WO2013008417A1 - Photoacoustic imaging method and device - Google Patents

Photoacoustic imaging method and device Download PDF

Info

Publication number
WO2013008417A1
WO2013008417A1 PCT/JP2012/004328 JP2012004328W WO2013008417A1 WO 2013008417 A1 WO2013008417 A1 WO 2013008417A1 JP 2012004328 W JP2012004328 W JP 2012004328W WO 2013008417 A1 WO2013008417 A1 WO 2013008417A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoacoustic
image
data
ultrasonic
subject
Prior art date
Application number
PCT/JP2012/004328
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 広田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013008417A1 publication Critical patent/WO2013008417A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements

Definitions

  • the present invention relates to a photoacoustic imaging method, that is, a method of irradiating a subject such as a living tissue with light and imaging the subject based on an acoustic wave generated by the light irradiation.
  • the present invention also relates to an apparatus for performing a photoacoustic imaging method.
  • Patent Document 1 and Non-Patent Document 1 a photoacoustic imaging apparatus that images the inside of a living body using a photoacoustic effect is known.
  • a living body is irradiated with pulsed light such as pulsed laser light.
  • pulsed light such as pulsed laser light.
  • the living tissue that has absorbed the energy of the pulsed light undergoes volume expansion due to heat and generates acoustic waves. Therefore, it is possible to detect the acoustic wave with an ultrasonic probe or the like and visualize the inside of the living body based on the electrical signal (photoacoustic signal) obtained thereby.
  • the photoacoustic imaging method is suitable for imaging a specific tissue in a living body, such as a blood vessel, since an image is constructed based only on an acoustic wave emitted from a specific light absorber.
  • the photoacoustic image has an advantage that blood vessels and the like in the living body that are light absorbers can be extracted and displayed.
  • Patent Document 2 discloses a technique for displaying such extracted blood vessels.
  • an ultrasonic probe P in which a plurality of ultrasonic transducers are arranged one-dimensionally (in the horizontal direction in the figures) is used for acoustic wave detection, and a plurality of ultrasonic transducers are used.
  • a light transmitting portion L in which tips of a plurality of optical fibers are arranged in parallel in the same direction as the arrangement direction of the acoustic wave vibrators is disposed, and from there, a pulse laser beam is directed toward the blood vessel H to be imaged. Shall be irradiated.
  • an ultrasonic probe P is generally used as a means for transmitting an ultrasonic wave toward a subject and a means for receiving an ultrasonic wave reflected by the subject in order to acquire an ultrasonic echo image. .
  • FIG. 2 shows a case where the blood vessel H is relatively thin and the above-described problem does not occur. That is, in this case, as schematically shown on the right side of the blood vessel H, an acoustic wave is generated on the blood vessel wall on the side close to the ultrasonic probe P and on the blood vessel wall on the side far from the ultrasonic probe P. This is because the pulsed laser light emitted from the light transmitting part L is not completely absorbed inside the blood vessel H and reaches the blood vessel wall far from the ultrasonic probe P.
  • the acoustic wave is generated only on the blood vessel wall on the side close to the ultrasonic probe P and not on the blood vessel wall on the side far from the ultrasonic probe P.
  • the pulse laser beam emitted from the light transmitting part L is completely absorbed inside the blood vessel H and does not reach the blood vessel wall far from the ultrasonic probe P. In such a situation, the blood vessel wall far from the ultrasonic probe P is lost in the photoacoustic image.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a photoacoustic imaging method capable of preventing a part of a lumen or the like from being displayed missing.
  • the photoacoustic imaging method comprises: The object is irradiated with pulsed light having a wavelength that is absorbed inside the object, thereby detecting an acoustic wave emitted from the object, obtaining photoacoustic data, and imaging the object based on the photoacoustic data.
  • the photoacoustic imaging method for displaying on the image display means Transmitting ultrasonic waves toward the subject, thereby detecting reflected ultrasonic waves reflected by the subject to obtain ultrasonic data; Correcting a specific portion in the subject indicated by the photoacoustic data based on the ultrasonic data indicating the specific portion; The subject is imaged by the photoacoustic data after correction.
  • the specific portion is, for example, a lumen portion in a subject.
  • a lumen portion is, for example, a blood vessel portion.
  • amendment which connects the pipe wall part missing in a photoacoustic image for the perimeter along the tube wall part in an ultrasonic image is applicable, for example.
  • the predetermined color is different from the tube wall portion that is normally imaged at a position different from the tube wall portion to be corrected for filling. It is desirable to do.
  • the pulsed light irradiating pulsed light having a plurality of different wavelengths. It is desirable to identify a plurality of portions of the subject having different absorption characteristics with respect to the pulsed light of each wavelength and display them in a distinguishable manner.
  • the display colors of these parts may be changed from each other.
  • the plurality of wavelengths are preferably two wavelengths having different absorption characteristics in the artery and vein of the living body.
  • the photoacoustic imager is: The object is irradiated with pulsed light having a wavelength that is absorbed inside the object, thereby detecting an acoustic wave emitted from the object to obtain photoacoustic data, and imaging the object based on the photoacoustic data.
  • the photoacoustic imaging device for displaying on the image display means, Ultrasonic image acquisition means for transmitting ultrasonic waves toward the subject, thereby detecting reflected ultrasonic waves reflected by the subject and obtaining ultrasonic data;
  • a correction unit configured to correct a specific portion in the subject indicated by the photoacoustic data based on the ultrasonic data indicating the specific portion.
  • correction means for example, means for correcting a lumen portion in a subject as the specific portion can be applied.
  • correction means means for correcting a blood vessel portion in the subject as the lumen portion can be applied.
  • the correcting means it is possible to apply means for correcting the tube wall portion missing in the photoacoustic image along the entire tube wall portion in the ultrasonic image.
  • correction means it is also possible to apply means for performing correction to fill a portion inside the tube wall portion in the ultrasonic image with a predetermined color in the photoacoustic image.
  • the correction means for performing such filling is to change the predetermined color to a color different from the tube wall portion that is normally imaged at a position different from the tube wall portion to be corrected for the filling. It is desirable to set it.
  • Means for irradiating pulsed light having a plurality of different wavelengths as the pulsed light It is desirable to provide means for discriminating a plurality of portions of the subject having different absorption characteristics with respect to pulsed light of each wavelength and displaying them in a mutually distinguishable manner.
  • the means for identifying the plurality of parts and displaying them in a mutually distinguishable manner is to display these parts in different colors.
  • the plurality of wavelengths are preferably two wavelengths having different absorption characteristics in the artery and vein of the living body.
  • the photoacoustic imaging method transmits ultrasonic waves toward the subject, thereby detecting reflected ultrasonic waves reflected by the subject to obtain ultrasonic data, and the photoacoustic data is Since the specific part in the object shown is corrected based on the ultrasonic data indicating the specific part, and the object is imaged by the photoacoustic data after the correction, this photoacoustic imaging method According to the above, even if there is a missing portion in the original photoacoustic image, the missing portion can be displayed by correction.
  • the pulsed light is irradiated with pulsed light having a plurality of different wavelengths, and a plurality of portions of the subject having different absorption characteristics for the pulsed light of each wavelength are identified.
  • the images are displayed so as to be distinguishable from each other, for example, the arteries and veins of a living body can be clearly identified and observed, which is advantageous in assisting surgery and detecting abnormalities.
  • the photoacoustic imaging apparatus of the present invention transmits an ultrasonic wave toward a subject, thereby detecting an ultrasonic wave reflected by the subject and obtaining ultrasonic data, and an optical image acquisition unit. Since the correction part which correct
  • FIG. 1 is a block diagram showing a schematic configuration of a photoacoustic imaging apparatus according to a first embodiment of the present invention. Schematic explaining the generation of photoacoustic signals in the blood vessel The figure explaining the problem in the conventional device The figure which shows the example of the ultrasonic image in the apparatus of FIG. The figure which shows the example of the photoacoustic image in the apparatus of FIG. The figure which shows the example of the photoacoustic image and ultrasonic image in the apparatus of FIG. The figure which shows the example of the photoacoustic image and ultrasonic image in the apparatus of FIG. The figure which shows the correction example of a photoacoustic image The block diagram which shows schematic structure of the photoacoustic imaging device by the 2nd Embodiment of this invention.
  • the figure which shows the example of the ultrasonic image in the apparatus of FIG. The figure which shows the example of the photoacoustic image in the apparatus of FIG.
  • the figure which shows the example of the photoacoustic image and ultrasonic image in the apparatus of FIG. The figure which shows the correction example of a photoacoustic image Graph showing the molecular absorption coefficient for each light wavelength of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb)
  • FIG. 1 is a block diagram showing a basic configuration of a photoacoustic imaging apparatus 10 according to the first embodiment of the present invention.
  • the photoacoustic imaging apparatus 10 can acquire both a photoacoustic image and an ultrasonic image, and includes an ultrasonic probe (probe) 11, an ultrasonic unit 12, a laser light source unit 13, and an image display. Means 14 are provided.
  • the laser light source unit 13 emits pulse laser light having a predetermined wavelength, and the pulse laser light emitted from the laser light source unit 13 is irradiated on the subject.
  • the pulse laser beam is schematically shown in FIG. 1 with respect to the emission direction.
  • the pulse laser beam is guided to the probe 11 using light guide means such as a plurality of optical fibers, and directed from the probe 11 portion toward the subject. It is desirable to be irradiated.
  • the probe 11 performs output (transmission) of ultrasonic waves to the subject and detection (reception) of reflected ultrasonic waves reflected back from the subject.
  • the probe 11 has, for example, a plurality of ultrasonic transducers arranged one-dimensionally.
  • the probe 11 detects ultrasonic waves (acoustic waves) generated by the observation target in the subject absorbing the laser light from the laser light source unit 13 by using a plurality of ultrasonic transducers.
  • the probe 11 detects the acoustic wave and outputs an acoustic wave detection signal, and also detects the reflected ultrasonic wave and outputs an ultrasonic detection signal.
  • the end portion of the light guide means that is, the tip portions of the plurality of optical fibers are arranged in the direction in which the plurality of ultrasonic transducers are arranged (left and right in FIG. 1).
  • the laser beam is emitted toward the subject from there.
  • the case where the light guide means is coupled to the probe 11 as described above will be described as an example.
  • the probe 11 When acquiring a photoacoustic image or an ultrasonic image of a subject, the probe 11 is moved in a direction substantially perpendicular to a one-dimensional direction in which a plurality of ultrasonic transducers are arranged, whereby the subject is subjected to laser light and ultrasonic waves. Is two-dimensionally scanned. This scanning may be performed by an inspector moving the probe 11 manually, or a more precise two-dimensional scanning may be realized using a scanning mechanism.
  • the ultrasonic unit 12 includes a reception circuit 21, an AD conversion unit 22, a reception memory 23, a data separation unit 24, a photoacoustic image reconstruction unit 25, a detection / logarithmic conversion unit 26, a blood vessel determination unit 27, a blood vessel correction unit 28, and Photoacoustic image construction means 29 is provided.
  • the receiving circuit 21 receives the acoustic wave detection signal and the ultrasonic wave detection signal output from the probe 11.
  • the AD conversion means 22 is a sampling means, which samples the acoustic wave detection signal and the ultrasonic detection signal received by the receiving circuit 21 and converts them into photoacoustic data and ultrasonic data, which are digital signals, respectively. This sampling is performed at a predetermined sampling period in synchronization with, for example, an externally input AD clock signal.
  • the ultrasound unit 12 includes a detection / logarithm conversion means 41, a lumen detection means 42, an ultrasound image construction means 43, and this ultrasound.
  • the image construction means 43 and the image composition means 44 for receiving the output of the photoacoustic image construction means 29 are provided.
  • the output of the image synthesizing unit 44 is input to the image display unit 14 including, for example, a CRT or a liquid crystal display device.
  • the ultrasonic unit 12 includes a transmission control circuit 30 and a control unit 31 that controls the operation of each unit in the ultrasonic unit 12.
  • the photoacoustic data or ultrasonic data output from the AD converter 22 is temporarily stored in the reception memory and then input to the data separator 24.
  • the data separation unit 24 separates the input photoacoustic data and the ultrasonic data from each other, the photoacoustic data is input to the photoacoustic image reconstruction unit 25, and the ultrasonic data is input to the ultrasonic image reconstruction unit 40. .
  • the laser light source unit 13 is a solid-state laser unit including a Q-switch pulse laser 32 made of a Ti: Sapphire laser or the like and a flash lamp 33 as an excitation light source.
  • a laser light source unit 13 that emits pulsed laser light having a wavelength that is well absorbed in the blood vessel is selected. Used.
  • the laser light source unit 13 When the laser light source unit 13 receives an optical trigger signal instructing light emission from the control means 31, the laser light source unit 13 turns on the flash lamp 33 to excite the Q switch pulse laser 32. For example, when the flash lamp 33 sufficiently excites the Q switch pulse laser 32, the control means 31 outputs a Q switch trigger signal. When the Q switch pulse laser 32 receives the Q switch trigger signal, the Q switch pulse laser 32 turns on the Q switch to emit pulsed laser light.
  • the time required from when the flash lamp 33 is turned on until the Q-switch pulse laser 32 is sufficiently excited can be estimated from the characteristics of the Q-switch pulse laser 32 and the like.
  • the Q switch may be turned on after the Q switch pulse laser 32 is sufficiently excited in the laser light source unit 13. In that case, a signal indicating that the Q switch is turned on may be notified to the ultrasonic unit 12 side.
  • the control unit 31 inputs an ultrasonic trigger signal for instructing ultrasonic transmission to the transmission control circuit 30.
  • the transmission control circuit 30 transmits an ultrasonic wave from the probe 11.
  • the control means 31 outputs the optical trigger signal first, and then outputs an ultrasonic trigger signal.
  • the light trigger signal is output to irradiate the subject with laser light and the acoustic wave is detected, and then the ultrasonic trigger signal is output to transmit the ultrasonic wave to the subject and the reflected ultrasonic wave. Is detected.
  • the control means 31 further outputs a sampling trigger signal that instructs the AD conversion means 22 to start sampling.
  • the sampling trigger signal is output after the optical trigger signal is output and before the ultrasonic trigger signal is output, more preferably at the timing when the subject is actually irradiated with the laser light. Therefore, the sampling trigger signal is output in synchronization with the timing at which the control means 31 outputs the Q switch trigger signal, for example.
  • the AD conversion means 22 starts sampling the acoustic wave detection signal output from the probe 11 and received by the receiving circuit 21.
  • the control means 31 After outputting the optical trigger signal, the control means 31 outputs the ultrasonic trigger signal at the timing when the detection of the acoustic wave is finished. At this time, the AD conversion means 22 continues the sampling without interrupting the sampling of the acoustic wave detection signal. In other words, the control unit 31 outputs the ultrasonic trigger signal in a state where the AD conversion unit 22 continues sampling the acoustic wave detection signal.
  • the detection target of the probe 11 changes from acoustic waves to reflected ultrasonic waves.
  • the AD conversion means 22 continuously samples the acoustic wave detection signal and the ultrasonic wave detection signal by continuously sampling the detected ultrasonic wave detection signal.
  • the AD conversion unit 22 stores photoacoustic data and ultrasonic data obtained by sampling in a common reception memory 23.
  • the sampling data stored in the reception memory 23 is photoacoustic data up to a certain point, and becomes ultrasonic data from a certain point.
  • the data separation unit 24 separates the photoacoustic data and the ultrasonic data stored in the reception memory 23, inputs the photoacoustic data to the photoacoustic image reconstruction unit 25, and converts the ultrasonic data into the ultrasonic image reconstruction unit. 40.
  • the ultrasound image reconstruction means 40 adds the ultrasound data that is data for each of the plurality of ultrasound transducers included in the probe 11 to generate ultrasound tomographic image data for one line.
  • the detection / logarithm conversion means 41 generates an envelope of the ultrasonic tomographic image data, and then logarithmically converts the envelope to widen the dynamic range, and then inputs this data to the lumen detection means 42. From this data, the lumen detection means 42 detects an annular portion that is considered to be a lumen by a method such as pattern matching.
  • FIG. 4A schematically shows an example of an ultrasonic tomographic image, in which one tissue E and lumens F, G, and H are shown.
  • FIG. 4A and FIGS. 4B, 4C, and 4D which will be described later, it is assumed that ultrasonic waves and pulsed laser light are emitted from the upper side to the lower side in the drawing.
  • the portion of the lumen H is separately enlarged for easy understanding.
  • the lumen detecting means 42 detects the annular portion, that is, the portions of the lumens F, G, and H, and stores the data indicating the shape and position of the blood vessel. Input to the judging means 27.
  • the output of the detection / logarithm conversion means 41 is also input to the ultrasonic image construction means 43 as it is.
  • the ultrasonic image construction unit 43 generates an ultrasonic tomographic image (ultrasonic echo image) based on the data of each line output from the detection / logarithmic conversion unit 41. That is, the ultrasonic image constructing unit 43 generates the ultrasonic tomographic image so that, for example, the position in the time axis direction of the peak portion of the ultrasonic detection signal described above is converted into the position in the depth direction in the tomographic image. .
  • the above processing is sequentially performed with the scanning movement of the probe 11, thereby generating ultrasonic tomographic images regarding a plurality of locations in the scanning direction of the subject. Then, the image data carrying these ultrasonic tomographic images is input to the image composition means 44. If it is desired to display only the ultrasonic tomographic image alone, the image data carrying the ultrasonic tomographic image passes through the image synthesizing unit 44 and is sent to the image display unit 14. A tomographic image is displayed.
  • photoacoustic image reconstruction means 25 photoacoustic data obtained by irradiating the subject with photoacoustic data separated from the ultrasonic data by the data separation means 24, that is, pulse laser light having a wavelength absorbed by the blood vessel. Data is entered.
  • the photoacoustic image reconstruction means 25 adds the photoacoustic data, which is data for each of the plurality of ultrasonic transducers included in the probe 11, to generate photoacoustic image data for one line.
  • the detection / logarithm conversion means 26 generates an envelope of the photoacoustic image data, and then logarithmically converts the envelope to widen the dynamic range, and then inputs this data to the blood vessel determination means 27.
  • FIG. 4B schematically shows a photoacoustic image of the same cross section as that shown in FIG. 4A as the photoacoustic image carried by the above-described photoacoustic image data.
