WO2013128921A1 - Image-generation device and method - Google Patents

Image-generation device and method Download PDF

Info

Publication number
WO2013128921A1
WO2013128921A1 PCT/JP2013/001181 JP2013001181W WO2013128921A1 WO 2013128921 A1 WO2013128921 A1 WO 2013128921A1 JP 2013001181 W JP2013001181 W JP 2013001181W WO 2013128921 A1 WO2013128921 A1 WO 2013128921A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
signal
photoacoustic
acoustic wave
reflected acoustic
Prior art date
Application number
PCT/JP2013/001181
Other languages
French (fr)
Japanese (ja)
Inventor
辻田 和宏
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013128921A1 publication Critical patent/WO2013128921A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements

Definitions

  • the present invention relates to an image generation apparatus and method, and more particularly to an image generation apparatus and method for generating an image based on an acoustic wave detected from within a subject.
  • the present invention performs image generation by applying a sound velocity distribution generated based on a detection signal of an acoustic wave different from the generation target in an apparatus that detects both a photoacoustic wave and a reflected acoustic wave. It is an object of the present invention to provide an image generation apparatus and method that can perform the above-described process.
  • An acoustic wave detecting means for detecting a photoacoustic wave generated in the subject after being emitted to the subject, a reflected acoustic signal that is a detection signal of the reflected acoustic wave detected by the acoustic wave detecting means, and a photoacoustic A sound velocity distribution generating means for generating a sound velocity distribution of an acoustic wave traveling in the subject based on one of the photoacoustic signals, which is a wave detection signal, and the other of the reflected acoustic signal and the photoacoustic signal and the sound velocity.
  • an image generation apparatus comprising: a first image generation unit configured to generate a first image based on a distribution.
  • the sound velocity distribution generating means generates sound velocity distribution based on the photoacoustic signal
  • the first image generating means uses the reflected acoustic wave image based on the reflected acoustic signal as the first image. It may be generated.
  • the second image generating means delay-adds one of the reflected acoustic signal and the photoacoustic signal detected by the plurality of acoustic wave detector elements of the acoustic wave detecting means with a delay time based on the sound velocity distribution. By doing so, a configuration for generating the second image can be adopted.
  • the sound velocity distribution generation means delay-adds so that the luminance of the pixel after delay addition becomes maximum when one of the reflected acoustic signal and the photoacoustic signal corresponding to the pixel of interest is equal to or greater than a predetermined value. It is also possible to adjust the delay time for each element in the range of the acoustic wave detector element of the acoustic wave detecting means to generate the sound velocity distribution based on the adjusted delay time.
  • a sound speed distribution generated based on the other signal is used.
  • a sound speed distribution generated based on the reflected acoustic signal is used.
  • the reflected acoustic wave image is generated based on the reflected acoustic signal
  • the sound velocity distribution generated based on the photoacoustic signal is used.
  • image generation can be performed by applying a sound speed distribution generated based on a detection signal of an acoustic wave different from the generation target.
  • FIG. 1 is a block diagram showing an image generation apparatus according to a first embodiment of the present invention.
  • the figure which shows the time distribution of the reflected acoustic signal when the sound speed in a subject is not constant.
  • the ultrasonic unit 12 includes a reception circuit 21, an AD conversion unit 22, a reception memory 23, a data separation unit 24, a photoacoustic image generation unit 25, an ultrasonic image generation unit 26, a sound velocity distribution generation unit 27, an image synthesis unit 29, a trigger.
  • a control circuit 30, a transmission control circuit 31, and a control means 32 are included.
  • the control means 32 controls each part in the ultrasonic unit 12.
  • the receiving circuit 21 receives an acoustic wave detection signal (a photoacoustic signal or a reflected acoustic signal) detected by the probe 11.
  • the AD converter 22 samples the photoacoustic signal and the reflected acoustic signal received by the receiving circuit 21 and converts them into a digital signal.
  • the AD conversion means 22 samples the acoustic wave detection signal at a predetermined sampling period, for example, in synchronization with the AD clock signal.
  • the Q switch 42 may be turned on after the laser medium is sufficiently excited in the laser unit 13. In that case, a signal indicating that the Q switch 42 is turned on may be notified to the ultrasonic unit 12 side.
  • the light trigger signal is a concept including at least one of a flash lamp trigger signal and a Q switch trigger signal.
  • the Q switch trigger signal corresponds to the optical trigger signal.
  • the flash lamp trigger signal is used as the optical trigger signal. It may correspond. By outputting the optical trigger signal, the subject is irradiated with laser light and the photoacoustic signal is detected.
  • the sound velocity distribution generating means 27 receives the reflected acoustic signal from the data separating means 24, and generates the sound velocity distribution of the acoustic wave traveling in the subject based on the received reflected acoustic signal.
  • the method of generating the sound speed distribution is not particularly limited. For generating the sound velocity distribution, any method for estimating the sound velocity distribution based on the acoustic wave can be used.
  • the photoacoustic image generation means 25 is a first image means, and generates a photoacoustic image (first image) based on the photoacoustic signal.
  • the photoacoustic image generation unit 25 includes a photoacoustic image reconstruction unit 251, a detection / logarithm conversion unit 252, and a photoacoustic image construction unit 253.
  • the ultrasonic image generation unit 26 is a second image unit, and generates an ultrasonic image (second image) based on the reflected acoustic signal.
  • the ultrasonic image generation means (reflected acoustic wave image generation means) 26 includes an ultrasonic image reconstruction means 261, a detection / logarithm conversion means 262, and an ultrasonic image construction means 263.
  • the photoacoustic image reconstruction unit 251 adds, for example, photoacoustic signals for 64 elements with a delay time corresponding to the position of each element (each ultrasonic transducer) to generate data for one line. At this time, the photoacoustic image reconstruction means 251 delays and adds the photoacoustic signal detected by each element while correcting the delay time of each element using the sound speed distribution generated by the sound speed distribution generation means 27.
  • the detection / logarithm conversion means 252 generates an envelope of the data of each line output from the photoacoustic image reconstruction means 251 and logarithmically converts the envelope to widen the dynamic range.
  • the photoacoustic image construction unit 253 generates a photoacoustic image based on the data of each line subjected to logarithmic transformation.
  • the photoacoustic image construction unit 253 generates a photoacoustic image by converting, for example, the position in the time axis direction of the photoacoustic signal (peak portion) into the position in the depth direction in the tomographic image.
  • the ultrasonic image reconstruction unit 261 receives the reflected acoustic signal from the data separation unit 24 and reconstructs the reflected acoustic signal.
  • the ultrasonic image reconstruction unit 261 generates data of each line of an ultrasonic image (reflected acoustic image) that is a tomographic image based on the received reflected acoustic signal.
  • the reconstructed reflected acoustic signal can be regarded as an ultrasonic image.
  • the ultrasonic image reconstruction means 261 adds, for example, reflected acoustic signals for 64 elements with a delay time corresponding to the position of each element, and generates data for one line. At this time, the ultrasonic image reconstructing unit 261 delays and adds the reflected acoustic signal detected by each element while correcting the delay time of each element using the sound speed distribution generated by the sound speed distribution generating unit 27.
  • the detection / logarithm conversion means 262 generates an envelope of the data of each line output by the ultrasonic image reconstruction means 261, and logarithmically transforms the envelope to widen the dynamic range.
  • the ultrasonic image construction unit 263 generates an ultrasonic image based on the data of each line subjected to logarithmic transformation.
  • the generation of the ultrasonic image in the ultrasonic image generation unit 26 may be the same as the generation of the photoacoustic image in the photoacoustic image generation unit 25 except that the signal is a reflected acoustic signal.
  • the image synthesis unit 29 synthesizes the photoacoustic image generated by the photoacoustic image generation unit 25 and the ultrasonic image generated by the ultrasonic image generation unit 26.
  • the image composition unit 29 performs image composition by superimposing a photoacoustic image on an ultrasonic image, for example.
  • the image display unit 14 displays the image synthesized by the image synthesis unit 29 on a display monitor or the like.
  • the image display means 14 may switch and display the photoacoustic image and the ultrasonic image without performing image synthesis. Alternatively, the photoacoustic image and the ultrasonic image may be displayed side by side.
  • FIG. 2 shows an example of a data acquisition sequence.
  • mode “US” represents acquisition of reflected acoustic signals
  • mode “PA” represents acquisition of photoacoustic signals.
  • the probe 11 has 128 ultrasonic transducers arranged one-dimensionally as an acoustic wave detector element and an acoustic wave transmission element.
  • the photoacoustic signal is taken in 64 elements after irradiating the subject with light from the laser unit 13. That is, data for a total of 128 elements is acquired in two steps. For example, a photoacoustic signal detected by an ultrasonic transducer having an element number of 1 to 64 elements after the first laser emission is obtained, and an ultrasonic transducer having an element number of 65 to 128 elements is acquired after the second laser emission. The detected photoacoustic signal is acquired.
  • the reflected acoustic signal after transmitting ultrasonic waves from the 64-element ultrasonic transducer, the reflected acoustic signal is acquired by the 64-element ultrasonic transducer. It should be noted that ultrasonic waves are transmitted and received with fewer elements than 64 elements at the ends of the ultrasonic transducers arranged one-dimensionally. In the acquisition of the reflected acoustic signal, the reflected acoustic signal is acquired by the line by line while shifting the range (opening position) of the ultrasonic transducer that transmits and receives the ultrasonic wave one element at a time.
  • the apparatus starts operating in the US mode, shifting the opening position from line 1 to line 31 one element at a time (since line 1 to line 31 is an end, in fact one element at a time ) Transmit and receive ultrasonic waves and obtain reflected acoustic signals.
  • the mode is changed to the PA mode, and the subject is irradiated with the laser beam from the laser unit 13, and the photoacoustic signal is detected by 64 elements corresponding to the first area.
  • ultrasonic waves are transmitted and received while shifting the opening position from the line 32 to the line 95 one element at a time, and a reflected acoustic signal is acquired.
  • the PA mode is entered and the subject is irradiated with the laser light from the laser unit 13, and a photoacoustic signal is acquired with 64 elements corresponding to the second area.
  • transmitting and receiving ultrasonic waves while shifting the opening position from line 96 to line 128 one element at a time (since line 95 to line 128 is an end, the opening element is actually narrowed one element at a time) To obtain a reflected acoustic signal.
  • FIG. 3 shows the reflected acoustic signal detected by the aperture element corresponding to each line in the US mode of FIG. 2, and FIG. 4 shows the ultrasonic image after reconstruction.
  • the vertical axis indicates the elapsed time from ultrasonic transmission.
  • Data of each line from line 1 to line 128 is generated by delay-adding (phase matching addition) the reflected acoustic signals of 64 elements in each line (however, the opening elements are fewer than 64 elements at the end). 1 can be generated.
  • FIG. 5 shows a photoacoustic signal detected by an aperture element corresponding to each area of the PA mode in FIG. 2, and FIG. 6 shows a reconstructed photoacoustic signal (photoacoustic image).
  • the vertical axis indicates the elapsed time from the irradiation of the laser beam on the subject.
  • the photoacoustic image shown in FIG. 6 can be generated by reconstructing the photoacoustic signals for a total of 128 elements in the two areas.
  • the ultrasonic wave is a line by line and the photoacoustic signal is divided into two areas to detect the photoacoustic signal, but the ultrasonic wave is also transmitted and received in each of the two areas.
  • the reflected acoustic signal may be detected.
  • the object is irradiated with light and a photoacoustic signal is detected by the ultrasonic transducer of element number 1-64 corresponding to area 1, and then the ultrasonic transducer of element number 1-64 is not focused.
  • An ultrasonic wave may be transmitted to the subject to detect a reflected acoustic signal.
  • the acoustic wave detected by the probe 11 changes from a photoacoustic wave to a reflected acoustic wave. Since the AD conversion means 22 continues sampling, the photoacoustic signal and the reflected acoustic signal can be sampled continuously. In this case, the time from the start of detection of the photoacoustic wave to the end of detection of the reflected acoustic wave can be shortened as compared to the case of sampling separately, and when both images are superimposed and displayed, A positional shift between images can be suppressed.
  • a resample means for resampling the reflected acoustic signal to 1 ⁇ 2 may be provided.
  • the 1 ⁇ 2 resampling unit compresses the reflected acoustic signal to 1 ⁇ 2 in the time axis direction, for example.
  • the reason for resampling is that if the photoacoustic signal and the reflected acoustic signal are generated at the same position in the depth direction in the subject, in the case of the reflected acoustic signal, the ultrasonic wave transmitted from the probe 11 reaches that position.
  • FIG. 7 shows the ultrasonic transducer of the probe and the light absorber in the subject.
  • the horizontal axis direction represents the arrangement direction of the ultrasonic transducers arranged one-dimensionally
  • the vertical axis represents the depth direction of the subject.
  • a region indicated by diagonal lines represents an aperture element when a reflected acoustic signal is detected.
  • a reflector 45 exists immediately below the aperture element.
  • FIG. 8 shows the time distribution of the reflected acoustic signal detected by the aperture element.
  • the vertical axis represents the elapsed time from ultrasonic transmission.
  • the detection time of the reflected acoustic signal from the reflector 45 (FIG. 7) detected by each element in the opening is the position of the reflector 45 in the opening and each ultrasonic transducer. It changes according to the positional relationship.
  • FIG. 9 shows the reconstructed data for one line. By delay-adding the reflected acoustic signals for 64 elements shown in FIG. 8, data for one line of the ultrasonic image in which the reflected acoustic signal converges to one point is obtained. By performing a series of processes on each line, an ultrasonic image of one frame can be generated.
  • the sound velocity distribution generation means 27 stores the phase data (phase distribution) in the pixel of interest in a storage means such as a memory (step A5).
  • the sound velocity distribution generation means 27 stores, for example, information on the delay time given to each aperture element when the luminance value is maximized in the storage means as phase data in the pixel of interest.
  • sound speed data in a direction from the target pixel toward each element may be stored as phase data.
  • function parameters obtained by approximating a delay time given to each element or sound speed data in a direction toward each element by a predetermined function for example, a function of a quadratic function or more
  • a predetermined function for example, a function of a quadratic function or more
  • the laser beam emitted from the laser unit 13 is irradiated to the subject.
  • a photoacoustic signal is generated by the irradiated pulsed laser beam.
  • the probe 11 detects a photoacoustic signal generated in the subject (step B4).
  • the photoacoustic signal detected by the probe is input to the AD conversion means 22 via the receiving circuit 21.
  • the AD conversion means 22 samples the photoacoustic signal, converts it into digital data, and stores it in the reception memory 23. Note that either the reflected acoustic signal or the photoacoustic signal may be detected first. Further, for example, the reflected acoustic signal and the photoacoustic signal may be detected alternately according to the sequence shown in FIG.
  • the photoacoustic image generation means 25 generates a photoacoustic image based on the photoacoustic signal received from the data separation means 24 (step B6). At that time, the photoacoustic image generation means 25 delays and adds the photoacoustic signals of the respective elements with a delay time based on the sound speed distribution generated in step B5. By performing reconstruction in consideration of the difference in sound speed according to the position inside the subject, even if the sound speed distribution is not uniform, the photoacoustic signal emitted from one photoacoustic wave source is displayed on the photoacoustic image. It can be converged to one point.
  • phase data is obtained at more points, and the sound speed distribution is more accurately compared with the case where the sound speed distribution is obtained based on the photoacoustic signal.
  • the image quality of the photoacoustic image can be improved.
  • the configuration of the image generation apparatus in this embodiment is the same as that shown in FIG.
  • a photoacoustic signal is used instead of a reflected acoustic signal for generating the sound velocity distribution.
  • Other points may be the same as in the first embodiment.
  • the ultrasonic image corresponds to the first image
  • the photoacoustic image corresponds to the second image.
  • the ultrasonic image generating means corresponds to the first image generating means
  • the photoacoustic image generating means corresponds to the second image generating means.
  • the sound speed distribution generation means 27 outputs, for example, a sound speed correction table based on the generated sound speed distribution to the photoacoustic image generation means 25 and the ultrasonic image generation means 26.
  • the photoacoustic image reconstruction means 251 of the photoacoustic image generation means 25 delays and adds the photoacoustic signals detected by the respective elements with a delay time based on the sound velocity distribution generated based on the photoacoustic signals.
  • the ultrasonic image reconstruction means 261 of the ultrasonic image generation means 26 is a delay time based on the sound velocity distribution generated based on the photoacoustic signal, and delay-adds the reflected acoustic signal detected by each element with the delay time. To do.

