WO2013008555A1 - Trocar with heating function and system therefor - Google Patents

Trocar with heating function and system therefor Download PDF

Info

Publication number
WO2013008555A1
WO2013008555A1 PCT/JP2012/064205 JP2012064205W WO2013008555A1 WO 2013008555 A1 WO2013008555 A1 WO 2013008555A1 JP 2012064205 W JP2012064205 W JP 2012064205W WO 2013008555 A1 WO2013008555 A1 WO 2013008555A1
Authority
WO
WIPO (PCT)
Prior art keywords
endoscope
trocar
heating
function according
heating function
Prior art date
Application number
PCT/JP2012/064205
Other languages
French (fr)
Japanese (ja)
Inventor
隆之 井出
勇太 杉山
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2013008555A1 publication Critical patent/WO2013008555A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00027Operational features of endoscopes characterised by power management characterised by power supply
    • A61B1/00032Operational features of endoscopes characterised by power management characterised by power supply internally powered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00154Holding or positioning arrangements using guiding arrangements for insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/127Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements with means for preventing fogging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/128Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for regulating temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating

Definitions

  • the present invention relates to a trocar used in endoscopic surgery, a trocar system including the trocar, and an anti-fogging system for an endoscope including the trocar.
  • endoscopes such as rigid and flexible endoscopes are widely used for inserting into a patient's body cavity and observing the inside or performing surgery.
  • the surgeon takes an image of the surgical part from the optical system at the tip of the endoscope, and performs the operation while checking the image data obtained thereby on the monitor.
  • the inside of the body cavity into which the endoscope is inserted is in an environment of, for example, a temperature of about 35 to 37 ° C. and a humidity of about 98 to 100%.
  • the endoscope tip to be inserted is generally at a lower temperature than in the body cavity. For this reason, when the endoscope is inserted into the body, the cover glass (observation window) at the tip of the endoscope may become cloudy due to a temperature difference between the endoscope and the body, which may hinder the visual field.
  • Patent Document 1 discloses that the cover glass is heated by using a heating means such as a heater or a coiled heating wire disposed inside the endoscope tip.
  • a heating means such as a heater or a coiled heating wire disposed inside the endoscope tip.
  • An anti-fogging device for an endoscope that prevents fogging is disclosed.
  • the present invention provides a trocar for preventing fogging of an endoscope inserted into a body cavity during an endoscopic surgical operation, a trocar system including the trocar, and an antifogging system for an endoscope including the trocar.
  • the purpose is to do.
  • One embodiment of the present invention is a trocar used in an endoscopic surgical operation, wherein the trocar includes an energy supply source for heating the endoscope inserted into the endoscope insertion portion of the trocar.
  • the trocar includes an energy supply source for heating the endoscope inserted into the endoscope insertion portion of the trocar.
  • a trocar that prevents fogging of an endoscope that is inserted into a body cavity during endoscopic surgery, a trocar system that includes the trocar, and an antifogging system for an endoscope that includes the trocar. Can be provided.
  • FIG. 1 is a schematic view showing an entire endoscope system including a trocar according to the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the trocar of the first embodiment.
  • FIG. 3 is a cross-sectional view schematically showing the trocar of the second embodiment.
  • FIG. 4 is a cross-sectional view schematically showing the trocar of the third embodiment.
  • FIG. 5 is a cross-sectional view schematically showing an anti-fogging system for an endoscope including a trocar according to a fourth embodiment.
  • FIG. 6 is a cross-sectional view schematically showing an anti-fogging system for an endoscope including a trocar according to a fifth embodiment.
  • FIG. 1 is a schematic view showing an entire endoscope system including a trocar according to the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the trocar of the first embodiment.
  • FIG. 3 is a cross-sectional view schematically showing the trocar of the second
  • FIG. 7 is a cross-sectional view schematically showing an anti-fogging system for an endoscope including a trocar according to a sixth embodiment.
  • FIG. 8 is a cross-sectional view schematically showing an anti-fogging system for an endoscope including a trocar according to a seventh embodiment.
  • FIG. 9 is a cross-sectional view schematically showing an anti-fogging system for an endoscope including a trocar according to an eighth embodiment.
  • FIG. 10 is a cross-sectional view schematically showing a trocar of the ninth embodiment.
  • FIG. 11 is a cross-sectional view schematically showing a trocar of the tenth embodiment.
  • FIG. 12 is sectional drawing which shows schematically the trocar system containing the trocar of 11th Embodiment.
  • FIG. 13 is sectional drawing which shows schematically the trocar of 12th Embodiment.
  • FIG. 1 is a schematic view showing an entire endoscope system 1 including a trocar 10 according to the present invention.
  • the endoscope system 1 roughly includes an endoscope 2 that is a rigid endoscope, an air supply device 6, and a trocar 10.
  • the endoscope 2 includes an optical system including a cover glass that is provided on the distal end side thereof and functions as an observation window (or an imaging window) and an objective lens disposed behind the cover glass, an irradiation unit that emits illumination light, and a CCD For example, a configuration part that a normal endoscope has is provided.
  • the proximal end side of the endoscope 2 is connected to the processor device 3 and the light source device 4 by a universal cord, and the processor device 3 is further connected to the monitor device 5.
  • the air supply device 6 includes an air supply control unit 7 and a gas cylinder 8, and is connected to the trocar 10 by an air supply tube 9.
  • the gas cylinder 8 is filled with, for example, carbon dioxide gas.
  • the trocar 10 is an instrument that serves as a communication passage when the endoscope 2 is inserted into the body cavity, and gas is fed into the body cavity from the air supply device 6 via the trocar 10.
  • the trocar 10 has an endoscope insertion portion into which the endoscope 2 is inserted, an inlet of a gas sent from the air supply device 6, a flow path, and the like. Details regarding the trocar 10 will be described later.
  • the trocar 10 is inserted into the body wall hole of the patient.
  • An air supply tube 9 connected to the air supply device 6 is connected to a gas inlet of the trocar 10.
  • the gas in the gas cylinder 8 flows into the gas inlet of the trocar 10 through the air supply tube 9 and is sent into the body cavity through the flow path in the trocar 10. .
  • This gas causes the patient's body wall to swell and create a space for surgery within the body cavity.
  • the endoscope 2 is inserted into the body cavity through the endoscope insertion portion in the trocar 10.
  • Illumination light is guided from the light source device 4 to the endoscope 2 inserted into the body cavity through a light guide included in the universal cord, and light is irradiated from the irradiation part at the distal end of the endoscope to the operation part. The Then, an image of the surgical site formed by the objective lens at the distal end of the endoscope is picked up by the CCD and converted into an electric signal. This electrical signal is input to the processor device 3, and an image signal subjected to signal processing by the processor device 3 is output to the monitor device 5. Then, an image of the surgical site is displayed on the monitor device 5, and surgery is performed while confirming the image of the surgical site on the monitor device 5.
  • FIG. 2 is a cross-sectional view showing the trocar 10 of the first embodiment.
  • the trocar 10 has an insertion cylinder portion 12 having an inner diameter passage 11 through which the endoscope 2 passes, and a duct 13 having an inner diameter substantially the same as the insertion cylinder portion 12 and communicates with the insertion cylinder portion 12 in a straight line. And a guide tube 14. Further, the endoscope 2 is inserted into the passage 11 from the endoscope insertion portion 10a which is one end side of the insertion tube portion 12 of the trocar 10 as indicated by an arrow in FIG.
  • the insertion tube portion 12 is provided with an air supply base 16 that serves as an inlet for the gas sent from the air supply device 6 and an air supply passage 17 that communicates with the passage 11 from the air supply base 16. Yes.
  • the gas introduced from the air supply cap 16 is sent into the body cavity through the air supply flow path 17, the passage 11 of the insertion tube portion 12, and the conduit 13 of the guide tube 14.
  • the trocar 10 is provided with an energy supply source 18 for heating the endoscope 2 inserted into the passage 11 at a portion of the passage 11 of the insertion tube portion 12.
  • an energy supply source 18 for heating the endoscope 2 inserted into the passage 11 at a portion of the passage 11 of the insertion tube portion 12.
  • the energy supply source 18 is a thermal energy supply source such as a seat heater or a heating wire that itself generates heat and transfers the heat to the endoscope 2.
  • a heating element heating source
  • it is an electromagnetic energy supply source such as a coil, electrode, or light source that supplies electromagnetic energy or light energy to heat the heating element. Can do.
  • the endoscope 2 is inserted into the passage 11 of the insertion tube portion 12 from the endoscope insertion portion 10 a of the trocar 10. At this time, the distal end of the endoscope reaches a heating region by the energy supply source 18 in the trocar 10. That is, the endoscope front end is disposed within a range in which energy generated from the energy supply source 18 acts to heat the endoscope front end. Then, the energy supply source 18 supplies heating energy to the endoscope tip, and the endoscope tip is heated within a predetermined temperature range.
  • the endoscope 2 in the trocar 10 passes through the passage 13 of the guide tube 14 from the passage 11 of the insertion tube portion 12 as it is. It is inserted into the body cavity.
  • the cover glass at the distal end of the endoscope inserted into the body cavity is not clouded by water vapor from the body.
  • the energy supply source for heating the endoscope is arranged on the trocar side, it is not necessary to provide a heating energy supply source at the endoscope tip. Therefore, a space for providing an energy supply source for heating at the distal end of the endoscope becomes unnecessary, the diameter of the endoscope can be reduced, and fogging of the distal end of the endoscope can be prevented.
  • FIG. 3 is a cross-sectional view showing the trocar 20 of the second embodiment.
  • the trocar 20 is provided with a protruding portion 21 made of an elastic member in the passage 11 of the insertion tube portion 12. Although two protrusions 21 are shown in FIG. 3, it is sufficient that at least one protrusion 21 is provided in the passage 11.
  • the protruding portion 21 protrudes in the radial direction from the inner surface of the passage 11 of the insertion tube portion 12, and is disposed on the side near the conduit 13 in the heating region of the energy supply source 18. When the distal end portion of the endoscope 2 inserted into the passage 11 is in contact with the projection portion 21, the distal end portion is positioned in the heating region of the energy supply source 18 and heated. It is formed so that.
  • the endoscope 2 is inserted into the insertion tube portion 12 until it is inserted into the passage 11 from the endoscope insertion portion 10a and abuts against the protrusion 21 that functions as a positioning stopper. Then, when the endoscope 2 hits the projection 21, the insertion operation of the endoscope 2 is temporarily stopped, and heating energy from the energy supply source 18 is supplied to the endoscope 2 at this position, and the endoscope 2 The mirror tip is heated.
  • the protrusion 21 is a stopper (stagnation portion) that interrupts the insertion operation by notifying that the distal end of the endoscope has reached the heating region of the energy supply source 18 when the endoscope 2 is inserted into the passage 11. ).
  • the protrusion 21 also functions as a positioning portion that positions the endoscope 2 inserted into the passage 11 at a position where it hits the protrusion 21.
  • the endoscope is inserted until it hits the elastic protrusion in the trocar, so that the relative position between the endoscope tip and the heating region by the energy supply source in the passage is determined, and proper heating is performed. Can be realized. Moreover, it is also possible to give the effect which improves airtight performance by providing an elastic protrusion part in ring shape.
  • FIG. 4 is a cross-sectional view showing the trocar 30 of the third embodiment.
  • the protruding portion 21 is formed of an elastic member.
  • the trocar 30 of the third embodiment not only the protruding portion but also the insertion side end portion of the insertion tube portion to the protruding portion. It is made of an elastic member with high thermal conductivity.
  • the highly heat-conductive elastic member 31 is provided so as to cover the inner surface of the passage 11 of the insertion tube portion 12 from the endoscope insertion portion 10a of the trocar 30 to the tip of the heating region (on the side of the conduit 13). It has been. And the protrusion part 31a similar to the protrusion part 21 mentioned above is provided in the front-end
  • an energy supply source 32 is disposed in the vicinity of the elastic member 31.
  • the elastic member 31 and the energy supply source 32 provide the heating region such that the energy generated from the energy supply source 32 heats the endoscope tip through the highly heat-conductive elastic member 31, that is, as described above.
  • the energy supply source 32 is formed of an electric heating element (electrothermal conversion element) such as a sheet heater or a heating wire similar to the energy supply source 18 of the first embodiment.
  • the endoscope 2 is inserted into the passage 11 from the endoscope insertion portion 10a and inserted to a position where it abuts against the protrusion 31a of the elastic member 31. . Then, the insertion operation of the endoscope 2 is temporarily stopped at a position where the distal end of the endoscope hits the protruding portion 31a, and heating energy from the energy supply source 32 is supplied to the endoscope 2 at this position. The tip of the endoscope is heated.
  • the energy supply source by forming the energy supply source with an electric heating element provided in the trocar, there is no need to provide a heating member on the endoscope side, and a heat source that is inexpensive and simple in configuration is formed. be able to.
  • a heat source that is inexpensive and simple in configuration is formed. be able to.
  • heat generated in the trocar can be efficiently transmitted to the endoscope.
  • FIG. 5 is a cross-sectional view showing an anti-fogging system for an endoscope including the trocar 40 according to the fourth embodiment.