  • blood vessel portions Fa and Ha exist as an example.
  • a relatively thick blood vessel portion Ha is a pulse laser beam for the reason described above with reference to FIGS. Since the blood vessel wall on the side farther from the irradiation side (the side where the probe 11 exists, here the upper side in the figure) is missing, it is unclear whether it can be regarded as a blood vessel.
  • the blood vessel judging means 27 originally has the above-mentioned blood vessel portion Ha having a half annular shape based on the data indicating the shape and position of the lumen H input from the lumen detecting means 42 as described above. It is determined that it is a lumen, that is, it clearly shows a blood vessel. Receiving the determination result of the lumen detecting means 42, the blood vessel correcting means 28 connects the photoacoustic image data input from the detection / logarithm converting means 26 with the half annular portion along the lumen H all around the circumference. Correct so that it is a circular ring.
  • FIG. 4C and 4D illustrate the above correction. If the ultrasonic tomographic image data and the photoacoustic image data are synthesized without performing the above correction, the lumen H and the blood vessel portion Ha in the image displayed based on the synthesized data are enlarged in FIG. 4C. The image is formed in the state shown in the figure. On the other hand, if the ultrasonic tomographic image data and the photoacoustic image data are synthesized after performing the above correction, the lumen H and the corrected blood vessel portion Ha ′ are imaged in an enlarged state in FIG. 4D. It becomes. Thus, by performing the above correction, the blood vessel portion is displayed in the original shape in the photoacoustic image.
  • the corrected blood vessel portion H ′ is generated so that a portion originally present in the photoacoustic image and a portion added by the correction are displayed in a manner that can be distinguished from each other, for example, in a color-coded manner. It is desirable. By doing so, the device operator can grasp that the original photoacoustic image was missing.
  • the corrected photoacoustic image data is input to the photoacoustic image construction unit 29.
  • the photoacoustic image construction means 29 generates a photoacoustic image based on the photoacoustic image data for each line. That is, the photoacoustic image construction unit 29 generates a photoacoustic image such that, for example, the position in the time axis direction of the peak portion of the photoacoustic image data is converted into a position in the depth direction in the tomographic image.
  • the above processing is sequentially performed with the scanning movement of the probe 11, thereby generating photoacoustic images regarding a plurality of locations in the scanning direction of the subject.
  • the image data carrying these photoacoustic images is input to the image synthesizing means 44, where it is synthesized with the image data carrying the above-mentioned ultrasonic tomographic image, and the image carried by the synthesized data is input to the image display means 14. Is displayed. As described above, an image displayed based on the synthesized data is as shown in FIG. 4D.
  • the blood vessel portion Ha having a half annular shape is corrected so as to become an annular blood vessel portion Ha ′ connected all around, but instead, as shown in FIG.
  • the inside of the lumen H may be corrected to fill with a predetermined color as indicated by J in the figure to indicate that it is a blood vessel.
  • a blood vessel part that is normally imaged at a position different from the blood vessel part Ha to be corrected for filling the predetermined color for example, the blood vessel part Fa in FIG. 5. It is desirable to set it to a different color. By doing so, it becomes possible to easily determine whether the blood vessel portion Ha is normally displayed normally or whether it is normally displayed by the correction.
  • the ultrasonic image acquisition means for transmitting the ultrasonic wave toward the subject and detecting the reflected ultrasonic wave reflected by the subject to obtain the ultrasonic data is the probe 11, the ultrasonic image re-transmission unit.
  • Compensation means comprising a construction means 40 and a detection / logarithm conversion means 41, and a correction means for correcting a specific part in the subject indicated by the photoacoustic data based on ultrasonic data indicating the specific part It comprises means 42, blood vessel determination means 27 and blood vessel correction means 28.
  • FIG. 6 is a block diagram showing a basic configuration of the photoacoustic imaging apparatus 110 according to the second embodiment of the present invention.
  • the same elements as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted unless necessary (the same applies hereinafter).
  • the photoacoustic imaging apparatus 110 basically includes a two-wavelength data complexization means 115, an intensity information extraction means 116, and a two-wavelength data calculation means 117.
  • a laser light source unit 113 that can selectively emit two-wavelength pulsed laser light is used instead of the laser light source unit 13.
  • the laser light source unit 113 is obtained by applying a Q switch pulse laser 132 in place of the Q switch pulse laser 32 of FIG.
  • the Q-switch pulse laser 132 includes a solid-state laser rod 133 that is a laser medium excited by the flash lamp 33, a partial transmission mirror 134 disposed on the front side (use light extraction side) of the laser rod 133, and a laser rod.
  • a mirror 135 which is arranged on the rear side of 133 and constitutes a laser resonator together with the partial transmission mirror 134, a Q switch element 136 which is arranged between the laser rod 133 and the partial transmission mirror 134, and a rotary filter element ( A band pass filter 137 provided between the laser rod 133 and the mirror 135, a servo motor 138 for rotating the rotary filter element, and a rotational position of the rotary filter element.
  • Encoder 139 and the output from encoder 139 Those formed by a band-pass filter control unit 140 for controlling the driving of the motor 138.
  • the laser rod 133 a laser rod that emits light having center wavelengths of 750 nm and 800 nm, respectively, by excitation of the flash lamp 33 is used.
  • the rotary filter element an element in which two filter parts that transmit light in the vicinity of 750 nm and light in the vicinity of 800 nm are held by a rotating body is applied.
  • the servo motor 138 selectively inserts one of the two filter portions into the optical path of the backward emission light between the laser rod 133 and the mirror 135 by rotating the rotating body (filter rotating body).
  • alexandrite crystal Cr: LiSAF (Cr: LiSrAlF6), Cr: LiCAF (Cr: LiCaAlF6) crystal, Ti: Sapphire crystal, or the like can be used.
  • a filter portion that favorably transmits light in the vicinity of a wavelength of 750 nm is carried on one half (for example, a region from 0 ° to 180 ° of the rotational displacement position), and the other half (for example, rotating)
  • a filter portion that satisfactorily transmits light in the vicinity of a wavelength of 800 nm is carried in a region of a displacement position of 180 ° to 360 °. Therefore, when the filter rotator is rotated by the servo motor 138, the two filter portions are alternately inserted into the optical path of the outgoing light in the laser resonator at a switching speed corresponding to the rotation speed of the filter rotator. Will be.
  • the encoder 139 is a rotary encoder composed of, for example, a rotary plate with slits attached to the output shaft of the servo motor 138 and a transmissive photo interrupter.
  • the encoder 139 detects the rotational displacement position of the filter rotating body, and the rotational displacement thereof.
  • a BPF (band pass filter) state signal indicating the position is generated.
  • the bandpass filter control unit 140 controls the servo motor so that the amount of rotational displacement detected by the encoder 139 during a predetermined time becomes an amount corresponding to the predetermined rotational speed of the filter rotating body.
  • the voltage supplied to 138 is controlled.
  • control means 31 controls each part in the ultrasonic unit 12 as described above, and the two filter parts inserted in the backward emission light path in the laser resonator are switched at a predetermined switching speed.
  • the band pass filter control unit 140 is controlled. Note that the rotation speed of the filter rotator is based on, for example, the number of wavelengths of pulsed laser light to be emitted from the laser light source unit 113 (number of transmission wavelength regions of the bandpass filter) and the number of pulsed laser lights per unit time. May be determined as appropriate.
  • the trigger control unit 31a of the control unit 31 outputs an optical trigger signal that instructs the laser light source unit 113 to drive the flash lamp 33, for example, periodically at predetermined time intervals.
  • the flash lamp 33 emits light in response to the light trigger signal and irradiates the laser rod 133 with excitation light.
  • the trigger control unit 31a outputs an optical trigger signal based on the BPF state signal. That is, for example, the trigger control unit 31a has a filter portion corresponding to the wavelength of the pulsed laser beam to be emitted in the BPF state information of the band pass filter 137 (that is, the bandpass filter 137 in which the backward emission light path in the laser resonator is inserted).
  • the information indicates the position obtained by subtracting the amount of displacement of the filter rotator during the time required for excitation of the laser rod 133 from the rotational displacement position of the filter rotator, an optical trigger signal is output.
  • the trigger control unit 31a After outputting the optical trigger signal, the trigger control unit 31a outputs the Q switch trigger signal to the Q switch element 136 of the laser light source unit 113. At this time, the trigger control unit 31a outputs a Q switch trigger signal at the timing when the filter portion corresponding to the wavelength of the pulsed laser beam to be emitted is inserted into the backward emission optical path in the laser resonator.
  • the pulse laser beam can be extremely intense.
  • this type of Q switch element is not particularly illustrated, but the Q switch pulse laser 32 also includes the same Q switch element as described above.
  • FIG. 1 a blood vessel part, which is one of the lumens, is displayed in the original shape basically in the same manner as in the photoacoustic imaging apparatus 10 in FIG.
  • arteries and veins of blood vessels can be distinguished from each other and displayed.
  • the molecular absorption coefficient at a wavelength of 750 nm of oxygenated hemoglobin (oxy-Hb combined with oxygen) contained in a large amount of human arteries is lower than the molecular absorption coefficient at a wavelength of 800 nm.
  • the molecular absorption coefficient at a wavelength of 750 nm of deoxygenated hemoglobin (hemoglobin deoxy-Hb not bound to oxygen) contained in a large amount in the vein is higher than the molecular absorption coefficient at a wavelength of 800 nm.
  • FIG. 9 shows molecular absorption coefficients for each light wavelength of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb).
  • sampling of the acoustic wave detection signal by the AD conversion means 22 is repeatedly performed by the number of wavelengths of light emitted from the laser light source unit 113.
  • the acoustic wave detection signal obtained when the subject is irradiated with pulse laser light having a center wavelength of 750 nm from the laser unit 113 is first sampled, and then the subject is irradiated with pulse laser light having a center wavelength of 800 nm.
  • the acoustic wave detection signal obtained at the time of sampling is sampled.
  • sampling of the ultrasonic detection signal is performed in the same manner as in the first embodiment.
  • the photoacoustic data and ultrasonic data obtained by the above sampling are stored in the common reception memory 23.
  • the sampling data stored in the reception memory 23 is photoacoustic data up to a certain point, and becomes ultrasonic data from a certain point.
  • the photoacoustic data is photoacoustic data (hereinafter referred to as first photoacoustic data) when the subject is irradiated with a pulse laser beam having a center wavelength of 750 nm until a certain point in time.
  • This is ultrasonic data (hereinafter referred to as second photoacoustic data) when the specimen is irradiated with pulsed laser light having a central wavelength of 800 nm.
  • the data separation unit 24 separates the photoacoustic data and the ultrasonic data stored in the reception memory 23, inputs the photoacoustic data to the two-wavelength data complexization unit 115, and converts the ultrasonic data into the ultrasonic image reconstruction unit. 40.
  • the two-wavelength data complexization unit 115 generates complex number data in which one of the first photoacoustic data and the second photoacoustic data is a real part and the other is an imaginary part.
  • complex data is generated in which the first photoacoustic data is a real part and the second photoacoustic data is an imaginary part.
  • the photoacoustic image reconstruction unit 25 reconstructs a photoacoustic image from the complex number data input from the two-wavelength data complex number conversion unit 115 by a Fourier transform method (FTA method).
  • FFA method Fourier transform method
  • For image reconstruction using the Fourier transform method for example, a conventionally known method described in the literature “Photoacoustic Image Reconstruction-A Quantitative Analysis” Jonathan I. Sperl et al., SPIE-OSA, Vol. can do.
  • the photoacoustic image reconstruction unit 25 inputs data after Fourier transform indicating the reconstructed image to the intensity information extraction unit 116 and the two-wavelength data calculation unit 117.
  • the intensity information extraction unit 116 generates intensity information indicating the signal intensity based on the photoacoustic data corresponding to each wavelength.
  • the intensity information extraction unit 116 generates intensity information from complex number data indicating the reconstructed image input from the photoacoustic image reconstruction unit 25. That is, the intensity information extraction unit 116 extracts (X 2 + Y 2 ) 1/2 as intensity information, for example, when complex number data is represented by X + iY.
  • the blood vessel portion is shown as an annular shape connected around the entire circumference, or a circular shape whose interior is filled with a predetermined color.
  • the image data carrying the photoacoustic image is input to the image synthesizing unit 44, where it is synthesized with the image data carrying the ultrasonic tomographic image, and the image carried by the synthesized data is displayed on the image display unit 14. .
  • FIG. 7A, 7B, 7C, and 7D show examples of images of the same type as the previously described FIGS. 4A, 4B, 4C, and 4D, respectively.
  • FIG. 7A in the ultrasonic tomographic image of FIG. 7A, one tissue E and lumens F, G, and H are shown as in FIG. 4A, and both the lumens F and G are blood vessel portions.
  • FIG. 4B in the photoacoustic image of FIG.
  • both the blood vessel part Fa and the blood vessel part Ha are in a state where the blood vessel wall on the side far from the pulse laser light irradiation side is missing. . Therefore, if the ultrasonic tomographic image data and the photoacoustic image data are synthesized without performing the above-described correction by the blood vessel correction means 28, the lumen H and the blood vessel portion in the image displayed based on the synthesized data. Ha and the lumen F and the blood vessel portion Fa are imaged in the state shown in an enlarged view in FIG. 7C.
  • the ultrasonic tomographic image data and the photoacoustic image data are synthesized after the correction by the blood vessel correction means 28, the lumen H and the corrected blood vessel portion Ha ′, and the lumen F and The corrected blood vessel portion Fa ′ is imaged in the state shown in an enlarged view in FIG. 7D.
  • the blood vessel portion is displayed in the original shape in the photoacoustic image.
  • the blood vessel portions Ha and Fa having a half annular shape are corrected so as to become annular blood vessel portions Ha ′ and Fa ′ connected all around, but instead, FIG.
  • the inside of the lumens H and F may be corrected to be filled with a predetermined color as indicated by J and K in the figure, respectively, so as to indicate the blood vessel.
  • the two-wavelength data calculation means 117 in FIG. 6 shows the relative signal intensity relationship between the photoacoustic data (first photoacoustic data and second photoacoustic data) corresponding to each wavelength (750 nm and 800 nm). Extract.
  • the two-wavelength data calculation unit 117 uses the data indicating the reconstructed image reconstructed by the photoacoustic image reconstruction unit 115 as input data, and from this input data that is complex data, the real part and the imaginary part Phase information indicating which is relatively larger is extracted.
  • the photoacoustic image construction means 29 receives the intensity information that has been subjected to the blood vessel correction after the detection / logarithmic conversion process is performed by the detection / logarithmic conversion means 26, and also receives the phase information from the two-wavelength data calculation means 117.
  • the photoacoustic image construction unit 29 generates a photoacoustic image based on the input phase information and intensity information. That is, the photoacoustic image construction unit 29 determines the luminance (gradation value) of each pixel in the distribution image of the light absorber based on, for example, input intensity information. Moreover, the photoacoustic image construction means 29 determines the color (display color) of each pixel in the light absorber distribution image based on, for example, phase information.
  • the photoacoustic image construction unit 29 determines the color of each pixel based on the input phase information using, for example, a color map in which a phase range of 0 ° to 90 ° is associated with a predetermined color.
  • the range of the phase 0 ° to 45 ° is a range in which the first photoacoustic data is larger than the second photoacoustic data
  • the source of the photoacoustic signal is more than the absorption with respect to light having a wavelength of 800 nm. It is considered that this is a vein through which blood mainly containing deoxygenated hemoglobin has a larger absorption with respect to light having a wavelength of 750 nm.
  • the source of the photoacoustic signal has a wavelength larger than the absorption with respect to light having a wavelength of 800 nm. It is considered that this is an artery through which blood mainly containing oxygenated hemoglobin flows, which absorbs less light at 750 nm.
  • the phase gradually changes so that the phase is 0 ° in blue and the phase becomes colorless (white) as the phase approaches 45 °, and the phase 90 ° is red and the phase is 45.
  • the portion corresponding to the artery that is, the corrected blood vessel portion Ha ′ in FIG. 7D and the corrected blood vessel portion J in FIG. 8 are represented in red on the photoacoustic image
  • the portion corresponding to the vein that is, the corrected blood vessel portion in FIG. Fa ′ and the corrected blood vessel K in FIG. 8 can be represented in blue.
  • the gradation value may be constant, and the color corresponding to the portion corresponding to the artery and the portion corresponding to the vein may be performed according to the phase information.
  • one of the first photoacoustic data and the second photoacoustic data obtained by irradiating the subject with light of two wavelengths, respectively, is the real part, and the other is the imaginary part.
  • Complex number data is generated, and a reconstructed image is generated from the complex number data by Fourier transform.
  • the reconstruction process since the reconstruction process only needs to be performed once, the reconstruction can be performed more efficiently than when the first photoacoustic data and the second photoacoustic data are separately reconstructed. it can.
  • the two-wavelength data calculation unit 117 and the photoacoustic image construction unit 29 identify a plurality of portions of the subject having different absorption characteristics with respect to pulsed light having a plurality of wavelengths.
  • a means for displaying each other in a distinguishable manner is configured.
  • the pulse laser beam of two wavelengths is alternately switched at high speed to irradiate the subject to generate one image, but the pulse laser beam of one wavelength is generated by the subject. It is also possible to generate another image by irradiating the subject with pulsed laser light of another wavelength by performing wavelength switching after generating one image by irradiating the object.
  • the two wavelengths can be selected in any combination of two wavelengths as long as the absorption coefficients are theoretically different from each other.
  • one is 793 to 802 nm (more preferably), which is close to the isosbestic point of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb).
  • the isoabsorption point is 798 nm
  • the other is 748 to 770 nm (more preferably 757 nm having an absorption peak of deoxygenated hemoglobin) in which absorption of both hemoglobins is greatly different.
  • the photoacoustic imaging apparatus and method of the present invention are not limited to the above embodiments, and various modifications and changes are made to the configuration of the above embodiments. What has been done is also included in the scope of the present invention.
  • a lumen portion other than a blood vessel may be partially lost for the same reason as in the case of the blood vessel described above.
  • a lumen portion other than the blood vessel is included in the ultrasound image. It is also possible to configure the photoacoustic imaging apparatus of the present invention to correct based on this.