Abstract

[Problem] To apply a sound-speed distribution generated on the basis of a detection signal of an acoustic wave differing from a generation subject, and generate an image, using a device for detecting both a photoacoustic wave and a reflected acoustic wave. [Solution] A probe (11) detects a reflected acoustic signal in a transmitted acoustic wave, and a photoacoustic signal produced inside the body of a subject by photoirradiating the subject. A sound-speed-distribution generation means (27) generates a sound-speed distribution of the interior of the body of the subject on the basis of the reflected acoustic signal. A photoacoustic-image generation means (25) generates a photoacoustic image on the basis of the photoacoustic signal and the sound-speed distribution.

Description

画像生成装置及び方法Image generating apparatus and method
 本発明は、画像生成装置及び方法に関し、更に詳しくは、被検体内から検出された音響波に基づいて画像を生成する画像生成装置及び方法に関する。 The present invention relates to an image generation apparatus and method, and more particularly to an image generation apparatus and method for generating an image based on an acoustic wave detected from within a subject.
 生体内部の状態を非侵襲で検査できる画像検査法の一種として、超音波検査法が知られている。超音波検査では、超音波の送信及び受信が可能な超音波探触子を用いる。超音波探触子から被検体(生体)に超音波を送信させると、その超音波は生体内部を進んでいき、組織界面で反射する。超音波探触子でその反射音波を受信し、反射超音波が超音波探触子に戻ってくるまでの時間に基づいて距離を計算することで、内部の様子を画像化することができる。 An ultrasonic inspection method is known as a kind of image inspection method capable of non-invasively examining the state inside a living body. In the ultrasonic inspection, an ultrasonic probe capable of transmitting and receiving ultrasonic waves is used. When ultrasonic waves are transmitted from the ultrasonic probe to the subject (living body), the ultrasonic waves travel inside the living body and are reflected at the tissue interface. By receiving the reflected sound wave with the ultrasonic probe and calculating the distance based on the time until the reflected ultrasonic wave returns to the ultrasonic probe, the internal state can be imaged.
 また、光音響効果を利用して生体の内部を画像化する光音響イメージングが知られている。一般に光音響イメージングでは、パルスレーザ光を生体内に照射する。生体内部では、生体組織がパルスレーザ光のエネルギーを吸収し、そのエネルギーによる断熱膨張により超音波(光音響信号)が発生する。この光音響信号を超音波プローブなどで検出し、検出信号に基づいて光音響画像を構成することで、光音響信号に基づく生体内の可視化が可能である。 Also, photoacoustic imaging is known in which the inside of a living body is imaged using the photoacoustic effect. In general, in photoacoustic imaging, a living body is irradiated with pulsed laser light. Inside the living body, the living tissue absorbs the energy of the pulsed laser light, and ultrasonic waves (photoacoustic signals) are generated by adiabatic expansion due to the energy. By detecting this photoacoustic signal with an ultrasonic probe or the like and constructing a photoacoustic image based on the detection signal, in-vivo visualization based on the photoacoustic signal is possible.
 通常、超音波画像や光音響画像の生成では、被検体内を進行する音響波の音速が一定であると仮定して画像再構成を行う。しかしながら、音速には個体差があり、また、被検体内部で音速が一様であるとは限らない。画像再構成時に用いた音速と、実際の被検体内の音速とにずれが生じると、生成された画像の解像度が劣化するなどの問題が生じる。この問題に対し、特許文献1には、音響波の検出信号に基づいて被検体内の音速分布を測定し、それを用いて画像生成を行うことが記載されている。 Usually, in the generation of an ultrasonic image and a photoacoustic image, image reconstruction is performed on the assumption that the sound velocity of the acoustic wave traveling in the subject is constant. However, there are individual differences in the sound speed, and the sound speed is not always uniform within the subject. If a difference occurs between the sound speed used at the time of image reconstruction and the actual sound speed in the subject, there arises a problem that the resolution of the generated image is deteriorated. To deal with this problem, Patent Document 1 describes that a sound velocity distribution in a subject is measured based on an acoustic wave detection signal, and an image is generated using the measured sound velocity distribution.
特開2011-120765号公報JP 2011-120765 A
 特許文献1には、光源から被検体に強度変調光を照射することで生じた音響波(光音響波)に基づいて、音速の分布を求めることが記載されている。しかしながら、光音響信号は通常被検体内の限られた場所から発生し、多数の光吸収体が画像全体に分布していないような場合には、音速分布を高い精度で求めることができない。一方、送信された超音波に対する反射超音波に基づいて音速分布を求めた場合には、一般に、超音波画像の方が光音響画像よりも輝度が高い点(信号発生源)が多いため、音速分布を高い精度で求めることができると考えられる。しかし、その場合、多くの点を処理しなければならないため、処理に時間がかかるという問題がある。従来、光音響画像の生成では光音響波に基づいて音速分布を生成し、超音波画像の生成では反射超音波に基づいて音速分布を生成しており、それらを相互に組み合わせることは考慮されていなかった。 Patent Document 1 describes that the distribution of sound speed is obtained based on an acoustic wave (photoacoustic wave) generated by irradiating a subject with intensity-modulated light from a light source. However, the photoacoustic signal is usually generated from a limited location in the subject, and when a large number of light absorbers are not distributed over the entire image, the sound velocity distribution cannot be obtained with high accuracy. On the other hand, when the sound speed distribution is obtained based on the reflected ultrasonic wave with respect to the transmitted ultrasonic wave, generally, the ultrasonic image has more points (signal generation sources) that have higher luminance than the photoacoustic image. It is considered that the distribution can be obtained with high accuracy. However, in that case, since many points must be processed, there is a problem that processing takes time. Conventionally, in the generation of a photoacoustic image, a sound velocity distribution is generated based on a photoacoustic wave, and in the generation of an ultrasonic image, a sound velocity distribution is generated based on a reflected ultrasonic wave, and it is considered to combine them with each other. There wasn't.
 本発明は、上記に鑑み、光音響波と反射音響波との双方を検出する装置において、生成対象とは異なる音響波の検出信号に基づいて生成された音速分布を適用して画像生成を行うことができる画像生成装置及び方法を提供することを目的とする。 In view of the above, the present invention performs image generation by applying a sound velocity distribution generated based on a detection signal of an acoustic wave different from the generation target in an apparatus that detects both a photoacoustic wave and a reflected acoustic wave. It is an object of the present invention to provide an image generation apparatus and method that can perform the above-described process.
 上記目的を達成するために、本発明は、光源と、被検体に音響波を送信する音響波送信手段と、音響波送信手段から送信された音響波に対する反射音響波、及び、光源からの光が被検体に出射された後に被検体内で生じた光音響波を検出する音響波検出手段と、音響波検出手段で検出された反射音響波の検出信号である反射音響信号、及び、光音響波の検出信号である光音響信号のうちの一方に基づいて、被検体内を進行する音響波の音速分布を生成する音速分布生成手段と、反射音響信号及び光音響信号のうちの他方と音速分布とに基づいて第1の画像を生成する第1の画像生成手段とを備えたことを特徴とする画像生成装置を提供する。 In order to achieve the above object, the present invention provides a light source, an acoustic wave transmitting means for transmitting an acoustic wave to a subject, a reflected acoustic wave for the acoustic wave transmitted from the acoustic wave transmitting means, and light from the light source. An acoustic wave detecting means for detecting a photoacoustic wave generated in the subject after being emitted to the subject, a reflected acoustic signal that is a detection signal of the reflected acoustic wave detected by the acoustic wave detecting means, and a photoacoustic A sound velocity distribution generating means for generating a sound velocity distribution of an acoustic wave traveling in the subject based on one of the photoacoustic signals, which is a wave detection signal, and the other of the reflected acoustic signal and the photoacoustic signal and the sound velocity. There is provided an image generation apparatus comprising: a first image generation unit configured to generate a first image based on a distribution.
 本発明では、第1の画像生成手段が、音響波検出手段の複数の音響波検出器素子で検出された反射音響信号及び光音響信号のうちの他方を、音速分布に基づく遅延時間で遅延加算することで第1の画像を生成する構成を採用できる。 In the present invention, the first image generation unit delay-adds the other one of the reflected acoustic signal and the photoacoustic signal detected by the plurality of acoustic wave detector elements of the acoustic wave detecting unit with a delay time based on the sound velocity distribution. By doing so, it is possible to adopt a configuration for generating the first image.
 音速分布生成手段を、反射音響信号に基づいて音速分布を生成するものとし、第1の画像生成手段を、光音響信号に基づく光音響画像を第1の画像として生成するものとしてもよい。 The sound velocity distribution generating means may generate a sound velocity distribution based on the reflected acoustic signal, and the first image generating means may generate a photoacoustic image based on the photoacoustic signal as the first image.
 光源が、相互に異なる複数の波長の光を出射し、第1の画像生成手段が、被検体に出射された複数の波長の光に対して音響波検出手段で検出された、複数の波長のそれぞれに対応した光音響信号間の相対的な信号強度の大小関係を抽出する2波長データ演算手段と、複数の波長のそれぞれに対応した光音響信号に基づいて信号強度を示す強度情報を生成する強度情報抽出手段とを含み、光音響画像の各画素の階調値を強度情報に基づいて決定し、かつ、各画素の表示色を相対的な信号強度の大小関係に基づいて決定する構成としてもよい。 The light source emits light of a plurality of wavelengths different from each other, and the first image generation unit detects a plurality of wavelengths of the plurality of wavelengths detected by the acoustic wave detection unit for the light of the plurality of wavelengths emitted to the subject. Two-wavelength data calculation means for extracting the relative magnitude of the relative signal intensity between the corresponding photoacoustic signals, and intensity information indicating the signal intensity is generated based on the photoacoustic signals corresponding to each of the plurality of wavelengths. An intensity information extracting means, and determining the gradation value of each pixel of the photoacoustic image based on the intensity information, and determining the display color of each pixel based on the relative relationship of the signal intensity Also good.
 上記したものに代えて、音速分布生成手段を、光音響信号に基づいて音速分布を生成するものとし、第1の画像生成手段を、反射音響信号に基づく反射音響波画像を第1の画像として生成するものとしてもよい。 Instead of the above, the sound velocity distribution generating means generates sound velocity distribution based on the photoacoustic signal, and the first image generating means uses the reflected acoustic wave image based on the reflected acoustic signal as the first image. It may be generated.
 反射音響信号及び光音響信号のうちの一方と音速分布とに基づいて第2の画像を生成する第2の画像生成手段を更に備えていてもよい。 A second image generation means for generating a second image based on one of the reflected acoustic signal and the photoacoustic signal and the sound velocity distribution may be further provided.
 本発明では、第2の画像生成手段が、音響波検出手段の複数の音響波検出器素子で検出された反射音響信号及び光音響信号のうちの一方を、音速分布に基づく遅延時間で遅延加算することで第2の画像を生成する構成を採用できる。 In the present invention, the second image generating means delay-adds one of the reflected acoustic signal and the photoacoustic signal detected by the plurality of acoustic wave detector elements of the acoustic wave detecting means with a delay time based on the sound velocity distribution. By doing so, a configuration for generating the second image can be adopted.
 第1の画像と第2の画像とを合成する画像合成手段を更に備えていてもよい。 An image composition means for synthesizing the first image and the second image may be further provided.
 音速分布生成手段が、着目画素に対応する、反射音響信号及び光音響信号のうちの一方の信号値が所定の値以上のとき、遅延加算後の画素の輝度が最大となるように、遅延加算する音響波検出手段の音響波検出器素子の範囲の各素子に対する遅延時間を調整し、該調整した遅延時間に基づいて音速分布を生成するようにしてもよい。 The sound velocity distribution generation means delay-adds so that the luminance of the pixel after delay addition becomes maximum when one of the reflected acoustic signal and the photoacoustic signal corresponding to the pixel of interest is equal to or greater than a predetermined value. It is also possible to adjust the delay time for each element in the range of the acoustic wave detector element of the acoustic wave detecting means to generate the sound velocity distribution based on the adjusted delay time.
 本発明は、また、被検体に向けて光が出射された後に、被検体から光音響波を検出するステップと、被検体に音響波を送信するステップと、送信された音響波に対する反射音響波を検出するステップと、光音響波及び反射音響波のうちの一方に基づいて、被検体内を進行する音響波の音速分布を求めるステップと、光音響波及び反射音響波のうちの他方と音速分布とに基づいて、第1の画像を生成するステップとを有することを特徴とする画像生成方法を提供する。 The present invention also includes a step of detecting a photoacoustic wave from the subject after light is emitted toward the subject, a step of transmitting the acoustic wave to the subject, and a reflected acoustic wave with respect to the transmitted acoustic wave. Detecting the sound velocity distribution of the acoustic wave traveling in the subject based on one of the photoacoustic wave and the reflected acoustic wave, and the sound velocity of the other of the photoacoustic wave and the reflected acoustic wave. And a step of generating a first image based on the distribution.
 本発明の画像生成装置及び方法では、光音響信号と反射音響信号のうちの一方に基づいて画像を生成する際に、他方の信号に基づいて生成された音速分布を用いる。例えば光音響信号に基づく光音響画像生成の際に、反射音響信号に基づいて生成された音速分布を用いる。また、反射音響信号に基づく反射音響波画像の生成に際して、光音響信号に基づいて生成された音速分布を用いる。このように、本発明では、生成対象とは異なる音響波の検出信号に基づいて生成された音速分布を適用して、画像生成を行うことができる。 In the image generation apparatus and method of the present invention, when an image is generated based on one of a photoacoustic signal and a reflected acoustic signal, a sound speed distribution generated based on the other signal is used. For example, when generating a photoacoustic image based on a photoacoustic signal, a sound speed distribution generated based on the reflected acoustic signal is used. In addition, when the reflected acoustic wave image is generated based on the reflected acoustic signal, the sound velocity distribution generated based on the photoacoustic signal is used. As described above, in the present invention, image generation can be performed by applying a sound speed distribution generated based on a detection signal of an acoustic wave different from the generation target.
本発明の第1実施形態の画像生成装置を示すブロック図。1 is a block diagram showing an image generation apparatus according to a first embodiment of the present invention. データ取得シーケンス例を示す図。The figure which shows the example of a data acquisition sequence. USモードの各ラインに対応する開口素子で検出された反射音響信号を示す図。The figure which shows the reflected acoustic signal detected with the aperture element corresponding to each line of US mode. 再構成後の超音波画像を示す図。The figure which shows the ultrasonic image after a reconstruction. PAモードの各エリアに対応する開口素子で検出された光音響信号を示す図。The figure which shows the photoacoustic signal detected with the aperture element corresponding to each area of PA mode. 再構成後の光音響信号を示す図。The figure which shows the photoacoustic signal after a reconstruction. プローブの超音波振動子と被検体内の光吸収体とを示す図。The figure which shows the ultrasonic transducer | vibrator of a probe, and the light absorber in a subject. 開口素子で検出された反射音響信号の時間分布に示す図。The figure shown in the time distribution of the reflected acoustic signal detected with the aperture element. 再構成された1ライン分のデータを示す図。The figure which shows the data for 1 line reconfigure | reconstructed. 被検体内の音速が一定ではないときの反射音響信号の時間分布を示す図。The figure which shows the time distribution of the reflected acoustic signal when the sound speed in a subject is not constant. 音速分布を求める際の動作手順を示すフローチャート。The flowchart which shows the operation | movement procedure at the time of calculating | requiring sound speed distribution. 光音響画像処理装置の動作手順を示すフローチャート。The flowchart which shows the operation | movement procedure of a photoacoustic image processing apparatus. 複数の波長の光を被検体に照射する場合の光音響画像生成手段の構成例を示すブロック図。The block diagram which shows the structural example of the photoacoustic image generation means in the case of irradiating the subject with the light of a some wavelength.
 以下、図面を参照し、本発明の実施の形態を詳細に説明する。図1は、本発明の第1実施形態の画像生成装置を示す。画像生成装置(光音響画像生成装置)10は、超音波探触子(プローブ)11、超音波ユニット12、及び光源(レーザユニット)13を備える。光音響画像生成装置10は、超音波画像と光音響画像との双方を生成可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an image generation apparatus according to a first embodiment of the present invention. The image generation apparatus (photoacoustic image generation apparatus) 10 includes an ultrasonic probe (probe) 11, an ultrasonic unit 12, and a light source (laser unit) 13. The photoacoustic image generation apparatus 10 can generate both an ultrasonic image and a photoacoustic image.