  • the present embodiment is an endoscope anti-fogging system that warms the distal end of an endoscope by causing infrared rays radiated from an infrared ray generating means provided on the trocar side to act on an infrared absorber provided on the endoscope side. It is.
  • the trocar 40 is a protrusion 41 made of an elastic body provided so as to protrude from the inner surface of the passage 11 of the insertion cylinder portion 12, and a position farther from the endoscope insertion portion 10 a than the protrusion 41 on the inner surface of the passage 11.
  • an infrared ray generation source 42 functioning as an energy supply source.
  • the infrared ray generation source 42 is adjusted so as to emit infrared rays toward the endoscope insertion portion 10a.
  • An infrared absorption film 2b is formed on the surface of the cover glass 2a at the tip of the endoscope inserted into the trocar 40.
  • the infrared absorbing film 2b generates heat when absorbing infrared rays.
  • the endoscope 2 is inserted into the insertion tube portion 12 up to a position where it hits the projection 41. And the infrared rays from the infrared ray generation source 42 are radiated toward the infrared ray absorbing film 2b on the surface of the cover glass 2a in a state where the distal end of the endoscope hits the protruding portion 41. Thereby, infrared heating occurs and the cover glass 2a at the distal end of the endoscope is heated.
  • the infrared energy absorbed by the infrared absorber provided at the endoscope front end directly heats the cover glass at the endoscope front end, the heat source and the endoscope front end are not in contact with each other. Efficient heating.
  • FIG. 6 is a cross-sectional view showing an anti-fogging system for an endoscope including a trocar 50 according to a fifth embodiment.
  • This embodiment is an endoscope anti-fogging system that warms the tip of an endoscope by applying a magnetic field generated from a magnetic field generating means provided on the trocar side to a magnetic heating element provided on the endoscope side. It is.
  • the trocar 50 includes a protruding portion 51 made of an elastic body provided at the tip end of the heating region as described above on the inner surface of the passage 11 of the insertion tube portion 12 and a power supply as an energy supply source provided in the heating region. Coil 52 for use.
  • a magnetic heating element 2c is formed in the vicinity of the cover glass 2a at the tip of the endoscope inserted into the trocar 50.
  • the magnetic heating element 2c generates heat by the magnetic energy generated from the power feeding coil 52.
  • the endoscope is formed so as to provide a heating region at a position that acts to heat the endoscope tip.
  • the endoscope 2 is inserted into the insertion tube portion 12 up to a position where it hits the projection 51. Then, the feeding coil 52 is energized in a state where the distal end of the endoscope hits the protruding portion 51, and a magnetic field is generated in the feeding coil 52.
  • the magnetic heating element 2c is heated by induction (induction heating), and the cover glass 2a at the distal end of the endoscope is heated.
  • the heat source and the endoscope tip are not in contact with each other and are efficient. Heating can be performed.
  • FIG. 7 is a cross-sectional view showing an anti-fogging system for an endoscope including a trocar 60 according to a sixth embodiment.
  • an electric heating element provided on the endoscope side is used for the endoscope by utilizing electromagnetic induction between a power feeding means provided on the trocar side and a power receiving means provided on the endoscope side.
  • the trocar 60 includes a protrusion 61 made of an elastic body provided at the distal end position of the heating region as described above on the inner surface of the passage 11 of the insertion tube portion 12 and a power supply as an energy supply source provided in the heating region. Coil 62.
  • the power receiving coil 2d is disposed inside the endoscope tip inserted into the trocar 60, and an electric heating element 2e is disposed in the vicinity of the cover glass 2a at the endoscope tip.
  • the power receiving coil 2d and the electric heating element 2e are electrically connected to each other.
  • the endoscope 2 is inserted into the insertion tube portion 12 up to a position where it hits the projection 61. Then, the feeding coil 62 is energized with the endoscope tip abutted against the protrusion 61 to generate a magnetic field. Furthermore, electric energy is generated in the power receiving coil 2d using electromagnetic induction by the magnetic field thus generated. Since the power receiving coil 2d and the electric heating element 2e are electrically connected, the electric heating element 2e generates heat by the electric power of the power receiving coil 2d, and the cover glass 2a at the distal end of the endoscope is heated by this heat. .
  • the endoscope tip is heated by the heat from the electric heating element on the endoscope side using the electromagnetic induction between the power receiving coil and the power feeding coil, non-contact and efficient heating is performed. It can be performed.
  • FIG. 8 is a cross-sectional view showing an anti-fogging system for an endoscope including a trocar 70 according to a seventh embodiment.
  • electric power is supplied to the endoscope side by using a power supply electrode provided on the trocar side and a power receiving electrode provided on the endoscope side as contact contacts, and the electric heating element generates heat by this electric power.
  • This is an endoscope anti-fogging system that warms the endoscope tip.
  • the trocar 70 includes a protrusion 71 made of an elastic body provided at the tip of the heating region as described above on the inner surface of the passage 11 of the insertion tube portion 12 and a power supply as an energy supply source provided in the heating region. And a working electrode 72.
  • the feeding electrode 72 is radially inward from the inner surface of the passage 11 of the insertion tube portion 12 to such an extent that the electrode 72 contacts the outer surface of the endoscope 2 when the endoscope 2 is inserted into the insertion tube portion 12. It protrudes.
  • a power receiving electrode 2f is disposed on the outer surface of the endoscope 2 inserted into the trocar 70, and an electric heating element 2g is disposed in the vicinity of the cover glass 2a at the distal end of the endoscope.
  • the power receiving electrode 2f and the electric heating element 2g are electrically connected to each other.
  • the feeding electrode 72 on the trocar 70 side and the receiving electrode 2f on the endoscope 2 side are in a position where they come into physical contact with each other when the endoscope 2 is inserted into the trocar 70 and abuts against the protrusion 71. It is a formed electrical contact.
  • the endoscope 2 is inserted into the insertion tube portion 12 up to a position where it hits the projection 71. Then, at the position where the distal end of the endoscope hits the protrusion 71, the power supply electrode 72 and the power reception electrode 2f come into contact with each other, and power is supplied to the power reception electrode 2f. Since the power receiving electrode 2f is electrically connected to the electric heating element 2g, the electric heating element 2g generates heat by the power of the power receiving electrode 2f, and the heat causes the cover glass 2a at the distal end of the endoscope to be heated. .
  • a more efficient heat generation source can be obtained by forming the heat generation source for heating the endoscope with the electric heating element provided inside the endoscope.
  • energy is supplied to the heat generation source by contact between the electrode provided on the trocar and the electrode provided on the outer surface of the endoscope, inexpensive and efficient energy transmission can be performed.
  • FIG. 9 is a cross-sectional view showing an anti-fogging system for an endoscope including a trocar 80 according to an eighth embodiment.
  • This embodiment is an endoscope anti-fogging system in which a cover glass (dielectric) is sandwiched between electrodes to form a capacitor, and the distal end of the endoscope is heated using the dielectric heating.
  • the trocar 80 includes a protrusion 81 made of an elastic body provided at the distal end position of the heating region as described above on the inner surface of the passage 11 of the insertion tube portion 12 and a power supply as an energy supply source provided in the heating region. Electrode 82. In addition, the feeding electrode 82 is radially inward from the inner surface of the passage 11 of the insertion tube portion 12 to the extent that the electrode 2 contacts the outer surface of the endoscope 2 when the endoscope 2 is inserted into the insertion tube portion 12. It protrudes.
  • a power receiving electrode 2h is formed on the outer surface of the endoscope 2 inserted into the trocar 80, and the opposing transparent electrodes 2i are formed on both surfaces of the cover glass 2a at the distal end of the endoscope.
  • a capacitor is formed in which a cover glass 2a, which is a dielectric, is placed between the transparent electrodes 2i. The power receiving electrode 2h and the transparent electrode 2i are electrically connected to each other.
  • the endoscope 2 is inserted into the insertion tube portion 12 up to a position where it abuts against the protrusion 81. Then, a high-frequency current flows from the power supply electrode 82 to the power reception electrode 2 h at a position where the distal end of the endoscope hits the protrusion 81. Then, the cover glass 2a generates heat due to dielectric loss (dielectric heating), and the cover glass 2a is directly heated by this heat.
  • dielectric loss dielectric heating
  • FIG. 10 is a cross-sectional view showing a trocar 90 according to the ninth embodiment.
  • a protrusion 91 made of an elastic member is formed on the inner surface of the passage 11 of the insertion tube portion 12 of the trocar 90 at the tip of the heating region.
  • the air supply flow path connected from the air supply base 16 heats the endoscope 2 and the air supply gas flow path 92 for expanding the inside of the body cavity in the middle.
  • a heating gas passage 93 is formed in the insertion cylinder portion 12 of the trocar 90.
  • the air supply gas channel 92 is provided with an outlet on the inner surface of the passage 11 on the inner side in the endoscope insertion direction than the projection 91, and the heating gas channel 93 has an outlet in the heating region.
  • a heating element 94 for heating the gas passing through the heating gas channel 93 is disposed around the heating gas channel 93.
  • control valves 95 and 96 for controlling the outflow of gas are provided in the air supply gas channel 92 and the heated gas channel 93, respectively.
  • a configuration may be adopted in which the gas is introduced into the trocar through a separate route without using both the inlet of the air supply gas and the heated gas.
  • a heated fluid not only can the endoscope 2 be heated to prevent fogging, but also the field of view cleaning, that is, the surface of the cover glass at the tip of the endoscope can be cleaned.
  • the endoscope 2 is inserted into the insertion tube portion 12 up to a position where it hits the projection 91. Then, the control valve 96 on the heating gas channel 93 side is opened at a position where the endoscope tip abuts against the protrusion 91, and heating gas is supplied through the heating gas channel 93 to heat the endoscope tip. . When the endoscope tip is heated within a predetermined temperature range, the control valve 96 is closed and the supply of the heated gas is stopped.
  • the endoscope tip is heated by the air supply gas that expands inside the body cavity, there is no need to provide a separate heating member on the endoscope side, and it is also efficient from the viewpoint of heat transfer.
  • the endoscope can be heated.
  • FIG. 11 is a cross-sectional view illustrating a trocar 100 according to the tenth embodiment.
  • a protrusion 101 is formed on the inner surface of the passage 11 of the insertion tube portion 12 of the trocar 100 at the tip of the heating region.
  • the temperature sensor 102 that detects the temperature of the endoscope tip inserted into the passage 11 of the insertion tube portion 12 of the trocar 100 and the output of the temperature sensor 102 is used.
  • a display lamp 103 that displays the heating state of the endoscope 2 is formed.
  • the display lamp 103 is turned off when the energy supply source 18 is not supplying energy to the endoscope 2.
  • the display lamp 103 is turned on or blinks.
  • the temperature sensor 102 detects that the temperature of the endoscope tip is heated within a predetermined temperature range
  • the display lamp 103 is turned off.
  • the operating state of the energy supply source 18 and the heating state of the endoscope tip may be displayed by another visual display method such as a color change.
  • the medical staff can know the heating state of the endoscope tip by the temperature sensor and the display lamp.
  • the endoscope 2 or the monitor apparatus 5 may have such a display function.
  • a means for acquiring heating information from the trocar and transmitting it to the endoscope 2 or the monitor device 5 is included.
  • FIG. 12 is sectional drawing which shows the trocar system containing the trocar of 11th Embodiment.
  • a plurality of trocars (first trocar 100a, second trocar 100b, third trocar 100c,...) are connected to each other by connection cables 201, 202, 203,.
  • a trocar (first trocar 100a in FIG. 12) is connected to the power supply apparatus 200.
  • Each of the trocars 100a, 100b, 100c,... Shown in FIG. 12 has the same configuration as that of the trocar 100 of the tenth embodiment.
  • or 9th embodiment may be sufficient.
  • the trocar may have a power source such as a battery, but when power is supplied from an external power supply device If a plurality of trocars are used, their connection can be complicated. In such a case, the cable length can be shortened and the connection of wiring can be simplified by connecting the trocars to each other with a connection cable and supplying power as in this embodiment.
  • FIG. 13 is sectional drawing which shows the trocar 110 of 12th Embodiment.
  • the trocar 110 is a multiport trocar having a plurality of endoscope insertion portions 112, 113, 114, which is attached to a single body wall hole of a patient.
  • Energy supply sources 112 a, 113 a, and 114 a are formed in the endoscope insertion portions 112, 113, and 114, respectively, and each energy supply source is connected in series with a power supply line 111.
  • a connector 115 connected to the power supply source 111b is connected to the power supply apparatus 200.
  • the endoscope tip can be heated by the energy supply source of the endoscope insertion portion regardless of which endoscope insertion portion is inserted. And the effect of preventing fogging of the endoscope can be obtained.
  • SYMBOLS 1 ... Endoscope system, 2 ... Endoscope, 2a ... Cover glass, 2b ... Infrared absorption film, 2c ... Magnetic heating element, 2d ... Power receiving coil, 2e ... Electric heating element, 2f ... Power receiving electrode, 2g ... Electric heating element, 2h ... receiving electrode, 2i ... transparent electrode, 3 ... processor device, 4 ... light source device, 5 ... monitor device, 6 ... air supply device, 7 ... air supply control unit, 8 ... gas tank, 10, 20 , 30, 40, 50, 60, 70, 80, 90, 100, 110... Trocar, 10a... Endoscope insertion portion, 11... Passage, 11. DESCRIPTION OF SYMBOLS ...

