WO2013011172A1 - Perfilómetro tridimensional por absorción óptica en fluidos - Google Patents
Perfilómetro tridimensional por absorción óptica en fluidos Download PDFInfo
- Publication number
- WO2013011172A1 WO2013011172A1 PCT/ES2012/000207 ES2012000207W WO2013011172A1 WO 2013011172 A1 WO2013011172 A1 WO 2013011172A1 ES 2012000207 W ES2012000207 W ES 2012000207W WO 2013011172 A1 WO2013011172 A1 WO 2013011172A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- optical
- substrate
- measuring surface
- surface topography
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
- G01B11/303—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
Definitions
- the general application of the invention is the measurement of the topography of any surface on a transparent or translucent substrate, especially applied to all types and forms of optical surfaces and micro-optical devices, no matter how complex and steep the slopes are. the form. It therefore allows three-dimensional surface profilometry.
- the techniques for measuring the topography of a surface are very varied.
- light is used in different ways for this purpose since ancient times and the known strategies are constantly being adapted or improved.
- the appearance of interference bands informs us of the topography as contours.
- the light is also used by confocal microscopy and similar techniques in which a specific light bulb acts similar to a mechanical probe that sweeps the surface, detecting variations in height.
- Imaging techniques based on interference or confocal microscopy require a scan or movement of mechanical elements to obtain the information.
- the need for mechanical movements or sweeps of mechanical or light probes makes the technique more prone to errors and results in significant time consumption.
- the resolution in height depends proportionally on the field of observation or extension of the scanned area, if it is based on the image processing of the scanned area. If the technique is based on a sweep point to point the resolution in height does not depend on the extent of the sweep, but nevertheless, the measurement is extremely slow by comparison.
- Model's scheme and hypothesis sufficient to explore a generic surface, particularly with high slopes, since the light transmitted in the direction and observation aperture not only depends on the optical absorption in the liquid, but also depends on the own topography of the sample. That is to say, the resulting vignetting of the beams at the deflection of the light do not enter fully or partially into the capture aperture, that is, the entrance pupil of the optical image capture system. Therefore, the observed attenuation of light depends not only on the optical absorption in a liquid but also on the optical design, including the light source itself. For all these reasons, Model's approach is complicated for an analysis of the data that allows the topography of an arbitrary surface to be extracted reliably. In cases of high slopes it may even be unfeasible due to the total loss of the light beams.
- the invention allows, in contrast to state-of-the-art techniques, topographic metrology of complex optical surfaces, with maximum slopes of up to 90 ° and fully scalable in the exploration area, from microns to tens of cm. It does not require mobile components or temporary stability in the lighting source.
- the invention uses transmitted light and the measurement of optical attenuation by interposing an absorbent fluid between the study surface and a reference surface.
- the light source must fulfill the property that the ratio of radiations between spectral bands does not depend either on the position of the observed source, nor on the direction of observation (in a semi-space).
- the radiations may vary in magnitude with the position and direction of observation, but not the quotient thereof.
- Radiance must be understood as the radiance integrated in the corresponding spectral band.
- FIG. 1 A complete configuration scheme of the invention in a preferred embodiment is shown in Figure 1.
- the surface to be measured (221) and a reference surface (241) approach each other with an interposed fluid (23), liquid or gas, capable of absorbing light in some region spectral (41), in particular it must do it differently in each spectral band differentiated from the source (42) (43).
- the absorbent liquid (23) fills the entire distance between both surfaces (221) and (241).
- the study surface (221) belongs to a substrate (22) that must be transparent or translucent to the spectral bands under consideration ( Figures 2 and 3).
- the reference glass or substrate (24) must be transparent to these spectral bands and is defined by the surface (242) and the surface (241) that acts as a reference or comparison surface with the one being studied (221).
- the reference substrate (24) must allow to observe through and directly the surface to be studied (221) and by means of an image capture system ((31), (32) and (33)).
- the sample set, absorbent liquid and reference substrate ((22), (23) and (24)) is illuminated with an extensive light source, whose emission surface (real or apparent) (15) has the properties described above. Preferably, it is illuminated on the side of the sample. On the other side is an image capture system ((31), (33)) whose only condition is that it should form as clear an image as possible of the surface to be surveyed (221) on an image capture sensor (32 ).
- the lateral increase ratio can be arbitrary. From each point on the surface to be measured (221), represented by points (13) and (14) in Figure 1, an image is formed on the image sensor and represented by points (15) and (16) respectively ( Figure 1 ).
- the signal detected at each point or pixel of the image (£) is proportional to the radiance (L) of each point of the observed surface (221) propagated through the different means.
- Each point of the object or surface to be explored therefore corresponds to a radiance that depends on the fixed means: light source, substrates, lenses, ... and that also depends on the internal transmittance of the interposed fluid.
- the transmittance of the fluid depends on the distance t (231) between the surface to be measured (221) and the reference surface (241) ( Figures 2 and 3), measured through the path of the main collection beam Image (25).
- the key is to consider that the spectral absorption curve of the interposed fluid varies very little in that spectral bandwidth or bandwidth. In practice it is possible to relax this condition and it is simply possible to calibrate the response of the device.
- the large light source should allow the sample to be illuminated from all directions of incidence (20) and in two different spectral bands 1 and 2, with average wavelengths ⁇ and ⁇ 2 and where the fluid absorption coefficients - ai, at 2 - They are different.
- the optical and electronic system for image acquisition takes pictures of the sample for each spectral band, simultaneously or sequentially. For each image, there is an irradiance distribution in the image sensor plane given by and E 2 . Each of these signals can be expressed as:
- E 2 Z- 2 r 2 C-exp (a: 2 f), ( ⁇ i )
- U and L 2 are the radiations of the extensive source for each spectral band (identified by ⁇ ⁇ and ⁇ 2 )
- ⁇ , and ⁇ 2 are the transmission factors (for each spectral band) of the entire optical system from the source to the image without counting on the transmittance of the absorbing fluid that is expressed with the exponential term.
- C is a geometric constant that depends fundamentally on the opening of the beam used in the image capture (25) and does not depend on the spectral band.
- t - t Q - ⁇ n (M) t s , (iv)
- t is the distance (231) between the surface to be measured (221) and the reference surface (241) measured in the trajectory of the observation beam (25) of each point considered.
- f 0 is a base height defined by t s is defined by and represents the height at which the light is attenuated by 37% in relative terms when comparing and ⁇ 2 .
- ts provides an adequate way to characterize the fluid's absorption properties.
- Equation (iv) is the initial basis for calculating the topographic profile of the study surface (221) point by point based on the quantitative information provided by the images in gray levels or any other quantification of the image signal.
- the parameter t Q is a spatial constant and therefore, it is not necessary to consider it in the measure of the topography of the surface of interest (see expression (iv)).
- the ratio of radiations is constant (L 2 ILi) for the position and direction of observation as we indicated at the beginning.
- the light captured by the imaging device (25) may come from different areas of the large source (20), depending on the topography of the sample itself (figures 1, 2 and 3). Especially, for steep slopes the effect is noticeable due to refraction. It is therefore important that, in general, the large source provides light in a maximum of possible directions of incidence on the surface to be measured (221), that is internally. In this sense, according to Figure 3, it is convenient in some cases to place a diffuser (21) optically coupled to the substrate (22) on the opposite side (222) to which it is desired to topograph (221). This complementary diffuser (21) may be necessary when the refractive index of the sample substrate is high and / or when the slopes of the surface to be surveyed are also very high.
- the image capture device always has a non-vignetted beam available, independent of the slope of the surface to be measured and on which the comparison between beams of different spectral band is reliable according to equation (iv) and it only depends on the absorption in the fluid interposed between the surface to be profiled and the reference surface.
- the reference surface (241) may have an arbitrary shape but must be known to serve as a reference. Ideally, the reference surface should have a profile that resembles the average profile of the surface to be studied. For example, to analyze basically concave or convex surfaces, it may be very appropriate for the reference surface is a sphere with the curvature close to the surface to be studied. This allows to have measures with higher resolution in the profile.
