control unit 40. Further, the stored fuel amount SP detected by the stored amount sensor 46 when the operation switch 47 is turned on is used as the amount of fuel stored in the fuel tank 32 after refueling (replenished stock amount VP). Then, when the operation switch 47 is turned on, the amount of fuel replenished to the fuel tank 32 (fuel replenishment amount V2 [= VP−V1]) and the stock amount change from the pre-replenishment stock amount V1 and the post-supplement stock amount VP The rate RP (= VP / V1) is calculated respectively. When the fuel supply amount V2 is greater than or equal to a predetermined amount, or when the stockpiling amount change rate RP is greater than or equal to a predetermined value, it is determined that fuel supply has been performed.
 そして、燃料タンク32への燃料補給が行われて給油フラグがオン操作されると(ステップS303:YES)、失火検出フラグがオフ操作された後(ステップS304)、給油フラグがオフ操作される(ステップS305)。 When the fuel tank 32 is refueled and the refueling flag is turned on (step S303: YES), the misfire detection flag is turned off (step S304), and then the refueling flag is turned off (step S304). Step S305).
 このように本実施形態では、失火検出フラグの操作が、内燃機関11において失火が発生するとオン操作される一方、その後において燃料タンク32への燃料補給が行われるとオフ操作されるといったように行われる。 As described above, in the present embodiment, the misfire detection flag is turned on when a misfire occurs in the internal combustion engine 11 and is turned off when fuel is supplied to the fuel tank 32 thereafter. Is called.
 そして本実施形態では、そうした失火検出フラグの操作状況に応じて、燃料噴射制御の実行態様、詳しくは燃料のセタン価領域の特定態様が切り替えられる。 In the present embodiment, the execution mode of the fuel injection control, specifically the specific mode of the cetane number region of the fuel, is switched according to the operation state of the misfire detection flag.
 以下、燃料のセタン価領域を特定する処理(セタン価領域特定処理)の実行手順について説明する。 Hereinafter, the execution procedure of the process for specifying the cetane number region of fuel (cetane number region specifying process) will be described.
 図9にセタン価領域特定処理の実行手順を示す。なお同図のフローチャートに示される一連の処理は、所定周期毎の割り込み処理として、電子制御ユニット40により実行される。 Figure 9 shows the execution procedure of the cetane number area identification process. The series of processes shown in the flowchart of FIG. 6 is executed by the electronic control unit 40 as an interrupt process at predetermined intervals.
 図9に示すように、この処理では先ず、失火検出フラグがオフ操作されているか否かが判断される(ステップS401)。失火フラグがオフ操作されている場合には(ステップS401:YES)、このとき内燃機関11において失火が発生していないとして、回転変動量ΣΔNEが算出される度に、電子制御ユニット40に記憶されているセタン価領域を更新する処理が実行される。具体的には、本処理の前回実行時と今回実行時との間に回転変動量ΣΔNEが新たに算出されて記憶されたときに(ステップS402:YES)、同回転変動量ΣΔNEに基づいてセタン価領域が特定されて電子制御ユニット40に記憶される(ステップS403)。この場合には、回転変動量ΣΔNEに基づき特定されて記憶されているセタン価領域に応じた第1実行態様で燃料噴射制御が実行される。 As shown in FIG. 9, in this process, first, it is determined whether or not the misfire detection flag is turned off (step S401). When the misfire flag is turned off (step S401: YES), it is stored in the electronic control unit 40 every time the rotational fluctuation amount ΣΔNE is calculated, assuming that no misfire has occurred in the internal combustion engine 11 at this time. A process for updating the cetane number area is executed. Specifically, when the rotational fluctuation amount ΣΔNE is newly calculated and stored between the previous execution of this process and the current execution (step S402: YES), cetane is set based on the rotational fluctuation amount ΣΔNE. A valence area is specified and stored in the electronic control unit 40 (step S403). In this case, the fuel injection control is executed in the first execution mode corresponding to the cetane number region specified and stored based on the rotational fluctuation amount ΣΔNE.