Abstract

[Problem] To prevent a part of a lumen or the like from being absent in a display of a photoacoustic image. [Solution] A photoacoustic imaging device (10) for irradiating a subject with pulse light of a wavelength that is absorbed by the interior thereof, from a laser light source (13), detecting the acoustic waves generated from the subject thereby and obtaining photoacoustic data, and imaging the subject on the basis of the photoacoustic data and displaying the same on an image displaying means, wherein the device is provided with: ultrasonic image acquiring means (11, 40, 41) for transmitting ultrasonic waves toward the subject, detecting the reflected ultrasonic waves thereby reflected from the subject, and obtaining ultrasonic data; and correcting means (27, 28, 42) for correcting a specific portion within the subject shown by the photoacoustic data, on the basis of the ultrasonic data showing the specific portion.

Description

光音響画像化方法および装置Photoacoustic imaging method and apparatus
本発明は光音響画像化方法すなわち、生体組織等の被検体に光を照射し、光照射に伴って発生する音響波に基づいて被検体を画像化する方法に関するものである。 The present invention relates to a photoacoustic imaging method, that is, a method of irradiating a subject such as a living tissue with light and imaging the subject based on an acoustic wave generated by the light irradiation.
また本発明は、光音響画像化方法を実施する装置に関するものである。 The present invention also relates to an apparatus for performing a photoacoustic imaging method.
従来、例えば特許文献1や非特許文献1に示されているように、光音響効果を利用して生体の内部を画像化する光音響画像化装置が知られている。この光音響画像化装置においては、例えばパルスレーザ光等のパルス光が生体に照射される。このパルス光の照射を受けた生体内部では、パルス光のエネルギーを吸収した生体組織が熱によって体積膨張し、音響波を発生する。そこで、この音響波を超音波プローブなどで検出し、それにより得られた電気的信号(光音響信号)に基づいて生体内部を可視像化することが可能となっている。光音響画像化方法は、特定の吸光体から放射される音響波のみに基づいて画像を構築するようにしているので、生体における特定の組織、例えば血管等を画像化するのに好適である。 Conventionally, as shown in Patent Document 1 and Non-Patent Document 1, for example, a photoacoustic imaging apparatus that images the inside of a living body using a photoacoustic effect is known. In this photoacoustic imaging apparatus, a living body is irradiated with pulsed light such as pulsed laser light. Inside the living body that has been irradiated with the pulsed light, the living tissue that has absorbed the energy of the pulsed light undergoes volume expansion due to heat and generates acoustic waves. Therefore, it is possible to detect the acoustic wave with an ultrasonic probe or the like and visualize the inside of the living body based on the electrical signal (photoacoustic signal) obtained thereby. The photoacoustic imaging method is suitable for imaging a specific tissue in a living body, such as a blood vessel, since an image is constructed based only on an acoustic wave emitted from a specific light absorber.
光音響画像には、光吸収体である生体中の血管等を抽出して表示できる利点があり、例えば特許文献2には、このように抽出した血管を表示する技術が示されている。 The photoacoustic image has an advantage that blood vessels and the like in the living body that are light absorbers can be extracted and displayed. For example, Patent Document 2 discloses a technique for displaying such extracted blood vessels.
特開2005-21380号公報JP 2005-21380 A 特表2010-512929号公報Special table 2010-512929
しかし従来の光音響画像化装置においては、血管が一部欠落した状態で表示されることがある、という問題が認められている。 However, in the conventional photoacoustic imaging apparatus, a problem has been recognized that the blood vessel may be displayed in a partially missing state.
以下、この問題について図2および図3を参照して詳しく説明する。ここでは、両図に示すように、複数の超音波振動子が一次元に(図中の左右方向に)配列されてなる超音波プローブPが音響波検出のために用いられ、そして複数の超音波振動子の並び方向と同じ方向に例えば複数の光ファイバの先端部等が並設されてなる送光部Lが配設され、そこから、画像化対象である血管Hに向けてパルスレーザ光が照射されるものとする。なお、このような超音波プローブPは一般に、超音波エコー画像取得のために、被検体に向けて超音波を送信する手段および、被検体で反射した超音波を受信する手段としても利用される。 Hereinafter, this problem will be described in detail with reference to FIGS. Here, as shown in both figures, an ultrasonic probe P in which a plurality of ultrasonic transducers are arranged one-dimensionally (in the horizontal direction in the figures) is used for acoustic wave detection, and a plurality of ultrasonic transducers are used. For example, a light transmitting portion L in which tips of a plurality of optical fibers are arranged in parallel in the same direction as the arrangement direction of the acoustic wave vibrators is disposed, and from there, a pulse laser beam is directed toward the blood vessel H to be imaged. Shall be irradiated. Note that such an ultrasonic probe P is generally used as a means for transmitting an ultrasonic wave toward a subject and a means for receiving an ultrasonic wave reflected by the subject in order to acquire an ultrasonic echo image. .
図2は、血管Hが比較的細くて、上に述べた問題が生じない場合を示している。すなわちこの場合は、血管Hの右側に概略的に示すように、音響波が、超音波プローブPに近い側の血管壁でも、また超音波プローブPから遠い側の血管壁でも発生する。これは、送光部Lから発せられたパルスレーザ光が血管Hの内部で全て吸収されてしまうことがなく、超音波プローブPから遠い側の血管壁まで届くからである。 FIG. 2 shows a case where the blood vessel H is relatively thin and the above-described problem does not occur. That is, in this case, as schematically shown on the right side of the blood vessel H, an acoustic wave is generated on the blood vessel wall on the side close to the ultrasonic probe P and on the blood vessel wall on the side far from the ultrasonic probe P. This is because the pulsed laser light emitted from the light transmitting part L is not completely absorbed inside the blood vessel H and reaches the blood vessel wall far from the ultrasonic probe P.
それに対して血管Hが比較的太い場合は、図3に示すように、音響波が超音波プローブPに近い側の血管壁のみで発生し、超音波プローブPから遠い側の血管壁では発生しないことがある。これは、送光部Lから発せられたパルスレーザ光が血管Hの内部で全て吸収されて、超音波プローブPから遠い側の血管壁まで届かないからである。このような状況になると、超音波プローブPから遠い側の血管壁は、光音響画像において欠落することになる。 On the other hand, when the blood vessel H is relatively thick, as shown in FIG. 3, the acoustic wave is generated only on the blood vessel wall on the side close to the ultrasonic probe P and not on the blood vessel wall on the side far from the ultrasonic probe P. Sometimes. This is because the pulse laser beam emitted from the light transmitting part L is completely absorbed inside the blood vessel H and does not reach the blood vessel wall far from the ultrasonic probe P. In such a situation, the blood vessel wall far from the ultrasonic probe P is lost in the photoacoustic image.
以上は血管の一部が欠落する場合について説明したが、血管と同じように管腔状になっている部分は、同じ原因によって欠落して表示される可能性がある。 The case where a part of a blood vessel is missing has been described above. However, a portion that is in the shape of a lumen like a blood vessel may be displayed missing due to the same cause.
本発明は上記の事情に鑑みてなされたものであり、管腔等の一部が欠落して表示されることを防止できる光音響画像化方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a photoacoustic imaging method capable of preventing a part of a lumen or the like from being displayed missing.
また本発明は、そのような光音響画像化方法を実施することができる光音響画像化装置を提供することを目的とするものである。 It is another object of the present invention to provide a photoacoustic imaging apparatus that can implement such a photoacoustic imaging method.
本発明による光音響画像化方法は、
被検体にその内部で吸収される波長のパルス光を照射し、それにより被検体から発せられた音響波を検出して光音響データを得、この光音響データに基づいて前記被検体を画像化して画像表示手段に表示する光音響画像化方法において、
前記被検体に向けて超音波を送信し、それにより被検体で反射した反射超音波を検出して超音波データを得、
前記光音響データが示している被検体中の特定部分を、該特定部分を示す前記超音波データに基づいて補正し、
この補正後の光音響データによって前記被検体を画像化することを特徴とするものである。
The photoacoustic imaging method according to the present invention comprises:
The object is irradiated with pulsed light having a wavelength that is absorbed inside the object, thereby detecting an acoustic wave emitted from the object, obtaining photoacoustic data, and imaging the object based on the photoacoustic data. In the photoacoustic imaging method for displaying on the image display means,
Transmitting ultrasonic waves toward the subject, thereby detecting reflected ultrasonic waves reflected by the subject to obtain ultrasonic data;
Correcting a specific portion in the subject indicated by the photoacoustic data based on the ultrasonic data indicating the specific portion;
The subject is imaged by the photoacoustic data after correction.
なお、この本発明による光音響画像化方法においては、上記特定部分が、例えば被検体中の管腔部分とされる。そして、そのような管腔部分は、例えば血管部とされる。 In the photoacoustic imaging method according to the present invention, the specific portion is, for example, a lumen portion in a subject. Such a lumen portion is, for example, a blood vessel portion.
また上記の補正としては、例えば、光音響画像において欠落している管壁部分を、超音波画像における管壁部分に沿って全周繋げる補正を適用することができる。 Moreover, as said correction | amendment, the correction | amendment which connects the pipe wall part missing in a photoacoustic image for the perimeter along the tube wall part in an ultrasonic image is applicable, for example.
そして、そのような補正は、光音響画像において欠落している管壁部分を、光音響画像に存在している管壁部分と区別可能な態様、例えば色分けした態様で表示されるように生成するものであることが望ましい。 And such a correction | amendment produces | generates so that the tube wall part missing in a photoacoustic image may be displayed in the aspect distinguishable from the tube wall part which exists in a photoacoustic image, for example, the color-coded aspect. It is desirable to be a thing.
あるいは、上記の補正として、超音波画像における管壁部分の内側に有る部分を、光音響画像において所定色で塗りつぶす補正を適用することもできる。 Alternatively, as the above-described correction, it is possible to apply a correction in which a portion inside the tube wall portion in the ultrasonic image is filled with a predetermined color in the photoacoustic image.
なお、そのような補正を適用する場合は、上記所定色を、上記塗りつぶす補正がなされる管壁部分とは別の位置に有って正常に画像化される管壁部分とは別の色とすることが望ましい。 When applying such correction, the predetermined color is different from the tube wall portion that is normally imaged at a position different from the tube wall portion to be corrected for filling. It is desirable to do.
また、本発明による光音響画像化方法においては、
前記パルス光として、互いに異なる複数の波長のパルス光を照射し、
各波長のパルス光に対する吸収特性が互いに異なる被検体の複数の部分を識別して、互いに識別可能に表示することが望ましい。
In the photoacoustic imaging method according to the present invention,
As the pulsed light, irradiating pulsed light having a plurality of different wavelengths,
It is desirable to identify a plurality of portions of the subject having different absorption characteristics with respect to the pulsed light of each wavelength and display them in a distinguishable manner.
上述のように、複数の部分を識別可能に表示するには、例えばそれらの部分の表示色を互いに変えればよい。 As described above, in order to display a plurality of parts in an identifiable manner, for example, the display colors of these parts may be changed from each other.
また上記複数の波長は、生体の動脈および静脈における吸収特性が互いに異なる2つの波長であることが望ましい。 The plurality of wavelengths are preferably two wavelengths having different absorption characteristics in the artery and vein of the living body.
他方、本発明による光音響画像化装置は、
被検体にその内部で吸収される波長のパルス光を照射し、それにより被検体から発せられた音響波を検出して光音響データを得、この光音響データに基づいて前記被検体を画像化して画像表示手段に表示する光音響画像化装置において、
前記被検体に向けて超音波を送信し、それにより被検体で反射した反射超音波を検出して超音波データを得る超音波画像取得手段と、
前記光音響データが示している被検体中の特定部分を、該特定部分を示す前記超音波データに基づいて補正する補正手段とを備えたことを特徴とするものである。
On the other hand, the photoacoustic imager according to the present invention is:
The object is irradiated with pulsed light having a wavelength that is absorbed inside the object, thereby detecting an acoustic wave emitted from the object to obtain photoacoustic data, and imaging the object based on the photoacoustic data. In the photoacoustic imaging device for displaying on the image display means,
Ultrasonic image acquisition means for transmitting ultrasonic waves toward the subject, thereby detecting reflected ultrasonic waves reflected by the subject and obtaining ultrasonic data;
And a correction unit configured to correct a specific portion in the subject indicated by the photoacoustic data based on the ultrasonic data indicating the specific portion.
なお上記補正手段としては、例えば、前記特定部分として被検体中の管腔部分を補正する手段が適用可能である。 As the correction means, for example, means for correcting a lumen portion in a subject as the specific portion can be applied.
また上記補正手段には、上記管腔部分として被検体中の血管部を補正する手段を適用することもできる。 In addition, as the correction means, means for correcting a blood vessel portion in the subject as the lumen portion can be applied.
さらに上記補正手段としては、光音響画像において欠落している管壁部分を、超音波画像における管壁部分に沿って全周繋げる補正を行う手段を適用することが可能である。 Further, as the correcting means, it is possible to apply means for correcting the tube wall portion missing in the photoacoustic image along the entire tube wall portion in the ultrasonic image.
そして、そのような補正手段は、光音響画像において欠落している管壁部分を、光音響画像に存在している管壁部分と区別可能な態様、例えば色分けした態様で表示されるように生成するものであることが望ましい。 And such a correction | amendment means is produced | generated so that the tube wall part missing in a photoacoustic image may be displayed in the aspect distinguishable from the tube wall part which exists in a photoacoustic image, for example, the color-coded aspect. It is desirable to do.
あるいは、上記補正手段として、超音波画像における管壁部分の内側に有る部分を、光音響画像において所定色で塗りつぶす補正を行う手段を適用することも可能である。 Alternatively, as the correction means, it is also possible to apply means for performing correction to fill a portion inside the tube wall portion in the ultrasonic image with a predetermined color in the photoacoustic image.
なお、そのような塗りつぶしを行う補正手段は、上記所定色を、上記塗りつぶす補正がなされる管壁部分とは別の位置に有って正常に画像化される管壁部分とは別の色に設定するものであることが望ましい。 In addition, the correction means for performing such filling is to change the predetermined color to a color different from the tube wall portion that is normally imaged at a position different from the tube wall portion to be corrected for the filling. It is desirable to set it.
また、本発明による光音響画像化装置においては、
前記パルス光として、互いに異なる複数の波長のパルス光を照射する手段と、
各波長のパルス光に対する吸収特性が互いに異なる被検体の複数の部分を識別して、互いに識別可能に表示させる手段とが設けられることが望ましい。
In the photoacoustic imaging apparatus according to the present invention,
Means for irradiating pulsed light having a plurality of different wavelengths as the pulsed light;
It is desirable to provide means for discriminating a plurality of portions of the subject having different absorption characteristics with respect to pulsed light of each wavelength and displaying them in a mutually distinguishable manner.
上記複数の部分を識別して互いに識別可能に表示させる手段は、それらの部分を互いに色を変えて表示させるものであることが望ましい。 It is desirable that the means for identifying the plurality of parts and displaying them in a mutually distinguishable manner is to display these parts in different colors.
また上記複数の波長は、生体の動脈および静脈における吸収特性が互いに異なる2つの波長であることが望ましい。 The plurality of wavelengths are preferably two wavelengths having different absorption characteristics in the artery and vein of the living body.
従来知られている超音波画像は、光音響画像のように血管等を明確に抽出して表示するには不向きである半面、画像化したい部分が、光吸収のために欠落してしまうような問題とは無縁のものである。本発明による光音響画像化方法はこの点に鑑みて、被検体に向けて超音波を送信し、それにより被検体で反射した反射超音波を検出して超音波データを得、光音響データが示している被検体中の特定部分を、該特定部分を示す超音波データに基づいて補正し、この補正後の光音響データによって被検体を画像化するようにしたので、この光音響画像化方法によれば、本来の光音響画像において欠落が有ったとしても、補正によりその欠落部分を表示させることが可能になる。 Conventionally known ultrasonic images are unsuitable for clearly extracting and displaying blood vessels and the like as in photoacoustic images, but parts that are desired to be imaged are lost due to light absorption. It is unrelated to the problem. In view of this point, the photoacoustic imaging method according to the present invention transmits ultrasonic waves toward the subject, thereby detecting reflected ultrasonic waves reflected by the subject to obtain ultrasonic data, and the photoacoustic data is Since the specific part in the object shown is corrected based on the ultrasonic data indicating the specific part, and the object is imaged by the photoacoustic data after the correction, this photoacoustic imaging method According to the above, even if there is a missing portion in the original photoacoustic image, the missing portion can be displayed by correction.
また、本発明による光音響画像化方法において特に、前記パルス光として、互いに異なる複数の波長のパルス光を照射し、各波長のパルス光に対する吸収特性が互いに異なる被検体の複数の部分を識別して、互いに識別可能に表示する場合は、例えば生体の動脈と静脈とを明確に識別して観察可能になるので、手術の支援や異常発見において有利となる。 In the photoacoustic imaging method according to the present invention, in particular, the pulsed light is irradiated with pulsed light having a plurality of different wavelengths, and a plurality of portions of the subject having different absorption characteristics for the pulsed light of each wavelength are identified. In the case where the images are displayed so as to be distinguishable from each other, for example, the arteries and veins of a living body can be clearly identified and observed, which is advantageous in assisting surgery and detecting abnormalities.
他方、本発明の光音響画像化装置は、被検体に向けて超音波を送信し、それにより被検体で反射した反射超音波を検出して超音波データを得る超音波画像取得手段と、光音響データが示している被検体中の特定部分を、該特定部分を示す前記超音波データに基づいて補正する補正手段とを備えたので、この光音響画像化装置によれば、上述した本発明の光音響画像化方法を実施することができる。 On the other hand, the photoacoustic imaging apparatus of the present invention transmits an ultrasonic wave toward a subject, thereby detecting an ultrasonic wave reflected by the subject and obtaining ultrasonic data, and an optical image acquisition unit. Since the correction part which correct | amends the specific part in the subject which acoustic data shows based on the said ultrasonic data which shows this specific part is provided, according to this photoacoustic imaging device, this invention mentioned above The photoacoustic imaging method can be implemented.
本発明の第1の実施形態による光音響画像化装置の概略構成を示すブロック図1 is a block diagram showing a schematic configuration of a photoacoustic imaging apparatus according to a first embodiment of the present invention. 血管部における光音響信号の発生を説明する概略図Schematic explaining the generation of photoacoustic signals in the blood vessel 従来装置における問題を説明する図The figure explaining the problem in the conventional device 図1の装置における超音波画像の例を示す図The figure which shows the example of the ultrasonic image in the apparatus of FIG. 図1の装置における光音響画像の例を示す図The figure which shows the example of the photoacoustic image in the apparatus of FIG. 図1の装置における光音響画像および超音波画像の例を示す図The figure which shows the example of the photoacoustic image and ultrasonic image in the apparatus of FIG. 図1の装置における光音響画像および超音波画像の例を示す図The figure which shows the example of the photoacoustic image and ultrasonic image in the apparatus of FIG. 光音響画像の補正例を示す図The figure which shows the correction example of a photoacoustic image 本発明の第2の実施形態による光音響画像化装置の概略構成を示すブロック図The block diagram which shows schematic structure of the photoacoustic imaging device by the 2nd Embodiment of this invention. 図6の装置における超音波画像の例を示す図The figure which shows the example of the ultrasonic image in the apparatus of FIG. 図6の装置における光音響画像の例を示す図The figure which shows the example of the photoacoustic image in the apparatus of FIG. 図6の装置における光音響画像および超音波画像の例を示す図The figure which shows the example of the photoacoustic image and ultrasonic image in the apparatus of FIG. 図6の装置における光音響画像および超音波画像の例を示す図The figure which shows the example of the photoacoustic image and ultrasonic image in the apparatus of FIG. 光音響画像の補正例を示す図The figure which shows the correction example of a photoacoustic image 酸素化ヘモグロビン(oxy-Hb)と脱酸素化ヘモグロビン(deoxy-Hb)の光波長毎の分子吸収係数を示すグラフGraph showing the molecular absorption coefficient for each light wavelength of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb)
