WO2013008836A1 - Lubricating oil composition and mechanical apparatus - Google Patents

Lubricating oil composition and mechanical apparatus Download PDF

Info

Publication number
WO2013008836A1
WO2013008836A1 PCT/JP2012/067668 JP2012067668W WO2013008836A1 WO 2013008836 A1 WO2013008836 A1 WO 2013008836A1 JP 2012067668 W JP2012067668 W JP 2012067668W WO 2013008836 A1 WO2013008836 A1 WO 2013008836A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil composition
mass
oil
viscosity
Prior art date
Application number
PCT/JP2012/067668
Other languages
French (fr)
Japanese (ja)
Inventor
俊彦 市橋
真人 横溝
浩 白澤
利樹 池田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US14/232,144 priority Critical patent/US20140142006A1/en
Publication of WO2013008836A1 publication Critical patent/WO2013008836A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/50Lubricating compositions characterised by the base-material being a macromolecular compound containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/085Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/0405Siloxanes with specific structure used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • C10M2229/0415Siloxanes with specific structure containing aliphatic substituents used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to a lubricating oil composition based on an organopolysiloxane and a machine using the same.
  • the viscosity index is generally about 90-100.
  • a high viscosity compound called a viscosity index improver (polymethacrylate, etc.) is added to the viscosity index. Is improved to about 150-200.
  • the viscosity at ⁇ 20 ° C. is about 100 times that at 100 ° C., and is 1000 times or more at ⁇ 40 ° C. For this reason, the smooth operation of the machine is hindered at low temperatures, and operating energy is excessively consumed.
  • silicone oil organopolysiloxane
  • silicone oil organopolysiloxane
  • a base oil for lubricating oil has been studied.
  • use of an extreme pressure agent as an impregnation oil for an oil-impregnated bearing has been proposed (see Patent Document 1).
  • JP 2004-331895 A Japanese Patent No. 2579806 Japanese Patent Laid-Open No. 7-278584 JP 2006-143926 A
  • the lubricating oil described in Patent Document 1 has been proposed as an impregnating oil for an oil-impregnated bearing in an extremely high viscosity region after blending an extreme pressure agent, specifically, a region of 40 mm 2 / s or more. Is not enough. Further, the lubricating oils proposed in Patent Documents 2 to 4 are also applicable to devices that hardly require load bearing capacity. That is, there are no examples in which lubricating oil based on silicone oil has been applied to normal hydraulic fluids, gear oils, and transmissions that require high load carrying capacity (wear resistance).
  • An object of the present invention is to provide a lubricating oil composition that is excellent in lubricity and has extremely low dependence of viscosity on temperature, and a mechanical device to which the lubricating oil composition is applied.
  • the present invention provides the following lubricating oil composition and mechanical device.
  • (1) Organopolysiloxane and (B) at least one of sulfur-based compound, phosphorus-based compound, and zinc-based compound are blended, and 100 ° C. kinematic viscosity is 1 mm 2 / s or more.
  • the lubricating oil composition characterized by being less than 40.0 mm ⁇ 2 > / s.
  • (2) The lubricating oil composition of the present invention described above, wherein the component (B) is an extreme pressure agent or an antiwear agent.
  • (3) The lubricating oil composition of the present invention described above, further comprising (C) a friction modifier.
  • the mechanical device is any one of a hydraulic device, a stationary transmission device, an automobile transmission device, a motor / battery cooling device, and a joint.
  • a lubricating oil composition having an extremely high viscosity index (300 or more) and excellent lubricity can be provided. Therefore, a significant energy saving effect can be exhibited by applying the lubricating oil composition of the present invention to a mechanical device such as an industrial machine or an automobile transmission.
  • the lubricating oil composition of the present invention (hereinafter also referred to as “the present composition”) is at least one of (A) an organopolysiloxane and (B) a sulfur compound, a phosphorus compound, and a zinc compound.
  • the kinematic viscosity at 100 ° C. is 1 mm 2 / s or more and less than 40.0 mm 2 / s.
  • the composition will be described in detail.
  • (A) component used for this composition is organopolysiloxane and is the general name of the organosilicon compound also called silicone.
  • the basic skeleton (monomer unit) those represented by the following formula (1) can be preferably used.
  • N is 1.90 or more and 2.05 or less. This preferably has a linear molecular structure, but may partially contain a branched chain in the molecule.
  • the end of the molecular chain is blocked with a triorganosilyl group or a hydroxyl group.
  • the triorganosilyl group include trimethylsilyl group, dimethylvinylsilyl group, methylphenylvinylsilyl group, methyldiphenyl
  • examples include a silyl group, a methyldivinylsilyl group, and a trivinylsilyl group. Of these, dimethylpolysiloxane is particularly preferred.
  • the degree of polymerization of the organopolysiloxane is not limited, but a degree of polymerization of 100 or more and 2000 or less is preferable in order to maintain a liquid state. By using such an organopolysiloxane as a base oil, a lubricating oil composition having a viscosity index of 300 or more can be easily obtained.
  • the preferred ratio of the component (A) in the present composition is 80% by mass or more and 99.5% by mass or less, more preferably 90% by mass or more and 99% by mass or less based on the total amount of the composition.
  • the proportion of the component (A) is less than 80% by mass, the viscosity index may decrease.
  • the proportion of the component (A) exceeds 99.5% by mass, the lubricity and wear resistance may be reduced.
  • the component (B) used in the present composition is at least one of a sulfur compound, a phosphorus compound, and a zinc compound. Although the reason is not necessarily clear, a compound containing these elements gives moderate lubricity when mixed with organopolysiloxane. As such (B) component, what functions as an extreme pressure agent or an antiwear agent can be used conveniently.
  • sulfur compounds include sulfurized olefins, dialkyl polysulfides, diarylalkyl polysulfides, and diaryl polysulfides.
  • Examples of phosphorus compounds include phosphate esters, thiophosphate esters, phosphite esters, alkyl hydrogen phosphites, phosphate ester amine salts, and phosphite ester amine salts.
  • Examples of the zinc-based compound include zinc dithiophosphate (ZnDTP) and zinc dithiocarbamate (ZnDTC).
  • zinc dithiophosphate ZnDTP
  • zinc dithiocarbamate ZnDTC
  • sulfurized oxymolybdenum organophosphorodithioate (MoDTP) and sulfurized oxymolybdenum dithiocarbamate (MoDTC) containing both phosphorus and sulfur may be used individually by 1 type and may be used in combination of 2 or more type.
  • blending amounts are preferably blended as component (B) in an amount of 0.01% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 3% by mass or less, based on the total amount of the composition. More preferably, it is 0.1 mass% or more and 2 mass% or less. If the blending amount of component (B) is too small, lubricity may be insufficient. On the other hand, even if the blending amount of the component (B) is too large, an undissolved product in the organopolysiloxane is generated, and an effect commensurate with the blending amount may not necessarily be obtained. In addition, the undissolved material may cause the lubricating oil passage to be blocked.
  • a friction modifier as the component (C).
  • friction modifiers include organic molybdenum compounds, fatty acids, higher alcohols, fatty acid esters, fats and oils, amines, and amides. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, oleic acid, oleylamine, and oleic amide are particularly preferable in terms of reducing the friction coefficient and preventing sound vibration.
  • the compounding quantity of a friction modifier is not specifically limited, It is preferable that it is the range of 0.01 mass% or more and 10 mass% or less on the basis of the composition whole quantity.
  • the kinematic viscosity at 100 ° C. of the present composition is 1 mm 2 / s or more and less than 40.0 mm 2 / s, preferably 2 mm 2 / s or more and 30 mm 2 / s or less.
  • the 100 ° C. kinematic viscosity is less than 1 mm 2 / s, lubricity and wear resistance are insufficient.
  • the 100 ° C. kinematic viscosity is 40.0 mm 2 / s or more, the solubility of the above-described additive is poor, and the lubricity and wear resistance with respect to the blending amount are insufficient.
  • the kinematic viscosity at 100 ° C. is 40.0 mm 2 / s or more, energy loss increases when applied to machinery that expects a speed change mechanism or a fluid transmission mechanism, which is inappropriate.
  • the viscosity index improver in the present composition, the viscosity index improver, detergent dispersant, antioxidant, metal deactivator, rust inhibitor, surfactant / demulsifier, antifoaming agent, as long as the effects of the invention are not impaired.
  • Corrosion inhibitors, oily agents, acid scavengers, and the like can be appropriately blended and used.
  • the viscosity index improver examples include non-dispersed polymethacrylate, dispersed polymethacrylate, olefin copolymer, dispersed olefin copolymer, and styrene copolymer.
  • the mass average molecular weight of these viscosity index improvers is preferably 5,000 or more and 300,000 or less for, for example, dispersed and non-dispersed polymethacrylates.
  • 800 or more and 100,000 or less are preferable in an olefin type copolymer. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the compounding quantity of a viscosity index improver is not specifically limited, 0.5 mass% or more and 15 mass% or less are preferable and 1 mass% or more and 10 mass% or less are more preferable on the composition whole quantity basis.