Abstract

One embodiment of the present invention is a trocar with a heating function used in endoscopic surgery, wherein the inside of the trocar is equipped with an energy supply source for heating an endoscope inserted into an endoscope insertion part of the trocar. Another embodiment of the present invention is a trocar system having a plurality of trocars with a heating function, in which the trocars transfer heat to each other. Yet another embodiment of the present invention is an endoscope-misting prevention system equipped with the trocar with a heating function as well as an endoscope that receives energy from the energy supply source and generates heat.

Description

加熱機能付きトロッカー及びそのシステムTrocar with heating function and its system
 本発明は、内視鏡下外科手術に用いられるトロッカー、このトロッカーを含むトロッカーシステム及びこのトロッカーを備えた内視鏡の曇り防止システムに関する。 The present invention relates to a trocar used in endoscopic surgery, a trocar system including the trocar, and an anti-fogging system for an endoscope including the trocar.
 一般的に、患者の体腔内に挿入してその内部を観察したり手術を行ったりするための硬性鏡、軟性鏡などの内視鏡が広く使用されている。内視鏡下外科手術の際には、術者は、内視鏡先端の光学系から術部の像を取り込んで、これにより得られた画像データをモニタで確認しながら手術を行う。 In general, endoscopes such as rigid and flexible endoscopes are widely used for inserting into a patient's body cavity and observing the inside or performing surgery. At the time of endoscopic surgery, the surgeon takes an image of the surgical part from the optical system at the tip of the endoscope, and performs the operation while checking the image data obtained thereby on the monitor.
 内視鏡が挿入される体腔内は、例えば、温度約35~37℃、湿度約98~100%という環境下にある。また、挿入される内視鏡先端は、一般的に体腔内よりも低温である。このため、内視鏡を体内に挿入した際、内視鏡と体内との温度差などにより内視鏡先端のカバーガラス(観察窓)に曇りが生じ、視野の妨げとなることがある。 The inside of the body cavity into which the endoscope is inserted is in an environment of, for example, a temperature of about 35 to 37 ° C. and a humidity of about 98 to 100%. In addition, the endoscope tip to be inserted is generally at a lower temperature than in the body cavity. For this reason, when the endoscope is inserted into the body, the cover glass (observation window) at the tip of the endoscope may become cloudy due to a temperature difference between the endoscope and the body, which may hinder the visual field.
 このような曇りを防止するために、例えば、特許文献1には、内視鏡先端の内部に配置されたヒータ又はコイル状の電熱線のような加熱手段を用いてカバーガラスを加熱することにより曇りを防止する、内視鏡の曇り防止装置が開示されている。 In order to prevent such fogging, for example, Patent Document 1 discloses that the cover glass is heated by using a heating means such as a heater or a coiled heating wire disposed inside the endoscope tip. An anti-fogging device for an endoscope that prevents fogging is disclosed.
特開2006-282号公報JP 2006-282 A
 特許文献1に記載の内視鏡の曇り防止装置では、内視鏡先端の内部にヒータ又はコイル等の発熱体及びこの発熱体に電力を供給する電源ラインを配線するエリアが必要である。このため、例えば、極細径の内視鏡には導入しにくい。 In the endoscope anti-fogging device described in Patent Document 1, a heating element such as a heater or a coil and a power supply line for supplying power to the heating element are required inside the endoscope tip. For this reason, for example, it is difficult to introduce into an extremely small diameter endoscope.
 本発明は、内視鏡下外科手術の際に体腔内に挿入される内視鏡の曇りを防止するトロッカー、このトロッカーを含むトロッカーシステム及びこのトロッカーを備えた内視鏡の曇り防止システムを提供することを目的とする。 The present invention provides a trocar for preventing fogging of an endoscope inserted into a body cavity during an endoscopic surgical operation, a trocar system including the trocar, and an antifogging system for an endoscope including the trocar. The purpose is to do.
 本発明の一実施形態は、内視鏡下外科手術に用いられるトロッカーにおいて、トロッカーの内視鏡挿入部に挿入された内視鏡を加熱するためのエネルギ供給源をトロッカー内に具備する加熱機能付きトロッカーである。 One embodiment of the present invention is a trocar used in an endoscopic surgical operation, wherein the trocar includes an energy supply source for heating the endoscope inserted into the endoscope insertion portion of the trocar. With a trocar.
 本発明によれば、内視鏡下外科手術の際に体腔内に挿入される内視鏡の曇りを防止するトロッカー、このトロッカーを含むトロッカーシステム及びこのトロッカーを備えた内視鏡の曇り防止システムを提供することができる。 According to the present invention, a trocar that prevents fogging of an endoscope that is inserted into a body cavity during endoscopic surgery, a trocar system that includes the trocar, and an antifogging system for an endoscope that includes the trocar. Can be provided.
図1は、本発明に係るトロッカーを含む内視鏡システム全体を示す概略図である。FIG. 1 is a schematic view showing an entire endoscope system including a trocar according to the present invention. 図2は、第1の実施形態のトロッカーを概略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the trocar of the first embodiment. 図3は、第2の実施形態のトロッカーを概略的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the trocar of the second embodiment. 図4は、第3の実施形態のトロッカーを概略的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing the trocar of the third embodiment. 図5は、第4の実施形態のトロッカーを含む内視鏡の曇り防止システムを概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing an anti-fogging system for an endoscope including a trocar according to a fourth embodiment. 図6は、第5の実施形態のトロッカーを含む内視鏡の曇り防止システムを概略的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing an anti-fogging system for an endoscope including a trocar according to a fifth embodiment. 図7は、第6の実施形態のトロッカーを含む内視鏡の曇り防止システムを概略的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing an anti-fogging system for an endoscope including a trocar according to a sixth embodiment. 図8は、第7の実施形態のトロッカーを含む内視鏡の曇り防止システムを概略的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing an anti-fogging system for an endoscope including a trocar according to a seventh embodiment. 図9は、第8の実施形態のトロッカーを含む内視鏡の曇り防止システムを概略的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing an anti-fogging system for an endoscope including a trocar according to an eighth embodiment. 図10は、第9の実施形態のトロッカーを概略的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a trocar of the ninth embodiment. 図11は、第10の実施形態のトロッカーを概略的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing a trocar of the tenth embodiment. 図12は、第11の実施形態のトロッカーを含むトロッカーシステムを概略的に示す断面図である。FIG. 12: is sectional drawing which shows schematically the trocar system containing the trocar of 11th Embodiment. 図13は、第12の実施形態のトロッカーを概略的に示す断面図である。FIG. 13: is sectional drawing which shows schematically the trocar of 12th Embodiment.
 図1は、本発明に係るトロッカー10を含む内視鏡システム1全体を示す概略図である。内視鏡システム1は、大別すると、硬性鏡である内視鏡2と、送気装置6と、トロッカー10とを有している。 FIG. 1 is a schematic view showing an entire endoscope system 1 including a trocar 10 according to the present invention. The endoscope system 1 roughly includes an endoscope 2 that is a rigid endoscope, an air supply device 6, and a trocar 10.
 内視鏡2には、その先端側に設けられ観察窓(又は撮像窓)として機能するカバーガラス及びカバーガラスの後方に配置された対物レンズを含む光学系、照明光を照射する照射部、CCDなど、通常の内視鏡が有している構成部が設けられている。内視鏡2の基端側は、ユニバーサルコードによってプロセッサ装置3及び光源装置4に接続されており、プロセッサ装置3は、さらに、モニタ装置5に接続されている。 The endoscope 2 includes an optical system including a cover glass that is provided on the distal end side thereof and functions as an observation window (or an imaging window) and an objective lens disposed behind the cover glass, an irradiation unit that emits illumination light, and a CCD For example, a configuration part that a normal endoscope has is provided. The proximal end side of the endoscope 2 is connected to the processor device 3 and the light source device 4 by a universal cord, and the processor device 3 is further connected to the monitor device 5.
 送気装置6は、送気制御部7とガスボンベ8とを有しており、送気チューブ9によってトロッカー10に接続される。ガスボンベ8には、例えば、炭酸ガスが充填されている。トロッカー10は、体腔内に内視鏡2を挿入する際の連絡通路となる器具であり、また、トロッカー10を介して送気装置6から体腔内にガスが送り込まれる。このトロッカー10は、内視鏡2が挿入される内視鏡挿入部、送気装置6から送り込まれるガスの入口及び流路などを有している。トロッカー10に関する詳細は後述する。 The air supply device 6 includes an air supply control unit 7 and a gas cylinder 8, and is connected to the trocar 10 by an air supply tube 9. The gas cylinder 8 is filled with, for example, carbon dioxide gas. The trocar 10 is an instrument that serves as a communication passage when the endoscope 2 is inserted into the body cavity, and gas is fed into the body cavity from the air supply device 6 via the trocar 10. The trocar 10 has an endoscope insertion portion into which the endoscope 2 is inserted, an inlet of a gas sent from the air supply device 6, a flow path, and the like. Details regarding the trocar 10 will be described later.
 内視鏡システム1を用いた内視鏡下外科手術の際には、まず、患者の体壁孔にトロッカー10を挿入する。送気装置6につながっている送気チューブ9は、トロッカー10のガスの入口に接続される。そして、送気制御部7を制御することにより、ガスボンベ8内のガスが送気チューブ9を通ってトロッカー10のガスの入口に流入し、トロッカー10内の流路を通って体腔内に送り込まれる。このガスが患者の体壁を膨満させて、体腔内に手術のための空間を作り出す。そして、トロッカー10内の内視鏡挿入部を通して体腔内に内視鏡2が挿入される。 In the case of endoscopic surgery using the endoscope system 1, first, the trocar 10 is inserted into the body wall hole of the patient. An air supply tube 9 connected to the air supply device 6 is connected to a gas inlet of the trocar 10. Then, by controlling the air supply control unit 7, the gas in the gas cylinder 8 flows into the gas inlet of the trocar 10 through the air supply tube 9 and is sent into the body cavity through the flow path in the trocar 10. . This gas causes the patient's body wall to swell and create a space for surgery within the body cavity. Then, the endoscope 2 is inserted into the body cavity through the endoscope insertion portion in the trocar 10.
 体腔内に挿入された内視鏡2には、ユニバーサルコードに含まれるライトガイドを介して光源装置4から照明光が導光されて、内視鏡先端の照射部から術部に光が照射される。そして、内視鏡先端の対物レンズにより結像された術部の像がCCDで撮像され、電気信号に変換される。この電気信号がプロセッサ装置3に入力され、プロセッサ装置3で信号処理された画像信号がモニタ装置5に出力される。そして、モニタ装置5に術部の画像が表示され、術部の画像をモニタ装置5で確認しながら手術が行われる。 Illumination light is guided from the light source device 4 to the endoscope 2 inserted into the body cavity through a light guide included in the universal cord, and light is irradiated from the irradiation part at the distal end of the endoscope to the operation part. The Then, an image of the surgical site formed by the objective lens at the distal end of the endoscope is picked up by the CCD and converted into an electric signal. This electrical signal is input to the processor device 3, and an image signal subjected to signal processing by the processor device 3 is output to the monitor device 5. Then, an image of the surgical site is displayed on the monitor device 5, and surgery is performed while confirming the image of the surgical site on the monitor device 5.
 次に、トロッカーの各実施形態について詳述する。 Next, each embodiment of the trocar will be described in detail.
 [第1の実施形態] 
 図2は、第1の実施形態のトロッカー10を示す断面図である。
[First Embodiment]
FIG. 2 is a cross-sectional view showing the trocar 10 of the first embodiment.
 トロッカー10は、内視鏡2を通過させる内径の通路11を有する挿入筒部12と、挿入筒部12と略同一の内径の管路13を有し挿入筒部12と直線状に連通している案内管14とを有している。また、内視鏡2は、図2に矢印で示すように、トロッカー10の挿入筒部12の一端側である内視鏡挿入部10aから通路11内に挿入される。 The trocar 10 has an insertion cylinder portion 12 having an inner diameter passage 11 through which the endoscope 2 passes, and a duct 13 having an inner diameter substantially the same as the insertion cylinder portion 12 and communicates with the insertion cylinder portion 12 in a straight line. And a guide tube 14. Further, the endoscope 2 is inserted into the passage 11 from the endoscope insertion portion 10a which is one end side of the insertion tube portion 12 of the trocar 10 as indicated by an arrow in FIG.
 挿入筒部12の他端(内視鏡挿入部10aの対向端)側には、その外面から径方向外側に延出した環状の(ツバ状の)フランジ部15が形成されている。また、挿入筒部12には、前記送気装置6から送り込まれるガスの流入口となる送気口金16と、送気口金16から通路11に連通している送気流路17とが設けられている。使用の際、送気口金16から導入されたガスは、送気流路17、挿入筒部12の通路11及び案内管14の管路13を通って体腔内に送り込まれる。 On the other end (opposite end of the endoscope insertion portion 10a) side of the insertion cylinder portion 12, an annular (head-like) flange portion 15 extending radially outward from the outer surface is formed. In addition, the insertion tube portion 12 is provided with an air supply base 16 that serves as an inlet for the gas sent from the air supply device 6 and an air supply passage 17 that communicates with the passage 11 from the air supply base 16. Yes. In use, the gas introduced from the air supply cap 16 is sent into the body cavity through the air supply flow path 17, the passage 11 of the insertion tube portion 12, and the conduit 13 of the guide tube 14.