 レーザユニット13は、光源であり、被検体に照射する光(レーザ光)を生成する。レーザ光の波長は、観察対象物に応じて適宜設定すればよい。レーザユニット13は、例えばヘモグロビンの吸収が大きい波長、具体的には750nmや800nmの波長の光を出射する。レーザユニット13が出射するレーザ光は、例えば光ファイバなどの導光手段を用いてプローブ11まで導光され、プローブ11から被検体に照射される。あるいは、プローブ11以外の場所から光照射を行うこととしてもよい。 The laser unit 13 is a light source and generates light (laser light) to be irradiated onto the subject. What is necessary is just to set the wavelength of a laser beam suitably according to an observation target object. For example, the laser unit 13 emits light having a wavelength with a large absorption of hemoglobin, specifically, light having a wavelength of 750 nm or 800 nm. Laser light emitted from the laser unit 13 is guided to the probe 11 using light guide means such as an optical fiber, and is irradiated from the probe 11 to the subject. Alternatively, light irradiation may be performed from a place other than the probe 11.
 プローブ11は、被検体に対して音響波(超音波)を出力(送信)する音響波送信手段と、被検体内からの音響波(超音波)を検出する音響波検出手段とを有する。音響波検出手段の音響波検出素子は、音響波送信手段の音響波送信素子を兼ねていてもよい。例えば1つの超音波振動子(素子)を、超音波の送信と検出との双方に用いてもよい。プローブ11は、例えば一次元的に配列された複数の超音波振動子を有しており、それら複数の超音波振動子から超音波を出力し、出力された超音波に対する反射音響波(以下、反射音響信号とも呼ぶ)を複数の超音波振動子により検出する。また、プローブ11は、被検体内の測定対象物がレーザユニット13からの光を吸収することで生じた光音響波(以下、光音響信号とも呼ぶ)を複数の超音波振動子により検出する。なお、1つのプローブ11が超音波送信手段と超音波検出手段との双方を有している必要はなく、超音波送信手段と超音波検出手段とを分けて、超音波の送信と超音波の受信とを別の場所で行うこととしてもよい。 The probe 11 includes an acoustic wave transmitting unit that outputs (transmits) an acoustic wave (ultrasonic wave) to the subject, and an acoustic wave detecting unit that detects an acoustic wave (ultrasonic wave) from within the subject. The acoustic wave detecting element of the acoustic wave detecting means may also serve as the acoustic wave transmitting element of the acoustic wave transmitting means. For example, one ultrasonic transducer (element) may be used for both transmission and detection of ultrasonic waves. The probe 11 has, for example, a plurality of ultrasonic transducers arranged in a one-dimensional manner, outputs ultrasonic waves from the plurality of ultrasonic transducers, and reflects reflected acoustic waves (hereinafter referred to as “acoustic waves”) to the output ultrasonic waves. Are also detected by a plurality of ultrasonic transducers. In addition, the probe 11 detects a photoacoustic wave (hereinafter also referred to as a photoacoustic signal) generated by the measurement object in the subject absorbing light from the laser unit 13 by using a plurality of ultrasonic transducers. Note that it is not necessary for one probe 11 to have both the ultrasonic transmission means and the ultrasonic detection means. The ultrasonic transmission means and the ultrasonic detection means are separated to transmit ultrasonic waves and ultrasonic waves. Reception may be performed at a different location.
 超音波ユニット12は、受信回路21、AD変換手段22、受信メモリ23、データ分離手段24、光音響画像生成手段25、超音波画像生成手段26、音速分布生成手段27、画像合成手段29、トリガ制御回路30、送信制御回路31、及び制御手段32を有する。制御手段32は、超音波ユニット12内の各部を制御する。受信回路21は、プローブ11が検出した音響波の検出信号(光音響信号又は反射音響信号)を受信する。AD変換手段22は、受信回路21が受信した光音響信号及び反射音響信号をサンプリングしてデジタル信号に変換する。AD変換手段22は、例えばADクロック信号に同期して、所定のサンプリング周期で音響波の検出信号をサンプリングする。 The ultrasonic unit 12 includes a reception circuit 21, an AD conversion unit 22, a reception memory 23, a data separation unit 24, a photoacoustic image generation unit 25, an ultrasonic image generation unit 26, a sound velocity distribution generation unit 27, an image synthesis unit 29, a trigger. A control circuit 30, a transmission control circuit 31, and a control means 32 are included. The control means 32 controls each part in the ultrasonic unit 12. The receiving circuit 21 receives an acoustic wave detection signal (a photoacoustic signal or a reflected acoustic signal) detected by the probe 11. The AD converter 22 samples the photoacoustic signal and the reflected acoustic signal received by the receiving circuit 21 and converts them into a digital signal. The AD conversion means 22 samples the acoustic wave detection signal at a predetermined sampling period, for example, in synchronization with the AD clock signal.
 トリガ制御回路30は、レーザユニット13に対して光出射を指示する光トリガ信号を出力する。レーザユニット13は、図示しないYAGやチタン-サファイアなどのレーザ媒質を励起するフラッシュランプ41と、レーザ発振を制御するQスイッチ42とを含む。レーザユニット13は、トリガ制御回路30がフラッシュランプトリガ信号を出力すると、フラッシュランプ41を点灯し、レーザ媒質を励起する。トリガ制御回路30は、例えばフラッシュランプ41がレーザ媒質を十分に励起させると、Qスイッチトリガ信号を出力する。Qスイッチ42は、Qスイッチトリガ信号を受けるとオンし、レーザユニット13からレーザ光を出射させる。フラッシュランプ41の点灯からレーザ媒質が十分な励起状態となるまでに要する時間は、レーザ媒質の特性などから見積もることができる。 The trigger control circuit 30 outputs a light trigger signal that instructs the laser unit 13 to emit light. The laser unit 13 includes a flash lamp 41 that excites a laser medium (not shown) such as YAG or titanium-sapphire, and a Q switch 42 that controls laser oscillation. When the trigger control circuit 30 outputs a flash lamp trigger signal, the laser unit 13 turns on the flash lamp 41 and excites the laser medium. For example, when the flash lamp 41 sufficiently excites the laser medium, the trigger control circuit 30 outputs a Q switch trigger signal. The Q switch 42 is turned on when a Q switch trigger signal is received, and emits laser light from the laser unit 13. The time required from when the flash lamp 41 is turned on until the laser medium is sufficiently excited can be estimated from the characteristics of the laser medium.
 なお、トリガ制御回路30からQスイッチを制御するのに代えて、レーザユニット13内において、レーザ媒質を十分に励起させた後にQスイッチ42をオンにしてもよい。その場合は、Qスイッチ42をオンにした旨を示す信号を超音波ユニット12側に通知してもよい。ここで、光トリガ信号とは、フラッシュランプトリガ信号とQスイッチトリガ信号の少なくとも一方を含む概念である。トリガ制御回路30からQスイッチトリガ信号を出力する場合はQスイッチトリガ信号が光トリガ信号に対応し、レーザユニット13にてQスイッチトリガのタイミングを生成する場合はフラッシュランプトリガ信号が光トリガ信号に対応していてもよい。光トリガ信号が出力されることで、被検体に対するレーザ光の照射及び光音響信号の検出が行われる。 In addition, instead of controlling the Q switch from the trigger control circuit 30, the Q switch 42 may be turned on after the laser medium is sufficiently excited in the laser unit 13. In that case, a signal indicating that the Q switch 42 is turned on may be notified to the ultrasonic unit 12 side. Here, the light trigger signal is a concept including at least one of a flash lamp trigger signal and a Q switch trigger signal. When outputting the Q switch trigger signal from the trigger control circuit 30, the Q switch trigger signal corresponds to the optical trigger signal. When the laser unit 13 generates the timing of the Q switch trigger, the flash lamp trigger signal is used as the optical trigger signal. It may correspond. By outputting the optical trigger signal, the subject is irradiated with laser light and the photoacoustic signal is detected.
 また、トリガ制御回路30は、送信制御回路31に、超音波送信を指示する超音波送信トリガ信号を出力する。送信制御回路31は、超音波送信トリガ信号を受けると、プローブ11から超音波を送信させる。超音波送信トリガ信号が出力されることで、被検体に対する超音波の送信及び反射音響信号の検出が行われる。 Further, the trigger control circuit 30 outputs an ultrasonic transmission trigger signal that instructs ultrasonic transmission to the transmission control circuit 31. When receiving the ultrasonic transmission trigger signal, the transmission control circuit 31 transmits ultrasonic waves from the probe 11. By outputting the ultrasonic transmission trigger signal, transmission of ultrasonic waves to the subject and detection of reflected acoustic signals are performed.
 更に、トリガ制御回路30は、AD変換手段22に対して、サンプリング開始を指示するサンプリングトリガ信号を出力する。トリガ制御回路30は、光トリガ信号又は超音波送信トリガ信号の出力後、所定のタイミングでサンプリングトリガ信号を出力する。トリガ制御回路30は、例えば光音響信号を検出する場合は、光トリガ信号の出力後、好ましくは、被検体に実際にレーザ光が照射されるタイミングで、サンプリングトリガ信号を出力する。例えばトリガ制御回路30は、Qスイッチトリガ信号の出力と同期してサンプリングトリガ信号を出力する。また、トリガ制御回路30は、反射音響信号を検出する場合は、超音波送信トリガ信号と同期してサンプリングトリガ信号を出力する。AD変換手段22は、サンプリングトリガ信号を受けると、プローブ11にて検出された光音響信号又は反射音響信号のサンプリングを開始する。 Furthermore, the trigger control circuit 30 outputs a sampling trigger signal for instructing the AD conversion means 22 to start sampling. The trigger control circuit 30 outputs a sampling trigger signal at a predetermined timing after outputting the optical trigger signal or the ultrasonic transmission trigger signal. For example, when detecting a photoacoustic signal, the trigger control circuit 30 preferably outputs a sampling trigger signal after the output of the optical trigger signal, preferably at a timing when the subject is actually irradiated with the laser light. For example, the trigger control circuit 30 outputs a sampling trigger signal in synchronization with the output of the Q switch trigger signal. The trigger control circuit 30 outputs a sampling trigger signal in synchronization with the ultrasonic transmission trigger signal when detecting a reflected acoustic signal. When receiving the sampling trigger signal, the AD conversion unit 22 starts sampling the photoacoustic signal or the reflected acoustic signal detected by the probe 11.
 AD変換手段22は、サンプリングした光音響信号及び反射音響信号を、受信メモリ23に格納する。受信メモリ23には、例えば半導体記憶装置を用いることができる。あるいは、受信メモリ23に、その他の記憶装置、例えば磁気記憶装置を用いてもよい。受信メモリ23には、光音響信号のサンプリングデータ(光音響データ)と、反射音響信号のサンプリングデータ(反射超音波データ)とが格納される。データ分離手段24は、受信メモリ23に格納された光音響信号と反射音響信号とを分離する。データ分離手段24は、分離した光音響信号を光音響画像生成手段25に渡す。また、分離した反射音響信号を超音波画像生成手段26と音速分布生成手段27に渡す。 The AD conversion means 22 stores the sampled photoacoustic signal and reflected acoustic signal in the reception memory 23. As the reception memory 23, for example, a semiconductor memory device can be used. Alternatively, other storage devices such as a magnetic storage device may be used for the reception memory 23. The reception memory 23 stores photoacoustic signal sampling data (photoacoustic data) and reflected acoustic signal sampling data (reflected ultrasound data). The data separation unit 24 separates the photoacoustic signal and the reflected acoustic signal stored in the reception memory 23. The data separation unit 24 passes the separated photoacoustic signal to the photoacoustic image generation unit 25. The separated reflected acoustic signal is passed to the ultrasonic image generation means 26 and the sound speed distribution generation means 27.
 音速分布生成手段27は、データ分離手段24から反射音響信号を受け取り、受け取った反射音響信号に基づいて、被検体内を進行する音響波の音速分布を生成する。音速分布の生成の手法は特に限定されない。音速分布の生成には、音響波に基づいて音速分布の推定を行う任意の手法を用いることができる。 The sound velocity distribution generating means 27 receives the reflected acoustic signal from the data separating means 24, and generates the sound velocity distribution of the acoustic wave traveling in the subject based on the received reflected acoustic signal. The method of generating the sound speed distribution is not particularly limited. For generating the sound velocity distribution, any method for estimating the sound velocity distribution based on the acoustic wave can be used.
 光音響画像生成手段25は、第1の画像手段であり、光音響信号に基づいて光音響画像(第1の画像)を生成する。光音響画像生成手段25は、光音響画像再構成手段251、検波・対数変換手段252、及び光音響画像構築手段253を含む。超音波画像生成手段26は、第2の画像手段であり、反射音響信号に基づいて超音波画像(第2の画像)を生成する。超音波画像生成手段(反射音響波画像生成手段)26は、超音波画像再構成手段261、検波・対数変換手段262、及び超音波画像構築手段263を含む。 The photoacoustic image generation means 25 is a first image means, and generates a photoacoustic image (first image) based on the photoacoustic signal. The photoacoustic image generation unit 25 includes a photoacoustic image reconstruction unit 251, a detection / logarithm conversion unit 252, and a photoacoustic image construction unit 253. The ultrasonic image generation unit 26 is a second image unit, and generates an ultrasonic image (second image) based on the reflected acoustic signal. The ultrasonic image generation means (reflected acoustic wave image generation means) 26 includes an ultrasonic image reconstruction means 261, a detection / logarithm conversion means 262, and an ultrasonic image construction means 263.
 光音響画像再構成手段251は、データ分離手段24から光音響信号を受け取り、光音響信号を再構成する。光音響画像再構成手段251は、光音響信号に基づいて、断層画像である光音響画像の各ラインのデータを生成する。ここで、再構成された光音響信号は、光音響画像とみなすことができる。光音響画像再構成手段251は、遅延加算法(Delay and Sum、位相整合加算、整相加算と同義)により、光音響信号を再構成する。光音響画像再構成手段251は、例えば64素子分の光音響信号を、各素子(各超音波振動子)の位置に応じた遅延時間で加算し、1ライン分のデータを生成する。このとき、光音響画像再構成手段251は、各素子で検出された光音響信号を、音速分布生成手段27で生成された音速分布を用いて各素子の遅延時間を補正しながら遅延加算する。 The photoacoustic image reconstruction unit 251 receives the photoacoustic signal from the data separation unit 24 and reconstructs the photoacoustic signal. The photoacoustic image reconstruction unit 251 generates data of each line of the photoacoustic image that is a tomographic image based on the photoacoustic signal. Here, the reconstructed photoacoustic signal can be regarded as a photoacoustic image. The photoacoustic image reconstruction means 251 reconstructs a photoacoustic signal by a delay addition method (synonymous with Delay と and Sum, phase matching addition, and phasing addition). The photoacoustic image reconstruction unit 251 adds, for example, photoacoustic signals for 64 elements with a delay time corresponding to the position of each element (each ultrasonic transducer) to generate data for one line. At this time, the photoacoustic image reconstruction means 251 delays and adds the photoacoustic signal detected by each element while correcting the delay time of each element using the sound speed distribution generated by the sound speed distribution generation means 27.
 検波・対数変換手段252は、光音響画像再構成手段251が出力する各ラインのデータの包絡線を生成し、その包絡線を対数変換してダイナミックレンジを広げる。光音響画像構築手段253は、対数変換が施された各ラインのデータに基づいて、光音響画像を生成する。光音響画像構築手段253は、例えば光音響信号(ピーク部分)の時間軸方向の位置を、断層画像における深さ方向の位置に変換して光音響画像を生成する。 The detection / logarithm conversion means 252 generates an envelope of the data of each line output from the photoacoustic image reconstruction means 251 and logarithmically converts the envelope to widen the dynamic range. The photoacoustic image construction unit 253 generates a photoacoustic image based on the data of each line subjected to logarithmic transformation. The photoacoustic image construction unit 253 generates a photoacoustic image by converting, for example, the position in the time axis direction of the photoacoustic signal (peak portion) into the position in the depth direction in the tomographic image.
 超音波画像再構成手段261は、データ分離手段24から反射音響信号を受け取り、反射音響信号を再構成する。超音波画像再構成手段261は、受け取った反射音響信号に基づいて、断層画像である超音波画像(反射音響画像)の各ラインのデータを生成する。ここで、再構成された反射音響信号は、超音波画像とみなすことができる。超音波画像再構成手段261は、例えば64素子分の反射音響信号を、各素子の位置に応じた遅延時間で加算し、1ライン分のデータを生成する。このとき、超音波画像再構成手段261は、各素子で検出された反射音響信号を、音速分布生成手段27で生成された音速分布を用いて各素子の遅延時間を補正しながら遅延加算する。 The ultrasonic image reconstruction unit 261 receives the reflected acoustic signal from the data separation unit 24 and reconstructs the reflected acoustic signal. The ultrasonic image reconstruction unit 261 generates data of each line of an ultrasonic image (reflected acoustic image) that is a tomographic image based on the received reflected acoustic signal. Here, the reconstructed reflected acoustic signal can be regarded as an ultrasonic image. The ultrasonic image reconstruction means 261 adds, for example, reflected acoustic signals for 64 elements with a delay time corresponding to the position of each element, and generates data for one line. At this time, the ultrasonic image reconstructing unit 261 delays and adds the reflected acoustic signal detected by each element while correcting the delay time of each element using the sound speed distribution generated by the sound speed distribution generating unit 27.
 検波・対数変換手段262は、超音波画像再構成手段261が出力する各ラインのデータの包絡線を生成し、その包絡線を対数変換してダイナミックレンジを広げる。超音波画像構築手段263は、対数変換が施された各ラインのデータに基づいて、超音波画像を生成する。超音波画像生成手段26における超音波画像の生成は、信号が反射音響信号であることを除けば、光音響画像生成手段25における光音響画像の生成と同様でよい。 The detection / logarithm conversion means 262 generates an envelope of the data of each line output by the ultrasonic image reconstruction means 261, and logarithmically transforms the envelope to widen the dynamic range. The ultrasonic image construction unit 263 generates an ultrasonic image based on the data of each line subjected to logarithmic transformation. The generation of the ultrasonic image in the ultrasonic image generation unit 26 may be the same as the generation of the photoacoustic image in the photoacoustic image generation unit 25 except that the signal is a reflected acoustic signal.