 その後において本処理が繰り返し実行されて、失火検出フラグがオン操作されると(ステップS401:NO)、本処理の前回実行時と今回実行時との間に失火発生有りと判定されたとして(ステップS404:YES)、電子制御ユニット40に記憶されているセタン価領域が一段階だけ低セタン価側の領域に変更される(ステップS406)。詳しくは、高セタン価領域が電子制御ユニット40に記憶されているときには中セタン価領域が電子制御ユニット40に記憶されるように変更され、中セタン価領域が電子制御ユニット40に記憶されているときには低セタン価領域が電子制御ユニット40に記憶されるように変更される。この場合には、このとき電子制御ユニット40に記憶されていたセタン価領域より低いセタン価領域に応じた第2実行態様で燃料噴射制御が実行される。ただし、低セタン価領域が電子制御ユニット40に記憶されているときには(ステップS405:YES)、それ以上低いセタン価側の領域に変更して記憶することができないため、セタン価領域の変更が実行されない(ステップS406の処理がジャンプされる)。 Thereafter, when this process is repeatedly executed and the misfire detection flag is turned on (step S401: NO), it is determined that a misfire has occurred between the previous execution of this process and the current execution (step S401). (S404: YES), the cetane number region stored in the electronic control unit 40 is changed to a region on the low cetane number side by one step (step S406). Specifically, when the high cetane number region is stored in the electronic control unit 40, the medium cetane number region is changed to be stored in the electronic control unit 40, and the medium cetane number region is stored in the electronic control unit 40. Sometimes, the low cetane number region is changed to be stored in the electronic control unit 40. In this case, the fuel injection control is executed in the second execution mode corresponding to the cetane number region lower than the cetane number region stored in the electronic control unit 40 at this time. However, when the low cetane number region is stored in the electronic control unit 40 (step S405: YES), the cetane number region is changed because it cannot be changed to a lower cetane number side region and stored. Is not performed (the process of step S406 is jumped).
 なお本処理では、一旦セタン価領域が低セタン価側の領域に変更された後に、再度失火判定処理を通じて失火発生有りと判定されると(ステップS404:YES)、電子制御ユニット40に記憶されているセタン価領域がさらに一段階だけ低セタン価側の領域に変更される(ステップS406)。詳しくは、一旦セタン価領域が高セタン価領域から中セタン価領域に変更された後に、再度失火判定処理を通じて失火発生有りと判定されると、中セタン価領域から低セタン価領域に変更される。 In this process, once the cetane number area is changed to the low cetane number area and then it is determined again that misfire has occurred through the misfire determination process (step S404: YES), it is stored in the electronic control unit 40. The existing cetane number region is further changed to a region on the low cetane number side by one step (step S406). Specifically, once the cetane number region is changed from the high cetane number region to the medium cetane number region, if it is determined again that misfire has occurred through the misfire determination process, the medium cetane number region is changed to the low cetane number region. .
 その後、本処理が繰り返し実行されて、失火検出フラグがオフ操作されると(ステップS401:YES)、回転変動量ΣΔNEが算出される度に同回転変動量ΣΔNEに基づきセタン価領域を特定して記憶する処理が実行される(ステップS402およびステップS403)。すなわち、この場合には内燃機関11における失火発生が収まった状態で燃料タンク32への燃料補給が行われたとして、回転変動量ΣΔNEに基づく第1実行態様での燃料噴射制御への切り替えが許可される。 Thereafter, when this process is repeatedly executed and the misfire detection flag is turned off (step S401: YES), the cetane number region is specified based on the rotational fluctuation amount ΣΔNE every time the rotational fluctuation amount ΣΔNE is calculated. The storing process is executed (step S402 and step S403). That is, in this case, assuming that the fuel tank 32 has been refueled with the occurrence of misfire in the internal combustion engine 11, switching to the fuel injection control in the first execution mode based on the rotational fluctuation amount ΣΔNE is permitted. Is done.