  • an ashless dispersant and a metal-based cleaning dispersant can be used.
  • the ashless dispersant include succinimide compounds, boron imide compounds, Mannich dispersants, and acid amide compounds. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the blending amount of the ashless dispersant is not particularly limited, but is preferably 0.1% by mass or more and 20% by mass or less based on the total amount of the composition.
  • the metal detergent / dispersant examples include alkali metal sulfonate, alkali metal phenate, alkali metal salicylate, alkali metal naphthenate, alkaline earth metal sulfonate, alkaline earth metal phenate, alkaline earth metal salicylate, and alkaline earth metal naphthenate. Can be mentioned. These may be used individually by 1 type and may be used in combination of 2 or more type. Although the compounding quantity of a metal type detergent dispersing agent is not specifically limited, It is preferable that it is 0.1 to 10 mass% on the basis of the total amount of the composition.
  • antioxidants examples include amine-based antioxidants, phenol-based antioxidants, and sulfur-based antioxidants. These may be used individually by 1 type and may be used in combination of 2 or more type. Although the compounding quantity of antioxidant is not specifically limited, It is preferable that it is 0.05 mass% or more and 7 mass% or less on the basis of the composition whole quantity.
  • metal deactivators include benzotriazole metal deactivators, tolyltriazole metal deactivators, thiadiazole metal deactivators, and imidazole metal deactivators. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the compounding quantity of a metal deactivator is not specifically limited, It is preferable that it is 0.01 mass% or more and 3 mass% or less on the basis of the composition whole quantity, and is 0.01 mass% or more and 1 mass% or less. It is more preferable.
  • rust preventive examples include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the compounding quantity of a rust preventive agent is not specifically limited, It is preferable that it is 0.01 mass% or more and 1 mass% or less on the basis of the composition whole quantity, and is 0.05 mass% or more and 0.5 mass% or less. More preferably.
  • the surfactant / demulsifier examples include polyalkylene glycol nonionic surfactants. Specific examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the blending amount of the surfactant is not particularly limited, but is preferably 0.01% by mass or more and 3% by mass or less, and 0.01% by mass or more and 1% by mass or less based on the total amount of the composition. Is more preferable.
  • antifoaming agent examples include fluorosilicone oil and fluoroalkyl ether. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the blending amount of the antifoaming agent is not particularly limited, but is preferably 0.005% by mass or more and 0.5% by mass or less based on the total amount of the composition, 0.01% by mass or more, and 0.2% by mass. The following is more preferable.
  • the corrosion inhibitor examples include benzotriazole corrosion inhibitors, benzimidazole corrosion inhibitors, benzothiazole corrosion inhibitors, and thiadiazole corrosion inhibitors. These may be used individually by 1 type and may be used in combination of 2 or more type. Although the compounding quantity of a corrosion inhibitor is not specifically limited, It is preferable that it is the range of 0.01 mass% or more and 1 mass% or less on the composition whole quantity basis.
  • the oily agent include aliphatic monocarboxylic acids, polymerized fatty acids, hydroxy fatty acids, aliphatic monoalcohols, aliphatic monoamines, aliphatic monocarboxylic amides, partial esters of polyhydric alcohols and aliphatic monocarboxylic acids.
  • the compounding quantity of an oiliness agent is not specifically limited, It is preferable that it is the range of 0.01 mass% or more and 10 mass% or less on the basis of the composition whole quantity.
  • An epoxy compound can be used as the acid scavenger.
  • Specific examples include phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the compounding amount of the acid scavenger is not particularly limited, but is preferably in the range of 0.005% by mass or more and 5% by mass or less based on the total amount of the composition.
  • the lubricating oil composition of the present invention described above has a kinematic viscosity within a predetermined range and can maintain the solubility of the additive in the organopolysiloxane, so that the lubricity ( Wear resistance, seizure resistance, etc.). Therefore, it can be preferably applied to a hydraulic device, a stationary transmission, an automobile transmission, a motor / battery cooling device, a joint, and the like.
  • Example 1 Lubricating oil composition (sample oil) assuming industrial gear oil (ISO VG220) was prepared with the formulation shown in Table 1, and the properties of the sample oil and the friction / wear characteristics were evaluated by the following methods. As Reference Example 1, a commercially available gear oil (VG220) was also evaluated.
  • Silicone base oil 1 dimethylpolysiloxane having a viscosity of 350 mm 2 / s at 25 ° C
  • Silicone base oil 2 dimethylpolysiloxane having a viscosity of 100 mm 2 / s at 25 ° C
  • Mineral oil 150BS Hydrorefined paraffinic mineral oil, 40 ° C Viscosity 459mm 2 / s 4)
  • Mineral oil 500N hydrorefined paraffinic mineral oil, 40 ° C.
  • Zinc-based antiwear agent isobutyldithiozinc salt (ZnDTP)
  • Example 1 has a viscosity index exceeding 400, and the dependence of viscosity on temperature is higher than that of Reference Example 1 which is a commercial gear oil (VG220) and Comparative Examples 2 to 4 using a mineral oil as a base oil. Very good. Moreover, the results of the shell four-ball test are in a level comparable to that of Reference Example 1. However, as shown in Comparative Example 1, when only the silicone base oil is used, VI is greatly improved but the seizure resistance is inferior, and seizure occurs immediately in the shell 4-ball test.
  • silicone oil is blended with a sulfur-based extreme pressure agent, a phosphorus-based antiwear agent, or a zinc-based antiwear agent using silicone oil as a base oil, and the composition is made to have a predetermined kinematic viscosity. While maintaining the high VI characteristics, it is possible to achieve both wear resistance performance equivalent to or higher than that of commercially available gear oil, which cannot be inherently obtained with silicone oil alone.
  • Example 4 Comparative Examples 5 to 8, Reference Examples 2 to 3
  • a lubricating oil composition (sample oil) was prepared assuming an industrial gear oil (VG32) with the formulation shown in Table 2, and the properties of the sample oil and the friction and wear characteristics were evaluated by the methods described above.
  • Commercially available hydraulic oil (VG32) was evaluated as Reference Example 2 and commercially available ATF was evaluated as Reference Example 3.
  • Viscosity index improver polymethacrylate, mass average molecular weight 35000 6)
  • Sulfur-based extreme pressure agent n-octyl ester of dithiodiglycolic acid 7)
  • Phosphorous antiwear agent tricresyl phosphate 8)
  • Zinc-based antiwear agent isobutyldithiozinc salt (ZnDTP) 9)
  • Friction modifier alkaline FM): oleylamine 10) Friction modifier (acid FM): oleic acid
  • the sample oils of Examples 4 to 6 are obtained by blending an extreme pressure agent such as sulfur with a relatively low viscosity silicone base oil. Compared with the commercial hydraulic oil (VG32) in Reference Example 2 and the commercial ATF in Reference Example 3, it can be seen that the 100 ° C. kinematic viscosity is about the same and the 40 ° C. viscosity is about 1 ⁇ 2.
  • the sample oil of Comparative Example 5 is a case where only the silicone base oil is used, and baking occurs immediately. However, by adding predetermined additives as in Examples 4 to 6, the silicon base oil It can be seen that while maintaining a high viscosity index, it is effective in reducing friction at low temperatures.
  • Example 5 the viscosity of the sample oil in Example 4 was further reduced, and the deterioration of the wear resistance corresponding to the decrease in the viscosity was supplemented by the addition of the phosphorus-based antiwear agent, and the friction modifier (FM) ) As an alkaline FM, specifically oleylamine.
  • Example 6 is an example in which the viscosity is further reduced, but the necessary seizure resistance is maintained by blending a zinc-based antiwear agent and acidic FM. It should be noted that both high VI and lubricity (seizure resistance, etc.) can be achieved even under such low viscosity.
  • Comparative Example 6 is a study of the method of Example 4 using a mineral oil base oil.
  • a sulfur-based extreme pressure agent By blending a sulfur-based extreme pressure agent with mineral oil, it was possible to obtain the seizure resistance of Example 4 or more.
  • a viscosity index improver was blended to try to improve the viscosity index, the viscosity index was at most 150. In comparison with the sample oil of the example, it is 1/2 or less.
  • mineral oil is used as the base oil, and the blending amount of the viscosity index improver is increased to aim for a higher viscosity index.
  • the viscosity of the mineral oil base oil was lowered within a practical range (lowering the viscosity of the base oil excessively reduces the flash point, which causes a practical problem), and more viscosity index improvers were added.
  • the viscosity index is 219 and 238 at most, which is 1/2 or less of the sample oil of Example, and it can be understood that a high viscosity index of 300 or more cannot be achieved at all. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

A lubricating oil composition is formulated from an organopolysiloxane (A) and at least one species (B) from among a sulfur-based compound, a phosphorous-based compound, and a zinc-based compound, where the 100°C kinematic viscosity is 1 mm2/s to less than 40.0 mm2/s. This lubricating oil composition can be preferably applied to a mechanical apparatus comprising a hydraulic device, stationary transmission device, automotive transmission device, motor/battery cooling device, fitting, and the like.