 画像合成手段29は、光音響画像生成手段25で生成された光音響画像と、超音波画像生成手段26で生成された超音波画像とを合成する。画像合成手段29は、例えば超音波画像に対して光音響画像を重畳することで、画像合成を行う。画像表示手段14は、画像合成手段29で合成された画像を、表示モニタなどに表示する。画像合成を行わずに、画像表示手段14に、光音響画像と超音波画像と切り替えて表示してもよい。あるいは、光音響画像と超音波画像とを並べて表示してもよい。 The image synthesis unit 29 synthesizes the photoacoustic image generated by the photoacoustic image generation unit 25 and the ultrasonic image generated by the ultrasonic image generation unit 26. The image composition unit 29 performs image composition by superimposing a photoacoustic image on an ultrasonic image, for example. The image display unit 14 displays the image synthesized by the image synthesis unit 29 on a display monitor or the like. The image display means 14 may switch and display the photoacoustic image and the ultrasonic image without performing image synthesis. Alternatively, the photoacoustic image and the ultrasonic image may be displayed side by side.
 光音響信号と反射音響信号の取得シーケンスについて説明する。図2は、データ取得シーケンス例を示す。同図において、モード「US」は反射音響信号の取得を表し、モード「PA」は光音響信号の取得を表している。ここでは、プローブ11は、音響波検出器素子及び音響波送信素子として、1次元配列された128素子の超音波振動子を有しているものとする。 The acquisition sequence of the photoacoustic signal and the reflected acoustic signal will be described. FIG. 2 shows an example of a data acquisition sequence. In the figure, mode “US” represents acquisition of reflected acoustic signals, and mode “PA” represents acquisition of photoacoustic signals. Here, the probe 11 has 128 ultrasonic transducers arranged one-dimensionally as an acoustic wave detector element and an acoustic wave transmission element.
 光音響信号の取得では、レーザユニット13からの光を被検体に照射した後に、64素子ずつ光音響信号の取り込みを行う。すなわち、計128素子のデータを2回に分けて取得する。例えば、1回目のレーザ発光後に素子番号が1-64素子の超音波振動子で検出された光音響信号を取得し、2回目のレーザ発光後に素子番号が65-128素子の超音波振動子で検出された光音響信号を取得する。一方、反射音響信号の取得では、64素子の超音波振動子から超音波の送信を行った後に、その64素子の超音波振動子で反射音響信号を取得する。なお、一次元配列された超音波振動子の端部では、64素子よりも少ない数の素子で超音波の送受信を行う。反射音響信号の取得では、超音波の送受信を行う超音波振動子の範囲(開口位置)を1素子ずつずらしながら、ラインbyラインで反射音響信号を取得する。 In acquiring the photoacoustic signal, the photoacoustic signal is taken in 64 elements after irradiating the subject with light from the laser unit 13. That is, data for a total of 128 elements is acquired in two steps. For example, a photoacoustic signal detected by an ultrasonic transducer having an element number of 1 to 64 elements after the first laser emission is obtained, and an ultrasonic transducer having an element number of 65 to 128 elements is acquired after the second laser emission. The detected photoacoustic signal is acquired. On the other hand, in the acquisition of the reflected acoustic signal, after transmitting ultrasonic waves from the 64-element ultrasonic transducer, the reflected acoustic signal is acquired by the 64-element ultrasonic transducer. It should be noted that ultrasonic waves are transmitted and received with fewer elements than 64 elements at the ends of the ultrasonic transducers arranged one-dimensionally. In the acquisition of the reflected acoustic signal, the reflected acoustic signal is acquired by the line by line while shifting the range (opening position) of the ultrasonic transducer that transmits and receives the ultrasonic wave one element at a time.
 図2のシーケンス例では、反射音響信号の取得と、光音響信号の取得とを交互に行っている。より詳細には、装置はUSモードで動作を開始し、ライン1からライン31まで開口位置を1素子ずつずらしながら(ライン1からライン31は端部であるため、実際には1素子ずつ開口素子を広げながら)超音波の送受信を行い、反射音響信号を取得する。次いで、PAモードに移行し、レーザユニット13からのレーザ光を被検体に照射して、1つ目のエリアに対応する64素子で光音響信号を検出する。次いで、USモードで、ライン32からライン95まで開口位置を1素子ずつずらしながら超音波の送受信を行い、反射音響信号を取得する。その後、PAモードに移行してレーザユニット13からのレーザ光を被検体に照射し、2つ目のエリアに対応する64素子で光音響信号を取得する。続いて、USモードで、ライン96からライン128まで開口位置を1素子ずつずらしながら(ライン95からライン128は端部であるため、実際には1素子ずつ開口素子を狭めながら)超音波の送受信を行い、反射音響信号を取得する。 In the sequence example of FIG. 2, the acquisition of the reflected acoustic signal and the acquisition of the photoacoustic signal are performed alternately. More specifically, the apparatus starts operating in the US mode, shifting the opening position from line 1 to line 31 one element at a time (since line 1 to line 31 is an end, in fact one element at a time ) Transmit and receive ultrasonic waves and obtain reflected acoustic signals. Next, the mode is changed to the PA mode, and the subject is irradiated with the laser beam from the laser unit 13, and the photoacoustic signal is detected by 64 elements corresponding to the first area. Next, in the US mode, ultrasonic waves are transmitted and received while shifting the opening position from the line 32 to the line 95 one element at a time, and a reflected acoustic signal is acquired. Thereafter, the PA mode is entered and the subject is irradiated with the laser light from the laser unit 13, and a photoacoustic signal is acquired with 64 elements corresponding to the second area. Subsequently, in the US mode, transmitting and receiving ultrasonic waves while shifting the opening position from line 96 to line 128 one element at a time (since line 95 to line 128 is an end, the opening element is actually narrowed one element at a time) To obtain a reflected acoustic signal.
 図3は、図2のUSモードの各ラインに対応する開口素子で検出された反射音響信号を示し、図4は、再構成後の超音波画像を示す。図3において、縦軸は超音波送信からの経過時間を示している。各ライン64素子の反射音響信号(ただし端部では開口素子は64素子よりも少ない)を遅延加算(位相整合加算)することで、ライン1からライン128までの各ラインのデータが生成され、図4に示す1フレームの超音波画像を生成できる。 FIG. 3 shows the reflected acoustic signal detected by the aperture element corresponding to each line in the US mode of FIG. 2, and FIG. 4 shows the ultrasonic image after reconstruction. In FIG. 3, the vertical axis indicates the elapsed time from ultrasonic transmission. Data of each line from line 1 to line 128 is generated by delay-adding (phase matching addition) the reflected acoustic signals of 64 elements in each line (however, the opening elements are fewer than 64 elements at the end). 1 can be generated.
 図5は、図2のPAモードの各エリアに対応する開口素子で検出された光音響信号を示し、図6は、再構成後の光音響信号(光音響画像)を示す。図5において、縦軸は被検体に対するレーザ光の照射からの経過時間を示している。2つのエリアの計128素子分の光音響信号を再構成することで、図6に示す光音響画像を生成できる。 FIG. 5 shows a photoacoustic signal detected by an aperture element corresponding to each area of the PA mode in FIG. 2, and FIG. 6 shows a reconstructed photoacoustic signal (photoacoustic image). In FIG. 5, the vertical axis indicates the elapsed time from the irradiation of the laser beam on the subject. The photoacoustic image shown in FIG. 6 can be generated by reconstructing the photoacoustic signals for a total of 128 elements in the two areas.
 なお、上記では超音波はラインbyライン、光音響は2つのエリアに分割して光音響信号を検出するものとして説明したが、超音波についても、2つのエリアのそれぞれで超音波の送受信を行い、反射音響信号を検出することとしてもよい。例えば、被検体に対して光を照射してエリア1に対応する素子番号1-64の超音波振動子で光音響信号を検出した後に、素子番号1-64の超音波振動子からフォーカスなしで被検体に対して超音波を送信し、反射音響信号を検出してもよい。エリア2についても同様に、光照射後にエリア2に対応する素子番号65-128の超音波振動子で光音響信号を検出し、次いで、素子番号65-128の超音波振動子から被検体に対して超音波を送信して反射音響信号を検出してもよい。光音響信号と反射音響信号の検出は、どちらが先でもよい。 In the above description, it has been described that the ultrasonic wave is a line by line and the photoacoustic signal is divided into two areas to detect the photoacoustic signal, but the ultrasonic wave is also transmitted and received in each of the two areas. The reflected acoustic signal may be detected. For example, the object is irradiated with light and a photoacoustic signal is detected by the ultrasonic transducer of element number 1-64 corresponding to area 1, and then the ultrasonic transducer of element number 1-64 is not focused. An ultrasonic wave may be transmitted to the subject to detect a reflected acoustic signal. Similarly, for area 2, after the light irradiation, a photoacoustic signal is detected by the ultrasonic transducer of element number 65-128 corresponding to area 2, and then the ultrasonic transducer of element number 65-128 is applied to the subject. Then, the reflected acoustic signal may be detected by transmitting an ultrasonic wave. Either the photoacoustic signal or the reflected acoustic signal may be detected first.
 上記では、光音響信号を2つのエリアに分割して検出することとしたが、領域分割は行わなくてもよい。例えば被検体に対して光を照射した後に、全128素子で光音響信号を検出するようにしてもよい。この場合、光照射は1回で済む。また、反射音響信号についても同様に、全128素子から例えばフォーカスなしで超音波を送信し、128素子で反射音響信号を検出してもよい。 In the above description, the photoacoustic signal is detected by being divided into two areas, but the area division may not be performed. For example, photoacoustic signals may be detected by all 128 elements after irradiating the subject with light. In this case, only one light irradiation is required. Similarly, for reflected acoustic signals, for example, ultrasonic waves may be transmitted from all 128 elements without focus, and reflected acoustic signals may be detected by 128 elements.
 光音響信号と反射音響信号とを同じエリアで検出する場合、一方の信号の検出を開始したのち、AD変換手段22によるサンプリングを継続した状態で他方の信号を検出し、双方の信号を連続的に取得するようにしてもよい。例えば光音響信号の検出を先に行う場合、トリガ制御回路30は、光トリガ信号(フラッシュランプトリガ信号又はQスイッチトリガ信号)を出力した後、光音響信号の検出を終了するタイミングで超音波送信トリガ信号を出力する。このとき、AD変換手段22はサンプリングを中断せず、サンプリングを継続する。言い換えれば、トリガ制御回路30は、AD変換手段22がサンプリングを継続している状態で、超音波送信トリガ信号を出力する。超音波送信トリガ信号に応答してプローブ11が超音波送信を行うことで、プローブ11で検出される音響波は、光音響波から反射音響波に変わる。AD変換手段22がサンプリングを継続することで、光音響信号と反射音響信号とを連続的にサンプリングすることができる。この場合、光音響波の検出開始から反射音響波の検出終了までの間の時間を、別々にサンプリングする場合に比して短縮することができ、双方の画像を重畳して表示する際に、画像間の位置ずれを抑制することができる。 When the photoacoustic signal and the reflected acoustic signal are detected in the same area, after the detection of one signal is started, the other signal is detected while sampling by the AD conversion means 22 is continued, and both signals are continuously detected. You may make it acquire to. For example, when the photoacoustic signal is detected first, the trigger control circuit 30 outputs the optical trigger signal (flash lamp trigger signal or Q switch trigger signal), and then transmits the ultrasonic wave at a timing to end the detection of the photoacoustic signal. Outputs a trigger signal. At this time, the AD conversion means 22 continues sampling without interrupting sampling. In other words, the trigger control circuit 30 outputs an ultrasonic transmission trigger signal in a state where the AD conversion means 22 continues sampling. When the probe 11 performs ultrasonic transmission in response to the ultrasonic transmission trigger signal, the acoustic wave detected by the probe 11 changes from a photoacoustic wave to a reflected acoustic wave. Since the AD conversion means 22 continues sampling, the photoacoustic signal and the reflected acoustic signal can be sampled continuously. In this case, the time from the start of detection of the photoacoustic wave to the end of detection of the reflected acoustic wave can be shortened as compared to the case of sampling separately, and when both images are superimposed and displayed, A positional shift between images can be suppressed.
 ここで、AD変換手段22が光音響信号と反射音響信号とを同一のサンプリングレートでサンプリングする場合には、反射音響信号を1/2にリサンプルするリサンプル手段を設けるとよい。1/2リサンプル手段は、例えば反射音響信号を時間軸方向に1/2に圧縮する。リサンプルを行う理由は、被検体内の深さ方向の同じ位置で光音響信号及び反射音響信号が発生したとすると、反射音響信号の場合は、プローブ11から送信された超音波がその位置まで進むまでに要する時間が必要なため、超音波送信から反射音響信号検出までの時間が、光照射から光音響信号検出までの時間の倍の時間となるためである。つまり、光音響信号は片道分の時間で検出されるのに対し、反射音響信号は往復分の時間がかかるためである。リサンプルを行うのに代えて、反射音響信号検出時のAD変換手段22のサンプリングレートを、光音響信号検出時のサンプリングレートの半分に制御してもよい。 Here, when the AD conversion means 22 samples the photoacoustic signal and the reflected acoustic signal at the same sampling rate, a resample means for resampling the reflected acoustic signal to ½ may be provided. The ½ resampling unit compresses the reflected acoustic signal to ½ in the time axis direction, for example. The reason for resampling is that if the photoacoustic signal and the reflected acoustic signal are generated at the same position in the depth direction in the subject, in the case of the reflected acoustic signal, the ultrasonic wave transmitted from the probe 11 reaches that position. This is because the time required to proceed is necessary, and the time from ultrasonic transmission to reflected acoustic signal detection is twice the time from light irradiation to photoacoustic signal detection. That is, the photoacoustic signal is detected in one-way time, whereas the reflected acoustic signal takes time for a round trip. Instead of performing resampling, the sampling rate of the AD conversion means 22 at the time of detecting the reflected acoustic signal may be controlled to half the sampling rate at the time of detecting the photoacoustic signal.
 続いて、音速分布の生成について説明する。図7は、プローブの超音波振動子と被検体内の光吸収体とを示す。同図において、横軸方向は一次元配列された超音波振動子の配列方向を表し、縦軸は被検体の深さ方向を表している。斜線で示す領域は、反射音響信号検出時の開口素子を表す。開口素子の直下には反射体45が存在する。開口素子を形成する例えば64素子から被検体の深さ方向に超音波を送信し、反射体45からの反射音響波を検出することを考える。 Next, the generation of sound speed distribution will be described. FIG. 7 shows the ultrasonic transducer of the probe and the light absorber in the subject. In the figure, the horizontal axis direction represents the arrangement direction of the ultrasonic transducers arranged one-dimensionally, and the vertical axis represents the depth direction of the subject. A region indicated by diagonal lines represents an aperture element when a reflected acoustic signal is detected. A reflector 45 exists immediately below the aperture element. Consider, for example, that ultrasonic waves are transmitted from the 64 elements forming the aperture elements in the depth direction of the subject and the reflected acoustic waves from the reflector 45 are detected.
 図8は、開口素子で検出された反射音響信号の時間分布に示す。同図において、縦軸は超音波送信からの経過時間を表している。同図に示すように、開口内の各素子で検出される反射体45(図7)からの反射音響信号の検出時刻は、開口内における反射体45の位置と、各超音波振動子との位置関係に応じて変化する。図9は、再構成された1ライン分のデータを示す。図8に示す64素子分の反射音響信号を遅延加算することで、反射音響信号が1点に収束する、超音波画像の1ライン分のデータが得られる。一連の処理を各ラインに対して行うことで、1フレームの超音波画像が生成できる。 FIG. 8 shows the time distribution of the reflected acoustic signal detected by the aperture element. In the figure, the vertical axis represents the elapsed time from ultrasonic transmission. As shown in the figure, the detection time of the reflected acoustic signal from the reflector 45 (FIG. 7) detected by each element in the opening is the position of the reflector 45 in the opening and each ultrasonic transducer. It changes according to the positional relationship. FIG. 9 shows the reconstructed data for one line. By delay-adding the reflected acoustic signals for 64 elements shown in FIG. 8, data for one line of the ultrasonic image in which the reflected acoustic signal converges to one point is obtained. By performing a series of processes on each line, an ultrasonic image of one frame can be generated.
 図10は、被検体内の音速が一定ではないときの反射音響信号の時間分布を示す。図8に示す反射音響信号を再構成する際に、被検体内の音速が想定音速に一致しており、かつ、音速が被検体内の位置に依存して変化しなければ、反射音響信号を遅延加算する際に各素子に与える遅延時間は、反射体と各素子との位置関係から一義的に定まる。しかし、音速が均一でない場合、検出された反射音響信号の時間分布は、図10に破線で示すように、実線で示す音速が均一である場合からずれる。その場合、遅延加算する際に均一な想定音速を仮定した理想的な遅延曲線で遅延しても、反射音響信号を1点に収束させることができなくなる。そこで、検出された反射音響信号が1点に再構成されるような仮想音速値を求める。仮想音速値を各画素について求めていくことで、被検体内の音速分布が求まる。 FIG. 10 shows the time distribution of the reflected acoustic signal when the speed of sound in the subject is not constant. When reconstructing the reflected acoustic signal shown in FIG. 8, if the sound speed in the subject matches the assumed sound speed and the sound speed does not change depending on the position in the subject, the reflected acoustic signal is The delay time given to each element when performing delay addition is uniquely determined from the positional relationship between the reflector and each element. However, when the sound speed is not uniform, the time distribution of the detected reflected acoustic signal deviates from the case where the sound speed indicated by the solid line is uniform, as indicated by the broken line in FIG. In that case, even if the delay is added with an ideal delay curve assuming a uniform assumed sound speed, the reflected acoustic signal cannot be converged to one point. Therefore, a virtual sound speed value is calculated so that the detected reflected acoustic signal is reconstructed into one point. By calculating the virtual sound speed value for each pixel, the sound speed distribution in the subject can be determined.