 以下、セタン価領域特定処理の実行による作用について説明する。 Hereinafter, the effect of executing the cetane number region specifying process will be described.
 図10は、セタン価領域特定処理の実行態様の一例を示している。 FIG. 10 shows an example of an execution mode of the cetane number region specifying process.
 図10に示す例では、時刻t11以前において、内燃機関11において失火が発生していないために失火検出フラグがオフ操作されており、給油フラグがオフ操作されている。また燃料タンク32内に比較的高いセタン価の燃料が備蓄されているために、回転変動量ΣΔNEに基づき高セタン価領域が特定されて電子制御ユニット40に記憶されている。 In the example shown in FIG. 10, before the time t11, the misfire detection flag is turned off because no misfire has occurred in the internal combustion engine 11, and the refueling flag is turned off. Further, since fuel with a relatively high cetane number is stored in the fuel tank 32, a high cetane number region is specified based on the rotational fluctuation amount ΣΔNE and stored in the electronic control unit 40.
 そして、時刻t11において失火判定処理を通じて失火発生有りと判定されると、失火検出フラグがオン操作されるとともに、セタン価領域が一段階だけ低セタン価側の領域(中セタン価領域)に変更される。これにより燃料噴射制御の実行態様が回転変動量ΣΔNEに基づく第1実行態様から低セタン価燃料に見合う第2実行態様に切り替えられる。 When it is determined that misfire has occurred through the misfire determination process at time t11, the misfire detection flag is turned on, and the cetane number region is changed to a region on the low cetane number side (medium cetane number region) by one step. The Thereby, the execution mode of the fuel injection control is switched from the first execution mode based on the rotational fluctuation amount ΣΔNE to the second execution mode commensurate with the low cetane number fuel.
 その後において、内燃機関11の運転を停止するべく運転スイッチ47がオフ操作されたり(時刻t12,t14)、運転を開始するべく運転スイッチ47がオン操作されたりしても(時刻t13)、燃料タンク32への燃料補給が行われない限り、失火検出フラグがオン状態のままで保持される。そのため、このときセタン価領域も変更されずに中セタン価領域のままで保持される。これにより燃料噴射制御の第2実行態様から第1実行態様への切り替えが禁止される。 Thereafter, even if the operation switch 47 is turned off to stop the operation of the internal combustion engine 11 (time t12, t14) or the operation switch 47 is turned on to start the operation (time t13), the fuel tank As long as the fuel supply to 32 is not performed, the misfire detection flag is maintained in the ON state. Therefore, at this time, the cetane number region is not changed and is maintained in the medium cetane number region. Accordingly, switching from the second execution mode of the fuel injection control to the first execution mode is prohibited.
 そして、運転スイッチ47のオフ操作中(時刻t14~t15)において燃料タンク32への燃料補給が行われると、その後において運転スイッチ47がオン操作されるタイミングで(時刻t15)、給油フラグがオン操作されるとともに失火検出フラグがオフ操作される。そのため、以後において、回転変動量ΣΔNEに基づく第1実行態様での燃料噴射制御への切り替えが許可されるようになる。 When the fuel tank 32 is refueled while the operation switch 47 is turned off (time t14 to t15), the refueling flag is turned on at the timing when the operation switch 47 is turned on thereafter (time t15). At the same time, the misfire detection flag is turned off. Therefore, thereafter, switching to the fuel injection control in the first execution mode based on the rotational fluctuation amount ΣΔNE is permitted.
 その後の時刻t16において、回転変動量ΣΔNEが検出されて記憶されると、同回転変動量ΣΔNEに基づきセタン価領域が特定されて記憶される。具体的には、回転変動量ΣΔNEに基づき高セタン価領域が特定されて電子制御ユニット40に記憶される。そして、以後においては回転変動量ΣΔNEに基づく第1実行態様での燃料噴射制御が実行される。 At the subsequent time t16, when the rotational fluctuation amount ΣΔNE is detected and stored, the cetane number region is specified and stored based on the rotational fluctuation amount ΣΔNE. Specifically, a high cetane number region is specified based on the rotational fluctuation amount ΣΔNE and stored in the electronic control unit 40. Thereafter, the fuel injection control in the first execution mode based on the rotational fluctuation amount ΣΔNE is executed.