以下、図面を参照して本発明の実施形態を詳細に説明する。図1は、本発明の第1の実施形態による光音響画像化装置10の基本構成を示すブロック図である。この光音響画像化装置10は、光音響画像と超音波画像の双方を取得可能とされたもので、超音波探触子(プローブ)11、超音波ユニット12、レーザ光源ユニット13、および画像表示手段14を備えている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a basic configuration of a photoacoustic imaging apparatus 10 according to the first embodiment of the present invention. The photoacoustic imaging apparatus 10 can acquire both a photoacoustic image and an ultrasonic image, and includes an ultrasonic probe (probe) 11, an ultrasonic unit 12, a laser light source unit 13, and an image display. Means 14 are provided.
上記レーザ光源ユニット13は所定波長のパルスレーザ光を発するもので、そこから射出されたパルスレーザ光は被検体に照射される。このパルスレーザ光は、図1では出射方向については概略的に示してあるが、例えば複数の光ファイバなどの導光手段を用いてプローブ11まで導光され、プローブ11の部分から被検体に向けて照射されるのが望ましい。 The laser light source unit 13 emits pulse laser light having a predetermined wavelength, and the pulse laser light emitted from the laser light source unit 13 is irradiated on the subject. The pulse laser beam is schematically shown in FIG. 1 with respect to the emission direction. For example, the pulse laser beam is guided to the probe 11 using light guide means such as a plurality of optical fibers, and directed from the probe 11 portion toward the subject. It is desirable to be irradiated.
プローブ11は、被検体に対する超音波の出力(送信)、および被検体から反射して戻って来た反射超音波の検出(受信)を行う。そのためにプローブ11は、例えば一次元に配列された複数の超音波振動子を有する。またプローブ11は、被検体内の観察対象物がレーザ光源ユニット13からのレーザ光を吸収することで生じた超音波(音響波)を、複数の超音波振動子によって検出する。プローブ11は、上記音響波を検出して音響波検出信号を出力し、また上記反射超音波を検出して超音波検出信号を出力する。 The probe 11 performs output (transmission) of ultrasonic waves to the subject and detection (reception) of reflected ultrasonic waves reflected back from the subject. For this purpose, the probe 11 has, for example, a plurality of ultrasonic transducers arranged one-dimensionally. The probe 11 detects ultrasonic waves (acoustic waves) generated by the observation target in the subject absorbing the laser light from the laser light source unit 13 by using a plurality of ultrasonic transducers. The probe 11 detects the acoustic wave and outputs an acoustic wave detection signal, and also detects the reflected ultrasonic wave and outputs an ultrasonic detection signal.
なお、プローブ11に上述した導光手段が結合される場合は、その導光手段の端部つまり複数の光ファイバの先端部等が、複数の超音波振動子の並び方向(図1中の左右方向)に沿って配置され、そこから被検体に向けてレーザ光が照射される。以下では、このように導光手段がプローブ11に結合される場合を例に取って説明する。 When the above-described light guide means is coupled to the probe 11, the end portion of the light guide means, that is, the tip portions of the plurality of optical fibers are arranged in the direction in which the plurality of ultrasonic transducers are arranged (left and right in FIG. 1). The laser beam is emitted toward the subject from there. Hereinafter, the case where the light guide means is coupled to the probe 11 as described above will be described as an example.
被検体の光音響画像あるいは超音波画像を取得する際、プローブ11は複数の超音波振動子が並ぶ一次元方向に対してほぼ直角な方向に移動され、それにより被検体がレーザ光および超音波によって二次元走査される。この走査は、検査者が手操作でプローブ11を動かして行ってもよく、あるいは、走査機構を用いてより精密な二次元走査を実現するようにしてもよい。 When acquiring a photoacoustic image or an ultrasonic image of a subject, the probe 11 is moved in a direction substantially perpendicular to a one-dimensional direction in which a plurality of ultrasonic transducers are arranged, whereby the subject is subjected to laser light and ultrasonic waves. Is two-dimensionally scanned. This scanning may be performed by an inspector moving the probe 11 manually, or a more precise two-dimensional scanning may be realized using a scanning mechanism.
超音波ユニット12は、受信回路21、AD変換手段22、受信メモリ23、データ分離手段24、光音響画像再構成手段25、検波・対数変換手段26、血管判断手段27、血管補正手段28、および光音響画像構築手段29を有している。 The ultrasonic unit 12 includes a reception circuit 21, an AD conversion unit 22, a reception memory 23, a data separation unit 24, a photoacoustic image reconstruction unit 25, a detection / logarithmic conversion unit 26, a blood vessel determination unit 27, a blood vessel correction unit 28, and Photoacoustic image construction means 29 is provided.
上記受信回路21は、プローブ11が出力した前記音響波検出信号および超音波検出信号を受信する。AD変換手段22はサンプリング手段であり、受信回路21が受信した音響波検出信号および超音波検出信号をサンプリングして、それぞれデジタル信号である光音響データおよび超音波データに変換する。このサンプリングは、例えば外部から入力されるADクロック信号に同期して、所定のサンプリング周期でなされる。 The receiving circuit 21 receives the acoustic wave detection signal and the ultrasonic wave detection signal output from the probe 11. The AD conversion means 22 is a sampling means, which samples the acoustic wave detection signal and the ultrasonic detection signal received by the receiving circuit 21 and converts them into photoacoustic data and ultrasonic data, which are digital signals, respectively. This sampling is performed at a predetermined sampling period in synchronization with, for example, an externally input AD clock signal.
また超音波ユニット12は、上記データ分離手段24の出力を受ける超音波画像再構成手段40に加えて、検波・対数変換手段41、管腔検出手段42、超音波画像構築手段43、この超音波画像構築手段43および前記光音響画像構築手段29の出力を受ける画像合成手段44を有している。この画像合成手段44の出力は、例えばCRTや液晶表示装置等からなる画像表示手段14に入力される。さらに超音波ユニット12は、送信制御回路30、および超音波ユニット12内の各部等の動作を制御する制御手段31を有している。 In addition to the ultrasound image reconstruction means 40 that receives the output of the data separation means 24, the ultrasound unit 12 includes a detection / logarithm conversion means 41, a lumen detection means 42, an ultrasound image construction means 43, and this ultrasound. The image construction means 43 and the image composition means 44 for receiving the output of the photoacoustic image construction means 29 are provided. The output of the image synthesizing unit 44 is input to the image display unit 14 including, for example, a CRT or a liquid crystal display device. Further, the ultrasonic unit 12 includes a transmission control circuit 30 and a control unit 31 that controls the operation of each unit in the ultrasonic unit 12.
上記AD変換手段22が出力した光音響データあるいは超音波データは、一旦受信メモリに格納された後、データ分離手段24に入力される。データ分離手段24は入力された光音響データと超音波データとを互いに分離し、光音響データは光音響画像再構成手段25に入力させ、超音波データは超音波画像再構成手段40に入力させる。 The photoacoustic data or ultrasonic data output from the AD converter 22 is temporarily stored in the reception memory and then input to the data separator 24. The data separation unit 24 separates the input photoacoustic data and the ultrasonic data from each other, the photoacoustic data is input to the photoacoustic image reconstruction unit 25, and the ultrasonic data is input to the ultrasonic image reconstruction unit 40. .
レーザ光源ユニット13は、Ti:Sapphireレーザ等からなるQスイッチパルスレーザ32と、その励起光源であるフラッシュランプ33とを備えた固体レーザユニットである。なお以下では、特に血管を示す光音響画像を取得する場合を例に挙げて説明するが、その場合レーザ光源ユニット13としては、血管において良好に吸収される波長のパルスレーザ光を発するものが選択利用される。 The laser light source unit 13 is a solid-state laser unit including a Q-switch pulse laser 32 made of a Ti: Sapphire laser or the like and a flash lamp 33 as an excitation light source. In the following description, a case where a photoacoustic image showing a blood vessel is acquired will be described as an example. In this case, a laser light source unit 13 that emits pulsed laser light having a wavelength that is well absorbed in the blood vessel is selected. Used.
このレーザ光源ユニット13は、上記制御手段31から光出射を指示する光トリガ信号を受けると、フラッシュランプ33を点灯させてQスイッチパルスレーザ32を励起する。制御手段31は、例えばフラッシュランプ33がQスイッチパルスレーザ32を十分に励起させると、Qスイッチトリガ信号を出力する。Qスイッチパルスレーザ32は、Qスイッチトリガ信号を受けるとそのQスイッチをオンにし、パルスレーザ光を出射させる。 When the laser light source unit 13 receives an optical trigger signal instructing light emission from the control means 31, the laser light source unit 13 turns on the flash lamp 33 to excite the Q switch pulse laser 32. For example, when the flash lamp 33 sufficiently excites the Q switch pulse laser 32, the control means 31 outputs a Q switch trigger signal. When the Q switch pulse laser 32 receives the Q switch trigger signal, the Q switch pulse laser 32 turns on the Q switch to emit pulsed laser light.
ここで、フラッシュランプ33の点灯からQスイッチパルスレーザ32が十分な励起状態となるまでに要する時間は、Qスイッチパルスレーザ32の特性などから見積もることができる。なお、上述のように制御手段31からQスイッチを制御するのに代えて、レーザ光源ユニット13内において、Qスイッチパルスレーザ32を十分に励起させた後にQスイッチをオンにしてもよい。その場合は、Qスイッチをオンにしたことを示す信号を超音波ユニット12側に通知してもよい。 Here, the time required from when the flash lamp 33 is turned on until the Q-switch pulse laser 32 is sufficiently excited can be estimated from the characteristics of the Q-switch pulse laser 32 and the like. In place of controlling the Q switch from the control means 31 as described above, the Q switch may be turned on after the Q switch pulse laser 32 is sufficiently excited in the laser light source unit 13. In that case, a signal indicating that the Q switch is turned on may be notified to the ultrasonic unit 12 side.
また制御手段31は、送信制御回路30に、超音波送信を指示する超音波トリガ信号を入力する。送信制御回路30はこの超音波トリガ信号を受けると、プローブ11から超音波を送信させる。制御手段31は、先に前記光トリガ信号を出力し、その後、超音波トリガ信号を出力する。光トリガ信号が出力されることで被検体に対するレーザ光の照射、および音響波の検出が行われ、その後、超音波トリガ信号が出力されることで被検体に対する超音波の送信、および反射超音波の検出が行われる。 The control unit 31 inputs an ultrasonic trigger signal for instructing ultrasonic transmission to the transmission control circuit 30. When receiving the ultrasonic trigger signal, the transmission control circuit 30 transmits an ultrasonic wave from the probe 11. The control means 31 outputs the optical trigger signal first, and then outputs an ultrasonic trigger signal. The light trigger signal is output to irradiate the subject with laser light and the acoustic wave is detected, and then the ultrasonic trigger signal is output to transmit the ultrasonic wave to the subject and the reflected ultrasonic wave. Is detected.
制御手段31はさらに、AD変換手段22に対して、サンプリング開始を指示するサンプリングトリガ信号を出力する。このサンプリングトリガ信号は、前記光トリガ信号が出力された後で、かつ超音波トリガ信号が出力される前、より好ましくは被検体に実際にレーザ光が照射されるタイミングで出力される。そのためにサンプリングトリガ信号は、例えば制御手段31がQスイッチトリガ信号を出力するタイミングに同期して出力される。AD変換手段22は上記サンプリングトリガ信号を受けると、プローブ11が出力して受信回路21が受信した音響波検出信号のサンプリングを開始する。 The control means 31 further outputs a sampling trigger signal that instructs the AD conversion means 22 to start sampling. The sampling trigger signal is output after the optical trigger signal is output and before the ultrasonic trigger signal is output, more preferably at the timing when the subject is actually irradiated with the laser light. Therefore, the sampling trigger signal is output in synchronization with the timing at which the control means 31 outputs the Q switch trigger signal, for example. When receiving the sampling trigger signal, the AD conversion means 22 starts sampling the acoustic wave detection signal output from the probe 11 and received by the receiving circuit 21.
制御手段31は、光トリガ信号を出力した後、音響波の検出を終了するタイミングで超音波トリガ信号を出力する。このとき、AD変換手段22は音響波検出信号のサンプリングを中断せず、サンプリングを継続して実施する。言い換えれば、制御手段31は、AD変換手段22が音響波検出信号のサンプリングを継続している状態で、超音波トリガ信号を出力する。超音波トリガ信号に応答してプローブ11が超音波送信を行うことで、プローブ11の検出対象は、音響波から反射超音波に変わる。AD変換手段22は、検出された超音波検出信号のサンプリングを継続することで、音響波検出信号と超音波検出信号とを連続的にサンプリングする。 After outputting the optical trigger signal, the control means 31 outputs the ultrasonic trigger signal at the timing when the detection of the acoustic wave is finished. At this time, the AD conversion means 22 continues the sampling without interrupting the sampling of the acoustic wave detection signal. In other words, the control unit 31 outputs the ultrasonic trigger signal in a state where the AD conversion unit 22 continues sampling the acoustic wave detection signal. When the probe 11 transmits ultrasonic waves in response to the ultrasonic trigger signal, the detection target of the probe 11 changes from acoustic waves to reflected ultrasonic waves. The AD conversion means 22 continuously samples the acoustic wave detection signal and the ultrasonic wave detection signal by continuously sampling the detected ultrasonic wave detection signal.
AD変換手段22は、サンプリングして得られた光音響データおよび超音波データを、共通の受信メモリ23に格納する。受信メモリ23に格納されたサンプリングデータは、ある時点までは光音響データであり、ある時点からは超音波データとなる。データ分離手段24は、受信メモリ23に格納された光音響データと超音波データとを分離し、光音響データを光音響画像再構成手段25に入力し、超音波データを超音波画像再構成手段40に入力する。 The AD conversion unit 22 stores photoacoustic data and ultrasonic data obtained by sampling in a common reception memory 23. The sampling data stored in the reception memory 23 is photoacoustic data up to a certain point, and becomes ultrasonic data from a certain point. The data separation unit 24 separates the photoacoustic data and the ultrasonic data stored in the reception memory 23, inputs the photoacoustic data to the photoacoustic image reconstruction unit 25, and converts the ultrasonic data into the ultrasonic image reconstruction unit. 40.
以下、超音波画像と光音響画像の生成、表示について、図4A~図4Dも参照して説明する。超音波画像再構成手段40は、プローブ11が有する複数の超音波振動子毎のデータとなっている上記超音波データを加算して、1ライン分の超音波断層画像データを生成する。検波・対数変換手段41はこの超音波断層画像データの包絡線を生成し、次いでその包絡線を対数変換してダイナミックレンジを広げた後、このデータを管腔検出手段42に入力する。管腔検出手段42はこのデータから、例えばパターンマッチング等の手法により、環状になっていて管腔と考えられる部分を検出する。 Hereinafter, generation and display of an ultrasonic image and a photoacoustic image will be described with reference to FIGS. 4A to 4D. The ultrasound image reconstruction means 40 adds the ultrasound data that is data for each of the plurality of ultrasound transducers included in the probe 11 to generate ultrasound tomographic image data for one line. The detection / logarithm conversion means 41 generates an envelope of the ultrasonic tomographic image data, and then logarithmically converts the envelope to widen the dynamic range, and then inputs this data to the lumen detection means 42. From this data, the lumen detection means 42 detects an annular portion that is considered to be a lumen by a method such as pattern matching.
ここで図4Aは、超音波断層画像の一例を概略的に示すものであり、この画像中には、一つの組織Eと管腔F、GおよびHが示されている。なおこの図4A並びに、後述する図4B、4Cおよび4Dにおいて、超音波およびパルスレーザ光は図中の上方から下方に向けて照射されるものとする。また各図では、管腔Hの部分を分かりやすく別途拡大表示してある。超音波断層画像がこのようなものである場合、管腔検出手段42は環状になっている部分、つまり管腔F、GおよびHの部分を検出し、それらの形状および位置を示すデータを血管判断手段27に入力する。 Here, FIG. 4A schematically shows an example of an ultrasonic tomographic image, in which one tissue E and lumens F, G, and H are shown. In FIG. 4A and FIGS. 4B, 4C, and 4D, which will be described later, it is assumed that ultrasonic waves and pulsed laser light are emitted from the upper side to the lower side in the drawing. In each figure, the portion of the lumen H is separately enlarged for easy understanding. When the ultrasonic tomographic image is like this, the lumen detecting means 42 detects the annular portion, that is, the portions of the lumens F, G, and H, and stores the data indicating the shape and position of the blood vessel. Input to the judging means 27.
また検波・対数変換手段41の出力は、そのまま超音波画像構築手段43にも入力される。超音波画像構築手段43は、検波・対数変換手段41が出力した各ラインのデータに基づいて超音波断層画像(超音波エコー画像)を生成する。すなわちこの超音波画像構築手段43は、例えば前述した超音波検出信号のピーク部分の時間軸方向の位置が、断層画像における深さ方向の位置に変換されるようにして超音波断層画像を生成する。 The output of the detection / logarithm conversion means 41 is also input to the ultrasonic image construction means 43 as it is. The ultrasonic image construction unit 43 generates an ultrasonic tomographic image (ultrasonic echo image) based on the data of each line output from the detection / logarithmic conversion unit 41. That is, the ultrasonic image constructing unit 43 generates the ultrasonic tomographic image so that, for example, the position in the time axis direction of the peak portion of the ultrasonic detection signal described above is converted into the position in the depth direction in the tomographic image. .
以上の処理は、プローブ11の走査移動に伴って逐次なされ、それにより、被検体の走査方向に亘る複数箇所に関する超音波断層画像が生成される。そしてこれらの超音波断層画像を担持する画像データは、画像合成手段44に入力される。なお、超音波断層画像のみを単独で表示したい場合は、超音波断層画像を担持する上記画像データが画像合成手段44を素通りさせて画像表示手段14に送られ、この画像表示手段14に超音波断層画像が表示される。 The above processing is sequentially performed with the scanning movement of the probe 11, thereby generating ultrasonic tomographic images regarding a plurality of locations in the scanning direction of the subject. Then, the image data carrying these ultrasonic tomographic images is input to the image composition means 44. If it is desired to display only the ultrasonic tomographic image alone, the image data carrying the ultrasonic tomographic image passes through the image synthesizing unit 44 and is sent to the image display unit 14. A tomographic image is displayed.
次に、光音響画像の生成および表示について説明する。光音響画像再構成手段25には、データ分離手段24において超音波データと分離された光音響データ、つまり、血管に吸収される波長のパルスレーザ光を被検体に照射して得られた光音響データが入力される。光音響画像再構成手段25は、プローブ11が有する複数の超音波振動子毎のデータとなっている上記光音響データを加算して、1ライン分の光音響画像データを生成する。検波・対数変換手段26はこの光音響画像データの包絡線を生成し、次いでその包絡線を対数変換してダイナミックレンジを広げた後、このデータを血管判断手段27に入力する。 Next, generation and display of a photoacoustic image will be described. In the photoacoustic image reconstruction means 25, photoacoustic data obtained by irradiating the subject with photoacoustic data separated from the ultrasonic data by the data separation means 24, that is, pulse laser light having a wavelength absorbed by the blood vessel. Data is entered. The photoacoustic image reconstruction means 25 adds the photoacoustic data, which is data for each of the plurality of ultrasonic transducers included in the probe 11, to generate photoacoustic image data for one line. The detection / logarithm conversion means 26 generates an envelope of the photoacoustic image data, and then logarithmically converts the envelope to widen the dynamic range, and then inputs this data to the blood vessel determination means 27.
図4Bは、上述の光音響画像データが担持する光音響画像として、図4Aに示した断面と同じ断面についての光音響画像を概略的に示している。この光音響画像には、一例として血管部Fa、Haが存在するが、それらの中でも特に比較的太い血管部Haは、先に図2および図3を参照して説明した理由により、パルスレーザ光の照射側(プローブ11が存在する側であり、ここでは図の上方)から遠い側の血管壁が欠落した状態となっているので、血管とみなしてよいかどうか不明確となっている。 FIG. 4B schematically shows a photoacoustic image of the same cross section as that shown in FIG. 4A as the photoacoustic image carried by the above-described photoacoustic image data. In this photoacoustic image, blood vessel portions Fa and Ha exist as an example. Among them, a relatively thick blood vessel portion Ha is a pulse laser beam for the reason described above with reference to FIGS. Since the blood vessel wall on the side farther from the irradiation side (the side where the probe 11 exists, here the upper side in the figure) is missing, it is unclear whether it can be regarded as a blood vessel.