 トロッカー10には、挿入筒部12の通路11の部分に、この通路11中に挿入される内視鏡2を加熱するためのエネルギ供給源18が設けられている。以下の説明では、挿入筒部12の通路11中に挿入された内視鏡2の先端部分がエネルギ供給源18により加熱される通路11内の領域を加熱領域と称する。 The trocar 10 is provided with an energy supply source 18 for heating the endoscope 2 inserted into the passage 11 at a portion of the passage 11 of the insertion tube portion 12. In the following description, a region in the passage 11 where the distal end portion of the endoscope 2 inserted into the passage 11 of the insertion tube portion 12 is heated by the energy supply source 18 is referred to as a heating region.
 エネルギ供給源18は、それ自体が熱を発生して内視鏡2に伝熱するシートヒータ又は電熱線等の熱エネルギ供給源である。もしくは、内視鏡先端に発熱体(発熱源)を設けた場合には、電磁エネルギや光エネルギを供給してその発熱体を加熱させる、コイル・電極・光源等の電磁エネルギ供給源であることができる。 The energy supply source 18 is a thermal energy supply source such as a seat heater or a heating wire that itself generates heat and transfers the heat to the endoscope 2. Alternatively, when a heating element (heating source) is provided at the distal end of the endoscope, it is an electromagnetic energy supply source such as a coil, electrode, or light source that supplies electromagnetic energy or light energy to heat the heating element. Can do.
 使用の際、内視鏡2は、トロッカー10の内視鏡挿入部10aから挿入筒部12の通路11内に挿入される。このとき、内視鏡先端は、トロッカー10内のエネルギ供給源18による加熱領域に到達する。すなわち、内視鏡先端は、エネルギ供給源18から発生されるエネルギが内視鏡先端を加熱するように作用する範囲内に配置される。そして、エネルギ供給源18が内視鏡先端に加熱用エネルギを供給し、予め規定された温度範囲内に内視鏡先端が加熱される。 In use, the endoscope 2 is inserted into the passage 11 of the insertion tube portion 12 from the endoscope insertion portion 10 a of the trocar 10. At this time, the distal end of the endoscope reaches a heating region by the energy supply source 18 in the trocar 10. That is, the endoscope front end is disposed within a range in which energy generated from the energy supply source 18 acts to heat the endoscope front end. Then, the energy supply source 18 supplies heating energy to the endoscope tip, and the endoscope tip is heated within a predetermined temperature range.
 内視鏡先端が通路11中の加熱領域で予め規定された温度範囲内に温まったら、トロッカー10内の内視鏡2は、そのまま挿入筒部12の通路11から案内管14の管路13を通して体腔内に挿入される。このとき、内視鏡先端が体温よりも温まっているため、体腔内に挿入された内視鏡先端のカバーガラスは体内からの水蒸気で曇らない。 When the distal end of the endoscope is heated within a temperature range defined in advance in the heating region in the passage 11, the endoscope 2 in the trocar 10 passes through the passage 13 of the guide tube 14 from the passage 11 of the insertion tube portion 12 as it is. It is inserted into the body cavity. At this time, since the distal end of the endoscope is warmer than the body temperature, the cover glass at the distal end of the endoscope inserted into the body cavity is not clouded by water vapor from the body.
 本実施形態によれば、内視鏡を加熱するためのエネルギ供給源がトロッカー側に配置されているため、内視鏡先端に加熱用のエネルギ供給源を設ける必要がない。従って、内視鏡先端に加熱用のエネルギ供給源を設けるためのスペースが不要となり、内視鏡の小径化を実現し、かつ内視鏡先端の曇りを防止することができる。 According to the present embodiment, since the energy supply source for heating the endoscope is arranged on the trocar side, it is not necessary to provide a heating energy supply source at the endoscope tip. Therefore, a space for providing an energy supply source for heating at the distal end of the endoscope becomes unnecessary, the diameter of the endoscope can be reduced, and fogging of the distal end of the endoscope can be prevented.
 以下、第2乃至第12の実施形態について説明する。以下の説明では、第1の実施形態のトロッカー10と同じ構成部材には同じ参照符号を付し、その説明は省略する。 Hereinafter, the second to twelfth embodiments will be described. In the following description, the same components as those of the trocar 10 of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 [第2の実施形態] 
 図3は、第2の実施形態のトロッカー20を示す断面図である。
[Second Embodiment]
FIG. 3 is a cross-sectional view showing the trocar 20 of the second embodiment.
 トロッカー20には、挿入筒部12の通路11中に弾性部材からなる突起部21が設けられている。図3には2つの突起部21が示されるが、通路11中に少なくとも1つの突起部21が設けられていればよい。突起部21は、挿入筒部12の通路11の内面から径方向に突出しており、エネルギ供給源18の加熱領域における管路13に近い側に配置されている。この突起部21は、通路11内に挿入された内視鏡2の先端部分が突起部21と当接した状態にあるとき、その先端部分がエネルギ供給源18の加熱領域に位置決めされて加熱されるように形成されている。 The trocar 20 is provided with a protruding portion 21 made of an elastic member in the passage 11 of the insertion tube portion 12. Although two protrusions 21 are shown in FIG. 3, it is sufficient that at least one protrusion 21 is provided in the passage 11. The protruding portion 21 protrudes in the radial direction from the inner surface of the passage 11 of the insertion tube portion 12, and is disposed on the side near the conduit 13 in the heating region of the energy supply source 18. When the distal end portion of the endoscope 2 inserted into the passage 11 is in contact with the projection portion 21, the distal end portion is positioned in the heating region of the energy supply source 18 and heated. It is formed so that.
 使用の際、内視鏡2は、内視鏡挿入部10aから通路11内に差し込まれて、位置決め用ストッパとして機能する突起部21に突き当たる位置まで、挿入筒部12内に挿入される。そして、内視鏡2が突起部21に突き当たると内視鏡2の挿入動作を一旦停止して、この位置でエネルギ供給源18からの加熱用エネルギが内視鏡2に供給されて、内視鏡先端が加熱される。 During use, the endoscope 2 is inserted into the insertion tube portion 12 until it is inserted into the passage 11 from the endoscope insertion portion 10a and abuts against the protrusion 21 that functions as a positioning stopper. Then, when the endoscope 2 hits the projection 21, the insertion operation of the endoscope 2 is temporarily stopped, and heating energy from the energy supply source 18 is supplied to the endoscope 2 at this position, and the endoscope 2 The mirror tip is heated.
 このように、突起部21は、内視鏡2を通路11内に挿入した際に内視鏡先端がエネルギ供給源18の加熱領域に到達したことを知らしめて挿入動作を中断させるストッパ(滞留部)として機能する。また、突起部21は、通路11内に挿入された内視鏡2を突起部21に突き当たった位置に位置決めする位置決め部としても機能する。 As described above, the protrusion 21 is a stopper (stagnation portion) that interrupts the insertion operation by notifying that the distal end of the endoscope has reached the heating region of the energy supply source 18 when the endoscope 2 is inserted into the passage 11. ). The protrusion 21 also functions as a positioning portion that positions the endoscope 2 inserted into the passage 11 at a position where it hits the protrusion 21.
 本実施形態によれば、内視鏡がトロッカー内の弾性突起部に突き当たるまで挿入することにより、通路内における内視鏡先端とエネルギ供給源による加熱領域との相対位置を確定させ、適正な加熱を実現することができる。また、弾性突起部をリング状に設けることで、気密性能を向上させる効果を持たせることも可能である。 According to the present embodiment, the endoscope is inserted until it hits the elastic protrusion in the trocar, so that the relative position between the endoscope tip and the heating region by the energy supply source in the passage is determined, and proper heating is performed. Can be realized. Moreover, it is also possible to give the effect which improves airtight performance by providing an elastic protrusion part in ring shape.
 [第3の実施形態] 
 図4は、第3の実施形態のトロッカー30を示す断面図である。
[Third Embodiment]
FIG. 4 is a cross-sectional view showing the trocar 30 of the third embodiment.
 第2の実施形態のトロッカー20では、突起部21を弾性部材で形成したが、第3の実施形態のトロッカー30では、突起部のみならず、挿入筒部の挿入側端部から突起部までを高熱伝導性の弾性部材で形成している。 In the trocar 20 of the second embodiment, the protruding portion 21 is formed of an elastic member. However, in the trocar 30 of the third embodiment, not only the protruding portion but also the insertion side end portion of the insertion tube portion to the protruding portion. It is made of an elastic member with high thermal conductivity.
 本実施形態では、トロッカー30の内視鏡挿入部10aから加熱領域の先端(管路13側)までの挿入筒部12の通路11の内面を覆うようにして高熱伝導性の弾性部材31が設けられている。そして、弾性部材31の先端(管路13側)には、上述した突起部21と同様の突起部31aが設けられている。本実施形態では、内視鏡挿入部30aの内径と挿入される内視鏡2の外径とが略同一である。 In the present embodiment, the highly heat-conductive elastic member 31 is provided so as to cover the inner surface of the passage 11 of the insertion tube portion 12 from the endoscope insertion portion 10a of the trocar 30 to the tip of the heating region (on the side of the conduit 13). It has been. And the protrusion part 31a similar to the protrusion part 21 mentioned above is provided in the front-end | tip (duct 13 side) of the elastic member 31. As shown in FIG. In the present embodiment, the inner diameter of the endoscope insertion portion 30a and the outer diameter of the endoscope 2 to be inserted are substantially the same.
 トロッカー30内には、弾性部材31の近傍にエネルギ供給源32が配置されている。弾性部材31とエネルギ供給源32とは、エネルギ供給源32から発生されるエネルギが高熱伝導性の弾性部材31を介して内視鏡先端を加熱するように、すなわち上述のような加熱領域を与えるように配置されている。本実施形態では、図4に示すように、挿入筒部12の通路11の内面が弾性部材31で覆われているため、エネルギ供給源32の表面はこの内面に露出していない。エネルギ供給源32は、第1の実施形態のエネルギ供給源18と同様のシートヒータ又は電熱線のような電気発熱体(電熱変換素子)で形成されている。 In the trocar 30, an energy supply source 32 is disposed in the vicinity of the elastic member 31. The elastic member 31 and the energy supply source 32 provide the heating region such that the energy generated from the energy supply source 32 heats the endoscope tip through the highly heat-conductive elastic member 31, that is, as described above. Are arranged as follows. In the present embodiment, as shown in FIG. 4, the inner surface of the passage 11 of the insertion tube portion 12 is covered with the elastic member 31, so the surface of the energy supply source 32 is not exposed to the inner surface. The energy supply source 32 is formed of an electric heating element (electrothermal conversion element) such as a sheet heater or a heating wire similar to the energy supply source 18 of the first embodiment.
 使用の際には、第2の実施形態と同様に、内視鏡2は、内視鏡挿入部10aから通路11内に差し込まれて、弾性部材31の突起部31aに突き当たる位置まで挿入される。そして、内視鏡先端が突起部31aに突き当たった位置で内視鏡2の挿入動作を一旦停止して、この位置でエネルギ供給源32からの加熱用エネルギが内視鏡2に供給されて、内視鏡先端が加熱される。 In use, as in the second embodiment, the endoscope 2 is inserted into the passage 11 from the endoscope insertion portion 10a and inserted to a position where it abuts against the protrusion 31a of the elastic member 31. . Then, the insertion operation of the endoscope 2 is temporarily stopped at a position where the distal end of the endoscope hits the protruding portion 31a, and heating energy from the energy supply source 32 is supplied to the endoscope 2 at this position. The tip of the endoscope is heated.
 本実施形態によれば、エネルギ供給源をトロッカー内に設けられた電気発熱体で形成することにより、内視鏡側に加熱部材を設ける必要がなく、安価で構成も簡易な発熱源を形成することができる。また、トロッカーの内視鏡挿入部に高伝熱性の弾性体を採用することにより、トロッカー内で発生した熱を内視鏡に効率的に伝達することができる。 According to the present embodiment, by forming the energy supply source with an electric heating element provided in the trocar, there is no need to provide a heating member on the endoscope side, and a heat source that is inexpensive and simple in configuration is formed. be able to. In addition, by adopting a highly heat conductive elastic body in the endoscope insertion portion of the trocar, heat generated in the trocar can be efficiently transmitted to the endoscope.
 [第4の実施形態] 
 図5は、第4の実施形態のトロッカー40を含む内視鏡の曇り防止システムを示す断面図である。本実施形態は、トロッカー側に設けられた赤外線発生手段から放射された赤外線を内視鏡側に設けられた赤外線吸収体に作用させることにより内視鏡先端を温める、内視鏡の曇り防止システムである。
[Fourth Embodiment]
FIG. 5 is a cross-sectional view showing an anti-fogging system for an endoscope including the trocar 40 according to the fourth embodiment. The present embodiment is an endoscope anti-fogging system that warms the distal end of an endoscope by causing infrared rays radiated from an infrared ray generating means provided on the trocar side to act on an infrared absorber provided on the endoscope side. It is.
 トロッカー40は、挿入筒部12の通路11の内面から突出するように設けられた弾性体からなる突起部41と、通路11の内面で突起部41よりも内視鏡挿入部10aから離れたところに設けられた、エネルギ供給源として機能する赤外線発生源42と、を有している。赤外線発生源42は、内視鏡挿入部10a側に赤外線を放射するように調整されている。 The trocar 40 is a protrusion 41 made of an elastic body provided so as to protrude from the inner surface of the passage 11 of the insertion cylinder portion 12, and a position farther from the endoscope insertion portion 10 a than the protrusion 41 on the inner surface of the passage 11. And an infrared ray generation source 42 functioning as an energy supply source. The infrared ray generation source 42 is adjusted so as to emit infrared rays toward the endoscope insertion portion 10a.
 トロッカー40に挿入される内視鏡先端のカバーガラス2aの表面には、赤外線吸収膜2bが形成されている。この赤外線吸収膜2bは、赤外線を吸収すると発熱する。 An infrared absorption film 2b is formed on the surface of the cover glass 2a at the tip of the endoscope inserted into the trocar 40. The infrared absorbing film 2b generates heat when absorbing infrared rays.