Description

潤滑油組成物および機械装置Lubricating oil composition and machinery
 本発明は、オルガノポリシロキサンを基油とする潤滑油組成物およびこれを使用した機械装置に関する。 The present invention relates to a lubricating oil composition based on an organopolysiloxane and a machine using the same.
 油圧装置や変速装置においては、そこに使用される潤滑油の温度に対する粘度の変化が大きいと、機械の円滑な作動を損ない、運転エネルギーの損失につながる。特に、寒冷地に立地する風力発電装置、温度変化の激しい地域での増・減速装置や油圧作動装置、また、極寒地から酷暑の地域まで移動する自動車用の自動変速機や無段変速機、さらには冷却装置などでは、用いられる潤滑油の温度に対する粘度の変化が小さいことが望まれている。
 このため、潤滑油の温度に対する粘度の依存性を示す指標として粘度指数(VI)が用いられている。鉱油の場合、一般に粘度指数は90~100程度である。しかし、求められる粘度指数は最低でも150~200程度であることから、鉱油を基油として用いる場合は、粘度指数向上剤と呼ばれる高分子化合物(ポリメタアクリレート等)を配合することで、粘度指数を150~200程度にまで向上させている。しかしながら、粘度指数を200としても、-20℃の粘度は100℃の粘度に比較して100倍程度となり、-40℃においては1000倍以上となる。このため低温下では機械の円滑なる作動が妨げられ、運転エネルギーが過大に消費される。このようなことから温度に対する潤滑油粘度の依存性は限りなく少ないことが望ましく、鉱油に代わる高粘度指数の基油としてポリアルファオレフィンなどが実用化され、低温時の円滑な作動に重きを置く機械装置などに用いられている。しかしながら、鉱油やポリアルファオレフィンを構成する炭化水素は、特性上低温では粘度上昇を避けることができず、さらなる高粘度指数の基油が求められている。
In a hydraulic device and a transmission, if the change in viscosity with respect to the temperature of the lubricating oil used therein is large, the smooth operation of the machine is impaired, leading to a loss of operating energy. In particular, wind power generators located in cold regions, increasing / decreasing devices and hydraulic actuators in regions with rapid temperature changes, automatic transmissions and continuously variable transmissions for automobiles moving from extremely cold regions to extremely hot regions, Furthermore, in a cooling device or the like, it is desired that the change in viscosity with respect to the temperature of the lubricating oil used is small.
For this reason, the viscosity index (VI) is used as an index indicating the dependence of the viscosity on the temperature of the lubricating oil. In the case of mineral oil, the viscosity index is generally about 90-100. However, since the required viscosity index is at least about 150 to 200, when a mineral oil is used as a base oil, a high viscosity compound called a viscosity index improver (polymethacrylate, etc.) is added to the viscosity index. Is improved to about 150-200. However, even if the viscosity index is 200, the viscosity at −20 ° C. is about 100 times that at 100 ° C., and is 1000 times or more at −40 ° C. For this reason, the smooth operation of the machine is hindered at low temperatures, and operating energy is excessively consumed. For this reason, it is desirable that the dependence of lubricating oil viscosity on temperature is as low as possible. Polyalphaolefins have been put to practical use as base oils with a high viscosity index to replace mineral oil, and the emphasis is placed on smooth operation at low temperatures. Used in machinery and equipment. However, hydrocarbons constituting mineral oil and polyalphaolefin cannot avoid an increase in viscosity at low temperatures because of their characteristics, and a base oil having a higher viscosity index is required.
 一方、従来から温度に対する粘度変化の少ない化合物として、シリコーン油(オルガノポリシロキサン)が知られており、航空機や鉄道車両の計器油などの温度に対する粘度変化を問題とする特殊用途に用いられている。そこでシリコーン油を潤滑油の基油として用いることが検討されてきた。例えば、極圧剤を配合することにより、含油軸受の含浸油としての使用が提案されている(特許文献1参照)。また、高粘度(100℃動粘度が2000mm/s以上)のシリコーン油を粘性継ぎ手に使用する例も開示されている(特許文献2、3参照)。さらに、シリコーン油を緩衝器用潤滑油として用いる例も開示されている(特許文献4参照)。 On the other hand, silicone oil (organopolysiloxane) has been conventionally known as a compound having a small viscosity change with respect to temperature, and is used for special applications in which a change in viscosity with temperature is a problem, such as an instrument oil of an aircraft or a railway vehicle. . Therefore, the use of silicone oil as a base oil for lubricating oil has been studied. For example, use of an extreme pressure agent as an impregnation oil for an oil-impregnated bearing has been proposed (see Patent Document 1). Moreover, the example which uses a silicone oil with a high viscosity (100 degreeC kinematic viscosity is 2000 mm < 2 > / s or more) for a viscous joint is also disclosed (refer patent document 2, 3). Furthermore, an example in which silicone oil is used as a lubricant for shock absorbers is also disclosed (see Patent Document 4).
特開2004-331895号公報JP 2004-331895 A 特許第2579806号公報Japanese Patent No. 2579806 特開平7-278584号公報Japanese Patent Laid-Open No. 7-278584 特開2006-143926号公報JP 2006-143926 A
 しかしながら、シリコーン油は温度による粘度変化は少ないものの、滑り摩擦時の鋼-鋼間潤滑性が劣るため、潤滑油として使用することは極めて困難である。特許文献1に記載された潤滑油では、極圧剤を配合した上で極めて高い粘度域、具体的には40mm/s以上の領域における含油軸受の含浸油として提案されているが潤滑性としてはまだ十分ではない。また、特許文献2~4で提案されている潤滑油も、殆ど耐荷重能を要求されない機器への適用である。
 すなわち、通常の油圧作動油やギヤ油、さらには高い耐荷重能(耐摩耗性)を要求される変速装置にシリコーン油を基油とする潤滑油が適用された例はまだない。
However, although the viscosity change with temperature is small, silicone oil is very difficult to use as a lubricating oil because it has poor steel-to-steel lubricity during sliding friction. The lubricating oil described in Patent Document 1 has been proposed as an impregnating oil for an oil-impregnated bearing in an extremely high viscosity region after blending an extreme pressure agent, specifically, a region of 40 mm 2 / s or more. Is not enough. Further, the lubricating oils proposed in Patent Documents 2 to 4 are also applicable to devices that hardly require load bearing capacity.
That is, there are no examples in which lubricating oil based on silicone oil has been applied to normal hydraulic fluids, gear oils, and transmissions that require high load carrying capacity (wear resistance).
 本発明は、潤滑性に優れ、粘度の温度に対する依存性が極めて小さい潤滑油組成物およびそれを適用した機械装置を提供することを目的とする。 An object of the present invention is to provide a lubricating oil composition that is excellent in lubricity and has extremely low dependence of viscosity on temperature, and a mechanical device to which the lubricating oil composition is applied.
 前記課題を解決すべく、本発明は、以下のような潤滑油組成物および機械装置を提供するものである。
(1)(A)オルガノポリシロキサンと、(B)硫黄系化合物、リン系化合物、および亜鉛系化合物のうち少なくともいずれか1種とを配合してなり、100℃動粘度が1mm/s以上、40.0mm/s未満である
 ことを特徴とする潤滑油組成物。
(2)上述した本発明の潤滑油組成物において、前記(B)成分が極圧剤または耐摩耗剤であることを特徴とする潤滑油組成物。
(3)上述した本発明の潤滑油組成物において、さらに(C)摩擦調整剤を配合してなることを特徴とする潤滑油組成物。
(4)上述した本発明の潤滑油組成物において、前記(C)成分が、オレイン酸、オレイルアミン、およびオレイン酸アミドのうち少なくともいずれか1種であることを特徴とする潤滑油組成物。
(5)上述した本発明の潤滑油組成物において、機械装置に使用されることを特徴とする潤滑油組成物。
(6)上述した本発明の潤滑油組成物において、前記機械装置が油圧装置、定置変速装置、自動車変速装置、モーター・バッテリーの冷却装置、および継ぎ手のいずれかであることを特徴とする潤滑油組成物。
(7)上述した本発明の潤滑油組成物を使用することを特徴とする機械装置。
(8)上述した本発明の機械装置において、当該機械装置が油圧装置、定置変速装置、自動車変速装置、モーター・バッテリーの冷却装置、および継ぎ手のいずれかである
 ことを特徴とする機械装置。
In order to solve the above problems, the present invention provides the following lubricating oil composition and mechanical device.
(1) (A) Organopolysiloxane and (B) at least one of sulfur-based compound, phosphorus-based compound, and zinc-based compound are blended, and 100 ° C. kinematic viscosity is 1 mm 2 / s or more. The lubricating oil composition characterized by being less than 40.0 mm < 2 > / s.
(2) The lubricating oil composition of the present invention described above, wherein the component (B) is an extreme pressure agent or an antiwear agent.
(3) The lubricating oil composition of the present invention described above, further comprising (C) a friction modifier.
(4) The lubricating oil composition of the present invention described above, wherein the component (C) is at least one of oleic acid, oleylamine, and oleic amide.
(5) The lubricating oil composition of the present invention described above, wherein the lubricating oil composition is used for a mechanical device.
(6) The lubricating oil composition of the present invention described above, wherein the mechanical device is any one of a hydraulic device, a stationary transmission device, an automobile transmission device, a motor / battery cooling device, and a joint. Composition.
(7) A machine apparatus using the lubricating oil composition of the present invention described above.
(8) In the above-described mechanical device of the present invention, the mechanical device is any one of a hydraulic device, a stationary transmission device, an automobile transmission device, a motor / battery cooling device, and a joint.
 本発明によれば、極めて粘度指数が高く(300以上)、潤滑性に優れた潤滑油組成物を提供できる。それ故、本発明の潤滑油組成物を産業機械や自動車の変速装置等の機械装置に適用することで、大幅な省エネルギー効果を発揮することができる。 According to the present invention, a lubricating oil composition having an extremely high viscosity index (300 or more) and excellent lubricity can be provided. Therefore, a significant energy saving effect can be exhibited by applying the lubricating oil composition of the present invention to a mechanical device such as an industrial machine or an automobile transmission.
 本発明の潤滑油組成物(以下、「本組成物」ともいう)は、(A)オルガノポリシロキサンと、(B)硫黄系化合物、リン系化合物、および亜鉛系化合物のうち少なくともいずれか1種とを配合してなり、100℃動粘度が1mm/s以上、40.0mm/s未満である。以下、本組成物について詳細に説明する。 The lubricating oil composition of the present invention (hereinafter also referred to as “the present composition”) is at least one of (A) an organopolysiloxane and (B) a sulfur compound, a phosphorus compound, and a zinc compound. The kinematic viscosity at 100 ° C. is 1 mm 2 / s or more and less than 40.0 mm 2 / s. Hereinafter, the composition will be described in detail.