 図11は、音速分布を求める際の動作手順の一例を示す。ここでは、反射音響信号を、時間軸を深さ方向の位置に置き換えた画像とみなして説明する。音速分布生成手段27は、ある素子のある時間軸方向の位置(ある画素)における反射音響信号の信号強度が所定の値以上であるか否かを判断する(ステップA1)。音速分布生成手段27は、信号強度が所定の値以上のとき、その画素(着目画素)について位相を計算する(ステップA2)。音速分布生成手段27は、ステップA2では、例えば被検体内の音速分布を仮定し、その仮定に基づいて、着目画素に対応する素子をほぼ中心に含む開口素子のそれぞれに対して、遅延加算を行う際の遅延時間を設定する。 FIG. 11 shows an example of the operation procedure when obtaining the sound velocity distribution. Here, the reflected acoustic signal is described as an image in which the time axis is replaced with a position in the depth direction. The sound velocity distribution generation means 27 determines whether or not the signal intensity of the reflected acoustic signal at a position in a certain time axis direction (a certain pixel) of a certain element is equal to or higher than a predetermined value (step A1). When the signal intensity is equal to or higher than a predetermined value, the sound velocity distribution generation unit 27 calculates a phase for the pixel (target pixel) (step A2). In step A2, for example, the sound velocity distribution generation unit 27 assumes a sound velocity distribution in the subject, and based on the assumption, performs a delay addition for each of the aperture elements that substantially include the element corresponding to the target pixel. Set the delay time when performing.
 音速分布生成手段27は、ステップA2で計算した位相に基づいて、開口素子内の反射音響信号を遅延加算した際の画素の輝度値(再構成された信号の信号強度)を評価する(ステップA3)。音速分布生成手段27は、ステップA3で評価した輝度値が最大値であるか否かを判断する(ステップA4)。最大値でない場合は、ステップA2に戻り、異なる音速分布を仮定して位相を計算し直す。音速分布生成手段27は、ステップA4で輝度値が最大になったと判断するまで、ステップA2とステップA3を繰り返し実行し、最大輝度値を与える位相を求める。 The sound velocity distribution generation means 27 evaluates the luminance value (signal intensity of the reconstructed signal) of the pixel when the reflected acoustic signal in the aperture element is delayed and added based on the phase calculated in step A2 (step A3). ). The sound velocity distribution generation means 27 determines whether or not the luminance value evaluated in step A3 is the maximum value (step A4). If it is not the maximum value, the process returns to step A2, and the phase is recalculated assuming a different sound velocity distribution. The sound velocity distribution generation means 27 repeatedly executes step A2 and step A3 until it determines that the luminance value has become maximum in step A4, and obtains the phase that gives the maximum luminance value.
 音速分布生成手段27は、ステップA4で輝度値が最大であると判断すると、着目画素における位相データ(位相分布)をメモリなどの記憶手段に格納する(ステップA5)。音速分布生成手段27は、例えば輝度値が最大になるときの、開口素子のそれぞれに与える遅延時間の情報を、着目画素における位相データとして記憶手段に格納する。遅延時間情報に代えて、着目画素から各素子に向かう方向の音速のデータを、位相データとして格納してもよい。また、各素子に与える遅延時間又は各素子に向かう方向の音速データを、所定の関数(例えば二次関数以上の関数)で近似した際の関数パラメータを、位相データとして記憶手段に格納してもよい。 When determining that the luminance value is maximum in step A4, the sound velocity distribution generation means 27 stores the phase data (phase distribution) in the pixel of interest in a storage means such as a memory (step A5). The sound velocity distribution generation means 27 stores, for example, information on the delay time given to each aperture element when the luminance value is maximized in the storage means as phase data in the pixel of interest. Instead of the delay time information, sound speed data in a direction from the target pixel toward each element may be stored as phase data. Further, function parameters obtained by approximating a delay time given to each element or sound speed data in a direction toward each element by a predetermined function (for example, a function of a quadratic function or more) may be stored in the storage means as phase data. Good.
 音速分布生成手段27は、全ての画素を処理したか否かを判断する(ステップA6)。未処理の画素が残っているときはステップA1に戻り、次の画素について、輝度値が所定の値以上であるか否かを判断する。ここで、輝度値が所定の値よりも小さいと判断された画素は、位相の変化に対する輝度値の変化が評価できない。従って、ステップA1で輝度値が所定の値よりも小さいと判断された場合は、位相計算を行わずに、輝度値が所定の値以上となる画素が選択されるまで、ステップA1を繰り返す。 The sound velocity distribution generation means 27 determines whether or not all pixels have been processed (step A6). If unprocessed pixels remain, the process returns to step A1, and it is determined whether or not the luminance value of the next pixel is equal to or greater than a predetermined value. Here, a pixel whose luminance value is determined to be smaller than a predetermined value cannot evaluate a change in luminance value with respect to a phase change. Therefore, when it is determined in step A1 that the luminance value is smaller than the predetermined value, step A1 is repeated until a pixel having a luminance value equal to or higher than the predetermined value is selected without performing phase calculation.
 音速分布生成手段27は、ステップA6で未処理の画素がないと判断すると、ステップA5で格納された位相データに基づいて、音速分布を生成する(ステップA7)。位相データに基づく音速分布の生成(推定)には、既知の手法を用いることができる。 When determining that there is no unprocessed pixel in Step A6, the sound speed distribution generating means 27 generates a sound speed distribution based on the phase data stored in Step A5 (Step A7). A known method can be used to generate (estimate) the sound velocity distribution based on the phase data.
 音速分布生成手段27は、音速分布に基づく位相データを、音速補正テーブルとして光音響画像再構成手段251と超音波画像再構成手段261とに出力する。光音響画像再構成手段251は、音速補正テーブルに基づく遅延時間で、光音響信号を遅延加算する。また、超音波画像再構成手段261は、音速補正テーブルに基づく遅延時間で、反射音響信号を再構成する。音速分布生成手段27から音速補正テーブルを出力するのに代えて、音速分布データを光音響画像再構成手段251と超音波画像再構成手段261とに出力し、それら手段において音速分布データに基づく遅延時間で遅延加算を行うようにしてもよい。 The sound speed distribution generation means 27 outputs phase data based on the sound speed distribution to the photoacoustic image reconstruction means 251 and the ultrasonic image reconstruction means 261 as a sound speed correction table. The photoacoustic image reconstruction means 251 delays and adds the photoacoustic signal with a delay time based on the sound speed correction table. Further, the ultrasonic image reconstruction unit 261 reconstructs the reflected acoustic signal with a delay time based on the sound speed correction table. Instead of outputting the sound speed correction table from the sound speed distribution generation means 27, sound speed distribution data is output to the photoacoustic image reconstruction means 251 and the ultrasonic image reconstruction means 261, and the delay based on the sound speed distribution data in these means. You may make it perform delay addition by time.
 音速分布の求め方は、上記したものには限定されない。例えば特許文献1に記載された方法と同様な方法で局所音速値を計算し、その分布を求めることとしてもよい。すなわち、ホイヘンスの原理を用いて、被検体内の着目領域よりも浅い領域に設定された格子点と着目領域とにおける最適音速値を判定し、着目領域における最適音速値に基づいて、超音波を着目領域に送信したときに着目領域から受信される受信波を演算し、着目領域における仮定音速を仮定して、仮定音速に基づいて各格子点における最適音速値から求めた各格子点からの受信波を合成して合成受信波を得て、受信波と合成受信波に基づいて着目領域における局所音速値を判定することで局所音速値を求め、その分布を求めてもよい。 The method for obtaining the sound velocity distribution is not limited to the above. For example, the local sound velocity value may be calculated by a method similar to the method described in Patent Document 1, and the distribution thereof may be obtained. That is, using Huygens' principle, the optimum sound speed value at the lattice point set in the region shallower than the region of interest in the subject and the region of interest is determined, and the ultrasonic wave is determined based on the optimum sound speed value in the region of interest. Calculates the received wave received from the region of interest when transmitted to the region of interest, assumes the assumed sound speed in the region of interest, and receives from each lattice point obtained from the optimum sound speed value at each lattice point based on the assumed sound speed A synthesized reception wave may be obtained by synthesizing waves, and a local sound velocity value may be obtained by determining a local sound velocity value in the region of interest based on the reception wave and the synthesized reception wave, and the distribution thereof may be obtained.
 引き続き、動作手順を説明する。図12は光音響画像生成装置の動作手順を示す。トリガ制御回路30は、超音波送信トリガ信号を送信制御回路31に出力する。送信制御回路31は、超音波送信トリガ信号を受け取ると、プローブ11から超音波を送信させる(ステップB1)。プローブ11は、超音波の送信後、送信した超音波に対する反射音響信号を検出する(ステップB2)。プローブ11が検出した反射音響信号は、受信回路21を介してAD変換手段22に入力される。AD変換手段22は、反射音響信号をサンプリングしてデジタルデータに変換し、受信メモリ23に格納する。 Next, the operation procedure will be explained. FIG. 12 shows an operation procedure of the photoacoustic image generation apparatus. The trigger control circuit 30 outputs an ultrasonic transmission trigger signal to the transmission control circuit 31. When receiving the ultrasonic transmission trigger signal, the transmission control circuit 31 transmits ultrasonic waves from the probe 11 (step B1). After transmitting the ultrasonic wave, the probe 11 detects a reflected acoustic signal for the transmitted ultrasonic wave (step B2). The reflected acoustic signal detected by the probe 11 is input to the AD conversion means 22 via the receiving circuit 21. The AD conversion means 22 samples the reflected acoustic signal, converts it into digital data, and stores it in the reception memory 23.
 続いて、トリガ制御回路30は、フラッシュランプトリガ信号をレーザユニット13に出力する。レーザユニット13では、フラッシュランプトリガ信号に応答してフラッシュランプ41が点灯し、レーザ媒質の励起が開始される。トリガ制御回路30は、Qスイッチトリガ信号をレーザユニット13に送り、Qスイッチ42をオンさせることで、レーザユニット13からパルスレーザ光を出射させる(ステップB3)。トリガ制御回路30は、例えばフラッシュランプトリガ信号を出力するタイミングと所定の時間関係にあるタイミングでQスイッチトリガ信号を出力する。例えばトリガ制御回路30は、フラッシュランプ発光から150μ秒後に、Qスイッチトリガ信号を出力する。 Subsequently, the trigger control circuit 30 outputs a flash lamp trigger signal to the laser unit 13. In the laser unit 13, the flash lamp 41 is turned on in response to the flash lamp trigger signal, and excitation of the laser medium is started. The trigger control circuit 30 sends a Q switch trigger signal to the laser unit 13 and turns on the Q switch 42 to emit pulsed laser light from the laser unit 13 (step B3). The trigger control circuit 30 outputs the Q switch trigger signal at a timing that is in a predetermined time relationship with the timing at which the flash lamp trigger signal is output, for example. For example, the trigger control circuit 30 outputs a Q switch trigger signal 150 seconds after the flash lamp emission.
 レーザユニット13から出射したレーザ光は、被検体に照射される。被検体内では、照射されたパルスレーザ光による光音響信号が発生する。プローブ11は、被検体内で発生した光音響信号を検出する(ステップB4)。プローブが検出した光音響信号は、受信回路21を介してAD変換手段22に入力される。AD変換手段22は、光音響信号をサンプリングしてデジタルデータに変換し、受信メモリ23に格納する。なお、反射音響信号と光音響信号の検出は、どちらを先に行ってもよい。また、例えば図2に示すシーケンスに従って、反射音響信号と光音響信号とを交互に検出するようにしてもよい。 The laser beam emitted from the laser unit 13 is irradiated to the subject. In the subject, a photoacoustic signal is generated by the irradiated pulsed laser beam. The probe 11 detects a photoacoustic signal generated in the subject (step B4). The photoacoustic signal detected by the probe is input to the AD conversion means 22 via the receiving circuit 21. The AD conversion means 22 samples the photoacoustic signal, converts it into digital data, and stores it in the reception memory 23. Note that either the reflected acoustic signal or the photoacoustic signal may be detected first. Further, for example, the reflected acoustic signal and the photoacoustic signal may be detected alternately according to the sequence shown in FIG.
 データ分離手段24は、受信メモリ23から光音響信号を読み出し、読み出した光音響信号を光音響画像生成手段25に与える。また、受信メモリ23から反射音響信号を読み出し、読み出した反射音響信号を超音波画像生成手段26と音速分布生成手段27とに与える。音速分布生成手段27は、データ分離手段24から受け取った反射音響信号に基づいて、音速分布を生成する(ステップB5)。 The data separation unit 24 reads the photoacoustic signal from the reception memory 23 and gives the read photoacoustic signal to the photoacoustic image generation unit 25. Further, the reflected acoustic signal is read from the reception memory 23, and the read reflected acoustic signal is given to the ultrasonic image generating unit 26 and the sound speed distribution generating unit 27. The sound speed distribution generation means 27 generates a sound speed distribution based on the reflected acoustic signal received from the data separation means 24 (step B5).
 光音響画像生成手段25は、データ分離手段24から受け取った光音響信号に基づいて、光音響画像を生成する(ステップB6)。その際、光音響画像生成手段25は、ステップB5で生成された音速分布に基づく遅延時間で各素子の光音響信号を遅延加算する。被検体内部の位置に応じた音速の違いを考慮した再構成を行うことで、音速の分布が均一でない場合でも、1つの光音響波の発生源から出た光音響信号を光音響画像上の1つの点に収束させることができる。 The photoacoustic image generation means 25 generates a photoacoustic image based on the photoacoustic signal received from the data separation means 24 (step B6). At that time, the photoacoustic image generation means 25 delays and adds the photoacoustic signals of the respective elements with a delay time based on the sound speed distribution generated in step B5. By performing reconstruction in consideration of the difference in sound speed according to the position inside the subject, even if the sound speed distribution is not uniform, the photoacoustic signal emitted from one photoacoustic wave source is displayed on the photoacoustic image. It can be converged to one point.
 超音波画像生成手段26は、データ分離手段24から受け取った反射音響信号に基づいて、超音波画像を生成する(ステップB7)。その際、超音波画像生成手段26は、ステップB5で生成された音速分布に基づく遅延時間で各素子の反射音響信号を遅延加算する。被検体内部の位置に応じた音速の違いを考慮した再構成を行うことで、音速の分布が均一でない場合でも、1つの反射音響波の発生源から出た反射音響信号を超音波画像上の1つの点に収束させることができる。画像合成手段29は、超音波画像と光音響画像とを合成し(ステップB8)、画像表示手段14の表示画面上に合成画像を表示させる。 The ultrasonic image generation unit 26 generates an ultrasonic image based on the reflected acoustic signal received from the data separation unit 24 (step B7). At that time, the ultrasonic image generating means 26 delay-adds the reflected acoustic signals of the respective elements with a delay time based on the sound speed distribution generated in step B5. By performing reconstruction in consideration of the difference in sound speed depending on the position inside the subject, even if the sound speed distribution is not uniform, the reflected acoustic signal from one reflected acoustic wave source is displayed on the ultrasound image. It can be converged to one point. The image synthesizing unit 29 synthesizes the ultrasonic image and the photoacoustic image (step B8), and displays the synthesized image on the display screen of the image display unit 14.
 本実施形態では、光音響信号と反射音響信号のうちの反射音響信号に基づいて音速分布を生成し、反射音響信号に基づいて生成された音速分布を、光音響画像の生成に利用する。光音響画像と超音波画像とを比較すると、一般に、超音波画像の方が輝度が高い(信号強度が大きい)点が多く含まれている。また、超音波画像の方が、輝度が高い点が画像全体にわたって存在している。このため、例えば図11に示す手順に従って音速分布を生成する際に、より多くの点において位相データが得られ、光音響信号に基づいて音速分布を求める場合に比して、音速分布を精度よく求めることができる。そのような音速分布を用いて光音響画像を生成することで、光音響画像の画質を向上できる。 In the present embodiment, a sound speed distribution is generated based on the reflected acoustic signal among the photoacoustic signal and the reflected acoustic signal, and the sound speed distribution generated based on the reflected acoustic signal is used for generating a photoacoustic image. Comparing the photoacoustic image and the ultrasonic image, in general, the ultrasonic image includes more points with higher luminance (higher signal strength). In addition, the ultrasonic image has a higher luminance point throughout the image. For this reason, for example, when the sound speed distribution is generated according to the procedure shown in FIG. 11, phase data is obtained at more points, and the sound speed distribution is more accurately compared with the case where the sound speed distribution is obtained based on the photoacoustic signal. Can be sought. By generating a photoacoustic image using such a sound velocity distribution, the image quality of the photoacoustic image can be improved.
 次いで、本発明の第2実施形態を説明する。本実施形態における画像生成装置の構成は、図1に示すものと同様である。本実施形態では、音速分布の生成に、反射音響信号ではなく、光音響信号を用いる。その他の点は、第1実施形態と同様でよい。なお、本実施形態では、超音波画像が第1の画像に対応し、光音響画像が第2の画像に対応する。また、超音波画像生成手段が第1の画像生成手段に対応し、光音響画像生成手段が第2の画像生成手段に対応する。 Next, a second embodiment of the present invention will be described. The configuration of the image generation apparatus in this embodiment is the same as that shown in FIG. In the present embodiment, a photoacoustic signal is used instead of a reflected acoustic signal for generating the sound velocity distribution. Other points may be the same as in the first embodiment. In the present embodiment, the ultrasonic image corresponds to the first image, and the photoacoustic image corresponds to the second image. Further, the ultrasonic image generating means corresponds to the first image generating means, and the photoacoustic image generating means corresponds to the second image generating means.