 使用の際、内視鏡2は、突起部41に突き当たる位置まで挿入筒部12内に挿入される。そして、内視鏡先端が突起部41に突き当たった状態で、赤外線発生源42からの赤外線がカバーガラス2aの表面の赤外線吸収膜2bに向かって放射される。これにより、赤外線加熱が生じて内視鏡先端のカバーガラス2aが加熱される。 In use, the endoscope 2 is inserted into the insertion tube portion 12 up to a position where it hits the projection 41. And the infrared rays from the infrared ray generation source 42 are radiated toward the infrared ray absorbing film 2b on the surface of the cover glass 2a in a state where the distal end of the endoscope hits the protruding portion 41. Thereby, infrared heating occurs and the cover glass 2a at the distal end of the endoscope is heated.
 本実施形態によれば、内視鏡先端に設けられた赤外線吸収体により吸収された赤外線のエネルギが内視鏡先端のカバーガラスを直接加熱するため、発熱源と内視鏡先端とが非接触で効率的な加熱を行うことができる。 According to this embodiment, since the infrared energy absorbed by the infrared absorber provided at the endoscope front end directly heats the cover glass at the endoscope front end, the heat source and the endoscope front end are not in contact with each other. Efficient heating.
 [第5の実施形態] 
 図6は、第5の実施形態のトロッカー50を含む内視鏡の曇り防止システムを示す断面図である。本実施形態は、トロッカー側に設けられた磁場発生手段から発生された磁場を内視鏡側に設けられた磁気発熱体に作用させることにより内視鏡先端を温める、内視鏡の曇り防止システムである。
[Fifth Embodiment]
FIG. 6 is a cross-sectional view showing an anti-fogging system for an endoscope including a trocar 50 according to a fifth embodiment. This embodiment is an endoscope anti-fogging system that warms the tip of an endoscope by applying a magnetic field generated from a magnetic field generating means provided on the trocar side to a magnetic heating element provided on the endoscope side. It is.
 トロッカー50は、挿入筒部12の通路11の内面で上述のような加熱領域の先端位置に設けられた弾性体からなる突起部51と、前記加熱領域に設けられた、エネルギ供給源としての給電用コイル52とを有している。 The trocar 50 includes a protruding portion 51 made of an elastic body provided at the tip end of the heating region as described above on the inner surface of the passage 11 of the insertion tube portion 12 and a power supply as an energy supply source provided in the heating region. Coil 52 for use.
 トロッカー50に挿入される内視鏡先端のカバーガラス2aの近傍には、磁気発熱体(電磁吸収体)2cが形成されている。磁気発熱体2cは、挿入筒部12内に挿入された内視鏡2が突起部51と当接した状態にあるとき、給電用コイル52から発生される磁気エネルギにより磁気発熱体2cが発熱して内視鏡先端を加熱するように作用する位置に、つまり加熱領域を与えるように形成されている。 In the vicinity of the cover glass 2a at the tip of the endoscope inserted into the trocar 50, a magnetic heating element (electromagnetic absorber) 2c is formed. When the endoscope 2 inserted into the insertion cylinder 12 is in contact with the projection 51, the magnetic heating element 2c generates heat by the magnetic energy generated from the power feeding coil 52. Thus, the endoscope is formed so as to provide a heating region at a position that acts to heat the endoscope tip.
 使用の際、内視鏡2は、突起部51に突き当たる位置まで挿入筒部12内に挿入される。そして、内視鏡先端が突起部51に突き当たった状態で給電用コイル52を通電させて、給電用コイル52に磁場を発生させる。この磁場により磁気発熱体2cに磁気エネルギが与えられると、電磁誘導作用により磁気発熱体2cが加熱されて(誘導加熱)、内視鏡先端のカバーガラス2aが加熱される。 In use, the endoscope 2 is inserted into the insertion tube portion 12 up to a position where it hits the projection 51. Then, the feeding coil 52 is energized in a state where the distal end of the endoscope hits the protruding portion 51, and a magnetic field is generated in the feeding coil 52. When magnetic energy is applied to the magnetic heating element 2c by this magnetic field, the magnetic heating element 2c is heated by induction (induction heating), and the cover glass 2a at the distal end of the endoscope is heated.
 本実施形態によれば、トロッカー側に設けられた給電用コイルの磁気エネルギが内視鏡側に設けられた磁気発熱体を直接加熱するため、発熱源と内視鏡先端とが非接触で効率的な加熱を行うことができる。 According to the present embodiment, since the magnetic energy of the power supply coil provided on the trocar side directly heats the magnetic heating element provided on the endoscope side, the heat source and the endoscope tip are not in contact with each other and are efficient. Heating can be performed.
 [第6の実施形態] 
 図7は、第6の実施形態のトロッカー60を含む内視鏡の曇り防止システムを示す断面図である。本実施形態は、トロッカー側に設けられた給電手段と内視鏡側に設けられた受電手段との間の電磁誘導を利用して、内視鏡側に設けられた電気発熱体で内視鏡先端を温める、内視鏡の曇り防止システムである。
[Sixth Embodiment]
FIG. 7 is a cross-sectional view showing an anti-fogging system for an endoscope including a trocar 60 according to a sixth embodiment. In the present embodiment, an electric heating element provided on the endoscope side is used for the endoscope by utilizing electromagnetic induction between a power feeding means provided on the trocar side and a power receiving means provided on the endoscope side. This is an endoscope anti-fogging system that warms the tip.
 トロッカー60は、挿入筒部12の通路11の内面で上述のような加熱領域の先端位置に設けられた弾性体からなる突起部61と、前記加熱領域に設けられた、エネルギ供給源としての給電用コイル62とを有している。 The trocar 60 includes a protrusion 61 made of an elastic body provided at the distal end position of the heating region as described above on the inner surface of the passage 11 of the insertion tube portion 12 and a power supply as an energy supply source provided in the heating region. Coil 62.
 トロッカー60に挿入される内視鏡先端内部には、受電用コイル2dが配置されており、さらに、内視鏡先端のカバーガラス2aの近傍には、電気発熱体2eが配置されている。受電用コイル2dと電気発熱体2eとは、互いに電気的に接続されている。 The power receiving coil 2d is disposed inside the endoscope tip inserted into the trocar 60, and an electric heating element 2e is disposed in the vicinity of the cover glass 2a at the endoscope tip. The power receiving coil 2d and the electric heating element 2e are electrically connected to each other.
 使用の際、内視鏡2は、突起部61に突き当たる位置まで挿入筒部12内に挿入される。そして、内視鏡先端が突起部61に突き当たった状態で給電用コイル62を通電させて、磁場を発生させる。さらに、かくして発生された磁場により、電磁誘導を利用して受電用コイル2dに電気エネルギを発生させる。受電用コイル2dと電気発熱体2eとが電気的に接続されているため、受電用コイル2dの電力により電気発熱体2eが発熱し、この熱により内視鏡先端のカバーガラス2aが加熱される。 In use, the endoscope 2 is inserted into the insertion tube portion 12 up to a position where it hits the projection 61. Then, the feeding coil 62 is energized with the endoscope tip abutted against the protrusion 61 to generate a magnetic field. Furthermore, electric energy is generated in the power receiving coil 2d using electromagnetic induction by the magnetic field thus generated. Since the power receiving coil 2d and the electric heating element 2e are electrically connected, the electric heating element 2e generates heat by the electric power of the power receiving coil 2d, and the cover glass 2a at the distal end of the endoscope is heated by this heat. .
 本実施形態によれば、受電用コイルと給電用コイルとの電磁誘導を利用して内視鏡側の電気発熱体からの熱で内視鏡先端を加熱させるため、非接触で効率的な加熱を行うことができる。 According to the present embodiment, since the endoscope tip is heated by the heat from the electric heating element on the endoscope side using the electromagnetic induction between the power receiving coil and the power feeding coil, non-contact and efficient heating is performed. It can be performed.
 [第7の実施形態] 
 図8は、第7の実施形態のトロッカー70を含む内視鏡の曇り防止システムを示す断面図である。本実施形態は、トロッカー側に設けられた給電用電極と内視鏡側に設けられた受電用電極とを接触接点として内視鏡側に電力を供給して、この電力で電気発熱体が発熱して内視鏡先端を温める、内視鏡の曇り防止システムである。
[Seventh Embodiment]
FIG. 8 is a cross-sectional view showing an anti-fogging system for an endoscope including a trocar 70 according to a seventh embodiment. In the present embodiment, electric power is supplied to the endoscope side by using a power supply electrode provided on the trocar side and a power receiving electrode provided on the endoscope side as contact contacts, and the electric heating element generates heat by this electric power. This is an endoscope anti-fogging system that warms the endoscope tip.
 トロッカー70は、挿入筒部12の通路11の内面で上述のような加熱領域の先端位置に設けられた弾性体からなる突起部71と、前記加熱領域に設けられた、エネルギ供給源としての給電用電極72とを有している。また、給電用電極72は、挿入筒部12内に内視鏡2が挿入されたときに内視鏡2の外面に接触する程度に、挿入筒部12の通路11の内面から径方向内側に突出している。 The trocar 70 includes a protrusion 71 made of an elastic body provided at the tip of the heating region as described above on the inner surface of the passage 11 of the insertion tube portion 12 and a power supply as an energy supply source provided in the heating region. And a working electrode 72. In addition, the feeding electrode 72 is radially inward from the inner surface of the passage 11 of the insertion tube portion 12 to such an extent that the electrode 72 contacts the outer surface of the endoscope 2 when the endoscope 2 is inserted into the insertion tube portion 12. It protrudes.
 トロッカー70に挿入される内視鏡2の外面には、受電用電極2fが配置されており、さらに、内視鏡先端のカバーガラス2aの近傍には、電気発熱体2gが配置されている。受電用電極2fと電気発熱体2gとは、互いに電気的に接続されている。 A power receiving electrode 2f is disposed on the outer surface of the endoscope 2 inserted into the trocar 70, and an electric heating element 2g is disposed in the vicinity of the cover glass 2a at the distal end of the endoscope. The power receiving electrode 2f and the electric heating element 2g are electrically connected to each other.
 トロッカー70側の給電用電極72と内視鏡2側の受電用電極2fとは、内視鏡2がトロッカー70に挿入されて突起部71に当接したときに互いに物理的に接触する位置に形成された電気的な接触接点である。 The feeding electrode 72 on the trocar 70 side and the receiving electrode 2f on the endoscope 2 side are in a position where they come into physical contact with each other when the endoscope 2 is inserted into the trocar 70 and abuts against the protrusion 71. It is a formed electrical contact.
 使用の際には、内視鏡2は、突起部71に突き当たる位置まで挿入筒部12内に挿入される。そして、内視鏡先端が突起部71に突き当たった位置で、給電用電極72と受電用電極2fとが接触して、受電用電極2fに電力が供給される。受電用電極2fは電気発熱体2gと電気的に接続されているため、受電用電極2fの電力で電気発熱体2gが発熱して、この熱により内視鏡先端のカバーガラス2aが加熱される。 In use, the endoscope 2 is inserted into the insertion tube portion 12 up to a position where it hits the projection 71. Then, at the position where the distal end of the endoscope hits the protrusion 71, the power supply electrode 72 and the power reception electrode 2f come into contact with each other, and power is supplied to the power reception electrode 2f. Since the power receiving electrode 2f is electrically connected to the electric heating element 2g, the electric heating element 2g generates heat by the power of the power receiving electrode 2f, and the heat causes the cover glass 2a at the distal end of the endoscope to be heated. .
 本実施形態によれば、内視鏡を加熱する発熱源を内視鏡内部に設けられた電気発熱体で形成することで、より効率的な発熱源とすることができる。また、発熱源へのエネルギの供給をトロッカーに設けられた電極と内視鏡の外面に設けられた電極との接触により行うため、安価で効率的なエネルギ伝送を行うことができる。 According to the present embodiment, a more efficient heat generation source can be obtained by forming the heat generation source for heating the endoscope with the electric heating element provided inside the endoscope. In addition, since energy is supplied to the heat generation source by contact between the electrode provided on the trocar and the electrode provided on the outer surface of the endoscope, inexpensive and efficient energy transmission can be performed.
 [第8の実施形態] 
 図9は、第8の実施形態のトロッカー80を含む内視鏡の曇り防止システムを示す断面図である。本実施形態は、カバーガラス(誘電体)を電極で挟み込んでキャパシタを形成し、その誘電加熱を利用して内視鏡先端を温める、内視鏡の曇り防止システムである。
[Eighth Embodiment]
FIG. 9 is a cross-sectional view showing an anti-fogging system for an endoscope including a trocar 80 according to an eighth embodiment. This embodiment is an endoscope anti-fogging system in which a cover glass (dielectric) is sandwiched between electrodes to form a capacitor, and the distal end of the endoscope is heated using the dielectric heating.
 トロッカー80は、挿入筒部12の通路11の内面で上述のような加熱領域の先端位置に設けられた弾性体からなる突起部81と、前記加熱領域に設けられた、エネルギ供給源としての給電用電極82とを有している。また、給電用電極82は、挿入筒部12内に内視鏡2が挿入されたときに内視鏡2の外面と接触する程度に、挿入筒部12の通路11の内面から径方向内側に突出している。 The trocar 80 includes a protrusion 81 made of an elastic body provided at the distal end position of the heating region as described above on the inner surface of the passage 11 of the insertion tube portion 12 and a power supply as an energy supply source provided in the heating region. Electrode 82. In addition, the feeding electrode 82 is radially inward from the inner surface of the passage 11 of the insertion tube portion 12 to the extent that the electrode 2 contacts the outer surface of the endoscope 2 when the endoscope 2 is inserted into the insertion tube portion 12. It protrudes.
 トロッカー80に挿入される内視鏡2の外面には、受電用電極2hが形成されており、また、内視鏡先端のカバーガラス2aの両表面に、対向した透明電極2iを形成することで、透明電極2i間に誘電体であるカバーガラス2aを入れたキャパシタを形成している。受電用電極2hと透明電極2iとは、互いに電気的に接続されている。 A power receiving electrode 2h is formed on the outer surface of the endoscope 2 inserted into the trocar 80, and the opposing transparent electrodes 2i are formed on both surfaces of the cover glass 2a at the distal end of the endoscope. A capacitor is formed in which a cover glass 2a, which is a dielectric, is placed between the transparent electrodes 2i. The power receiving electrode 2h and the transparent electrode 2i are electrically connected to each other.