 以上説明したように、本実施形態によれば、以下に記載する効果が得られるようになる。 As described above, according to the present embodiment, the following effects can be obtained.
 (1)低セタン価燃料に見合う第2実行態様での燃料噴射制御の実行時において給油判定処理を通じて燃料補給有りと判定されるまでの間、燃料噴射制御の第2実行態様から第1実行態様への切り替えを禁止するようにした。そのため、燃料噴射制御の第2実行態様への切り替えに伴って失火発生が一旦収まった後において、同燃料噴射制御の実行態様が失火発生を招いた第1実行態様に戻されることによって再度失火発生を招いてしまうといった状況になることを回避することができ、内燃機関11における失火発生を好適に抑えることができる。 (1) From the second execution mode of the fuel injection control to the first execution mode until it is determined through the fuel supply determination process that there is fuel replenishment during execution of the fuel injection control in the second execution mode commensurate with the low cetane number fuel. Switching to is prohibited. Therefore, after the misfire occurrence has temporarily subsided with the switching to the second execution mode of the fuel injection control, the misfire occurs again by returning the execution mode of the fuel injection control to the first execution mode causing the misfire occurrence. Can be avoided, and the occurrence of misfire in the internal combustion engine 11 can be suitably suppressed.
 なお、上記実施形態は、以下のように変更して実施してもよい。 Note that the above embodiment may be modified as follows.
 ・燃料噴射弁20の初期個体差や経時変化などに起因する燃料噴射時期や燃料噴射量の誤差が適正に抑えられるのであれば、目標噴射時期TQstと目標噴射時間TQtmとを補正項K1,K2によって補正する処理(図6のステップS202)を省略してもよい。 If the errors in the fuel injection timing and the fuel injection amount due to the initial individual differences and changes with time of the fuel injection valve 20 can be appropriately suppressed, the target injection timing TQst and the target injection time TQtm are corrected by the correction terms K1, K2. May be omitted (step S202 in FIG. 6).
 ・上記実施形態にかかる制御装置は、燃料のセタン価の指標値(回転変動量ΣΔNE)によって区切られた二つのセタン価領域のいずれの領域であるかを判断する装置や四つ以上のセタン価領域のいずれの領域であるかを判断する装置にも、その構成を適宜変更したうえで適用することができる。 The control device according to the embodiment described above is a device for determining which of the two cetane number regions divided by the fuel cetane number index value (rotational fluctuation amount ΣΔNE) or four or more cetane numbers. The present invention can also be applied to a device that determines which area of the area the structure is changed as appropriate.
 ・電子制御ユニット40に記憶されているセタン価領域に応じて実行態様を変更する制御としては、要求噴射時期Tstを設定する制御を採用することに代えて、あるいは併せて、EGR制御やパイロット噴射制御などを採用してもよい。要は、内燃機関11における燃料の燃焼に関する燃焼制御、言い換えれば内燃機関11における燃料の燃焼状態を調節するための燃焼制御であれば、セタン価領域に応じて実行態様を変更する制御として採用することができる。そうした燃焼制御としてEGR制御が採用される装置では、同EGR制御を、低セタン価側の領域であるときほどEGR量が少なくなるように実行すればよい。また、燃焼制御としてパイロット噴射制御が採用される装置では、パイロット噴射制御を、例えば低セタン価側の領域であるときほどパイロット噴射量が多くなるように実行すればよい。 -As control for changing the execution mode according to the cetane number region stored in the electronic control unit 40, instead of or in addition to adopting control for setting the required injection timing Tst, EGR control or pilot injection Control or the like may be employed. The point is that the combustion control related to the combustion of fuel in the internal combustion engine 11, in other words, the combustion control for adjusting the combustion state of the fuel in the internal combustion engine 11, is adopted as the control for changing the execution mode according to the cetane number region. be able to. In an apparatus that employs EGR control as such combustion control, the EGR control may be executed so that the EGR amount decreases as it is in the low cetane number region. Further, in an apparatus that employs pilot injection control as combustion control, pilot injection control may be executed so that the pilot injection amount increases, for example, when the region is on the low cetane number side.