そこで血管判断手段27は、前述したようにして管腔検出手段42から入力された管腔Hの形状および位置を示すデータに基づいて、半分の円環状となっている上記血管部Haが本来は管腔である、つまり明らかに血管を示しているものであると判断する。この管腔検出手段42の判断結果を受けた血管補正手段28は、検波・対数変換手段26から入力された光音響画像データを、上記半分の円環状部分が管腔Hに沿って全周繋がった円環状となるように補正する。 Therefore, the blood vessel judging means 27 originally has the above-mentioned blood vessel portion Ha having a half annular shape based on the data indicating the shape and position of the lumen H input from the lumen detecting means 42 as described above. It is determined that it is a lumen, that is, it clearly shows a blood vessel. Receiving the determination result of the lumen detecting means 42, the blood vessel correcting means 28 connects the photoacoustic image data input from the detection / logarithm converting means 26 with the half annular portion along the lumen H all around the circumference. Correct so that it is a circular ring.
図4Cおよび図4Dは、上記補正を説明するものである。もし、上記補正を行なわずに超音波断層画像データと光音響画像データとを合成したとすると、その合成データに基づいて表示される画像において管腔Hと血管部Haとは、図4Cに拡大図示する状態で画像化されることになる。それに対して、上記の補正を行ってから超音波断層画像データと光音響画像データとを合成すれば、管腔Hと補正された血管部Ha′とが、図4Dに拡大図示する状態で画像化される。こうして、上記補正を行うことにより、光音響画像において血管部が本来の形状通りに表示されるようになる。 4C and 4D illustrate the above correction. If the ultrasonic tomographic image data and the photoacoustic image data are synthesized without performing the above correction, the lumen H and the blood vessel portion Ha in the image displayed based on the synthesized data are enlarged in FIG. 4C. The image is formed in the state shown in the figure. On the other hand, if the ultrasonic tomographic image data and the photoacoustic image data are synthesized after performing the above correction, the lumen H and the corrected blood vessel portion Ha ′ are imaged in an enlarged state in FIG. 4D. It becomes. Thus, by performing the above correction, the blood vessel portion is displayed in the original shape in the photoacoustic image.
なお、上記の補正された血管部H′は、本来光音響画像に存在していた部分と、補正で追加した部分とが互いに区別可能な態様、例えば色分けした態様で表示されるように生成されることが望ましい。そのようにすれば、装置操作者が、本来の光音響画像には欠落が有ったということを把握できるようになる。 The corrected blood vessel portion H ′ is generated so that a portion originally present in the photoacoustic image and a portion added by the correction are displayed in a manner that can be distinguished from each other, for example, in a color-coded manner. It is desirable. By doing so, the device operator can grasp that the original photoacoustic image was missing.
上記補正後の光音響画像データは、光音響画像構築手段29に入力される。光音響画像構築手段29は、各ライン毎の光音響画像データに基づいて光音響画像を生成する。すなわちこの光音響画像構築手段29は、例えば光音響画像データのピーク部分の時間軸方向の位置が、断層画像における深さ方向の位置に変換されるようにして光音響画像を生成する。 The corrected photoacoustic image data is input to the photoacoustic image construction unit 29. The photoacoustic image construction means 29 generates a photoacoustic image based on the photoacoustic image data for each line. That is, the photoacoustic image construction unit 29 generates a photoacoustic image such that, for example, the position in the time axis direction of the peak portion of the photoacoustic image data is converted into a position in the depth direction in the tomographic image.
以上の処理は、プローブ11の走査移動に伴って逐次なされ、それにより、被検体の走査方向に亘る複数箇所に関する光音響画像が生成される。そしてこれらの光音響画像を担持する画像データは画像合成手段44に入力され、そこで前述の超音波断層画像を担持する画像データと合成され、合成されたデータが担持する画像が画像表示手段14に表示される。先に説明した通り、この合成されたデータに基づいて表示される画像は、図4Dに示すようなものとなる。 The above processing is sequentially performed with the scanning movement of the probe 11, thereby generating photoacoustic images regarding a plurality of locations in the scanning direction of the subject. The image data carrying these photoacoustic images is input to the image synthesizing means 44, where it is synthesized with the image data carrying the above-mentioned ultrasonic tomographic image, and the image carried by the synthesized data is input to the image display means 14. Is displayed. As described above, an image displayed based on the synthesized data is as shown in FIG. 4D.
なお本実施形態では、半分の円環状となっている血管部Haを、全周繋がった円環状の血管部Ha′となるように補正しているが、その代わりに図5に示すように、管腔Hの内部を図中Jで示すように所定色で塗りつぶす補正を行って、血管であることを示すようにしてもよい。 In the present embodiment, the blood vessel portion Ha having a half annular shape is corrected so as to become an annular blood vessel portion Ha ′ connected all around, but instead, as shown in FIG. The inside of the lumen H may be corrected to fill with a predetermined color as indicated by J in the figure to indicate that it is a blood vessel.
そして、そのような塗りつぶしを行う場合は、上記所定色を、塗りつぶす補正がなされる血管部Haとは別の位置に有って正常に画像化される血管部(例えば図5の血管部Fa)とは別の色に設定することが望ましい。そのようにすれば、血管部Haが本来正常に表示されているのか、あるいは補正によって正常に表示されているのかを容易に判別できるようになる。 When such filling is performed, a blood vessel part that is normally imaged at a position different from the blood vessel part Ha to be corrected for filling the predetermined color (for example, the blood vessel part Fa in FIG. 5). It is desirable to set it to a different color. By doing so, it becomes possible to easily determine whether the blood vessel portion Ha is normally displayed normally or whether it is normally displayed by the correction.
また以上の実施形態では、被検体に向けて超音波を送信し、それにより被検体で反射した反射超音波を検出して超音波データを得る超音波画像取得手段がプローブ11、超音波画像再構成手段40および検波・対数変換手段41から構成され、また、光音響データが示している被検体中の特定部分を、該特定部分を示す超音波データに基づいて補正する補正手段が管腔検出手段42、血管判断手段27および血管補正手段28から構成されている。 In the above embodiment, the ultrasonic image acquisition means for transmitting the ultrasonic wave toward the subject and detecting the reflected ultrasonic wave reflected by the subject to obtain the ultrasonic data is the probe 11, the ultrasonic image re-transmission unit. Compensation means comprising a construction means 40 and a detection / logarithm conversion means 41, and a correction means for correcting a specific part in the subject indicated by the photoacoustic data based on ultrasonic data indicating the specific part It comprises means 42, blood vessel determination means 27 and blood vessel correction means 28.
次に図6、7A~7Dおよび8を参照して、動脈と静脈とを識別して表示可能とした本発明の別の実施形態について説明する。図6は、本発明の第2の実施形態による光音響画像化装置110の基本構成を示すブロック図である。なおこの図6において、図1中の要素と同等の要素には同番号を付してあり、それらについての説明は特に必要のない限り省略する(以下、同様)。この光音響画像化装置110は、図1の光音響画像化装置10と比べると基本的に、2波長データ複素数化手段115、強度情報抽出手段116および2波長データ演算手段117が追加された点、並びに、レーザ光源ユニット13に代えて、2波長のパルスレーザ光を選択的に発することができるレーザ光源ユニット113が適用された点が異なるものである。 Next, another embodiment of the present invention in which an artery and a vein can be identified and displayed will be described with reference to FIGS. FIG. 6 is a block diagram showing a basic configuration of the photoacoustic imaging apparatus 110 according to the second embodiment of the present invention. In FIG. 6, the same elements as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted unless necessary (the same applies hereinafter). Compared with the photoacoustic imaging apparatus 10 of FIG. 1, the photoacoustic imaging apparatus 110 basically includes a two-wavelength data complexization means 115, an intensity information extraction means 116, and a two-wavelength data calculation means 117. In addition, a laser light source unit 113 that can selectively emit two-wavelength pulsed laser light is used instead of the laser light source unit 13.
上記レーザ光源ユニット113は、より詳しくは、図1のQスイッチパルスレーザ32に代えてQスイッチパルスレーザ132が適用されたものである。このQスイッチパルスレーザ132は、フラッシュランプ33によって励起されるレーザ媒質である固体レーザロッド133と、このレーザロッド133の前方側(使用光取り出し側)に配置された部分透過ミラー134と、レーザロッド133の後方側に配置されて上記部分透過ミラー134と共にレーザ共振器を構成するミラー135と、レーザロッド133と部分透過ミラー134との間に配置されたQスイッチ素子136と、回転型フィルタ素子(図示せず)を備えてレーザロッド133とミラー135との間に配置されたバンドパスフィルタ137と、上記回転型フィルタ素子を回転させるサーボモータ138と、上記回転型フィルタ素子の回転位置を検出するエンコーダ139と、このエンコーダ139からの出力を受けてサーボモータ138の駆動を制御するバンドパスフィルタ制御部140とを備えてなるものである。 More specifically, the laser light source unit 113 is obtained by applying a Q switch pulse laser 132 in place of the Q switch pulse laser 32 of FIG. The Q-switch pulse laser 132 includes a solid-state laser rod 133 that is a laser medium excited by the flash lamp 33, a partial transmission mirror 134 disposed on the front side (use light extraction side) of the laser rod 133, and a laser rod. A mirror 135 which is arranged on the rear side of 133 and constitutes a laser resonator together with the partial transmission mirror 134, a Q switch element 136 which is arranged between the laser rod 133 and the partial transmission mirror 134, and a rotary filter element ( A band pass filter 137 provided between the laser rod 133 and the mirror 135, a servo motor 138 for rotating the rotary filter element, and a rotational position of the rotary filter element. Encoder 139 and the output from encoder 139 Those formed by a band-pass filter control unit 140 for controlling the driving of the motor 138.
上記レーザロッド133としては、フラッシュランプ33の励起により例えば中心波長がそれぞれ750nm、800nm近辺の光を発するものが適用されている。それに対応して上記回転型フィルタ素子としては、それぞれ750nm近辺の光、800nm近辺の光を良好に透過させる2つのフィルタ部分が回転体に保持されてなるものが適用されている。サーボモータ138はこの回転体(フィルタ回転体)を回転させることにより、上記2つのフィルタ部分のいずれかを、レーザロッド133とミラー135との間の後方出射光の光路に選択的に挿入させる。 As the laser rod 133, a laser rod that emits light having center wavelengths of 750 nm and 800 nm, respectively, by excitation of the flash lamp 33 is used. Correspondingly, as the rotary filter element, an element in which two filter parts that transmit light in the vicinity of 750 nm and light in the vicinity of 800 nm are held by a rotating body is applied. The servo motor 138 selectively inserts one of the two filter portions into the optical path of the backward emission light between the laser rod 133 and the mirror 135 by rotating the rotating body (filter rotating body).
上述した750nm近辺の光を良好に透過させるフィルタ部分が後方出射光の光路に挿入された場合は、ミラー135を介して750nm近辺の光のみがレーザロッド133にフィードバックされる。そこでこの場合は、中心波長750nmの光のゲインが特に高くなるので、Qスイッチパルスレーザ132から中心波長750nmのパルスレーザ光が発せられるようになる。同様にして、800nm近辺の光を良好に透過させるフィルタ部分が後方出射光の光路に挿入された場合は、Qスイッチパルスレーザ132から中心波長800nmのパルスレーザ光が発せられるようになる。 When the above-described filter portion that transmits light in the vicinity of 750 nm satisfactorily is inserted in the optical path of the backward emission light, only light in the vicinity of 750 nm is fed back to the laser rod 133 via the mirror 135. Therefore, in this case, since the gain of light having a center wavelength of 750 nm is particularly high, pulse laser light having a center wavelength of 750 nm is emitted from the Q switch pulse laser 132. Similarly, when a filter portion that transmits light in the vicinity of 800 nm satisfactorily is inserted into the optical path of the backward emission light, pulse laser light having a center wavelength of 800 nm is emitted from the Q switch pulse laser 132.
なおレーザロッド133には、例えばアレキサンドライト結晶やCr:LiSAF(Cr:LiSrAlF6),Cr:LiCAF(Cr:LiCaAlF6)結晶,Ti:Sapphire結晶等を用いることができる。 For the laser rod 133, for example, alexandrite crystal, Cr: LiSAF (Cr: LiSrAlF6), Cr: LiCAF (Cr: LiCaAlF6) crystal, Ti: Sapphire crystal, or the like can be used.
またバンドパスフィルタ137のフィルタ回転体においては、その半分(例えば回転変位位置0°から180°の領域)に波長750nm近辺の光を良好に透過させるフィルタ部分が担持され、残りの半分(例えば回転変位位置180°から360°の領域)に波長800nm近辺の光を良好に透過させるフィルタ部分が担持されている。そこで、このフィルタ回転体がサーボモータ138により回転されると、レーザ共振器内の後方出射光光路内に、上記2つのフィルタ部分が、フィルタ回転体の回転速度に応じた切り替え速度で交互に挿入されることになる。 In addition, in the filter rotating body of the bandpass filter 137, a filter portion that favorably transmits light in the vicinity of a wavelength of 750 nm is carried on one half (for example, a region from 0 ° to 180 ° of the rotational displacement position), and the other half (for example, rotating) A filter portion that satisfactorily transmits light in the vicinity of a wavelength of 800 nm is carried in a region of a displacement position of 180 ° to 360 °. Therefore, when the filter rotator is rotated by the servo motor 138, the two filter portions are alternately inserted into the optical path of the outgoing light in the laser resonator at a switching speed corresponding to the rotation speed of the filter rotator. Will be.
エンコーダ139は、例えばサーボモータ138の出力軸に取り付けられたスリット入りの回転板と透過型フォトインタラプタとから構成されたロータリエンコーダであり、上記フィルタ回転体の回転変位位置を検出し、その回転変位位置を示すBPF(バンドパスフィルタ)状態信号を生成する。バンドパスフィルタ制御部140はこのBPF状態信号に基づいて、例えば所定時間の間にエンコーダ139が検出した回転変位の量が、フィルタ回転体の所定の回転速度に応じた量になるようにサーボモータ138に供給する電圧などを制御する。 The encoder 139 is a rotary encoder composed of, for example, a rotary plate with slits attached to the output shaft of the servo motor 138 and a transmissive photo interrupter. The encoder 139 detects the rotational displacement position of the filter rotating body, and the rotational displacement thereof. A BPF (band pass filter) state signal indicating the position is generated. Based on the BPF state signal, the bandpass filter control unit 140, for example, controls the servo motor so that the amount of rotational displacement detected by the encoder 139 during a predetermined time becomes an amount corresponding to the predetermined rotational speed of the filter rotating body. The voltage supplied to 138 is controlled.
一方制御手段31は、前述したように超音波ユニット12内の各部の制御を行うと共に、レーザ共振器内の後方出射光光路に挿入される前記2つのフィルタ部分が所定の切替え速度で切り替わるように、バンドパスフィルタ制御部140を制御する。なお、フィルタ回転体の回転速度は、例えばレーザ光源ユニット113から出射すべきパルスレーザ光の波長の数(バンドパスフィルタの透過波長域の数)や、単位時間当たりのパルスレーザ光の個数に基づいて適宜決定すればよい。 On the other hand, the control means 31 controls each part in the ultrasonic unit 12 as described above, and the two filter parts inserted in the backward emission light path in the laser resonator are switched at a predetermined switching speed. The band pass filter control unit 140 is controlled. Note that the rotation speed of the filter rotator is based on, for example, the number of wavelengths of pulsed laser light to be emitted from the laser light source unit 113 (number of transmission wavelength regions of the bandpass filter) and the number of pulsed laser lights per unit time. May be determined as appropriate.
制御手段31のトリガ制御部31aは、レーザ光源ユニット113に対して例えば所定の時間間隔で周期的に、フラッシュランプ33の駆動を指令する光トリガ信号を出力する。フラッシュランプ33は光トリガ信号に応答して発光し、レーザロッド133に励起光を照射する。このときトリガ制御部31aはBPF状態信号に基づいて、光トリガ信号を出力する。すなわちトリガ制御部31aは、例えばBPF状態情報が、出射すべきパルスレーザ光の波長に対応したフィルタ部分がレーザ共振器内の後方出射光光路に挿入されるようになるバンドパスフィルタ137の(つまりフィルタ回転体の)回転変位位置から、レーザロッド133の励起に要する時間の間にフィルタ回転体が変位する量を差し引いた位置を示す情報になると、光トリガ信号を出力する。 The trigger control unit 31a of the control unit 31 outputs an optical trigger signal that instructs the laser light source unit 113 to drive the flash lamp 33, for example, periodically at predetermined time intervals. The flash lamp 33 emits light in response to the light trigger signal and irradiates the laser rod 133 with excitation light. At this time, the trigger control unit 31a outputs an optical trigger signal based on the BPF state signal. That is, for example, the trigger control unit 31a has a filter portion corresponding to the wavelength of the pulsed laser beam to be emitted in the BPF state information of the band pass filter 137 (that is, the bandpass filter 137 in which the backward emission light path in the laser resonator is inserted). When the information indicates the position obtained by subtracting the amount of displacement of the filter rotator during the time required for excitation of the laser rod 133 from the rotational displacement position of the filter rotator, an optical trigger signal is output.
トリガ制御部31aは、光トリガ信号を出力した後、レーザ光源ユニット113のQスイッチ素子136にQスイッチトリガ信号を出力する。このときトリガ制御部31aは、出射すべきパルスレーザ光の波長に対応したフィルタ部分がレーザ共振器内の後方出射光光路に挿入されているタイミングで、Qスイッチトリガ信号を出力する。こうして、Qスイッチトリガ信号が入力されて該Qスイッチ素子136が開状態になったときだけパルスレーザ光が出力されるので、このパルスレーザ光は極めて高強度のものとなり得る。なお図1では、この種のQスイッチ素子は特に図示していないが、Qスイッチパルスレーザ32も上記と同様のQスイッチ素子を備えるものである。 After outputting the optical trigger signal, the trigger control unit 31a outputs the Q switch trigger signal to the Q switch element 136 of the laser light source unit 113. At this time, the trigger control unit 31a outputs a Q switch trigger signal at the timing when the filter portion corresponding to the wavelength of the pulsed laser beam to be emitted is inserted into the backward emission optical path in the laser resonator. Thus, since the pulse laser beam is output only when the Q switch trigger signal is input and the Q switch element 136 is opened, the pulse laser beam can be extremely intense. In FIG. 1, this type of Q switch element is not particularly illustrated, but the Q switch pulse laser 32 also includes the same Q switch element as described above.
次に、この図6の光音響画像化装置110において表示される血管画像について、図7A~図7Dおよび8を参照して説明する。本装置110でも図1の光音響画像化装置10におけるのと基本的に同様にして、管腔の一つである血管部を本来の形状通りに表示するようにしているが、本装置110では特に、血管の動脈と静脈とを互いに識別して表示可能としている。以下、その点について詳しく説明する。 Next, blood vessel images displayed in the photoacoustic imaging apparatus 110 of FIG. 6 will be described with reference to FIGS. 7A to 7D and 8. FIG. In this apparatus 110, a blood vessel part, which is one of the lumens, is displayed in the original shape basically in the same manner as in the photoacoustic imaging apparatus 10 in FIG. In particular, arteries and veins of blood vessels can be distinguished from each other and displayed. Hereinafter, this point will be described in detail.
一例として、ヒトの動脈に多く含まれる酸素化ヘモグロビン(酸素と結合したヘモグロビン:oxy-Hb)の波長750nmにおける分子吸収係数は、波長800nmにおける分子吸収係数よりも低い。一方、静脈に多く含まれる脱酸素化ヘモグロビン(酸素と結合していないヘモグロビンdeoxy-Hb)の波長750nmにおける分子吸収係数は、波長800nmにおける分子吸収係数よりも高い。なお図9に、酸素化ヘモグロビン(oxy-Hb)と脱酸素化ヘモグロビン(deoxy-Hb)の光波長毎の分子吸収係数を示す。本実施形態ではこの性質を利用し、中心波長800nmの光を照射して得られた光音響信号に対して、中心波長750nmの光を照射して得られた光音響信号が相対的に大きいのか小さいのかを調べることで、動脈からの光音響信号と静脈からの光音響信号とを判別するようにしている。 As an example, the molecular absorption coefficient at a wavelength of 750 nm of oxygenated hemoglobin (oxy-Hb combined with oxygen) contained in a large amount of human arteries is lower than the molecular absorption coefficient at a wavelength of 800 nm. On the other hand, the molecular absorption coefficient at a wavelength of 750 nm of deoxygenated hemoglobin (hemoglobin deoxy-Hb not bound to oxygen) contained in a large amount in the vein is higher than the molecular absorption coefficient at a wavelength of 800 nm. FIG. 9 shows molecular absorption coefficients for each light wavelength of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb). In this embodiment, using this property, is the photoacoustic signal obtained by irradiating light with a central wavelength of 750 nm relatively larger than the photoacoustic signal obtained by irradiating light with a central wavelength of 800 nm? By examining whether it is small, the photoacoustic signal from the artery and the photoacoustic signal from the vein are discriminated.