 本組成物に用いられる(A)成分は、オルガノポリシロキサンであり、シリコーンとも呼ばれる有機ケイ素化合物の一般名称である。その基本骨格(モノマー単位)としては、下記式(1)で示されるものが好適に使用可能である。
    RnSiO(4-n)/2      (1)
 式(1)中のRは、具体的には、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、ビニル基、アリル基、ブタニエル基などのアルケニル基、フェニル基、トリル基などのアリール基またはこれらの基の炭素原子に結合した水素原子の一部又は全部をハロゲン原子、シアノ基などで置換したクロロメチル基、クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基などから選択される同種又は異種の非置換又は置換1価炭化水素基であり、好ましくは炭素数1以上、10以下、より好ましくは1以上、8以下のものである。また、nは1.90以上、2.05以下である。このものは、直鎖状の分子構造を有することが好ましいが、分子中に一部分枝鎖状のものを含有していてもよい。また、このものは分子鎖末端がトリオルガノシリル基又は水酸基で封鎖されたものとすればよいが、このトリオルガノシリル基としては、トリメチルシリル基、ジメチルビニルシリル基、メチルフェニルビニルシリル基、メチルジフェニルシリル基、メチルジビニルシリル基、トリビニルシリル基などが例示される。これらのなかで特に好ましいのは、ジメチルポリシロキサンである。
(A) component used for this composition is organopolysiloxane and is the general name of the organosilicon compound also called silicone. As the basic skeleton (monomer unit), those represented by the following formula (1) can be preferably used.
RnSiO (4-n) / 2 (1)
Specifically, R in the formula (1) is an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, an alkenyl group such as a vinyl group, an allyl group or a butaniel group, a phenyl group or a tolyl group. Chloromethyl group, chloropropyl group, 3,3,3-trifluoropropyl group in which some or all of hydrogen atoms bonded to carbon atoms of aryl group or these groups are substituted with halogen atom, cyano group, etc., 2- The same or different unsubstituted or substituted monovalent hydrocarbon group selected from a cyanoethyl group and the like, preferably having 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms. N is 1.90 or more and 2.05 or less. This preferably has a linear molecular structure, but may partially contain a branched chain in the molecule. In addition, it is sufficient that the end of the molecular chain is blocked with a triorganosilyl group or a hydroxyl group. Examples of the triorganosilyl group include trimethylsilyl group, dimethylvinylsilyl group, methylphenylvinylsilyl group, methyldiphenyl Examples include a silyl group, a methyldivinylsilyl group, and a trivinylsilyl group. Of these, dimethylpolysiloxane is particularly preferred.
 また、式(1)で示される構造のオルガノポリシロキサン以外にも、非反応性シリコーンオイルと呼ばれているポリエーテル変性アラルキルタイプ、フロロアルキルタイプ、長鎖アルキルタイプ、長鎖アルキル・アラルキルタイプ、高級脂肪酸エステル変性タイプ、高級脂肪酸アミド変性タイプ、およびフェニル変性タイプなども使用できる。
 なお、オルガノポリシロキサンの重合度に限定はないが、液状を維持するためには重合度100以上、2000以下が好ましい。
 このようなオルガノポリシロキサンを基油として用いることで、容易に粘度指数が300以上の潤滑油組成物を得ることができる。
In addition to the organopolysiloxane having the structure represented by the formula (1), a polyether-modified aralkyl type, a fluoroalkyl type, a long-chain alkyl type, a long-chain alkyl / aralkyl type, which is called a non-reactive silicone oil, Higher fatty acid ester-modified types, higher fatty acid amide-modified types, and phenyl-modified types can also be used.
The degree of polymerization of the organopolysiloxane is not limited, but a degree of polymerization of 100 or more and 2000 or less is preferable in order to maintain a liquid state.
By using such an organopolysiloxane as a base oil, a lubricating oil composition having a viscosity index of 300 or more can be easily obtained.
 本組成物における(A)成分の好ましい割合は、組成物全量基準で80質量%以上、99.5質量%以下であり、より好ましくは、90質量%以上、99質量%以下である。(A)成分の割合が80質量%未満であると、粘度指数が低下するおそれがある。一方、(A)成分の割合が99.5質量%を超えると、潤滑性や耐摩耗性が低下するおそれがある。 The preferred ratio of the component (A) in the present composition is 80% by mass or more and 99.5% by mass or less, more preferably 90% by mass or more and 99% by mass or less based on the total amount of the composition. When the proportion of the component (A) is less than 80% by mass, the viscosity index may decrease. On the other hand, if the proportion of the component (A) exceeds 99.5% by mass, the lubricity and wear resistance may be reduced.
 本組成物に用いられる(B)成分は、硫黄系化合物、リン系化合物、および亜鉛系化合物のうち少なくともいずれか1種である。必ずしも理由は明確ではないが、これらの元素を含んだ化合物は、オルガノポリシロキサンに混合すると適度の潤滑性を与える。
 このような(B)成分としては、極圧剤や耐摩耗剤として機能するものが好適に使用できる。例えば、硫黄系化合物としては、硫化オレフィン、ジアルキルポリスルフィド、ジアリールアルキルポリスルフィド、およびジアリールポリスルフィドなどが挙げられる。リン系化合物としては、リン酸エステル、チオリン酸エステル、亜リン酸エステル、アルキルハイドロゲンホスファイト、リン酸エステルアミン塩、および亜リン酸エステルアミン塩などが挙げられる。亜鉛系化合物としては、ジチオリン酸亜鉛(ZnDTP)やジチオカルバミン酸亜鉛(ZnDTC)などが挙げられる。また、リンと硫黄の双方を含む硫化オキシモリブデンオルガノホスホロジチオエート(MoDTP)や硫化オキシモリブデンジチオカルバメート(MoDTC)なども好ましく挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The component (B) used in the present composition is at least one of a sulfur compound, a phosphorus compound, and a zinc compound. Although the reason is not necessarily clear, a compound containing these elements gives moderate lubricity when mixed with organopolysiloxane.
As such (B) component, what functions as an extreme pressure agent or an antiwear agent can be used conveniently. For example, examples of sulfur compounds include sulfurized olefins, dialkyl polysulfides, diarylalkyl polysulfides, and diaryl polysulfides. Examples of phosphorus compounds include phosphate esters, thiophosphate esters, phosphite esters, alkyl hydrogen phosphites, phosphate ester amine salts, and phosphite ester amine salts. Examples of the zinc-based compound include zinc dithiophosphate (ZnDTP) and zinc dithiocarbamate (ZnDTC). Also preferred are sulfurized oxymolybdenum organophosphorodithioate (MoDTP) and sulfurized oxymolybdenum dithiocarbamate (MoDTC) containing both phosphorus and sulfur. These may be used individually by 1 type and may be used in combination of 2 or more type.
 これらの配合量は、(B)成分として、組成物全量基準で0.01質量%以上、5質量%以下配合されることが好ましく、より好ましくは、0.1質量%以上、3質量%以下であり、さらに好ましくは0.1質量%以上、2質量%以下である。(B)成分の配合量が少なすぎると、潤滑性が不十分となるおそれがある。一方、(B)成分の配合量が多すぎても、オルガノポリシロキサンへの未溶解物が生じてしまい、配合量に見合った効果は必ずしも得られない可能性がある。また、未溶解物により潤滑油通路の閉塞を引き起こすおそれもある。 These blending amounts are preferably blended as component (B) in an amount of 0.01% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 3% by mass or less, based on the total amount of the composition. More preferably, it is 0.1 mass% or more and 2 mass% or less. If the blending amount of component (B) is too small, lubricity may be insufficient. On the other hand, even if the blending amount of the component (B) is too large, an undissolved product in the organopolysiloxane is generated, and an effect commensurate with the blending amount may not necessarily be obtained. In addition, the undissolved material may cause the lubricating oil passage to be blocked.
 本組成物には、さらに、(C)成分として摩擦調整剤を配合することが好ましい。このような摩擦調整剤としては、例えば、有機モリブデン系化合物、脂肪酸、高級アルコール、脂肪酸エステル、油脂類、アミン、およびアミド等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらの中では、特にオレイン酸、オレイルアミン、およびオレイン酸アミドが摩擦係数の低減や音振動の防止の点で好ましい。
 摩擦調整剤の配合量は、特に限定されないが、組成物全量基準で、0.01質量%以上10質量%以下の範囲であることが好ましい。
In the present composition, it is preferable to further blend a friction modifier as the component (C). Examples of such friction modifiers include organic molybdenum compounds, fatty acids, higher alcohols, fatty acid esters, fats and oils, amines, and amides. These may be used individually by 1 type and may be used in combination of 2 or more type.
Among these, oleic acid, oleylamine, and oleic amide are particularly preferable in terms of reducing the friction coefficient and preventing sound vibration.
Although the compounding quantity of a friction modifier is not specifically limited, It is preferable that it is the range of 0.01 mass% or more and 10 mass% or less on the basis of the composition whole quantity.
 本組成物の100℃動粘度は、1mm/s以上、40.0mm/s未満であり、好ましくは2mm/s以上、30mm/s以下である。100℃動粘度が1mm/s未満であると、潤滑性や耐摩耗性が不十分なものとなる。一方、100℃動粘度が40.0mm/s以上であると、上述した添加剤の溶解性が劣り、配合量に対する潤滑性や耐摩耗性が不十分なものとなる。また、100℃動粘度が40.0mm/s以上であると変速機構や流体伝達機構を期待する機械類に適用した場合にエネルギーロスが大きくなり、不適当なものとなる。 The kinematic viscosity at 100 ° C. of the present composition is 1 mm 2 / s or more and less than 40.0 mm 2 / s, preferably 2 mm 2 / s or more and 30 mm 2 / s or less. When the 100 ° C. kinematic viscosity is less than 1 mm 2 / s, lubricity and wear resistance are insufficient. On the other hand, when the 100 ° C. kinematic viscosity is 40.0 mm 2 / s or more, the solubility of the above-described additive is poor, and the lubricity and wear resistance with respect to the blending amount are insufficient. Further, when the kinematic viscosity at 100 ° C. is 40.0 mm 2 / s or more, energy loss increases when applied to machinery that expects a speed change mechanism or a fluid transmission mechanism, which is inappropriate.
 なお、本組成物には、発明の効果を阻害しない範囲で、粘度指数向上剤、清浄分散剤、酸化防止剤、金属不活性剤、防錆剤、界面活性剤・抗乳化剤、消泡剤、腐食防止剤、油性剤および酸捕捉剤などを適宜配合して使用することができる。 In the present composition, the viscosity index improver, detergent dispersant, antioxidant, metal deactivator, rust inhibitor, surfactant / demulsifier, antifoaming agent, as long as the effects of the invention are not impaired. Corrosion inhibitors, oily agents, acid scavengers, and the like can be appropriately blended and used.