 ・上記実施形態にかかる制御装置は、電子制御ユニット40に記憶されている回転変動量ΣΔNEに基づきセタン価領域を特定することなく同回転変動量ΣΔNEそのものに応じて燃料噴射制御の実行態様を定める装置にも、その構成を適宜変更したうえで適用することができる。こうした装置では、例えば、失火判定処理を通じて失火発生有りと判定されたときに電子制御ユニット40に記憶されている回転変動量ΣΔNEを予め定められた所定量だけ減量補正するとともに、その後において燃料タンク32への燃料補給が行われるまでの間、同回転変動量ΣΔNEの減量補正の解除を禁止するようにすればよい。 -The control apparatus concerning the said embodiment determines the execution aspect of fuel-injection control according to the rotation fluctuation amount (SIGMA) ΔNE itself, without specifying a cetane number area | region based on rotation fluctuation amount (SIGMA) ΔNE memorize | stored in the electronic control unit 40. The present invention can also be applied to the apparatus after changing its configuration as appropriate. In such an apparatus, for example, the rotational fluctuation amount ΣΔNE stored in the electronic control unit 40 when the misfire occurrence determination is determined through the misfire determination process is corrected by a predetermined amount, and thereafter the fuel tank 32 is corrected. Until the fuel is refueled, the cancellation of the reduction correction of the rotation fluctuation amount ΣΔNE may be prohibited.
 ・上記実施形態にかかる制御装置は、電子制御ユニット40に記憶されている回転変動量ΣΔNEに基づいて燃料のセタン価そのものを推定するとともにその推定したセタン価に見合う実行態様で燃料噴射制御を実行する装置にも、その構成を適宜変更したうえで適用することができる。こうした装置では、例えば、失火判定処理を通じて失火発生有りと判定されたときに電子制御ユニット40に記憶されている推定セタン価を予め定められた所定値だけ低いセタン価側の値に補正するとともに、その後において燃料タンク32への燃料補給が行われるまでの間、同推定セタン価の補正の解除を禁止するようにすればよい。 The control device according to the above embodiment estimates the cetane number of the fuel itself based on the rotational fluctuation amount ΣΔNE stored in the electronic control unit 40 and executes the fuel injection control in an execution mode corresponding to the estimated cetane number. The present invention can also be applied to an apparatus that changes the configuration as appropriate. In such an apparatus, for example, when it is determined that misfire has occurred through misfire determination processing, the estimated cetane number stored in the electronic control unit 40 is corrected to a value on the cetane number side lower by a predetermined value, Thereafter, cancellation of the correction of the estimated cetane number may be prohibited until the fuel tank 32 is refueled.
 ・回転変動量ΣΔNE以外の値を内燃機関11の出力トルクの指標値として算出するようにしてもよい。例えば指標値検出処理の実行中において燃料噴射の実行時における機関回転速度NEと同燃料噴射の実行直前における機関回転速度NEとをそれぞれ検出するとともにそれら速度の差を算出して、同差を上記指標値として用いることができる。 A value other than the rotational fluctuation amount ΣΔNE may be calculated as an index value of the output torque of the internal combustion engine 11. For example, during the execution of the index value detection process, the engine rotational speed NE at the time of execution of fuel injection and the engine rotational speed NE immediately before the execution of the fuel injection are respectively detected and the difference between these speeds is calculated. It can be used as an index value.