本実施形態において、AD変換手段22による音響波検出信号のサンプリングは、レーザ光源ユニット113が出射する光の波長の数だけ繰り返し行われる。例えば、まずレーザユニット113から被検体に中心波長750nmのパルスレーザ光が照射されたときに得られた音響波検出信号のサンプリングがなされ、次いで、被検体に中心波長800nmのパルスレーザ光が照射されたときに得られた音響波検出信号のサンプリングがなされる。それに加えて、超音波検出信号のサンプリングも、第1の実施形態におけるのと同様にしてなされる。 In the present embodiment, sampling of the acoustic wave detection signal by the AD conversion means 22 is repeatedly performed by the number of wavelengths of light emitted from the laser light source unit 113. For example, the acoustic wave detection signal obtained when the subject is irradiated with pulse laser light having a center wavelength of 750 nm from the laser unit 113 is first sampled, and then the subject is irradiated with pulse laser light having a center wavelength of 800 nm. The acoustic wave detection signal obtained at the time of sampling is sampled. In addition, sampling of the ultrasonic detection signal is performed in the same manner as in the first embodiment.
以上のサンプリングにより得られた光音響データおよび超音波データは、共通の受信メモリ23に格納される。受信メモリ23に格納されたサンプリングデータは、ある時点までは光音響データであり、ある時点からは超音波データとなる。また特に光音響データについては、ある時点までは被検体に中心波長750nmのパルスレーザ光が照射されたときの光音響データ(以下、第1の光音響データという)であり、ある時点からは被検体に中心波長800nmのパルスレーザ光が照射されたときの超音波データ(以下、第2の光音響データという)となる。データ分離手段24は、受信メモリ23に格納された光音響データと超音波データとを分離し、光音響データを2波長データ複素数化手段115に入力し、超音波データを超音波画像再構成手段40に入力する。 The photoacoustic data and ultrasonic data obtained by the above sampling are stored in the common reception memory 23. The sampling data stored in the reception memory 23 is photoacoustic data up to a certain point, and becomes ultrasonic data from a certain point. In particular, the photoacoustic data is photoacoustic data (hereinafter referred to as first photoacoustic data) when the subject is irradiated with a pulse laser beam having a center wavelength of 750 nm until a certain point in time. This is ultrasonic data (hereinafter referred to as second photoacoustic data) when the specimen is irradiated with pulsed laser light having a central wavelength of 800 nm. The data separation unit 24 separates the photoacoustic data and the ultrasonic data stored in the reception memory 23, inputs the photoacoustic data to the two-wavelength data complexization unit 115, and converts the ultrasonic data into the ultrasonic image reconstruction unit. 40.
2波長データ複素数化手段115は、第1の光音響データと第2の光音響データのうちの何れか一方を実部、他方を虚部とした複素数データを生成する。以下では、第1の光音響データを実部とし、第2の光音響データを虚部とした複素数データが生成されるものとして説明する。 The two-wavelength data complexization unit 115 generates complex number data in which one of the first photoacoustic data and the second photoacoustic data is a real part and the other is an imaginary part. In the following description, it is assumed that complex data is generated in which the first photoacoustic data is a real part and the second photoacoustic data is an imaginary part.
光音響画像再構成手段25は、2波長データ複素数化手段115から入力された複素数データから、フーリエ変換法(FTA法)により光音響画像の再構成を行う。フーリエ変換法による画像再構成には、例えば文献 ”Photoacoustic Image Reconstruction-A Quantitative Analysis”Jonathan I.Sperl et al., SPIE-OSA, Vol.6631, 663103 等に記載されている従来公知の方法を適用することができる。光音響画像再構成手段25は、再構成画像を示すフーリエ変換後のデータを強度情報抽出手段116と2波長データ演算手段117とに入力する。 The photoacoustic image reconstruction unit 25 reconstructs a photoacoustic image from the complex number data input from the two-wavelength data complex number conversion unit 115 by a Fourier transform method (FTA method). For image reconstruction using the Fourier transform method, for example, a conventionally known method described in the literature “Photoacoustic Image Reconstruction-A Quantitative Analysis” Jonathan I. Sperl et al., SPIE-OSA, Vol. can do. The photoacoustic image reconstruction unit 25 inputs data after Fourier transform indicating the reconstructed image to the intensity information extraction unit 116 and the two-wavelength data calculation unit 117.
強度情報抽出手段116は、各波長に対応した光音響データに基づいて信号強度を示す強度情報を生成する。本実施形態において強度情報抽出手段116は、光音響画像再構成手段25から入力される再構成画像を示す複素数データから強度情報を生成する。すなわち強度情報抽出手段116は、例えば複素数データがX+iYで表わされるとき、(X+Y1/2を強度情報として抽出する。 The intensity information extraction unit 116 generates intensity information indicating the signal intensity based on the photoacoustic data corresponding to each wavelength. In the present embodiment, the intensity information extraction unit 116 generates intensity information from complex number data indicating the reconstructed image input from the photoacoustic image reconstruction unit 25. That is, the intensity information extraction unit 116 extracts (X 2 + Y 2 ) 1/2 as intensity information, for example, when complex number data is represented by X + iY.
それに次ぐ検波・対数変換手段26、血管判断手段27および血管補正手段28による処理は、図1の装置におけるのと同様にしてなされる。そこでこの場合も、光音響画像構築手段29により構築される光音響画像においては、血管部が、全周繋がった円環状や、あるいは内部が所定色で塗りつぶされた円状にして示されるようになる。そしてこの光音響画像を担持する画像データは画像合成手段44に入力され、そこで超音波断層画像を担持する画像データと合成され、合成されたデータが担持する画像が画像表示手段14に表示される。 Subsequent processing by the detection / logarithmic conversion means 26, the blood vessel determination means 27, and the blood vessel correction means 28 is performed in the same manner as in the apparatus of FIG. Therefore, in this case as well, in the photoacoustic image constructed by the photoacoustic image construction means 29, the blood vessel portion is shown as an annular shape connected around the entire circumference, or a circular shape whose interior is filled with a predetermined color. Become. The image data carrying the photoacoustic image is input to the image synthesizing unit 44, where it is synthesized with the image data carrying the ultrasonic tomographic image, and the image carried by the synthesized data is displayed on the image display unit 14. .
こうして画像表示手段14に表示される画像の例を、図7A~図7Dおよび8を参照して説明する。なお図7A、7B、7Cおよび7Dは、先に説明した図4A、4B、4Cおよび4Dとそれぞれ同じ種類の画像例を示している。本例では、図7Aの超音波断層画像において、図4Aの場合と同様に一つの組織Eと管腔F、GおよびHが示されており、管腔F、Gは共に血管部である。しかし本例では図4Bの場合と異なって、図7Bの光音響画像において、血管部Faと血管部Haの双方共、パルスレーザ光照射側から遠い側の血管壁が欠落した状態となっている。
そこで、仮に、血管補正手段28による前述の補正を行なわずに超音波断層画像データと光音響画像データとを合成したとすると、その合成データに基づいて表示される画像において管腔Hと血管部Ha、そして管腔Fと血管部Faは、図7Cに拡大図示する状態で画像化されることになる。それに対して、血管補正手段28による補正を行ってから超音波断層画像データと光音響画像データとを合成すれば、管腔Hと補正された血管部Ha′とが、また、管腔Fと補正された血管部Fa′とが図7Dに拡大図示する状態で画像化される。こうして、上記補正を行うことにより、光音響画像において血管部が本来の形状通りに表示されるようになる。
An example of the image displayed on the image display means 14 will be described with reference to FIGS. 7A to 7D and 8. FIG. 7A, 7B, 7C, and 7D show examples of images of the same type as the previously described FIGS. 4A, 4B, 4C, and 4D, respectively. In this example, in the ultrasonic tomographic image of FIG. 7A, one tissue E and lumens F, G, and H are shown as in FIG. 4A, and both the lumens F and G are blood vessel portions. However, in this example, unlike the case of FIG. 4B, in the photoacoustic image of FIG. 7B, both the blood vessel part Fa and the blood vessel part Ha are in a state where the blood vessel wall on the side far from the pulse laser light irradiation side is missing. .
Therefore, if the ultrasonic tomographic image data and the photoacoustic image data are synthesized without performing the above-described correction by the blood vessel correction means 28, the lumen H and the blood vessel portion in the image displayed based on the synthesized data. Ha and the lumen F and the blood vessel portion Fa are imaged in the state shown in an enlarged view in FIG. 7C. On the other hand, if the ultrasonic tomographic image data and the photoacoustic image data are synthesized after the correction by the blood vessel correction means 28, the lumen H and the corrected blood vessel portion Ha ′, and the lumen F and The corrected blood vessel portion Fa ′ is imaged in the state shown in an enlarged view in FIG. 7D. Thus, by performing the above correction, the blood vessel portion is displayed in the original shape in the photoacoustic image.
なおこの場合も、半分の円環状となっている血管部Ha、Faを、全周繋がった円環状の血管部Ha′、Fa′となるように補正しているが、その代わりに図8に示すように、管腔H、Fの内部をそれぞれ図中J、Kで示すように所定色で塗りつぶす補正を行って、血管であることを示すようにしてもよい。 In this case as well, the blood vessel portions Ha and Fa having a half annular shape are corrected so as to become annular blood vessel portions Ha ′ and Fa ′ connected all around, but instead, FIG. As shown, the inside of the lumens H and F may be corrected to be filled with a predetermined color as indicated by J and K in the figure, respectively, so as to indicate the blood vessel.
ここで、例えば血管部Ha′は動脈で、血管部Fa′は静脈である場合に、それらを互いに識別可能に表示する点について説明する。図6の2波長データ演算手段117は、各波長(750nmと800nm)に対応した光音響データ(第1の光音響データと第2の光音響データ)間の相対的な信号強度の大小関係を抽出する。本実施形態では、2波長データ演算手段117は、光音響画像再構成手段115で再構成された再構成画像を示すデータを入力データとし、複素数データであるこの入力データから、実部と虚部とを比較したときに、相対的に、どちらがどれ位大きいかを示す位相情報を抽出する。すなわち2波長データ演算手段117は、例えば複素数データがX+iYで表わされるとき、θ=tan-1(Y/X)を位相情報として生成する。なお、X=0の場合はθ=90°とする。実部を構成する第1の光音響データ(X)と虚部を構成する第2の光音響データ(Y)とが等しいとき、位相情報はθ=45°となる。位相情報は、相対的に第1の光音響データが大きいほどθ=0°に近づいて行き、第2の光音響データが大きいほどθ=90°に近づいて行く。 Here, for example, when the blood vessel portion Ha ′ is an artery and the blood vessel portion Fa ′ is a vein, the points are displayed so as to be distinguishable from each other. The two-wavelength data calculation means 117 in FIG. 6 shows the relative signal intensity relationship between the photoacoustic data (first photoacoustic data and second photoacoustic data) corresponding to each wavelength (750 nm and 800 nm). Extract. In the present embodiment, the two-wavelength data calculation unit 117 uses the data indicating the reconstructed image reconstructed by the photoacoustic image reconstruction unit 115 as input data, and from this input data that is complex data, the real part and the imaginary part Phase information indicating which is relatively larger is extracted. That is, the two-wavelength data calculation unit 117 generates θ = tan −1 (Y / X) as phase information when, for example, complex number data is represented by X + iY. When X = 0, θ = 90 °. When the first photoacoustic data (X) constituting the real part and the second photoacoustic data (Y) constituting the imaginary part are equal, the phase information is θ = 45 °. The phase information approaches θ = 0 ° as the first photoacoustic data is relatively large, and approaches θ = 90 ° as the second photoacoustic data is relatively large.
光音響画像構築手段29には、検波・対数変換手段26で検波・対数変換処理がなされた後に血管補正がなされた強度情報が入力されると共に、2波長データ演算手段117から位相情報が入力される。光音響画像構築手段29は、入力された位相情報と強度情報とに基づいて、光音響画像を生成する。すなわち光音響画像構築手段29は、例えば入力された強度情報に基づいて、光吸収体の分布画像における各画素の輝度(階調値)を決定する。また、光音響画像構築手段29は、例えば位相情報に基づいて、光吸収体の分布画像における各画素の色(表示色)を決定する。光音響画像構築手段29は、例えば位相0°から90°の範囲を所定の色に対応させたカラーマップを用いて、入力された位相情報に基づいて各画素の色を決定する。 The photoacoustic image construction means 29 receives the intensity information that has been subjected to the blood vessel correction after the detection / logarithmic conversion process is performed by the detection / logarithmic conversion means 26, and also receives the phase information from the two-wavelength data calculation means 117. The The photoacoustic image construction unit 29 generates a photoacoustic image based on the input phase information and intensity information. That is, the photoacoustic image construction unit 29 determines the luminance (gradation value) of each pixel in the distribution image of the light absorber based on, for example, input intensity information. Moreover, the photoacoustic image construction means 29 determines the color (display color) of each pixel in the light absorber distribution image based on, for example, phase information. The photoacoustic image construction unit 29 determines the color of each pixel based on the input phase information using, for example, a color map in which a phase range of 0 ° to 90 ° is associated with a predetermined color.
ここで、位相0°から45°の範囲は、第1の光音響データが第2の光音響データよりも大きい範囲であるので、光音響信号の発生源は、波長800nmの光に対する吸収よりも波長750nmの光に対する吸収の方が大きい脱酸素化ヘモグロビンを主に含む血液が流れている静脈であると考えられる。一方、位相45°から90°の範囲は、第2の光音響データが第1の光音響データよりも小さい範囲であるので、光音響信号の発生源は、波長800nmの光に対する吸収よりも波長750nmの光に対する吸収の方が小さい酸素化ヘモグロビンを主に含む血液が流れている動脈であると考えられる。 Here, since the range of the phase 0 ° to 45 ° is a range in which the first photoacoustic data is larger than the second photoacoustic data, the source of the photoacoustic signal is more than the absorption with respect to light having a wavelength of 800 nm. It is considered that this is a vein through which blood mainly containing deoxygenated hemoglobin has a larger absorption with respect to light having a wavelength of 750 nm. On the other hand, since the range of 45 ° to 90 ° of the phase is a range in which the second photoacoustic data is smaller than the first photoacoustic data, the source of the photoacoustic signal has a wavelength larger than the absorption with respect to light having a wavelength of 800 nm. It is considered that this is an artery through which blood mainly containing oxygenated hemoglobin flows, which absorbs less light at 750 nm.
そこで、カラーマップとして、例えば位相が0°が青色で、位相が45°に近づくに連れて無色(白色)になるように色が徐々に変化すると共に、位相90°が赤色で、位相が45°に近づくに連れて白色になるように色が徐々に変化するようなカラーマップを用いる。こうすることにより、光音響画像上で、動脈に対応した部分つまり図7Dの補正血管部Ha′や図8の補正血管部Jを赤色で表わし、静脈に対応した部分つまり図7Dの補正血管部Fa′や図8の補正血管部Kを青色で表わすことができる。なお、強度情報を用いずに、階調値は一定として、位相情報に従って動脈に対応した部分と静脈に対応した部分との色分けを行うだけでもよい。 Therefore, as a color map, for example, the phase gradually changes so that the phase is 0 ° in blue and the phase becomes colorless (white) as the phase approaches 45 °, and the phase 90 ° is red and the phase is 45. Use a color map that gradually changes its color to become white as it approaches °. By doing so, the portion corresponding to the artery, that is, the corrected blood vessel portion Ha ′ in FIG. 7D and the corrected blood vessel portion J in FIG. 8 are represented in red on the photoacoustic image, and the portion corresponding to the vein, that is, the corrected blood vessel portion in FIG. Fa ′ and the corrected blood vessel K in FIG. 8 can be represented in blue. Instead of using the intensity information, the gradation value may be constant, and the color corresponding to the portion corresponding to the artery and the portion corresponding to the vein may be performed according to the phase information.
また、本実施形態では、2つの波長の光を各々被検体に照射して得られた第1の光音響データと、第2の光音響データとの何れか一方を実部、他方を虚部とした複素数データを生成し、その複素数データからフーリエ変換法により再構成画像を生成している。このようにする場合、再構成処理は一度で済むため、第1の光音響データと第2の光音響データとを別々に再構成処理する場合と比べて、再構成を効率的に行うことができる。 In the present embodiment, one of the first photoacoustic data and the second photoacoustic data obtained by irradiating the subject with light of two wavelengths, respectively, is the real part, and the other is the imaginary part. Complex number data is generated, and a reconstructed image is generated from the complex number data by Fourier transform. In such a case, since the reconstruction process only needs to be performed once, the reconstruction can be performed more efficiently than when the first photoacoustic data and the second photoacoustic data are separately reconstructed. it can.
なお、以上の説明から明らかな通り本実施形態においては、2波長データ演算手段117および光音響画像構築手段29が、複数の波長のパルス光に対する吸収特性が互いに異なる被検体の複数の部分を識別して、互いに識別可能に表示させる手段を構成している。 As is apparent from the above description, in the present embodiment, the two-wavelength data calculation unit 117 and the photoacoustic image construction unit 29 identify a plurality of portions of the subject having different absorption characteristics with respect to pulsed light having a plurality of wavelengths. Thus, a means for displaying each other in a distinguishable manner is configured.
また、本実施形態においては、2つの波長のパルスレーザ光を交互に高速切り替えながら被検体に照射して1枚の画像を生成するようにしているが、1つの波長のパルスレーザ光を被検体に照射して1枚の画像を生成した後に波長切り替えを行うことにより、別の波長のパルスレーザ光を被検体に照射して別の画像を生成することも可能である。 Further, in this embodiment, the pulse laser beam of two wavelengths is alternately switched at high speed to irradiate the subject to generate one image, but the pulse laser beam of one wavelength is generated by the subject. It is also possible to generate another image by irradiating the subject with pulsed laser light of another wavelength by performing wavelength switching after generating one image by irradiating the object.
また、2つの波長の選択については、理論上は吸収係数が互いに相違してさえいれば、どのような2波長の組合せでも可能である。ただし、動脈/静脈を明確に区別して画像化する観点からは、一方は酸素化ヘモグロビン(oxy-Hb)と脱酸素化ヘモグロビン(deoxy-Hb)の等吸収点に近い793~802nm(より好ましくは等吸収点の798nm)とし、他方は両ヘモグロビンの吸収が大きく異なる748~770nm(より好ましくは脱酸素化ヘモグロビンの吸収ピークが有る757nm)とするのが望ましい。 The two wavelengths can be selected in any combination of two wavelengths as long as the absorption coefficients are theoretically different from each other. However, from the viewpoint of clearly distinguishing and imaging arteries / veins, one is 793 to 802 nm (more preferably), which is close to the isosbestic point of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb). It is desirable that the isoabsorption point is 798 nm), and the other is 748 to 770 nm (more preferably 757 nm having an absorption peak of deoxygenated hemoglobin) in which absorption of both hemoglobins is greatly different.
以上、本発明の二つの実施形態について説明したが、本発明の光音響画像化装置および方法は上記実施形態にのみ限定されるものではなく、上記実施形態の構成から種々の修正および変更を施したものも、本発明の範囲に含まれる。 Although two embodiments of the present invention have been described above, the photoacoustic imaging apparatus and method of the present invention are not limited to the above embodiments, and various modifications and changes are made to the configuration of the above embodiments. What has been done is also included in the scope of the present invention.
例えば光音響画像においては、血管以外の管腔部分が、先に説明した血管の場合と同じ理由で一部欠落することも有り得るが、そのような血管以外の管腔部分を、超音波画像に基づいて補正するように本発明の光音響画像化装置を構成することも可能である。 For example, in a photoacoustic image, a lumen portion other than a blood vessel may be partially lost for the same reason as in the case of the blood vessel described above. However, such a lumen portion other than the blood vessel is included in the ultrasound image. It is also possible to configure the photoacoustic imaging apparatus of the present invention to correct based on this.