 粘度指数向上剤としては、例えば、非分散型ポリメタクリレート、分散型ポリメタクリレート、オレフィン系共重合体、分散型オレフィン系共重合体、およびスチレン系共重合体等が挙げられる。これら粘度指数向上剤の質量平均分子量は、例えば分散型および非分散型ポリメタクリレートでは5000以上300000以下が好ましい。また、オレフィン系共重合体では800以上100000以下が好ましい。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。粘度指数向上剤の配合量は、特に限定されないが、組成物全量基準で、0.5質量%以上、15質量%以下が好ましく、1質量%以上、10質量%以下がより好ましい。 Examples of the viscosity index improver include non-dispersed polymethacrylate, dispersed polymethacrylate, olefin copolymer, dispersed olefin copolymer, and styrene copolymer. The mass average molecular weight of these viscosity index improvers is preferably 5,000 or more and 300,000 or less for, for example, dispersed and non-dispersed polymethacrylates. Moreover, 800 or more and 100,000 or less are preferable in an olefin type copolymer. These may be used individually by 1 type and may be used in combination of 2 or more type. Although the compounding quantity of a viscosity index improver is not specifically limited, 0.5 mass% or more and 15 mass% or less are preferable and 1 mass% or more and 10 mass% or less are more preferable on the composition whole quantity basis.
 清浄分散剤としては、無灰分散剤、金属系清浄分散剤を用いることができる。
 無灰分散剤としては、例えば、コハク酸イミド化合物、ホウ素系イミド化合物、マンニッヒ系分散剤、酸アミド系化合物が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。無灰系分散剤の配合量は、特に限定されないが、組成物全量基準で、0.1質量%以上、20質量%以下であることが好ましい。
 金属系清浄分散剤としては、例えば、アルカリ金属スルホネート、アルカリ金属フェネート、アルカリ金属サリシレート、アルカリ金属ナフテネート、アルカリ土類金属スルホネート、アルカリ土類金属フェネート、アルカリ土類金属サリシレート、アルカリ土類金属ナフテネートが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。金属系清浄分散剤の配合量は、特に限定されないが、組成物全量基準で、0.1質量%以上、10質量%以下であることが好ましい。
As the cleaning dispersant, an ashless dispersant and a metal-based cleaning dispersant can be used.
Examples of the ashless dispersant include succinimide compounds, boron imide compounds, Mannich dispersants, and acid amide compounds. These may be used individually by 1 type and may be used in combination of 2 or more type. The blending amount of the ashless dispersant is not particularly limited, but is preferably 0.1% by mass or more and 20% by mass or less based on the total amount of the composition.
Examples of the metal detergent / dispersant include alkali metal sulfonate, alkali metal phenate, alkali metal salicylate, alkali metal naphthenate, alkaline earth metal sulfonate, alkaline earth metal phenate, alkaline earth metal salicylate, and alkaline earth metal naphthenate. Can be mentioned. These may be used individually by 1 type and may be used in combination of 2 or more type. Although the compounding quantity of a metal type detergent dispersing agent is not specifically limited, It is preferable that it is 0.1 to 10 mass% on the basis of the total amount of the composition.
 酸化防止剤としては、例えば、アミン系の酸化防止剤、フェノール系の酸化防止剤、硫黄系の酸化防止剤が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。酸化防止剤の配合量は、特に限定されないが、組成物全量基準で、0.05質量%以上、7質量%以下であることが好ましい。
 金属不活性剤としては、例えば、ベンゾトリアゾール系金属不活性剤、トリルトリアゾール系金属不活性剤、チアジアゾール系金属不活性剤、およびイミダゾール系金属不活性剤が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。金属不活性剤の配合量は、特に限定されないが、組成物全量基準で、0.01質量%以上、3質量%以下であることが好ましく、0.01質量%以上、1質量%以下であることがより好ましい。
Examples of the antioxidant include amine-based antioxidants, phenol-based antioxidants, and sulfur-based antioxidants. These may be used individually by 1 type and may be used in combination of 2 or more type. Although the compounding quantity of antioxidant is not specifically limited, It is preferable that it is 0.05 mass% or more and 7 mass% or less on the basis of the composition whole quantity.
Examples of metal deactivators include benzotriazole metal deactivators, tolyltriazole metal deactivators, thiadiazole metal deactivators, and imidazole metal deactivators. These may be used individually by 1 type and may be used in combination of 2 or more type. Although the compounding quantity of a metal deactivator is not specifically limited, It is preferable that it is 0.01 mass% or more and 3 mass% or less on the basis of the composition whole quantity, and is 0.01 mass% or more and 1 mass% or less. It is more preferable.
 防錆剤としては、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、および多価アルコールエステルが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。防錆剤の配合量は、特に限定されないが、組成物全量基準で、0.01質量%以上、1質量%以下であることが好ましく、0.05質量%以上、0.5質量%以下であることがより好ましい。 Examples of the rust preventive include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester. These may be used individually by 1 type and may be used in combination of 2 or more type. Although the compounding quantity of a rust preventive agent is not specifically limited, It is preferable that it is 0.01 mass% or more and 1 mass% or less on the basis of the composition whole quantity, and is 0.05 mass% or more and 0.5 mass% or less. More preferably.
 界面活性剤・抗乳化剤としては、例えば、ポリアルキレングリコール系非イオン性界面活性剤が挙げられる。具体的には、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルナフチルエーテルが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。界面活性剤の配合量は、特に限定されないが、組成物全量基準で、0.01質量%以上、3質量%以下であることが好ましく、0.01質量%以上、1質量%以下であることがより好ましい。 Examples of the surfactant / demulsifier include polyalkylene glycol nonionic surfactants. Specific examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether. These may be used individually by 1 type and may be used in combination of 2 or more type. The blending amount of the surfactant is not particularly limited, but is preferably 0.01% by mass or more and 3% by mass or less, and 0.01% by mass or more and 1% by mass or less based on the total amount of the composition. Is more preferable.
 消泡剤としては、例えば、フルオロシリコーン油、フルオロアルキルエーテルが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。消泡剤の配合量は、特に限定されないが、組成物全量基準で、0.005質量%以上、0.5質量%以下であることが好ましく、0.01質量%以上、0.2質量%以下であることがより好ましい。 Examples of the antifoaming agent include fluorosilicone oil and fluoroalkyl ether. These may be used individually by 1 type and may be used in combination of 2 or more type. The blending amount of the antifoaming agent is not particularly limited, but is preferably 0.005% by mass or more and 0.5% by mass or less based on the total amount of the composition, 0.01% by mass or more, and 0.2% by mass. The following is more preferable.
 腐食防止剤としては、例えば、ベンゾトリアゾール系腐食防止剤、ベンズイミダゾール系腐食防止剤、ベンゾチアゾール系腐食防止剤、チアジアゾール系腐食防止剤が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。腐食防止剤の配合量は、特に限定されないが、組成物全量基準で、0.01質量%以上、1質量%以下の範囲であることが好ましい。
 油性剤としては、例えば、脂肪族モノカルボン酸、重合脂肪酸、ヒドロキシ脂肪酸、脂肪族モノアルコール、脂肪族モノアミン、脂肪族モノカルボン酸アミド、多価アルコールと脂肪族モノカルボン酸との部分エステルが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。油性剤の配合量は、特に限定されないが、組成物全量基準で、0.01質量%以上、10質量%以下の範囲であることが好ましい。
Examples of the corrosion inhibitor include benzotriazole corrosion inhibitors, benzimidazole corrosion inhibitors, benzothiazole corrosion inhibitors, and thiadiazole corrosion inhibitors. These may be used individually by 1 type and may be used in combination of 2 or more type. Although the compounding quantity of a corrosion inhibitor is not specifically limited, It is preferable that it is the range of 0.01 mass% or more and 1 mass% or less on the composition whole quantity basis.
Examples of the oily agent include aliphatic monocarboxylic acids, polymerized fatty acids, hydroxy fatty acids, aliphatic monoalcohols, aliphatic monoamines, aliphatic monocarboxylic amides, partial esters of polyhydric alcohols and aliphatic monocarboxylic acids. It is done. These may be used individually by 1 type and may be used in combination of 2 or more type. Although the compounding quantity of an oiliness agent is not specifically limited, It is preferable that it is the range of 0.01 mass% or more and 10 mass% or less on the basis of the composition whole quantity.
 酸捕捉剤としては、エポキシ化合物を用いることができる。具体的には、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシド、エポキシ化大豆油が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。酸捕捉剤の配合量は、特に限定されないが、組成物全量基準で、0.005質量%以上、5質量%以下の範囲であることが好ましい。 An epoxy compound can be used as the acid scavenger. Specific examples include phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, α-olefin oxide, and epoxidized soybean oil. These may be used individually by 1 type and may be used in combination of 2 or more type. The compounding amount of the acid scavenger is not particularly limited, but is preferably in the range of 0.005% by mass or more and 5% by mass or less based on the total amount of the composition.
 上述した本発明の潤滑油組成物は、動粘度が所定の範囲であり、添加剤のオルガノポリシロキサンに対する溶解性を保つことができるので、オルガノポリシロキサンの高粘度指数を保ったまま潤滑性(耐摩耗性、耐焼付性等)を発揮できるようになる。それ故、油圧装置、定置変速装置、自動車変速装置、モーター・バッテリーの冷却装置、および継ぎ手等に好ましく適用することができる。 The lubricating oil composition of the present invention described above has a kinematic viscosity within a predetermined range and can maintain the solubility of the additive in the organopolysiloxane, so that the lubricity ( Wear resistance, seizure resistance, etc.). Therefore, it can be preferably applied to a hydraulic device, a stationary transmission, an automobile transmission, a motor / battery cooling device, a joint, and the like.