- Some absorbent in aqueous solution reach minimum values of t s the order of micron or less. It is possible to demonstrate that the resolution is proportional at s , between 10 "2 and 10 " 5 times that nominal distance depending on the signal-to-noise ratio in the image. Therefore, it is possible to reach resolutions below the nanometer, therefore, in the order of what is obtained with the best interferential measurement techniques.
- the dynamic range of the profile at heights is around two-four times the value of t s , therefore, depending on the expectation of maximum profile variation (peak-valley) the absorbent and the reference surface must be adjusted to obtain the desired range and resolution in height.
- a reference surface (241) can be provided on which different steps or wells of known height are engraved.
- the observation of these discontinuities in the processed image M allows us to establish a relationship between the jumps in the magnitude M and the known high jump associated with each step or discontinuity. In this way the image can be auto-calibrated to obtain the desired profile.
- the sample itself may have carved self-calibration steps or there may be details of its structure from which the topographic high jump (peak-valley) or even the complete topography for that surface structure detail is known.
- the use of several differentiated spectral bands can help compensate for possible aberration or chromatic dispersion effects in the optical media in which the light is refracted. It also allows extending the dynamic range (peak-valley) of use for a particular absorbent fluid.
- an anti-reflective treatment on the surfaces of the optical system considered can reduce spurious reflections that, if not treated or estimated, they can contribute to systematic errors in the estimation of the profile if they are not explicitly taken into account in the processing of the images.
- the sample (22) has the smooth bottom face (222) and the light comes from all directions (20) from the source emitting surface (15) ( Figure 1).
- the upper face is the surface to be surveyed (221).
- the light then passes through an absorbent fluid (23) and then exits the substrate (24) that allows a comparison reference (surface (241)) and direct observation by a subsequent image capture system.
- Figure 3
- a diffuser (21) optically coupled to the sample in (222) is added to the situation in Figure 2 to assist in the generation of light for any angle of incidence on the study surface (221).
- At least 2 LED emitters may be available.
- the primary or other usable emitters should preferably have an angular emission close to the Lambertian distribution (ie constant radiance with the angle).
- the emitter or primary emitters must be located within the sphere very close to each other ( ⁇ glued together) and close to the outlet opening of the integrating sphere.
- the emitters can point towards the center of the sphere approximately but it is better that their light is shielded (13) so that there is no direct illumination towards the sample (22) in the first order, and in the second order also to the surfaces that then send light Direct to the sample (20).
- the light that goes out through the exit port (or opening) of the integrating sphere complies with the properties sought in a very approximate way, that is, regardless of the point of the opening or the observation direction, the ratio between the radiations of the differentiated spectral bands (red and cyan LEDs in the example) measured at an arbitrary point and / or direction, results in a constant or very approximately constant value.
- the concrete value of that ratio is not important.
- the pre-mixing of the light emitted by these primary emitters in a smaller secondary integrating sphere, coupled to the main and satellite thereof, can be an even more satisfactory solution to achieve constancy in the radiation ratio of the differentiated spectral bands.
- this property can be achieved even more simply if a light diffuser of arbitrary nature, for example, an opal glass, is placed at the exit of the main integrating sphere and prior to the sample.
- a light diffuser of arbitrary nature for example, an opal glass
- a cavity can be used arbitrarily but operating similarly to an integrating sphere, or to an arbitrary light source to which, then, a collection of diffuser filters and other optical elements is placed to achieve the desired properties at the source.
- a collection of diffuser filters and other optical elements is placed to achieve the desired properties at the source.
- the sample (22) is then arranged in a preferred embodiment, such that the face of the sample from which it is not desired to obtain the profile (222) faces the extensive light source already mentioned.
- This face (222) is the first one that receives the light.
- the second face that receives the light is the one to be measured (221).
- the light between faces within the substrate of the sample can be propagated directly or diffusely and finally affects the face to be measured with a wide range of incidence angles or solid beam angle. Ideally, you should cover a semi-space (2 ⁇ stereorradianes), especially if you have surfaces (221) with steep slopes (close to 90 °).
- a diffuser (21) can be optically coupled (figure 3) by means of an interposed index liquid that allows the optical coupling between the diffuser (21) and the sample substrate (22).
- the index liquid must have a refractive index value close to that of the sample substrate (22) and that of the material of the diffuser itself (21).
- An arbitrary absorbent fluid (liquid or gas) is placed above the surface to be studied but must have different absorption properties for each differentiated spectral band ( ⁇ and ⁇ 2 ) of the light source and finally detected.
- a water-soluble absorbent that can be cleaned afterwards.
- merchromine (mercurochrome) (41) in adequate concentration and that strongly absorbs the light of the cyan LED (42) and lets the red LED light (43) mentioned above pass through.
- Figure 4 shows the spectral absorbance of normalized merchromine (41). Different dissolution concentrations give us different absorption properties.
- This specific absorption property of the absorbent fluid associated with the optical system of the invention is expressed through the parameter of the expression (iv) and that is specific to each absorbent fluid and its concentration in case of using a solution in combination with the spectral bands differentiated from the source.
- the different absorption of the chosen fluid allows us to modulate both the sensitivity and the measurable profile range for each particular sample. For example, we can vary the concentration of the absorbent in a solution given two specific spectral bands, or also, choose different spectral bands for the same fluid.
- a reference surface (241) is placed and therefore its topography must be known.
- the simplest case to deal with will be a flat surface.
- the reference surface does not have to be flat. In fact it can be curved and resemble the surface to be explored as a pattern of comparison. This situation is convenient in the study of aspherical optical surfaces or with a more complex profile, such as progressive lenses. Also in the measurement of semi-finished optical surfaces (not yet optically polished) when comparing the semi-finished surface with the final objective (as a reference standard). This can increase the resolution considerably in the entire field of observation, regardless of its length.
- an image capture device for example a camera with a CCD or CMOS matrix for digital image registration or any other detection technology that allows quantitative registration.
- the image is provided by an optical system focused on the study surface.
- This optical system can vary from a photographic objective lens to capture large fields of vision (31) to, at the other end, a microscopy objective to capture small fields in the object, but with high lateral resolution.
- the image should be focused to the average plane of the surface to be explored (221) and the observation should be done more or less perpendicular to said average plane.
- the optical system must simply project an image of the study surface onto the image sensor (32) for capture and digital recording. It can be any type of optical system that fulfills that function, regardless of the lateral increase and distances involved.
- a telecentric system such as that illustrated in Figure 1 simplifies the geometric treatment of data if, in addition, the reference substrate is a plate of flat-parallel faces, since the geometry of the beams carrying the information is very simple.
- a telecentric system is not always adequate due to its cost limitations and lateral resolution. On the basis of commercially available elements it is not as recommended, for linear fields in the object above about 4 cm and below approximately 0.5 cm.
- any optical imaging system will require accurate calibration of spatial coordinates, to correctly assign topography values, as derived from the expression (iv) to three-dimensional topographic values (in xyz coordinates).
- the operation procedure can be as follows.
- One of the narrow spectral band emitters is turned on, or the way to differentiate said band is activated (for example with a bandpass filter).
- a bandpass filter we will consider the lighting of the cyan LED emitter
- An image () is then registered with the maximum signal to noise ratio without any saturation zones in the image sensor.
- the parameters of the camera integration time preferably
- the power supply of the light emitter to vary the emitted luminous flux.
- the first emitter is turned off and the second emitter is turned on independently (or correspondingly, some mechanism is activated to differentiate in the detection that second spectral band).
- the red LED emitter ( ⁇ 2 ) is turned on, and a second image (l 2 ) is taken in a manner similar to the first case, that is, optimizing the noise signal ratio.
- a third image (l F ) is taken to capture the backlight and dark signal of the electronic register itself under the integration time conditions of the previous captures. The background image is subtracted from the two previous images and the quotient of the resulting images is made, that is,
- Equation (iv) we can apply equation (iv) to the experimental magnitude M or quotient image to calculate the profile or distance from the reference surface to the study surface, plus a certain distance f 0 unknown (sometimes referred to in the literature as a piston term), but which is irrelevant to the knowledge of the topography if the conditions required for the light source are met, since t 0 is constant in that case and acts simply as a frame of reference.
