WO2013011179A2 - Recombinant vectors based on the modified vaccinia ankara (mva) virus, with deletion in the c6l gene, as vaccines against hiv/aids and other diseases - Google Patents

Recombinant vectors based on the modified vaccinia ankara (mva) virus, with deletion in the c6l gene, as vaccines against hiv/aids and other diseases Download PDF

Info

Publication number
WO2013011179A2
WO2013011179A2 PCT/ES2012/070521 ES2012070521W WO2013011179A2 WO 2013011179 A2 WO2013011179 A2 WO 2013011179A2 ES 2012070521 W ES2012070521 W ES 2012070521W WO 2013011179 A2 WO2013011179 A2 WO 2013011179A2
Authority
WO
WIPO (PCT)
Prior art keywords
mva
hiv
cells
viral vector
recombinant mva
Prior art date
Application number
PCT/ES2012/070521
Other languages
Spanish (es)
French (fr)
Other versions
WO2013011179A3 (en
Inventor
Juan Francisco GARCÍA ARRIAZA
Carmen Elena Gómez Rodríguez
Mariano ESTEBAN RODRÍGUEZ
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2013011179A2 publication Critical patent/WO2013011179A2/en
Publication of WO2013011179A3 publication Critical patent/WO2013011179A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/21Retroviridae, e.g. equine infectious anemia virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24141Use of virus, viral particle or viral elements as a vector
    • C12N2710/24143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention falls within the fields of molecular biology and biotechnology. Specifically it refers to recombinant viruses based on the modified Ankara virus (MVA) that express the gp120 and Gag-Pol-Nef antigens of the human immunodeficiency virus (HIV-1) of subtype B (MVA-B), on which The C6L vaccinia gene has been deleted, and they have been designed to be used as vaccines against HIV / AIDS and other diseases.
  • VMA modified Ankara virus
  • HAV-1 human immunodeficiency virus
  • MVP-B subtype B
  • MVA a highly attenuated strain of vaccinia
  • SHIV human immunodeficiency virus
  • an MVA recombinant that expresses HIV-1 antigens of subtype B, gp120 (SEQ ID No. 15 of PCT / ES2006 / 0701 14) has been constructed in our laboratory as a monomeric protein and Gag-Pol-Nef polyprotein ( SEQ ID No. 16 of PCT / ES2006 / 0701 14) (virus called MVA-B) (Patent: PCT / ES2006 / 0701 14, publication date: 1/2/2007.
  • MVA-B poxviral vectors that may increase the magnitude, amplitude, polyfunctionality and durability of immune responses against HIV-1 antigens are necessary and desirable. This is particularly relevant when a single immunogen is desirable for mass vaccination purposes to simplify immunization protocols and reduce manufacturing costs.
  • Poxviral vectors express numerous genes encoding immunomodulatory proteins that interfere with the host's anti-viral response (Alcam ⁇ , 2003. Nat. Rev. Immunol. 3: 36-50). Therefore, deletion in the MVA-B poxviral vector of vaccinia genes that are known or suggest that they may have an immunomodulatory function is a general strategy that can increase the immunogenicity of the vector against HIV-1 antigens.
  • C6L vaccinia gene which is present in the genome of MVA vaccinia strains (gene named MVA 019L, SEQ ID No: 1), Western Reserve (WR) (gene called VACV-WR_022, SEQ ID No: 3), and Copenhagen (gene named C6L, SEQ ID No: 5), but absent in the New York Vaccinia Virus (NYVAC) lineage.
  • WR Western Reserve
  • C6L SEQ ID No: 5
  • NYVAC New York Vaccinia Virus
  • C6L encodes a 157 amino acid protein with a predicted molecular weight of 18.2 kDa.
  • TLR Toll-like receptor
  • PloS Pathog. 4 e22; Graham et al., 2008. PloS Pathog. 4: e1000128; Harte et al., 2003. J Exp. Med. 197: 343-351; Kalverda et al., 2009. J. Mol. Biol. 385: 843-853; Oda et al., 2009. Structure 17: 1528-1537; Schroder et al., 2008 EMBO J. 27: 2147-2157; Stack et al., 2005. J. Exp. Med. 201: 1007-1018). Protein 06 is present, although at low levels, in mature intracellular vaccinia virions (IMV) (Chung et al., 2006. J. Virol.
  • IMV intracellular vaccinia virions
  • MVA-B AC6L a new vaccine candidate has been generated against HIV-1, called MVA-B AC6L, which contains a deletion in the MVA-B vector of the C6L vaccinia gene and which we demonstrate acts by inducing the production of type 1 interferon and activating in vivo T cell production of memory, which was not expected, but which represents an attractive alternative to increase the immunogenicity of MVA-based vaccine candidates.
  • the present invention represents a new vaccine candidate against HIV-1, called MVA-B AC6L, which contains a deletion in the MVA-B vector of the C6L vaccinia gene.
  • MVA-B AC6L replicates in cell cultures at the same level as the parental MVA-B virus, indicating that C6 is not essential for viral replication. Additionally, MVA-B AC6L induces innate immune responses by increasing IFN- ⁇ expression and IFN- ⁇ / ⁇ -induced genes (IFIT1 and IFIT2) in human THP-1 cells and monocyte-derived dendritic cells (moDCs), suggesting that C6 inhibits the IFN- ⁇ signaling pathway by blocking some unknown component involved in the induction of IFN- ⁇ .
  • IFIT1 and IFIT2 IFN- ⁇ / ⁇ -induced genes
  • MVA-B AC6L significantly increases the magnitude and polyfunctionality of the immune response of CD4 + and CD8 + memory T cells specific against HIV-1, which is mainly mediated by effector phenotype CD8 + T cells, in both immunization groups.
  • the response of specific CD4 + memory T cells against HIV-1, induced by MVA-B and MVA-B AC6L was preferentially specific against Env.
  • MVA-B induces specific CD8 + memory T cell immune responses against Env and Gag
  • MVA-B AC6L preferentially induces specific CD8 + memory T cell immune responses against Gag-Pol-Nef (GPN ).
  • MVA-B AC6L increases antibody levels against Env.
  • MVA-B AC6L represents a new vaccine candidate against HIV-1 that, not being obvious, has an immunological benefit by increasing IFN- ⁇ -dependent responses in human cells and increasing the humoral response and the magnitude and quality of the specific immune responses of T-cell memory against HIV-1 antigens.
  • the results obtained would allow to extend the scope of protection to improve the immunogenicity of new recombinant vectors based on MVA, which express other heterologous antigens (examples , malaria, leishmania, hepatitis C virus and prostate cancer) by deleting the C6L gene, in order to be used as vaccines against these diseases.
  • MVA-B AC6L The construction of MVA-B AC6L described in the present invention and the tests in which both its in vitro behavior, as well as the innate immune response induced in human cells, and its immunogenic capacity in mice against HIV-1 antigens are evaluated they are described in more detail with the help of the figures and the examples that appear hereinafter.
  • the present invention refers to a viral vector based on a recombinant MVA virus, characterized in that the nucleotide sequence encoding said vector comprises:
  • the mutation in the sequence SEQ ID No: 1 is a partial or total deletion. In an even more preferred embodiment, the mutation in the sequence SEQ ID No: 1 is a total deletion.
  • the nucleotide sequence encoding said vector comprises at least one nucleotide sequence encoding a heterologous antigen selected from the Next group: HIV antigen, malaria antigen, leishmaniasis antigen, hepatitis C virus antigen and prostate cancer antigen.
  • the nucleotide sequence encoding said vector comprises the nucleotide sequences encoding the following HIV antigens: gp120 antigens (SEQ ID No. 15 of PCT / ES2006 / 0701 14) and Gag-Pol-Nef (SEQ ID No. 16 of PCT / ES2006 / 0701 14) of HIV of subtype B, or of any other subtype, under the control of the early / late viral synthetic promoter inserted into the TK viral locus.
  • the present invention also refers to the method of manufacturing the viral vector based on a recombinant MVA virus defined above, characterized by comprising the following steps:
  • step b) purifying the viral vector based on a recombinant MVA virus defined above, obtained in step b).
  • the present invention also refers to the use of the viral vector based on a recombinant MVA virus defined above, as an immunogen to prevent or treat one of the following diseases: HIV, malaria, leishmaniasis, hepatitis C, and prostate cancer.
  • said vector is used as an immunogen to prevent or treat HIV disease.
  • the viral vector based on a recombinant MVA virus defined above, as part of an immunization protocol to prevent or treat one of the following diseases: HIV, malaria, leishmaniasis, hepatitis C, and prostate cancer, in which at least one dose of vaccination is administered to the individual.
  • said vector is administered to the individual a single dose of vaccination to:
  • said vector is used as part of an immunization protocol in which the individual is administered at least one dose of vaccination, to prevent or treat HIV disease.
  • said vector is used as part of an immunization protocol in which the individual is administered at least one vaccination dose or several vaccination doses of a combination of heterologous vectors (proteins, DNA, VLPs, attenuated viral vectors) to prevent or treat one of the following diseases: HIV, malaria, leishmaniasis, hepatitis C, and prostate cancer.
  • heterologous vectors proteins, DNA, VLPs, attenuated viral vectors
  • the present invention also refers to the use of the immunogenic composition or vaccine defined above, to prevent or treat one of the following diseases: HIV, malaria, leishmaniasis, hepatitis C, and prostate cancer.
  • said immunogenic composition or vaccine is for preventing or treating HIV.
  • the present invention refers to the following terms:
  • MVA recombinant virus or “MVA” refers interchangeably to: a highly attenuated strain of vaccinia, called Ankara modified virus (MVA), obtained after 576 serial passes in chicken embryonic cell cultures (CEF).
  • MVA Ankara modified virus
  • MVA-B recombinant virus or "MVA-B parental virus” or "MVA-B poxviral vector” refers interchangeably to: poxvirus based on the modified Ankara virus (MVA) expressing the gp120 and Gag antigens -Pol- Nef of human immunodeficiency virus (HIV-1) of subtype B (MVA-B).
  • MVA modified Ankara virus
  • HAV-1 human immunodeficiency virus
  • parental is used when comparing MVA-B with MVA-B AC6L, since the deletion of C6L is made on the genome of MVA-B.
  • viral vector or "recombinant viral vector” refers to: a modified virus that acts as a vehicle for introducing exogenous genetic material into a cell.
  • MVA-B AC6L vector refers to: an isolated MVA virus, characterized in that it expresses the gp120 and Gag-Pol-Nef antigens of the human immunodeficiency virus (HIV-1) of subtype B, and has a deletion in the polynucleotide sequence encoding an amino acid sequence homologous to that of the C6L gene (SEQ ID No: 1), and is presented for use as a pharmaceutical composition or medicament.
  • the deletion of the C6L gene in MVA-B includes positions 19068 to 19541 of the MVA genome.
  • C6L vaccinia gene refers to: a vaccinia gene, whose function was unknown prior to the presentation of this invention.
  • the C6L gene is present in the genome of MVA vaccinia strains (gene named MVA 019L, positions 19068 to 19541 of the MVA genome, SEQ ID No: 1), Western Reserve (WR) (gene named VACV-WR_022, positions 16401 to 16856 of WR, SEQ ID No: 3), and Copenhagen (gene named C6L, positions 19484 to 19939, SEQ ID No: 5), but absent in the New York Vaccinia Virus (NYVAC) lineage.
  • MVA 019L positions 19068 to 19541 of the MVA genome, SEQ ID No: 1
  • WR Western Reserve
  • VACV-WR_022 genes 16401 to 16856 of WR
  • Copenhagen gene named C6L, positions 19484 to 19939, SEQ ID No: 5
  • Plasmid or "transfer vector” refers to a circular fragment of extrachromosomal double stranded circular or linear DNA, which is found inside almost all bacteria, and they act and replicate independently to bacterial chromosomal DNA and can be transferred from one bacterium to another. They are used as vectors in genetic manipulation.
  • virus refers to: a microscopic infectious entity that can only multiply within the cells of other organisms. More specifically, it refers to viruses belonging to the Poxviridae family, which is a family of interrelated DNA viruses called poxviruses, infectious for vertebrate and invertebrate animals,
  • composition refers to: those substances that are present in a given sample and in certain quantities.
  • heterologous antigen refers to: a molecule (usually a protein or a polysaccharide), which triggers the formation of antibodies and can cause an immune response. It preferably refers to those antigens of a viral species other than vaccinia that are inserted into a viral vaccinia vector.
  • HIV antigens refers to: human immunodeficiency virus (HIV) antigens, which are expressed from the recombinant MVA viruses that contain them. It includes any HIV antigen encoded from the HIV genome.
  • HIV human immunodeficiency virus
  • malaria antigens refers to: malaria antigens, which are expressed from the recombinant MVA viruses that contain them. It includes any malaria antigen encoded from the genome of the pathogen of the genus Plasmodium, which generates the disease, the term “leishmaniasis antigens” refers to: leishmania antigens, which are expressed from the recombinant MVA viruses that They contain them. It includes any leishmania antigen encoded from the genome of the pathogen of the genus Leishmania, which generates the disease.
  • hepatitis C virus antigens refers to: hepatitis C virus antigens, which are expressed from the recombinant MVA viruses that contain them. Include any virus antigen of hepatitis C encoded from the hepatitis C virus genome.
  • prostate cancer antigens refers to: prostate cancer antigens (including PSCA and STEAP antigens), which are expressed as From the recombinant MVA viruses that contain them
  • the term “disease vaccine” refers to: an immunogenic or antigenic preparation or composition used to establish the immune system's response to a disease. They are prepared or combinations of immunogens or antigens that once inside the body cause the immune system response, through the production of antibodies, and generate immunological memory producing permanent or transient immunity.
  • vaccine against prostate cancer refers to: an antigen preparation used to establish the immune system's response to prostate cancer.
  • mutation refers to: an alteration or change in the genetic information of a living being and that, therefore, will produce a change of characteristics, which occurs suddenly and spontaneously, and that can be transmitted or inherited To the offspring.
  • the genetic unit capable of mutating is the gene that is the unit of hereditary information that is part of the DNA.
  • deletion refers to: a special type of mutation that involves the loss of a DNA fragment, which can range from the loss of a single nucleotide (point deletion) to the loss of large regions
  • mutation partial refers to: the loss of a DNA fragment of a gene, which does not cause the total loss thereof
  • total deletion refers to: the loss of a DNA fragment of a gene, which causes the total loss of it.
  • immunogen refers to: those antigens that elicit an immune response.
  • immuno protocol refers to: method used for the administration of an immunogenic agent or a vaccine to an organism to generate an immune response.
  • the term: "induce an immune response of CD4 + and CD8 + T cells from specific antigen memory” refers to: the ability of the vaccine administered in the immunization protocol to stimulate the host's immune response by generating CD4 + and CD8 + T cells that are capable of specifically recognizing the administered antigen, the term:” inducing the expression of IFN- ⁇ in innate immune cells “refers to: the ability of the administered vaccine to stimulate the production of IFN- ⁇ by innate immune cells, such as macrophages and dendritic cells.
  • Increase IFN- ⁇ -dependent responses in human cells refers to: the ability of the administered vaccine to further stimulate those immune responses that occur as a result of the production of IFN- ⁇ by cells Innate human immune systems, such as macrophages and dendritic cells.
  • the term: "increase the magnitude and quality of memory immune responses of specific T cells against antigens” refers to: the ability of the administered vaccine to further stimulate the number and proportion of memory T cells that are capable of specifically recognizing the administered antigen.
  • quality refers to the ability of memory T cells to be polyfunctional, that is, to secrete different cytokines at the same time, such as for example IFN- ⁇ , IL-2, or TNFa.
  • EM and TEMRA phenotypes refers to: two subpopulations of memory T cells, which are defined as a function of the expression of different surface markers such as CD44 and CD62L, and which are called EM ("Effector memory” or effector memory T cells. CD44 + / CD62L “ )) and TEMRA (" Effector memory terminally differentiated “or terminally differentiated effector memory T cells. CD44 " / CD62L " ).
  • the term "homology”, as used herein, refers to the similarity between two structures, and more specifically, to the similarity between the amino acids of two or more proteins or amino acid sequences. Two proteins are considered homologous if they have the same evolutionary origin or if they have similar function and structure. If Particular of the invention MVA-B AC6L, although the deletion of the C6L vaccinia gene has been performed on MVA-B, is sufficient to allow a person skilled in the art to obtain new recombinant vectors based on MVA, which express other heterologous antigens (malaria , leishmania, hepatitis C virus and prostate cancer) by deleting the C6L gene, in order to be used as vaccines against these diseases.
  • heterologous antigens malaria , leishmania, hepatitis C virus and prostate cancer
  • the sequences of the Gag-Pol-Nef subtype B-type HIV (from isolate IIIB) and gp120 (from isolate BX08) sequences are indicated under control of the early / late viral synthetic promoter (sE / L) inserted into the TK viral locus (J2R gene) (adapted from Gómez et al., 2007. Vaccine 25: 2863-2885).
  • the molecular weight marker (1 Kb) with the corresponding sizes (in base pairs) is indicated on the left.
  • the Mock column represents uninfected cells.
  • C Expression of HIV-1 Bxo8gp120 and INBGPN proteins in infected DF-1 cells (2 PFU / cell) with MVA-B and MVA-B AC6L, at 24 hours post-infection.
  • D MVA-B and MVA-B AC6L viral growth kinetics in infected DF-1 cells (0.01 PFU / cell) at different times and titrated by a plaque immunostaining assay with anti-WR antibodies. The average of 3 independent experiments is represented.
  • DF-1 cells were infected with 5 PFU / MVA-B and MVA-B AC6L (A) or WR and MVA (B) cells in the presence or absence of AraC (B).
  • Cell extracts were collected at 24 hours post-infection (A) or at the indicated times (B) and analyzed by SDS-PAGE.
  • C6 vaccinia protein was detected by Western blotting using a polyclonal rabbit serum against C6.
  • C DF-1 cells were infected with WR, MVA, MVA-B or MVA-B AC6L for 18 hours. The location of C6 was analyzed by immunofluorescence and the cells were stained with DAPI (stained cell nucleus), purified rabbit polyclonal antibody anti-C6 and anti-14K.
  • MVA-B AC6L induces the production of IFN- ⁇ and IFN type I-induced genes in macrophages and dendritic cells.
  • Human macrophages THP-1 (A) and moDCs (B, C, D) were infected with MVA, MVA-B and MVA-B AC6L (5 PFU / cell in A, and 0.2, 0.02 or 0.002 PFU / cell in B, C and D).
  • the RNA was extracted and the levels of IFN- ⁇ messenger RNA, genes induced by type I IFN (IFIT1 and IFIT2), Chemokines and HPRT were analyzed by RT-PCR.
  • the results are expressed as the ratio between the levels of messenger RNA of the gene versus the levels of messenger RNA of HPRT. UA: arbitrary units.
  • the data represent the mean ⁇ standard deviation of the samples in duplicate.
  • C, D human moDCs were infected with 0.2, 0.02 and 0.002 PFU / cell of MVA, MVA-B and MVA-B AC6L. 6 hours later, cell-free supernatants were collected to quantify IFN- ⁇ concentration by ELISA (C) and IFN type I concentration using the HL1 16 cell line, which expresses luciferase under the control of a promoter induced by IFN type I (D).
  • the results are expressed by absorbance values at 450 nm (C), and in luciferase units (D). Data represent the mean ⁇ standard deviation of duplicates and are representative of 2 independent experiments.
  • the TLR signaling path is composed of several TLRs located on the cell surface or in intracellular compartments.
  • the activation of these TLRs leads to the recruitment of several adapter proteins and kinases and the subsequent activation of transcription factors (IRFs, NF- ⁇ and ATF2 / c-Jun) that are translocated to the nucleus and activate the transcription of type I IFN and cytokines proinflammatory
  • VACV encodes several immunomodulatory proteins that interfere with the TLR signaling pathway (indicated by rectangles): A46 inhibits TLR adapter molecules such as MyD88, TRIF, MAL and TRAM; A52 inhibits molecules such as IRAK-2 and TRAF6; K7 interacts with DDX3 and prevents the induction of I FN via TBKI / lkk- ⁇ -; and B14 inhibits ⁇ phosphorylation and therefore prevents the activation of N F-KB.
  • RLRs retinoic acid-inducible gene I (RIG-l) -like receptors”
  • VACV vaccinia virus
  • VACV encodes immunomodulatory proteins that interfere with the RLR signaling path (indicated by rectangles): K7 interacts with DDX3 and prevents the induction of IFN via TBKI / lkk- ⁇ -; and C6 inhibits the phosphorylation of IRF3 although its mechanism is still unknown. Figure 6.
  • MVA-B AC6L activates the IRF3 signaling path.
  • THP-1 cells differentiated with PMA were infected at a multiplicity of infection of 5 PFU / cell with MVA-B, MVA-B AC6L, MVA or with medium (Mock). At different post-infection times the cells were washed with cold PBS and lysed for 10 minutes at 4 ° C with "Cell Lysis Buffer" (Cell Signaling). The reaction mixtures were centrifuged for 10 min at 13,000 rpm. The protein concentration of the supernatants was determined using the "bicinchoninic acid protein assay" (Pierce Biotechnology). 30 g of total protein was loaded into 10% polyacrylamide gels (w / v) and transferred to nitrocellulose membranes.
  • A IFN- ⁇ secreting splenocytes specific to the HIV-1 Gag-B peptide were quantified by an ELISPOT assay. Data represent the mean ⁇ standard deviation of triplicates. ** represents p ⁇ 0.005.
  • BD Phenotypic analysis by flow cytometry of CD4 + T cells and specific CD8 + against HIV-1 Env, Gag and GPN antigens.
  • CD44 and CD62L were used to identify the sub-populations of memory called "central memory” (CM: CD44 + / CD62L + ), "effector memory” (MS: CD44 + / CD62L “ ) and” terminally differentiated effector memory “(TEMRA: CD447CD62L “ ).
  • CM central memory
  • MS effector memory
  • TEMRA CD447CD62L
  • the production of IFN- ⁇ and IL-2 was analyzed by intracellular marking (ICS).
  • B A representative flow cytometry test is shown. Sub-populations of memory T cells are drawn by density drawings. The dots represent IFN-y and IL-2 producing T cells.
  • C The percentage of specific CD4 + and CD8 + memory T cells against HIV-1 Env, Gag and GPN antigens is represented.
  • the frequencies were calculated representing the number of memory T cells producing IFN-y and / or IL-2 versus the total number of splenocytes CD4 + and CD8 + .
  • the values of the unstimulated controls were subtracted in all cases. ** represents p ⁇ 0.005.
  • the circles represent the proportion of CM, MS and TEMRA within the specific CD4 + and CD8 + memory T cells against HIV-1 Env, Gag and GPN antigens.
  • AD The data are derived from an experiment, representative of 2 experiments performed.
  • the polyfunctionality of the specific CD4 + (left part) and CD8 + memory T cells (right side) against HIV-1 Env + Gag + GPN antigens is defined based on IFN-y and / or IL-2 production. All possible combinations of responses are shown on the X axis.
  • the percentages of IFN-y and / or IL-2 producing memory T cells among the total CD4 + and CD8 + T cells are shown on the Y axis.
  • Each part of the circle corresponds to the proportion of CD4 + or CD8 + T cells producing IFN- ⁇ , IL-2 or IFN-y + IL-2 within the total of specific CD4 + or CD8 + memory T cells versus HIV-1 antigens.
  • the size of Each circle represents the magnitude of the specific induced memory immune response against HIV-1 antigens.
  • Anti-gp120 antibody titers were determined by ELISA.
  • the titles represent the last dilution of the serum that gave a signal 3 times higher than the signals obtained with the serum of naive mice.
  • the dotted line represents the ELISA detection limit.
  • the horizontal bar represents the average value and the values obtained by each mouse are represented by circles. * represents p ⁇ 0.05.
  • Gómez CE Najera JL, Jiménez V, Bieler K, Wild J, et al. (2007) Generation and immunogenicity of novel HIV / AIDS vaccine candidates targeting HIV-1 Env / Gag-Pol-Nef antigens of clade C. Vaccine 25: 1969-1992.
  • Gómez CE Najera JL, Krupa M, Esteban M (2008) The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. Curr Gene Ther 8: 97-120.
  • Poxvirus K7 protein adopts a Bcl-2 fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. J Mol Biol 385: 843-853.
  • Example 1 Generation of the invention MVA-B AC6L.
  • the generated recombinant virus, presented in this invention, has been referred to as MVA-B AC6L.
  • a schematic diagram of the MVA-B AC6L deletion mutant is depicted in Figure 1 A.
  • the manufacturing method of MVA-B AC6L includes the following e ⁇ apas:
  • MVA-B recombinant virus which contains the nucleotide sequences that code for the HIV antigens of subtype B gp120 and Gag-Pol-Nef, with the plasmid generated in a) which directs the deletion of the C6L gene (SEQ ID No: 1), and
  • MVA-B AC6L purify the viral vector called MVA-B AC6L, based on a recombinant MVA-B virus with deletion of the C6L gene (SEQ ID No: 1), obtained in step b).
  • the plasmid or transfer vector called pGem-RG-C6L wm was constructed to be able to generate the MVA-B AC6L deletion mutant, which has a deletion in the vaccinia C6L gene (The MVA 019L gene of MVA, SEQ ID No: 1 , is equivalent to the VACV-WR_022 gene of the vaccinia Wesirin Reserve (WR) strain, SEQ ID No: 3, and to the C6L gene of the Copenhagen vaccinia strain, SEQ ID No: 5.
  • the corresponding nomenclature is used to the Copenhagen genes to refer to the MVA genes).
  • pGem-RG-C6L wm was obtained by sequential cloning of five DNA fragments that contain the dsRed2, rsGFP and flanking (left and right) recombination sequences of the C6L gene in plasmid pGem-7Zf (-) (Promega).
  • plasmid pGem-Red-GFP wm (4540) was performed pb), which contains the dsRed2 and rsGFP genes under the control of an early / late synthetic viral promoter (E / L) and which was previously described (Garc ⁇ a-Arriaza et al., 2010. PLoS One 5: e12395).
  • the dsRed2 gene under the control of an early / late synthetic viral promoter (E / L) was amplified by PCR of plasmid pG-dsRed2 using Red2-B oligonucleotides (SEQ ID No: 15. 5 ' - GAACTAGGATCCTAA CTCGAGAAA-3 ' ) (includes the restriction site Bam Hl) and Red2-N (SEQ ID No: 16.
  • 5 ' -C GTTG GTCTAGAG AG AAAA ATTG -3 ' (includes the restriction site Xbal) and GFP-E (SEQ ID No: 18.
  • 5 ' -CTATAGAATTCTCAAGCTATGC-3 ' ) (comprises the restriction site Eco Rl) (832 bp), digested with Xba I and Eco Rl and cloned into plasmid pGem-Red wm previously digested with the same restriction enzymes to generate pGem-Red-GFP wm (4540 bp).
  • the MVA-B genome was used as a template for PCR amplification of the right flank of the C6L gene (Nucleotides 18689-19079 in the MVA genome. 391 bp), using the oligonucleotides RFC6L-Aatll-F (SEQ ID No : 7. Nucleotides 18689-18714 in the MVA genome) (comprising the Aatll restriction site) and RFC6L-Xbal-R (SEQ ID No: 8.
  • Nucleotides 19054-1979 in the MVA genome (comprises the restriction site Xbal)
  • This right flank was digested with Aatll and Xbal and cloned into the plasmid pGem-Red-GFP wm previously digested with the same restriction enzymes to generate pGem-RG-RFsC6L wm (4898 bp).
  • the repeated right flank of the C6L gene (Nucleotides 18689-19079 in the MVA genome. 391 bp) was amplified by PCR from the MVA-B genome with the oligonucleotides RF ' C6L-Xmal-F (SEQ ID No: 9.
  • Nucleotides 18689-18714 in the MVA genome (comprising the Xmal restriction site) and RF ' C6L-Clal-R (SEQ ID No: 10.
  • Nucleotides 19054-1979 in the MVA genome (comprises the Clal restriction site ), digested with Xmal and Clal and inserted into the plasmid pGem-RG-RFsC6L wm digested with Xmal / Clal to generate pGem-RG-RFdC6L wm (5259 bp).
  • the left flank of the C6L gene (Nucleotides 19530-19942 in the MVA genome.
  • LFC6L-Clal-F (SEQ ID No: 1 1. Nucleotides 19530-19555 in the MVA genome) (comprising the Clal restriction site) and LFC6L-BamHI- R (SEQ ID No: 12. Nucleotides 19917-19942 in the MVA genome) (comprising the BamH I restriction site), digested with Clal and BamHI and inserted into the plasmid pGem-RG-RFdC6L wm digested with Clal / Bam Hl . The resulting plasmid pGem-RG-C6L wm (5642 bp) was confirmed by DNA sequence analysis and directs the deletion of the C6L gene from the MVA and MVA-B genome.
  • MVA-B AC6L is carried out in cell cultures by means of a recombination process between the MVA-B virus and the plasmid pGem-RG-C6L wm, which contains the right and left flanks of the C6L gene.
  • MVA-B AC6L was constructed by selection in cell cultures of viral plaques that coexpress dsRed2 / rsGFP (express proteins with red and green fluorescence respectively), using the dsRed2 and rsGFP genes as transient selection markers, as previously described. (Garc ⁇ a-Arriaza et al., 2010.
  • PLoS One 5 e12395.
  • 3 x 10 6 DF-1 cells were infected with MVA-B at a multiplicity of infection of 0.05 PFU / cell and then transfected 1 h later with 6 g of plasmid pGem-RG-C6L wm DNA using Lipofectamine (Invitrogen) according to the manufacturer's instructions. After 72 hours, the cells were collected, lysed by freeze-thaw cycles, sonicated and used for the selection of recombinant viruses.
  • the MVA-B AC6L deletion mutant was selected from the viral progeny obtained after 6 consecutive rounds of plaque purification in DF-1 cells and during this process the plaques were selected from those with red / green fluorescence.
  • the viruses were selected from plaques expressing both fluorescent proteins (dsRed2 and rsGFP, red and green fluorescence).
  • the viral progeny of the selected plaques only expresses a fluorescent marker (Red2 or GFP) and in the last two passes (6 passes in total) the viruses of the selected plaques do not express any fluorescent marker due to loss of the dsRed2 and rsGFP genes.
  • the MVA-B deletion mutant was obtained AC6L and the deletion of the C6L gene was confirmed by PCR amplification of the C6L locus, using oligonucleotides RFC6L-Aatll-F and LFC6L-BamHI-R (described previously) and subsequent analysis by DNA sequencing.
  • the C6L gene See SEQ ID No: 1.474 nucleotides, positions 19068-19541 in the MVA genome
  • the deletion of the C6L gene in MVA-B includes positions 19068 to 19541 of the MVA genome.
  • the MVA-B AC6L recombinant virus obtained was grown in DF-1 cells to obtain a viral preparation called P2, which was grown in chicken embryonic cells (CEF), and purified by centrifugation through two sucrose mattresses at 36% (w / v) in 10 mM Tris-HCI pH 9, as previously described (Ram ⁇ rez et al., 2000. J Virol, 74 (2): 923-933.
  • MVA-B AC6L was titled DF-1 cells by an immunostaining assay, using a rabbit polyclonal antibody against the WR vaccinia strain (National Center for Biotechnology; 1: 1000) followed by anti-rabbit-HRP (Sigma; 1: 1000), as It has been previously described (Antoine et al., 1998. Virology 244: 365-396).
  • the preparation of MVA-B AC6L is free of mycoplasmas or bacteria.
  • plasmid pGem-RG- C6L wm (or a similar one containing the left and right flanks of the C6L gene) can be used by a technology similar to that proposed here to delegate the C6L gene on any recombinant MVA virus that expresses other heterologous antigens other than the one presented here (HIV subtype B), such as antigens of malaria, leishmania, hepatitis C virus, prostate cancer, etc; in order to be able to be used as vaccines against these diseases.
  • HAV subtype B heterologous antigens of malaria
  • leishmania hepatitis C virus
  • prostate cancer etc.
  • MVA-B AC6L deletion mutant demonstrates that C6 protein is not essential for MVA replication.
  • C6L deletion alters virus replication the growth of MVA-B AC6L and MVA-B in DF-1 cells was compared. Viral kinetics studies revealed that the deletion of C6L in the MVA-B genome does not affect viral replication. Therefore, C6L is not essential for viral propagation in cell cultures ( Figure 1 D).
  • MVA-B AC6L is an attenuated virus that does not replicate in mammalian cells ( Figure 1 E).
  • the open reading frame (ORF) of C6 (MVA gene 019L, 157 aa, 18.2 kDa. See SEQ ID No: 1) was amplified by PCR using the C6L-Nhel-F oligonucleotides (SEQ ID No: 13) (comprising the Nhel) and C6L-BamHI-R restriction site (SEQ ID No: 14) (comprising the BamHI restriction site), and the MVA DNA as a template.
  • the amplified product (Nucleotides 19068-19541 in the MVA genome. 488 bp) was digested with Nhel and BamHI and cloned into plasmid pET-27b (+) (Novagen).
  • the ligation product was used to transform E.coli strain BL21, and the plasmid of a positive kanamycin resistant colony was sequenced to confirm that it contains the C6L gene sequence.
  • the plasmid generated was called pET-27b-C6L (5837 bp).
  • Plasmid pET-27b (+) provides a tail of 6 histidines at the carboxy terminal end of the C6 protein, generating a recombinant C6 protein of about 24 kDa.
  • Kanamycin-resistant colonies were grown in Luria broth medium to an optical density of 0.5 to 595 nm. IPTG was added (0.5 mM) and the culture was grown for 4 more hours.
  • the cells were centrifuged and for cell lysis the cells were resuspended in 50 mM Tris-HCI, pH 7.5, 0.3 M NaCI, 8 M Urea, and incubated with lysozyme (1 mg / ml) for 30 minutes in the presence of phenylmethylsulfonyl fluoride (1 mM).
  • the suspension was frozen-thawed twice, the cell debris was removed by centrifugation and the supernatant was incubated with Probound resin (Invitrogen). Elution was carried out with different concentrations of imidazole (100 to 500 mM) in 50 mM Tris-HCI, pH 7.5, 0.3 M NaCI.
  • the eluted fractions were grouped, loaded into desalted columns following the manufacturer's instructions (GE-Healthcare, Freiburg, Germany), and were collected.
  • the protein was quantified using the Bradford assay, fractionated by 12% SDS-PAGE and analyzed by Western blot using an anti-His tag antibody (1: 5000) to detect the presence of vaccinia C6 protein.
  • Fractions containing C6 protein (with an estimated purity of 90%) were stored in aliquots at -20 ° C.
  • the C6 protein (1 150 g) was injected into "New Zealand White” rabbits to produce anti-C6 serum and anti-C6 rabbit polyclonal antibodies (Biomedal Laboratories, Seville).
  • Example 5 C6 is expressed early in a viral infection.
  • C6 The intracellular location of the C6 protein was examined by immunofluorescence in DF-1 cells infected with different strains of vaccinia (Figure 2C).
  • C6 was detected in the cytoplasm, presumably in viral factories, of DF-1 cells infected with WR, MVA and MVA-B, but not with MVA-B AC6L.
  • the reduced fluorescence intensity of C6 indicates the expression of low protein levels compared to the late A27 protein.
  • Example 6.- MVA-B AC6L increases IFN- ⁇ expression in human macrophages and dendritic cells.
  • MVA-B AC6L was a more potent inducer than MVA and MVA-B at low infective doses (0.002 PFU / ml, Figure 3B).
  • MVA-B AC6L stimulates the release to the medium by moDCs of higher levels of IFN- ⁇ ( Figure 3C) and IFN type I than MVA and MVA-B ( Figure 3D).
  • Example 7 MVA-B AC6L induces phosphorylation of IRF3 in THP-1 cells.
  • Example 8.- MVA-B AC6L increases the magnitude and polyfunctionality of the response of specific memory T cells against HIV-1.
  • IFN- ⁇ ELISPOT revealed that, compared to MVA-B, MVA-B AC6L increased the response of specific IFN- ⁇ secreting memory T cells against the Gag-B peptide of HIV-1 by 2.1 times (p ⁇ 0.005) (an HIV-1 peptide representative of the Gag antigen) ( Figure 7A). MVA, used as a control, did not induce any specific HIV-1 memory response.
  • the phenotype of HIV-1-specific memory T cells induced after immunization with DNA-B / MVA-B and DNA-B / MVA-B AC6L was characterized by polychromatic flow cytometry using ICS.
  • Splenic CD4 + and CD8 + T cells were co-stained for surface markers CD44 and CD62L in order to define the different memory sub-populations: naive (CD447CD62L + ), "central memory” (CM: CD44 + / CD62L + ), "effector memory” (EM: CD44 + / CD62L " ) and” effector terminal memory differentiated "(TEMRA: CD447CD62L " ).
  • IFN- ⁇ and IL-2 were also evaluated after in vitro stimulation with different "poles" of HIV-1 peptides (Env-pool, Gag-pool and GPN-pool) that cover the entire HIV sequences -1 present in the poxviral vector (Figure 7B).
  • DNA-B / MVA-B AC6L increased the polyfunctionality of specific CD4 + and CD8 + T memory cells against HIV-1, consisting of cells that produce both IFN- ⁇ and IL-2 [CD4 + T cells: 34 % in DNA-B / MVA-B AC6L vs. 16% in DNA-B / MVA-B, (p ⁇ 0.005); CD8 + T cells: 29% in DNA-B / MVA-B AC6L vs. 16% in DNA-B / MVA-B, (p ⁇ 0.005)] ( Figure 8).
  • DNA-B / MVA-B AC6L significantly increases the magnitude and polyfunctionality of the response of specific CD4 + and CD8 + T memory cells against HIV-1, with the majority of the response mediated by EM and TEMRA T cells.
  • DNA-B / MVA-B and DNA-B / MVA-B AC6L After vaccination with DNA-B / MVA-B and DNA-B / MVA-B AC6L, the responses of specific CD4 + T memory cells against HIV-1 were preferentially specific against Env.
  • DNA-B / MVA-B AC6L induced immunodominance against specific CD8 + T memory cells against GPN, while DNA-B / MVA-B preferentially induced specific CD8 + T memory cells against Env and Gag.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • AIDS & HIV (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The invention falls within the fields of molecular biology and biotechnology. It specifically relates to recombinant viruses based on the modified vaccinia ankara (MVA) virus, that express the antigens gp120 and Gag-Pol-Nef of the human immunodeficiency virus (VIH-1) of sub-type B (MVA-B), and wherein the C6L vaccinia gene has been deleted, said recombinant viruses having been designed to be used as vaccines against HIV/AIDS and other diseases.

Description

VECTORES RECOM BINANTES BASADOS EN EL VIRUS MODIFICADO DE ANKARA (MVA), CON DELECIÓN EN EL GEN C6L, COMO VACUNAS CONTRA EL VIH/SIDA Y OTRAS ENFERMEDADES SECTOR DE LA TÉCNICA  BINANT RECOMMENDED VECTORS BASED ON THE MODIFIED VIRUS OF ANKARA (MVA), WITH DELETION IN THE C6L GEN, AS VACCINES AGAINST HIV / AIDS AND OTHER TECHNICAL SECTOR DISEASES
La presente invención se engloba dentro de los campos de la biología molecular y de la biotecnología. Específicamente se refiere a virus recombinantes basados en el virus modificado de Ankara (MVA) que expresan los antígenos gp120 y Gag-Pol-Nef del virus de la inmunodeficiencia humana (VIH-1 ) de subtipo B (MVA-B), sobre los que se ha delecionado el gen de vaccinia C6L, y que han sido diseñados para utilizarse como vacunas contra el VIH/SIDA y otras enfermedades. ESTADO DE LA TÉCNICA ANTERIOR The present invention falls within the fields of molecular biology and biotechnology. Specifically it refers to recombinant viruses based on the modified Ankara virus (MVA) that express the gp120 and Gag-Pol-Nef antigens of the human immunodeficiency virus (HIV-1) of subtype B (MVA-B), on which The C6L vaccinia gene has been deleted, and they have been designed to be used as vaccines against HIV / AIDS and other diseases. STATE OF THE PREVIOUS TECHNIQUE
Según datos de la OMS, el SIDA, causado por el VIH-1 , es una pandemia que se expande mundialmente, con alto impacto y severidad en la salud humana. Cada año aumenta el número de nuevas infecciones y muertes causadas por el SIDA, sobre todo en los países no desarrollados o en vías de desarrollo. Por lo tanto, la búsqueda de una vacuna efectiva contra el VIH-1 que pueda controlar la infección y la progresión de la enfermedad es una de las prioridades en el ámbito científico. According to WHO data, AIDS, caused by HIV-1, is a globally expanding pandemic, with high impact and severity on human health. Each year the number of new infections and deaths caused by AIDS increases, especially in undeveloped or developing countries. Therefore, the search for an effective vaccine against HIV-1 that can control infection and disease progression is one of the priorities in the scientific field.
Uno de los vectores más prometedores para ser utilizados como una vacuna efectiva frente a VIH-1 es MVA, una estirpe altamente atenuada de vaccinia (Esteban, 2009. Hum. Vaccin. 5:867-871 ). MVA posee un excelente perfil de segundad, y recombinantes de MVA que expresan antígenos de VIH-1 inducen protección después de un desafío con el virus de la inmunodeficiencia simia/humana (SHIV), generando respuestas inmunes fuertes, amplias, polifuncionales y duraderas frente a antígenos de VIH-1 en diferentes modelos animales y ensayos clínicos en humanos (García-Ar aza et al., 2010. PLoS One 5: e12395; Gómez et al., 2009. Vaccine 27: 3165-3174; Harah et al., 2008. J Exp Med 205: 63-77; Mooij et al., 2008. J Virol 82: 2975-2988; Gómez et al., 2007. Vaccine 25: 2863-2885; Gómez et al. , 2007. Vaccine 25: 1969-1992; resumen en Gómez et al., 2008. Curr Gene Ther 8: 97-120). One of the most promising vectors to be used as an effective vaccine against HIV-1 is MVA, a highly attenuated strain of vaccinia (Esteban, 2009. Hum. Vaccin. 5: 867-871). MVA has an excellent safety profile, and MVA recombinants expressing HIV-1 antigens induce protection after a challenge with simia / human immunodeficiency virus (SHIV), generating strong, broad, multifunctional and lasting immune responses against HIV-1 antigens in different animal models and clinical trials in humans (García-Ar aza et al., 2010. PLoS One 5: e12395; Gómez et al., 2009. Vaccine 27: 3165-3174; Harah et al., 2008. J Exp Med 205: 63-77; Mooij et al., 2008. J Virol 82: 2975-2988; Gómez et al., 2007. Vaccine 25: 2863-2885; Gomez et al. , 2007. Vaccine 25: 1969-1992; summary in Gómez et al., 2008. Curr Gene Ther 8: 97-120).
Previamente se ha construido en nuestro laboratorio un recombinante de MVA que expresa los antígenos de VIH-1 de subtipo B, gp120 (SEQ ID No 15 de PCT/ES2006/0701 14) como una proteína monomérica y la poliproteína Gag-Pol- Nef (SEQ ID No 16 de PCT/ES2006/0701 14) (virus denominado MVA-B) (Patente: PCT/ES2006/0701 14, fecha de publicación: 1/2/2007. Autores: Heeney, Jonathan; Mooij, Petra; Gómez Rodríguez, Carmen Elena; Nájera García, José Luis; Jiménez Tentor, Victoria; Esteban Rodríguez, Mariano). En un protocolo de inmunización "DNA prime/MVA boost" en ratones MVA-B indujo fuertes respuestas inmunes frentes a los antígenos de VIH-1 (García-Arriaza et al. , 2010. PLoS One 5: e12395; Gómez et al. , 2009. Vaccine 27: 3165-3174; Gómez et al. , 2007. Vaccine 25: 2863-2885). En macacos, una construcción similar que expresa Env (gp120 de SHIV89.6p) y Gag-Pol-Nef (de SIVmaC239) mostró fuertes respuestas inmunes específicas de células T CD4+ y CD8+ con una preferencia por CD8+, y una alta protección después de un desafío con SHIV89.6P (Mooij et al. , 2008. J Virol 82: 2975-2988). Además, la expresión de antígenos de VIH-1 por parte de MVA-B induce de forma selectiva en células dendríticas humanas la expresión de diferentes genes celulares que pueden actuar como reguladores de las respuestas inmunes frente a los antígenos de VIH-1 (Guerra et al. , 2010. J Virol 84: 8141 -8152). Basado en todos estos resultados previos, se ha realizado en España un ensayo clínico de Fase I con MVA-B en voluntarios sanos. Previously, an MVA recombinant that expresses HIV-1 antigens of subtype B, gp120 (SEQ ID No. 15 of PCT / ES2006 / 0701 14) has been constructed in our laboratory as a monomeric protein and Gag-Pol-Nef polyprotein ( SEQ ID No. 16 of PCT / ES2006 / 0701 14) (virus called MVA-B) (Patent: PCT / ES2006 / 0701 14, publication date: 1/2/2007. Authors: Heeney, Jonathan; Mooij, Petra; Gómez Rodríguez, Carmen Elena; Nájera García, José Luis; Jiménez Tentor, Victoria; Esteban Rodríguez, Mariano). In a "DNA prime / MVA boost" immunization protocol in MVA-B mice it induced strong immune responses to HIV-1 antigens (García-Arriaza et al., 2010. PLoS One 5: e12395; Gómez et al., 2009. Vaccine 27: 3165-3174; Gómez et al., 2007. Vaccine 25: 2863-2885). In macaques, a similar construct expressing Env (gp120 of SHIV 8 9. 6 p) and Gag-Pol-Nef (of SIV maC 239) showed strong specific immune responses of CD4 + and CD8 + T cells with a preference for CD8 + , and high protection after a challenge with SHIV 8 9.6P (Mooij et al., 2008. J Virol 82: 2975-2988). In addition, the expression of HIV-1 antigens by MVA-B selectively induces in human dendritic cells the expression of different cellular genes that can act as regulators of immune responses against HIV-1 antigens (Guerra et al., 2010. J Virol 84: 8141-8152). Based on all these previous results, a Phase I clinical trial with MVA-B in healthy volunteers has been carried out in Spain.
Sin embargo, a pesar de todos estos antecedentes, son necesarios y deseables nuevos vectores poxvirales MVA-B más eficientes que puedan aumentar la magnitud, amplitud, polifuncionalidad y durabilidad de las respuestas inmunes frente a los antígenos de VIH-1 . Esto es particularmente relevante cuando un solo inmunógeno es deseable para los propósitos de vacunación en masa para simplificar los protocolos de inmunización y reducir los costes de fabricación. Los vectores poxvirales expresan numerosos genes que codifican para proteínas inmunomoduladoras que interfieren con la respuesta anti-viral del hospedador (Alcamí, 2003. Nat. Rev. Immunol. 3:36-50). Por lo tanto, la deleción en el vector poxviral MVA-B de genes de vaccinia que se conocen o sugieren que puedan tener una función inmunomoduladora, es una estrategia general que puede aumentar la inmunogenicidad del vector frente a los antígenos de VIH-1 . Uno de estos genes cuya función se desconoce pero que pensamos puede tener función inmunomoduladora es el gen de vaccinia C6L, el cual está presente en el genoma de las estirpes de vaccinia MVA (gen denominado MVA 019L, SEQ ID No: 1 ), Western Reserve (WR) (gen denominado VACV-WR_022, SEQ ID No: 3), y Copenhagen (gen denominado C6L, SEQ ID No: 5), pero ausente en la estirpe New York Vaccinia Virus (NYVAC). Se postula que C6L es un gen inmediato- temprano, según el análisis del promotor de C6L y el análisis del transcriptoma que detecta ARN mensajero de C6 a los 30 minutos post-infección (Assarsson et al. , 2008. P. N.A.S. 105: 2140-2145). C6L codifica una proteína de 157 aminoácidos con un peso molecular predicho de 18.2 kDa. Análisis bioinformáticos, sin datos experimentales, han agrupado C6L en la familia de genes poxvirales denominada "BCL-2-like", que incluye A46R, A52R, B15R (denominado B14R en WR) y K7R (González y Esteban, 2010. Virol. J. 7:59), una familia de proteínas que inhiben a diferentes niveles la ruta de señalización mediada por "Toll-like receptor (TLR)" (Bowie et al. , 2000. P. N.A.S. 97: 10162- 10167; Chen et al. , 2006. J. Gen. Virol. 87: 1451 -1458; Chen et al. , 2008. PloS Pathog. 4:e22; Graham et al. , 2008. PloS Pathog. 4:e1000128; Harte et al. , 2003. J. Exp. Med. 197:343-351 ; Kalverda et al. , 2009. J. Mol. Biol. 385:843-853; Oda et al. , 2009. Structure 17: 1528-1537; Schroder et al. , 2008. EMBO J. 27:2147-2157; Stack et al. , 2005. J. Exp. Med. 201 : 1007-1018). La proteína 06 está presente, aunque a bajos niveles, en los viriones maduros intracelulares de vaccinia (IMV) (Chung et al. , 2006. J. Virol. 80:2127-2140), y se une a las proteínas KRT4 (queratina 4), PDCD6IP y TNNI2 (troponina I) (Zhang et al. , 2009. J. Proteome Res. 8:431 1 -4318). Además, un epítopo de 06 (aminoácidos 74-82 de SEQ ID No: 1 y SEQ ID No: 3) es altamente inmunogénico en ratones BALB/c, y WR induce en ratones altos niveles de células secretoras de IFN-γ específicas para C6L, de forma similar a péptidos de vaccinia de E3L, F2L y A52R (Oseroff et al. , 2008. J. Immunol. 180:7193-7202). Todas estas características nos indican que 06 puede tener una importante función inmunomoduladora antagonizando con la ruta de señalización TLR. However, despite all this background, new, more efficient MVA-B poxviral vectors that may increase the magnitude, amplitude, polyfunctionality and durability of immune responses against HIV-1 antigens are necessary and desirable. This is particularly relevant when a single immunogen is desirable for mass vaccination purposes to simplify immunization protocols and reduce manufacturing costs. Poxviral vectors express numerous genes encoding immunomodulatory proteins that interfere with the host's anti-viral response (Alcamí, 2003. Nat. Rev. Immunol. 3: 36-50). Therefore, deletion in the MVA-B poxviral vector of vaccinia genes that are known or suggest that they may have an immunomodulatory function is a general strategy that can increase the immunogenicity of the vector against HIV-1 antigens. One of these genes whose function is unknown but which we think may have immunomodulatory function is the C6L vaccinia gene, which is present in the genome of MVA vaccinia strains (gene named MVA 019L, SEQ ID No: 1), Western Reserve (WR) (gene called VACV-WR_022, SEQ ID No: 3), and Copenhagen (gene named C6L, SEQ ID No: 5), but absent in the New York Vaccinia Virus (NYVAC) lineage. It is postulated that C6L is an immediate-early gene, according to C6L promoter analysis and transcriptome analysis that detects C6 messenger RNA at 30 minutes post-infection (Assarsson et al., 2008. PNAS 105: 2140-2145 ). C6L encodes a 157 amino acid protein with a predicted molecular weight of 18.2 kDa. Bioinformatic analyzes, without experimental data, have grouped C6L into the family of poxviral genes called "BCL-2-like", which includes A46R, A52R, B15R (called B14R in WR) and K7R (González and Esteban, 2010. Virol. J 7:59), a family of proteins that inhibit at different levels the signaling pathway mediated by "Toll-like receptor (TLR)" (Bowie et al., 2000. PNAS 97: 10162-10167; Chen et al., 2006. J. Gen. Virol. 87: 1451-1458; Chen et al., 2008. PloS Pathog. 4: e22; Graham et al., 2008. PloS Pathog. 4: e1000128; Harte et al., 2003. J Exp. Med. 197: 343-351; Kalverda et al., 2009. J. Mol. Biol. 385: 843-853; Oda et al., 2009. Structure 17: 1528-1537; Schroder et al., 2008 EMBO J. 27: 2147-2157; Stack et al., 2005. J. Exp. Med. 201: 1007-1018). Protein 06 is present, although at low levels, in mature intracellular vaccinia virions (IMV) (Chung et al., 2006. J. Virol. 80: 2127-2140), and binds to KRT4 proteins (keratin 4 ), PDCD6IP and TNNI2 (troponin I) (Zhang et al., 2009. J. Proteome Res. 8: 431 1-4318). In addition, an epitope of 06 (amino acids 74-82 of SEQ ID No: 1 and SEQ ID No: 3) is highly immunogenic in BALB / c mice, and WR induces high levels of IFN-γ-secreting cells specific for C6L in mice. , similar to vaccinia peptides of E3L, F2L and A52R (Oseroff et al., 2008. J. Immunol. 180: 7193-7202). All these characteristics indicate that 06 can have an important immunomodulatory function antagonizing the TLR signaling path.
Por lo tanto, en esta invención se ha generado un nuevo candidato vacunal frente a VIH-1 , denominado MVA-B AC6L, el cual contiene una deleción en el vector MVA-B del gen de vaccinia C6L y que demostramos actúa induciendo la producción de interferón tipo 1 y activando in vivo la producción de células T de memoria, lo que no era de esperar, pero que representa una atractiva alternativa para incrementar la inmunogenicidad de candidatos vacunales basados en MVA. Therefore, in this invention a new vaccine candidate has been generated against HIV-1, called MVA-B AC6L, which contains a deletion in the MVA-B vector of the C6L vaccinia gene and which we demonstrate acts by inducing the production of type 1 interferon and activating in vivo T cell production of memory, which was not expected, but which represents an attractive alternative to increase the immunogenicity of MVA-based vaccine candidates.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
La presente invención representa un nuevo candidato vacunal frente a VIH- 1 , denominado MVA-B AC6L, el cual contiene una deleción en el vector MVA-B del gen de vaccinia C6L. MVA-B AC6L replica en cultivos celulares al mismo nivel que el virus parental MVA-B, indicando que C6 no es esencial para la replicación viral. De forma adicional, MVA-B AC6L induce respuestas inmunes innatas incrementando la expresión de IFN-β y genes inducidos por IFN-α/β (IFIT1 e IFIT2) en células humanas THP-1 y células dendríticas derivadas de monocitos (moDCs), sugiriendo que C6 inhibe la ruta de señalización de IFN-β bloqueando algún componente desconocido involucrado en la inducción de IFN-β. La deleción del gen C6L en el vector MVA-B aumenta en ratones la respuesta inmune humoral y de células T de memoria frente a los antígenos de VIH-1 . Así, mediante un protocolo de inmunización "DNA prime/MVA boost" en ratones se mostró que, comparado con MVA-B, MVA-B AC6L aumenta significativamente la magnitud y polifuncionalidad de la respuesta inmune de células T de memoria CD4+ y CD8+ específicas frente a VIH-1 , la cual está mediada principalmente por células T CD8+ de fenotipo efector, en ambos grupos de inmunización. La respuesta de células T de memoria CD4+ específicas frente a VIH-1 , inducidas por MVA-B y MVA-B AC6L fue preferencialmente específica frente a Env. Sin embargo, mientras que MVA-B induce respuestas inmunes de células T de memoria CD8+ específicas frente a Env y Gag, MVA-B AC6L induce preferencialmente respuestas inmunes de células T de memoria CD8+ específicas frente a Gag-Pol- Nef (GPN). Además, en comparación con MVA-B, MVA-B AC6L aumenta los niveles de anticuerpos contra Env. The present invention represents a new vaccine candidate against HIV-1, called MVA-B AC6L, which contains a deletion in the MVA-B vector of the C6L vaccinia gene. MVA-B AC6L replicates in cell cultures at the same level as the parental MVA-B virus, indicating that C6 is not essential for viral replication. Additionally, MVA-B AC6L induces innate immune responses by increasing IFN-β expression and IFN-α / β-induced genes (IFIT1 and IFIT2) in human THP-1 cells and monocyte-derived dendritic cells (moDCs), suggesting that C6 inhibits the IFN-β signaling pathway by blocking some unknown component involved in the induction of IFN-β. The deletion of the C6L gene in the MVA-B vector increases the humoral and memory T-cell immune response in mice against HIV-1 antigens. Thus, using a "DNA prime / MVA boost" immunization protocol in mice it was shown that, compared to MVA-B, MVA-B AC6L significantly increases the magnitude and polyfunctionality of the immune response of CD4 + and CD8 + memory T cells specific against HIV-1, which is mainly mediated by effector phenotype CD8 + T cells, in both immunization groups. The response of specific CD4 + memory T cells against HIV-1, induced by MVA-B and MVA-B AC6L was preferentially specific against Env. However, while MVA-B induces specific CD8 + memory T cell immune responses against Env and Gag, MVA-B AC6L preferentially induces specific CD8 + memory T cell immune responses against Gag-Pol-Nef (GPN ). In addition, compared to MVA-B, MVA-B AC6L increases antibody levels against Env.
Por lo tanto, MVA-B AC6L representa un nuevo candidato vacunal frente a VIH-1 que, no siendo obvio, posee un beneficio inmunológico al aumentar las respuestas dependientes de IFN-β en células humanas e incrementar la respuesta humoral y la magnitud y calidad de las respuestas inmunes de memoria de células T específicas frente a los antígenos de VIH-1 . Partiendo de los ejemplos incluidos en la presente memoria, donde se ha experimentado sólo con MVA-B AC6L, los resultados obtenidos permitirían ampliar el ámbito de protección para mejorar la inmunogenicidad de nuevos vectores recom binantes basados en MVA, que expresan otros antígenos heterólogos (ejemplos, malaria, leishmania, virus de la hepatitis C y cáncer de próstata) mediante la deleción del gen C6L, con el fin de poder ser utilizados como vacunas frente a dichas enfermedades. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Therefore, MVA-B AC6L represents a new vaccine candidate against HIV-1 that, not being obvious, has an immunological benefit by increasing IFN-β-dependent responses in human cells and increasing the humoral response and the magnitude and quality of the specific immune responses of T-cell memory against HIV-1 antigens. Starting from the examples included herein, where it has been experimented only with MVA-B AC6L, the results obtained would allow to extend the scope of protection to improve the immunogenicity of new recombinant vectors based on MVA, which express other heterologous antigens (examples , malaria, leishmania, hepatitis C virus and prostate cancer) by deleting the C6L gene, in order to be used as vaccines against these diseases. DETAILED DESCRIPTION OF THE INVENTION
La construcción de MVA-B AC6L descrita en la presente invención y los ensayos en los que se evalúa tanto su comportamiento in vitro, como la respuesta inmune innata inducida en células humanas, y su capacidad inmunogénica en ratones frente a los antígenos de VIH-1 se describen con más detalle con ayuda de las figuras y los ejemplos que aparecen más adelante en la presente memoria. The construction of MVA-B AC6L described in the present invention and the tests in which both its in vitro behavior, as well as the innate immune response induced in human cells, and its immunogenic capacity in mice against HIV-1 antigens are evaluated they are described in more detail with the help of the figures and the examples that appear hereinafter.
La presente invención hace referencia a un vector viral basado en un virus recombinante MVA, caracterizado porque la secuencia nucleotídica codificante para dicho vector comprende: The present invention refers to a viral vector based on a recombinant MVA virus, characterized in that the nucleotide sequence encoding said vector comprises:
a) al menos una mutación en la secuencia SEQ ID No: 1 que codifica para la proteína C6L, y  a) at least one mutation in the sequence SEQ ID No: 1 encoding the C6L protein, and
b) al menos una secuencia nucleotídica que codifica para un antígeno heterólogo.  b) at least one nucleotide sequence encoding a heterologous antigen.
En una realización preferente de la presente invención, se hace referencia al vector viral anteriormente definido, caracterizado porque la mutación en la secuencia SEQ ID No: 1 es una deleción parcial o total. En una realización aún más preferente, la mutación en la secuencia SEQ ID No: 1 es una deleción total. In a preferred embodiment of the present invention, reference is made to the viral vector defined above, characterized in that the mutation in the sequence SEQ ID No: 1 is a partial or total deletion. In an even more preferred embodiment, the mutation in the sequence SEQ ID No: 1 is a total deletion.
En otra realización preferente de la presente invención, se hace referencia al vector viral anteriormente definido, caracterizado porque la secuencia nucleotídica codificante para dicho vector comprende al menos una secuencia nucleotídica que codifica para un antígeno heterólogo seleccionado de entre el siguiente grupo: antígeno del VIH, antígeno de la malaria, antígeno de la leishmaniosis, antígeno del virus de la hepatitis C y antígeno del cáncer de próstata. En una realización aún más preferente, la secuencia nucleotídica codificante para dicho vector comprende las secuencias nucleotídicas que codifican para los siguientes antígenos del VIH: antígenos gp120 (SEQ ID No 15 de PCT/ES2006/0701 14) y Gag-Pol-Nef (SEQ ID No 16 de PCT/ES2006/0701 14) de VIH de subtipo B, o de cualquier otro subtipo, bajo el control del promotor sintético viral temprano/tardío insertado dentro del locus viral TK. In another preferred embodiment of the present invention, reference is made to the viral vector defined above, characterized in that the nucleotide sequence encoding said vector comprises at least one nucleotide sequence encoding a heterologous antigen selected from the Next group: HIV antigen, malaria antigen, leishmaniasis antigen, hepatitis C virus antigen and prostate cancer antigen. In an even more preferred embodiment, the nucleotide sequence encoding said vector comprises the nucleotide sequences encoding the following HIV antigens: gp120 antigens (SEQ ID No. 15 of PCT / ES2006 / 0701 14) and Gag-Pol-Nef (SEQ ID No. 16 of PCT / ES2006 / 0701 14) of HIV of subtype B, or of any other subtype, under the control of the early / late viral synthetic promoter inserted into the TK viral locus.
La presente invención también hace referencia al método de fabricación del vector viral basado en un virus recombinante MVA anteriormente definido, caracterizado por comprender las siguientes etapas: The present invention also refers to the method of manufacturing the viral vector based on a recombinant MVA virus defined above, characterized by comprising the following steps:
a) construir un plásmido que comprende en su secuencia nucleotídica las secuencias flanqueantes de recombinación del gen C6L, es decir las secuencias del flanco derecho y del flanco izquierdo de SEQ ID No: 1 , b) recombinar un virus recombinante MVA, que contiene al menos una secuencia nucleotídica que codifica para un antígeno heterólogo, con el plásmido generado en a) el cual dirige la mutación de SEQ ID No: 1 , preferentemente dicha mutación es una deleción parcial o total, y más preferentemente es una deleción total, y  a) construct a plasmid comprising in its nucleotide sequence the flanking sequences of recombination of the C6L gene, that is the sequences of the right flank and the left flank of SEQ ID No: 1, b) recombine a recombinant MVA virus, which contains at least a nucleotide sequence encoding a heterologous antigen, with the plasmid generated in a) which directs the mutation of SEQ ID No: 1, preferably said mutation is a partial or total deletion, and more preferably it is a total deletion, and
c) purificar el vector viral basado en un virus recombinante MVA definido anteriormente, obtenido en el paso b).  c) purifying the viral vector based on a recombinant MVA virus defined above, obtained in step b).
La presente invención también hace referencia al uso del vector viral basado en un virus recombinante MVA anteriormente definido, como inmunogeno para prevenir o tratar una de las siguientes enfermedades: VIH, malaria, leishmaniosis, hepatitis C, y cáncer de próstata. En una realización preferente, dicho vector se usa como inmunogeno para prevenir o tratar la enfermedad del VIH. The present invention also refers to the use of the viral vector based on a recombinant MVA virus defined above, as an immunogen to prevent or treat one of the following diseases: HIV, malaria, leishmaniasis, hepatitis C, and prostate cancer. In a preferred embodiment, said vector is used as an immunogen to prevent or treat HIV disease.
En otra realización de la presente invención, se hace referencia al uso del vector viral basado en un virus recombinante MVA anteriormente definido, como parte de un protocolo de inmunización para prevenir o tratar una de las siguientes enfermedades: VIH, malaria, leishmaniosis, hepatitis C, y cáncer de próstata, en el que se administra al individuo al menos una dosis de vacunación. En una realización preferente, dicho vector se administra al individuo una única dosis de vacunación para: In another embodiment of the present invention, reference is made to the use of the viral vector based on a recombinant MVA virus defined above, as part of an immunization protocol to prevent or treat one of the following diseases: HIV, malaria, leishmaniasis, hepatitis C, and prostate cancer, in which at least one dose of vaccination is administered to the individual. In a preferred embodiment, said vector is administered to the individual a single dose of vaccination to:
a) inducir una respuesta inmune de células T CD4+ y CD8+ de memoria antígeno específicas, y/o  a) induce an immune response of specific CD4 + and CD8 + T cells from specific antigen memory, and / or
b) para inducir la expresión de IFN-β en células inmunes innatas. En otra realización preferente de la presente invención, dicho vector se usa como parte de un protocolo de inmunización en el que se administra al individuo al menos una dosis de vacunación, para prevenir o tratar la enfermedad del VIH.  b) to induce IFN-β expression in innate immune cells. In another preferred embodiment of the present invention, said vector is used as part of an immunization protocol in which the individual is administered at least one dose of vaccination, to prevent or treat HIV disease.
En otra realización preferente de la presente invención, dicho vector se usa como parte de un protocolo de inmunización en el que se administra al individuo al menos una dosis de vacunación o bien varias dosis de vacunación de una combinación de vectores heterólogos (proteínas, DNA, VLPs, vectores virales atenuados) para prevenir o tratar una de las siguientes enfermedades: VIH, malaria, leishmaniosis, hepatitis C, y cáncer de próstata. In another preferred embodiment of the present invention, said vector is used as part of an immunization protocol in which the individual is administered at least one vaccination dose or several vaccination doses of a combination of heterologous vectors (proteins, DNA, VLPs, attenuated viral vectors) to prevent or treat one of the following diseases: HIV, malaria, leishmaniasis, hepatitis C, and prostate cancer.
La presente invención también hace referencia a una composición inmunogénica o vacuna caracterizada porque comprende al menos un vector viral basado en un virus recombinante MVA definido anteriormente y caracterizado porque la secuencia nucleotídica codificante para dicho vector comprende: The present invention also refers to an immunogenic composition or vaccine characterized in that it comprises at least one viral vector based on a recombinant MVA virus defined above and characterized in that the nucleotide sequence coding for said vector comprises:
a) al menos una mutación en la secuencia SEQ ID No: 1 que codifica para la proteína C6L, y  a) at least one mutation in the sequence SEQ ID No: 1 encoding the C6L protein, and
b) al menos una secuencia nucleotídica que codifica para un antígeno heterólogo. La presente invención también hace referencia al uso de la composición inmunogénica o vacuna definida anteriormente, para prevenir o tratar una de las siguientes enfermedades: VIH, malaria, leishmaniosis, hepatitis C, y cáncer de próstata. En una realización preferente, dicha composición inmunogénica o vacuna es para prevenir o tratar el VIH. la presente invención se hace referencia a los siguientes términos: b) at least one nucleotide sequence encoding a heterologous antigen. The present invention also refers to the use of the immunogenic composition or vaccine defined above, to prevent or treat one of the following diseases: HIV, malaria, leishmaniasis, hepatitis C, and prostate cancer. In a preferred embodiment, said immunogenic composition or vaccine is for preventing or treating HIV. The present invention refers to the following terms:
• el término "virus recombinantes MVA" o "MVA" se refieren indistintamente a: una estirpe altamente atenuada de vaccinia, denominada virus modificado de Ankara (MVA), obtenida tras 576 pases seriados en cultivos de células embrionarias de pollo (CEF).  • The term "MVA recombinant virus" or "MVA" refers interchangeably to: a highly attenuated strain of vaccinia, called Ankara modified virus (MVA), obtained after 576 serial passes in chicken embryonic cell cultures (CEF).
• el término: "virus recombinante MVA-B" o "virus parental MVA-B" o "vector poxviral MVA-B" se refieren indistintamente a: poxvirus basados en el virus modificado de Ankara (MVA) que expresan los antígenos gp120 y Gag-Pol- Nef del virus de la inmunodeficiencia humana (VIH-1 ) de subtipo B (MVA- B). El término "parental" se utiliza cuando se compara MVA-B con MVA-B AC6L, pues la deleción de C6L se realiza sobre el genoma de MVA-B.  • the term: "MVA-B recombinant virus" or "MVA-B parental virus" or "MVA-B poxviral vector" refers interchangeably to: poxvirus based on the modified Ankara virus (MVA) expressing the gp120 and Gag antigens -Pol- Nef of human immunodeficiency virus (HIV-1) of subtype B (MVA-B). The term "parental" is used when comparing MVA-B with MVA-B AC6L, since the deletion of C6L is made on the genome of MVA-B.
• el término "vector viral" o "vector viral recombinante" se refiere a: un virus modificado que hace de vehículo para introducir material genético exógeno en una célula.  • The term "viral vector" or "recombinant viral vector" refers to: a modified virus that acts as a vehicle for introducing exogenous genetic material into a cell.
• el término: "vector MVA-B AC6L" se refiere a: un virus MVA aislado, caracterizado porque expresa los antígenos gp120 y Gag-Pol-Nef del virus de la inmunodeficiencia humana (VIH-1 ) de subtipo B, y posee una deleción en la secuencia de polinucleótidos que codifica una secuencia aminoacídica homologa a la del gen C6L (SEQ ID No: 1 ), y se presenta para su uso como composición farmacéutica o medicamento. La deleción del gen C6L en MVA-B incluye las posiciones 19068 a 19541 del genoma de MVA.  • the term: "MVA-B AC6L vector" refers to: an isolated MVA virus, characterized in that it expresses the gp120 and Gag-Pol-Nef antigens of the human immunodeficiency virus (HIV-1) of subtype B, and has a deletion in the polynucleotide sequence encoding an amino acid sequence homologous to that of the C6L gene (SEQ ID No: 1), and is presented for use as a pharmaceutical composition or medicament. The deletion of the C6L gene in MVA-B includes positions 19068 to 19541 of the MVA genome.
• el término "gen de vaccinia C6L" se refiere a: un gen de vaccinia, cuya función se desconocía previamente a la presentación de esta invención. El gen C6L está presente en el genoma de las estirpes de vaccinia MVA (gen denominado MVA 019L, posiciones 19068 a 19541 del genoma de MVA, SEQ ID No: 1 ), Western Reserve (WR) (gen denominado VACV-WR_022, posiciones 16401 a 16856 de WR, SEQ ID No: 3), y Copenhagen (gen denominado C6L, posiciones19484 a 19939, SEQ ID No: 5), pero ausente en la estirpe New York Vaccinia Virus (NYVAC).  • the term "C6L vaccinia gene" refers to: a vaccinia gene, whose function was unknown prior to the presentation of this invention. The C6L gene is present in the genome of MVA vaccinia strains (gene named MVA 019L, positions 19068 to 19541 of the MVA genome, SEQ ID No: 1), Western Reserve (WR) (gene named VACV-WR_022, positions 16401 to 16856 of WR, SEQ ID No: 3), and Copenhagen (gene named C6L, positions 19484 to 19939, SEQ ID No: 5), but absent in the New York Vaccinia Virus (NYVAC) lineage.
• El término "plásmido" o "vector de transferencia" se refiere a fragmento circular de ADN circular o lineal bicatenario extracromosómico, que se encuentra en el interior de casi todas las bacterias, y que actúan y se replican de forma independiente al ADN cromosómico bacteriano y pueden transferirse de unas bacterias a otras. Se utilizan como vectores en manipulación genética. • The term "plasmid" or "transfer vector" refers to a circular fragment of extrachromosomal double stranded circular or linear DNA, which is found inside almost all bacteria, and they act and replicate independently to bacterial chromosomal DNA and can be transferred from one bacterium to another. They are used as vectors in genetic manipulation.
el término "virus" se refiere a: una entidad infecciosa microscópica que sólo puede multiplicarse dentro de las células de otros organismos. Más concretamente se refiere a los virus pertenecientes a la familia Poxviridae, que es una familia de virus de ADN relacionados entre sí llamados poxvirus, infectivos para animales vertebrados e invertebrados, The term "virus" refers to: a microscopic infectious entity that can only multiply within the cells of other organisms. More specifically, it refers to viruses belonging to the Poxviridae family, which is a family of interrelated DNA viruses called poxviruses, infectious for vertebrate and invertebrate animals,
el término "composición" se refiere a: aquellas sustancias que están presentes en una determinada muestra y en unas cantidades determinadas. The term "composition" refers to: those substances that are present in a given sample and in certain quantities.
el término "antígeno heterologo" se refiere a: una molécula (generalmente una proteína o un polisacárido), que desencadena la formación de anticuerpos y puede causar una respuesta inmunitaria. Preferentemente se refiere a aquellos antígenos de una especie viral diferente a vaccinia que se insertan dentro de un vector viral de vaccinia. The term "heterologous antigen" refers to: a molecule (usually a protein or a polysaccharide), which triggers the formation of antibodies and can cause an immune response. It preferably refers to those antigens of a viral species other than vaccinia that are inserted into a viral vaccinia vector.
el término "antígenos de VIH" se refiere a: los antígenos del virus de la inmunodeficiencia humana (VIH), los cuales son expresados a partir de los virus recombinantes MVA que los contienen. Incluye cualquier antígeno de VIH codificado a partir del genoma de VIH. The term "HIV antigens" refers to: human immunodeficiency virus (HIV) antigens, which are expressed from the recombinant MVA viruses that contain them. It includes any HIV antigen encoded from the HIV genome.
el término "antígenos de la malaria" se refiere a: los antígenos de malaria, los cuales son expresados a partir de los virus recombinantes MVA que los contienen. Incluye cualquier antígeno de malaria codificado a partir del genoma del patógeno del género Plasmodium, que genera la enfermedad, el término "antígenos de la leishmaniosis" se refiere a: los antígenos de leishmania, los cuales son expresados a partir de los virus recombinantes MVA que los contienen. Incluye cualquier antígeno de leishmania codificado a partir del genoma del patógeno del género Leishmania, que genera la enfermedad. The term "malaria antigens" refers to: malaria antigens, which are expressed from the recombinant MVA viruses that contain them. It includes any malaria antigen encoded from the genome of the pathogen of the genus Plasmodium, which generates the disease, the term "leishmaniasis antigens" refers to: leishmania antigens, which are expressed from the recombinant MVA viruses that They contain them. It includes any leishmania antigen encoded from the genome of the pathogen of the genus Leishmania, which generates the disease.
el término "antígenos del virus de la hepatitis C" se refiere a: los antígenos del virus de la hepatitis C, los cuales son expresados a partir de los virus recombinantes MVA que los contienen. Incluye cualquier antígeno del virus de la hepatitis C codificado a partir del genoma del virus de la hepatitis C. el término "antígenos del cáncer de próstata" se refiere a: los antígenos de cáncer de próstata (entre ellos los antígenos PSCA y STEAP), los cuales son expresados a partir de los virus recombinantes MVA que los contienen, el término "vacuna frente a enfermedad" se refiere a: una preparación o composición inmunogénica o antigénica empleada para establecer la respuesta del sistema inmune a una enfermedad. Son preparados o combinaciones de inmunógenos o antígenos que una vez dentro del organismo provocan la respuesta del sistema inmunitario, mediante la producción de anticuerpos, y generan memoria inmunológica produciendo inmunidad permanente o transitoria. The term "hepatitis C virus antigens" refers to: hepatitis C virus antigens, which are expressed from the recombinant MVA viruses that contain them. Include any virus antigen of hepatitis C encoded from the hepatitis C virus genome. The term "prostate cancer antigens" refers to: prostate cancer antigens (including PSCA and STEAP antigens), which are expressed as From the recombinant MVA viruses that contain them, the term "disease vaccine" refers to: an immunogenic or antigenic preparation or composition used to establish the immune system's response to a disease. They are prepared or combinations of immunogens or antigens that once inside the body cause the immune system response, through the production of antibodies, and generate immunological memory producing permanent or transient immunity.
el término "vacuna frente a el cáncer de próstata" se refiere a: una preparación antigénica empleada para establecer la respuesta del sistema inmune a cáncer de próstata. The term "vaccine against prostate cancer" refers to: an antigen preparation used to establish the immune system's response to prostate cancer.
el término "mutación" se refiere a: una alteración o cambio en la información genética de un ser vivo y que, por lo tanto, va a producir un cambio de características, que se presenta súbita y espontáneamente, y que se puede transmitir o heredar a la descendencia. La unidad genética capaz de mutar es el gen que es la unidad de información hereditaria que forma parte del ADN. The term "mutation" refers to: an alteration or change in the genetic information of a living being and that, therefore, will produce a change of characteristics, which occurs suddenly and spontaneously, and that can be transmitted or inherited To the offspring. The genetic unit capable of mutating is the gene that is the unit of hereditary information that is part of the DNA.
el término "delecion" se refiere a: un tipo especial de mutación que consiste en la pérdida de un fragmento de ADN, que puede ir desde la pérdida de un solo nucleótido (delecion puntual) hasta la pérdida de grandes regiones, el término "delecion parcial" se refiere a: la pérdida de un fragmento de ADN de un gen, que no origina la pérdida total del mismo, The term "deletion" refers to: a special type of mutation that involves the loss of a DNA fragment, which can range from the loss of a single nucleotide (point deletion) to the loss of large regions, the term "deletion partial "refers to: the loss of a DNA fragment of a gene, which does not cause the total loss thereof,
el término "delecion total" se refiere a: la pérdida de un fragmento de ADN de un gen, que origina la pérdida total del mismo. The term "total deletion" refers to: the loss of a DNA fragment of a gene, which causes the total loss of it.
el término: "inmunógeno" se refiere a: aquellos antígenos que provocan una respuesta inmunitaria. The term: "immunogen" refers to: those antigens that elicit an immune response.
el término: "protocolo de inmunización" se refiere a: método utilizado para la administración de un agente inmunogénico o una vacuna a un organismo para generar una respuesta inmune. The term: "immunization protocol" refers to: method used for the administration of an immunogenic agent or a vaccine to an organism to generate an immune response.
el término: "inducir una respuesta inmune de células T CD4+ y CD8+ de memoria antígeno específicas" se refiere a: la capacidad de la vacuna administrada en el protocolo de inmunización de estimular la respuesta inmune del hospedador generando células T CD4+ y CD8+ que son capaces de reconocer específicamente el antígeno administrado, el término: "inducir la expresión de IFN-β en células inmunes innatas" se refiere a: la capacidad de la vacuna administrada de estimular la producción de IFN-β por parte de las células inmunes innatas, como los macrófagos y las células dendríticas. the term: "induce an immune response of CD4 + and CD8 + T cells from specific antigen memory "refers to: the ability of the vaccine administered in the immunization protocol to stimulate the host's immune response by generating CD4 + and CD8 + T cells that are capable of specifically recognizing the administered antigen, the term:" inducing the expression of IFN-β in innate immune cells "refers to: the ability of the administered vaccine to stimulate the production of IFN-β by innate immune cells, such as macrophages and dendritic cells.
el término: "aumentar respuestas dependientes de IFN-β en células humanas" se refiere a: la capacidad de la vacuna administrada de estimular en mayor medida aquellas respuestas inmunes que se producen como consecuencia de la producción de IFN-β por parte de las células inmunes innatas humanas, como los macrófagos y las células dendríticas. The term: "Increase IFN-β-dependent responses in human cells" refers to: the ability of the administered vaccine to further stimulate those immune responses that occur as a result of the production of IFN-β by cells Innate human immune systems, such as macrophages and dendritic cells.
el término: "incrementar la magnitud y calidad de las respuestas inmunes de memoria de células T específicas frente a antígenos" se refiere a: la capacidad de la vacuna administrada de estimular en mayor medida el número y proporción de células T de memoria que son capaces de reconocer específicamente el antígeno administrado. El término calidad se refiere a la capacidad de las células T de memoria de ser polifuncionales, es decir, de secretar al mismo tiempo diferentes citoquinas, como por ejemplo IFN-γ, IL-2, o TNFa. The term: "increase the magnitude and quality of memory immune responses of specific T cells against antigens" refers to: the ability of the administered vaccine to further stimulate the number and proportion of memory T cells that are capable of specifically recognizing the administered antigen. The term quality refers to the ability of memory T cells to be polyfunctional, that is, to secrete different cytokines at the same time, such as for example IFN-γ, IL-2, or TNFa.
el término: "fenotipos EM y TEMRA" se refieren a: dos subpoblaciones de células T de memoria, que se definen en función de la expresión de diferentes marcadores de superficie como CD44 y CD62L, y que se denominan EM ("Effector memory" ó células T de memoria efectoras. CD44+/CD62L")) y TEMRA ("Effector memory terminally differentiated" ó células T de memoria efectoras terminalmente diferenciadas. CD44" /CD62L"). The term: "EM and TEMRA phenotypes" refers to: two subpopulations of memory T cells, which are defined as a function of the expression of different surface markers such as CD44 and CD62L, and which are called EM ("Effector memory" or effector memory T cells. CD44 + / CD62L " )) and TEMRA (" Effector memory terminally differentiated "or terminally differentiated effector memory T cells. CD44 " / CD62L " ).
El término "homología", tal y como se utiliza en esta memoria, hace referencia a la semejanza entre dos estructuras, y más concretamente, a la semejanza entre los aminoácidos de dos o más proteínas o secuencias aminoacídicas. Dos proteínas se consideran homologas si tienen el mismo origen evolutivo o si tienen función y estructura similares. En el caso particular de la invención MVA-B AC6L, aunque la deleción del gen de vaccinia C6L se ha realizado sobre MVA-B, es suficiente para permitir a un experto en la materia obtener nuevos vectores recombinantes basados en MVA, que expresan otros antígenos heterólogos (malaria, leishmania, virus de la hepatitis C y cáncer de próstata) mediante la deleción del gen C6L, con el fin de poder ser utilizados como vacunas frente a dichas enfermedades. De igual forma, aunque la deleción de C6L se ha realizado sobre un vector MVA que expresa antígenos de VIH-1 del subtipo B (MVA- B) es suficiente para permitir a un experto en la materia obtener nuevos vectores MVA recombinantes que expresen antígenos de VIH-1 de otros subtipos (A, C, D, E, F, G, H y O). Asimismo, es suficiente para permitir a un experto en la materia obtener nuevos vectores poxvirales recombinantes basados en otras cepas que estén comprendidas dentro de la especie, como las estirpes de vaccinia Western Reserve y Copenhagen, que también presentan en sus genomas el gen C6L (SEQ ID No: 3 y SEQThe term "homology", as used herein, refers to the similarity between two structures, and more specifically, to the similarity between the amino acids of two or more proteins or amino acid sequences. Two proteins are considered homologous if they have the same evolutionary origin or if they have similar function and structure. If Particular of the invention MVA-B AC6L, although the deletion of the C6L vaccinia gene has been performed on MVA-B, is sufficient to allow a person skilled in the art to obtain new recombinant vectors based on MVA, which express other heterologous antigens (malaria , leishmania, hepatitis C virus and prostate cancer) by deleting the C6L gene, in order to be used as vaccines against these diseases. Similarly, although the deletion of C6L has been performed on an MVA vector that expresses HIV-1 antigens of subtype B (MVA-B) is sufficient to allow a person skilled in the art to obtain new recombinant MVA vectors that express antigens of HIV-1 of other subtypes (A, C, D, E, F, G, H and O). It is also sufficient to allow a person skilled in the art to obtain new recombinant poxviral vectors based on other strains that are included within the species, such as the Western Reserve and Copenhagen strains of vaccinia, which also have the C6L gene (SEQ) in their genomes. ID No: 3 and SEQ
ID No: 5, respectivamente). ID No: 5, respectively).
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Figura 1. Caracterización in vitro del mutante de deleción MVA-B AC6L. Figure 1. In vitro characterization of the MVA-B AC6L deletion mutant.
(A) Esquema del genoma de MVA-B AC6L, adaptado de (Nájera et al., 2006. J Virol 80: 6033-6047; Antoine et al., 1998. Virology 244: 365-396). Las diferentes regiones del genoma viral se indican mediante letras mayúsculas. Se muestran las regiones terminales derecha e izquierda y debajo del mapa se dibujan en negro los diferentes genes fragmentados o delecionados. De forma adicional se indica el gen C6L delecionado. Se indican las secuencias de los antígenos de VIH-1 de subtipo B Gag-Pol-Nef (del aislado IIIB) y gp120 (del aislado BX08), bajo el control del promotor sintético viral temprano/tardío (sE/L) insertado dentro del locus viral TK (gen J2R) (adaptado de Gómez et al. , 2007. Vaccine 25: 2863- 2885). (B) Análisis por PCR del locus C6L. ADN extraído de células DF-1 infectadas a 2 PFU/célula con MVA, MVA-B o MVA-B AC6L fue utilizado para el análisis de PCR. Los productos de ADN correspondientes al virus parental o a la deleción de C6L se indican mediante una flecha en la derecha, incluyendo el tamaño esperado en pares de bases. El marcador de peso molecular (1 Kb) con los tamaños correspondientes (en pares de bases) se indica a la izquierda. La columna Mock representa células sin infectar. (C) Expresión de las proteínas de VIH-1 Bxo8gp120 y INBGPN en células DF-1 infectadas (2 PFU/célula) con MVA-B y MVA-B AC6L, a 24 horas post-infección. (D) Cinética de crecimiento viral de MVA- B y MVA-B AC6L en células DF-1 infectadas (0.01 PFU/célula) a diferentes tiempos y titulada mediante un ensayo de inmunotinción de placa con anticuerpos anti-WR. Se representa la media de 3 experimentos independientes. (E) Cinética de crecimiento viral de WR, MVA-B y MVA-B AC6L en células HeLa infectadas (0.01 PFU/célula) a diferentes tiempos y titulada mediante un ensayo de inmunotinción de placa con anticuerpos anti-WR. Se representa el título viral extracelular y el intracelular. Figura 2. Caracterización de la expresión y localización de C6. (A) MVA-B AC6L genome scheme, adapted from (Nájera et al., 2006. J Virol 80: 6033-6047; Antoine et al., 1998. Virology 244: 365-396). Different regions of the viral genome are indicated by capital letters. The right and left terminal regions are shown and under the map the different fragmented or deleted genes are drawn in black. Additionally, the deleted C6L gene is indicated. The sequences of the Gag-Pol-Nef subtype B-type HIV (from isolate IIIB) and gp120 (from isolate BX08) sequences are indicated under control of the early / late viral synthetic promoter (sE / L) inserted into the TK viral locus (J2R gene) (adapted from Gómez et al., 2007. Vaccine 25: 2863-2885). (B) PCR analysis of the C6L locus. DNA extracted from DF-1 cells infected at 2 PFU / cell with MVA, MVA-B or MVA-B AC6L was used for PCR analysis. DNA products corresponding to the parental virus or C6L deletion are indicated by an arrow on the right, including the expected size in base pairs. The molecular weight marker (1 Kb) with the corresponding sizes (in base pairs) is indicated on the left. The Mock column represents uninfected cells. (C) Expression of HIV-1 Bxo8gp120 and INBGPN proteins in infected DF-1 cells (2 PFU / cell) with MVA-B and MVA-B AC6L, at 24 hours post-infection. (D) MVA-B and MVA-B AC6L viral growth kinetics in infected DF-1 cells (0.01 PFU / cell) at different times and titrated by a plaque immunostaining assay with anti-WR antibodies. The average of 3 independent experiments is represented. (E) WR, MVA-B and MVA-B AC6L viral growth kinetics in infected HeLa cells (0.01 PFU / cell) at different times and titrated by a plaque immunostaining assay with anti-WR antibodies. The extracellular and intracellular viral titer is represented. Figure 2. Characterization of the expression and location of C6.
Células DF-1 fueron infectadas con 5 PFU/célula de MVA-B y MVA-B AC6L (A) o WR y MVA (B) en presencia o ausencia de AraC (B). Los extractos celulares fueron recogidos a las 24 horas post-infección (A) o a los tiempos indicados (B) y fueron analizados mediante SDS-PAGE. La proteína C6 de vaccinia fue detectada mediante Western blot utilizando un suero de conejo policlonal contra C6. (C) Células DF-1 fueron infectadas con WR, MVA, MVA-B o MVA-B AC6L durante 18 horas. La localización de C6 fue analizada mediante immunofluorescencia y las células fueron teñidas con DAPI (tiñe el núcleo celular), anticuerpo purificado policlonal de conejo anti-C6 y anti-14K.  DF-1 cells were infected with 5 PFU / MVA-B and MVA-B AC6L (A) or WR and MVA (B) cells in the presence or absence of AraC (B). Cell extracts were collected at 24 hours post-infection (A) or at the indicated times (B) and analyzed by SDS-PAGE. C6 vaccinia protein was detected by Western blotting using a polyclonal rabbit serum against C6. (C) DF-1 cells were infected with WR, MVA, MVA-B or MVA-B AC6L for 18 hours. The location of C6 was analyzed by immunofluorescence and the cells were stained with DAPI (stained cell nucleus), purified rabbit polyclonal antibody anti-C6 and anti-14K.
Figura 3. MVA-B AC6L induce la producción de IFN-β y genes inducidos por IFN tipo I en macrófagos y células dendríticas. Macrófagos humanos THP-1 (A) y moDCs (B, C, D) fueron infectados con MVA, MVA-B y MVA-B AC6L (5 PFU/célula en A, y 0.2, 0.02 o 0.002 PFU/célula en B, C y D). A diferentes tiempos post-infección (1 h, 3 h y 6 h en A, 6 h en B), el ARN fue extraído y los niveles de ARN mensajero de IFN-β, genes inducidos por IFN tipo I (IFIT1 e IFIT2), quimiocinas y HPRT fueron analizados mediante RT-PCR. Los resultados se expresan como el ratio entre los niveles de ARN mensajero del gen frente a los niveles de ARN mensajero de HPRT. U.A. : unidades arbitrarias. Los datos representan la media ± desviación estándar de las muestras por duplicado. (C, D) moDCs humanos fueron infectados con 0.2, 0.02 y 0.002 PFU/célula de MVA, MVA-B y MVA-B AC6L. 6 horas más tarde, los sobrenadantes libres de células fueron recogidos para cuantificar la concentración de IFN-β mediante ELISA (C) y la concentración de IFN tipo I utilizando la línea celular HL1 16, que expresa luciferasa bajo el control de un promotor inducido por IFN tipo I (D). Los resultados se expresan mediante valores de absorbancia a 450 nm (C), y en unidades de luciferasa (D). Los datos representan la media ± desviación estándar de duplicados y son representativos de 2 experimentos independientes. Figure 3. MVA-B AC6L induces the production of IFN-β and IFN type I-induced genes in macrophages and dendritic cells. Human macrophages THP-1 (A) and moDCs (B, C, D) were infected with MVA, MVA-B and MVA-B AC6L (5 PFU / cell in A, and 0.2, 0.02 or 0.002 PFU / cell in B, C and D). At different post-infection times (1 h, 3 h and 6 h in A, 6 h in B), the RNA was extracted and the levels of IFN-β messenger RNA, genes induced by type I IFN (IFIT1 and IFIT2), Chemokines and HPRT were analyzed by RT-PCR. The results are expressed as the ratio between the levels of messenger RNA of the gene versus the levels of messenger RNA of HPRT. UA: arbitrary units. The data represent the mean ± standard deviation of the samples in duplicate. (C, D) human moDCs were infected with 0.2, 0.02 and 0.002 PFU / cell of MVA, MVA-B and MVA-B AC6L. 6 hours later, cell-free supernatants were collected to quantify IFN-β concentration by ELISA (C) and IFN type I concentration using the HL1 16 cell line, which expresses luciferase under the control of a promoter induced by IFN type I (D). The results are expressed by absorbance values at 450 nm (C), and in luciferase units (D). Data represent the mean ± standard deviation of duplicates and are representative of 2 independent experiments.
Figura 4. Interacción entre la ruta de señalización "Toll-like receptors" (TLRs) y proteínas del virus vaccinia (VACV). Figure 4. Interaction between the "Toll-like receptors" signaling pathway (TLRs) and vaccinia virus (VACV) proteins.
La ruta de señalización TLR está compuesta por varios TLRs localizados en la superficie celular o en compartimentos intracelulares. La activación de estos TLRs conduce al reclutamiento de varias proteínas adaptadoras y quinasas y a la subsecuente activación de factores de transcripción (IRFs, NF-κΒ y ATF2/c-Jun) que son translocados al núcleo y activan la transcripción de IFN tipo I y citoquinas proinflamatorias. VACV codifica varias proteínas inmunomoduladoras que interfieren con la ruta de señalización TLR (indicadas mediante rectángulos): A46 inhibe moléculas adaptadoras TLR como MyD88, TRIF, MAL y TRAM; A52 inhibe moléculas como IRAK-2 and TRAF6; K7 interacciona con DDX3 y previene la inducción de I FN vía TBKI/lkk-ε-; y B14 inhibe la fosforilación de ΙΚΚβ y por tanto impide la activación de N F-KB.  The TLR signaling path is composed of several TLRs located on the cell surface or in intracellular compartments. The activation of these TLRs leads to the recruitment of several adapter proteins and kinases and the subsequent activation of transcription factors (IRFs, NF-κΒ and ATF2 / c-Jun) that are translocated to the nucleus and activate the transcription of type I IFN and cytokines proinflammatory VACV encodes several immunomodulatory proteins that interfere with the TLR signaling pathway (indicated by rectangles): A46 inhibits TLR adapter molecules such as MyD88, TRIF, MAL and TRAM; A52 inhibits molecules such as IRAK-2 and TRAF6; K7 interacts with DDX3 and prevents the induction of I FN via TBKI / lkk-ε-; and B14 inhibits ΙΚΚβ phosphorylation and therefore prevents the activation of N F-KB.
Figura 5. Interacción entre la ruta de señalización "retinoic acid-inducible gene I (RIG-l)-like receptors" (RLRs) y proteínas del virus vaccinia (VACV). La ruta de señalización RLR está compuesta por las proteínas RIG-I, MDA5 y LGP2. La activación de estos RLRs conduce al reclutamiento de varias proteínas adaptadoras y quinasas y a la subsecuente activación de factores de transcripción (IRFs y NF-κΒ) que son translocados al núcleo y activan la transcripción de IFN tipo I y citoquinas proinflamatorias. VACV codifica proteínas inmunomoduladoras que interfieren con la ruta de señalización RLR (indicadas mediante rectángulos): K7 interacciona con DDX3 y previene la inducción de IFN vía TBKI/lkk-ε-; y C6 inhibe la fosforilación de IRF3 aunque su mecanismo es desconocido aún. Figura 6. MVA-B AC6L activa la ruta de señalización de IRF3. Figure 5. Interaction between the "retinoic acid-inducible gene I (RIG-l) -like receptors" (RLRs) signaling pathway and vaccinia virus (VACV) proteins. The RLR signaling path is composed of the RIG-I, MDA5 and LGP2 proteins. The activation of these RLRs leads to the recruitment of various adapter proteins and kinases and the subsequent activation of transcription factors (IRFs and NF-κΒ) that are translocated to the nucleus and activate the transcription of type I IFN and proinflammatory cytokines. VACV encodes immunomodulatory proteins that interfere with the RLR signaling path (indicated by rectangles): K7 interacts with DDX3 and prevents the induction of IFN via TBKI / lkk-ε-; and C6 inhibits the phosphorylation of IRF3 although its mechanism is still unknown. Figure 6. MVA-B AC6L activates the IRF3 signaling path.
Células THP-1 diferenciadas con PMA fueron infectadas a una multiplicidad de infección de 5 PFU/célula con MVA-B, MVA-B AC6L, MVA o con medio (Mock). A diferentes tiempos post-infección las células fueron lavadas con PBS frío y lisadas durante 10 minutos a 4°C con "Cell Lysis Buffer" (Cell Signaling). Las mezclas de reacción fueron centrifugadas durante 10 min a 13.000 rpm. La concentración de proteína de los sobrenadantes fue determinada utilizando el "bicinchoninic acid protein assay" (Pierce Biotechnology). 30 g de proteína total fue cargada en geles de poliacrilamida de 10% (w/v) y transferida a membranas de nitrocelulosa. Las membranas fueron incubadas con anticuerpos dirigidos contra phospho-IRF3 (Cell Signaling) y α-tubulina (Cell Signaling). Después de lavar, las membranas fueron incubadas con un anticuerpo secundario conjugado con HRP (Pierce). La señal fue revelada utilizando el "ECL Western blotting Analysis System" (GE Healthcare). Figura 7. La inmunización con MVA-B AC6L aumenta la magnitud de las respuestas inmunes de memoria de células T CD4+ y CD8+ específicas frente a VIH-1. THP-1 cells differentiated with PMA were infected at a multiplicity of infection of 5 PFU / cell with MVA-B, MVA-B AC6L, MVA or with medium (Mock). At different post-infection times the cells were washed with cold PBS and lysed for 10 minutes at 4 ° C with "Cell Lysis Buffer" (Cell Signaling). The reaction mixtures were centrifuged for 10 min at 13,000 rpm. The protein concentration of the supernatants was determined using the "bicinchoninic acid protein assay" (Pierce Biotechnology). 30 g of total protein was loaded into 10% polyacrylamide gels (w / v) and transferred to nitrocellulose membranes. The membranes were incubated with antibodies directed against phospho-IRF3 (Cell Signaling) and α-tubulin (Cell Signaling). After washing, the membranes were incubated with a secondary antibody conjugated to HRP (Pierce). The signal was revealed using the "ECL Western blotting Analysis System" (GE Healthcare). Figure 7. Immunization with MVA-B AC6L increases the magnitude of memory immune responses of specific CD4 + and CD8 + T cells against HIV-1.
Se recogieron esplenocitos de ratones (n=4 por grupo) inmunizados con DNA- B/MVA-B, DNA-B/MVA-B AC6L o ϋΝΑ-φ/MVA, 53 días después de la última inmunización. (A) Los esplenocitos secretores de IFN-γ específicos frente al péptido de VIH-1 Gag-B fueron cuantificados mediante un ensayo de ELISPOT. Los datos representan la media ± desviación estándar de triplicados. ** representa p<0.005. (B-D) Análisis fenotípicos mediante citometría de flujo de células T CD4+ y CD8+ específicas frente a los antígenos de VIH-1 Env, Gag y GPN. La expresión de CD44 y CD62L fue utilizada para identificar las sub-poblaciones de memoria denominadas "memoria central" (CM: CD44+/CD62L+), "memoria efectora" (EM: CD44+/CD62L") y "memoria efectora terminalmente diferenciada" (TEMRA: CD447CD62L"). La producción de IFN-γ y IL-2 fue analizada mediante mareaje intracelular (ICS). (B) Se muestra un ensayo de citometría de flujo representativo. Las sub-poblaciones de células T de memoria se dibujan mediante dibujos de densidad. Los puntos representan las células T productoras de IFN-y y IL-2. (C) Se representa el porcentaje de células T de memoria CD4+ y CD8+ específicas frente a los antígenos de VIH-1 Env, Gag y GPN. Las frecuencias fueron calculadas representando el número de células T de memoria productoras de IFN-y y/o IL-2 frente al número total de esplenocitos CD4+ y CD8+. Los valores de los controles sin estimular fueron restados en todos los casos. ** representa p<0.005. (D) Los círculos representan la proporción de CM, EM y TEMRA dentro de las células T de memoria CD4+ y CD8+ específicas frente a los antígenos de VIH-1 Env, Gag y GPN. (A-D) Los datos derivan de un experimento, representativo de 2 experimentos realizados. Splenocytes were collected from mice (n = 4 per group) immunized with DNA-B / MVA-B, DNA-B / MVA-B AC6L or ϋΝΑ-φ / MVA, 53 days after the last immunization. (A) IFN-γ secreting splenocytes specific to the HIV-1 Gag-B peptide were quantified by an ELISPOT assay. Data represent the mean ± standard deviation of triplicates. ** represents p <0.005. (BD) Phenotypic analysis by flow cytometry of CD4 + T cells and specific CD8 + against HIV-1 Env, Gag and GPN antigens. The expression of CD44 and CD62L was used to identify the sub-populations of memory called "central memory" (CM: CD44 + / CD62L + ), "effector memory" (MS: CD44 + / CD62L " ) and" terminally differentiated effector memory "(TEMRA: CD447CD62L " ). The production of IFN-γ and IL-2 was analyzed by intracellular marking (ICS). (B) A representative flow cytometry test is shown. Sub-populations of memory T cells are drawn by density drawings. The dots represent IFN-y and IL-2 producing T cells. (C) The percentage of specific CD4 + and CD8 + memory T cells against HIV-1 Env, Gag and GPN antigens is represented. The frequencies were calculated representing the number of memory T cells producing IFN-y and / or IL-2 versus the total number of splenocytes CD4 + and CD8 + . The values of the unstimulated controls were subtracted in all cases. ** represents p <0.005. (D) The circles represent the proportion of CM, MS and TEMRA within the specific CD4 + and CD8 + memory T cells against HIV-1 Env, Gag and GPN antigens. (AD) The data are derived from an experiment, representative of 2 experiments performed.
Figura 8. La inmunización con MVA-B AC6L aumenta la polifuncionalidad de las respuestas inmunes de memoria de células T CD4+ y CD8+ específicas frente a VIH-1. Figure 8. Immunization with MVA-B AC6L increases the polyfunctionality of specific immune responses of CD4 + and CD8 + T cells specific to HIV-1.
Se recogieron esplenocitos de ratones (n=4 por grupo) inmunizados con DNA- B/MVA-B, DNA-B/MVA-B AC6L o ϋΝΑ-φ/MVA, 53 días después de la última inmunización y se analizaron mediante citometría de flujo tal y como está descrito en la Figura 7. La polifuncionalidad de las células T de memoria CD4+ (parte izquierda) y CD8+ (parte derecha) específicas frente a los antígenos de VIH-1 Env+Gag+GPN se define basándose en la producción de IFN-y y/o IL-2. Todas las posibles combinaciones de respuestas se muestran en el eje X. Los porcentajes de células T de memoria productoras de IFN-y y/o IL-2 entre el total de células T CD4+ y CD8+ se muestra en el eje Y. ** representa p<0.005. Los círculos resumen los datos. Cada parte del círculo corresponde a la proporción de células T CD4+ o CD8+ productoras de IFN-γ, IL-2 o IFN-y+IL-2 dentro del total de células T de memoria CD4+ o CD8+ específicas frente a los antígenos de VIH-1 . El tamaño de cada círculo representa la magnitud de la respuesta inmune de memoria inducida específica frente a los antígenos de VIH-1 . Splenocytes were collected from mice (n = 4 per group) immunized with DNA-B / MVA-B, DNA-B / MVA-B AC6L or ϋΝΑ-φ / MVA, 53 days after the last immunization and analyzed by cytometry of flow as described in Figure 7. The polyfunctionality of the specific CD4 + (left part) and CD8 + memory T cells (right side) against HIV-1 Env + Gag + GPN antigens is defined based on IFN-y and / or IL-2 production. All possible combinations of responses are shown on the X axis. The percentages of IFN-y and / or IL-2 producing memory T cells among the total CD4 + and CD8 + T cells are shown on the Y axis. * * represents p <0.005. The circles summarize the data. Each part of the circle corresponds to the proportion of CD4 + or CD8 + T cells producing IFN-γ, IL-2 or IFN-y + IL-2 within the total of specific CD4 + or CD8 + memory T cells versus HIV-1 antigens. The size of Each circle represents the magnitude of the specific induced memory immune response against HIV-1 antigens.
Figura 9. La inmunización con MVA-B AC6L aumenta la respuesta inmune humoral inducida contra la proteína gp120 de VIH-1. Figure 9. Immunization with MVA-B AC6L increases the humoral immune response induced against HIV-1 gp120 protein.
Se recogió suero de ratones (n=3 por grupo) inmunizados con DNA-B/MVA-B, DNA-B/MVA-B AC6L o ϋΝΑ-φ/MVA, 53 días después de la última inmunización. Los títulos de anticuerpos anti-gp120 fueron determinados mediante ELISA. Los títulos representan la última dilución del suero que dio una señal 3 veces más alta que las señales obtenidas con el suero de ratones naíve. La línea punteada representa el límite detección del ELISA. La barra horizontal representa el valor medio y los valores obtenidos por cada ratón se representan mediante círculos. * representa p<0.05. BIBLIOGRAFÍA  Serum was collected from mice (n = 3 per group) immunized with DNA-B / MVA-B, DNA-B / MVA-B AC6L or ϋΝΑ-φ / MVA, 53 days after the last immunization. Anti-gp120 antibody titers were determined by ELISA. The titles represent the last dilution of the serum that gave a signal 3 times higher than the signals obtained with the serum of naive mice. The dotted line represents the ELISA detection limit. The horizontal bar represents the average value and the values obtained by each mouse are represented by circles. * represents p <0.05. BIBLIOGRAPHY
Esteban M (2009) Attenuated poxvirus vectors MVA and NYVAC as promising vaccine candidates against HIV/AIDS. Hum Vaccin 5: 867-871 . Garcia-Arriaza J, Najera JL, Gómez CE, Sorzano CO, Esteban M (2010) Immunogenic profiling in mice of a HIV/AIDS vaccine candidate (MVA-B) expressing four HIV-1 antigens and potentiation by specific gene deletions. PLoS One 5: e12395. Gómez CE, Najera JL, Sánchez R, Jiménez V, Esteban M (2009) Multimeric soluble CD40 ligand (sCD40L) efficiently enhances HIV specific cellular immune responses during DNA prime and boost with attenuated poxvirus vectors MVA and NYVAC expressing HIV antigens. Vaccine 27: 3165-3174. Harari A, Bart PA, Stohr W, Tapia G, García M, et al. (2008) An HIV-1 clade C DNA prime, NYVAC boost vaccine régimen induces reliable, polyfunctional, and long-lasting T cell responses. J Exp Med 205: 63-77. Esteban M (2009) Attenuated poxvirus vectors MVA and NYVAC as promising vaccine candidates against HIV / AIDS. Hum Vaccin 5: 867-871. Garcia-Arriaza J, Najera JL, Gómez CE, Sorzano CO, Esteban M (2010) Immunogenic profiling in mice of a HIV / AIDS vaccine candidate (MVA-B) expressing four HIV-1 antigens and potentiation by specific gene deletions. PLoS One 5: e12395. Gómez CE, Najera JL, Sánchez R, Jiménez V, Esteban M (2009) Multimeric soluble CD40 ligand (sCD40L) efficiently enhancing HIV specific cellular immune responses during DNA prime and boost with attenuated poxvirus vectors MVA and NYVAC expressing HIV antigens. Vaccine 27: 3165-3174. Harari A, Bart PA, Stohr W, Tapia G, García M, et al. (2008) An HIV-1 clade C DNA prime, NYVAC boost vaccine regime induces reliable, polyfunctional, and long-lasting T cell responses. J Exp Med 205: 63-77.
Mooij P, Balla-Jhagjhoorsingh SS, Koopman G, Beenhakker N, van Haaften P, et al. (2008) Differential CD4+ versus CD8+ T-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates. J Virol 82: 2975-2988. Gómez CE, Najera JL, Jiménez EP, Jiménez V, Wagner R, et al. (2007) Head-to- head comparison on the immunogenicity of two HIV/AIDS vaccine candidates based on the attenuated poxvirus strains MVA and NYVAC co-expressing in a single locus the HIV-1 BX08 gp120 and HIV-1 (IIIB) Gag-Pol-Nef proteins of clade B. Vaccine 25: 2863-2885. Mooij P, Balla-Jhagjhoorsingh SS, Koopman G, Beenhakker N, van Haaften P, et to the. (2008) Differential CD4 + versus CD8 + T-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates. J Virol 82: 2975-2988. Gómez CE, Najera JL, Jiménez EP, Jiménez V, Wagner R, et al. (2007) Head-to-head comparison on the immunogenicity of two HIV / AIDS vaccine candidates based on the attenuated poxvirus strains MVA and NYVAC co-expressing in a single locus the HIV-1 BX08 gp120 and HIV-1 (IIIB) Gag- Pol-Nef proteins of clade B. Vaccine 25: 2863-2885.
Gómez CE, Najera JL, Jiménez V, Bieler K, Wild J, et al. (2007) Generation and immunogenicity of novel HIV/AIDS vaccine candidates targeting HIV-1 Env/Gag- Pol-Nef antigens of clade C. Vaccine 25: 1969-1992. Gómez CE, Najera JL, Krupa M, Esteban M (2008) The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cáncer. Curr Gene Ther 8: 97-120. Gómez CE, Najera JL, Jiménez V, Bieler K, Wild J, et al. (2007) Generation and immunogenicity of novel HIV / AIDS vaccine candidates targeting HIV-1 Env / Gag-Pol-Nef antigens of clade C. Vaccine 25: 1969-1992. Gómez CE, Najera JL, Krupa M, Esteban M (2008) The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. Curr Gene Ther 8: 97-120.
Guerra S, González JM, Climent N, Reyburn H, Lopez-Fernandez LA, et al. (2010) Selective induction of host genes by MVA-B, a candidate vaccine against HIV/AIDS. J Virol 84: 8141 -8152. Guerra S, González JM, Climent N, Reyburn H, Lopez-Fernandez LA, et al. (2010) Selective induction of host genes by MVA-B, a candidate vaccine against HIV / AIDS. J Virol 84: 8141-8152.
Alcami A (2003) Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3: 36-50. Alcami A (2003) Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3: 36-50.
Assarsson E, Greenbaum JA, Sundstrom M, Schaffer L, Hammond JA, et al. (2008) Kinetic analysis of a complete poxvirus transcriptome reveáis an immediate-early class of genes. Proc Nati Acad Sci U S A 105: 2140-2145. González JM, Esteban M (2010) A poxvirus Bcl-2-like gene family involved in regulation of host immune response: sequence similarity and evolutionary history. Virol J 7: 59. Bowie A, Kiss-Toth E, Symons JA, Smith GL, Dower SK, et al. (2000) A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Nati Acad Sci U S A 97: 10162-10167. Chen RA, Jacobs N, Smith GL (2006) Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. J Gen Virol 87: 1451 -1458. Assarsson E, Greenbaum JA, Sundstrom M, Schaffer L, Hammond JA, et al. (2008) Kinetic analysis of a complete poxvirus transcriptome reveal an immediate-early class of genes. Proc Nati Acad Sci USA 105: 2140-2145. González JM, Esteban M (2010) A poxvirus Bcl-2-like gene family involved in regulation of host immune response: sequence similarity and evolutionary history. Virol J 7: 59. Bowie A, Kiss-Toth E, Symons JA, Smith GL, Dower SK, et al. (2000) A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Nati Acad Sci USA 97: 10162-10167. Chen RA, Jacobs N, Smith GL (2006) Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. J Gen Virol 87: 1451-1458.
Chen RA, Ryzhakov G, Cooray S, Randow F, Smith GL (2008) Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. PLoS Pathog 4: e22. Chen RA, Ryzhakov G, Cooray S, Randow F, Smith GL (2008) Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. PLoS Pathog 4: e22.
Graham SC, Bahar MW, Cooray S, Chen RA, Whalen DM, et al. (2008) Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF- kappaB rather than apoptosis. PLoS Pathog 4: e1000128. Harte MT, Haga IR, Maloney G, Gray P, Reading PC, et al. (2003) The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197: 343-351 . Graham SC, Bahar MW, Cooray S, Chen RA, Whalen DM, et al. (2008) Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 4: e1000128. Harte MT, Do IR, Maloney G, Gray P, Reading PC, et al. (2003) The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197: 343-351.
Kalverda AP, Thompson GS, Vogel A, Schroder M, Bowie AG, et al. (2009) Poxvirus K7 protein adopts a Bcl-2 fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. J Mol Biol 385: 843-853. Kalverda AP, Thompson GS, Vogel A, Schroder M, Bowie AG, et al. (2009) Poxvirus K7 protein adopts a Bcl-2 fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. J Mol Biol 385: 843-853.
Oda S, Schroder M, Khan AR (2009) Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Structure 17: 1528-1537. Oda S, Schroder M, Khan AR (2009) Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Structure 17: 1528-1537.
Schroder M, Baran M, Bowie AG (2008) Viral targeting of DEAD box protein 3 reveáis its role in TBK1 /IKKepsilon-mediated IRF activation. EMBO J 27: 2147- 2157. Schroder M, Baran M, Bowie AG (2008) Viral targeting of DEAD box protein 3 reveal its role in TBK1 / IKKepsilon-mediated IRF activation. EMBO J 27: 2147-2177.
Stack J, Haga IR, Schroder M, Bartlett NW, Maloney G, et al. (2005) Vaccinia virus protein A46R targets múltiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201 : 1007-1018.  Stack J, Do IR, Schroder M, Bartlett NW, Maloney G, et al. (2005) Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adapters and contributes to virulence. J Exp Med 201: 1007-1018.
Chung CS, Chen CH, Ho MY, Huang CY, Liao CL, et al. (2006) Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion partióles. J Virol 80: 2127-2140. Chung CS, Chen CH, Ho MY, Huang CY, Liao CL, et al. (2006) Vaccinia virus proteome: identification of proteins in vaccinia intracellular virus mature virion Partiols J Virol 80: 2127-2140.
Zhang L, Villa NY, Rahman MM, Smallwood S, Shattuck D, et al. (2009) Analysis of vaccinia virus-host protein-protein interactions: validations of yeast two-hybrid screenings. J Proteome Res 8: 431 1 -4318. Zhang L, Villa NY, Rahman MM, Smallwood S, Shattuck D, et al. (2009) Analysis of vaccinia virus-host protein-protein interactions: validations of yeast two-hybrid screenings. J Proteome Res 8: 431 1-4318.
Oseroff C, Peters B, Pasquetto V, Moutaftsi M, Sidney J, et al. (2008) Dissociation between epitope hierarchy and immunoprevalence in CD8 responses to vaccinia virus western reserve. J Immunol 180: 7193-7202. Oseroff C, Peters B, Pasquetto V, Moutaftsi M, Sidney J, et al. (2008) Dissociation between epitope hierarchy and immunoprevalence in CD8 responses to vaccinia virus western reserve. J Immunol 180: 7193-7202.
Najera JL, Gómez CE, Domingo-Gil E, Gherardi MM, Esteban M (2006) Cellular and biochemical differences between two attenuated poxvirus vaccine candidates (MVA and NYVAC) and role of the C7L gene. J Virol 80: 6033-6047 Antoine G, Scheiflinger F, Dorner F, Falkner FG (1998) The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244: 365-396. Najera JL, Gómez CE, Domingo-Gil E, Gherardi MM, Esteban M (2006) Cellular and biochemical differences between two attenuated poxvirus vaccine candidates (MVA and NYVAC) and role of the C7L gene. J Virol 80: 6033-6047 Antoine G, Scheiflinger F, Dorner F, Falkner FG (1998) The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244: 365-396.
EJEMPLOS EXAMPLES
A continuación se ¡lustrará la invención mediante una serie de ensayos realizados por los inventores, que ponen de manifiesto la buena inmunogenicidad de la vacuna MVA-B AC6L. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. The invention will now be illustrated by a series of tests carried out by the inventors, which show the good immunogenicity of the MVA-B AC6L vaccine. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
Ejemplo 1.- Generación de la invención MVA-B AC6L. Example 1.- Generation of the invention MVA-B AC6L.
La función del gen de vaccinia C6L era desconocida hasta el momento de presentar esta invención, aunque se predecía por analogías bioinformáticas que pudiera tener una función inmunomoduladora, lo que no quiere decir que sea obvia la similitud entre predicción y demostración (González y Esteban, 2010. Virol J 7: 59). De hecho nos hemos encontrado que C6L ejerce funciones distintas a las postuladas, actuando sobre la ruta de interferón e induciendo células memoria específicas. Por lo tanto, para analizar el posible papel inmunomodulador de C6L, hemos construido un muíante de deleción que carece del gen de vaccinia C6L a partir del virus recombinante MVA-B, previamente descrito (Gómez et al. , 2007. Vaccine 25: 2863-2885; Patente: PCT/ES2006/0701 14, fecha de publicación: 1/2/2007. Autores: Heeney, Jonathan; Mooij, Petra; Gómez Rodríguez, Carmen Elena; Nájera García, José Luis; Jiménez Tentor, Victoria; Esteban Rodríguez, Mariano) y que expresa los antígenos de VIH-1 de subtipo B Env, Gag, Pol y Nef. Al virus recombinante generado, presentado en esta invención, se le ha denominado MVA-B AC6L. Un diagrama esquemático del muíante de deleción MVA-B AC6L se representa en la Figura 1 A. The function of the C6L vaccinia gene was unknown until the moment of presenting this invention, although it was predicted by bioinformatic analogies that it could have an immunomodulatory function, which does not mean that the similarity between prediction and demonstration is obvious (González and Esteban, 2010 Virol J 7: 59). In fact we have found that C6L exerts functions different from those postulated, acting on the interferon pathway and inducing specific memory cells. Therefore, to analyze the possible role immunomodulator of C6L, we have constructed a deletion mutant that lacks the vaccinia C6L gene from the recombinant virus MVA-B, previously described (Gómez et al., 2007. Vaccine 25: 2863-2885; Patent: PCT / ES2006 / 0701 14, publication date: 1/2/2007 Authors: Heeney, Jonathan; Mooij, Petra; Gómez Rodríguez, Carmen Elena; Nájera García, José Luis; Jiménez Tentor, Victoria; Esteban Rodríguez, Mariano) and expressing the antigens of HIV-1 subtype B Env, Gag, Pol and Nef. The generated recombinant virus, presented in this invention, has been referred to as MVA-B AC6L. A schematic diagram of the MVA-B AC6L deletion mutant is depicted in Figure 1 A.
El méíodo de fabricación de MVA-B AC6L comprende las siguieníes eíapas:  The manufacturing method of MVA-B AC6L includes the following eíapas:
a) consíruir un plásmido que comprende en su secuencia nucleoíídica las secuencias del flanco derecho y del flanco izquierdo del gen C6L (SEQ ID No: 1 ),  a) construct a plasmid comprising in its nucleoid sequence the sequences of the right flank and the left flank of the C6L gene (SEQ ID No: 1),
b) recombinar el virus recombinanfe MVA-B, que contiene las secuencias nucleotídicas que codifican para los antígenos del VIH de subtipo B gp120 y Gag-Pol-Nef, con el plásmido generado en a) el cual dirige la deleción del gen C6L (SEQ ID No: 1 ), y  b) recombine the MVA-B recombinant virus, which contains the nucleotide sequences that code for the HIV antigens of subtype B gp120 and Gag-Pol-Nef, with the plasmid generated in a) which directs the deletion of the C6L gene (SEQ ID No: 1), and
c) purificar el vector viral denominado MVA-B AC6L, basado en un virus recombinante MVA-B con deleción del gen C6L (SEQ ID No: 1 ), obtenido en el paso b).  c) purify the viral vector called MVA-B AC6L, based on a recombinant MVA-B virus with deletion of the C6L gene (SEQ ID No: 1), obtained in step b).
El plásmido ó vector de transferencia denominado pGem-RG-C6L wm fue construido para poder generar el muíante de deleción MVA-B AC6L, que posee una deleción en el gen C6L de vaccinia (El gen MVA 019L de MVA, SEQ ID No: 1 , es equivaleníe al gen VACV-WR_022 de la esíirpe Wesíern Reserve (WR) de vaccinia, SEQ ID No: 3, y al gen C6L de la esíirpe Copenhagen de vaccinia, SEQ ID No: 5. Por simplificación, se uíiliza la nomenclaíura correspondiere a los genes de la esíirpe Copenhagen para referirnos a los genes de MVA). pGem-RG- C6L wm fue obíenido medianfe clonaje secuencial de cinco fragmeníos de ADN que coníienen los genes dsRed2, rsGFP y secuencias flanqueaníes (izquierda y derecha) de recombinación del gen C6L en el plásmido pGem-7Zf(-) (Promega). Primeramenfe se realizó la consírucción del plásmido pGem-Red-GFP wm (4540 pb), que contiene los genes dsRed2 y rsGFP bajo el control de un promotor viral sintético temprano/tardío (E/L) y que fue descrito previamente (García-Arriaza et al. , 2010. PLoS One 5: e12395). Brevemente, el gen dsRed2 bajo el control de un promotor viral sintético temprano/tardío (E/L) fue amplificado por PCR del plásmido pG-dsRed2 utilizando los oligonucleotidos Red2-B (SEQ ID No: 15. 5'- GAACTAGGATCCTAA CTCGAGAAA-3') (comprende el sitio de restricción Bam Hl) y Red2-N (SEQ ID No: 16. 5 '-ATTAGTATG C ATTTATTTATTTAG G-3 ') (comprende el sitio de restricción Nsi I) (785 pb), digerido con Bam Hl y Nsi I y clonado en el plásmido pGem-7Zf(-) previamente digerido con las mismas enzimas de restricción para generar pGem-Red wm (3740 pb). El gen rsGFP bajo el control de un promotor viral sintético temprano/tardío (E/L) fue amplificado por PCR del plásmido pG-dsRed2 utilizando los oligonucleotidos GFP-X (SEQ ID No: 17. 5 '-C GTTG GTCTAGAG AG AAAA ATTG-3') (comprende el sitio de restricción Xbal) y GFP-E (SEQ ID No: 18. 5'-CTATAGAATTCTCAAGCTATGC-3') (comprende el sitio de restricción Eco Rl) (832 pb), digerido con Xba I y Eco Rl y clonado en el plásmido pGem-Red wm previamente digerido con las mismas enzimas de restricción para generar pGem-Red-GFP wm (4540 pb). The plasmid or transfer vector called pGem-RG-C6L wm was constructed to be able to generate the MVA-B AC6L deletion mutant, which has a deletion in the vaccinia C6L gene (The MVA 019L gene of MVA, SEQ ID No: 1 , is equivalent to the VACV-WR_022 gene of the vaccinia Wesirin Reserve (WR) strain, SEQ ID No: 3, and to the C6L gene of the Copenhagen vaccinia strain, SEQ ID No: 5. For simplification, the corresponding nomenclature is used to the Copenhagen genes to refer to the MVA genes). pGem-RG-C6L wm was obtained by sequential cloning of five DNA fragments that contain the dsRed2, rsGFP and flanking (left and right) recombination sequences of the C6L gene in plasmid pGem-7Zf (-) (Promega). Firstly, the conspiracy of plasmid pGem-Red-GFP wm (4540) was performed pb), which contains the dsRed2 and rsGFP genes under the control of an early / late synthetic viral promoter (E / L) and which was previously described (García-Arriaza et al., 2010. PLoS One 5: e12395). Briefly, the dsRed2 gene under the control of an early / late synthetic viral promoter (E / L) was amplified by PCR of plasmid pG-dsRed2 using Red2-B oligonucleotides (SEQ ID No: 15. 5 ' - GAACTAGGATCCTAA CTCGAGAAA-3 ' ) (includes the restriction site Bam Hl) and Red2-N (SEQ ID No: 16. 5 ' -ATTAGTATG C ATTTATTTATTTAG G-3 ' ) (comprises the restriction site Nsi I) (785 bp), digested with Bam Hl and Nsi I and cloned into plasmid pGem-7Zf (-) previously digested with the same restriction enzymes to generate pGem-Red wm (3740 bp). The rsGFP gene under the control of an early / late synthetic viral promoter (E / L) was amplified by PCR of plasmid pG-dsRed2 using GFP-X oligonucleotides (SEQ ID No: 17. 5 ' -C GTTG GTCTAGAG AG AAAA ATTG -3 ' ) (includes the restriction site Xbal) and GFP-E (SEQ ID No: 18. 5 ' -CTATAGAATTCTCAAGCTATGC-3 ' ) (comprises the restriction site Eco Rl) (832 bp), digested with Xba I and Eco Rl and cloned into plasmid pGem-Red wm previously digested with the same restriction enzymes to generate pGem-Red-GFP wm (4540 bp).
Posteriormente, el genoma de MVA-B fue utilizado como molde para la amplificación por PCR del flanco derecho del gen C6L (Nucleótidos 18689-19079 en el genoma de MVA. 391 pb), utilizando los oligonucleotidos RFC6L-Aatll-F (SEQ ID No: 7. Nucleótidos 18689-18714 en el genoma de MVA) (comprende el sitio de restricción Aatll ) y RFC6L-Xbal-R (SEQ ID No: 8. Nucleótidos 19054- 19079 en el genoma de MVA) (comprende el sitio de restricción Xbal). Este flanco derecho fue digerido con Aatll y Xbal y clonado en el plásmido pGem-Red-GFP wm previamente digerido con las mismas enzimas de restricción para generar pGem-RG-RFsC6L wm (4898 pb). El flanco derecho repetido del gen C6L (Nucleótidos 18689-19079 en el genoma de MVA. 391 pb) fue amplificado por PCR a partir del genoma de MVA-B con los oligonucleotidos RF'C6L-Xmal-F (SEQ ID No: 9. Nucleótidos 18689-18714 en el genoma de MVA) (comprende el sitio de restricción Xmal) y RF'C6L-Clal-R (SEQ ID No: 10. Nucleótidos 19054- 19079 en el genoma de MVA) (comprende el sitio de restricción Clal), digerido con Xmal y Clal e insertado en el plásmido pGem-RG-RFsC6L wm digerido con Xmal/Clal para generar pGem-RG-RFdC6L wm (5259 pb). El flanco izquierdo del gen C6L (Nucleótidos 19530-19942 en el genoma de MVA. 413 pb) fue amplificado por PCR a partir del genoma de MVA-B con los oligonucleótidos LFC6L-Clal-F (SEQ ID No: 1 1 . Nucleótidos 19530-19555 en el genoma de MVA) (comprende el sitio de restricción Clal) y LFC6L-BamHI-R (SEQ ID No: 12. Nucleótidos 19917-19942 en el genoma de MVA) (comprende el sitio de restricción BamH I), digerido con Clal y BamHI e insertado en el plásmido pGem- RG-RFdC6L wm digerido con Clal/Bam Hl. El plásmido resultante pGem-RG-C6L wm (5642 pb) se confirmó mediante análisis de secuencia de ADN y dirige la deleción del gen C6L del genoma de MVA y MVA-B. Subsequently, the MVA-B genome was used as a template for PCR amplification of the right flank of the C6L gene (Nucleotides 18689-19079 in the MVA genome. 391 bp), using the oligonucleotides RFC6L-Aatll-F (SEQ ID No : 7. Nucleotides 18689-18714 in the MVA genome) (comprising the Aatll restriction site) and RFC6L-Xbal-R (SEQ ID No: 8. Nucleotides 19054-1979 in the MVA genome) (comprises the restriction site Xbal) This right flank was digested with Aatll and Xbal and cloned into the plasmid pGem-Red-GFP wm previously digested with the same restriction enzymes to generate pGem-RG-RFsC6L wm (4898 bp). The repeated right flank of the C6L gene (Nucleotides 18689-19079 in the MVA genome. 391 bp) was amplified by PCR from the MVA-B genome with the oligonucleotides RF ' C6L-Xmal-F (SEQ ID No: 9. Nucleotides 18689-18714 in the MVA genome) (comprising the Xmal restriction site) and RF ' C6L-Clal-R (SEQ ID No: 10. Nucleotides 19054-1979 in the MVA genome) (comprises the Clal restriction site ), digested with Xmal and Clal and inserted into the plasmid pGem-RG-RFsC6L wm digested with Xmal / Clal to generate pGem-RG-RFdC6L wm (5259 bp). The left flank of the C6L gene (Nucleotides 19530-19942 in the MVA genome. 413 bp) was PCR amplified from the MVA-B genome with oligonucleotides LFC6L-Clal-F (SEQ ID No: 1 1. Nucleotides 19530-19555 in the MVA genome) (comprising the Clal restriction site) and LFC6L-BamHI- R (SEQ ID No: 12. Nucleotides 19917-19942 in the MVA genome) (comprising the BamH I restriction site), digested with Clal and BamHI and inserted into the plasmid pGem-RG-RFdC6L wm digested with Clal / Bam Hl . The resulting plasmid pGem-RG-C6L wm (5642 bp) was confirmed by DNA sequence analysis and directs the deletion of the C6L gene from the MVA and MVA-B genome.
Una vez generado el plásmido pGem-RG-C6L wm, la obtención de la invención MVA-B AC6L se realiza en cultivos celulares mediante un proceso de recombinación entre el virus MVA-B y el plásmido pGem-RG-C6L wm, que contiene los flancos derecho e izquierdo del gen C6L. Así, MVA-B AC6L fue construido mediante la selección en cultivos celulares de placas virales que coexpresan dsRed2/rsGFP (expresan proteínas con fluorescencia roja y verde respectivamente), utilizando los genes dsRed2 y rsGFP como marcadores de selección transitorios, como se ha descrito previamente (García-Arriaza et al. , 2010. PLoS One 5: e12395). 3 x 106 células DF-1 fueron infectadas con MVA-B a una multiplicidad de infección de 0.05 PFU/célula y luego fueron transfectadas 1 h más tarde con 6 g de ADN del plásmido pGem-RG-C6L wm utilizando Lipofectamina (Invitrogen) de acuerdo con las instrucciones del fabricante. Después de 72 horas, las células se recogieron, se lisaron por ciclos de congelación-descongelación, fueron sonicadas y utilizadas para la selección de virus recombinantes. El muíante de deleción MVA-B AC6L fue seleccionado de la progenie viral obtenida tras 6 rondas consecutivas de purificación de placas en células DF-1 y durante este proceso las placas fueron seleccionadas entre aquellas con fluorescencia roja/verde. Así, en los dos primeros pases, los virus fueron seleccionados de entre placas que expresaban a la vez ambas proteínas fluorescentes (dsRed2 y rsGFP, fluorescencia roja y verde). En los dos siguientes pases, la progenie viral de las placas seleccionadas sólo expresa un marcador fluorescente (Red2 o GFP) y en los dos últimos pases (6 pases en total) los virus de las placas seleccionadas no expresan ningún marcador fluorescente debido a la pérdida de los genes dsRed2 y rsGFP. Así, tras 6 rondas consecutivas de purificación de placas en células DF-1 , se obtuvo el muíante de deleción MVA-B AC6L y la deleción del gen C6L fue confirmada mediante amplificación por PCR del locus de C6L, utilizando los oligonucleótidos RFC6L-Aatll-F y LFC6L-BamHI-R (descritos previamente) y posterior análisis por secuenciación de ADN. Así, el gen C6L (Ver SEQ ID No: 1. 474 nucleótidos, posiciones 19068-19541 en el genoma de MVA) ha sido delecionado totalmente en el genoma de MVA-B AC6L. La deleción del gen C6L en MVA-B incluye las posiciones 19068 a 19541 del genoma de MVA. Once the plasmid pGem-RG-C6L wm has been generated, obtaining the invention MVA-B AC6L is carried out in cell cultures by means of a recombination process between the MVA-B virus and the plasmid pGem-RG-C6L wm, which contains the right and left flanks of the C6L gene. Thus, MVA-B AC6L was constructed by selection in cell cultures of viral plaques that coexpress dsRed2 / rsGFP (express proteins with red and green fluorescence respectively), using the dsRed2 and rsGFP genes as transient selection markers, as previously described. (García-Arriaza et al., 2010. PLoS One 5: e12395). 3 x 10 6 DF-1 cells were infected with MVA-B at a multiplicity of infection of 0.05 PFU / cell and then transfected 1 h later with 6 g of plasmid pGem-RG-C6L wm DNA using Lipofectamine (Invitrogen) according to the manufacturer's instructions. After 72 hours, the cells were collected, lysed by freeze-thaw cycles, sonicated and used for the selection of recombinant viruses. The MVA-B AC6L deletion mutant was selected from the viral progeny obtained after 6 consecutive rounds of plaque purification in DF-1 cells and during this process the plaques were selected from those with red / green fluorescence. Thus, in the first two passes, the viruses were selected from plaques expressing both fluorescent proteins (dsRed2 and rsGFP, red and green fluorescence). In the next two passes, the viral progeny of the selected plaques only expresses a fluorescent marker (Red2 or GFP) and in the last two passes (6 passes in total) the viruses of the selected plaques do not express any fluorescent marker due to loss of the dsRed2 and rsGFP genes. Thus, after 6 consecutive rounds of plaque purification in DF-1 cells, the MVA-B deletion mutant was obtained AC6L and the deletion of the C6L gene was confirmed by PCR amplification of the C6L locus, using oligonucleotides RFC6L-Aatll-F and LFC6L-BamHI-R (described previously) and subsequent analysis by DNA sequencing. Thus, the C6L gene (See SEQ ID No: 1.474 nucleotides, positions 19068-19541 in the MVA genome) has been completely deleted in the MVA-B AC6L genome. The deletion of the C6L gene in MVA-B includes positions 19068 to 19541 of the MVA genome.
Posteriormente, el virus recombinante MVA-B AC6L obtenido fue crecido en células DF-1 para obtener un preparado viral denominado P2, el cual fue crecido en células embrionarias de pollo (CEF), y purificado mediante centrifugación a través de dos colchones de sacarosa al 36% (w/v) en 10 mM Tris-HCI pH 9, tal y como se ha descrito previamente (Ramírez et al., 2000. J Virol, 74 (2): 923-933. MVA-B AC6L fue titulado en células DF-1 mediante un ensayo de inmunotinción, utilizando un anticuerpo policlonal de conejo contra la estirpe de vaccinia WR (Centro Nacional de Biotecnología; 1 : 1000) seguido de anti-rabbit-HRP (Sigma; 1 :1000), tal y como se ha descrito previamente (Antoine et al., 1998. Virology 244: 365-396). La preparación de MVA-B AC6L está libre de micoplasmas o bacterias. Partiendo de esta técnica de generación de virus recombinantes de MVA con deleción en C6L, incluida en la presente memoria, y aunque sólo se ha experimentado con MVA-B AC6L, el plásmido pGem-RG-C6L wm (o uno similar que contenga los flancos izquierdo y derecho del gen C6L) puede ser utilizado mediante una tecnología similar a la propuesta aquí para delecionar el gen C6L sobre cualquier virus recombinante MVA que exprese otros antígenos heterologos diferentes al aquí presentado (VIH, subtipo B), como antígenos de malaria, leishmania, virus de la hepatitis C, cáncer de próstata, etc; con el fin de poder ser utilizados como vacunas frente a dichas enfermedades. Ejemplo 2.- Caracterización in vitro de la invención MVA-B AC6L.  Subsequently, the MVA-B AC6L recombinant virus obtained was grown in DF-1 cells to obtain a viral preparation called P2, which was grown in chicken embryonic cells (CEF), and purified by centrifugation through two sucrose mattresses at 36% (w / v) in 10 mM Tris-HCI pH 9, as previously described (Ramírez et al., 2000. J Virol, 74 (2): 923-933. MVA-B AC6L was titled DF-1 cells by an immunostaining assay, using a rabbit polyclonal antibody against the WR vaccinia strain (National Center for Biotechnology; 1: 1000) followed by anti-rabbit-HRP (Sigma; 1: 1000), as It has been previously described (Antoine et al., 1998. Virology 244: 365-396). The preparation of MVA-B AC6L is free of mycoplasmas or bacteria. Starting from this technique of generating recombinant MVA viruses with C6L deletion, included herein, and although it has only been experimented with MVA-B AC6L, plasmid pGem-RG- C6L wm (or a similar one containing the left and right flanks of the C6L gene) can be used by a technology similar to that proposed here to delegate the C6L gene on any recombinant MVA virus that expresses other heterologous antigens other than the one presented here (HIV subtype B), such as antigens of malaria, leishmania, hepatitis C virus, prostate cancer, etc; in order to be able to be used as vaccines against these diseases. Example 2.- In vitro characterization of the invention MVA-B AC6L.
La deleción de C6L en MVA-B AC6L se confirmó mediante PCR utilizando oligonucleótidos capaces de amplificar el locus de C6L (Figura 1 B). La deleción de C6L en MVA-B AC6L fue también confirmada mediante secuenciación del ADN. De forma adicional, un análisis mediante Western blot confirmó que MVA-B AC6L expresa los antígenos de VIH-1 Bxo8gp120 y INBGPN al mismo nivel que su virus parental MVA-B (Figura 1 C). Ejemplo 3.- C6 no es esencial en cultivos celulares. The deletion of C6L in MVA-B AC6L was confirmed by PCR using oligonucleotides capable of amplifying the C6L locus (Figure 1 B). The deletion of C6L in MVA-B AC6L was also confirmed by sequencing of the DNA Additionally, an analysis by Western blot confirmed that MVA-B AC6L expresses HIV-1 B xo 8 gp120 and INBGPN antigens at the same level as its parental MVA-B virus (Figure 1 C). Example 3.- C6 is not essential in cell cultures.
El mero aislamiento del muíante de deleción MVA-B AC6L demuestra que la proteína C6 no es esencial para la replicacion de MVA. Para determinar si la deleción de C6L altera la replicacion del virus, se comparó el crecimiento de MVA- B AC6L y MVA-B en células DF-1 . Los estudios de cinética viral revelaron que la deleción de C6L en el genoma de MVA-B no afecta a la replicacion viral. Por lo tanto, C6L no es esencial para la propagación viral en cultivos celulares (Figura 1 D). Además, y de forma similar al virus parental MVA-B y a MVA, MVA-B AC6L es un virus atenuado que no replica en células de mamífero (Figura 1 E). Ejemplo 4.- Expresión de la proteína C6 en E. coli y producción de anticuerpos policlonales anti-C6.  The mere isolation of the MVA-B AC6L deletion mutant demonstrates that C6 protein is not essential for MVA replication. To determine if C6L deletion alters virus replication, the growth of MVA-B AC6L and MVA-B in DF-1 cells was compared. Viral kinetics studies revealed that the deletion of C6L in the MVA-B genome does not affect viral replication. Therefore, C6L is not essential for viral propagation in cell cultures (Figure 1 D). In addition, and similar to the MVA-B and MVA parental virus, MVA-B AC6L is an attenuated virus that does not replicate in mammalian cells (Figure 1 E). Example 4.- Expression of the C6 protein in E. coli and production of polyclonal anti-C6 antibodies.
El marco de lectura abierto (ORF) de C6 (gen MVA 019L, 157 aa, 18.2 kDa. Ver SEQ ID No: 1 ) fue amplificado mediante PCR utilizando los oligonucleotidos C6L-Nhel-F (SEQ ID No: 13) (comprende el sitio de restricción Nhel) and C6L- BamHI-R (SEQ ID No: 14) (comprende el sitio de restricción BamHI), y el ADN de MVA como molde. El producto amplificado (Nucleótidos 19068-19541 en el genoma de MVA. 488 pb) fue digerido con Nhel y BamHI y clonado en el plásmido pET-27b(+) (Novagen). El producto de ligación fue utilizado para trasformar la cepa BL21 de E.coli, y el plásmido de una colonia positiva resistente a kanamicina fue secuenciado para confirmar que contiene la secuencia del gen C6L. El plásmido generado fue denominado pET-27b-C6L (5837 pb). El plásmido pET- 27b(+) provee de una cola de 6 histidinas en el extremo carboxi terminal de la proteina C6, generando una proteína C6 recombinante de alrededor de 24 kDa. Colonias resistentes a kanamicina fueron crecidas en medio Luria broth hasta alcanzar una densidad óptica de 0.5 a 595 nm. IPTG fue añadido (0.5 mM) y el cultivo se creció durante 4 horas más. Las células se centrifugaron y para la lisis celular las células fueron resuspendidas en 50 mM Tris-HCI, pH 7.5, 0.3 M NaCI, 8 M Urea, e incubadas con lisozima (1 mg/ml) durante 30 minutos en presencia de phenylmethylsulfonyl fluoride (1 mM). La suspensión fue congelada-descongelada dos veces, el debris celular se eliminó mediante centrifugación y el sobrenadante fue incubado con resina Probound (Invitrogen). El elución fue llevada a cabo con diferentes concentraciones de imidazol (100 a 500 mM) en 50 mM Tris-HCI, pH 7.5, 0.3 M NaCI. Las fracciones eluidas se agruparon, se cargaron en columnas desaladas siguiendo las instrucciones del fabricante (GE-Healthcare, Freiburg, Germany), y fueron recolectadas. La proteína fue cuantificada utilizando el ensayo Bradford, fraccionada mediante 12% SDS-PAGE y analizada por Western blot utilizando un anticuerpo anti-His tag (1 :5000) para detectar la presencia de la proteína C6 de vaccinia. Las fracciones que contienen la proteína C6 (con una pureza estimada del 90%) fueron almacenadas en alícuotas a -20°C. La proteína C6 (1 150 g) fue inyectada en conejos "New Zealand White" para producir suero anti-C6 y anticuerpos policlonales de conejo anti-C6 (Laboratorios Biomedal, Sevilla). The open reading frame (ORF) of C6 (MVA gene 019L, 157 aa, 18.2 kDa. See SEQ ID No: 1) was amplified by PCR using the C6L-Nhel-F oligonucleotides (SEQ ID No: 13) (comprising the Nhel) and C6L-BamHI-R restriction site (SEQ ID No: 14) (comprising the BamHI restriction site), and the MVA DNA as a template. The amplified product (Nucleotides 19068-19541 in the MVA genome. 488 bp) was digested with Nhel and BamHI and cloned into plasmid pET-27b (+) (Novagen). The ligation product was used to transform E.coli strain BL21, and the plasmid of a positive kanamycin resistant colony was sequenced to confirm that it contains the C6L gene sequence. The plasmid generated was called pET-27b-C6L (5837 bp). Plasmid pET-27b (+) provides a tail of 6 histidines at the carboxy terminal end of the C6 protein, generating a recombinant C6 protein of about 24 kDa. Kanamycin-resistant colonies were grown in Luria broth medium to an optical density of 0.5 to 595 nm. IPTG was added (0.5 mM) and the culture was grown for 4 more hours. The cells were centrifuged and for cell lysis the cells were resuspended in 50 mM Tris-HCI, pH 7.5, 0.3 M NaCI, 8 M Urea, and incubated with lysozyme (1 mg / ml) for 30 minutes in the presence of phenylmethylsulfonyl fluoride (1 mM). The suspension was frozen-thawed twice, the cell debris was removed by centrifugation and the supernatant was incubated with Probound resin (Invitrogen). Elution was carried out with different concentrations of imidazole (100 to 500 mM) in 50 mM Tris-HCI, pH 7.5, 0.3 M NaCI. The eluted fractions were grouped, loaded into desalted columns following the manufacturer's instructions (GE-Healthcare, Freiburg, Germany), and were collected. The protein was quantified using the Bradford assay, fractionated by 12% SDS-PAGE and analyzed by Western blot using an anti-His tag antibody (1: 5000) to detect the presence of vaccinia C6 protein. Fractions containing C6 protein (with an estimated purity of 90%) were stored in aliquots at -20 ° C. The C6 protein (1 150 g) was injected into "New Zealand White" rabbits to produce anti-C6 serum and anti-C6 rabbit polyclonal antibodies (Biomedal Laboratories, Seville).
Ejemplo 5.- C6 se expresa de forma temprana en una infección viral. Example 5.- C6 is expressed early in a viral infection.
Análisis mediante Western blot utilizando anticuerpos policlonales de conejo contra C6 (su generación se describe en el ejemplo 4) permiten la identificación de una proteína de 18.2 kDa en células DF-1 infectadas con MVA-B, pero no con MVA-B AC6L (Figura 2A). Posteriormente se determinó cómo se expresa C6 en células DF-1 infectadas con WR y MVA (Figura 2B). La expresión de C6 fue detectada a las 3 horas post-infección, y su expresión aumenta fuertemente durante al menos 22 horas. El tratamiento de células DF-1 , al inicio de la infección, con "cytosine arabinoside (AraC)", un inhibidor de la replicación del ADN viral y por tanto de la expresión de genes tardíos, no inhibe la expresión de C6 sugiriendo que C6L es un gen temprano.  Western blot analysis using rabbit polyclonal antibodies against C6 (its generation is described in example 4) allows the identification of an 18.2 kDa protein in DF-1 cells infected with MVA-B, but not with MVA-B AC6L (Figure 2A). Subsequently, it was determined how C6 is expressed in DF-1 cells infected with WR and MVA (Figure 2B). C6 expression was detected at 3 hours post-infection, and its expression increases strongly for at least 22 hours. Treatment of DF-1 cells, at the onset of infection, with "cytosine arabinoside (AraC)", an inhibitor of viral DNA replication and therefore of late gene expression, does not inhibit C6 expression suggesting that C6L It is an early gene.
La localización intracelular de la proteína C6 fue examinada mediante inmunofluorescencia en células DF-1 infectadas con diferentes estirpes de vaccinia (Figura 2C). C6 fue detectada en el citoplasma, presumiblemente en las factorías virales, de células DF-1 infectadas con WR, MVA y MVA-B, pero no con MVA-B AC6L. La reducida intensidad de fluorescencia de C6 indica la expresión de bajos niveles de proteína en comparación con la proteína tardía A27. Ejemplo 6.- MVA-B AC6L aumenta la expresión de IFN-β en macrófagos y células dendríticas humanas. The intracellular location of the C6 protein was examined by immunofluorescence in DF-1 cells infected with different strains of vaccinia (Figure 2C). C6 was detected in the cytoplasm, presumably in viral factories, of DF-1 cells infected with WR, MVA and MVA-B, but not with MVA-B AC6L. The reduced fluorescence intensity of C6 indicates the expression of low protein levels compared to the late A27 protein. Example 6.- MVA-B AC6L increases IFN-β expression in human macrophages and dendritic cells.
Como un primer paso para determinar si C6 bloquea la respuesta de células inmunes innatas hacia MVA-B, examinamos mediante PCR a tiempo real la expresión de IFN-β, genes inducidos por IFN-β (IFIT1 , IFIT2) y quimiocinas por macrófagos humanos THP-1 infectados durante 1 , 3 y 6 horas con MVA, MVA-B y MVA-B AC6L (Figura 3A). Comparado con MVA y MVA-B, MVA-B AC6L (5 PFU/célula, Figura 3A y 1 PFU/célula, datos no mostrados) incrementa de forma significativa la expresión de IFN-β, así como de IFIT1 y IFIT2 en células THP-1 . MVA-B AC6L también incrementa la expresión de MIP-1 a y RANTES, pero no la de IL-8 y IP-10 (Figura 3A y datos no mostrados).  As a first step to determine if C6 blocks the response of innate immune cells to MVA-B, we examine by real-time PCR the expression of IFN-β, genes induced by IFN-β (IFIT1, IFIT2) and chemokines by human macrophages THP -1 infected for 1, 3 and 6 hours with MVA, MVA-B and MVA-B AC6L (Figure 3A). Compared with MVA and MVA-B, MVA-B AC6L (5 PFU / cell, Figure 3A and 1 PFU / cell, data not shown) significantly increases IFN-β expression, as well as IFIT1 and IFIT2 in THP cells -one . MVA-B AC6L also increases the expression of MIP-1 a and RANTES, but not that of IL-8 and IP-10 (Figure 3A and data not shown).
Para confirmar si C6 bloquea la expresión de IFN-β y de genes dependientes de IFN-β en células inmunes innatas, infectamos moDCs humanos con dosis crecientes (0.002, 0.02 y 0.2 PFU/célula) de MVA, MVA-B y MVA-B AC6L y medimos los niveles de ARN mensajero de IFN-β, IFIT1 y IFIT2 a 6 horas post-infección (Figura 3B). Utilizamos bajas dosis de virus puesto que MVA induce apoptosis moDCs humanos (Guerra et al., 2007. J Virol 81 : 8707-8721 ). Los resultamos mostraron que, de forma similar a los resultados obtenidos con células THP-1 humanas, MVA-B AC6L incrementa fuertemente la expresión de IFN-β comparado con MVA y MVA-B en moDCs. Cuando se realizan las infecciones a 0.2 PFU/ml, los tres virus analizados estimulan de forma similar la expresión de ARN mensajero de IFIT1 y IFIT2 en moDCs. Sin embargo, MVA-B AC6L fue un inductor más potente que MVA y MVA-B a bajas dosis infectivas (0.002 PFU/ml, Figura 3B). Además, MVA-B AC6L estimula la liberación al medio por parte de moDCs de unos niveles más altos de IFN-β (Figura 3C) y IFN tipo I que MVA y MVA-B (Figura 3D).  To confirm if C6 blocks the expression of IFN-β and IFN-β dependent genes in innate immune cells, we infect human moDCs with increasing doses (0.002, 0.02 and 0.2 PFU / cell) of MVA, MVA-B and MVA-B AC6L and we measured the levels of IFN-β, IFIT1 and IFIT2 messenger RNA at 6 hours post-infection (Figure 3B). We use low doses of virus since MVA induces human moDCs apoptosis (Guerra et al., 2007. J Virol 81: 8707-8721). The results showed that, similar to the results obtained with human THP-1 cells, MVA-B AC6L strongly increases IFN-β expression compared to MVA and MVA-B in moDCs. When infections are performed at 0.2 PFU / ml, the three viruses analyzed similarly stimulate the expression of IFIT1 and IFIT2 messenger RNA in moDCs. However, MVA-B AC6L was a more potent inducer than MVA and MVA-B at low infective doses (0.002 PFU / ml, Figure 3B). In addition, MVA-B AC6L stimulates the release to the medium by moDCs of higher levels of IFN-β (Figure 3C) and IFN type I than MVA and MVA-B (Figure 3D).
Así, la deleción de C6L en el genoma de MVA-B promueve la producción de IFN-β, sugiriendo que C6 interfiere con la ruta de señalización que controla la expresión del gen de IFN-β en células inmunes innatas.  Thus, the deletion of C6L in the MVA-B genome promotes the production of IFN-β, suggesting that C6 interferes with the signaling pathway that controls the expression of the IFN-β gene in innate immune cells.
Estudios anteriores mostraron que MVA es capaz de inducir IFN-β en células THP-1 que carecen de varios de los TLRs; y que dicha inducción es dependiente de los factores MDA-5 e IPS-1 , pertenecientes a la ruta de señalización mediada por "retinoic acid-inducible gene I (RIG-l)-like receptors (RLRs)" (Delaloye et al. , 2009. PLoS Pathogens 5: e1000480). Por tanto, al contrario de lo esperado por su homología de secuencia con genes de vaccinia que inhiben la ruta de los TLRs (Figura 4), C6 actúa inhibiendo la ruta de señalización mediada por RLRs bloqueando algún componente aún desconocido 5 (Figura 5). Previous studies showed that MVA is capable of inducing IFN-β in THP-1 cells that lack several of the TLRs; and that said induction is dependent on the factors MDA-5 and IPS-1, belonging to the signaling pathway mediated by "retinoic acid-inducible gene I (RIG-l) -like receptors (RLRs) "(Delaloye et al., 2009. PLoS Pathogens 5: e1000480). Therefore, contrary to what is expected by its sequence homology with vaccinia genes that inhibit the path of TLRs (Figure 4), C6 acts inhibiting the signaling pathway mediated by RLRs by blocking some still unknown component 5 (Figure 5).
Ejemplo 7.- MVA-B AC6L induce la fosforilación de IRF3 en células THP-1. Example 7.- MVA-B AC6L induces phosphorylation of IRF3 in THP-1 cells.
Para determinar qué componente de la ruta de señalización mediada por RLRs que controla la expresión del gen de IFN-β en células inmunes innatas To determine which component of the signaling pathway mediated by RLRs that controls IFN-β gene expression in innate immune cells
10 pudiera estar bloqueado por C6 se realizaron infecciones en células THP-1 con MVA, MVA-B y MVA-B AC6L y a distintos tiempos se recogieron extractos totales y se analizaron mediante Western blot utilizando un anticuerpo anti-fosfo IRF3. Los resultados mostraron que, en comparación con MVA y MVA-B, MVA-B AC6L induce una mayor fosforilación de IRF3, fenómeno observado principalmente a10 could be blocked by C6, infections were made in THP-1 cells with MVA, MVA-B and MVA-B AC6L and at different times total extracts were collected and analyzed by Western blot using an anti-phosphorus IRF3 antibody. The results showed that, compared to MVA and MVA-B, MVA-B AC6L induces a greater phosphorylation of IRF3, a phenomenon observed mainly at
15 tiempos cortos post-infección (Figura 6). 15 short post-infection times (Figure 6).
Este resultado demuestra que C6 bloquea la fosforilación de IRF3, aunque su diana aún es desconocida.  This result demonstrates that C6 blocks the phosphorylation of IRF3, although its target is still unknown.
Ejemplo 8.- MVA-B AC6L aumenta la magnitud y la polifuncionalidad de la 20 respuesta de células T de memoria específicas frente a VIH-1. Example 8.- MVA-B AC6L increases the magnitude and polyfunctionality of the response of specific memory T cells against HIV-1.
Una vez mostradas las propiedades inmunomoduladoras de C6, expuestas anteriormente en esta invención, pasamos a testar si la deleción de C6 en MVA-B AC6L pudiera aumentar la inmunogenicidad in vivo analizando la respuesta inmune de células T específicas frente a VIH-1 en ratones BALB/c inmunizados Once we have shown the immunomodulatory properties of C6, discussed earlier in this invention, we will test whether the deletion of C6 in MVA-B AC6L could increase immunogenicity in vivo by analyzing the immune response of specific T cells against HIV-1 in BALB mice / c immunized
25 con MVA-B o MVA-B AC6L utilizando un protocolo de inmunización "DNA prime (100 pg de DNA-B, intramuscular) / MVA boost (1 x 107 PFU, intraperitoneal)" (García-Arriaza et al. , 2010. PLoS One 5: e12395; Mooij et al. , 2008. J Virol 82: 2975-2988; Gómez et al., 2007. CE, Vaccine 25: 2863-2885; Robinson et al. , 2007. AIDS Res Hum Retroviruses 23: 1555-1562; Amara et al. , 2002. J Virol 76:25 with MVA-B or MVA-B AC6L using a "DNA prime (100 pg DNA-B, intramuscular) / MVA boost (1 x 10 7 PFU, intraperitoneal)" (García-Arriaza et al., 2010 PLoS One 5: e12395; Mooij et al., 2008. J Virol 82: 2975-2988; Gómez et al., 2007. CE, Vaccine 25: 2863-2885; Robinson et al., 2007. AIDS Res Hum Retroviruses 23 : 1555-1562; Amara et al., 2002. J Virol 76:
30 7625-7631 ; Barouch et al., 2000. Science 290: 486-492). Animales inoculados con DNA vacío (DNA-φ) y "boosted" con MVA fueron utilizados como controles. Considerando que las respuestas de células T de memoria pueden ser críticas para la protección contra la infección por VIH-1 (Seder et al. , 2008. Nat Rev Immunol 8: 247-258; Sallusto et al. , 2004. Annu Rev Immunol 22: 745-763; Champagne et al. , 2001 . Nature 410: 106-1 1 1 ; Sallusto et al., 1999. Nature 401 : 708-712), analizamos mediante IFN-γ ELISPOT y mareaje intracelular de citoquinas (ICS) el perfil inmunogénico a largo plazo (53 días después de la última inoculación) inducido en esplenocitos por la vacunación con DNA-B/MVA-B y DNA-B/MVA-B AC6L. 30 7625-7631; Barouch et al., 2000. Science 290: 486-492). Animals inoculated with empty DNA (DNA-φ) and "boosted" with MVA were used as controls. Whereas memory T-cell responses may be critical for protection against HIV-1 infection (Seder et al., 2008. Nat Rev Immunol 8: 247-258; Sallusto et al. , 2004. Annu Rev Immunol 22: 745-763; Champagne et al. , 2001. Nature 410: 106-1 1 1; Sallusto et al., 1999. Nature 401: 708-712), we analyzed the long-term immunogenic profile (53 days after the last inoculation) in splenocytes by vaccination using IFN-γ ELISPOT and intracellular cytokine marking (ICS). with DNA-B / MVA-B and DNA-B / MVA-B AC6L.
El IFN-γ ELISPOT reveló que, comparado con MVA-B, MVA-B AC6L aumentó 2.1 veces (p<0.005) la respuesta de células T de memoria secretoras de IFN-γ específicas frente el péptido Gag-B de VIH-1 (un péptido de VIH-1 representativo del antígeno Gag) (Figura 7A). MVA, utilizado como control, no indujo ninguna respuesta memoria específica de VIH-1 .  IFN-γ ELISPOT revealed that, compared to MVA-B, MVA-B AC6L increased the response of specific IFN-γ secreting memory T cells against the Gag-B peptide of HIV-1 by 2.1 times (p <0.005) ( an HIV-1 peptide representative of the Gag antigen) (Figure 7A). MVA, used as a control, did not induce any specific HIV-1 memory response.
El fenotipo de las células T de memoria específicas frente a VIH-1 inducidas tras la inmunización con DNA-B/MVA-B y DNA-B/MVA-B AC6L fue caracterizado mediante citometría de flujo policromática utilizando ICS. Células T esplénicas CD4+ y CD8+ fueron co-teñidas para los marcadores de superficie CD44 y CD62L con el fin de definir las diferentes sub-poblaciones de memoria: naíve (CD447CD62L+), "memoria central" (CM: CD44+/CD62L+), "memoria efectora" (EM: CD44+/CD62L") y "memoria efectora terminalmente diferenciada" (TEMRA: CD447CD62L"). También se evaluó la producción de IFN-γ y IL-2 después de la estimulación in vitro con diferentes "pooles" de péptidos de VIH-1 (Env-pool, Gag-pool y GPN-pool) que cubren las secuencias enteras de VIH-1 presentes en el vector poxviral (Figura 7B). The phenotype of HIV-1-specific memory T cells induced after immunization with DNA-B / MVA-B and DNA-B / MVA-B AC6L was characterized by polychromatic flow cytometry using ICS. Splenic CD4 + and CD8 + T cells were co-stained for surface markers CD44 and CD62L in order to define the different memory sub-populations: naive (CD447CD62L + ), "central memory" (CM: CD44 + / CD62L + ), "effector memory" (EM: CD44 + / CD62L " ) and" effector terminal memory differentiated "(TEMRA: CD447CD62L " ). The production of IFN-γ and IL-2 was also evaluated after in vitro stimulation with different "poles" of HIV-1 peptides (Env-pool, Gag-pool and GPN-pool) that cover the entire HIV sequences -1 present in the poxviral vector (Figure 7B).
La respuesta inmune total específica de VIH-1 a los 53 días "post-boost" fue mediada principalmente por células T CD8+ (70%-85%) (Figura 7C) de fenotipos EM y TEMRA (Figura 7D), en ambos grupos de inmunización. Sin embargo, a diferencia de la inmunización con DNA-B/MVA-B, DNA-B/MVA-B AC6L indujo una mayor magnitud de la respuesta de células T CD4+ y CD8+ de memoria específicas frente a VIH-1 y productoras de IFN-γ y/o IL-2 [Células T CD4+: 1 .91 % en DNA-B/MVA-B AC6L vs. 1 .30% en DNA-B/MVA-B, (p<0.005); Células T CD8+: 10.95% en DNA-B/MVA-B AC6L vs. 3.06% en DNA-B/MVA-B (p<0.005)] (Figura 7C). Ambos vectores inducen un patrón similar de respuestas de células T CD4+ de memoria específicas frente a VIH-1 (con preferencia hacia Env) (Figura 7B y 7C). Interesantemente, el patrón de células T CD8+ de memoria específicas frente a VIH-1 fue diferente ente ambos vectores: DNA-B/MVA-B AC6L indujo un mayor porcentaje de respuestas de células T CD8+ específicas frente a GPN, mientras que DNA-B/MVA-B indujo preferencialmente respuestas de células T CD8+ específicas frente a Env y Gag (Figura 7B y 7C). En ambos grupos de inmunización, las células T CD8+ específicas frente VIH-1 fueron principalmente de los fenotipos EM (60.5-63%) y TEMRA (37%-39.5%) (Figura 7D). Todas las células T CD4+ específicas frente VIH-1 fueron del fenotipo EM en el grupo DNA-B/MVA-B. Aunque en el grupo DNA-B/MVA-B AC6L, la mayoría de las células T CD4+ específicas frente VIH-1 fueron del fenotipo EM (82.8%), un porcentaje sustancial de células (17.2%) expresaba el fenotipo TEMRA (Figura 7D). No se detectaron células T de fenotipo CM productoras de IFN-y y/o IL-2 en ambos grupos de inmunización (Figura 7D). The specific total immune response of HIV-1 at 53 days "post-boost" was mediated mainly by CD8 + T cells (70% -85%) (Figure 7C) of EM and TEMRA phenotypes (Figure 7D), in both groups of immunization. However, unlike immunization with DNA-B / MVA-B, DNA-B / MVA-B AC6L induced a greater magnitude of the response of specific CD4 + and CD8 + memory cells against HIV-1 and producing of IFN-γ and / or IL-2 [CD4 + T cells: 1.91% in DNA-B / MVA-B AC6L vs. 1.30% in DNA-B / MVA-B, (p <0.005); CD8 + T cells: 10.95% in DNA-B / MVA-B AC6L vs. 3.06% in DNA-B / MVA-B (p <0.005)] (Figure 7C). Both vectors induce a similar pattern of specific memory CD4 + T cell responses against HIV-1 (preferably towards Env) (Figure 7B and 7C). Interestingly, the memory CD8 + T cell pattern specific against HIV-1 was different between both vectors: DNA-B / MVA-B AC6L induced a higher percentage of specific CD8 + T cell responses against GPN, while DNA-B / MVA-B preferentially induced cell responses Specific CD8 + T versus Env and Gag (Figure 7B and 7C). In both immunization groups, the specific CD8 + T cells against HIV-1 were mainly of the EM (60.5-63%) and TEMRA (37% -39.5%) phenotypes (Figure 7D). All specific CD4 + T cells against HIV-1 were of the EM phenotype in the DNA-B / MVA-B group. Although in the DNA-B / MVA-B AC6L group, the majority of CD4 + T cells specific to HIV-1 were of the EM phenotype (82.8%), a substantial percentage of cells (17.2%) expressed the TEMRA phenotype (Figure 7D). No CM phenotype T cells producing IFN-y and / or IL-2 were detected in both immunization groups (Figure 7D).
Para tener una medida detallada de la calidad de la respuesta de memoria de células T, evaluamos a continuación la producción de IFN-γ y/o IL-2 por las células de memoria T CD4+ y CD8+ específicas frente VIH-1 (Figura 8). DNA- B/MVA-B AC6L incrementó la polifuncionalidad de las células de memoria T CD4+ y CD8+ específicas frente VIH-1 , consistiendo en células que producen a la vez IFN-γ y IL-2 [Células T CD4+: 34% en DNA-B/MVA-B AC6L vs. 16% en DNA- B/MVA-B, (p<0.005); Células T CD8+: 29% en DNA-B/MVA-B AC6L vs. 16% en DNA-B/MVA-B, (p<0.005)] (Figura 8). To have a detailed measure of the quality of the T-cell memory response, we next evaluate the production of IFN-γ and / or IL-2 by specific CD4 + and CD8 + T memory cells against HIV-1 (Figure 8). DNA-B / MVA-B AC6L increased the polyfunctionality of specific CD4 + and CD8 + T memory cells against HIV-1, consisting of cells that produce both IFN-γ and IL-2 [CD4 + T cells: 34 % in DNA-B / MVA-B AC6L vs. 16% in DNA-B / MVA-B, (p <0.005); CD8 + T cells: 29% in DNA-B / MVA-B AC6L vs. 16% in DNA-B / MVA-B, (p <0.005)] (Figure 8).
Todos estos resultados, de forma conjunta, establecen que la inmunización con DNA-B/MVA-B AC6L incrementa significativamente la magnitud y la polifuncionalidad de la respuesta de células de memoria T CD4+ y CD8+ específicas frente VIH-1 , con la mayoría de la respuesta mediada por células T EM y TEMRA. Tras la vacunación con DNA-B/MVA-B y DNA-B/MVA-B AC6L las respuestas de células de memoria T CD4+ específicas frente VIH-1 , fueron preferencialmente especificas frente a Env. DNA-B/MVA-B AC6L indujo una inmunodominancia frente a células de memoria T CD8+ especificas frente a GPN, mientras que DNA-B/MVA-B indujo preferencialmente células de memoria T CD8+ especificas frente a Env y Gag. All these results, together, establish that immunization with DNA-B / MVA-B AC6L significantly increases the magnitude and polyfunctionality of the response of specific CD4 + and CD8 + T memory cells against HIV-1, with the majority of the response mediated by EM and TEMRA T cells. After vaccination with DNA-B / MVA-B and DNA-B / MVA-B AC6L, the responses of specific CD4 + T memory cells against HIV-1 were preferentially specific against Env. DNA-B / MVA-B AC6L induced immunodominance against specific CD8 + T memory cells against GPN, while DNA-B / MVA-B preferentially induced specific CD8 + T memory cells against Env and Gag.
Ejemplo 9.- MVA-B AC6L aumenta los niveles de anticuerpos frente a la proteína gp120 de VIH-1. Puesto que las células infectadas con MVA-B liberan la proteína monomérica gp120 (Gómez et al. , 2007. CE, Vaccine 25: 2863-2885), evaluamos si la inmunización con DNA-B/MVA-B y DNA-B/MVA-B AC6L estimulaba la producción de anticuerpos contra la proteína Env de VIH-1 . Se extrajo suero de ratones individuales a 53 días "post-boost" y los anticuerpos anti-gp120 fueron cuantificados mediante ELISA, midiendo los niveles de anticuerpos específicos que reaccionan contra la proteína gp160 del aislado LAV de VIH-1 (subtipo B), la cual incluye gp120. Comparado con DNA-B/MVA-B, la inmunización con DNA- B/MVA-B AC6L incrementó 44 veces los niveles de anticuerpos reactivos frente a la proteína gp120 (Figura 9). Por lo tanto, MVA-B AC6L incrementa las respuestas inmunes humorales frente a la proteína Env de VIH-1 . Example 9.- MVA-B AC6L increases antibody levels against HIV-1 gp120 protein. Since cells infected with MVA-B release the gp120 monomeric protein (Gómez et al., 2007. CE, Vaccine 25: 2863-2885), we evaluate whether immunization with DNA-B / MVA-B and DNA-B / MVA -B AC6L stimulated the production of antibodies against HIV-1 Env protein. Serum was extracted from individual mice at 53 days "post-boost" and anti-gp120 antibodies were quantified by ELISA, measuring the levels of specific antibodies that react against the gp160 protein of the HIV-1 LAV isolate (subtype B), which includes gp120. Compared with DNA-B / MVA-B, immunization with DNA-B / MVA-B AC6L increased the levels of reactive antibodies against the gp120 protein 44 times (Figure 9). Therefore, MVA-B AC6L increases humoral immune responses against HIV-1 Env protein.

Claims

REIVINDICACIONES
1 . Un vector viral basado en un virus recombinante MVA, caracterizado porque la secuencia nucleotídica codificante para dicho vector comprende: one . A viral vector based on a recombinant MVA virus, characterized in that the nucleotide sequence encoding said vector comprises:
a) al menos una mutación en la secuencia SEQ ID No: 1 que codifica para la proteína C6L, y  a) at least one mutation in the sequence SEQ ID No: 1 encoding the C6L protein, and
b) al menos una secuencia nucleotídica que codifica para un antígeno heterólogo.  b) at least one nucleotide sequence encoding a heterologous antigen.
2. El vector viral basado en un virus recombinante MVA según la reivindicación 1 , caracterizado porque la mutación en la secuencia SEQ ID No: 1 es una deleción parcial o total. 2. The viral vector based on a recombinant MVA virus according to claim 1, characterized in that the mutation in the sequence SEQ ID No: 1 is a partial or total deletion.
3. El vector viral basado en un virus recombinante MVA según la reivindicación 2, caracterizado porque la mutación en la secuencia SEQ ID No: 1 es una deleción total. 3. The viral vector based on a recombinant MVA virus according to claim 2, characterized in that the mutation in the sequence SEQ ID No: 1 is a total deletion.
4. El vector viral basado en un virus recombinante MVA según las reivindicaciones 1 -3, caracterizado porque la secuencia nucleotídica codificante para dicho vector comprende al menos una secuencia nucleotídica que codifica para un antígeno heterólogo seleccionado de entre el siguiente grupo: antígeno del VIH, antígeno de la malaria, antígeno de la leishmaniosis, antígeno del virus de la hepatitis C y antígeno del cáncer de próstata. 4. The viral vector based on a recombinant MVA virus according to claims 1-3, characterized in that the nucleotide sequence encoding said vector comprises at least one nucleotide sequence encoding a heterologous antigen selected from the following group: HIV antigen, malaria antigen, leishmaniosis antigen, hepatitis C virus antigen and prostate cancer antigen.
5. El vector viral basado en un virus recombinante MVA según las reivindicaciones 1 -4, caracterizado porque la secuencia nucleotídica codificante para dicho vector comprende las secuencias nucleotídicas que codifican para los siguientes antígenos del VIH: antígenos gp120 y Gag-Pol-Nef de VIH de subtipo B, o de cualquier otro subtipo, bajo el control del promotor sintético viral temprano/tardío insertado dentro del locus viral TK. 5. The viral vector based on a recombinant MVA virus according to claims 1 -4, characterized in that the nucleotide sequence encoding said vector comprises the nucleotide sequences encoding the following HIV antigens: HIV gp120 and Gag-Pol-Nef antigens of subtype B, or any other subtype, under the control of the early / late viral synthetic promoter inserted into the TK viral locus.
6. Método de fabricación del vector viral basado en un virus recombinante MVA definido en las reivindicaciones 1 -5, caracterizado por comprender las siguientes etapas: a) construir un plásmido que comprende en su secuencia nucleotídica las secuencias del flanco derecho y del flanco izquierdo de SEQ ID No: 1 , b) recombinar un virus recombinante MVA, que contiene al menos una secuencia nucleotídica que codifica para un antígeno heterólogo, con el plásmido generado en a) el cual dirige la mutación de SEQ ID No: 1 , y c) purificar el vector viral basado en un virus recombinante MVA definido en las reivindicaciones 1 -5, obtenido en el paso b). 6. Method of manufacturing the viral vector based on a recombinant MVA virus defined in claims 1-5, characterized by comprising the following steps: a) construct a plasmid comprising in its nucleotide sequence the sequences of the right flank and the left flank of SEQ ID No: 1, b) recombine a recombinant MVA virus, which contains at least one nucleotide sequence encoding a heterologous antigen, with the plasmid generated in a) which directs the mutation of SEQ ID No: 1, and c) purifying the viral vector based on a recombinant MVA virus defined in claims 1-5, obtained in step b).
7. Uso del vector viral basado en un virus recombinante MVA definido en las reivindicaciones 1 -5 como inmunogeno para prevenir o tratar una de las siguientes enfermedades: VIH, malaria, leishmaniosis, hepatitis C, y cáncer de próstata. 7. Use of the viral vector based on a recombinant MVA virus defined in claims 1-5 as an immunogen to prevent or treat one of the following diseases: HIV, malaria, leishmaniasis, hepatitis C, and prostate cancer.
8. Uso del vector viral basado en un virus recombinante MVA según la reivindicación 7, caracterizado porque dicho vector se usa como inmunogeno para prevenir o tratar la enfermedad del VIH. 8. Use of the viral vector based on a recombinant MVA virus according to claim 7, characterized in that said vector is used as an immunogen to prevent or treat HIV disease.
9. Uso del vector viral basado en un virus recombinante MVA definido en las reivindicaciones 1 -5 como parte de un protocolo de inmunización para prevenir o tratar una de las siguientes enfermedades: VIH, malaria, leishmaniosis, hepatitis C, y cáncer de próstata, en el que se administra al individuo al menos una dosis de vacunación. 9. Use of the viral vector based on a recombinant MVA virus defined in claims 1-5 as part of an immunization protocol to prevent or treat one of the following diseases: HIV, malaria, leishmaniasis, hepatitis C, and prostate cancer, in which the individual is administered at least one dose of vaccination.
10. Uso del vector viral basado en un virus recombinante MVA según la reivindicación 9 caracterizado porque se administra al individuo al menos una dosis de vacunación para: 10. Use of the viral vector based on a recombinant MVA virus according to claim 9 characterized in that at least one vaccination dose is administered to the individual for:
a) inducir una respuesta inmune de células T CD4+ y CD8+ de memoria antígeno específicas, y/o  a) induce an immune response of specific CD4 + and CD8 + T cells from specific antigen memory, and / or
b) para inducir la expresión de IFN-β en células inmunes innatas.  b) to induce IFN-β expression in innate immune cells.
1 1 . Uso del vector viral basado en un virus recombinante MVA según la reivindicación 10, caracterizado porque dicho vector se usa como parte de un protocolo de inmunización en el que se administra al individuo al menos una dosis de vacunación, para prevenir o tratar la enfermedad del VIH. eleven . Use of the viral vector based on a recombinant MVA virus according to claim 10, characterized in that said vector is used as part of an immunization protocol in which at least one vaccination dose is administered to the individual, to prevent or treat HIV disease. .
12. Uso del vector viral basado en un virus recombinante MVA según la reivindicación 10, caracterizado porque dicho vector se usa como parte de un protocolo de inmunización en el que se administra al individuo al menos una dosis de vacunación de una combinación de vectores heterologos para prevenir o tratar una de las siguientes enfermedades: VIH, malaria, leishmaniosis, hepatitis C, y cáncer de próstata. 12. Use of the viral vector based on a recombinant MVA virus according to claim 10, characterized in that said vector is used as part of an immunization protocol in which at least one vaccination dose of a combination of heterologous vectors is administered to the individual for prevent or treat one of the following diseases: HIV, malaria, leishmaniosis, hepatitis C, and prostate cancer.
13. Una composición inmunogénica caracterizada porque comprende al menos un vector viral definido en las reivindicaciones 1 -5. 13. An immunogenic composition characterized in that it comprises at least one viral vector defined in claims 1-5.
14. Uso de la composición inmunogénica definida en la reivindicación 13, para prevenir o tratar una de las siguientes enfermedades: VIH, malaria, leishmaniosis, hepatitis C, y cáncer de próstata. 14. Use of the immunogenic composition defined in claim 13, to prevent or treat one of the following diseases: HIV, malaria, leishmaniasis, hepatitis C, and prostate cancer.
15. Uso de la composición inmunogénica según la reivindicación 14, para prevenir o tratar el VIH. 15. Use of the immunogenic composition according to claim 14, to prevent or treat HIV.
PCT/ES2012/070521 2011-07-19 2012-07-11 Recombinant vectors based on the modified vaccinia ankara (mva) virus, with deletion in the c6l gene, as vaccines against hiv/aids and other diseases WO2013011179A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201131230 2011-07-19
ES201131230A ES2401904B1 (en) 2011-07-19 2011-07-19 RECOMBINANT VECTORS BASED ON THE MODIFIED VIRUS OF ANKARA (MVA), WITH DELETION IN THE C6L GEN, AS VACCINES AGAINST HIV / AIDS AND OTHER DISEASES.

Publications (2)

Publication Number Publication Date
WO2013011179A2 true WO2013011179A2 (en) 2013-01-24
WO2013011179A3 WO2013011179A3 (en) 2013-03-14

Family

ID=47558548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070521 WO2013011179A2 (en) 2011-07-19 2012-07-11 Recombinant vectors based on the modified vaccinia ankara (mva) virus, with deletion in the c6l gene, as vaccines against hiv/aids and other diseases

Country Status (2)

Country Link
ES (1) ES2401904B1 (en)
WO (1) WO2013011179A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086980A1 (en) * 2014-12-02 2016-06-09 Consejo Superior De Investigaciones Cientificas Vaccine composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001085932A2 (en) * 2000-05-10 2001-11-15 Aventis Pasteur Limited Immunogenic polypeptides encoded by mage minigenes and uses thereof
WO2010127115A1 (en) * 2009-04-30 2010-11-04 Centre Hospitalier Universitaire Vaudois Lausanne (Chuv) Modified immunization vectors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001085932A2 (en) * 2000-05-10 2001-11-15 Aventis Pasteur Limited Immunogenic polypeptides encoded by mage minigenes and uses thereof
WO2010127115A1 (en) * 2009-04-30 2010-11-04 Centre Hospitalier Universitaire Vaudois Lausanne (Chuv) Modified immunization vectors

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GARCIA-ARRIAZA, J ET AL.: 'A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses' PLOS ONE vol. 6, no. 8, August 2011, ISSN 1932-6203 *
GARCIA-ARRIAZA, J ET AL.: 'Immunogenic profiling in mice of a HIV/AIDS vaccine candidate (MVA-B) expressing four HIV-1 antigens and potentiation by specific gene deletions' PLOS ONE vol. 5, no. 8, August 2010, ISSN 1932-6203 *
GONZALEZ, J. M ET AL.: 'A poxvirus Bcl-2-like gene family involved in regulation of host immune response: sequence similarity and evolutionary history' VIROLOGY JOURNAL vol. 7, no. 1, March 2010, ISSN 1743-422X *
GUERRA, S ET AL.: 'Selective induction of host genes by MVA-B, a candidate vaccine against HIV/AIDS' JOURNAL OF VIROLOGY vol. 84, no. 16, August 2010, ISSN 1098-5514 pages 8141 - 8152 *
UNTERHOLZNER, L ET AL.: 'Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7.' PLOS PATHOGENS vol. 7, no. 9, September 2011, ISSN 1553-7366 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086980A1 (en) * 2014-12-02 2016-06-09 Consejo Superior De Investigaciones Cientificas Vaccine composition

Also Published As

Publication number Publication date
ES2401904A2 (en) 2013-04-25
ES2401904B1 (en) 2014-04-07
ES2401904R1 (en) 2013-06-05
WO2013011179A3 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
Volz et al. Modified vaccinia virus Ankara: history, value in basic research, and current perspectives for vaccine development
AU2015320574B2 (en) Methods and compositions for inducing protective immunity against Human Immunodeficiency Virus infection
Ramírez et al. Attenuated modified vaccinia virus Ankara can be used as an immunizing agent under conditions of preexisting immunity to the vector
JP4693092B2 (en) Recombinant poxvirus that expresses a homologous gene inserted into the poxvirus genome
ES2281252B1 (en) RECOMBINANT VECTORS BASED ON THE MODIFIED ANKARA VIRUS (MVA) AS PREVENTIVE AND THERAPEUTIC VACCINES AGAINST AIDS.
Gómez et al. Removal of vaccinia virus genes that block interferon type I and II pathways improves adaptive and memory responses of the HIV/AIDS vaccine candidate NYVAC-C in mice
García-Arriaza et al. Deletion of the vaccinia virus N2L gene encoding an inhibitor of IRF3 improves the immunogenicity of modified vaccinia virus Ankara expressing HIV-1 antigens
EP2631290A1 (en) Virus vector for prime/boost vaccines, which comprises vaccinia virus vector and sendai virus vector
Perdiguero et al. Deletion of the viral anti-apoptotic gene F1L in the HIV/AIDS vaccine candidate MVA-C enhances immune responses against HIV-1 antigens
Perdiguero et al. Deletion of the vaccinia virus gene A46R, encoding for an inhibitor of TLR signalling, is an effective approach to enhance the immunogenicity in mice of the HIV/AIDS vaccine candidate NYVAC-C
JP2006514549A (en) Recombinant vaccine virus expressing IL-15 and method of use thereof
Denzler et al. Attenuated NYCBH vaccinia virus deleted for the E3L gene confers partial protection against lethal monkeypox virus disease in cynomolgus macaques
Aspden et al. Evaluation of lumpy skin disease virus, a capripoxvirus, as a replication-deficient vaccine vector
Sistigu et al. Strong CD8+ T cell antigenicity and immunogenicity of large foreign proteins incorporated in HIV-1 VLPs able to induce a Nef-dependent activation/maturation of dendritic cells
Zhu et al. The attenuation of vaccinia Tian Tan strain by the removal of the viral M1L-K2L genes
Zhang et al. Direct comparison of antigen production and induction of apoptosis by canarypox virus-and modified vaccinia virus ankara-human immunodeficiency virus vaccine vectors
ES2401904B1 (en) RECOMBINANT VECTORS BASED ON THE MODIFIED VIRUS OF ANKARA (MVA), WITH DELETION IN THE C6L GEN, AS VACCINES AGAINST HIV / AIDS AND OTHER DISEASES.
Pan et al. The recombinant EHV-1 vector producing CDV hemagglutinin as potential vaccine against canine distemper
ES2617926T3 (en) Modulation of immune responses by poxviral K4 protein
George et al. Distinct humoral and cellular immunity induced by alternating prime-boost vaccination using plasmid DNA and live viral vector vaccines expressing the E protein of dengue virus type 2
KR20230122631A (en) Modified parapoxvirus with increased immunogenicity
CA3202140A1 (en) Genomic deletion in african swine fever vaccine allowing efficient growth in stable cell lines
Soprana et al. Joint production of prime/boost pairs of Fowlpox Virus and Modified Vaccinia Ankara recombinants carrying the same transgene
Li et al. Adjuvant effects of plasmid-generated hairpin RNA molecules on DNA vaccination
Stolte-Leeb et al. Sustained conservation of CD4+ T cells in multiprotein triple modality-immunized rhesus macaques after intrarectal challenge with simian immunodeficiency virus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12815519

Country of ref document: EP

Kind code of ref document: A2