  以下、実施例および比較例を挙げて、本発明をより具体的に説明する。なお、本発明は実施例の内容に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the content of an Example at all.
[実施例1~3、比較例1~4、参考例1]
 表1に示す配合処方で、工業用ギヤ油(ISO VG220)を想定した潤滑油組成物(試料油)を調製し、以下に示す方法で試料油の性状および、摩擦・摩耗特性を評価した。参考例1として市販ギヤ油(VG220)についても評価した。
[Examples 1 to 3, Comparative Examples 1 to 4, Reference Example 1]
Lubricating oil composition (sample oil) assuming industrial gear oil (ISO VG220) was prepared with the formulation shown in Table 1, and the properties of the sample oil and the friction / wear characteristics were evaluated by the following methods. As Reference Example 1, a commercially available gear oil (VG220) was also evaluated.
(1)動粘度(40℃、80℃、100℃)および粘度指数:
 JIS K 2283の方法により測定した。
(2)シェル4球試験:
 ASTM D2783に記載の方法に準拠して、回転数1800rpmの試験条件における最終無焼付荷重(LNL、単位:N)、融着荷重(WL、単位:N)、荷重-摩耗指数(LWI、単位:N)を求めた。
(1) Kinematic viscosity (40 ° C, 80 ° C, 100 ° C) and viscosity index:
It was measured by the method of JIS K 2283.
(2) Shell 4-ball test:
In accordance with the method described in ASTM D2783, the final seizure load (LNL, unit: N), fusion load (WL, unit: N), load-wear index (LWI, unit: 1800 rpm) under test conditions. N).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
1)シリコーン基油1:25℃粘度350mm/sのジメチルポリシロキサン
2)シリコーン基油2:25℃粘度100mm/sのジメチルポリシロキサン
3)鉱油150BS:水素化精製パラフィン系鉱油、40℃粘度459mm/s
4)鉱油500N:水素化精製パラフィン系鉱油、40℃粘度88.95mm/s
5)硫黄系極圧剤:ジチオジグリコール酸nオクチルエステル 
6)リン系耐摩耗剤:トリクレジルフォスフェート 
7)亜鉛系耐摩耗剤:イソブチルジチオ亜鉛塩(ZnDTP)
1) Silicone base oil 1: dimethylpolysiloxane having a viscosity of 350 mm 2 / s at 25 ° C 2) Silicone base oil 2: dimethylpolysiloxane having a viscosity of 100 mm 2 / s at 25 ° C 3) Mineral oil 150BS: Hydrorefined paraffinic mineral oil, 40 ° C Viscosity 459mm 2 / s
4) Mineral oil 500N: hydrorefined paraffinic mineral oil, 40 ° C. viscosity 88.95 mm 2 / s
5) Sulfur-based extreme pressure agent: Dithiodiglycolic acid n-octyl ester
6) Phosphorous antiwear agent: tricresyl phosphate
7) Zinc-based antiwear agent: isobutyldithiozinc salt (ZnDTP)
[評価結果]
 実施例1~3はいずれも粘度指数が400を超えており、粘度の温度に対する依存性は市販ギヤ油(VG220)である参考例1や、鉱油を基油とした比較例2~4よりも非常に優れている。しかも、シェル4球試験の結果は、参考例1と比較しても遜色ないレベルにある。ただし、比較例1に示すようにシリコーン基油のみを用いた場合、VIは大きく向上するものの耐焼付性に劣り、シェル4球試験では即座に焼き付きが発生してしまう。
 以上のことから、シリコーン油を基油として硫黄系極圧剤、リン系耐摩耗剤、あるいは亜鉛系耐摩耗剤のいずれかを配合し、さらに組成物を所定の動粘度とすることでシリコーン油の高VI特性を維持しながら、シリコーン油単独では本来持ち得ない、市販ギヤ油と同等以上の耐摩耗性能を両立させることが可能となった。
[Evaluation results]
Each of Examples 1 to 3 has a viscosity index exceeding 400, and the dependence of viscosity on temperature is higher than that of Reference Example 1 which is a commercial gear oil (VG220) and Comparative Examples 2 to 4 using a mineral oil as a base oil. Very good. Moreover, the results of the shell four-ball test are in a level comparable to that of Reference Example 1. However, as shown in Comparative Example 1, when only the silicone base oil is used, VI is greatly improved but the seizure resistance is inferior, and seizure occurs immediately in the shell 4-ball test.
In view of the above, silicone oil is blended with a sulfur-based extreme pressure agent, a phosphorus-based antiwear agent, or a zinc-based antiwear agent using silicone oil as a base oil, and the composition is made to have a predetermined kinematic viscosity. While maintaining the high VI characteristics, it is possible to achieve both wear resistance performance equivalent to or higher than that of commercially available gear oil, which cannot be inherently obtained with silicone oil alone.
[実施例4~6、比較例5~8、参考例2~3]
 表2に示す配合処方で、工業用ギヤ油(VG32)を想定した潤滑油組成物(試料油)を調製し、前記した方法で試料油の性状および、摩擦・摩耗特性を評価した。参考例2として市販油圧油(VG32)、参考例3として市販ATFについても評価した。
[Examples 4 to 6, Comparative Examples 5 to 8, Reference Examples 2 to 3]
A lubricating oil composition (sample oil) was prepared assuming an industrial gear oil (VG32) with the formulation shown in Table 2, and the properties of the sample oil and the friction and wear characteristics were evaluated by the methods described above. Commercially available hydraulic oil (VG32) was evaluated as Reference Example 2 and commercially available ATF was evaluated as Reference Example 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1)シリコーン基油3:25℃粘度20mm/sのジメチルポリシロキサン
2)シリコーン基油4:25℃粘度10mm/sのジメチルポリシロキサン
3)鉱油150N:水素化精製パラフィン系鉱油、100℃粘度4.2mm/s、VI 105
4)鉱油60N:水素化精製パラフィン系鉱油、100℃粘度 2.2mm/s、VI 112 
5)粘度指数向上剤:ポリメタアクリレート、質量平均分子量 35000
6)硫黄系極圧剤:ジチオジグリコール酸nオクチルエステル 
7)リン系耐摩耗剤:トリクレジルフォスフェート 
8)亜鉛系耐摩耗剤:イソブチルジチオ亜鉛塩(ZnDTP)
9)摩擦調整剤(アルカリ系FM):オレイルアミン 
10)摩擦調整剤(酸系FM):オレイン酸 
1) Silicone Base Oil 3: 25 ° C. Viscosity 20 mm 2 / s of dimethylpolysiloxane 2) silicone base oil 4: 25 ° C. Dimethyl polysiloxane 3 of viscosity 10 mm 2 / s) Mineral oil 150 N: hydrotreated paraffinic mineral oil, 100 ° C. Viscosity 4.2 mm 2 / s, VI 105
4) Mineral oil 60N: hydrorefined paraffinic mineral oil, 100 ° C. viscosity 2.2 mm 2 / s, VI 112
5) Viscosity index improver: polymethacrylate, mass average molecular weight 35000
6) Sulfur-based extreme pressure agent: n-octyl ester of dithiodiglycolic acid
7) Phosphorous antiwear agent: tricresyl phosphate
8) Zinc-based antiwear agent: isobutyldithiozinc salt (ZnDTP)
9) Friction modifier (alkaline FM): oleylamine
10) Friction modifier (acid FM): oleic acid
[評価結果]
 実施例4~6の試料油は、比較的低粘度のシリコーン基油に硫黄系等の極圧剤を配合したものである。参考例2の市販油圧油(VG32)や参考例3の市販ATFと比較すると100℃動粘度は同程度で40℃粘度は約1/2であることがわかる。
 比較例5の試料油は、シリコ-ン基油のみの場合であり、すぐに焼き付けを起こしてしまうが、実施例4~6のように所定の添加剤を配合することで、シリコンーン基油の高粘度指数を維持しながら、低温時の摩擦低減に効果があることがわかる。
[Evaluation results]
The sample oils of Examples 4 to 6 are obtained by blending an extreme pressure agent such as sulfur with a relatively low viscosity silicone base oil. Compared with the commercial hydraulic oil (VG32) in Reference Example 2 and the commercial ATF in Reference Example 3, it can be seen that the 100 ° C. kinematic viscosity is about the same and the 40 ° C. viscosity is about ½.
The sample oil of Comparative Example 5 is a case where only the silicone base oil is used, and baking occurs immediately. However, by adding predetermined additives as in Examples 4 to 6, the silicon base oil It can be seen that while maintaining a high viscosity index, it is effective in reducing friction at low temperatures.
 なお、実施例5は実施例4における試料油の粘度をさらに低粘度化して、粘度が下がった分の耐摩耗性の悪化をリン系耐摩耗剤の配合で補完し、さらに摩擦調整剤(FM)としてアルカリ性のFM、具体的にはオレイルアミンを配合したものである。また、実施例6は、さらに低粘度化した例であるが、亜鉛系耐摩耗剤および酸性FMを配合することで、必要とする耐焼付性を保持している。これらのような低粘度下においても、高VI化と潤滑性(耐焼付性等)の両立が可能であることは特筆すべきことである。 In Example 5, the viscosity of the sample oil in Example 4 was further reduced, and the deterioration of the wear resistance corresponding to the decrease in the viscosity was supplemented by the addition of the phosphorus-based antiwear agent, and the friction modifier (FM) ) As an alkaline FM, specifically oleylamine. Further, Example 6 is an example in which the viscosity is further reduced, but the necessary seizure resistance is maintained by blending a zinc-based antiwear agent and acidic FM. It should be noted that both high VI and lubricity (seizure resistance, etc.) can be achieved even under such low viscosity.
 一方、比較例6は実施例4の手法を鉱油系基油で検討したものである。鉱油に硫黄系極圧剤を配合することで実施例4以上の耐焼付性を得ることができたが、粘度指数向上剤を配合し粘度指数の向上を試みても粘度指数はせいぜい150であり、実施例の試料油に比較し1/2以下である。比較例7、8はそれぞれ鉱油を基油として粘度指数向上剤の配合量を増し、より高粘度指数を狙ったものである。鉱油系基油の粘度を実用に耐える範囲(基油の粘度を過剰に下げると引火点が低下し、実用上問題となる。)で下げ、より多くの粘度指数向上剤を配合してみた。その結果、比較例7、8の試料油でも粘度指数はせいぜい、219、238であり、実施例の試料油の1/2以下であり、300以上の高粘度指数は到底達成できないことが理解できる。 On the other hand, Comparative Example 6 is a study of the method of Example 4 using a mineral oil base oil. By blending a sulfur-based extreme pressure agent with mineral oil, it was possible to obtain the seizure resistance of Example 4 or more. However, even when a viscosity index improver was blended to try to improve the viscosity index, the viscosity index was at most 150. In comparison with the sample oil of the example, it is 1/2 or less. In Comparative Examples 7 and 8, mineral oil is used as the base oil, and the blending amount of the viscosity index improver is increased to aim for a higher viscosity index. The viscosity of the mineral oil base oil was lowered within a practical range (lowering the viscosity of the base oil excessively reduces the flash point, which causes a practical problem), and more viscosity index improvers were added. As a result, even in the sample oils of Comparative Examples 7 and 8, the viscosity index is 219 and 238 at most, which is 1/2 or less of the sample oil of Example, and it can be understood that a high viscosity index of 300 or more cannot be achieved at all. .