 ・圧力センサ41の取り付け態様は、燃料噴射弁20の内部(詳しくは、ノズル室25内)の燃料圧力の指標となる圧力、言い換えれば同燃料圧力の変化に伴って変化する燃料圧力を適正に検出することができるのであれば、燃料噴射弁20に直接取り付けられる態様に限らず、任意に変更することができる。具体的には、圧力センサを分岐通路31aやコモンレール34に取り付けるようにしてもよい。 The pressure sensor 41 is mounted in an appropriate manner so that the fuel pressure indicator in the fuel injection valve 20 (specifically, in the nozzle chamber 25), in other words, the fuel pressure that changes with the change in the fuel pressure is appropriately set. As long as it can be detected, the present invention is not limited to the mode of being directly attached to the fuel injection valve 20, but can be arbitrarily changed. Specifically, the pressure sensor may be attached to the branch passage 31 a or the common rail 34.
 ・圧電アクチュエータ29により駆動されるタイプの燃料噴射弁20に代えて、例えばソレノイドコイルなどを備えた電磁アクチュエータによって駆動されるタイプの燃料噴射弁を採用することもできる。 -Instead of the type of fuel injection valve 20 driven by the piezoelectric actuator 29, for example, a type of fuel injection valve driven by an electromagnetic actuator provided with a solenoid coil or the like may be employed.
 ・上記実施形態にかかる制御装置は、クラッチ機構13と手動変速機14とが搭載された車両10に限らず、トルクコンバータと自動変速機とが搭載された車両にも適用することができる。こうした車両では、例えば[条件1]および[条件3]が満たされるときに燃料のセタン価の推定のための燃料噴射を実行するようにすればよい。なお、トルクコンバータとしてロックアップクラッチ内蔵のものが採用される車両においては、ロックアップクラッチが係合状態になっていないこととの[条件4]を新たに設定するとともに同[条件4]が満たされることを条件に燃料のセタン価指標値の検出のための燃料噴射を実行するようにすればよい。 The control device according to the above embodiment can be applied not only to the vehicle 10 on which the clutch mechanism 13 and the manual transmission 14 are mounted, but also to a vehicle on which a torque converter and an automatic transmission are mounted. In such a vehicle, for example, when [Condition 1] and [Condition 3] are satisfied, fuel injection for estimating the cetane number of fuel may be executed. In a vehicle in which a lockup clutch is incorporated as a torque converter, [Condition 4] that the lockup clutch is not engaged is newly set and the [Condition 4] is satisfied. The fuel injection for detecting the cetane number index value of the fuel may be executed on the condition that
 ・本発明は、セタン価の推定のための燃料噴射(補助燃料噴射)が実行される装置に限らず、内燃機関11に供給される燃料のセタン価を推定するとともに推定したセタン価に応じた実行態様で燃焼制御を実行する装置であれば、適用することができる。そうした装置としては、次のような装置を挙げることができる。すなわち先ず、所定の実行条件の成立時において内燃機関の運転のための燃料噴射の実行時において筒内圧センサによって同内燃機関の気筒内の圧力(筒内圧)を検出する。そして、この筒内圧に基づいて実際に燃料が着火した時期を算出するとともに、同時期に基づいて着火遅れ時間を算出する。その後、この算出した着火遅れ時間の平均値を算出するとともに同平均値に基づいてセタン価指標値を算出する。そして、このセタン価指標値に応じた実行態様で燃焼制御を実行する。 The present invention is not limited to a device that performs fuel injection (auxiliary fuel injection) for estimating the cetane number, and estimates the cetane number of the fuel supplied to the internal combustion engine 11 and responds to the estimated cetane number. Any device that performs combustion control in an execution mode can be applied. Examples of such a device include the following devices. That is, first, when the fuel injection for the operation of the internal combustion engine is executed when the predetermined execution condition is satisfied, the pressure in the cylinder (in-cylinder pressure) of the internal combustion engine is detected by the in-cylinder pressure sensor. Based on this in-cylinder pressure, the time when the fuel is actually ignited is calculated, and the ignition delay time is calculated based on the same period. Thereafter, an average value of the calculated ignition delay time is calculated, and a cetane number index value is calculated based on the average value. And combustion control is performed in the execution mode according to this cetane number index value.