 トロッカー80側の給電用電極82と内視鏡2側の受電用電極2hとは、内視鏡2がトロッカー80内に挿入されて突起部81に当接したときに互いに物理的に接触する位置に形成されている。 A position where the feeding electrode 82 on the trocar 80 side and the receiving electrode 2h on the endoscope 2 side are in physical contact with each other when the endoscope 2 is inserted into the trocar 80 and abuts against the protrusion 81. Is formed.
 使用の際には、内視鏡2は、突起部81に突き当たる位置まで挿入筒部12内に挿入される。そして、内視鏡先端が突起部81に突き当たった位置で、給電用電極82から受電用電極2hに高周波の電流を流す。すると、カバーガラス2aが誘電損失によって発熱し(誘電加熱)、この熱によりカバーガラス2aが直接加熱される。 In use, the endoscope 2 is inserted into the insertion tube portion 12 up to a position where it abuts against the protrusion 81. Then, a high-frequency current flows from the power supply electrode 82 to the power reception electrode 2 h at a position where the distal end of the endoscope hits the protrusion 81. Then, the cover glass 2a generates heat due to dielectric loss (dielectric heating), and the cover glass 2a is directly heated by this heat.
 本実施形態によれば、誘電加熱によりカバーガラスが直接加熱されるため、効率的な加熱を行うことができる。 According to this embodiment, since the cover glass is directly heated by dielectric heating, efficient heating can be performed.
 [第9の実施形態] 
 図10は、第9の実施形態のトロッカー90を示す断面図である。
[Ninth Embodiment]
FIG. 10 is a cross-sectional view showing a trocar 90 according to the ninth embodiment.
 トロッカー90の挿入筒部12の通路11の内面で加熱領域の先端位置には、弾性部材からなる突起部91が形成されている。また、トロッカー90の挿入筒部12では、送気口金16からつながる送気流路が、その途中で、体腔内を拡張させるための送気ガス用流路92と、内視鏡2を加熱するための加熱ガス用流路93とに分岐されている。 A protrusion 91 made of an elastic member is formed on the inner surface of the passage 11 of the insertion tube portion 12 of the trocar 90 at the tip of the heating region. In addition, in the insertion cylinder portion 12 of the trocar 90, the air supply flow path connected from the air supply base 16 heats the endoscope 2 and the air supply gas flow path 92 for expanding the inside of the body cavity in the middle. And a heating gas passage 93.
 送気ガス用流路92は、通路11の内面で突起部91よりも内視鏡挿入方向内側に流出口が設けられ、加熱ガス用流路93は、加熱領域に流出口を有する。加熱ガス用流路93のまわりには、加熱ガス用流路93を通るガスを加熱させるための発熱体94が配置されている。また、送気ガス用流路92及び加熱ガス用流路93には、それぞれ、ガスの流出を制御する制御弁95、96が設けられている。 The air supply gas channel 92 is provided with an outlet on the inner surface of the passage 11 on the inner side in the endoscope insertion direction than the projection 91, and the heating gas channel 93 has an outlet in the heating region. A heating element 94 for heating the gas passing through the heating gas channel 93 is disposed around the heating gas channel 93. In addition, control valves 95 and 96 for controlling the outflow of gas are provided in the air supply gas channel 92 and the heated gas channel 93, respectively.
 図10に示される構成に代わって、例えば、送気ガス及び加熱ガスの入口を兼用せずに、別々の経路でトロッカーに導入する構成を採用してもよい。もしくは、加熱ガス用流路のまわりに発熱体を設けずに、送気ガスを他の手段を用いて加熱した上でトロッカーに導入する構成を採用してもよい。 Instead of the configuration shown in FIG. 10, for example, a configuration may be adopted in which the gas is introduced into the trocar through a separate route without using both the inlet of the air supply gas and the heated gas. Or you may employ | adopt the structure which introduces into a trocar after heating air supply gas using another means, without providing a heat generating body around the flow path for heated gas.
 なお、加熱流体を用いれば、内視鏡2を加熱して曇りを防止するためにのみならず、視野クリーニング、すなわち内視鏡先端のカバーガラスの表面を洗浄することも可能である。 It should be noted that if a heated fluid is used, not only can the endoscope 2 be heated to prevent fogging, but also the field of view cleaning, that is, the surface of the cover glass at the tip of the endoscope can be cleaned.
 使用の際には、内視鏡2は、突起部91に突き当たる位置まで挿入筒部12内に挿入される。そして、内視鏡先端が突起部91に突き当たった位置で、加熱ガス用流路93側の制御弁96を開いて、加熱ガス用流路93を通して加熱ガスを与えて内視鏡先端を加熱する。内視鏡先端が予め規定された温度範囲内に温まったら、制御弁96を閉じて加熱ガスの供給を停止する。 In use, the endoscope 2 is inserted into the insertion tube portion 12 up to a position where it hits the projection 91. Then, the control valve 96 on the heating gas channel 93 side is opened at a position where the endoscope tip abuts against the protrusion 91, and heating gas is supplied through the heating gas channel 93 to heat the endoscope tip. . When the endoscope tip is heated within a predetermined temperature range, the control valve 96 is closed and the supply of the heated gas is stopped.
 本実施形態によれば、体腔内を拡張する送気ガスにより内視鏡先端を加熱させるため、内視鏡側に別途の加熱部材を設ける必要がなく、また、熱伝達の観点からも効率的に内視鏡を加熱することができる。 According to the present embodiment, since the endoscope tip is heated by the air supply gas that expands inside the body cavity, there is no need to provide a separate heating member on the endoscope side, and it is also efficient from the viewpoint of heat transfer. The endoscope can be heated.
 [第10の実施形態] 
 図11は、第10の実施形態のトロッカー100を示す断面図である。
[Tenth embodiment]
FIG. 11 is a cross-sectional view illustrating a trocar 100 according to the tenth embodiment.
 トロッカー100の挿入筒部12の通路11の内面で加熱領域の先端位置には、突起部101が形成されている。また、本実施形態では、トロッカー100の挿入筒部12の通路11内に、この通路11中に挿入される内視鏡先端の温度を検出する温度センサ102と、温度センサ102の出力に基づいて内視鏡2の加熱状態を表示する表示ランプ103とが形成されている。 A protrusion 101 is formed on the inner surface of the passage 11 of the insertion tube portion 12 of the trocar 100 at the tip of the heating region. In the present embodiment, the temperature sensor 102 that detects the temperature of the endoscope tip inserted into the passage 11 of the insertion tube portion 12 of the trocar 100 and the output of the temperature sensor 102 is used. A display lamp 103 that displays the heating state of the endoscope 2 is formed.
 表示ランプ103は、エネルギ供給源18が内視鏡2にエネルギを供給していないときは、消灯している。使用の際、内視鏡2が突起部101に突き当たる位置まで挿入筒部12内に挿入されてエネルギ供給源18が動作状態となると、表示ランプ103が点灯又は点滅する。そして、温度センサ102が内視鏡先端の温度が予め規定された温度範囲内に加熱されたことを検出すると、表示ランプ103は消灯する。もしくは、色の変化など他の視覚的表示方法によってエネルギ供給源18の動作状態及び内視鏡先端の加熱状態を表示してもよい。 The display lamp 103 is turned off when the energy supply source 18 is not supplying energy to the endoscope 2. In use, when the endoscope 2 is inserted into the insertion tube portion 12 to a position where it hits the projection 101 and the energy supply source 18 is in an operating state, the display lamp 103 is turned on or blinks. When the temperature sensor 102 detects that the temperature of the endoscope tip is heated within a predetermined temperature range, the display lamp 103 is turned off. Alternatively, the operating state of the energy supply source 18 and the heating state of the endoscope tip may be displayed by another visual display method such as a color change.
 本実施形態によれば、温度センサ及び表示ランプにより、医療従事者が内視鏡先端の加熱状態を知ることができる。 According to the present embodiment, the medical staff can know the heating state of the endoscope tip by the temperature sensor and the display lamp.
 なお、本実施形態では、トロッカー側に加熱状態の表示機能を持たせたが、内視鏡2又はモニタ装置5がこのような表示機能を有してもよい。この場合には、トロッカーから加熱情報を取得して内視鏡2又はモニタ装置5に伝達する手段を含む。 In addition, in this embodiment, although the display function of the heating state was given to the trocar side, the endoscope 2 or the monitor apparatus 5 may have such a display function. In this case, a means for acquiring heating information from the trocar and transmitting it to the endoscope 2 or the monitor device 5 is included.
 [第11の実施形態] 
 図12は、第11の実施形態のトロッカーを含むトロッカーシステムを示す断面図である。
[Eleventh embodiment]
FIG. 12: is sectional drawing which shows the trocar system containing the trocar of 11th Embodiment.
 本実施形態では、複数のトロッカー(第1のトロッカー100a、第2のトロッカー100b、第3のトロッカー100c、…)が、接続ケーブル201、202、203、…で互いに接続されており、最端のトロッカー(図12では第1のトロッカー100a)が電源供給装置200に接続されている。図12に示す各トロッカー100a、100b、100c、…は、第10の実施形態のトロッカー100の構成と同様の構成である。もちろん、第1乃至第9の実施形態のトロッカーであってもよい。 In this embodiment, a plurality of trocars (first trocar 100a, second trocar 100b, third trocar 100c,...) Are connected to each other by connection cables 201, 202, 203,. A trocar (first trocar 100a in FIG. 12) is connected to the power supply apparatus 200. Each of the trocars 100a, 100b, 100c,... Shown in FIG. 12 has the same configuration as that of the trocar 100 of the tenth embodiment. Of course, the trocar of 1st thru | or 9th embodiment may be sufficient.
 トロッカーのエネルギ供給源、温度センサ、表示ランプ、制御回路などを駆動させるための電源として、トロッカー内に電池等の電源を有してもよいが、外部の電源装置から電源を供給する場合には、複数のトロッカーを使用するとそれらの接続が煩雑になりうる。そのような場合には、本実施形態のように、各トロッカー同士を接続ケーブルで数珠繋ぎに接続して電源を供給することにより、ケーブル長を短くし、配線の接続を簡略化することができる。 As a power source for driving the energy supply source of the trocar, temperature sensor, display lamp, control circuit, etc., the trocar may have a power source such as a battery, but when power is supplied from an external power supply device If a plurality of trocars are used, their connection can be complicated. In such a case, the cable length can be shortened and the connection of wiring can be simplified by connecting the trocars to each other with a connection cable and supplying power as in this embodiment.
 [第12の実施形態] 
 図13は、第12の実施形態のトロッカー110を示す断面図である。
[Twelfth embodiment]
FIG. 13: is sectional drawing which shows the trocar 110 of 12th Embodiment.
 トロッカー110は、患者の単一の体壁孔に取り付けるものであるが、複数の内視鏡挿入部112、113、114を有するマルチポート型のトロッカーである。内視鏡挿入部112、113、114には、それぞれ、エネルギ供給源112a、113a、114aが形成されており、各エネルギ供給源が電源供給線111で直列接続されている。また、電源供給源111bに接続されたコネクタ115が、電源供給装置200に接続されている。 The trocar 110 is a multiport trocar having a plurality of endoscope insertion portions 112, 113, 114, which is attached to a single body wall hole of a patient. Energy supply sources 112 a, 113 a, and 114 a are formed in the endoscope insertion portions 112, 113, and 114, respectively, and each energy supply source is connected in series with a power supply line 111. A connector 115 connected to the power supply source 111b is connected to the power supply apparatus 200.
 このような構成のマルチポート型のトロッカーを用いることにより、どの内視鏡挿入部から内視鏡を挿入してもその内視鏡挿入部のエネルギ供給源により内視鏡先端を加熱することができ、内視鏡の曇り防止効果を得ることができる。 By using the multi-port type trocar having such a configuration, the endoscope tip can be heated by the energy supply source of the endoscope insertion portion regardless of which endoscope insertion portion is inserted. And the effect of preventing fogging of the endoscope can be obtained.
 以上、本発明の実施形態について説明したが、本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲でさまざまな改良及び変更が可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment, A various improvement and change are possible in the range which does not deviate from the summary of this invention.
 1…内視鏡システム、2…内視鏡、2a…カバーガラス、2b…赤外線吸収膜、2c…磁気発熱体、2d…受電用コイル、2e…電気発熱体、2f…受電用電極、2g…電気発熱体、2h…受電用電極、2i…透明電極、3…プロセッサ装置、4…光源装置、5…モニタ装置、6…送気装置、7…送気制御部、8…ガスタンク、10,20,30,40,50,60,70,80,90,100,110…トロッカー、10a…内視鏡挿入部、11…通路、11…挿入筒部、13…管路、14…案内管、15…フランジ部、16…送気口金、17…送気流路、18…エネルギ供給源、21,31a,51,61,71,81,91,101…突起部、31…弾性部材、32…エネルギ供給源、42…赤外線発生源、52…給電用コイル、72…給電用電極、92…送気ガス用流路、93…加熱ガス用流路、94…発熱体、95、96…制御弁、102…温度センサ、103…表示ランプ、111…電源供給源、112、113、114…内視鏡挿入部、112a,113a,114a…エネルギ供給源。 DESCRIPTION OF SYMBOLS 1 ... Endoscope system, 2 ... Endoscope, 2a ... Cover glass, 2b ... Infrared absorption film, 2c ... Magnetic heating element, 2d ... Power receiving coil, 2e ... Electric heating element, 2f ... Power receiving electrode, 2g ... Electric heating element, 2h ... receiving electrode, 2i ... transparent electrode, 3 ... processor device, 4 ... light source device, 5 ... monitor device, 6 ... air supply device, 7 ... air supply control unit, 8 ... gas tank, 10, 20 , 30, 40, 50, 60, 70, 80, 90, 100, 110... Trocar, 10a... Endoscope insertion portion, 11... Passage, 11. DESCRIPTION OF SYMBOLS ... Flange part, 16 ... Air supply mouthpiece, 17 ... Air supply flow path, 18 ... Energy supply source, 21, 31a, 51, 61, 71, 81, 91, 101 ... Projection part, 31 ... Elastic member, 32 ... Energy supply Source, 42 ... Infrared light generation source, 52 ... Coil for feeding, 7 DESCRIPTION OF SYMBOLS ... Electrode for electric power feeding, 92 ... Channel for air supply gas, 93 ... Channel for heating gas, 94 ... Heating element, 95, 96 ... Control valve, 102 ... Temperature sensor, 103 ... Display lamp, 111 ... Power supply source, 112, 113, 114 ... endoscope insertion part, 112a, 113a, 114a ... energy supply source.