 本実施形態では、音速分布生成手段27は、データ分離手段24から、光音響信号(光音響データ)を受け取る。音速分布生成手段27は、光音響信号に基づいて音速分布を生成する。音速分布の生成は、使用する信号が反射音響信号から光音響信号に変わることを除けば、第1実施形態と同様でよい。音速分布生成手段27は、例えば図11に示す手順に従って、音速分布を生成する。 In the present embodiment, the sound velocity distribution generation unit 27 receives a photoacoustic signal (photoacoustic data) from the data separation unit 24. The sound speed distribution generating unit 27 generates a sound speed distribution based on the photoacoustic signal. The generation of the sound velocity distribution may be the same as that in the first embodiment except that the signal to be used is changed from the reflected acoustic signal to the photoacoustic signal. The sound speed distribution generation means 27 generates a sound speed distribution according to the procedure shown in FIG. 11, for example.
 音速分布生成手段27は、例えば生成した音速分布に基づく音速補正テーブルを、光音響画像生成手段25と超音波画像生成手段26とに出力する。光音響画像生成手段25の光音響画像再構成手段251は、光音響信号に基づいて生成された音速分布に基づく遅延時間で、各素子で検出された光音響信号を遅延加算する。また、超音波画像生成手段26の超音波画像再構成手段261は、光音響信号に基づいて生成された音速分布に基づく遅延時間で、各素子で検出された反射音響信号を遅延時間で遅延加算する。 The sound speed distribution generation means 27 outputs, for example, a sound speed correction table based on the generated sound speed distribution to the photoacoustic image generation means 25 and the ultrasonic image generation means 26. The photoacoustic image reconstruction means 251 of the photoacoustic image generation means 25 delays and adds the photoacoustic signals detected by the respective elements with a delay time based on the sound velocity distribution generated based on the photoacoustic signals. The ultrasonic image reconstruction means 261 of the ultrasonic image generation means 26 is a delay time based on the sound velocity distribution generated based on the photoacoustic signal, and delay-adds the reflected acoustic signal detected by each element with the delay time. To do.
 本実施形態では、光音響信号と反射音響信号のうちの光音響信号に基づいて音速分布を生成し、光音響信号に基づいて生成された音速分布を、超音波画像の生成に利用する。光音響画像と超音波画像とを比較すると、一般に、光音響画像は輝度が高い(信号強度が大きい)点が少ない。このため、音速分布の生成の際に位相調整(図11のフローチャートにおけるステップA2~A4)を行う回数は、反射音響信号に基づいて音速分布を生成する場合に比して少なくなる。従って、反射音響信号を用い音速分布を生成する場合よりも、音速分布を高速に求めることができる。高速に画像表示を行う場合は、第2実施形態のように光音響信号に基づいて音速分布を生成する方が有利である。 In the present embodiment, a sound speed distribution is generated based on the photoacoustic signal among the photoacoustic signal and the reflected acoustic signal, and the sound speed distribution generated based on the photoacoustic signal is used for generating an ultrasonic image. Comparing the photoacoustic image and the ultrasonic image, the photoacoustic image generally has few points with high luminance (high signal intensity). Therefore, the number of times that the phase adjustment (steps A2 to A4 in the flowchart of FIG. 11) is performed when the sound speed distribution is generated is smaller than when the sound speed distribution is generated based on the reflected acoustic signal. Therefore, the sound speed distribution can be obtained at a higher speed than when the sound speed distribution is generated using the reflected acoustic signal. When performing image display at high speed, it is advantageous to generate a sound speed distribution based on the photoacoustic signal as in the second embodiment.
 なお、光音響画像の生成に際しては、レーザユニット13を複数の波長の光を出射可能に構成し、レーザユニット13から被検体に相互に異なる複数の波長のレーザ光を照射してもよい。その場合、光音響画像生成手段25は、被検体内の光吸収体における光吸収特性の波長依存性を利用して、例えば動脈と静脈とが判別可能な光音響画像を生成してもよい。 When generating the photoacoustic image, the laser unit 13 may be configured to emit light having a plurality of wavelengths, and the laser unit 13 may irradiate the subject with laser beams having a plurality of different wavelengths. In this case, the photoacoustic image generation means 25 may generate a photoacoustic image that can distinguish, for example, an artery and a vein, using the wavelength dependence of the light absorption characteristics of the light absorber in the subject.
 例えば被検体に対して波長約750nmの光と、波長約800nmの光を照射する。ヒトの動脈に多く含まれる酸素化ヘモグロビン(酸素と結合したヘモグロビン:oxy-Hb)の波長750nmにおける分子吸収係数は、波長800nmにおける分子吸収係数よりも低い。一方、静脈に多く含まれる脱酸素化ヘモグロビン(酸素と結合していないヘモグロビンdeoxy-Hb)の波長750nmにおける分子吸収係数は、波長800nmにおける分子吸収係数よりも高い。この性質を利用し、波長800nmで得られた光音響信号に対して、波長750nmで得られた光音響信号が相対的に大きいのか小さいのかを調べることで、動脈からの光音響信号と静脈からの光音響信号とを判別することができる。 For example, the subject is irradiated with light having a wavelength of about 750 nm and light having a wavelength of about 800 nm. A molecular absorption coefficient at a wavelength of 750 nm of oxygenated hemoglobin (oxy-Hb combined with oxygen) contained in a large amount of human arteries is lower than a molecular absorption coefficient at a wavelength of 800 nm. On the other hand, the molecular absorption coefficient at a wavelength of 750 nm of deoxygenated hemoglobin (hemoglobin deoxy-Hb not bound to oxygen) contained in a large amount in the vein is higher than the molecular absorption coefficient at a wavelength of 800 nm. Using this property, by examining whether the photoacoustic signal obtained at a wavelength of 750 nm is relatively large or small with respect to the photoacoustic signal obtained at a wavelength of 800 nm, the photoacoustic signal from the artery and the vein From the photoacoustic signal.
 図13は、2つの波長の光を被検体に照射する場合の光音響画像生成手段の構成例を示す。光音響画像生成手段25aは、光音響画像再構成手段251、検波・対数変換手段252、及び光音響画像構築手段253に加えて、2波長データ演算手段254と強度情報抽出手段255と有する。光音響画像再構成手段251は、被検体に第1の波長(例えば750nm)の光が照射されたときの光音響信号(第1の光音響信号)と、第2の波長(例えば800nm)の光が照射されたときの光音響信号(第2の光音響信号)とを、それぞれ再構成する。光音響画像再構成手段251は、再構成した第1の光音響信号及び第2の光音響信号を、2波長データ演算手段254と強度情報抽出手段255とに渡す。 FIG. 13 shows a configuration example of the photoacoustic image generation means when the subject is irradiated with light of two wavelengths. The photoacoustic image generation unit 25 a includes a two-wavelength data calculation unit 254 and an intensity information extraction unit 255 in addition to the photoacoustic image reconstruction unit 251, the detection / logarithm conversion unit 252, and the photoacoustic image construction unit 253. The photoacoustic image reconstruction unit 251 has a photoacoustic signal (first photoacoustic signal) when the subject is irradiated with light having a first wavelength (for example, 750 nm) and a second wavelength (for example, 800 nm). The photoacoustic signal (second photoacoustic signal) when the light is irradiated is reconstructed. The photoacoustic image reconstruction unit 251 passes the reconstructed first and second photoacoustic signals to the two-wavelength data calculation unit 254 and the intensity information extraction unit 255.
 2波長データ演算手段254は、被検体に照射された複数波長の光のそれぞれに対応した光音響信号間の相対的な信号強度の大小関係を示すデータを生成する。2波長データ演算手段254は、例えば第1の光音響信号と第2の光音響信号との比を、相対的な信号強度の大小関係を示すデータとして生成する。例えば、第1の光音響信号の信号強度をXとし、第2の光音響信号の信号強度をYとしたとき、Y/Xを、相対的な信号強度の大小関係を示すデータとする。2つの光音響信号の比(Y/X)を相対的な信号強度の大小関係を示すデータにするのに代えて、tan-1(Y/X)を相対的な信号強度の大小関係を示すデータとして用いてもよい。 The two-wavelength data calculation means 254 generates data indicating the relative magnitude of the relative signal intensity between the photoacoustic signals corresponding to each of a plurality of wavelengths of light irradiated on the subject. The two-wavelength data calculation unit 254 generates, for example, a ratio between the first photoacoustic signal and the second photoacoustic signal as data indicating the relative relationship between the signal intensities. For example, when the signal intensity of the first photoacoustic signal is X and the signal intensity of the second photoacoustic signal is Y, Y / X is data indicating the relative magnitude of the signal intensity. Instead of using the ratio (Y / X) of the two photoacoustic signals as data indicating the relative magnitude of the relative signal intensity, tan −1 (Y / X) indicates the relative magnitude of the signal intensity. It may be used as data.
 強度情報抽出手段255は、各波長に対応した光音響信号に基づいて信号強度を示す強度情報を生成する。強度情報抽出手段255は、例えば(X+Y1/2を、強度情報として生成する。検波・対数変換手段252は、強度情報抽出手段255で抽出された強度情報を示すデータの包絡線を生成し、次いでその包絡線を対数変換してダイナミックレンジを広げる。 The intensity information extraction unit 255 generates intensity information indicating the signal intensity based on the photoacoustic signal corresponding to each wavelength. The intensity information extraction unit 255 generates, for example, (X 2 + Y 2 ) 1/2 as the intensity information. The detection / logarithm conversion means 252 generates an envelope of data indicating the intensity information extracted by the intensity information extraction means 255, and then logarithmically converts the envelope to widen the dynamic range.
 光音響画像構築手段253は、2波長データ演算手段254で生成された2波長データの相対的な大小関係の情報と、強度情報抽出手段255で生成された強度情報とに基づいて、光音響画像を生成する。光音響画像構築手段253は、例えば入力された強度情報に基づいて、光吸収体の分布画像における各画素の輝度(階調値)を決定する。また、光音響画像構築手段253は、例えば位相情報に基づいて、光吸収体の分布画像における各画素の色(表示色)を決定する。光音響画像構築手段253は、例えば相対的な大小関係を示すデータの範囲を所定の色に対応させたカラーマップに用いて、入力された大小関係を示すデータに基づいて各画素の色を決定する。 The photoacoustic image construction means 253 is based on the relative magnitude relationship information of the two-wavelength data generated by the two-wavelength data calculation means 254 and the intensity information generated by the intensity information extraction means 255. Is generated. For example, the photoacoustic image construction unit 253 determines the luminance (gradation value) of each pixel in the distribution image of the light absorber based on the input intensity information. The photoacoustic image construction unit 253 determines the color (display color) of each pixel in the light absorber distribution image based on, for example, phase information. The photoacoustic image construction unit 253 determines the color of each pixel based on the input data indicating the magnitude relationship using, for example, a color map in which the range of data indicating the relative magnitude relationship is associated with a predetermined color. To do.
 光音響画像構築手段253は、例えばtan-1(Y/X)を光音響信号間の相対的な大小関係を示すデータとしたとき、例えば0°が青色で45°に近づくに連れて無色(白色)になるように色が徐々に変化すると共に、90°が赤色で45°に近づくに連れて白色になるように色が徐々に変化するようなカラーマップを用いて光音響画像を生成する。第1の光音響信号が第2の光音響信号よりも大きい部分は静脈に対応し、第2の光音響信号が第1の光音響信号よりも大きい部分は動脈に対応するため、そのようなカラーマップを用いることで、光音響画像上で、動脈に対応した部分を赤色で表わし、静脈に対応した部分を青色で表わすことができる。 When the photoacoustic image construction unit 253 uses, for example, tan −1 (Y / X) as data indicating the relative magnitude relationship between the photoacoustic signals, the photoacoustic image construction unit 253 is blue (for example, 0 ° is blue and becomes colorless as 45 ° approaches). A photoacoustic image is generated using a color map that gradually changes so that the color gradually changes so that the color gradually changes so that 90 ° is red and 45 ° approaches 45 °. . A portion where the first photoacoustic signal is larger than the second photoacoustic signal corresponds to a vein, and a portion where the second photoacoustic signal is larger than the first photoacoustic signal corresponds to an artery. By using the color map, the portion corresponding to the artery can be represented in red and the portion corresponding to the vein can be represented in blue on the photoacoustic image.
 複数波長の光を照射する場合で、かつ、光音響信号に基づいて音速分布を求める場合は、複数の波長のうちの1つが照射されたときの光音響信号に基づいて音速分布を生成すればよい。例えば、複数波長のうちで、光音響信号の信号強度が大きい点が最も多い波長を選択し、その波長に対応する光音響信号に基づいて音速分布を生成する。例えば波長750nmの光と波長800nmの光が照射されるときは、波長750nmの光が照射されたときに検出された光音響信号に基づいて音速分布を生成すればよい。 In the case of irradiating light of a plurality of wavelengths and obtaining the sound speed distribution based on the photoacoustic signal, if the sound speed distribution is generated based on the photoacoustic signal when one of the plurality of wavelengths is irradiated Good. For example, the wavelength having the highest signal intensity of the photoacoustic signal is selected from a plurality of wavelengths, and the sound speed distribution is generated based on the photoacoustic signal corresponding to the wavelength. For example, when light having a wavelength of 750 nm and light having a wavelength of 800 nm are irradiated, a sound speed distribution may be generated based on a photoacoustic signal detected when the light having a wavelength of 750 nm is irradiated.
 上記では、2つの波長の光が照射される例について説明したが、光音響画像の生成に際して被検体に照射されるパルスレーザ光の波長の数は2つには限られない。3以上のパルスレーザ光を被検体に照射し、各波長に対応する光音響信号に基づいて光音響画像を生成してもよい。 In the above description, an example in which light of two wavelengths is irradiated has been described. However, the number of wavelengths of pulsed laser light irradiated to the subject when generating a photoacoustic image is not limited to two. The subject may be irradiated with three or more pulsed laser beams, and a photoacoustic image may be generated based on a photoacoustic signal corresponding to each wavelength.
 音速分布を生成する際に使用する音響波の検出信号は、1回分の音響波送信に対して検出された反射音響信号、又は、1回分の光照射により生じた光音響信号には限定されない。例えば、超音波送信を複数回行い、複数回分の反射音響信号を加算平均して音速分布を生成してもよい。また、光照射を複数回行い、複数回分の光音響信号を加算平均して音速分布を生成してもよい。超音波画像及び光音響画像の生成も、同様に、加算平均された反射音響信号及び光音響信号に基づいて画像生成を行ってもよい。 The acoustic wave detection signal used when generating the sound velocity distribution is not limited to a reflected acoustic signal detected for one acoustic wave transmission or a photoacoustic signal generated by one light irradiation. For example, the sound speed distribution may be generated by performing ultrasonic transmission a plurality of times and averaging the reflected acoustic signals for a plurality of times. Moreover, light irradiation may be performed a plurality of times, and the sound speed distribution may be generated by averaging the photoacoustic signals for a plurality of times. Similarly, the generation of the ultrasonic image and the photoacoustic image may be performed based on the reflected acoustic signal and the photoacoustic signal which are averaged.
 上記各実施形態では、画像生成装置が光音響画像と超音波画像の双方を生成するものとして説明したが、第1実施形態においては超音波画像の生成を省略し、第2実施形態においては光音響画像の生成を省略できる。この場合、例えば第1実施形態では、反射音響信号は、光音響画像を生成する際に用いる音速分布を生成するために用いられる。光音響画像の生成に際し、反射音響信号に基づく精度の高い音速分布を用いることで、光音響画像の画質を向上できる。一方、第2実施形態では、光音響信号は、超音波画像を生成する際に用いる音速分布を生成するために用いられる。超音波画像の生成に際し、光音響信号に基づいてより短い時間で生成できる音速分布を用いることで、超音波画像生成に要する時間を短縮できる。 In each of the above embodiments, the image generation apparatus has been described as generating both a photoacoustic image and an ultrasonic image. However, in the first embodiment, generation of an ultrasonic image is omitted, and in the second embodiment, light is generated. Generation of an acoustic image can be omitted. In this case, for example, in the first embodiment, the reflected acoustic signal is used to generate a sound velocity distribution used when generating a photoacoustic image. When generating a photoacoustic image, the image quality of the photoacoustic image can be improved by using a highly accurate sound velocity distribution based on the reflected acoustic signal. On the other hand, in the second embodiment, the photoacoustic signal is used to generate a sound velocity distribution used when generating an ultrasonic image. When generating an ultrasonic image, the time required for generating an ultrasonic image can be shortened by using a sound velocity distribution that can be generated in a shorter time based on the photoacoustic signal.
 以上、本発明をその好適な実施形態に基づいて説明したが、本発明の画像生成装置及び方法は、上記実施形態にのみ限定されるものではなく、上記実施形態の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。 Although the present invention has been described based on the preferred embodiment, the image generation apparatus and method of the present invention are not limited to the above embodiment, and various modifications and changes can be made to the configuration of the above embodiment. Those subjected to are also included in the scope of the present invention.

Claims (18)

  1.  光源と、
     被検体に音響波を送信する音響波送信手段と、
     前記音響波送信手段から送信された音響波に対する反射音響波、及び、前記光源からの光が被検体に出射された後に被検体内で生じた光音響波を検出する音響波検出手段と、
     前記音響波検出手段で検出された反射音響波の検出信号である反射音響信号、及び、光音響波の検出信号である光音響信号のうちの一方に基づいて、被検体内を進行する音響波の音速分布を生成する音速分布生成手段と、
     前記反射音響信号及び光音響信号のうちの他方と前記音速分布とに基づいて第1の画像を生成する第1の画像生成手段とを備えたことを特徴とする画像生成装置。
    A light source;
    An acoustic wave transmitting means for transmitting an acoustic wave to the subject;
    An acoustic wave detecting means for detecting a reflected acoustic wave with respect to the acoustic wave transmitted from the acoustic wave transmitting means, and a photoacoustic wave generated in the subject after the light from the light source is emitted to the subject;
    An acoustic wave that travels in the subject based on one of a reflected acoustic signal that is a detection signal of the reflected acoustic wave detected by the acoustic wave detection means and a photoacoustic signal that is a detection signal of the photoacoustic wave. A sound speed distribution generating means for generating a sound speed distribution of
    An image generation apparatus comprising: a first image generation unit configured to generate a first image based on the other of the reflected acoustic signal and the photoacoustic signal and the sound velocity distribution.
  2.  前記第1の画像生成手段が、前記音響波検出手段の複数の音響波検出器素子で検出された反射音響信号及び光音響信号のうちの他方を、前記音速分布に基づく遅延時間で遅延加算することで前記第1の画像を生成することを特徴とする請求項1に記載の画像生成装置。 The first image generating means delay-adds the other one of the reflected acoustic signal and the photoacoustic signal detected by the plurality of acoustic wave detector elements of the acoustic wave detecting means with a delay time based on the sound velocity distribution. The image generation apparatus according to claim 1, wherein the first image is generated.
  3.  前記音速分布生成手段が、反射音響信号に基づいて音速分布を生成するものであり、前記第1の画像生成手段が、前記光音響信号に基づく光音響画像を第1の画像として生成するものであることを特徴とする請求項1又は2に記載の画像生成装置。 The sound speed distribution generating means generates a sound speed distribution based on a reflected acoustic signal, and the first image generating means generates a photoacoustic image based on the photoacoustic signal as a first image. The image generation apparatus according to claim 1, wherein the image generation apparatus is provided.
  4.  前記光源が、相互に異なる複数の波長の光を出射し、
     前記第1の画像生成手段が、被検体に出射された複数の波長の光に対して前記音響波検出手段で検出された、複数の波長のそれぞれに対応した光音響信号間の相対的な信号強度の大小関係を抽出する2波長データ演算手段と、複数の波長のそれぞれに対応した光音響信号に基づいて信号強度を示す強度情報を生成する強度情報抽出手段とを含み、前記光音響画像の各画素の階調値を前記強度情報に基づいて決定し、かつ、各画素の表示色を前記相対的な信号強度の大小関係に基づいて決定することを特徴とする請求項3に記載の画像生成装置。
    The light source emits light having a plurality of different wavelengths;
    Relative signals between the photoacoustic signals corresponding to each of the plurality of wavelengths detected by the acoustic wave detecting unit with respect to the light of the plurality of wavelengths emitted by the first image generation unit. Two-wavelength data calculating means for extracting magnitude relations, and intensity information extracting means for generating intensity information indicating signal intensity based on photoacoustic signals corresponding to each of a plurality of wavelengths, 4. The image according to claim 3, wherein a gradation value of each pixel is determined based on the intensity information, and a display color of each pixel is determined based on the relative relationship between the relative signal intensities. Generator.
  5.  前記音速分布生成手段が、光音響信号に基づいて音速分布を生成するものであり、前記第1の画像生成手段が、前記反射音響信号に基づく反射音響波画像を第1の画像として生成するものであることを特徴とする請求項1又は2に記載の画像生成装置。 The sound speed distribution generating means generates a sound speed distribution based on a photoacoustic signal, and the first image generating means generates a reflected acoustic wave image based on the reflected acoustic signal as a first image. The image generation apparatus according to claim 1, wherein the image generation apparatus is an image generation apparatus.
  6.  前記反射音響信号及び光音響信号のうちの一方と前記音速分布とに基づいて第2の画像を生成する第2の画像生成手段を更に備えたことを特徴とする請求項1から5何れかに記載の画像生成装置。 6. The apparatus according to claim 1, further comprising second image generation means for generating a second image based on one of the reflected acoustic signal and the photoacoustic signal and the sound velocity distribution. The image generating apparatus described.
  7.  前記第2の画像生成手段が、前記音響波検出手段の複数の音響波検出器素子で検出された反射音響信号及び光音響信号のうちの一方を、前記音速分布に基づく遅延時間で遅延加算することで前記第2の画像を生成することを特徴とする請求項6に記載の画像生成装置。 The second image generating means delay-adds one of a reflected acoustic signal and a photoacoustic signal detected by a plurality of acoustic wave detector elements of the acoustic wave detecting means with a delay time based on the sound velocity distribution. The image generation apparatus according to claim 6, wherein the second image is generated.
  8.  前記第1の画像と第2の画像とを合成する画像合成手段を更に備えたことを特徴とする請求項6又は7に記載の画像生成装置。 The image generating apparatus according to claim 6 or 7, further comprising an image synthesizing unit that synthesizes the first image and the second image.
  9.  前記音速分布生成手段が、着目画素に対応する、前記反射音響信号及び光音響信号のうちの一方の信号値が所定の値以上のとき、遅延加算後の画素の輝度が最大となるように、遅延加算する音響波検出手段の音響波検出器素子の範囲の各素子に対する遅延時間を調整し、該調整した遅延時間に基づいて前記音速分布を生成することを特徴とする請求項1から8何れかに記載の画像生成装置。 When the sound velocity distribution generating means has one signal value of the reflected acoustic signal and the photoacoustic signal corresponding to the pixel of interest equal to or greater than a predetermined value, the luminance of the pixel after delay addition is maximized. 9. The acoustic velocity distribution is generated based on the adjusted delay time by adjusting the delay time for each element in the range of the acoustic wave detector element of the acoustic wave detecting means for performing delay addition. An image generating apparatus according to claim 1.
  10.  被検体に向けて光が出射された後に、被検体から光音響波を検出するステップと、
     被検体に音響波を送信するステップと、
     前記送信された音響波に対する反射音響波を検出するステップと、
     前記光音響波及び反射音響波のうちの一方に基づいて、被検体内を進行する音響波の音速分布を求めるステップと、
     前記光音響波及び反射音響波のうちの他方と前記音速分布とに基づいて、第1の画像を生成するステップとを有することを特徴とする画像生成方法。
    A step of detecting a photoacoustic wave from the subject after light is emitted toward the subject;
    Transmitting an acoustic wave to the subject;
    Detecting a reflected acoustic wave with respect to the transmitted acoustic wave;
    Obtaining a sound velocity distribution of an acoustic wave traveling in the subject based on one of the photoacoustic wave and the reflected acoustic wave;
    An image generation method comprising: generating a first image based on the other of the photoacoustic wave and the reflected acoustic wave and the sound velocity distribution.
  11.  前記第1の画像を生成するステップでは、前記光音響波及び反射音響波の検出に用いられる音響波検出器の複数の音響波検出器素子で検出された反射音響信号及び光音響信号のうちの他方を、前記音速分布に基づく遅延時間で遅延加算することで前記第1の画像が生成されることを特徴とする請求項10に記載の画像生成方法。 In the step of generating the first image, among the reflected acoustic signal and the photoacoustic signal detected by a plurality of acoustic wave detector elements of the acoustic wave detector used for detecting the photoacoustic wave and the reflected acoustic wave. The image generation method according to claim 10, wherein the first image is generated by delay-adding the other with a delay time based on the sound velocity distribution.
  12.  前記音速分布を生成するステップでは、前記反射音響信号に基づいて音速分布が生成され、前記第1の画像を生成するステップでは、前記光音響信号に基づく光音響画像が第1の画像として生成されることを特徴とする請求項10又は11に記載の画像生成方法。 In the step of generating the sound velocity distribution, a sound velocity distribution is generated based on the reflected acoustic signal, and in the step of generating the first image, a photoacoustic image based on the photoacoustic signal is generated as a first image. The image generation method according to claim 10 or 11, characterized in that:
  13.  被検体に向けて相互に異なる複数の波長の光が出射され、
     前記第1の画像を生成するステップが、
     被検体に出射された複数の波長の光に対して検出された、複数の波長のそれぞれに対応した光音響信号間の相対的な信号強度の大小関係を抽出するステップと、
     複数の波長のそれぞれに対応した光音響信号に基づいて信号強度を示す強度情報を生成するステップと、
     前記光音響画像の各画素の階調値を前記強度情報に基づいて決定し、かつ、各画素の表示色を前記相対的な信号強度の大小関係に基づいて決定するステップとを含むことを特徴とする請求項12に記載の画像生成方法。
    Multiple different wavelengths of light are emitted toward the subject,
    Generating the first image comprises:
    Extracting relative magnitudes of relative signal intensities between photoacoustic signals corresponding to each of a plurality of wavelengths, detected with respect to light of a plurality of wavelengths emitted to a subject;
    Generating intensity information indicating signal intensity based on photoacoustic signals corresponding to each of a plurality of wavelengths;
    Determining a gradation value of each pixel of the photoacoustic image based on the intensity information, and determining a display color of each pixel based on the relative relationship between the relative signal intensities. The image generation method according to claim 12.
  14.  前記音速分布を生成するステップでは、前記光音響信号に基づいて音速分布が生成され、前記第1の画像を生成するステップでは、前記反射音響信号に基づく反射音響波画像が第1の画像として生成されることを特徴とする請求項10又は11に記載の画像生成方法。 In the step of generating the sound velocity distribution, a sound velocity distribution is generated based on the photoacoustic signal, and in the step of generating the first image, a reflected acoustic wave image based on the reflected acoustic signal is generated as a first image. The image generation method according to claim 10, wherein the image generation method is performed.
  15.  前記反射音響信号及び光音響信号のうちの一方と前記音速分布とに基づいて第2の画像を生成する第2の画像生成ステップを更に有することを特徴とする請求項10から14何れかに記載の画像生成方法。 15. The method according to claim 10, further comprising a second image generation step of generating a second image based on one of the reflected acoustic signal and the photoacoustic signal and the sound velocity distribution. Image generation method.
  16.  前記第2の画像を生成するステップでは、前記光音響波及び前記反射音響波の検出に用いられる音響波検出器の複数の音響波検出器素子で検出された反射音響信号及び光音響信号のうちの一方を、前記音速分布に基づく遅延時間で遅延加算することで前記第2の画像が生成されることを特徴とする請求項15に記載の画像生成方法。 In the step of generating the second image, among the reflected acoustic signal and the photoacoustic signal detected by a plurality of acoustic wave detector elements of an acoustic wave detector used for detecting the photoacoustic wave and the reflected acoustic wave. The image generation method according to claim 15, wherein the second image is generated by delay-adding one of the two at a delay time based on the sound velocity distribution.
  17.  前記第1の画像と第2の画像とを合成するステップを更に有することを特徴とする請求項15又は16に記載の画像生成方法。 The image generation method according to claim 15 or 16, further comprising a step of synthesizing the first image and the second image.
  18.  前記音速分布を生成するステップでは、着目画素に対応する、前記反射音響信号及び光音響信号のうちの一方の信号値が所定の値以上のとき、遅延加算後の画素の輝度が最大となるように、遅延加算する音響波検出器素子の範囲の各素子に対する遅延時間を調整し、該調整した遅延時間に基づいて前記音速分布が生成されることを特徴とする請求項10から17何れかに記載の画像生成方法。 In the step of generating the sound velocity distribution, when one of the reflected acoustic signal and the photoacoustic signal corresponding to the target pixel is equal to or greater than a predetermined value, the luminance of the pixel after delay addition is maximized. The acoustic velocity distribution is generated based on the adjusted delay time by adjusting the delay time for each element in the range of the acoustic wave detector elements to be delay-added. The image generation method as described.
PCT/JP2013/001181 2012-02-28 2013-02-27 Image-generation device and method WO2013128921A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012041247 2012-02-28
JP2012-041247 2012-02-28
JP2013010973A JP5873816B2 (en) 2012-02-28 2013-01-24 Image generating apparatus and method
JP2013-010973 2013-01-24

Publications (1)

Publication Number Publication Date
WO2013128921A1 true WO2013128921A1 (en) 2013-09-06

Family

ID=49082133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001181 WO2013128921A1 (en) 2012-02-28 2013-02-27 Image-generation device and method

Country Status (2)

Country Link
JP (1) JP5873816B2 (en)
WO (1) WO2013128921A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072080A1 (en) * 2014-11-07 2016-05-12 Canon Kabushiki Kaisha Object information acquiring apparatus and method using a photoacoustic effect

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6544910B2 (en) * 2014-11-07 2019-07-17 キヤノン株式会社 INFORMATION PROCESSING APPARATUS, OBJECT INFORMATION ACQUIRING APPARATUS, AND METHOD OF DETERMINING SOUND SPEED
JP6452110B2 (en) * 2015-02-06 2019-01-16 キヤノン株式会社 Hand-held probe
WO2018043193A1 (en) * 2016-08-30 2018-03-08 キヤノン株式会社 Information acquisition device and signal processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021380A (en) * 2003-07-02 2005-01-27 Toshiba Corp Living body information imaging apparatus
JP2010512940A (en) * 2006-12-21 2010-04-30 ユニヴァシティート トウェンテ Imaging apparatus and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021380A (en) * 2003-07-02 2005-01-27 Toshiba Corp Living body information imaging apparatus
JP2010512940A (en) * 2006-12-21 2010-04-30 ユニヴァシティート トウェンテ Imaging apparatus and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN JIN ET AL.: "Correction of the effects of acoustic heterogeneity on thermoacoustic tomography using transmission ultrasound tomography", PROC.OF SPIE, vol. 6086, 2006, pages 1 - 5 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072080A1 (en) * 2014-11-07 2016-05-12 Canon Kabushiki Kaisha Object information acquiring apparatus and method using a photoacoustic effect
JP2016093492A (en) * 2014-11-07 2016-05-26 キヤノン株式会社 Subject information acquisition device

Also Published As

Publication number Publication date
JP2013208422A (en) 2013-10-10
JP5873816B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP6010306B2 (en) Photoacoustic measuring device
JP5662973B2 (en) Laser light source unit, control method thereof, photoacoustic image generation apparatus and method
WO2012114729A1 (en) Acousto-optical image generating device and method
JP5662974B2 (en) Laser light source unit, control method thereof, photoacoustic image generation apparatus and method
JP2012196308A (en) Apparatus and method for photoacoustic imaging
JP5681675B2 (en) Photoacoustic image generating apparatus and acoustic wave unit
JP5694991B2 (en) Photoacoustic imaging method and apparatus
JP5777394B2 (en) Photoacoustic imaging method and apparatus
JP5713968B2 (en) Photoacoustic image generating apparatus and acoustic wave unit
JP6177530B2 (en) Doppler measuring device and doppler measuring method
JP6289050B2 (en) SUBJECT INFORMATION ACQUISITION DEVICE, INFORMATION PROCESSING METHOD, AND PROGRAM
JP5873816B2 (en) Image generating apparatus and method
JP2013233386A (en) Photoacoustic image generation device, system, and method
JP5936559B2 (en) Photoacoustic image generation apparatus and photoacoustic image generation method
JP2012223367A (en) Photoacoustic image generation apparatus and method
JP5647584B2 (en) Photoacoustic image generation apparatus and method
WO2012114695A1 (en) Photoacoustic image generation device
JP5839688B2 (en) Photoacoustic image processing apparatus and method
WO2013080539A1 (en) Photoacoustic image generator device and photoacoustic image generator method
JP6482686B2 (en) Photoacoustic image generation system, apparatus, and method
JP5946230B2 (en) Photoacoustic imaging method and apparatus
JP6026953B2 (en) Photoacoustic image generation apparatus and photoacoustic image generation method
JP2014158612A (en) Photoacoustic image generating apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755513

Country of ref document: EP

Kind code of ref document: A1