- the distance t is the distance between points of the reference surface and points of the study surface through the lines defined by the principal rays.
- the main rays are the average rays of the light beams used in the image capture (25) for each point considered.
- the opening of the light beam is determined by the optical image formation system through its input pupil. It is therefore important to know the configuration of the optical system as a whole, in particular the orientation of these main rays from the entrance pupil of the optical image capture system.
- This geometric information allows us to transform the experimental topographic variable to a profile expressed in Cartesian coordinates (xyz) or any other spatial representation coordinates that are useful and that any expert in the field would know how to calculate, knowing how the beams propagate through of the different media based on the law of refraction.
- the scale factor t s in expression (iv), which corresponds to the absorption properties of the liquid used, must be previously known in a preferred embodiment.
- This parameter can be obtained, for example, through a calibration of the liquid performed with two surfaces of known topography and measuring as referred to above.
- the simplest example may be to have the liquid to be calibrated between a spherical surface of known radius (eg a lens) and a flat surface. From the adjustment of the data following the previous procedure, t s can be extracted knowing the topography of the surfaces and the specific imaging and geometric properties of the experiment.
- Another more direct possibility of carrying out the invention is self-calibration, without having to know a priori the properties of the absorbent fluid as already mentioned in the description of the invention. For example, if the reference surface has engraved steps or wells of known jump depth, this information can be used directly to encode the rest of the final image M for an arbitrary sample. At least one step is needed to be able to extrapolate the data for other heights or profile distances.
- the sample itself may have carved self-calibration steps or there may be details of its structure from which the topographic high jump (peak-valley) is known or even know the complete topography for a surface detail and act as similar to that described in the previous paragraph.
- the expression (iv) is only valid if the spectral bands of the emitters are very narrow compared to the spectral variation of the absorption curve of the fluid used.
- a calibration is possible that establishes as a table, a relationship between profile values f and values of the measured magnitude M and that does not necessarily correspond to the calibration curve described by equation (iv).
- the calibration of this table of values or tM curve can be as mentioned in the previous paragraphs, that is, through a known profilometric relationship between two surfaces, both acting as reference surfaces.
- two images taken in different spectral bands from the large source are used, but alternatively a polychromatic source can be used as the primary emitting source and the aid of optical filters located somewhere in the device, preferably in the image collection system.
- a polychromatic source can be used as the primary emitting source and the aid of optical filters located somewhere in the device, preferably in the image collection system.
- the general application of the invention is the measurement of the topography of any surface on a transparent substrate, especially applied to all types and forms of optical surfaces and micro-optical devices, however complex their shape and the slopes that make it up are high. .
- Fully scalable it can address from micro-optical devices, with lateral resolution of the order of the miera, to conventional optics, with scanning sizes in the range of tens or hundreds of cm. The resolution at attainable height is below the nanometer (10 "6 mm) as derived from experimental and analytical results.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
El invento permite medir la topografía de superficies pertenecientes a un substrato (22) transparente o traslúcido que deja pasar luz a su través. Frente a la superficie de estudio (221) se acerca otra de referencia (241) de la que se conoce su topografía. El espacio intermedio se rellena con fluido ópticamente absorbente (23) y se ilumina el conjunto con una fuente extensa (15) de la que se pueden diferenciar al menos dos bandas espectrales con absorción diferente en el fluido (23). El cociente de radiancias integradas en esas bandas espectrales no depende del punto de la fuente ni de la dirección de observación. El registro de imágenes (32) de la luz transmitida en esas bandas espectrales y su análisis posterior permite obtener el perfil completo de la superficie de estudio (221).
Description
Título
Perfilómetro tridimensional por absorción óptica en fluidos. Sector de la técnica
La aplicación general de la invención es la medida de la topografía de cualquier superficie sobre substrato transparente o traslúcido, en especial aplicada a todo tipo y forma de superficie óptica y dispositivos micro-ópticos, por complejos que sean en su forma y elevadas las pendientes que la conforman. Permite por tanto la perfilometría tridimensional de superficies.
Estado de la técnica
Las técnicas para medir la topografía de una superficie son muy variadas. En particular, la luz se usa de maneras diferentes para éste propósito desde antiguo y constantemente se van adaptando o mejorando las estrategias conocidas. Por ejemplo, a través de la medida de la interferencia de la luz que se refleja en una superficie al compararla con un haz de referencia. En este caso la aparición de franjas de interferencia nos informa de la topografía a modo de curvas de nivel.
También se utiliza la luz mediante microscopía confocal y técnicas similares en las que un foco luminoso puntual actúa parecido a una sonda mecánica que barre la superficie, detectando variaciones en altura.
Las técnicas de imagen basadas en interferencia o en microscopía confocal requieren de un barrido o movimiento de elementos mecánicos para obtener la información. La necesidad de movimientos mecánicos o de barridos de sondas mecánicas o luminosas hace la técnica más propensa a errores y da lugar a un consumo de tiempo significativo.
Con niveles peores de resolución en altura, encontramos la proyección de luz estructurada y la triangulación o el shadow-Moiré, más típicamente utilizadas en superficies con reflexión difusa.
Todas las técnicas conocidas basadas en la reflexión de la luz sobre la superficie a explorar tienen limitaciones para abordar pendientes locales moderadamente altas o ya en el extremo de superficies cuasi discontinuas, como por ejemplo en redes almenadas, lentes de Fresnel clásicas y matrices de microprismas.
Asimismo, en la mayoría de las propuestas conocidas, la resolución en altura depende proporcionalmente del campo de observación o extensión del área explorada, si se basa en el procesado de imágenes del área explorada. Si la técnica se basa en un barrido
punto a punto la resolución en altura no depende de la extensión del barrido, pero sin embargo, la medida es extremadamente lenta por comparación.
Recientemente se han incorporado propuestas basadas en luz transmitida que utilizan la absorción óptica en un líquido para obtener información topográfica de una muestra. Por la conocida ley de Lambert-Beer se puede predecir la intensidad, o más propiamente la radiancia, de un haz luminoso conforme atraviesa un material óptico absorbente en función del la distancia recorrida t y del coeficiente de absorción α . En particular, la transmitancia aplicable a ese haz es expresable como T=exp(-at).
Así, encontramos el trabajo de Steven R. Ogilvie et al (Image Anal. Stereol. 2002 y Earth and Planetary Science Letters 2001 ) que se describe a continuación. Por encima de la superficie a explorar se vierte absorbente óptico en disolución acuosa hasta un cierto nivel de referencia, una fuente luminosa extensa arbitraria introduce luz por abajo y por encima se coloca una cámara digital que toma una imagen de la superficie de interés a través del líquido absorbente. Para poder tener un análisis correcto de la información hace falta tomar una segunda imagen de referencia, para ello Ogilvie y colaboradores proponen el uso de agua pura (no absorbente) cubriendo la muestra al mismo nivel que el absorbente. Esto es necesario para poder calcular la transmitancia T punto a punto como el cociente de la imagen con absorbente respecto a la imagen con agua pura (cociente referido a valores de señal o niveles de gris punto por punto). Para ello es necesario vaciar y rellenar los líquidos y con ello se debe mover la muestra y volverla a colocar en posición. Esta forma de proceder es inconveniente, por la dificultad de obtener niveles de líquido precisos y por la necesidad de un estricto alineamiento y posicionado de la muestra entre imágenes, dando lugar a errores.
La técnica propuesta en la patente y publicaciones de Model (US2009/0027676A1 y en Journal of Microscopy, 2008), plantea una idea similar orientada a la observación de superficies con un microscopio. Las superficies son iluminadas y barridas por un haz luminosos focalizado enana zona pequeña, por ejemplo un haz láser. En este caso no se utiliza una imagen de referencia sino que se asume que la intensidad del haz luminoso incidente es constante sobre el campo de observación y en el tiempo, lo cual no es fácil de cumplir.