Claims (21)

  1.  内視鏡下外科手術に用いられるトロッカーにおいて、
     トロッカーの内視鏡挿入部に挿入された内視鏡を加熱するためのエネルギ供給源をトロッカー内に具備することを特徴とする、加熱機能付きトロッカー。
    In trocars used for endoscopic surgery,
    A trocar with a heating function, wherein the trocar includes an energy supply source for heating the endoscope inserted in the endoscope insertion portion of the trocar.
  2.  前記内視鏡挿入部内に、挿入された内視鏡に突き当たり内視鏡の挿入動作を中断させるための滞留部が形成されており、
     前記エネルギ供給源は、前記突き当たった位置にある内視鏡を加熱する範囲で前記滞留部の近傍に形成されていることを特徴とする、請求項1記載の加熱機能付きトロッカー。
    In the endoscope insertion portion, a retention portion is formed for abutting the inserted endoscope to interrupt the insertion operation of the endoscope,
    2. The trocar with a heating function according to claim 1, wherein the energy supply source is formed in the vicinity of the staying portion within a range in which the endoscope at the abutted position is heated.
  3.  前記滞留部は、弾性体からなる突起部で形成されていることを特徴とする、請求項2記載の加熱機能付きトロッカー。 The trocar with a heating function according to claim 2, wherein the staying portion is formed by a protruding portion made of an elastic body.
  4.  前記エネルギ供給源は、電気発熱体で形成されていることを特徴とする、請求項1乃至3のいずれか1記載の加熱機能付きトロッカー。 The trocar with a heating function according to any one of claims 1 to 3, wherein the energy supply source is formed of an electric heating element.
  5.  前記内視鏡挿入部の挿入側端部と前記突起部との間が、高熱伝導性の弾性体で形成されており、
     前記高熱伝導性の弾性体の内径が、前記内視鏡挿入部に挿入される内視鏡の外径と略同一であることを特徴とする、請求項4記載の加熱機能付きトロッカー。
    Between the insertion side end portion of the endoscope insertion portion and the projection portion is formed of an elastic body having high thermal conductivity,
    The trocar with a heating function according to claim 4, wherein an inner diameter of the elastic body having high thermal conductivity is substantially the same as an outer diameter of an endoscope inserted into the endoscope insertion portion.
  6.  前記エネルギ供給源が赤外線発生源からなる請求項1乃至3のいずれか1記載の加熱機能付きトロッカーと、
     カバーガラスと、該カバーガラスの表面に形成された赤外線吸収膜とを有する内視鏡と、を具備し、
     前記赤外線発生源からの赤外線を前記赤外線吸収膜が吸収することにより、前記赤外線吸収膜が発熱することを特徴とする、内視鏡の曇り防止システム。
    The trocar with a heating function according to any one of claims 1 to 3, wherein the energy supply source is an infrared ray generation source.
    An endoscope having a cover glass and an infrared absorption film formed on the surface of the cover glass;
    An anti-fogging system for an endoscope, wherein the infrared absorption film generates heat when the infrared absorption film absorbs infrared rays from the infrared generation source.
  7.  前記エネルギ供給源が給電用コイルからなる請求項1乃至3のいずれか1記載の加熱機能付きトロッカーと、
     カバーガラスと、該カバーガラス側に形成された磁気発熱体とを有する内視鏡と、を具備し、
     前記給電用コイルから発生される磁場により前記磁気発熱体が発熱することを特徴とする、内視鏡の曇り防止システム。
    The trocar with a heating function according to any one of claims 1 to 3, wherein the energy supply source includes a power feeding coil.
    An endoscope having a cover glass and a magnetic heating element formed on the cover glass side;
    An anti-fogging system for an endoscope, wherein the magnetic heating element generates heat by a magnetic field generated from the power feeding coil.
  8.  前記エネルギ供給源が給電用コイルからなる請求項1乃至3のいずれか1記載の加熱機能付きトロッカーと、
     受電用コイルと、該受電用コイルに接続された電気発熱体と、該電気発熱体側に形成されたカバーガラスとを有する内視鏡と、を具備し、
     前記給電用コイルと前記受電用コイルとの電磁誘導作用により前記電気発熱体が発熱することを特徴とする、内視鏡の曇り防止システム。
    The trocar with a heating function according to any one of claims 1 to 3, wherein the energy supply source includes a power feeding coil.
    An endoscope having a power receiving coil, an electric heating element connected to the power receiving coil, and a cover glass formed on the electric heating element side;
    An anti-fogging system for an endoscope, wherein the electric heating element generates heat by an electromagnetic induction action between the power feeding coil and the power receiving coil.
  9.  前記エネルギ供給源が給電用電極からなる請求項1乃至3のいずれか1記載の加熱機能付きトロッカーと、
     受電用電極と、該受電用電極に接続された電気発熱体と、該電気発熱体側に形成されたカバーガラスとを有する内視鏡と、を具備し、
     前記給電用電極と前記受電用電極とを接触接点として前記給電用電極から前記受電用電極に電力を供給することにより前記電気発熱体が発熱することを特徴とする、内視鏡の曇り防止システム。
    The trocar with a heating function according to any one of claims 1 to 3, wherein the energy supply source includes a power feeding electrode;
    An endoscope having a power receiving electrode, an electric heating element connected to the power receiving electrode, and a cover glass formed on the electric heating element side;
    An anti-fogging system for an endoscope, wherein the electric heating element generates heat by supplying electric power from the power supply electrode to the power receiving electrode using the power supply electrode and the power receiving electrode as contact contacts. .
  10.  前記エネルギ供給源が給電用電極からなる請求項1乃至3のいずれか1記載の加熱機能付きトロッカーと、
     受電用電極と、カバーガラスと、前記受電用電極に接続され、前記カバーガラスの表面に設けられた透明電極とを有する内視鏡と、を具備し、
     前記給電用電極によって前記受電用電極と前記透明電極とを通電することにより、前記カバーガラスが誘電加熱により発熱することを特徴とする、内視鏡の曇り防止システム。
    The trocar with a heating function according to any one of claims 1 to 3, wherein the energy supply source includes a power feeding electrode;
    An endoscope having a power receiving electrode, a cover glass, and a transparent electrode connected to the power receiving electrode and provided on a surface of the cover glass;
    An anti-fogging system for an endoscope, wherein the cover glass generates heat by dielectric heating when the power receiving electrode and the transparent electrode are energized by the power feeding electrode.
  11.  外部からガスが供給される供給口と、
     前記供給口から前記内視鏡挿入部に連通するガス流路とを有し、
     前記エネルギ供給源は、外部から供給された前記ガスを加熱するための発熱源からなることを特徴とする、請求項1乃至3のいずれか1記載の加熱機能付きトロッカー。
    A supply port through which gas is supplied from the outside;
    A gas flow path communicating from the supply port to the endoscope insertion portion,
    The trocar with a heating function according to any one of claims 1 to 3, wherein the energy supply source includes a heat generation source for heating the gas supplied from the outside.
  12.  前記ガスは、体腔内を拡張する送気ガスと兼用される加熱用ガスよりなることを特徴とする、請求項11記載の加熱機能付きトロッカー。 12. The trocar with a heating function according to claim 11, wherein the gas comprises a heating gas that is also used as an insufflation gas for expanding a body cavity.
  13.  前記ガス流路は、外部から供給された前記ガスを、体腔内を拡張する送気ガスと加熱用ガスとに分岐させるように、送気ガス流路と加熱用ガス流路とに分岐されており、
     前記送気ガス流路と前記加熱用ガス流路とには、それぞれ、前記送気ガスと前記加熱用ガスとの流れを制御する制御弁が形成されていることを特徴とする、請求項12記載の加熱機能付きトロッカー。
    The gas flow path is branched into an air supply gas flow path and a heating gas flow path so that the gas supplied from the outside is branched into an air supply gas and a heating gas expanding in the body cavity. And
    The control valve for controlling the flow of the air supply gas and the heating gas is formed in each of the air supply gas flow path and the heating gas flow path, respectively. The described trocar with heating function.
  14.  前記発熱源は、前記加熱ガス用流路に形成された発熱体であることを特徴とする、請求項13記載の加熱機能付きトロッカー。 14. The trocar with a heating function according to claim 13, wherein the heat generation source is a heating element formed in the heating gas flow path.
  15.  前記供給口から供給される加熱流体により、前記内視鏡のカバーガラス表面を洗浄することを特徴とする、請求項11記載の加熱機能付きトロッカー。 The trocar with a heating function according to claim 11, wherein the surface of the cover glass of the endoscope is washed with a heating fluid supplied from the supply port.
  16.  挿入される内視鏡の温度を測定するセンサをトロッカー内に具備することを特徴とする、請求項1乃至5及び11乃至15のいずれか1記載の加熱機能付きトロッカー。 The trocar with a heating function according to any one of claims 1 to 5 and 11 to 15, further comprising a sensor for measuring a temperature of an inserted endoscope in the trocar.
  17.  前記温度センサの出力により、挿入された内視鏡の加熱状態を表示する機能を備えることを特徴とする、請求項16記載の加熱機能付きトロッカー。 The trocar with a heating function according to claim 16, further comprising a function of displaying a heating state of the inserted endoscope by an output of the temperature sensor.
  18.  前記加熱状態の表示機能をトロッカーに具備することを特徴とする、請求項17記載の加熱機能付きトロッカー。 The trocar with a heating function according to claim 17, wherein the trocar has a display function of the heating state.
  19.  前記加熱状態の表示機能を前記内視鏡又は前記内視鏡の制御装置に具備することと、
     前記トロッカーで取得した情報を前記内視鏡又は前記内視鏡の制御装置に伝達する手段を具備することとを特徴とする、請求項17記載の加熱機能付きトロッカー。
    Including the display function of the heating state in the endoscope or the control device of the endoscope;
    The trocar with a heating function according to claim 17, further comprising means for transmitting information acquired by the trocar to the endoscope or a control device of the endoscope.
  20.  複数の加熱機能付きトロッカーを備えたトロッカーシステムにおいて、
     前記複数のトロッカーの各々に加熱エネルギを伝達する手段を設けたことを特徴とする、請求項1乃至5並びに11乃至19のいずれか1記載の加熱機能付きトロッカーを備えたトロッカーシステム。
    In the trocar system with multiple trocars with heating function,
    The trocar system having a trocar with a heating function according to any one of claims 1 to 5, and 11 to 19, further comprising means for transmitting heating energy to each of the plurality of trocars.
  21.  複数の内視鏡挿入部を有するトロッカーにおいて、
     前記複数の内視鏡挿入部は、それぞれ、加熱用のエネルギ供給源を有し、
     前記エネルギ供給源は、それぞれ、加熱エネルギを伝達する手段を有することを特徴とする、請求項1乃至5並びに11乃至19のいずれか1記載の加熱機能付きトロッカー。
    In the trocar having a plurality of endoscope insertion portions,
    Each of the plurality of endoscope insertion portions has an energy supply source for heating,
    The trocar with a heating function according to any one of claims 1 to 5 and 11 to 19, wherein each of the energy supply sources has means for transmitting heating energy.
PCT/JP2012/064205 2011-07-11 2012-05-31 Trocar with heating function and system therefor WO2013008555A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-153206 2011-07-11
JP2011153206A JP2013017642A (en) 2011-07-11 2011-07-11 Trocar with heating function and system therefor

Publications (1)

Publication Number Publication Date
WO2013008555A1 true WO2013008555A1 (en) 2013-01-17

Family

ID=47505853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064205 WO2013008555A1 (en) 2011-07-11 2012-05-31 Trocar with heating function and system therefor

Country Status (2)

Country Link
JP (1) JP2013017642A (en)
WO (1) WO2013008555A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881032A4 (en) * 2013-03-19 2016-08-17 Olympus Corp Endoscope
CN113384222A (en) * 2021-05-18 2021-09-14 李标 Thoracoscope lens device with washing function
IT202000015874A1 (en) * 2020-07-01 2022-01-01 Raphael Thomasset HEATING SYSTEM OF AN ENDOSCOPIC OPTICAL SYSTEM AND ENDOSCOPIC INSUFFLATION GAS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836857A4 (en) 2018-08-17 2022-05-18 Fisher & Paykel Healthcare Limited Heated surgical cannula for providing gases to a patient

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136831A (en) * 1994-11-09 1996-05-31 Olympus Optical Co Ltd Endoscopic apparatus
JP2000300666A (en) * 1999-04-23 2000-10-31 Olympus Optical Co Ltd Heating device of perfusion within peritoneal cavity
US20020022762A1 (en) * 2000-02-18 2002-02-21 Richard Beane Devices and methods for warming and cleaning lenses of optical surgical instruments
JP2005245772A (en) * 2004-03-04 2005-09-15 Olympus Corp Pneumoperitoneum system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136831A (en) * 1994-11-09 1996-05-31 Olympus Optical Co Ltd Endoscopic apparatus
JP2000300666A (en) * 1999-04-23 2000-10-31 Olympus Optical Co Ltd Heating device of perfusion within peritoneal cavity
US20020022762A1 (en) * 2000-02-18 2002-02-21 Richard Beane Devices and methods for warming and cleaning lenses of optical surgical instruments
JP2005245772A (en) * 2004-03-04 2005-09-15 Olympus Corp Pneumoperitoneum system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881032A4 (en) * 2013-03-19 2016-08-17 Olympus Corp Endoscope
EP3150105A1 (en) * 2013-03-19 2017-04-05 Olympus Corporation Endoscope apparatus
IT202000015874A1 (en) * 2020-07-01 2022-01-01 Raphael Thomasset HEATING SYSTEM OF AN ENDOSCOPIC OPTICAL SYSTEM AND ENDOSCOPIC INSUFFLATION GAS
CN113384222A (en) * 2021-05-18 2021-09-14 李标 Thoracoscope lens device with washing function

Also Published As

Publication number Publication date
JP2013017642A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
US20200113429A1 (en) Imaging sensor providing improved visualization for surgical scopes
TWI444171B (en) Disposable sheath for use with an imaging system
US10238295B2 (en) Sensing catheter emitting radiant energy
BR112019016686A2 (en) electrosurgical energy transport structure and electrosurgical device incorporating the same
US20090036742A1 (en) Endoscope
EP3197335B1 (en) Medical devices
WO2013008555A1 (en) Trocar with heating function and system therefor
JP6031040B2 (en) Trocar system
JP2021510560A (en) Visualization devices and methods for subaural surgery
TWI708587B (en) System and method for endoscope heating
JPH02257926A (en) Endoscope
EP4094663B1 (en) Rigid endoscope
EP4094670B1 (en) Flexible endoscope
CN111184496A (en) Rigid endoscope
JP7307174B2 (en) Anti-fogging system for rigid endoscopes with temperature control by microcontroller
JP2019048222A (en) In-vivo monitoring camera system
CN204351789U (en) Portable electronic bend pipe laryngoscope
CN212118096U (en) Rigid endoscope
CN210871444U (en) Endoscope device
JP2008188130A (en) Distal end of electronic endoscope
CN112107284A (en) Camera shooting assembly, visual medical instrument and visual medical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810620

Country of ref document: EP

Kind code of ref document: A1