Claims (8)

  1.  (A)オルガノポリシロキサンと、(B)硫黄系化合物、リン系化合物、および亜鉛系化合物のうち少なくともいずれか1種とを配合してなり、100℃動粘度が1mm/s以上、40.0mm/s未満である
     ことを特徴とする潤滑油組成物。
    (A) Organopolysiloxane and (B) at least one of sulfur-based compound, phosphorus-based compound, and zinc-based compound are blended, and 100 ° C. kinematic viscosity is 1 mm 2 / s or more, 40. It is less than 0 mm < 2 > / s, The lubricating oil composition characterized by the above-mentioned.
  2.  請求項1に記載の潤滑油組成物において、
     前記(B)成分が極圧剤または耐摩耗剤である
     ことを特徴とする潤滑油組成物。
    The lubricating oil composition according to claim 1, wherein
    The said (B) component is an extreme pressure agent or an antiwear agent. The lubricating oil composition characterized by the above-mentioned.
  3.  請求項1または請求項2に記載の潤滑油組成物において、
     さらに(C)摩擦調整剤を配合してなる
     ことを特徴とする潤滑油組成物。
    The lubricating oil composition according to claim 1 or 2,
    Further, (C) A lubricating oil composition comprising a friction modifier.
  4.  請求項3に記載の潤滑油組成物において、
     前記(C)成分が、オレイン酸、オレイルアミン、およびオレイン酸アミドのうち少なくともいずれか1種である
     ことを特徴とする潤滑油組成物。
    In the lubricating oil composition according to claim 3,
    The lubricating oil composition, wherein the component (C) is at least one of oleic acid, oleylamine, and oleic amide.
  5.  請求項1から請求項4までのいずれか1項に記載の潤滑油組成物において、
     機械装置に使用される
     ことを特徴とする潤滑油組成物。
    In the lubricating oil composition according to any one of claims 1 to 4,
    A lubricating oil composition characterized by being used in a mechanical device.
  6.  請求項5に記載の潤滑油組成物において、
     前記機械装置が油圧装置、定置変速装置、自動車変速装置、モーター・バッテリーの冷却装置、および継ぎ手のいずれかである
     ことを特徴とする潤滑油組成物。
    The lubricating oil composition according to claim 5, wherein
    The lubricating oil composition, wherein the mechanical device is one of a hydraulic device, a stationary transmission device, an automobile transmission device, a motor / battery cooling device, and a joint.
  7.  請求項5に記載の潤滑油組成物を使用する
     ことを特徴とする機械装置。
    A mechanical apparatus using the lubricating oil composition according to claim 5.
  8.  請求項7に記載の機械装置において、
     当該機械装置が油圧装置、定置変速装置、自動車変速装置、モーター・バッテリーの冷却装置、および継ぎ手のいずれかである
     ことを特徴とする機械装置。
    The mechanical device according to claim 7,
    The mechanical device is any one of a hydraulic device, a stationary transmission device, an automobile transmission device, a motor / battery cooling device, and a joint.
PCT/JP2012/067668 2011-07-11 2012-07-11 Lubricating oil composition and mechanical apparatus WO2013008836A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/232,144 US20140142006A1 (en) 2011-07-11 2012-07-11 Lubricating oil composition and mechanical apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-153157 2011-07-11
JP2011153157A JP2013018872A (en) 2011-07-11 2011-07-11 Lubricating oil composition and mechanical apparatus