El esquema e hipótesis de Model tampoco es suficiente para explorar una superficie genérica, en particular con pendientes elevadas, ya que la luz transmitida en la dirección y apertura de observación no sólo depende de la absorción óptica en el líquido, sino que también depende de la propia topografía de la muestra. Es decir, a través de la desviación de la luz por refracción se produce el consiguiente viñeteado de los haces al
no entrar total o parcialmente en la apertura de captación, es decir, la pupila de entrada del sistema óptica de captación de imagen. Por ello, la atenuación observada de la luz no sólo depende de la absorción óptica en un líquido sino del diseño óptico, incluyendo en este la propia fuente de iluminación. Por todo ello, el planteamiento de Model es complicado para un análisis de los datos que permita extraer de manera fiable la topografía de una superficie arbitraria. En casos de pendientes elevadas puede ser incluso inviable por la pérdida total de los haces luminosos.
Descripción de la invención
La invención permite, por contraste con las técnicas del estado de la técnica, la metrología topográfica de superficies ópticas complejas, con pendientes máximas de hasta 90° y totalmente escalable en el área de exploración, desde mieras a decenas de cm. No requiere de componentes móviles ni tampoco de estabilidad temporal en la fuente de iluminación.
En esencia, la invención utiliza la luz transmitida y la medida de la atenuación óptica al interponer un fluido absorbente entre la superficie de estudio y una superficie de referencia. Para resolver las dificultades mencionadas en el estado de la técnica se introducen dos novedades relativas a propiedades específicas de la fuente de iluminación y descritas por:
1) el uso de una fuente luminosa extensa que emite (para todo punto y dirección) en al menos dos bandas espectrales estrechas y que sea posible diferenciarlas, bien porque se emitan así en origen o porque se diferencian a posteriori por medio de filtros de paso- banda antes de la detección. Una banda espectral actuará como luz sensora y la otra banda espectral como luz de referencia, y
2) la fuente luminosa debe cumplir la propiedad de que el cociente de radiancias entre bandas espectrales no depende ni de la posición de la fuente observada, ni de la dirección de observación (en un semiespacio). Las radiancias pueden variar su magnitud con la posición y dirección de observación, pero no el cociente de las mismas. La radiancia debe entenderse como la radiancia integrada en la banda espectral correspondiente.
Estas condiciones de la fuente luminosa garantizan el poder realizar una medida topográfica fiable, rápida y sin partes móviles de ninguna clase. En la figura 1 se muestra un esquema completo de configuración del invento en una realización preferente. La superficie a medir (221) y una superficie de referencia (241) se acercan la una a la otra con un fluido interpuesto (23), líquido o gas, capaz de absorber luz en alguna región
espectral (41 ), en particular lo debe hacer de manera diferente en cada banda espectral diferenciada de la fuente (42) (43). El líquido absorbente (23) rellena toda la distancia entre ambas superficies (221 ) y (241 ).
La superficie de estudio (221 ) pertenece a un substrato (22) que debe ser transparente o translúcido a las bandas espectrales en consideración (figuras 2 y 3). El vidrio o substrato de referencia (24) debe ser transparente a esas bandas espectrales y está definido por la superficie (242) y la superficie (241 ) que hace de superficie de referencia o comparación con la que es objeto de estudio (221 ). El substrato de referencia (24) debe permitir observar a su través y directamente la superficie a estudiar (221 ) y por medio de un sistema de captación de imagen ((31 ), (32) y (33)).
El conjunto de muestra, líquido absorbente y substrato de referencia ((22), (23) y (24)) se ilumina con una fuente luminosa extensa, cuya superficie de emisión (real o aparente) (15) tiene las propiedades descritas anteriormente. Preferentemente, se ilumina por el lado de la muestra. Al otro lado se sitúa un sistema de captación de imagen ((31 ), (33)) cuya única condición es que debe formar una imagen lo más nítida posible de la superficie a topografiar (221 ) sobre un sensor de captación de imagen (32). La relación de aumento lateral puede ser arbitraria. De cada punto de la superficie a medir (221 ), representados por los puntos (13) y (14) en la figura 1 , se forma una imagen en el sensor de imagen y representados por los puntos (15) y (16) respectivamente (figura 1 ).
La señal detectada en cada punto o píxel de la imagen (£) es proporcional a la radiancia (L) de cada punto de la superficie observada (221 ) propagada a través de los diferentes medios. A cada punto del objeto o superficie a explorar le corresponde por tanto una radiancia que depende de los medios fijos: fuente de luz, substratos, lentes,... y que también depende de la transmitancia interna del fluido interpuesto. A su vez, la transmitancia del fluido depende de la distancia t (231 ) entre la superficie a medir (221 ) y la superficie de referencia (241 ) (figuras 2 y 3), medida a través de la trayectoria del haz principal de captación de imagen (25).
La transmitancia interna del fluido T se comporta con la ley de Lambert-Beer, es decir según la expresión 7=exp(-af), dónde α es el coeficiente de absorción para el fluido absorbente. Para una banda espectral finita y suficientemente estrecha, esta ley se cumple de manera exacta. Para saber cuanto de estrecha debe ser esta banda espectral de detección, la clave es considerar que la curva de absorción espectral del fluido interpuesto varíe muy poco en ese rango o anchura espectral de banda. En la práctica es posible relajar esta condición y es sencillamente posible calibrar la respuesta del dispositivo.
La fuente luminosa extensa debe permitir iluminar la muestra desde todas las direcciones de incidencia (20) y en dos bandas espectrales diferenciadas 1 y 2, con longitudes de onda media λ y λ2 y donde los coeficientes de absorción del fluido - ai, a2 - son diferentes.
El sistema óptico y electrónico para la adquisición de imagen, toma imágenes de la muestra para cada banda espectral, de forma simultánea o secuencial. Para cada imagen, se tiene una distribución de irradiancia en el plano sensor de imagen dado por y E2. Cada una de estas señales se puede expresar como:
E2= Z-2r2C-exp(a:2f), (¡i) dónde U y L2 son las radiancias de la fuente extensa para cada banda espectral (identificadas por λ\ y λ2), τ, y τ2 son los factores de trasmisión (para cada banda espectral) de todo el sistema óptico desde la fuente hasta la imagen sin contar con la transmitancia del fluido absorbente que es expresada con el término exponencial. Finalmente, C es una constante geométrica que depende fundamentalmente de la apertura del haz usado en la captación de imagen (25) y no depende de la banda espectral.
El cociente de las irradiancias de las dos imágenes punto a punto, que denotamos como M (/W=E2/E1) nos permite llegar a la siguiente expresión
y que a su vez podemos expresar como t - tQ = - \n(M) ts, (iv) dónde t es la distancia (231) entre la superficie a medir (221) y la superficie de referencia (241) medida en la trayectoria del haz de observación (25) de cada punto considerado. f0 es una altura de base definida por
ts se define por y representa la altura a la cual la luz se atenúa en un 37% en términos relativos al comparar y λ2. ts proporciona una forma adecuada de caracterizar las propiedades de absorción del fluido.
La ecuación (iv) es la base inicial para calcular el perfil topográfico de la superficie de estudio (221 ) punto a punto en base a la información cuantitativa que proveen las imágenes en niveles de gris o cualquier otra cuantificación de la señal imagen.
Cuando el cociente
no depende de la posición y dirección de observación tenemos que el parámetro tQ es una constante espacial y por tanto, no hace falta considerarlo en la medida de la topografía de la superficie de interés (ver expresión (iv)). Para ello debemos disponer de una fuente extensa que tenga ésta propiedad, es decir, que el cociente de radiancias sea constante (L2ILi) para la posición y dirección de observación como hemos indicado al principio.
A su vez, debe cumplirse que el resto del sistema óptico tenga un cociente de transmitancias (τ2/τι) constante u homogéneo. La homogeneidad es técnicamente mucho más fácil de cumplir para el cociente de magnitudes que para los valores absolutos de las mismas, punto a punto, y esto es una de las ventajas principales de la invención, pues simplifica notablemente el análisis. En la práctica, la inmensa mayoría de las muestras de interés para su caracterización en el campo de la óptica son homogéneas y por tanto cumplen esta propiedad para el cociente
Para una muestra no homogénea es aún posible la caracterización, pero necesita de la captación de imágenes con un líquido no absorbente para poder extraer información extra sobre ese cociente realtivo a los medios ópticos que no son el fluido absorbente.