Claims (20)

  1.  被検体にその内部で吸収される波長のパルス光を照射し、それにより被検体から発せられた音響波を検出して光音響データを得、この光音響データに基づいて前記被検体を画像化して画像表示手段に表示する光音響画像化方法において、
     前記被検体に向けて超音波を送信し、それにより被検体で反射した反射超音波を検出して超音波データを得、
     前記光音響データが示している被検体中の特定部分を、該特定部分を示す前記超音波データに基づいて補正し、
     この補正後の光音響データによって前記被検体を画像化することを特徴とする光音響画像化方法。
    The object is irradiated with pulsed light having a wavelength that is absorbed inside the object, thereby detecting an acoustic wave emitted from the object to obtain photoacoustic data, and imaging the object based on the photoacoustic data. In the photoacoustic imaging method for displaying on the image display means,
    Transmitting ultrasonic waves toward the subject, thereby detecting reflected ultrasonic waves reflected by the subject to obtain ultrasonic data;
    Correcting a specific portion in the subject indicated by the photoacoustic data based on the ultrasonic data indicating the specific portion;
    A photoacoustic imaging method, wherein the subject is imaged by the photoacoustic data after correction.
  2.  前記特定部分が、被検体中の管腔部分であることを特徴とする請求項1記載の光音響画像化方法。 The photoacoustic imaging method according to claim 1, wherein the specific portion is a lumen portion in a subject.
  3.  前記管腔部分が血管部であることを特徴とする請求項2記載の光音響画像化方法。 3. The photoacoustic imaging method according to claim 2, wherein the lumen portion is a blood vessel portion.
  4.  前記補正が、光音響画像において欠落している管壁部分を、超音波画像における管壁部分に沿って全周繋げる補正であることを特徴とする請求項2または3記載の光音響画像化方法。 4. The photoacoustic imaging method according to claim 2, wherein the correction is correction that connects a missing tube wall portion in the photoacoustic image along the entire circumference of the tube wall portion in the ultrasonic image. 5. .
  5.  前記補正が、光音響画像において欠落している管壁部分を、光音響画像に存在している管壁部分と区別可能な態様で表示されるように生成するものであることを特徴とする請求項4記載の光音響画像化方法。 The correction is generated so that a tube wall portion missing in the photoacoustic image is displayed in a manner distinguishable from a tube wall portion existing in the photoacoustic image. Item 5. The photoacoustic imaging method according to Item 4.
  6.  前記補正が、超音波画像における管壁部分の内側に有る部分を、光音響画像において所定色で塗りつぶす補正であることを特徴とする請求項2または3記載の光音響画像化方法。 4. The photoacoustic imaging method according to claim 2, wherein the correction is correction for filling a portion inside the tube wall portion in the ultrasonic image with a predetermined color in the photoacoustic image.
  7.  前記所定色を、前記塗りつぶす補正がなされる管壁部分とは別の位置に有って正常に画像化される管壁部分とは別の色とすることを特徴とする請求項6記載の光音響画像化方法。 7. The light according to claim 6, wherein the predetermined color is a color different from a tube wall portion that is normally imaged at a position different from the tube wall portion subjected to the correction for filling. Acoustic imaging method.
  8.  前記パルス光として、互いに異なる複数の波長のパルス光を照射し、
     各波長のパルス光に対する吸収特性が互いに異なる被検体の複数の部分を識別して、互いに識別可能に表示することを特徴とする請求項1から7いずれか1項記載の光音響画像化方法。
    As the pulsed light, irradiating pulsed light having a plurality of different wavelengths,
    8. The photoacoustic imaging method according to claim 1, wherein a plurality of portions of the subject having different absorption characteristics with respect to pulsed light of each wavelength are identified and displayed so as to be distinguishable from each other.
  9.  前記複数の部分を、互いに色を変えて表示することを特徴とする請求項8記載の光音響画像化方法。 9. The photoacoustic imaging method according to claim 8, wherein the plurality of parts are displayed in different colors.
  10.  前記複数の波長が、生体の動脈および静脈における吸収特性が互いに異なる2つの波長であることを特徴とする請求項8または9記載の光音響画像化方法。 The photoacoustic imaging method according to claim 8 or 9, wherein the plurality of wavelengths are two wavelengths having different absorption characteristics in an artery and a vein of a living body.
  11.  被検体にその内部で吸収される波長のパルス光を照射し、それにより被検体から発せられた音響波を検出して光音響データを得、この光音響データに基づいて前記被検体を画像化して画像表示手段に表示する光音響画像化装置において、
     前記被検体に向けて超音波を送信し、それにより被検体で反射した反射超音波を検出して超音波データを得る超音波画像取得手段と、
     前記光音響データが示している被検体中の特定部分を、該特定部分を示す前記超音波データに基づいて補正する補正手段とを備えたことを特徴とする光音響画像化装置。
    The object is irradiated with pulsed light having a wavelength that is absorbed inside the object, thereby detecting an acoustic wave emitted from the object, obtaining photoacoustic data, and imaging the object based on the photoacoustic data. In the photoacoustic imaging device for displaying on the image display means,
    Ultrasonic image acquisition means for transmitting ultrasonic waves toward the subject, thereby detecting reflected ultrasonic waves reflected by the subject and obtaining ultrasonic data;
    A photoacoustic imaging apparatus, comprising: a correcting unit that corrects a specific portion in the subject indicated by the photoacoustic data based on the ultrasound data indicating the specific portion.
  12.  前記補正手段が、前記特定部分として被検体中の管腔部分を補正するものであることを特徴とする請求項11記載の光音響画像化装置。 12. The photoacoustic imaging apparatus according to claim 11, wherein the correction means corrects a lumen portion in a subject as the specific portion.
  13.  前記補正手段が、前記管腔部分として被検体中の血管部を補正するものであることを特徴とする請求項12記載の光音響画像化装置。 13. The photoacoustic imaging apparatus according to claim 12, wherein the correction means corrects a blood vessel portion in the subject as the lumen portion.
  14.  前記補正手段が、光音響画像において欠落している管壁部分を、超音波画像における管壁部分に沿って全周繋げる補正を行うものであることを特徴とする請求項12または13記載の光音響画像化装置。 The light according to claim 12 or 13, wherein the correction means corrects the tube wall portion missing in the photoacoustic image by connecting all the circumferences along the tube wall portion in the ultrasonic image. Acoustic imaging device.
  15.  前記補正手段が、光音響画像において欠落している管壁部分を、光音響画像に存在している管壁部分と区別可能な態様で表示されるように生成するものであることを特徴とする請求項14記載の光音響画像化装置。 The correction means generates the tube wall portion missing in the photoacoustic image so as to be displayed in a manner distinguishable from the tube wall portion existing in the photoacoustic image. The photoacoustic imaging apparatus according to claim 14.
  16.  前記補正手段が、超音波画像における管壁部分の内側に有る部分を、光音響画像において所定色で塗りつぶす補正を行うものであることを特徴とする請求項12または13記載の光音響画像化装置。 The photoacoustic imaging apparatus according to claim 12 or 13, wherein the correction means performs correction for filling a portion inside the tube wall portion in the ultrasonic image with a predetermined color in the photoacoustic image. .
  17.  前記補正手段が、前記所定色を、前記塗りつぶす補正がなされる管壁部分とは別の位置に有って正常に画像化される管壁部分とは別の色に設定するものであることを特徴とする請求項16記載の光音響画像化装置。 The correction means sets the predetermined color to a color different from a tube wall portion that is normally imaged at a position different from the tube wall portion to be corrected for filling. The photoacoustic imager according to claim 16, wherein
  18.  前記パルス光として、互いに異なる複数の波長のパルス光を照射する手段と、
     各波長のパルス光に対する吸収特性が互いに異なる被検体の複数の部分を識別して、互いに識別可能に表示させる手段とを備えたことを特徴とする請求項11から17いずれか1項記載の光音響画像化装置。
    Means for irradiating pulsed light having a plurality of different wavelengths as the pulsed light;
    The light according to any one of claims 11 to 17, further comprising means for identifying a plurality of portions of the subject having different absorption characteristics with respect to pulsed light of each wavelength and displaying them in a distinguishable manner from each other. Acoustic imaging device.
  19.  前記複数の部分を識別して互いに識別可能に表示させる手段が、それらの部分を互いに色を変えて表示させるものであることを特徴とする請求項18記載の光音響画像化装置。 19. The photoacoustic imaging apparatus according to claim 18, wherein the means for identifying the plurality of parts and displaying them in such a manner that they can be distinguished from each other displays the parts in different colors.
  20.  前記複数の波長が、生体の動脈および静脈における吸収特性が互いに異なる2つの波長であることを特徴とする請求項18または19記載の光音響画像化装置。 20. The photoacoustic imaging apparatus according to claim 18, wherein the plurality of wavelengths are two wavelengths having different absorption characteristics in an artery and a vein of a living body.
PCT/JP2012/004328 2011-07-14 2012-07-04 Photoacoustic imaging method and device WO2013008417A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011155366 2011-07-14
JP2011-155366 2011-07-14
JP2012123847A JP5694991B2 (en) 2011-07-14 2012-05-31 Photoacoustic imaging method and apparatus
JP2012-123847 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013008417A1 true WO2013008417A1 (en) 2013-01-17