Publications (1)

Publication Number Publication Date
WO2013008836A1 true WO2013008836A1 (en) 2013-01-17

Family

ID=47506119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067668 WO2013008836A1 (en) 2011-07-11 2012-07-11 Lubricating oil composition and mechanical apparatus

Country Status (3)

Country Link
US (1) US20140142006A1 (en)
JP (1) JP2013018872A (en)
WO (1) WO2013008836A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141576A (en) * 2013-01-23 2014-08-07 Cosmo Oil Lubricants Co Ltd Hydraulic fluid composition
JP2019512171A (en) * 2016-02-29 2019-05-09 ロード コーポレーション Magnetorheological fluid additives

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109790293B (en) * 2016-05-11 2022-08-12 联邦科学和工业研究组织 Polysiloxane hydraulic fluid
CN108034482A (en) * 2017-12-13 2018-05-15 金雪驰科技(马鞍山)有限公司 A kind of lubricating oil and its application
EP3824051A1 (en) * 2018-07-18 2021-05-26 Ddp Specialty Electronic Materials Us 9, Llc. Lubricant grease composition based on silicone base stock
EP3663382B1 (en) * 2018-12-06 2021-08-04 Oleon N.V. Sulphur-containing esterified polyol

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379699A (en) * 1988-06-20 1991-04-04 Tonen Corp Improved-lubricity silicone-based fluid composition and improvement of lubricity of silicone-based fluid
JPH08183977A (en) * 1994-12-28 1996-07-16 Sekiyu Sangyo Kasseika Center Lubricating oil
JPH0953088A (en) * 1995-08-09 1997-02-25 Asahi Denka Kogyo Kk Lube oil composition
JPH09188887A (en) * 1995-12-29 1997-07-22 Tonen Corp Heat-resistant lubricating oil composition
JP2002069471A (en) * 2000-08-28 2002-03-08 Japan Energy Corp Lubricating oil composition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332515A (en) * 1989-05-10 1994-07-26 Tonen Corporation Fluid for viscous coupling
JPH05186789A (en) * 1992-01-09 1993-07-27 Tonen Corp Lubricating oil composition
US5693598A (en) * 1995-09-19 1997-12-02 The Lubrizol Corporation Low-viscosity lubricating oil and functional fluid compositions
US6348437B1 (en) * 1996-05-01 2002-02-19 Dow Corning Corporation Silicone oils with improved viscosity stability
JP3831203B2 (en) * 2001-04-06 2006-10-11 三洋化成工業株式会社 Viscosity index improver and lubricating oil composition
JP2003261892A (en) * 2002-03-11 2003-09-19 Japan Energy Corp Lubricating oil composition for sintered oil-retaining bearing
US6660696B1 (en) * 2002-05-24 2003-12-09 Indian Oil Corporation Limited Thermally stable phosphorothionates as antioxidant, antiwear, friction reducing and extreme pressure lubricant additives from cashew nut shell liquid
US20040119046A1 (en) * 2002-12-11 2004-06-24 Carey James Thomas Low-volatility functional fluid compositions useful under conditions of high thermal stress and methods for their production and use
US7759293B2 (en) * 2004-11-22 2010-07-20 Nippon Oil Corporation Hydraulic oil composition for shock absorbers
JP5551330B2 (en) * 2007-02-26 2014-07-16 出光興産株式会社 Lubricating oil composition
US8153566B2 (en) * 2008-09-30 2012-04-10 Cherron Oronite Company LLC Lubricating oil compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379699A (en) * 1988-06-20 1991-04-04 Tonen Corp Improved-lubricity silicone-based fluid composition and improvement of lubricity of silicone-based fluid
JPH08183977A (en) * 1994-12-28 1996-07-16 Sekiyu Sangyo Kasseika Center Lubricating oil
JPH0953088A (en) * 1995-08-09 1997-02-25 Asahi Denka Kogyo Kk Lube oil composition
JPH09188887A (en) * 1995-12-29 1997-07-22 Tonen Corp Heat-resistant lubricating oil composition
JP2002069471A (en) * 2000-08-28 2002-03-08 Japan Energy Corp Lubricating oil composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141576A (en) * 2013-01-23 2014-08-07 Cosmo Oil Lubricants Co Ltd Hydraulic fluid composition
JP2019512171A (en) * 2016-02-29 2019-05-09 ロード コーポレーション Magnetorheological fluid additives
US11518957B2 (en) 2016-02-29 2022-12-06 Lord Corporation Additive for magnetorheological fluids

Also Published As

Publication number Publication date
JP2013018872A (en) 2013-01-31
US20140142006A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
US9725672B2 (en) Method for lubricating a continuously variable transmission, and a continuously variable transmission
JP5771532B2 (en) Lubricating oil composition
WO2014028632A1 (en) Lubricant compositions
JP5638256B2 (en) Lubricating oil composition
WO2008016038A1 (en) Lubricant composition
KR20160088894A (en) Organosiloxane compositions
WO2013008836A1 (en) Lubricating oil composition and mechanical apparatus
JP6721230B2 (en) Lubricating oil composition, lubricating method, and transmission
WO2019146779A1 (en) Lubricant composition, method for producing lubricant composition, and continuously variable transmission
JP7055990B2 (en) Automotive gear oil composition and lubrication method
GB2506975A (en) Lubricant compositions
CN112888770B (en) Lubricating oil composition, mechanical device provided with lubricating oil composition, and method for producing lubricating oil composition
CN110832058B (en) Lubricating oil composition, mechanical device provided with lubricating oil composition, and method for producing lubricating oil composition
JP2017155193A (en) Lubricant composition, lubrication method, and gearbox
JP7282907B2 (en) Lubricating oil composition and lubricant using the same
WO2023058440A1 (en) Lubricating oil composition, lubrication method, and transmission
EP3824051A1 (en) Lubricant grease composition based on silicone base stock
GB2506973A (en) Lubricant compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14232144

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811911

Country of ref document: EP

Kind code of ref document: A1