La luz captada por el dispositivo de imagen (25) puede provenir en origen de zonas diferentes de la fuente extensa (20), en función de la propia topografía de la muestra (figuras 1 , 2 y 3). En especial, para pendientes pronunciadas el efecto es notable debido a la refracción. Es por ello importante que, en general, la fuente extensa provea de luz en un máximo de direcciones posibles de incidencia sobre la propia superficie a medir (221 ), es decir internamente. En este sentido, según la figura 3, es conveniente en algunos casos colocar un difusor (21 ) acoplado ópticamente al substrato (22) por la cara opuesta (222) a la que se quiere topografiar (221 ). Este difusor complementario (21 ) puede ser necesario cuando el índice de refracción del substrato de la muestra es elevado y/o cuando las pendientes de la superficie a topografiar son también muy elevadas.
Con esta configuración de invención, el dispositivo de captura de imagen siempre tiene un haz no viñeteado disponible, independiente de la pendiente de la superficie a medir y sobre el que la comparación entre haces de distinta banda espectral es fiable según la ecuación (iv) y sólo depende de la absorción en el fluido interpuesto entre la superficie a perfilar y la superficie de referencia.
La superficie de referencia (241 ) puede tener una forma arbitraria pero debe ser conocida para que sirva de referencia. Idealmente, la superficie de referencia debe tener un perfil que se parezca a perfil promedio de la superficie a estudiar. Por ejemplo, para analizar superfices básicamente cóncavas o convexas, puede ser muy adecuado el que la
superficie de referencia sea una esfera con la curvatura próxima a la superficie a estudiar. Esto permite tener medidas con mayor resolución en el perfil.
Algunos absorbentes en disolución acuosa alcanzan valores mínimos de ís del orden de la miera o inferior. Es posible demostrar que la resolución es proporcional a ts, de entre 10"2 y 10"5 veces esa distancia nominal dependiendo de la relación señal-ruido en la imagen. Por tanto, es posible alcanzar resoluciones por debajo del nanómetro, por tanto, del orden de lo que se obtiene con las mejores técnicas interferenciales de medida.
El rango dinámico del perfil en alturas se sitúa en torno a dos-cuatro veces el valor de ts, por ello, en función de la expectativa de variación máxima del perfil (pico-valle) se debe ajusfar el absorbente y la superficie de referencia para obtener el rango y la resolución en altura deseados.
Es también posible aplicar la invención sin necesidad de conocer las propiedades de absorción del fluido empleado (es decir ts). Para ello se puede disponer de una superficie de referencia (241 ) en la que estén grabados diferentes escalones o pozos de altura conocida. La observación de estas discontinuidades en la imagen procesada M nos permite establecer una relación entre los saltos en la magnitud M y el salto de altura conocido asociado a cada escalón o discontinuidad. De esta forma se puede auto-calibrar la imagen para obtener el perfil deseado.
El uso de escalones de calibración en la superficie de referencia no tiene porqué afectar a la medida de la superficie problema en su conjunto, ya que se puede asumir que, en la justa inmediatez espacial al escalón, la muestra tiene una superficie continua en general, y por tanto, en el límite de proximidad al escalón, el único salto de perfil o discontinuidad esperable es el del propio escalón de referencia.
Alternativamente, la propia muestra puede tener tallados escalones de autocalibración o puede haber detalles de su estructura de la que se conozca con precisión el salto de altura topográfico (pico-valle) o incluso la topografía completa para ese detalle de la estructura superficial.
Así mismo, el uso de varias bandas espectrales diferenciadas (más de dos) puede ayudar a compensar posibles efectos de aberración ó dispersión cromátrica en los medios ópticos en los que la luz se refracta. También permite extender el rango dinámico (pico- valle) de utilización para un fluido absorbente en particular.
Por último, la aplicación de un tratamiento antirreflejante en las superficies del sistema óptico considerado puede reducir reflexiones espurias que de no tratarse o estimarse,
pueden contribuir a errores sistemáticos en la estimación del perfil si no se tienen en cuenta de forma explícita en el procesado de las imágenes.
Descripción de las figuras
Figura 1
Esquema básico de funcionamiento del perfilómetro en una realización preferente. Figura 2
Detalle de la muestra de la figura.1 y trazado de rayos explicativo. La muestra (22) tiene la cara inferior lisa (222) y la luz le llega de todas las direcciones (20) desde la superficie emisora de la fuente (15) (figura 1). La cara superior es la superficie a topografiar (221). A continuación la luz atraviesa un fluido absorbente (23) para después salir por el substrato (24) que permite una referencia de comparación (superficie (241)) y la observación directa mediante un sistema de captación de imagen posterior. Figura 3
Sobre la situación de la figura 2 se añade un difusor (21) acoplado ópticamente a la muestra en (222) para asistir en la generación de luz para todo ángulo de incidencia sobre la superficie de estudio (221 ) . Figura 4
Ejemplo de emisores y absorbentes. Curvas normalizadas de emisión espectral de emisores LEDs utilizables (cyan (42) y rojo (43)) y absorbancia de un fluido absorbente (mercromina al 2% soluble en agua (41)). Figura 5
Medida de una matriz de micro prismas usados en óptica oftálmica (periodo de 1.4 mm, altura pico-valle de 57 μιτι). En (51 ) se muestra la medida de la magnitud cociente M (cociente de imágenes). En (52) se muestra el perfil extraído de la imagen procesada a través de la ecuación (iv) y en (53) se muestra una representación tridimensional de la topografía calculada según la ecuación (iv)
Figura 6
Ejemplo de medida aplicado a matrices de lentes cilindricas. En (61) se muestra una representación tridimensional y en (62) un perfil lineal parcial obtenido en dirección perpendicular al eje de la matriz de lentes.
Modo de realización de la invención
Un modo de realizar y aplicar la invención se explica a continuación. Una forma de disponer de una fuente luminosa extensa con las propiedades requeridas es por medio de una esfera integradora recubierta interiormente (11 ) de sulfato de bario u otro material altamente reflectante y difusor.
Como emisores luminosos primarios se pueden disponer de al menos 2 emisores LED (Light Emitting Diodes) (12). Por ejemplo, un primer LED rojo centrado en la longitud de onda λ2=627 nm y semianchura espectral de 10-25 nm (anchura de banda espectral a mitad de valor del pico de emisión) (43) y un segundo LED cyan centrado en la longitud de onda ^=515 nm y semianchura espectral de 20-50 nm (42) (ver figura 4). Los emisores primarios u otros utilizables, debieran tener, preferiblemete, una emisión angular próxima a la distribución lambertiana (es decir de radiancia constante con el ángulo). El emisor o los emisores primarios deben situarse en el interior de la esfera muy próximos entre sí (~pegados) y próximos a la abertura de salida de la esfera integradora. Los emisores pueden apuntar hacia el centro de la esfera aproximadamente pero es mejor que su luz esté apantallada (13) para que no haya iluminación directa hacia la muestra (22) en primer orden, y en segundo orden tampoco hacia las superficies que después envían luz directa hacia la muestra (20). Con estas prescripciones se consigue que la luz que sale por el puerto (o abertura) de salida de la esfera integradora cumpla con las propiedades buscadas de manera muy aproximada, es decir, que independientemente del punto de la abertura o de la dirección de observación, el cociente entre las radiancias de las bandas espectrales diferenciadas (LEDs rojo y cyan ene el ejemplo) medidas en un punto y/o dirección arbitrarios, da como resultado un valor constante o muy aproximadamente constante. El valor concreto de ese cociente no es importante.
La mezcla previa de la luz emitida por estos emisores primarios en una esfera integradora secundaria más pequeña, acoplada a la principal y satélite de la misma puede ser una solución incluso más satisfactoria para conseguir la constancia en el cociente de radiancias de las bandas espectrales diferenciadas. Alternativamente, esta propiedad puede conseguirse aún con mayor simplicidad si se coloca a la salida de la esfera integradora principal y previo a la muestra, un difusor de la luz de naturaleza arbitraria, por ejemplo, un vidrio opal.