 ・四つの気筒を有する内燃機関に限らず、単気筒の内燃機関や、二つの気筒を有する内燃機関、三つの気筒を有する内燃機関、あるいは五つ以上の気筒を有する内燃機関にも、本発明は適用することができる。 The present invention is not limited to an internal combustion engine having four cylinders, but also to a single cylinder internal combustion engine, an internal combustion engine having two cylinders, an internal combustion engine having three cylinders, or an internal combustion engine having five or more cylinders. Can be applied.
 10…車両、11…内燃機関、12…クランクシャフト、13…クラッチ機構、14…手動変速機、15…車輪、16…気筒、17…吸気通路、18…ピストン、19…排気通路、20…燃料噴射弁、21…ハウジング、22…ニードル弁、23…噴射孔、24…スプリング、25…ノズル室、26…圧力室、27…導入通路、28…連通路、29…圧電アクチュエータ、29a…弁体、30…排出路、31a…分岐通路、31b…供給通路、32…燃料タンク、33…燃料ポンプ、34…コモンレール、35…リターン通路、40…電子制御ユニット、41…圧力センサ、42…クランクセンサ、43…アクセルセンサ、44…車速センサ、45…クラッチスイッチ、46…備蓄量センサ、47…運転スイッチ。 DESCRIPTION OF SYMBOLS 10 ... Vehicle, 11 ... Internal combustion engine, 12 ... Crankshaft, 13 ... Clutch mechanism, 14 ... Manual transmission, 15 ... Wheel, 16 ... Cylinder, 17 ... Intake passage, 18 ... Piston, 19 ... Exhaust passage, 20 ... Fuel Injection valve, 21 ... housing, 22 ... needle valve, 23 ... injection hole, 24 ... spring, 25 ... nozzle chamber, 26 ... pressure chamber, 27 ... introduction passage, 28 ... communication passage, 29 ... piezoelectric actuator, 29a ... valve body , 30 ... discharge passage, 31a ... branch passage, 31b ... supply passage, 32 ... fuel tank, 33 ... fuel pump, 34 ... common rail, 35 ... return passage, 40 ... electronic control unit, 41 ... pressure sensor, 42 ... crank sensor , 43 ... Accelerator sensor, 44 ... Vehicle speed sensor, 45 ... Clutch switch, 46 ... Reserve amount sensor, 47 ... Operation switch.

Claims (3)

  1. 内燃機関に供給される燃料のセタン価を推定する推定部と、
     前記推定部により推定した推定セタン価に応じた第1実行態様で燃料の燃焼に関する燃焼制御を実行する第1制御部と、
     前記内燃機関における失火発生の有無を判定する失火判定部と、
     前記失火判定部により失火発生有りと判定されたときに、前記推定部により推定した推定セタン価より低いセタン価の燃料に応じた第2実行態様で前記燃焼制御を実行する第2制御部と、
     燃料タンクへの燃料補給の有無を判定する補給判定部と、
     前記第2実行態様での前記燃焼制御の実行時において前記補給判定部によって燃料補給有りと判定されるまでの間、前記第2実行態様から前記第1実行態様への切り替えを禁止する禁止部と
    を備える内燃機関の制御装置。
    An estimation unit for estimating a cetane number of fuel supplied to the internal combustion engine;
    A first control unit that executes combustion control related to fuel combustion in a first execution mode according to the estimated cetane number estimated by the estimation unit;
    A misfire determination unit that determines the presence or absence of misfire occurrence in the internal combustion engine;
    A second control unit that executes the combustion control in a second execution mode according to fuel having a cetane number lower than the estimated cetane number estimated by the estimation unit when the misfire determination unit determines that misfire has occurred;
    A replenishment determination unit that determines whether or not fuel is supplied to the fuel tank;
    A prohibition unit for prohibiting switching from the second execution mode to the first execution mode until the replenishment determination unit determines that there is fuel replenishment during execution of the combustion control in the second execution mode; A control device for an internal combustion engine.