Family

ID=47505727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004328 WO2013008417A1 (en) 2011-07-14 2012-07-04 Photoacoustic imaging method and device

Country Status (2)

Country Link
JP (1) JP5694991B2 (en)
WO (1) WO2013008417A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017035469A (en) * 2015-08-06 2017-02-16 キヤノン株式会社 Image processing apparatus, image processing method, and program

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289191B2 (en) 2011-10-12 2016-03-22 Seno Medical Instruments, Inc. System and method for acquiring optoacoustic data and producing parametric maps thereof
US11191435B2 (en) 2013-01-22 2021-12-07 Seno Medical Instruments, Inc. Probe with optoacoustic isolator
US10478072B2 (en) * 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
SG11201506825TA (en) * 2013-03-15 2015-09-29 Seno Medical Instr Inc Light output calibration in an optoacoustic system
JP6238539B2 (en) * 2013-03-21 2017-11-29 キヤノン株式会社 Processing apparatus, subject information acquisition apparatus, and processing method
KR102188148B1 (en) 2014-01-17 2020-12-07 삼성메디슨 주식회사 Photo-acoustic Imaging Apparatus and Display Method Thereof
EP3103396B1 (en) * 2015-06-10 2018-10-24 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH Device and method for hybrid optoacoustic tomography and ultrasonography
WO2018087984A1 (en) 2016-11-11 2018-05-17 富士フイルム株式会社 Photoacoustic image evaluation device, method, and program, and photoacoustic image generating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265477A (en) * 2002-03-20 2003-09-24 Samsung Electronics Co Ltd Noninvasive bio-component measuring device using optical acoustic spectroscopy and measuring method therefor
JP2005021380A (en) * 2003-07-02 2005-01-27 Toshiba Corp Living body information imaging apparatus
JP2010512929A (en) * 2006-12-19 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Combined photoacoustic and ultrasonic imaging system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5538856B2 (en) * 2009-12-11 2014-07-02 キヤノン株式会社 Photoacoustic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265477A (en) * 2002-03-20 2003-09-24 Samsung Electronics Co Ltd Noninvasive bio-component measuring device using optical acoustic spectroscopy and measuring method therefor
JP2005021380A (en) * 2003-07-02 2005-01-27 Toshiba Corp Living body information imaging apparatus
JP2010512929A (en) * 2006-12-19 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Combined photoacoustic and ultrasonic imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017035469A (en) * 2015-08-06 2017-02-16 キヤノン株式会社 Image processing apparatus, image processing method, and program

Also Published As

Publication number Publication date
JP2013034852A (en) 2013-02-21
JP5694991B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5694991B2 (en) Photoacoustic imaging method and apparatus
JP6010306B2 (en) Photoacoustic measuring device
JP5655021B2 (en) Photoacoustic imaging method and apparatus
WO2012114729A1 (en) Acousto-optical image generating device and method
JP5713968B2 (en) Photoacoustic image generating apparatus and acoustic wave unit
JP5662973B2 (en) Laser light source unit, control method thereof, photoacoustic image generation apparatus and method
JP5777394B2 (en) Photoacoustic imaging method and apparatus
US9380944B2 (en) Photoacoustic image generation apparatus and acoustic wave unit
US20140202247A1 (en) Laser source unit and photoacoustic image generation apparatus
JP5683383B2 (en) Photoacoustic imaging apparatus and method of operating the same
JP2012223367A (en) Photoacoustic image generation apparatus and method
WO2013080539A1 (en) Photoacoustic image generator device and photoacoustic image generator method
WO2013128921A1 (en) Image-generation device and method
JP2012231879A (en) Photoacoustic imaging method and device
JP5946230B2 (en) Photoacoustic imaging method and apparatus
JP5839688B2 (en) Photoacoustic image processing apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810662

Country of ref document: EP

Kind code of ref document: A1