En la literatura se puede encontrar abundante información de cómo disponer los emisores primarios dentro de una esfera integradora u otro dispositivo óptico para conseguir maximizar el grado de uniformidad. Otras posibilidades de homogenización y mezcla de los flujos luminosos son también viables. Por ejemplo, se puede recurrir a una cavidad de forma arbitraria pero funcionando de manera similar a una esfera integradora, o a una fuente luminosa arbitraria a la que, a continuación, se coloca una colección de filtros difusores y otros elementos ópticos para conseguir las propiedades buscadas en la fuente. Estos modos alternativos de configurar la fuente son de interés, por ejemplo, si se requiere la disminución del volumen que ocupa la fuente luminosa y, siempre en compromiso con el grado de incertidumbre que se desea para la respuesta del aparato en función de las propiedades de la fuente.
A continuación se dispone la muestra (22) en un modo de realización preferente, tal que, la cara de la muestra de la que no se desea obtener el perfil (222), se enfrenta a la fuente luminosa extensa ya mencionada. Esta cara (222) es la primera que recibe la luz. La segunda cara que recibe la luz es la que se desea medir (221). La luz entre caras dentro del substrato de la muestra puede propagarse manera directa o difusa y finalmente incide sobre la cara a medir con un gran abanico de ángulos de incidencia o ángulo sólido de haz. Idealmente, debe cubrir un semiespacio (2π estereorradianes), especialmente en caso de tener superficies (221) con pendientes abruptas (próximas a 90°).
Para asegurarse el máximo de ángulo sólido de incidencia sobre cada punto de la superficie (221) se puede acoplar ópticamente un difusor (21) (figura 3) por medio de un líquido de índice interpuesto que permita el acoplo óptico entre el difusor (21) y el substrato de la muestra (22). El líquido de índice debe tener un valor de índice de refracción próximo al del substrato de la muestra (22) y al del material del propio difusor (21).
Por encima de la superficie a estudiar se coloca un fluido absorbente arbitrario (líquido o gas) pero que debe tener propiedades de absorción diferente para cada banda espectral diferenciada (^ y λ2) de la fuente luminosa y finalmente detectadas. Por ejemplo, es práctico usar un absorbente soluble en agua y que pueda ser limpiado a posteriori. Como ejemplo, podemos usar mercromina (mercurocromo) (41) en concentración adecuada y que absorbe fuertemente la luz del LED cyan (42) y deja pasar la luz del LED rojo (43) antes mencionados. En la figura 4 se muestra la absorbancia espectral de la mercromina normalizada (41). Concentraciones de disolución diferentes nos dan diferentes propiedades de absorción. Esta propiedad de absorción específica del fluido absorbente asociada al sistema óptico de la invención se expresa a través del parámetro de la
expresión (iv) y que es propio de cada fluido absorbente y de su concentración en caso de usar una disolución en combinación con las bandas espectrales diferenciadas de la fuente. La diferente absorción del fluido elegido nos permite modular tanto la sensibilidad como el rango de perfil medible para cada muestra en particular. Por ejemplo, podemos variar la concentración del absorbente en una disolución dadas dos bandas espectrales concretas, o también, elegir diferentes bandas espectrales para un mismo fluido.
A continuación, se coloca una superficie de referencia (241) y que por tanto, su topografía debe ser conocida. El caso más sencillo de tratar será una superficie plana. Así por ejemplo, podemos situar una placa de vidrio transparente de caras plano-paralelas (24) y de fácil disponibilidad. Lo ideal es presionar dicha placa con un líquido absorbente entre medias de la superficie muestra (221) y la superficie de referencia (241). Debe procurarse mantener la mínima distancia entre las superficies que encierran al líquido absorbente. También es deseable evitar la formación de burbujas y la presencia de partículas en suspensión que dejarían zonas de la superficie ciegas o inválidas para el análisis de datos posterior.
La superficie de referencia no tiene por que ser plana. De hecho puede ser curva y parecerse a la superficie a explorar a modo de patrón de comparación. Esta situación es conveniente en el estudio de superficies ópticas asféricas o de perfil más complejo como por ejemplo en lentes progresivas. También en la medida de superficies ópticas semi- terminadas (aún no pulidas ópticamente) al comparar la superficie semi-acabada con el objetivo final (a modo de patrón de referencia). Con ello se puede aumentar la resolución considerablemente en todo el campo de observación, independientemente de su extensión.
También es posible ordenar la muestra y el medio óptico de referencia en orden inverso al planteado anteriormente, es decir, primero el substrato de referencia y después la muestra. Pero en este caso el resultado no es tan directo y el procesado de la información es más complicado en general, al tener que tener en cuenta la refracción de los haces luminosos en la superficie de estudio.
A continuación, se coloca un dispositivo de captura de imagen, por ejemplo una cámara con una matriz CCD o CMOS para el registro digital de la imagen o cualquier otra tecnología de detección que permita un registro cuantitativo. La imagen la proporciona un sistema óptico enfocado a la superficie de estudio. Este sistema óptico puede variar desde una lente objetivo de fotografía para captar campos de visión grandes (31) a, en el otro extremo, un objetivo de microscopía para captar campos pequeños en el objeto, pero con gran resolución lateral. La imagen debe estar enfocada al plano promedio de la
superficie a explorar (221 ) y la observación debe hacerse más o menos en perpendicular a dicho plano promedio. El sistema óptico simplemente debe proyectar una imagen de la superficie de estudio sobre el sensor de imagen (32) para su captura y registro digital. Puede ser cualquier tipo de sistema óptico que cumpla esa función, independientemente del aumento lateral y distancias implicadas. En particular, un sistema telecéntrico como el ilustrado en la figura 1 simplifica el tratamiento geométrico de datos si, además, el substrato de referencia es una placa de caras plano-paralelas, pues la geometría de los haces que portan la información es muy sencilla. Sin embargo, no siempre es adecuado un sistema telecéntrico por sus limitaciones de coste y resolución lateral. En base a los elementos adquiribles comercialmente no es tan recomendable, para campos lineales en el objeto por encima de unos 4 cm y por debajo de 0.5 cm aproximadamente.
No obstante, cualquier sistema óptico de formación de imagen requerirá de una calibración precisa de las coordenadas espaciales, para asignar correctamente los valores de topografía, tal cual derivan de la expresión (iv) a valores topográficos tridimensionales (en coordenadas xyz).
El procedimiento de operación puede ser el siguiente. Se enciende uno de los emisores de banda espectral estrecha, o bien, se activa el modo de diferenciar dicha banda (por ejemplo con un filtro paso banda). En el caso del ejemplo expuesto, consideraremos el encendido del emisor LED cyan
Se registra entonces una imagen ( ) con la máxima relación señal ruido sin que haya zonas de saturación en el sensor de imagen. Para conseguirlo podemos actuar sobre los parámetros de la cámara (tiempo de integración preferentemente) o la alimentación eléctrica del emisor luminoso para variar el flujo luminoso emitido. A continuación, se apaga el primer emisor y se enciende el segundo emisor de manera independiente (o correspondientemente, se activa algún mecanismo para diferenciar en la detección esa segunda banda espectral). En el ejemplo propuesto se enciende el emisor LED rojo (λ2), y se toma una segunda imagen (l2) de manera similar al primer caso, es decir optimizando la relación de señal ruido. Por último, se apagan todos los emisores y se toma una tercera imagen (lF) para capturar la luz de fondo y señal de obscuridad del propio registro electrónico en las condiciones de tiempo de integración de las capturas previas. La imagen de fondo se resta a las dos imágenes previas y se hace el cociente de las imágenes resultantes, es decir,
Esta operación coincide por tanto con la expresión (iii) y da directamente la magnitud cociente M buscada.
A la magnitud experimental M o imagen cociente le podemos aplicar la ecuación (iv) para calcular el perfil o distancia desde la superficie de referencia a la superficie de estudio,
más una cierta distancia f0 desconocida (a veces se refiere en la literatura como término pistón), pero que es irrelevante para el conocimiento de la topografía si se cumplen las condiciones exigidas a la fuente luminosa, ya que t0 es constante en ese caso y actúa simplemente como marco de referencia.
La distancia t, extraída de esta forma de proceder, es la distancia entre puntos de la superficie de referencia y puntos de la superficie de estudio a través de las líneas definidas por los rayos principales. Los rayos principales son los rayos promedio de los haces luminosos usados en la captura de imagen (25) por cada punto considerado. La apertura del haz luminoso está determinada por el sistema óptico de formación de la imagen a través de su pupila de entrada. Es por tanto importante conocer la configuración del sistema óptico en su conjunto, en particular la orientación de esos rayos principales desde la pupila de entrada del sistema óptico de captación de imagen. Esta información geométrica nos permite poder transformar la variable topográfica experimental t a un perfil expresado en coordenadas cartesianas (xyz) o cualesquiera otras coordenadas de representación espacial que sean de utilidad y que cualquier experto en la materia sabría calcular, conociendo como se propagan los haces a través de los diferentes medios en base a la ley de la refracción.
El factor de escala ts en la expresión (iv), que se corresponde con las propiedades de absorción del líquido utilizado, debe ser conocido previamente en una realización preferente. Este parámetro se puede obtener, por ejemplo, a través de una calibración del líquido realizada con dos superficies de topografía conocida y midiendo como se ha referido anteriormente. El ejemplo más sencillo puede ser disponer del líquido a calibrar entre una superficie esférica de radio conocido (p.e. una lente) y una superficie plana. Del ajuste de los datos siguiendo el procedimiento anterior se puede extraer ts conociendo la topografía de las superficies y las propiedades de formación de imagen y geométricas específicas del experimento.
Otra posibilidad más directa de realización de la invención es la auto-calibración, sin necesidad de conocer a priori las propiedades del fluido absorbente como ya se ha mencionado en la descripción de la invención. Por ejemplo, si la superficie de referencia tiene grabados escalones o pozos de profundidad de salto conocido, esta información puede ser usada directamente para codificar el resto de la imagen final M para una muestra arbitraria. Al menos hace falta un escalón para poder extrapolar los datos para otras alturas o distancias de perfil.
El uso de escalones de calibración en la superficie de referencia no tiene porqué afectar a la medida de la superficie problema en su conjunto, ya que se puede asumir que, en la
justa inmediatez espacial al escalón, la muestra tiene una superficie continua en general, y por tanto, en el límite de proximidad al escalón, el único salto de perfil o discontinuidad esperable es el del propio escalón de referencia. Es recomendable, por tanto, integrar la información a lo largo de la discontinuidad del escalón, por ambos lados del mismo. El salto en M entre ambas líneas virtuales pegadas al escalón debiera ser constante y conforme al salto de perfil conocido, estableciendo un par de calibración (t-t0, ). Este dato, usado en la ecuación (iv), permite averiguar el parámetro de escala o absorción ts. El uso de más escalones o pares de calibración permitiría corregir errores, por ejemplo las no linealidades esperables si las bandas espectrales diferenciadas no son suficientemente estrechas en relación a las curvas de absorción del fluido.
Alternativamente, la propia muestra puede tener tallados escalones de autocalibración o puede haber detalles de su estructura de la que se conozca con precisión el salto de altura topográfico (pico-valle) o incluso conocer la topografía completa para un detalle de la superficie y actuar de manera similar a la descrita en el párrafo anterior.
En rigor, la expresión (iv) sólo vale si las bandas espectrales de los emisores son muy estrechas en comparación con la variación espectral de la curva de absorción del fluido utilizado. En un caso general, para poder usar emisores y absorbentes de tipo arbitrario, es posible una calibración que establezca a modo de tabla, una relación entre valores de perfil f y valores de la magnitud medida M y que no se corresponda necesariamente con la curva de calibración descrita por la ecuación (iv). La calibración de esta tabla de valores o curva t-M puede ser como se ha mencionado en los párrafos anteriores, es decir, a través de una relación perfilométrica conocida entre dos superficies, actuando las dos como superficies de referencia. Si se desea resolver la ambigüedad en t0 es aconsejable que las dos superficies se toquen en algún punto y ahí sea posible establecer una distancia de separación nula en ese punto particular y de esta manera averiguar el valor de t0 para el resto de la medida.
Como ejemplo práctico de uso de la invención se han obtenido imágenes de diferentes dispositivos micro-ópticos y macro-opticos por el procedimiento descrito y de los que se muestran los resultados perfilométricos mostrados en las figuras 5 y 6, validando la técnica. Para los casos experimentales mostrados en la figuras 5 y 6 se usan concentraciones de mercromina del 0.2% y del 2% en agua respectivamente (ί3~8μηη y ί8~80μηη).
En un modo de realización preferente, se usan dos imágenes tomadas en bandas espectrales diferentes provenientes de la fuente extensa, pero alternativamente se puede usar una fuente policromática como fuente emisora primaria y la ayuda de filtros ópticos
situados en alguna parte del dispositivo, preferentemente en el sistema de captación de imagen. O también, el uso de dos bandas de emisión espectral estrechas en la fuente y la captura de una imagen en un dispositivo de tipo multicanal o RGB (Red, Green, Blue) en la que al menos dos canales (el rojo y el azul por ejemplo) se usan para el procesado de la información. Estas soluciones no son preferentes pues plantean ciertos problemas de alineamiento fino y con ello cierta complicación en la fiabilidad o procesado de la información.
Aplicación industrial
La aplicación general de la invención es la medida de la topografía de cualquier superficie sobre substrato transparente, en especial aplicada a todo tipo y forma de superficie óptica y dispositivos micro-ópticos, por complejos que sean en su forma y elevadas las pendientes que la conforman. Completamente escalable, puede abordar desde dispositivos micro-ópticos, con resolución lateral del orden de la miera, hasta ópticas convencionales, con tamaños de exploración en el rango de decenas o centenares de cm. La resolución en altura alcanzable se sitúa por debajo del nanómetro (10"6 mm) según se deriva de resultados experimentales y analíticos. Estos valores son perfectamente comparables a los mejores sistemas de mayor resolución conocidos basados en interferencia de haces luminosos o en microscopía confocal, pero que tienen otras limitaciones ya mencionadas en el estado de la técnica.
Su aplicación tiene sentido en el control de calidad y caracterización de todo tipo de óptica, por su grado de precisión y adaptabilidad. En especial, resulta de especial ayuda con respecto a las técnicas conocidas a la hora de abordar superficies complejas, como las denominadas de superficie libre ("free-form"), las lentes asféricas, las matrices de lentes y todo tipo de dispositivos micro-ópticos, dónde las técnicas de caracterización conocidas tienen severas limitaciones. Por ejemplo, el tiempo consumido cuando se basan en un barrido de una sonda mecánica u óptica punto a punto, y sobre todo la limitación del ángulo o pendiente máxima que puede tener una superficie para poder ser medida con el estado de la técnica. Es por ello de especial relevancia su aplicación a dispositivos micro-ópticos como micro-prismas y lentes de Fresnel.
Claims
1. Un sistema óptico para medir la topografía de superficies sobre substrato transparente por transmisión de la luz que comprende:
una fuente luminosa extensa cuya superficie (real o aparente) provee de radiación luminosa difusa en al menos dos bandas espectrales diferenciadas, y en la que el cociente de radiancias de dichas bandas espectrales ha de ser constante o muy aproximadamente constante con la posición o punto observado y con la dirección de observación ,
una superficie a medir que conforma una cara de un substrato o medio material que es transparente o traslúcido a las dichas bandas espectrales
una superficie de referencia contra la que comparar y que conforma una cara de una ventana, una lente, un medio óptico o en general, un substrato transparente y homogéneo, y del que se conoce su topografía en conjunto y que permite la observación a través del mismo de la superficie a medir y permite por tanto obtener una imagen de la dicha superficie a medir
un fluido ópticamente absorbente interpuesto o que rellena totalmente el espacio entre la superficie de referencia y la superficie de la que se desea medir la topografía o figura perfilométrica. El fluido debe tener propiedades de absorción diferentes para al menos dos de las bandas espectrales diferenciadas de la fuente luminosa mencionada, un sistema de captación de imagen sensible a la luz emitida por dicha fuente y que pueda registrar imágenes de la superficie a medir a través de los medios interpuestos.
un procedimiento de adquisición de imágenes y de procesado y análisis posterior para obtener de manera cuantitativa la topografía de la superficie objeto de estudio.
2. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque se conocen las propiedades de absorción del fluido (líquido o gas),
3. un dispositivo para medir topografía de superficies de según la reivindicación 1 caracterizado porque el vidrio o substrato de referencia tiene escalones tallados de salto conocido lo que permite auto-calibrar la medida sin necesidad de conocer la absorción del fluido,
4. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque el vidrio de referencia y el sistema óptico de captación de imagen tienen una configuración que permite una observación telecéntrica de la superficie a medir
5. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque la superficie de referencia es plana
6. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque la superficie de referencia es curvada, típicamente esférica (cóncava o convexa)
7. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque la fuente extensa es una esfera integradora en la que se ilumina interiormente con al menos dos fuentes de banda estrecha, típicamente LEDs, pero pueden ser láseres o fuentes policromáticas con filtros ópticos paso-banda
8. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque las imágenes se adquieren a través de filtros espectrales paso- banda interpuestos en el recorrido de la luz, en alguna posición desde los emisores luminosos primarios hasta el propio sensor de imagen.
9. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque en el substrato de referencia, la superficie opuesta a la de referencia tiene un tratamiento antirreflejante en las bandas espectrales de exploración
10. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque el fluido absorbente tiene un índice de refracción menor o igual que el material del substrato de la superficie a muestrear
11. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque el fluido absorbente tiene un índice de refracción mayor o igual que el material del substrato de la superficie a muestrear
12. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque el fluido absorbente tiene un índice de refracción intermedio entre el substrato de muestra y el substrato de referencia
17
HOJA DE REEMPLAZO (Regla 26)
13. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque el fluido absorbente es una disolución acuosa de cualquier absorbente material (líquido o sólido)
14. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque la luz incide primero en la superficie a medir y después en la de referencia,
15. un dispositivo para medir topografía de superficies según la reivindicación 1 caracterizado porque la luz incide primero en la superficie de referencia y después en la que se quiere medir,
16. un dispositivo para medir topografía de superficies según la reivindicación 14 caracterizado porque se sitúa un difusor de luz cercano (o en contacto óptico) al substrato de la muestra a medir por el lado o cara opuesta a la superficie a topografiar.
17. un dispositivo para medir topografía de superficies según la reivindicación 15 caracterizado porque se sitúa un difusor de luz cercano (o en contacto óptico) al substrato de la referencia por el lado o cara opuesta a la superficie de referencia.
18. el uso del sistema óptico según la reivindicación 1 para la medida de topografía de todo tipo de superficies ópticas y no ópticas que permitan el paso de la luz a su través.
19. el uso de un objeto estructurado que permita la calibración de las coordenadas espaciales de un sistema óptico según la reivindicación 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201100830A ES2400436B2 (es) | 2011-07-21 | 2011-07-21 | Perfilometro tridimensional por absorción optica de fluidos. |
ESP201100830 | 2011-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013011172A1 true WO2013011172A1 (es) | 2013-01-24 |
Family
ID=47557702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2012/000207 WO2013011172A1 (es) | 2011-07-21 | 2012-07-20 | Perfilómetro tridimensional por absorción óptica en fluidos |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2400436B2 (es) |
WO (1) | WO2013011172A1 (es) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4431442A1 (de) * | 1994-09-03 | 1996-03-07 | Microspace Mes Und Sensortechn | Vorrichtung für topographische Messungen an Prüflingen |
US20060119862A1 (en) * | 2004-12-03 | 2006-06-08 | Veeco Instruments, Inc. | Profilometry through dispersive medium using collimated light with compensating optics |
US20090027676A1 (en) * | 2007-07-24 | 2009-01-29 | Kent State University | Measurement of the absorption coefficient of light absorbing liquids and their use for quantitative imaging of surface topography |
CN101576377A (zh) * | 2009-06-05 | 2009-11-11 | 广东工业大学 | 利用液面获取产品形状的多视图采集装置及采集方法 |
WO2010082066A2 (en) * | 2009-01-16 | 2010-07-22 | University Of Huddersfield | Surface characteristic determining apparatus |
-
2011
- 2011-07-21 ES ES201100830A patent/ES2400436B2/es active Active
-
2012
- 2012-07-20 WO PCT/ES2012/000207 patent/WO2013011172A1/es active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4431442A1 (de) * | 1994-09-03 | 1996-03-07 | Microspace Mes Und Sensortechn | Vorrichtung für topographische Messungen an Prüflingen |
US20060119862A1 (en) * | 2004-12-03 | 2006-06-08 | Veeco Instruments, Inc. | Profilometry through dispersive medium using collimated light with compensating optics |
US20090027676A1 (en) * | 2007-07-24 | 2009-01-29 | Kent State University | Measurement of the absorption coefficient of light absorbing liquids and their use for quantitative imaging of surface topography |
WO2010082066A2 (en) * | 2009-01-16 | 2010-07-22 | University Of Huddersfield | Surface characteristic determining apparatus |
CN101576377A (zh) * | 2009-06-05 | 2009-11-11 | 广东工业大学 | 利用液面获取产品形状的多视图采集装置及采集方法 |
Also Published As
Publication number | Publication date |
---|---|
ES2400436B2 (es) | 2014-04-24 |
ES2400436A1 (es) | 2013-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200292385A1 (en) | Accessories for handheld spectrometer | |
US11378449B2 (en) | Accessories for handheld spectrometer | |
US10203246B2 (en) | Systems and methods for calibration of a handheld spectrometer | |
ES2875052T3 (es) | Disposición para mediciones ópticas y método relacionado | |
ES2617664T3 (es) | Procedimiento de enfoque automático y dispositivo de enfoque automático | |
ES2314363T3 (es) | Procedimiento de deteccion dinamica sin contacto del perfil de un cuerpo solido. | |
US8530243B2 (en) | Non-scanning SPR system | |
ES2202595T3 (es) | Procedimiento y dispositivo para la medicion del desarrollo de superficies reflectantes. | |
ES2929039T3 (es) | Análisis de datos ópticos con ayuda de histogramas | |
US7808644B2 (en) | Device for optically measuring the shapes of objects and surfaces | |
US1756785A (en) | Optical measuring instrument | |
EP2840353B1 (en) | Scanning apparatus with patterned probe light | |
ES2442380T3 (es) | Sensor de reflexión difusa multiangular de flujo orientado de alta precisión | |
KR20140041890A (ko) | 고해상도 표면 측정 시스템 및 방법 | |
CN202101836U (zh) | 一种基于成像球的光强、视角和散射分布函数测量系统 | |
CA2796709A1 (en) | Device for measuring properties of scatterers, color measuring device for scattered light of gemstones, device for measuring brightness of gemstones, and device for measuring luminescence distribution | |
ES2921155T3 (es) | Dispositivo y método para la medición óptica de un contorno interior de una montura de gafas | |
TWI452270B (zh) | 量測裝置及其量測方法 | |
US20220018762A1 (en) | System and method of non-contact glucose sensing | |
JP2004527753A (ja) | 携帯自動屈折計 | |
ES2569550A1 (es) | Espectrofotómetro | |
ES2400436B2 (es) | Perfilometro tridimensional por absorción optica de fluidos. | |
CN103792208B (zh) | 玻璃器壁的光学和几何参数测量装置及其测量方法 | |
Antón et al. | Optical method for the surface topographic characterization of Fresnel lenses | |
CN101614589B (zh) | 色差仪光学系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12815372 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12815372 Country of ref document: EP Kind code of ref document: A1 |