  2. 請求項1に記載の内燃機関の制御装置において、
     前記推定部は、前記内燃機関に供給される燃料のセタン価が複数のセタン価領域の何れの領域に属するのかを推定し、
     前記第1制御部は、前記推定部により推定したセタン価領域に応じた前記第1実行態様で前記燃焼制御を実行し、
     前記第2制御部は、前記推定部により推定したセタン価領域より低セタン価側の領域に応じた前記第2実行態様で前記燃焼制御を実行する
    ことを特徴とする内燃機関の制御装置。
    The control apparatus for an internal combustion engine according to claim 1,
    The estimation unit estimates which region of the plurality of cetane number regions the cetane number of the fuel supplied to the internal combustion engine belongs to,
    The first control unit executes the combustion control in the first execution mode according to the cetane number region estimated by the estimation unit,
    The control device for an internal combustion engine, wherein the second control unit executes the combustion control in the second execution mode corresponding to a region on the cetane number side lower than the cetane number region estimated by the estimation unit.
  3. 請求項1または2に記載の内燃機関の制御装置において、
     前記推定部は、前記内燃機関の運転状態に応じた量での燃料噴射が行われる基本噴射制御とは別に、前記燃料のセタン価の推定のための燃料噴射を行う補助噴射制御を実行するとともに、同補助噴射制御の実行に伴い発生した機関トルクの指標値を検出し、その検出した指標値を前記推定セタン価として記憶する
    ことを特徴とする内燃機関の制御装置。
    The control apparatus for an internal combustion engine according to claim 1 or 2,
    The estimation unit executes auxiliary injection control for performing fuel injection for estimating the cetane number of the fuel, separately from basic injection control in which fuel injection is performed in an amount corresponding to an operating state of the internal combustion engine. A control device for an internal combustion engine, wherein an index value of engine torque generated with the execution of the auxiliary injection control is detected and the detected index value is stored as the estimated cetane number.
PCT/JP2011/066470 2011-07-20 2011-07-20 Controller for internal combustion engine WO2013011580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/066470 WO2013011580A1 (en) 2011-07-20 2011-07-20 Controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/066470 WO2013011580A1 (en) 2011-07-20 2011-07-20 Controller for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2013011580A1 true WO2013011580A1 (en) 2013-01-24

Family

ID=47557787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066470 WO2013011580A1 (en) 2011-07-20 2011-07-20 Controller for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2013011580A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224724A (en) * 2006-02-21 2007-09-06 Honda Motor Co Ltd Control device for internal-combustion engine
JP2008208773A (en) * 2007-02-26 2008-09-11 Toyota Motor Corp Cetane number detection control device
JP2009036027A (en) * 2007-07-31 2009-02-19 Toyota Motor Corp Cetane number detection device
JP2009221866A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Cetane number estimation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224724A (en) * 2006-02-21 2007-09-06 Honda Motor Co Ltd Control device for internal-combustion engine
JP2008208773A (en) * 2007-02-26 2008-09-11 Toyota Motor Corp Cetane number detection control device
JP2009036027A (en) * 2007-07-31 2009-02-19 Toyota Motor Corp Cetane number detection device
JP2009221866A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Cetane number estimation method

Similar Documents

Publication Publication Date Title
JP5790666B2 (en) Cetane number estimation device
JP5316525B2 (en) Cetane number estimation device
JP5561427B2 (en) Cetane number estimation device
JP5880219B2 (en) Engine fuel property estimation device
JP5273307B1 (en) Control device for internal combustion engine
JP5273314B2 (en) Cetane number estimation device
JP5224004B1 (en) Control device for internal combustion engine
JP5776774B2 (en) Control device for internal combustion engine
WO2013011580A1 (en) Controller for internal combustion engine
JP5787075B2 (en) Control device for internal combustion engine
JP5772266B2 (en) Cetane number estimation device
JP5549398B2 (en) Cetane number estimation device
JP2013209943A (en) Engine fuel property estimation apparatus
JP5742772B2 (en) Engine control device
JP2012163071A (en) Cetane number estimating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP