WO2013008396A1 - Battery pack, charging control system and charging method - Google Patents

Battery pack, charging control system and charging method Download PDF

Info

Publication number
WO2013008396A1
WO2013008396A1 PCT/JP2012/004149 JP2012004149W WO2013008396A1 WO 2013008396 A1 WO2013008396 A1 WO 2013008396A1 JP 2012004149 W JP2012004149 W JP 2012004149W WO 2013008396 A1 WO2013008396 A1 WO 2013008396A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
battery cell
charge
charging
current value
Prior art date
Application number
PCT/JP2012/004149
Other languages
French (fr)
Japanese (ja)
Inventor
忠大 吉田
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Publication of WO2013008396A1 publication Critical patent/WO2013008396A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack, a charging control system, and a charging method.
  • a constant current and constant voltage charging method is used as a charging method for the lithium ion secondary battery.
  • charging is performed at a constant current until the battery voltage reaches a specific voltage (hereinafter referred to as a constant current mode), and after the specific voltage is reached, the applied voltage is constant. (Hereinafter referred to as a constant voltage mode) charging method.
  • the cycle performance of the battery may be deteriorated depending on the use environment and the charging condition of the battery.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-294196 describes a charging method in which a charge termination rate is set to 0.2 ItA or higher for a battery whose temperature can be 45 ° C. or higher.
  • a side reaction during charging accounts for a large percentage as a cause of reducing charge / discharge cycle performance, and the degree of the side reaction suddenly increases at 45 ° C. or higher. ing.
  • this side reaction is considered to be related to the potential applied in the constant voltage mode at the time of charging.
  • the charge termination rate By setting the charge termination rate to 0.2 ItA, the time of the constant voltage mode during charging is set. Is shortened. It is described that as a result of shortening the time in the constant voltage mode, the above side reaction is suppressed and the deterioration of the battery performance when the discharge cycle is repeated is suppressed.
  • the present inventor has intensively investigated the mechanism of deterioration of the cycle performance of the battery, and it is not sufficient to switch the charge end current value at 45 ° C. or higher. I thought it was necessary to switch the current value. It has been found that by setting the end-of-charge current value according to the temperature of the battery, overcharging can be prevented and close to full charging can be achieved.
  • a battery cell comprising: Temperature measuring means for measuring the temperature of the battery cell; Based on the detection result of the temperature measuring means, an end current setting means for calculating a charge end current value when charging the battery cell; Charging control means for terminating charging of the battery cell when the charging current of the battery cell becomes equal to or lower than the charge end current value; With When the temperature of the battery cell is at least 20 ° C. or more and less than 45 ° C., A battery pack is provided that changes the end-of-charge current value based on the temperature of the battery cell.
  • Temperature receiving means for receiving the temperature of the battery cell; Based on the detection result of the temperature receiving means, an end current setting means for calculating a charge end current value when charging the battery cell; Charging control means for terminating charging of the battery cell when the charging current of the battery cell becomes equal to or lower than the charge end current value; With When the temperature of the battery cell is at least 20 ° C. or more and less than 45 ° C., A charge control system is provided that changes the end-of-charge current value based on the temperature of the battery cell.
  • a charging start step for starting charging the battery cell and measuring the temperature of the battery cell being charged; and An end current setting step for calculating a charge end current value when charging the battery cell based on the measured temperature;
  • a determination step for determining a condition that the charging current of the battery cell is equal to or lower than the charge end current value; When the condition is not satisfied, the charging is continued, and when the condition is satisfied, the charging control step for terminating the charging of the battery cell; With When the temperature of the battery cell is at least 20 ° C. or more and less than 45 ° C., A charging method is provided that changes the end-of-charge current value based on the temperature of the battery cell.
  • the lithium ion secondary battery is activated as the temperature increases, and the direct current resistance decreases. For this reason, even if the charging conditions such as voltage, current, and time are the same, the higher the battery temperature, the easier the capacity is entered. Therefore, under the same charging conditions, the higher the battery temperature, the more overcharged, and the battery cycle performance tends to deteriorate. Under the same charging conditions, the full charge capacity cannot be obtained as the battery temperature decreases.
  • the end-of-charge current value is set based on the temperature of the battery cell. By doing so, it is possible to suppress overcharging even when the temperature of the battery cell is high, and it is possible to approach the full charge capacity even when the temperature of the battery cell is low.
  • the battery cell can be close to full charge without being overcharged.
  • battery pack 10 refers to an assembled battery having at least one battery unit.
  • the “battery unit” refers to one having at least one battery cell 100.
  • the battery cell 100 included in the “battery unit” may include one or more single cells having a positive electrode, a negative electrode, and the like.
  • the plurality of “battery units” may have different numbers of battery cells 100.
  • a case will be described in which a plurality of battery cells 100 having two unit cells connected in parallel are connected in series.
  • FIG. 1 is a circuit diagram showing a configuration of the battery pack 10 according to the first embodiment.
  • the battery pack 10 includes a battery cell 100, temperature measuring means (temperature calculation unit 200 and temperature sensor 210) for measuring the temperature of the battery cell 100, and a termination for calculating a charge termination current value when the battery cell 100 is charged.
  • Current setting means (control unit 300) and charge control means (control unit 300) for terminating the charging of the battery cell 100 are provided. Then, the control unit 300 changes the charge end current value based on the temperature of the battery cell 100 when the temperature of the battery cell 100 is at least 20 ° C. or higher and lower than 45 ° C.
  • the controller 300 calculates a charge termination current value when charging the battery cell 100 based on the detection result of the temperature measuring means. In addition, when the charging current of the battery cell 100 becomes equal to or lower than the charging end current value, the control unit 300 interrupts the charging current with the switch 500 or sends a signal from the external communication terminal 760 to the charger. 100 charge is terminated.
  • the battery pack 10 includes a plurality of battery cells 100.
  • the plurality of battery cells 100 are connected in series. Further, as described above, the battery cell 100 has two single cells. Specifically, the battery cell 100 is a lithium ion secondary battery.
  • the battery pack 10 in the first embodiment has a control circuit 20 in addition to the battery cell 100.
  • the control circuit 20 includes a temperature calculation unit 200, a control unit 300, a measurement unit 400, a current measurement unit 800, and a switch (SW) 500. Details will be described below.
  • the control circuit 20 in the first embodiment is connected to the battery cells 100 connected in series.
  • the control circuit 20 has an internal positive terminal 620, an internal negative terminal 640, an external positive terminal 720, and an external negative terminal 740.
  • the internal positive electrode terminal 620 is connected to the positive electrode of the battery cell 100 located closest to the positive electrode among the battery cells 100 connected in series.
  • the internal negative electrode terminal 640 is connected to the negative electrode of the battery cell 100 located closest to the negative electrode among the battery cells 100 connected in series.
  • the internal positive terminal 620 is connected to an external positive terminal 720 for connecting to an external device using the battery pack 10 via a wiring in the control circuit 20. Further, the internal negative terminal 640 is connected to an external negative terminal 740 for connecting to an external device using the battery pack 10 via a wiring in the control circuit 20.
  • a switch 500 for stopping charging or discharging is provided between the internal positive terminal 620 and the external positive terminal 720.
  • the switch 500 is provided between the internal positive terminal 620 and the external positive terminal 720 on the battery cell 100 side.
  • the switch 500 is a P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor), for example.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • two P-channel MOSFETs are provided. Thereby, one MOSFET is used to control charging. On the other hand, the other MOSFET is used to control the discharge.
  • Each MOSFET in the switch 500 is connected to the measurement unit 400.
  • the switch 500 is an N-channel MOSFET, the switch 500 is disposed between the internal negative terminal 640 and the external negative terminal 740.
  • the switch 500 may be an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT), a relay, or a breaker, for example.
  • IGBT Insulated Gate Bipolar Transistor
  • the temperature measurement means in the first embodiment includes a temperature calculation unit 200 and a temperature sensor 210.
  • the temperature sensor 210 is connected to the temperature calculation unit 200.
  • the temperature sensor 210 is arrange
  • the temperature sensor 210 may be disposed in another place in the plurality of battery cells 100.
  • the temperature sensor 210 detects the temperature of the battery cell 100.
  • the temperature calculation unit 200 calculates the temperature of the battery cell 100 using the signal output from the temperature sensor 210.
  • the end current setting means in the first embodiment includes a control unit 300.
  • a temperature calculation unit 200 and a measurement unit 400 are connected to the control unit 300.
  • the control unit 300 performs arithmetic processing based on the temperature of the battery cell 100 calculated by the temperature calculation unit 200. Specifically, the control unit 300 calculates a charge termination current value when charging the battery cell 100 based on the temperature of the battery cell 100 calculated by the temperature calculation unit 200.
  • the control unit 300 stores a full charge end current data indicating a relationship between a temperature of the battery cell 100 and a full charge end current value that is a charge end current value at the time of full charge, which will be described later (not shown). You may have.
  • the controller 300 is connected to an external communication terminal 760 for transmitting / receiving signals to / from an external device.
  • the control unit 300 transmits a signal to an external device (not shown) via the external communication terminal 760.
  • the control unit 300 receives a signal from an external device via the external communication terminal 760.
  • the battery pack 10 has a protection circuit in order to improve safety and charge / discharge cycle life.
  • the protection circuit includes a control unit 300, a measurement unit 400, and a switch 500.
  • the protection circuit has a function of forcibly terminating charging when the battery cell 100 is charged with a voltage exceeding the overcharge protection voltage.
  • Measurement unit 400 measures the voltage and current of battery cell 100.
  • the control unit 300 is connected to the measurement unit 400.
  • the controller 300 ends the charging of the battery cell 100 when the charging current value measured by the measuring unit 400 becomes equal to or less than the calculated charging end current value.
  • the battery pack 100 is packaged including the plurality of battery cells 100 and the control circuit 20.
  • FIGS. 2 and 3 are flowcharts for explaining the charging method according to the first embodiment.
  • FIG. 3 is a modification of FIG.
  • the charging method according to the first embodiment includes the following steps. Charging of the battery cell 100 is started (S110). The temperature of the battery cell 100 is measured (S120). Based on the measured temperature, an end-of-charge current value for charging the battery cell 100 is calculated (S130). After the constant voltage mode is entered and the current starts to be reduced, a condition is determined that the charging current has become equal to or lower than the charge end current value (S140). When the condition is not satisfied (S140 No), the charging is continued. When the condition is satisfied (S140 Yes), the charging of the battery cell 100 is terminated (S150).
  • S110 Charging of the battery cell 100 is started (S110).
  • S120 The temperature of the battery cell 100 is measured (S120). Based on the measured temperature, an end-of-charge current value for charging the battery cell 100 is calculated (S130).
  • S140 charge end current value
  • S140 charge
  • the external positive terminal 720 and the external negative terminal 740 are connected to the positive and negative electrodes of the power supply source. Thereby, charging of the battery cell 100 is started.
  • the measuring unit 400 measures the voltage of the battery cell 100
  • the current measuring unit 800 measures the charging current of the battery cell 100 (S110).
  • the temperature calculation unit 200 calculates the temperature of the battery cell 100 using the signal output from the temperature sensor 210 (S120).
  • control unit 300 receives the temperature result calculated from the temperature calculation unit 200, and calculates a charge termination current value when charging the battery cell 100 based on the temperature result (S130).
  • a method for calculating the charge end current value will be described below.
  • the charge end current value in the first embodiment is set to be higher as the temperature of the battery cell 100 becomes higher when the temperature of the battery cell 100 is at least 20 ° C. or higher and lower than 45 ° C.
  • the battery cell 100 is activated as the temperature increases, and the DC resistance decreases.
  • the battery cell 100 has a higher DC resistance as the temperature is lower.
  • the charging curve at 20 ° C. is V 20 and the charging curve at 40 ° C. is V 40
  • the battery cell 100 at 40 ° C. has a smaller direct current resistance, and therefore the resistance difference ⁇ I in the constant current region.
  • the voltage drops by the amount corresponding to RS (see FIG. 4A). Therefore, the battery cell 100 at 40 ° C.
  • the charging of the battery cell 100 is quickly completed by setting the charging end current value higher as the temperature of the battery cell 100 becomes higher.
  • the charging time of the battery cell 100 becomes shorter as the temperature becomes higher, and the battery cell 100 can be prevented from being overcharged.
  • the charge end current value to be lower as the temperature of the battery cell 100 becomes lower, the charging of the battery cell 100 ends late. Therefore, the charging time of the battery cell 100 becomes longer as the temperature becomes lower, and the battery cell 100 can be brought close to full charge.
  • the calculation method of the charge end current value in 1st Embodiment is the charge end current used as the temperature of the battery cell 100 and the full charge capacity in each temperature, when the temperature of the battery cell 100 is at least 20 degreeC or more and less than 45 degreeC More preferably, it is performed based on the full charge end current data indicating the relationship with the value. Since the full charge end current data varies depending on the characteristics of the battery cell 100, it is preferable to acquire data in advance for each of the plurality of battery cells 100.
  • the full charge capacity refers to a charge capacity when the battery pack 10 is charged under standard charge conditions at a reference temperature.
  • the charge voltage is 4.2 V
  • the charge end current value is a capacity when charging is performed under the condition that the charge end rate is 0.05 ItA.
  • the reference temperature is preferably room temperature.
  • the end-of-charge current value that is the full charge capacity at each temperature refers to the current value when the battery cell 100 reaches the full charge capacity at that temperature when the battery cell 100 is set to a certain temperature.
  • Full charge end current data indicating the relationship between the temperature of the battery cell 100 and the charge end current value at the full charge capacity at each temperature is created by measuring the charge end current value at the full charge capacity at each temperature. To do.
  • the full charge end current data may be stored in a storage unit (not shown) of the control unit 300, or may be stored in an external device and received from the external communication terminal 760.
  • the end current setting means preferably corrects the end charge current value based on the ratio of the current full charge capacity to the initial capacity value that is the initial full charge capacity of the battery cell 100. Specifically, it is preferable to correct the charge end current value to be lower as the ratio of the current full charge capacity to the initial capacity value becomes smaller.
  • the resistance gradually increases due to deterioration. Therefore, if the charge end current value calculated using the initial full charge capacity is fixed and used, the full charge capacity cannot be obtained as the deterioration proceeds. Therefore, in the first embodiment, by correcting the charge end current value to be lower as the ratio of the current full charge capacity to the initial capacity value of the battery cell 100 becomes smaller, the battery without changing the charge end rate.
  • the current full charge capacity of the battery cell is measured by capacity measuring means. Specifically, the current can be calculated by measuring the current with the current measuring unit 800 and integrating the current value with the control unit 300.
  • the control unit 300 receives the charging current of the battery cell 100 from the measurement unit 400, and determines a condition that the charging current is equal to or less than the calculated charge end current value (S140). When the condition is not satisfied, charging is continued (No in S140). At this time, as shown in FIG. 2, after the charging is continued, the temperature of the battery cell 100 may be measured again, and the charge end current value when the battery cell 100 is charged may be calculated again. Further, as shown in FIG. 3, after the charging is continued, the condition that the charging current becomes equal to or lower than the charging end current value may be determined without performing re-measurement of the temperature of the battery cell 100.
  • a signal is transmitted from the external communication terminal 760 of the control unit 300 to the power supply source (not shown), and the charging of the battery cell 100 is terminated (S150).
  • a signal is transmitted from the control unit 300 to the switch 500, and the charging current is interrupted by the switch 500, thereby terminating the charging of the battery cell 100 (S150).
  • charging of the battery pack 10 according to the first embodiment is controlled.
  • the battery pack 10 sets a charge termination current value based on the temperature of the battery cell 100. Specifically, when the temperature of the battery cell is at least 20 ° C.
  • the charge end current value is set higher as the temperature of the battery cell 100 becomes higher.
  • the charge time of the battery cell 100 becomes short as the temperature of the battery cell 100 becomes high, it can suppress that the battery cell 100 becomes overcharged.
  • the end-of-charge current value is set lower as the temperature of the battery cell 100 becomes lower. By doing so, the charging time of the battery cell 100 becomes longer as the temperature of the battery cell 100 becomes lower, so that the battery cell 100 can be brought close to full charge.
  • the battery pack 10 having the battery cells 100 it is possible to prevent the battery pack 10 having the battery cells 100 from being overcharged, and to approach full charge.
  • a battery pack 10 according to the second embodiment will be described.
  • the second embodiment is the same as the first embodiment except that each battery cell 100 includes a temperature sensor 210. Therefore, in the second embodiment, the description will focus on the parts that are different from the first embodiment.
  • FIG. 5 is a circuit diagram showing a configuration of the battery pack 10 according to the second embodiment.
  • the temperature measurement means in the second embodiment includes a temperature calculation unit 200 and a plurality of temperature sensors 210 provided for each battery cell 100. Each temperature sensor 210 is connected to the temperature calculation unit 200. Each temperature sensor 210 detects the temperature of each battery cell 100.
  • the temperature calculation unit 200 calculates the temperature of each of the plurality of battery cells 100 based on the detection result of each temperature sensor 210, and identifies the maximum temperature among the plurality of battery cells 100.
  • the end current setting means in the second embodiment calculates a charge end current value when charging the battery cell 100 based on the maximum temperature among the plurality of battery cells 100 specified by the temperature calculation unit 200.
  • FIGS. 6 and 7 are flowcharts for explaining the charging method according to the second embodiment.
  • FIG. 7 is a modification of FIG.
  • the charging method according to the second embodiment includes the following steps. Charging of the battery cell 100 is started (S110). The temperatures of the plurality of battery cells 100 are measured (S122). The maximum temperature is specified among the plurality of battery cells 100 (S124). Based on the specified maximum temperature of the battery cell 100, a charge end current value when the battery cell 100 is charged is calculated (S132). After the constant voltage mode is entered and the current starts to be reduced, a condition is determined that the charging current has become equal to or lower than the charge end current value (S140). When the condition is not satisfied (S140 No), the charging is continued. When the condition is satisfied (S140 Yes), the charging of the battery cell 100 is terminated (S140).
  • each step will be described in detail.
  • the external positive terminal 720 and the external negative terminal 740 are connected to the positive and negative electrodes of the power supply source. Thereby, charging of the battery cell 100 is started.
  • the measuring unit 400 measures the voltage of the battery cell 100
  • the current measuring unit 800 measures the charging current of the battery cell 100 (S110).
  • the temperature calculation unit 200 receives the detection result of the temperature of each battery cell 100 from the temperature sensor 210, calculates the temperature of the battery cell 100 based on the detection result, and is the maximum among the plurality of battery cells 100.
  • the temperature is specified (S124).
  • control unit 300 receives the maximum temperature result from the temperature calculation unit 200, and calculates a charge termination current value when charging the battery cell 100 based on the maximum temperature (S132).
  • the following steps are the same as those in the first embodiment except that the maximum temperature of the battery cell 100 is used.
  • the plurality of battery cells 100 in the battery pack 10 may vary in temperature internally due to the arrangement of the battery cells 100.
  • the temperature of the battery cell 100 near Cell 3 in FIG. 5
  • the battery cell 100 is activated as the temperature increases, and the DC resistance decreases. Therefore, even if charging conditions such as voltage, current, and time are the same, the capacity of the battery cell 100 becomes easier as the battery temperature increases. Therefore, under the same charging condition, the battery cell 100 having a higher battery temperature becomes overcharged.
  • the charging is forcibly terminated by the protection circuit.
  • the battery pack 10 in the second embodiment sets a charge termination current value based on the maximum temperature in each battery cell 100. By doing so, since the battery cell 100 that reaches a voltage exceeding the overcharge protection voltage is suppressed, it is difficult for the protection circuit to forcibly terminate the charge.
  • each of the plurality of battery cells 100 included in the battery pack 10 can be brought close to full charge while suppressing overcharging.
  • FIG. 8 is a circuit diagram showing configurations of the battery pack 10 and the control circuit 20 according to the third embodiment.
  • the third embodiment is the same as the first embodiment except that the control circuit 20 is provided outside the battery pack 10. Details will be described below.
  • control circuit 20 is provided outside the battery pack 10.
  • the control circuit 20 is provided, for example, in a charging device (not shown) that is independent from the battery pack 10.
  • the control circuit 20 may be provided in a device used when the battery pack 10 is discharged and used.
  • the battery pack 10 is provided with a positive terminal 820 and a negative terminal 840 for charging and discharging the battery pack 10.
  • the control circuit 20 includes a temperature calculation unit 200, a control unit 300, a measurement unit 400, and a switch (SW) 500.
  • the positive terminal 920 of the control circuit 20 is provided at a position corresponding to the positive terminal 820 of the battery pack 10 on the battery pack 10 side of the control circuit 20.
  • the negative terminal 940 of the control circuit 20 is provided at a position corresponding to the negative terminal 840 of the battery pack 10. These terminals are connected to each other by wiring (not shown). As a result, charging power is supplied from the control circuit 20 to the battery pack 10.
  • control circuit 20 is provided outside the battery pack 10.
  • the control circuit 20 is connected to the battery cell 100 via wiring.
  • FIG. 9 is a circuit diagram showing configurations of the battery pack 10 and the control circuit 20 according to the fourth embodiment.
  • the fourth embodiment is the same as the third embodiment except that a plurality of temperature sensors 210 are provided for each battery cell 100.
  • the end current setting means in the fourth embodiment is charged when charging the battery cell 100 based on the maximum temperature in the battery cell 100 specified by the temperature calculation unit 200, as in the second embodiment. Calculate the end current value.
  • control circuit 20 is provided outside the battery pack 10
  • various other configurations are possible.
  • only the control unit 300 may be provided outside the battery pack 10.
  • a charging device including the above-described control circuit 20 is also disclosed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

This battery pack (10) is provided with: battery cells (100); a temperature measurement means (a temperature sensor (210) and a temperature calculation unit (200)) for measuring the temperature of the battery cells (100); a termination current setting means (control unit (300)) for calculating a charging termination current value when the battery cells (100) are being charged; and a charging control means (control unit (300)) for terminating the charging of the battery cells (100). At a battery cell (100) temperature of at least 20°C to less than 45°C, the charging termination current value is altered on the basis of the temperature of the battery cells (100). The control unit (300) calculates, on the basis of the detection results of the temperature measurement means, the charging termination current value when the battery cells (100) are being charged. In addition, the control unit (300) terminates the charging of the battery cells (100) when the charging current of the battery cells (100) is less than or equal to the charging termination current value.

Description

電池パック、充電制御システムおよび充電方法Battery pack, charging control system, and charging method
 本発明は、電池パック、充電制御システムおよび充電方法に関する。 The present invention relates to a battery pack, a charging control system, and a charging method.
 リチウムイオン二次電池の充電方法には、定電流定電圧充電法が用いられている。定電流定電圧充電法とは、電池電圧が特定の電圧に達するまでは一定の電流で充電をおこない(以下、定電流モードと呼ぶ。)、特定の電圧に達した後は印加する電圧を一定にする(以下、定電圧モードと呼ぶ。)充電方法である。 A constant current and constant voltage charging method is used as a charging method for the lithium ion secondary battery. In the constant current / constant voltage charging method, charging is performed at a constant current until the battery voltage reaches a specific voltage (hereinafter referred to as a constant current mode), and after the specific voltage is reached, the applied voltage is constant. (Hereinafter referred to as a constant voltage mode) charging method.
 定電流定電圧充電法では、定電圧モードの電流値が充分に小さい値(以下、充電終止電流値と呼ぶ。)になったら充電が終了する。 In the constant current / constant voltage charging method, charging is terminated when the current value in the constant voltage mode becomes a sufficiently small value (hereinafter referred to as a charge termination current value).
 一方、定電流定電圧充電法を用いて、リチウムイオン二次電池の充電をおこなった場合、電池の使用環境や充電条件によって、電池のサイクル性能が悪化する場合があった。 On the other hand, when the lithium ion secondary battery is charged using the constant current and constant voltage charging method, the cycle performance of the battery may be deteriorated depending on the use environment and the charging condition of the battery.
 特許文献1(特開2005-294196号公報)には、温度が45℃以上となりうる電池に対して、充電終止レートを0.2ItA以上に設定する充電方法が記載されている。
 45℃以上の温度環境下において、充放電サイクル性能を低下させる原因としては充電時の副反応によるものが大きな割合を占めており、その副反応の程度は45℃以上で急に高くなると記載されている。特許文献1では、この副反応は充電時の定電圧モードで印加される電位と関連していると考えており、充電終止レートを0.2ItAとすることによって、充電中の定電圧モードの時間を短縮している。定電圧モードの時間が短縮した結果、上記の副反応が抑えられ、放電サイクルを繰り返したときの電池性能の低下が抑えられると記載されている。
Patent Document 1 (Japanese Patent Laid-Open No. 2005-294196) describes a charging method in which a charge termination rate is set to 0.2 ItA or higher for a battery whose temperature can be 45 ° C. or higher.
In a temperature environment of 45 ° C. or higher, it is described that a side reaction during charging accounts for a large percentage as a cause of reducing charge / discharge cycle performance, and the degree of the side reaction suddenly increases at 45 ° C. or higher. ing. In Patent Document 1, this side reaction is considered to be related to the potential applied in the constant voltage mode at the time of charging. By setting the charge termination rate to 0.2 ItA, the time of the constant voltage mode during charging is set. Is shortened. It is described that as a result of shortening the time in the constant voltage mode, the above side reaction is suppressed and the deterioration of the battery performance when the discharge cycle is repeated is suppressed.
特開2005-294196号公報JP 2005-294196 A
 しかしながら、このような充電方法を用いると、十分な充電容量が得られない場合や過充電状態になってしまう場合があった。そのような場合には、このような充電方法を用いても電池のサイクル性能が悪化してしまう。 However, when such a charging method is used, a sufficient charging capacity cannot be obtained or an overcharged state may occur. In such a case, even if such a charging method is used, the cycle performance of the battery is deteriorated.
 本発明者は電池のサイクル性能が悪化するメカニズムを鋭意調べたところ、45℃以上で充電終止電流値を切り替えるだけでは不十分であり、少なくとも20℃以上45℃未満において電池の温度ごとに充電終止電流値を切り替える必要があると考えた。
 電池の温度に応じて充電終止電流値をそれぞれ設定することにより、過充電になることを防止し、かつ、満充電に近づけることができることを見出した。
The present inventor has intensively investigated the mechanism of deterioration of the cycle performance of the battery, and it is not sufficient to switch the charge end current value at 45 ° C. or higher. I thought it was necessary to switch the current value.
It has been found that by setting the end-of-charge current value according to the temperature of the battery, overcharging can be prevented and close to full charging can be achieved.
 本発明によれば、
 電池セルと、
 前記電池セルの温度を測定する温度測定手段と、
 前記温度測定手段の検出結果に基づいて、前記電池セルを充電するときの充電終止電流値を算出する終止電流設定手段と、
 前記電池セルの充電電流が前記充電終止電流値以下になったときに、前記電池セルの充電を終了させる充電制御手段と、
を備え、
 前記電池セルの温度が少なくとも20℃以上45℃未満において、
 前記充電終止電流値を前記電池セルの温度に基づいて変化させる電池パックが提供される。
According to the present invention,
A battery cell;
Temperature measuring means for measuring the temperature of the battery cell;
Based on the detection result of the temperature measuring means, an end current setting means for calculating a charge end current value when charging the battery cell;
Charging control means for terminating charging of the battery cell when the charging current of the battery cell becomes equal to or lower than the charge end current value;
With
When the temperature of the battery cell is at least 20 ° C. or more and less than 45 ° C.,
A battery pack is provided that changes the end-of-charge current value based on the temperature of the battery cell.
 本発明によれば、
 電池セルの温度を受信する温度受信手段と、
 前記温度受信手段の検出結果に基づいて、前記電池セルを充電するときの充電終止電流値を算出する終止電流設定手段と、
 前記電池セルの充電電流が前記充電終止電流値以下になったときに、前記電池セルの充電を終了させる充電制御手段と、
を備え、
 前記電池セルの温度が少なくとも20℃以上45℃未満において、
 前記充電終止電流値を前記電池セルの温度に基づいて変化させる充電制御システムが提供される。
According to the present invention,
Temperature receiving means for receiving the temperature of the battery cell;
Based on the detection result of the temperature receiving means, an end current setting means for calculating a charge end current value when charging the battery cell;
Charging control means for terminating charging of the battery cell when the charging current of the battery cell becomes equal to or lower than the charge end current value;
With
When the temperature of the battery cell is at least 20 ° C. or more and less than 45 ° C.,
A charge control system is provided that changes the end-of-charge current value based on the temperature of the battery cell.
 本発明によれば、
 電池セルに充電を開始し、かつ、充電中の前記電池セルの温度を測定する充電開始ステップと、
 測定温度に基づいて、前記電池セルを充電するときの充電終止電流値を算出する終止電流設定ステップと、
 前記電池セルの充電電流が前記充電終止電流値以下になったとする条件を判定する判定ステップと、
 前記条件を満たさないとき、前記充電を継続させ、前記条件を満たすとき、前記電池セルの充電を終了させる充電制御ステップと、
を備え、
 前記電池セルの温度が少なくとも20℃以上45℃未満において、
 前記充電終止電流値を前記電池セルの温度に基づいて変化させる充電方法が提供される。
According to the present invention,
A charging start step for starting charging the battery cell and measuring the temperature of the battery cell being charged; and
An end current setting step for calculating a charge end current value when charging the battery cell based on the measured temperature;
A determination step for determining a condition that the charging current of the battery cell is equal to or lower than the charge end current value;
When the condition is not satisfied, the charging is continued, and when the condition is satisfied, the charging control step for terminating the charging of the battery cell;
With
When the temperature of the battery cell is at least 20 ° C. or more and less than 45 ° C.,
A charging method is provided that changes the end-of-charge current value based on the temperature of the battery cell.
 本発明者は、電池のサイクル性能が悪化する理由を以下のように考えた。
 リチウムイオン二次電池は温度が高いほど活性化して、直流抵抗が小さくなる。そのため電圧や電流、時間などの充電条件が同じであっても、電池の温度が高いほど容量が入りやすくなってしまう。したがって、同じ充電条件では、電池の温度が高いほど過充電気味となり、電池のサイクル性能が悪化しやすくなる。また、同じ充電条件では、電池の温度が低いほど満充電容量が得られなくなる。
 本発明によれば、電池セルの温度に基づいて、充電終止電流値をそれぞれ設定する。こうすることにより、電池セルの温度が高くなっても過充電になることを抑制でき、電池セルの温度が低くなっても満充電容量に近づけることができる。
The inventor considered the reason why the cycle performance of the battery deteriorated as follows.
The lithium ion secondary battery is activated as the temperature increases, and the direct current resistance decreases. For this reason, even if the charging conditions such as voltage, current, and time are the same, the higher the battery temperature, the easier the capacity is entered. Therefore, under the same charging conditions, the higher the battery temperature, the more overcharged, and the battery cycle performance tends to deteriorate. Under the same charging conditions, the full charge capacity cannot be obtained as the battery temperature decreases.
According to the present invention, the end-of-charge current value is set based on the temperature of the battery cell. By doing so, it is possible to suppress overcharging even when the temperature of the battery cell is high, and it is possible to approach the full charge capacity even when the temperature of the battery cell is low.
 本発明によれば、電池セルを過充電にすることなく、満充電に近づけることができる。 According to the present invention, the battery cell can be close to full charge without being overcharged.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1の実施形態に係る電池パックの構成を示す回路図である。 第1の実施形態に係る充電方法を示すフローチャートである。 第1の実施形態に係る充電方法を示すフローチャートである。 温度が異なる電池セルの充電曲線を説明するための図である。 第2の実施形態に係る電池パックの構成を示す回路図である。 第2の実施形態に係る充電方法を示すフローチャートである。 第2の実施形態に係る充電方法を示すフローチャートである。 第3の実施形態に係る電池パックおよび制御回路の構成を示す回路図である。 第4の実施形態に係る電池パックおよび制御回路の構成を示す回路図である。
The above-described object and other objects, features, and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings.
It is a circuit diagram which shows the structure of the battery pack which concerns on 1st Embodiment. It is a flowchart which shows the charge method which concerns on 1st Embodiment. It is a flowchart which shows the charge method which concerns on 1st Embodiment. It is a figure for demonstrating the charge curve of the battery cell from which temperature differs. It is a circuit diagram which shows the structure of the battery pack which concerns on 2nd Embodiment. It is a flowchart which shows the charge method which concerns on 2nd Embodiment. It is a flowchart which shows the charge method which concerns on 2nd Embodiment. It is a circuit diagram which shows the structure of the battery pack and control circuit which concern on 3rd Embodiment. It is a circuit diagram which shows the structure of the battery pack and control circuit which concern on 4th Embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 ここでいう「電池パック10」とは、少なくとも一つ以上の電池ユニットを有している組電池のことをいう。また、「電池ユニット」とは、少なくとも一つ以上の電池セル100を有しているものをいう。さらに、「電池ユニット」に含まれる電池セル100は、正極および負極等を有する1つ以上の単電池を有していてもよい。また、複数の「電池ユニット」は、それぞれ異なる数量の電池セル100を有していてもよい。以下では、並列に接続された二つの単電池を有する電池セル100が複数直列に接続された場合を説明する。 As used herein, “battery pack 10” refers to an assembled battery having at least one battery unit. Further, the “battery unit” refers to one having at least one battery cell 100. Furthermore, the battery cell 100 included in the “battery unit” may include one or more single cells having a positive electrode, a negative electrode, and the like. Further, the plurality of “battery units” may have different numbers of battery cells 100. Hereinafter, a case will be described in which a plurality of battery cells 100 having two unit cells connected in parallel are connected in series.
 (第1の実施形態)
 図1を用いて、第1の実施形態に係る電池パック10について説明する。図1は、第1の実施形態に係る電池パック10の構成を示す回路図である。この電池パック10は、電池セル100と、電池セル100の温度を測定する温度測定手段(温度算出部200および温度センサ210)と、電池セル100を充電するときの充電終止電流値を算出する終止電流設定手段(制御部300)と、電池セル100の充電を終了させる充電制御手段(制御部300)と、を備えている。そして、制御部300は、電池セル100の温度が少なくとも20℃以上45℃未満において、充電終止電流値を電池セル100の温度に基づいて変化させる。
 制御部300は、温度測定手段の検出結果に基づいて、電池セル100を充電するときの充電終止電流値を算出する。また、制御部300は、電池セル100の充電電流が充電終止電流値以下になったときに、スイッチ500により充電電流を遮断するか、外部通信端子760から充電器に信号を送ることで電池セル100の充電を終了させる。
(First embodiment)
The battery pack 10 according to the first embodiment will be described with reference to FIG. FIG. 1 is a circuit diagram showing a configuration of the battery pack 10 according to the first embodiment. The battery pack 10 includes a battery cell 100, temperature measuring means (temperature calculation unit 200 and temperature sensor 210) for measuring the temperature of the battery cell 100, and a termination for calculating a charge termination current value when the battery cell 100 is charged. Current setting means (control unit 300) and charge control means (control unit 300) for terminating the charging of the battery cell 100 are provided. Then, the control unit 300 changes the charge end current value based on the temperature of the battery cell 100 when the temperature of the battery cell 100 is at least 20 ° C. or higher and lower than 45 ° C.
The controller 300 calculates a charge termination current value when charging the battery cell 100 based on the detection result of the temperature measuring means. In addition, when the charging current of the battery cell 100 becomes equal to or lower than the charging end current value, the control unit 300 interrupts the charging current with the switch 500 or sends a signal from the external communication terminal 760 to the charger. 100 charge is terminated.
 第1の実施形態においては、電池パック10は複数の電池セル100を備えている。複数の電池セル100は直列に接続されている。また、上述のように電池セル100は、二つの単電池を有している。具体的には、電池セル100は、リチウムイオン二次電池である。 In the first embodiment, the battery pack 10 includes a plurality of battery cells 100. The plurality of battery cells 100 are connected in series. Further, as described above, the battery cell 100 has two single cells. Specifically, the battery cell 100 is a lithium ion secondary battery.
 第1の実施形態における電池パック10は、電池セル100のほかに、制御回路20を有している。制御回路20は、温度算出部200、制御部300、測定部400、電流測定部800およびスイッチ(SW)500を備えている。以下、詳細を説明する。 The battery pack 10 in the first embodiment has a control circuit 20 in addition to the battery cell 100. The control circuit 20 includes a temperature calculation unit 200, a control unit 300, a measurement unit 400, a current measurement unit 800, and a switch (SW) 500. Details will be described below.
 第1の実施形態における制御回路20は、直列に接続された電池セル100に接続されている。制御回路20は、内部正極端子620、内部負極端子640、外部正極端子720および外部負極端子740を有している。内部正極端子620は、直列に接続された電池セル100の中で最も正極側に位置する電池セル100の正極に接続している。また、内部負極端子640は、直列に接続された電池セル100の中で最も負極側に位置する電池セル100の負極に接続している。 The control circuit 20 in the first embodiment is connected to the battery cells 100 connected in series. The control circuit 20 has an internal positive terminal 620, an internal negative terminal 640, an external positive terminal 720, and an external negative terminal 740. The internal positive electrode terminal 620 is connected to the positive electrode of the battery cell 100 located closest to the positive electrode among the battery cells 100 connected in series. Moreover, the internal negative electrode terminal 640 is connected to the negative electrode of the battery cell 100 located closest to the negative electrode among the battery cells 100 connected in series.
 内部正極端子620は、制御回路20内の配線を介して、電池パック10を使用する外部機器に接続するための外部正極端子720に接続している。また、内部負極端子640は、制御回路20内の配線を介して、電池パック10を使用する外部機器に接続するための外部負極端子740に接続している。 The internal positive terminal 620 is connected to an external positive terminal 720 for connecting to an external device using the battery pack 10 via a wiring in the control circuit 20. Further, the internal negative terminal 640 is connected to an external negative terminal 740 for connecting to an external device using the battery pack 10 via a wiring in the control circuit 20.
 内部正極端子620と外部正極端子720との間には、充電または放電を停止するためのスイッチ500が設けられている。スイッチ500は、例えば、電池セル100側の内部正極端子620と外部正極端子720との間に設けられている。この場合、スイッチ500は、例えば、PチャネルのMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。スイッチ500内には、二つのPチャネルのMOSFETが設けられている。これにより、片方のMOSFETが充電を制御するために用いられる。一方、他方のMOSFETが放電を制御するために用いられる。また、スイッチ500における各々のMOSFETは、測定部400に接続している。 A switch 500 for stopping charging or discharging is provided between the internal positive terminal 620 and the external positive terminal 720. For example, the switch 500 is provided between the internal positive terminal 620 and the external positive terminal 720 on the battery cell 100 side. In this case, the switch 500 is a P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor), for example. In the switch 500, two P-channel MOSFETs are provided. Thereby, one MOSFET is used to control charging. On the other hand, the other MOSFET is used to control the discharge. Each MOSFET in the switch 500 is connected to the measurement unit 400.
 なお、スイッチ500がNチャネルのMOSFETである場合は、スイッチ500は、内部負極端子640と外部負極端子740との間に配置される。その他、スイッチ500は、例えば、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、IGBT)、リレーまたはブレーカーであってもよい。 If the switch 500 is an N-channel MOSFET, the switch 500 is disposed between the internal negative terminal 640 and the external negative terminal 740. In addition, the switch 500 may be an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT), a relay, or a breaker, for example.
 第1の実施形態における温度測定手段は、温度算出部200と温度センサ210とを備えている。温度センサ210は、温度算出部200に接続されている。温度センサ210は、例えば、複数の電池セル100内の中央部分(図1のCell3)に配置されている。温度センサ210は、複数の電池セル100内の他の場所に配置されていてもよい。
 温度センサ210は電池セル100の温度を検出する。温度算出部200は、温度センサ210から出力されている信号を用いて電池セル100の温度を算出する。
The temperature measurement means in the first embodiment includes a temperature calculation unit 200 and a temperature sensor 210. The temperature sensor 210 is connected to the temperature calculation unit 200. The temperature sensor 210 is arrange | positioned at the center part (Cell3 of FIG. 1) in the some battery cell 100, for example. The temperature sensor 210 may be disposed in another place in the plurality of battery cells 100.
The temperature sensor 210 detects the temperature of the battery cell 100. The temperature calculation unit 200 calculates the temperature of the battery cell 100 using the signal output from the temperature sensor 210.
 第1の実施形態における終止電流設定手段は、制御部300を備えている。制御部300には、温度算出部200、測定部400が接続している。制御部300は、温度算出部200が算出した電池セル100の温度に基づいて演算処理を行う。具体的には、制御部300は、温度算出部200により算出された電池セル100の温度に基づいて、電池セル100を充電するときの充電終止電流値を算出する。 The end current setting means in the first embodiment includes a control unit 300. A temperature calculation unit 200 and a measurement unit 400 are connected to the control unit 300. The control unit 300 performs arithmetic processing based on the temperature of the battery cell 100 calculated by the temperature calculation unit 200. Specifically, the control unit 300 calculates a charge termination current value when charging the battery cell 100 based on the temperature of the battery cell 100 calculated by the temperature calculation unit 200.
 制御部300は、後述する、電池セル100の温度と、満充電時の充電終止電流値である満充電終止電流値と、の関係を示す満充電終止電流データを記憶する記憶部(不図示)を有していても良い。 The control unit 300 stores a full charge end current data indicating a relationship between a temperature of the battery cell 100 and a full charge end current value that is a charge end current value at the time of full charge, which will be described later (not shown). You may have.
 制御部300には、外部機器に信号を送受信するための外部通信端子760が接続している。制御部300は、外部通信端子760を介して信号を外部機器(不図示)に送信する。また、制御部300は、外部通信端子760を介して外部機器からの信号を受信する。 The controller 300 is connected to an external communication terminal 760 for transmitting / receiving signals to / from an external device. The control unit 300 transmits a signal to an external device (not shown) via the external communication terminal 760. In addition, the control unit 300 receives a signal from an external device via the external communication terminal 760.
 電池パック10は、安全性、充放電のサイクル寿命を向上させるため、保護回路を有している。保護回路は、制御部300と、測定部400と、スイッチ500とを備えている。保護回路は、電池セル100に対して、過充電保護電圧を超える電圧が充電された場合、充電を強制終了させる機能を有している。 The battery pack 10 has a protection circuit in order to improve safety and charge / discharge cycle life. The protection circuit includes a control unit 300, a measurement unit 400, and a switch 500. The protection circuit has a function of forcibly terminating charging when the battery cell 100 is charged with a voltage exceeding the overcharge protection voltage.
 測定部400は、電池セル100の電圧および電流を測定する。測定部400には、制御部300が接続している。制御部300は、測定部400が測定した充電電流値が、算出した充電終止電流値以下になったときに、電池セル100の充電を終了させる。 Measurement unit 400 measures the voltage and current of battery cell 100. The control unit 300 is connected to the measurement unit 400. The controller 300 ends the charging of the battery cell 100 when the charging current value measured by the measuring unit 400 becomes equal to or less than the calculated charging end current value.
 このように、第1の実施形態では、複数の電池セル100および制御回路20を含み、電池パック10としてパッケージされている。 Thus, in the first embodiment, the battery pack 100 is packaged including the plurality of battery cells 100 and the control circuit 20.
 次に、図2および図3を用いて、第1の実施形態における電池パック10の充電方法について説明する。図2および図3は、第1の実施形態に係る充電方法について説明するためのフローチャートである。なお、図3は、図2の変形例である。
 第1の実施形態に係る充電方法は、以下のステップを備えている。電池セル100の充電を開始する(S110)。電池セル100の温度を測定する(S120)。測定した温度に基づいて、電池セル100を充電するときの充電終止電流値を算出する(S130)。定電圧モードとなり電流が絞られ始めてから、充電電流が充電終止電流値以下になったとする条件を判定する(S140)。条件を満たさないとき(S140No)、充電を継続させる。条件を満たすとき(S140Yes)、電池セル100の充電を終了させる(S150)。以下、各ステップを詳細に説明する。
Next, a method for charging the battery pack 10 according to the first embodiment will be described with reference to FIGS. 2 and 3. 2 and 3 are flowcharts for explaining the charging method according to the first embodiment. FIG. 3 is a modification of FIG.
The charging method according to the first embodiment includes the following steps. Charging of the battery cell 100 is started (S110). The temperature of the battery cell 100 is measured (S120). Based on the measured temperature, an end-of-charge current value for charging the battery cell 100 is calculated (S130). After the constant voltage mode is entered and the current starts to be reduced, a condition is determined that the charging current has become equal to or lower than the charge end current value (S140). When the condition is not satisfied (S140 No), the charging is continued. When the condition is satisfied (S140 Yes), the charging of the battery cell 100 is terminated (S150). Hereinafter, each step will be described in detail.
 まず、外部正極端子720および外部負極端子740を電力供給元の正極および負極に接続する。これにより、電池セル100の充電を開始する。これと同時に、測定部400は電池セル100の電圧を測定し、電流測定部800は電池セル100の充電電流を測定する(S110)。 First, the external positive terminal 720 and the external negative terminal 740 are connected to the positive and negative electrodes of the power supply source. Thereby, charging of the battery cell 100 is started. At the same time, the measuring unit 400 measures the voltage of the battery cell 100, and the current measuring unit 800 measures the charging current of the battery cell 100 (S110).
 次いで、温度算出部200は、温度センサ210から出力されている信号を用いて、電池セル100の温度を算出する(S120)。 Next, the temperature calculation unit 200 calculates the temperature of the battery cell 100 using the signal output from the temperature sensor 210 (S120).
 次いで、制御部300は、温度算出部200から算出した温度結果を受信し、その温度結果に基づいて、電池セル100を充電するときの充電終止電流値を算出する(S130)。ここで、充電終止電流値の算出方法について、以下に説明する。 Next, the control unit 300 receives the temperature result calculated from the temperature calculation unit 200, and calculates a charge termination current value when charging the battery cell 100 based on the temperature result (S130). Here, a method for calculating the charge end current value will be described below.
 第1の実施形態における充電終止電流値は、電池セル100の温度が少なくとも20℃以上45℃未満において、電池セル100の温度が高くなるにつれて充電終止電流値を高く設定する。
 電池セル100は、温度が高くなるほど活性化して、直流抵抗が小さくなる。また、電池セル100は、温度が低くなるほど、直流抵抗が高くなる。例えば、20℃での充電曲線をV20とし、40℃での充電曲線をV40とした場合、40℃の電池セル100の方が、直流抵抗が小さいため、定電流領域において抵抗差×IRS分だけ電圧が下がる(図4(a)参照)。そのため、40℃の電池セル100の方が定電圧モードの電圧Vに到達するのがt-tだけ遅くなり、定電流モードがt-tだけ長く継続する。その結果、早く満充電容量Cに達する(図4(b)参照)。よって、充電終止電流値を20℃と同じIaに設定すると、満充電容量を超えて充電されてしまう。
 したがって、同じ充電条件では、電池セル100は電池の温度が高いほど過充電気味となり、電池の温度が低いほど満充電容量が得られなくなる。
 第1の実施形態においては、電池セル100の温度が高くなるにつれて充電終止電流値を高く設定することにより、電池セル100の充電が早く終了する。そのため、温度が高くなるほど電池セル100の充電時間は短くなり、電池セル100が過充電となることを抑制できる。また、電池セル100の温度が低くなるにつれて充電終止電流値を低く設定することにより、電池セル100の充電が遅く終了する。そのため、温度が低くなるほど電池セル100の充電時間は長くなり、電池セル100を満充電に近づけることができる。
The charge end current value in the first embodiment is set to be higher as the temperature of the battery cell 100 becomes higher when the temperature of the battery cell 100 is at least 20 ° C. or higher and lower than 45 ° C.
The battery cell 100 is activated as the temperature increases, and the DC resistance decreases. The battery cell 100 has a higher DC resistance as the temperature is lower. For example, when the charging curve at 20 ° C. is V 20 and the charging curve at 40 ° C. is V 40 , the battery cell 100 at 40 ° C. has a smaller direct current resistance, and therefore the resistance difference × I in the constant current region. The voltage drops by the amount corresponding to RS (see FIG. 4A). Therefore, the battery cell 100 at 40 ° C. reaches the constant voltage mode voltage V 1 slower by t 2 −t 1, and the constant current mode continues longer by t 2 −t 1 . As a result, it reached earlier fully-charged capacity C 1 (see Figure 4 (b)). Therefore, if the charge end current value is set to the same Ia as 20 ° C., the battery is charged exceeding the full charge capacity.
Therefore, under the same charging conditions, the battery cell 100 becomes overcharged as the battery temperature increases, and the full charge capacity cannot be obtained as the battery temperature decreases.
In the first embodiment, the charging of the battery cell 100 is quickly completed by setting the charging end current value higher as the temperature of the battery cell 100 becomes higher. Therefore, the charging time of the battery cell 100 becomes shorter as the temperature becomes higher, and the battery cell 100 can be prevented from being overcharged. In addition, by setting the charge end current value to be lower as the temperature of the battery cell 100 becomes lower, the charging of the battery cell 100 ends late. Therefore, the charging time of the battery cell 100 becomes longer as the temperature becomes lower, and the battery cell 100 can be brought close to full charge.
 また、第1の実施形態における充電終止電流値の算出方法は、電池セル100の温度が少なくとも20℃以上45℃未満において、電池セル100の温度と、各温度における満充電容量となる充電終止電流値と、の関係を示す満充電終止電流データに基づいておこなうのがより好ましい。満充電終止電流データは、電池セル100の特性により異なるため、複数の電池セル100ごとに、あらかじめデータを取得しておくことが好ましい。
 ここで、満充電容量とは、基準温度において標準的な充電条件で電池パック10を充電したときの充電容量をいう。例えば、20℃で、充電電圧4.2V、充電終止電流値は充電終止レートが0.05ItAとなる値、の条件で充電したときの容量である。基準温度は室温が好ましい。
 各温度における満充電容量となる充電終止電流値とは、電池セル100をある一定の温度に設定したとき、その温度において上記の満充電容量になったときの電流値をいう。
 各温度における満充電容量となる充電終止電流値をそれぞれ測定することにより、電池セル100の温度と、各温度における満充電容量となる充電終止電流値との関係を示す満充電終止電流データを作成する。満充電終止電流データは、制御部300の記憶部(不図示)に記憶しておいても良いし、外部機器に保存しておき、外部通信端子760から受信してもよい。
Moreover, the calculation method of the charge end current value in 1st Embodiment is the charge end current used as the temperature of the battery cell 100 and the full charge capacity in each temperature, when the temperature of the battery cell 100 is at least 20 degreeC or more and less than 45 degreeC More preferably, it is performed based on the full charge end current data indicating the relationship with the value. Since the full charge end current data varies depending on the characteristics of the battery cell 100, it is preferable to acquire data in advance for each of the plurality of battery cells 100.
Here, the full charge capacity refers to a charge capacity when the battery pack 10 is charged under standard charge conditions at a reference temperature. For example, at 20 ° C., the charge voltage is 4.2 V, and the charge end current value is a capacity when charging is performed under the condition that the charge end rate is 0.05 ItA. The reference temperature is preferably room temperature.
The end-of-charge current value that is the full charge capacity at each temperature refers to the current value when the battery cell 100 reaches the full charge capacity at that temperature when the battery cell 100 is set to a certain temperature.
Full charge end current data indicating the relationship between the temperature of the battery cell 100 and the charge end current value at the full charge capacity at each temperature is created by measuring the charge end current value at the full charge capacity at each temperature. To do. The full charge end current data may be stored in a storage unit (not shown) of the control unit 300, or may be stored in an external device and received from the external communication terminal 760.
 このように、電池セル100の温度と、各温度における満充電容量となる充電終止電流値と、の関係を示す満充電終止電流データに基づいて充電終止電流値を算出することにより、各温度において電池セル100を過充電にすることなく、満充電に近づけることがより一層正確におこなうことができる。 Thus, at each temperature, by calculating the charge end current value based on the full charge end current data indicating the relationship between the temperature of the battery cell 100 and the charge end current value that is the full charge capacity at each temperature. Without overcharging the battery cell 100, it can be performed more accurately to approach full charge.
 また、終止電流設定手段は、電池セル100の初期の満充電容量である初期容量値に対する現在の満充電容量の比に基づいて、充電終止電流値を補正することが好ましい。具体的には、初期容量値に対する現在の満充電容量の比が小さくなるにつれて充電終止電流値を低く補正するのが好ましい。
 電池セル100は繰り返し使用していると、劣化により徐々に抵抗が上昇していく。そのため、初期の満充電容量を用いて算出した充電終止電流値を固定して用いていると、劣化が進むにつれて満充電容量が得られなくなる。
 したがって、第1の実施形態においては、電池セル100の初期容量値に対する現在の満充電容量の比が小さくなるにつれて充電終止電流値を低く補正することにより、充電終止レートを変化させることなく、電池セル100を満充電に近づけることができる。例えば、劣化により、満充電容量が5Ahから4Ahになった電池セル100を充電する場合は、充電終止電流値を250mAから200mAに補正する。こうすることにより、充電終止レートを250mA/5Ah=0.05ItAから200mA/4Ah=0.05ItAと変化させることなく、満充電に近づけることができる。
 電池セルの現在の満充電容量は、容量測定手段により測定する。具体的には、電流測定部800により電流を測定し、制御部300でその電流値を積算することにより算出することができる。
Further, the end current setting means preferably corrects the end charge current value based on the ratio of the current full charge capacity to the initial capacity value that is the initial full charge capacity of the battery cell 100. Specifically, it is preferable to correct the charge end current value to be lower as the ratio of the current full charge capacity to the initial capacity value becomes smaller.
When the battery cell 100 is repeatedly used, the resistance gradually increases due to deterioration. Therefore, if the charge end current value calculated using the initial full charge capacity is fixed and used, the full charge capacity cannot be obtained as the deterioration proceeds.
Therefore, in the first embodiment, by correcting the charge end current value to be lower as the ratio of the current full charge capacity to the initial capacity value of the battery cell 100 becomes smaller, the battery without changing the charge end rate. The cell 100 can be brought close to full charge. For example, when charging the battery cell 100 whose full charge capacity is changed from 5 Ah to 4 Ah due to deterioration, the charge end current value is corrected from 250 mA to 200 mA. By doing so, it is possible to approach full charge without changing the charge end rate from 250 mA / 5 Ah = 0.05 ItA to 200 mA / 4 Ah = 0.05 ItA.
The current full charge capacity of the battery cell is measured by capacity measuring means. Specifically, the current can be calculated by measuring the current with the current measuring unit 800 and integrating the current value with the control unit 300.
 次いで、制御部300は、測定部400より電池セル100の充電電流を受信し、充電電流が、算出した充電終止電流値以下になったとする条件を判定する(S140)。条件を満たさないときは、充電を継続させる(S140No)。このとき、図2のように、充電を継続させた後、電池セル100の温度を再測定し、電池セル100を充電するときの充電終止電流値を改めて算出してもよい。また、図3のように、充電を継続させた後、電池セル100の温度の再測定をおこなわずに、充電電流が充電終止電流値以下になったとする条件を判定してもよい。 Next, the control unit 300 receives the charging current of the battery cell 100 from the measurement unit 400, and determines a condition that the charging current is equal to or less than the calculated charge end current value (S140). When the condition is not satisfied, charging is continued (No in S140). At this time, as shown in FIG. 2, after the charging is continued, the temperature of the battery cell 100 may be measured again, and the charge end current value when the battery cell 100 is charged may be calculated again. Further, as shown in FIG. 3, after the charging is continued, the condition that the charging current becomes equal to or lower than the charging end current value may be determined without performing re-measurement of the temperature of the battery cell 100.
 条件を満たすとき(S140Yes)は、制御部300の外部通信端子760から信号を電力供給元(不図示)に送信し、電池セル100の充電を終了させる(S150)。あるいは、制御部300から信号をスイッチ500に送信し、スイッチ500により充電電流を遮断することで電池セル100の充電を終了させる(S150)。 When the condition is satisfied (S140 Yes), a signal is transmitted from the external communication terminal 760 of the control unit 300 to the power supply source (not shown), and the charging of the battery cell 100 is terminated (S150). Alternatively, a signal is transmitted from the control unit 300 to the switch 500, and the charging current is interrupted by the switch 500, thereby terminating the charging of the battery cell 100 (S150).
 以上のようにして、第1の実施形態に係る電池パック10の充電を制御する。 As described above, charging of the battery pack 10 according to the first embodiment is controlled.
 次に、第1の実施形態の効果について説明する。
 電池セル100は、電池セル100の温度が少なくとも20℃以上45℃未満において、高温になるほど活性化して、直流抵抗が小さくなる。そのため電圧や電流、時間などの充電条件が同じであっても、電池の温度が高いほど容量が入りやすくなる。したがって、同じ充電条件では、電池の温度が高いほど電池セル100は過充電気味となり、電池の温度が低いほど電池セル100は満充電容量が得られなくなる。
 第1の実施形態における電池パック10は、電池セル100の温度に基づいて、充電終止電流値をそれぞれ設定する。具体的には、電池セルの温度が少なくとも20℃以上45℃未満において、電池セル100の温度が高くなるにつれて充電終止電流値を高く設定する。こうすることにより、電池セル100の温度が高くなるにつれて電池セル100の充電時間が短くなるため、電池セル100が過充電になることを抑制できる。また、電池セル100の温度が低くなるにつれて充電終止電流値を低く設定する。こうすることにより、電池セル100の温度が低くなるにつれて電池セル100の充電時間が長くなるため、電池セル100を満充電に近づけることができる。
Next, the effect of the first embodiment will be described.
When the temperature of the battery cell 100 is at least 20 ° C. or higher and lower than 45 ° C., the battery cell 100 is activated as the temperature increases, and the direct current resistance decreases. Therefore, even if the charging conditions such as voltage, current, and time are the same, the capacity becomes easier as the battery temperature increases. Therefore, under the same charging conditions, the battery cell 100 becomes overcharged as the battery temperature increases, and the battery cell 100 cannot obtain a full charge capacity as the battery temperature decreases.
The battery pack 10 according to the first embodiment sets a charge termination current value based on the temperature of the battery cell 100. Specifically, when the temperature of the battery cell is at least 20 ° C. or more and less than 45 ° C., the charge end current value is set higher as the temperature of the battery cell 100 becomes higher. By carrying out like this, since the charge time of the battery cell 100 becomes short as the temperature of the battery cell 100 becomes high, it can suppress that the battery cell 100 becomes overcharged. Further, the end-of-charge current value is set lower as the temperature of the battery cell 100 becomes lower. By doing so, the charging time of the battery cell 100 becomes longer as the temperature of the battery cell 100 becomes lower, so that the battery cell 100 can be brought close to full charge.
 以上のように、第1の実施形態によれば、電池セル100を有する電池パック10を、過充電にすることを防止し、満充電に近づけることができる。 As described above, according to the first embodiment, it is possible to prevent the battery pack 10 having the battery cells 100 from being overcharged, and to approach full charge.
 (第2の実施形態)
 第2の実施形態に係る電池パック10について説明する。第2の実施形態は、それぞれの電池セル100ごとに温度センサ210を備えている以外は、第1の実施形態と同様である。そのため、第2の実施形態では、第1の実施形態と異なる部分を中心に説明する。
(Second Embodiment)
A battery pack 10 according to the second embodiment will be described. The second embodiment is the same as the first embodiment except that each battery cell 100 includes a temperature sensor 210. Therefore, in the second embodiment, the description will focus on the parts that are different from the first embodiment.
 図5は、第2の実施形態に係る電池パック10の構成を示す回路図である。
 第2の実施形態における温度測定手段は、温度算出部200と、それぞれの電池セル100ごとに設けられた複数の温度センサ210と、を備えている。それぞれの温度センサ210は、温度算出部200に接続されている。
 それぞれの温度センサ210は、それぞれの電池セル100の温度を検出する。温度算出部200は、それぞれの温度センサ210の検出結果に基づいて、複数の電池セル100の温度をそれぞれ算出し、複数の電池セル100の中で最大温度を特定する。
FIG. 5 is a circuit diagram showing a configuration of the battery pack 10 according to the second embodiment.
The temperature measurement means in the second embodiment includes a temperature calculation unit 200 and a plurality of temperature sensors 210 provided for each battery cell 100. Each temperature sensor 210 is connected to the temperature calculation unit 200.
Each temperature sensor 210 detects the temperature of each battery cell 100. The temperature calculation unit 200 calculates the temperature of each of the plurality of battery cells 100 based on the detection result of each temperature sensor 210, and identifies the maximum temperature among the plurality of battery cells 100.
 第2の実施形態における終止電流設定手段は、温度算出部200により特定された複数の電池セル100の中の最大温度に基づいて、電池セル100を充電するときの充電終止電流値を算出する。 The end current setting means in the second embodiment calculates a charge end current value when charging the battery cell 100 based on the maximum temperature among the plurality of battery cells 100 specified by the temperature calculation unit 200.
 次に、図6および図7を用いて、第2の実施形態における電池パック10の充電方法について説明する。図6および図7は、第2の実施形態に係る充電方法について説明するためのフローチャートである。なお、図7は、図6の変形例である。
 第2の実施形態に係る充電方法は、以下のステップを備えている。電池セル100の充電を開始する(S110)。複数の電池セル100の温度をそれぞれ測定する(S122)。複数の電池セル100の中で最大温度を特定する(S124)。特定された電池セル100の最大温度に基づいて、電池セル100を充電するときの充電終止電流値を算出する(S132)。定電圧モードとなり電流が絞られ始めてから、充電電流が充電終止電流値以下になったとする条件を判定する(S140)。条件を満たさないとき(S140No)、充電を継続させる。条件を満たすとき(S140Yes)、電池セル100の充電を終了させる(S140)。以下、各ステップを詳細に説明する。
Next, a method for charging the battery pack 10 according to the second embodiment will be described with reference to FIGS. 6 and 7. 6 and 7 are flowcharts for explaining the charging method according to the second embodiment. FIG. 7 is a modification of FIG.
The charging method according to the second embodiment includes the following steps. Charging of the battery cell 100 is started (S110). The temperatures of the plurality of battery cells 100 are measured (S122). The maximum temperature is specified among the plurality of battery cells 100 (S124). Based on the specified maximum temperature of the battery cell 100, a charge end current value when the battery cell 100 is charged is calculated (S132). After the constant voltage mode is entered and the current starts to be reduced, a condition is determined that the charging current has become equal to or lower than the charge end current value (S140). When the condition is not satisfied (S140 No), the charging is continued. When the condition is satisfied (S140 Yes), the charging of the battery cell 100 is terminated (S140). Hereinafter, each step will be described in detail.
 まず、外部正極端子720および外部負極端子740を電力供給元の正極および負極に接続する。これにより、電池セル100の充電を開始する。これと同時に、測定部400は電池セル100の電圧を測定し、電流測定部800は電池セル100の充電電流を測定する(S110)。 First, the external positive terminal 720 and the external negative terminal 740 are connected to the positive and negative electrodes of the power supply source. Thereby, charging of the battery cell 100 is started. At the same time, the measuring unit 400 measures the voltage of the battery cell 100, and the current measuring unit 800 measures the charging current of the battery cell 100 (S110).
 次いで、温度センサ210により複数の電池セル100の温度をそれぞれ検出する(S122)。温度算出部200は、温度センサ210から各電池セル100の温度の検出結果をそれぞれ受信し、それらの検出結果に基づいて電池セル100の温度をそれぞれ算出し、複数の電池セル100の中で最大温度を特定する(S124)。 Next, the temperature of each of the plurality of battery cells 100 is detected by the temperature sensor 210 (S122). The temperature calculation unit 200 receives the detection result of the temperature of each battery cell 100 from the temperature sensor 210, calculates the temperature of the battery cell 100 based on the detection result, and is the maximum among the plurality of battery cells 100. The temperature is specified (S124).
 次いで、制御部300は、温度算出部200から最大温度結果を受信し、その最大温度に基づいて、電池セル100を充電するときの充電終止電流値を算出する(S132)。
 以下のステップは、電池セル100の最大温度を用いる以外は第1の実施形態と同様である。
Next, the control unit 300 receives the maximum temperature result from the temperature calculation unit 200, and calculates a charge termination current value when charging the battery cell 100 based on the maximum temperature (S132).
The following steps are the same as those in the first embodiment except that the maximum temperature of the battery cell 100 is used.
 次に、第2の実施形態の効果について説明する。
 電池パック10内の複数の電池セル100は、電池セル100の配置により内部で温度バラツキが生じることがある。とくに中央付近に向かうほど電池セル100内部の熱が拡散しにくくなるため、中央付近の電池セル100(図5のCell3付近)は温度が高くなりやすい。上述したように電池セル100は、高温になるほど活性化して、直流抵抗が小さくなる。そのため電圧や電流、時間などの充電条件が同じであっても、電池の温度が高いほど電池セル100は容量が入りやすくなる。したがって、同じ充電条件では、電池の温度が高い電池セル100ほど過充電気味となってしまう。とくに、電池セル100は過充電保護電圧を超える電圧に到達すると、保護回路により充電が強制終了されてしまう。
 第2の実施形態における電池パック10は、各電池セル100の中で最大温度に基づいて、充電終止電流値を設定する。こうすることにより、過充電保護電圧を超える電圧に到達する電池セル100が抑制されるため、保護回路により充電が強制終了されにくくなる。
Next, effects of the second embodiment will be described.
The plurality of battery cells 100 in the battery pack 10 may vary in temperature internally due to the arrangement of the battery cells 100. In particular, since the heat inside the battery cell 100 is less likely to diffuse toward the center, the temperature of the battery cell 100 (near Cell 3 in FIG. 5) tends to increase. As described above, the battery cell 100 is activated as the temperature increases, and the DC resistance decreases. Therefore, even if charging conditions such as voltage, current, and time are the same, the capacity of the battery cell 100 becomes easier as the battery temperature increases. Therefore, under the same charging condition, the battery cell 100 having a higher battery temperature becomes overcharged. In particular, when the battery cell 100 reaches a voltage exceeding the overcharge protection voltage, the charging is forcibly terminated by the protection circuit.
The battery pack 10 in the second embodiment sets a charge termination current value based on the maximum temperature in each battery cell 100. By doing so, since the battery cell 100 that reaches a voltage exceeding the overcharge protection voltage is suppressed, it is difficult for the protection circuit to forcibly terminate the charge.
 以上のように、第2の実施形態によれば、電池パック10に含まれる複数の電池セル100がそれぞれ過充電になることを抑制しながら、それぞれ満充電に近づけることができる。 As described above, according to the second embodiment, each of the plurality of battery cells 100 included in the battery pack 10 can be brought close to full charge while suppressing overcharging.
 (第3の実施形態)
 図8は、第3の実施形態に係る電池パック10および制御回路20の構成を示す回路図である。第3の実施形態は、制御回路20が電池パック10の外側に設けられている点を除いて、第1の実施形態と同様である。以下、詳細を説明する。
(Third embodiment)
FIG. 8 is a circuit diagram showing configurations of the battery pack 10 and the control circuit 20 according to the third embodiment. The third embodiment is the same as the first embodiment except that the control circuit 20 is provided outside the battery pack 10. Details will be described below.
 図8のように、制御回路20は、電池パック10の外側に設けられている。制御回路20は、例えば、電池パック10から独立した充電機器(不図示)等に設けられている。または、制御回路20は、電池パック10を放電して使用する際に用いる使用機器内に設けられていてもよい。 As shown in FIG. 8, the control circuit 20 is provided outside the battery pack 10. The control circuit 20 is provided, for example, in a charging device (not shown) that is independent from the battery pack 10. Alternatively, the control circuit 20 may be provided in a device used when the battery pack 10 is discharged and used.
 電池パック10には、電池パック10の充放電を行うための正極端子820および負極端子840が設けられている。 The battery pack 10 is provided with a positive terminal 820 and a negative terminal 840 for charging and discharging the battery pack 10.
 制御回路20は、温度算出部200、制御部300、測定部400およびスイッチ(SW)500を備えている。制御回路20の電池パック10側のうち、電池パック10の正極端子820と対応する位置に、制御回路20の正極端子920が設けられている。また、電池パック10の負極端子840と対応する位置に、制御回路20の負極端子940が設けられている。これらの端子は、相互に配線(符号不図示)により接続されている。これにより、制御回路20から電池パック10に、充電の電力が供給される。 The control circuit 20 includes a temperature calculation unit 200, a control unit 300, a measurement unit 400, and a switch (SW) 500. The positive terminal 920 of the control circuit 20 is provided at a position corresponding to the positive terminal 820 of the battery pack 10 on the battery pack 10 side of the control circuit 20. Further, the negative terminal 940 of the control circuit 20 is provided at a position corresponding to the negative terminal 840 of the battery pack 10. These terminals are connected to each other by wiring (not shown). As a result, charging power is supplied from the control circuit 20 to the battery pack 10.
 第3の実施形態によれば、制御回路20が電池パック10の外側に設けられている。制御回路20は、配線を介して、電池セル100に接続されている。これにより、第1の実施形態と同様の効果を得ることができる。 According to the third embodiment, the control circuit 20 is provided outside the battery pack 10. The control circuit 20 is connected to the battery cell 100 via wiring. Thereby, the effect similar to 1st Embodiment can be acquired.
 (第4の実施形態)
 図9は、第4の実施形態に係る電池パック10および制御回路20の構成を示す回路図である。第4の実施形態は、複数の温度センサ210がそれぞれの電池セル100ごとに設けられている以外は、第3の実施形態と同様である。
(Fourth embodiment)
FIG. 9 is a circuit diagram showing configurations of the battery pack 10 and the control circuit 20 according to the fourth embodiment. The fourth embodiment is the same as the third embodiment except that a plurality of temperature sensors 210 are provided for each battery cell 100.
 第4の実施形態における終止電流設定手段は、第2の実施形態と同様に、温度算出部200により特定された電池セル100の中の最大温度に基づいて、電池セル100を充電するときの充電終止電流値を算出する。 The end current setting means in the fourth embodiment is charged when charging the battery cell 100 based on the maximum temperature in the battery cell 100 specified by the temperature calculation unit 200, as in the second embodiment. Calculate the end current value.
 よって、第4の実施形態によれば、第2の実施形態と同様の効果を得ることができる。 Therefore, according to the fourth embodiment, the same effect as that of the second embodiment can be obtained.
 以上の第3の実施形態および第4の実施形態において、制御回路20が電池パック10の外側に設けられている場合を説明したが、その他、様々な構成とすることが可能である。例えば、制御部300だけが、電池パック10の外側に設けられていてもよい。 In the above third embodiment and fourth embodiment, the case where the control circuit 20 is provided outside the battery pack 10 has been described, but various other configurations are possible. For example, only the control unit 300 may be provided outside the battery pack 10.
 以上の実施形態において、上記した制御回路20を備える充電機器も開示されている。 In the above embodiment, a charging device including the above-described control circuit 20 is also disclosed.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
 この出願は、2011年7月8日に出願された日本出願特願2011-152168号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-152168 filed on July 8, 2011, the entire disclosure of which is incorporated herein.

Claims (18)

  1.  電池セルと、
     前記電池セルの温度を測定する温度測定手段と、
     前記温度測定手段の検出結果に基づいて、前記電池セルを充電するときの充電終止電流値を算出する終止電流設定手段と、
     前記電池セルの充電電流が前記充電終止電流値以下になったときに、前記電池セルの充電を終了させる充電制御手段と、
    を備え、
     前記電池セルの温度が少なくとも20℃以上45℃未満において、
     前記充電終止電流値を前記電池セルの温度に基づいて変化させる電池パック。
    A battery cell;
    Temperature measuring means for measuring the temperature of the battery cell;
    Based on the detection result of the temperature measuring means, an end current setting means for calculating a charge end current value when charging the battery cell;
    Charging control means for terminating charging of the battery cell when the charging current of the battery cell becomes equal to or lower than the charge end current value;
    With
    When the temperature of the battery cell is at least 20 ° C. or more and less than 45 ° C.,
    A battery pack that changes the end-of-charge current value based on a temperature of the battery cell.
  2.  請求項1に記載の電池パックにおいて、
     前記終止電流設定手段は、前記温度測定手段による前記電池セルの温度が高くなるにつれて前記充電終止電流値を高く設定する電池パック。
    The battery pack according to claim 1,
    The termination current setting means is a battery pack that sets the charge termination current value higher as the temperature of the battery cell by the temperature measurement means becomes higher.
  3.  請求項1に記載の電池パックにおいて、
     前記電池セルの温度と満充電時の充電終止電流値である満充電終止電流値との関係を示す満充電終止電流データを記憶する記憶手段を備え、
     前記終止電流設定手段は、前記満充電終止電流データを用いて前記充電終止電流値を設定する電池パック。
    The battery pack according to claim 1,
    Storage means for storing full charge end current data indicating a relationship between the temperature of the battery cell and a full charge end current value which is a charge end current value at the time of full charge;
    The termination current setting means is a battery pack that sets the charge termination current value by using the full charge termination current data.
  4.  請求項1乃至3いずれか一項に記載の電池パックにおいて、
     前記電池セルの現在の容量を測定する容量測定手段を備え、
     前記終止電流設定手段は、前記電池セルの初期容量値に対する前記容量測定手段の測定値の比に基づいて、前記充電終止電流値を補正する電池パック。
    The battery pack according to any one of claims 1 to 3,
    Capacity measuring means for measuring the current capacity of the battery cell;
    The termination current setting means is a battery pack that corrects the charge termination current value based on a ratio of a measured value of the capacity measuring means to an initial capacity value of the battery cell.
  5.  請求項4に記載の電池パックにおいて、
     前記初期容量値に対する前記測定値の比が小さくなるにつれて前記充電終止電流値を低く補正する電池パック。
    The battery pack according to claim 4,
    The battery pack which correct | amends the said charge end current value low as the ratio of the said measured value with respect to the said initial capacity value becomes small.
  6.  請求項1乃至5いずれか一項に記載の電池パックにおいて、
     前記温度測定手段は、複数の前記電池セルの温度をそれぞれ測定し、
     前記終止電流設定手段は、前記温度の中の最大温度を用いて前記充電終止電流値を算出する電池パック。
    The battery pack according to any one of claims 1 to 5,
    The temperature measuring means measures the temperature of each of the plurality of battery cells,
    The termination current setting means is a battery pack that calculates the charge termination current value using a maximum temperature among the temperatures.
  7.  電池セルの温度を受信する温度受信手段と、
     前記温度受信手段の検出結果に基づいて、前記電池セルを充電するときの充電終止電流値を算出する終止電流設定手段と、
     前記電池セルの充電電流が前記充電終止電流値以下になったときに、前記電池セルの充電を終了させる充電制御手段と、
    を備え、
     前記電池セルの温度が少なくとも20℃以上45℃未満において、
     前記充電終止電流値を前記電池セルの温度に基づいて変化させる充電制御システム。
    Temperature receiving means for receiving the temperature of the battery cell;
    Based on the detection result of the temperature receiving means, an end current setting means for calculating a charge end current value when charging the battery cell;
    Charging control means for terminating charging of the battery cell when the charging current of the battery cell becomes equal to or lower than the charge end current value;
    With
    When the temperature of the battery cell is at least 20 ° C. or more and less than 45 ° C.,
    The charge control system which changes the said charge end current value based on the temperature of the said battery cell.
  8.  請求項7に記載の充電制御システムにおいて、
     前記終止電流設定手段は、前記温度受信手段による前記温度が高くなるにつれて前記充電終止電流値を高く設定する充電制御システム。
    The charge control system according to claim 7,
    The termination current setting means is a charge control system that sets the charge termination current value higher as the temperature by the temperature receiving means becomes higher.
  9.  請求項7に記載の充電制御システムにおいて、
     前記電池セルの温度と満充電時の充電終止電流値である満充電終止電流値との関係を示す満充電終止電流データを記憶する記憶手段を備え、
     前記終止電流設定手段は、前記満充電終止電流データを用いて前記充電終止電流値を設定する充電制御システム。
    The charge control system according to claim 7,
    Storage means for storing full charge end current data indicating a relationship between the temperature of the battery cell and a full charge end current value which is a charge end current value at the time of full charge;
    The termination current setting means is a charge control system that sets the charge termination current value using the full charge termination current data.
  10.  請求項7乃至9いずれか一項に記載の充電制御システムにおいて、
     前記電池セルの現在の容量を測定する容量測定手段を備え、
     前記終止電流設定手段は、前記電池セルの初期容量値に対する前記容量測定手段の測定値の比に基づいて、前記充電終止電流値を補正する充電制御システム。
    The charge control system according to any one of claims 7 to 9,
    Capacity measuring means for measuring the current capacity of the battery cell;
    The termination current setting means corrects the charge termination current value based on a ratio of a measured value of the capacity measuring means to an initial capacity value of the battery cell.
  11.  請求項10に記載の充電制御システムにおいて、
     前記初期容量値に対する前記測定値の比が小さくなるにつれて前記充電終止電流値を低く補正する充電制御システム。
    The charge control system according to claim 10,
    The charge control system which correct | amends the said charge end current value low as the ratio of the said measured value with respect to the said initial capacity value becomes small.
  12.  請求項7乃至11いずれか一項に記載の充電制御システムにおいて、
     前記温度受信手段は、複数の前記電池セルの温度をそれぞれ受信し、
     前記終止電流設定手段は、前記温度の中の最大温度を用いて前記充電終止電流値を算出する充電制御システム。
    The charge control system according to any one of claims 7 to 11,
    The temperature receiving means receives the temperature of each of the plurality of battery cells,
    The end current setting means is a charge control system for calculating the end charge current value using a maximum temperature among the temperatures.
  13.  電池セルに充電を開始し、かつ、充電中の前記電池セルの温度を測定する充電開始ステップと、
     測定温度に基づいて、前記電池セルを充電するときの充電終止電流値を算出する終止電流設定ステップと、
     前記電池セルの充電電流が前記充電終止電流値以下になったとする条件を判定する判定ステップと、
     前記条件を満たさないとき、前記充電を継続させ、前記条件を満たすとき、前記電池セルの充電を終了させる充電制御ステップと、
    を備え、
     前記電池セルの温度が少なくとも20℃以上45℃未満において、
     前記充電終止電流値を前記電池セルの温度に基づいて変化させる充電方法。
    A charging start step for starting charging the battery cell and measuring the temperature of the battery cell being charged; and
    An end current setting step for calculating a charge end current value when charging the battery cell based on the measured temperature;
    A determination step for determining a condition that the charging current of the battery cell is equal to or lower than the charge end current value;
    When the condition is not satisfied, the charging is continued, and when the condition is satisfied, the charging control step for terminating the charging of the battery cell;
    With
    When the temperature of the battery cell is at least 20 ° C. or more and less than 45 ° C.,
    The charging method which changes the said charge end current value based on the temperature of the said battery cell.
  14.  請求項13に記載の充電方法において、
     前記終止電流設定ステップは、前記測定温度が高くなるにつれて前記充電終止電流値を高く設定する充電方法。
    The charging method according to claim 13,
    In the charging method, the end current setting step sets the charge end current value higher as the measured temperature becomes higher.
  15.  請求項13に記載の充電方法において、
     前記終止電流設定ステップは、前記電池セルの温度と満充電時の充電終止電流値である満充電終止電流値との関係を示す満充電終止電流データを用いて、前記充電終止電流値を設定する充電方法。
    The charging method according to claim 13,
    In the end current setting step, the charge end current value is set using full charge end current data indicating a relationship between a temperature of the battery cell and a full charge end current value that is a charge end current value at the time of full charge. Charging method.
  16.  請求項13乃至15いずれか一項に記載の充電方法において、
     前記終止電流設定ステップは、前記電池セルの初期容量値に対する前記電池セルの現在の容量値の比に基づいて、前記充電終止電流値を補正する充電方法。
    The charging method according to any one of claims 13 to 15,
    The end current setting step is a charging method in which the end current value is corrected based on a ratio of a current capacity value of the battery cell to an initial capacity value of the battery cell.
  17.  請求項16に記載の充電方法において、
     前記初期容量値に対する現在の前記容量値の比が小さくなるにつれて前記充電終止電流値を低く補正する充電方法。
    The charging method according to claim 16, wherein
    A charging method for correcting the charge end current value to be lower as a ratio of the current capacity value to the initial capacity value becomes smaller.
  18.  請求項13乃至17いずれか一項に記載の充電方法において、
     前記充電開始ステップは、複数の前記電池セルの温度をそれぞれ測定し、
     前記終止電流設定ステップは、前記温度の中の最大温度を用いて前記充電終止電流値を算出する充電方法。
    The charging method according to any one of claims 13 to 17,
    The charging start step measures the temperature of each of the plurality of battery cells,
    In the charging method, the end current setting step calculates the charge end current value using a maximum temperature among the temperatures.
PCT/JP2012/004149 2011-07-08 2012-06-27 Battery pack, charging control system and charging method WO2013008396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011152168 2011-07-08
JP2011-152168 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013008396A1 true WO2013008396A1 (en) 2013-01-17

Family

ID=47505707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004149 WO2013008396A1 (en) 2011-07-08 2012-06-27 Battery pack, charging control system and charging method

Country Status (2)

Country Link
JP (1) JPWO2013008396A1 (en)
WO (1) WO2013008396A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161782A (en) * 2015-08-19 2015-12-16 上海斐讯数据通信技术有限公司 Terminal and charging method therefor
JP2016165168A (en) * 2015-03-06 2016-09-08 株式会社豊田自動織機 Charge control device and charge control method
EP4060853A4 (en) * 2019-11-11 2023-07-19 LG Electronics Inc. Electronic device and charging control method of electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315234A (en) * 1993-04-28 1994-11-08 Sanyo Electric Co Ltd Charging method for battery
JP2002058171A (en) * 2000-08-09 2002-02-22 Matsushita Electric Ind Co Ltd Charge control method for secondary battery
JP2002165380A (en) * 2000-11-24 2002-06-07 Tokyo R & D Co Ltd Charging system of battery set
JP2003087991A (en) * 2001-09-07 2003-03-20 Nissan Motor Co Ltd Charger and charging method
JP2009106118A (en) * 2007-10-25 2009-05-14 Hitachi Koki Co Ltd Charging device
JP2009532012A (en) * 2006-03-27 2009-09-03 ソニー エリクソン モバイル コミュニケーションズ, エービー Battery charging temperature control

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285155A (en) * 1998-03-27 1999-10-15 Suzuki Motor Corp Discriminating device for battery replacement timing, deterioration level display and storage medium with battery performance measuring data stored therein
JP2001119804A (en) * 1999-10-21 2001-04-27 Yamaha Motor Co Ltd Power supply system for electric vehicle
JP4095878B2 (en) * 2002-10-28 2008-06-04 松下電器産業株式会社 Battery management system, battery pack, and charge state measuring method thereof
JP2009207332A (en) * 2008-02-29 2009-09-10 Techno Core International Kk Charger apparatus for pack battery, and quality decision apparatus for pack battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315234A (en) * 1993-04-28 1994-11-08 Sanyo Electric Co Ltd Charging method for battery
JP2002058171A (en) * 2000-08-09 2002-02-22 Matsushita Electric Ind Co Ltd Charge control method for secondary battery
JP2002165380A (en) * 2000-11-24 2002-06-07 Tokyo R & D Co Ltd Charging system of battery set
JP2003087991A (en) * 2001-09-07 2003-03-20 Nissan Motor Co Ltd Charger and charging method
JP2009532012A (en) * 2006-03-27 2009-09-03 ソニー エリクソン モバイル コミュニケーションズ, エービー Battery charging temperature control
JP2009106118A (en) * 2007-10-25 2009-05-14 Hitachi Koki Co Ltd Charging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016165168A (en) * 2015-03-06 2016-09-08 株式会社豊田自動織機 Charge control device and charge control method
CN105161782A (en) * 2015-08-19 2015-12-16 上海斐讯数据通信技术有限公司 Terminal and charging method therefor
EP4060853A4 (en) * 2019-11-11 2023-07-19 LG Electronics Inc. Electronic device and charging control method of electronic device

Also Published As

Publication number Publication date
JPWO2013008396A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6177496B2 (en) Charge control device with protection function and battery pack
CN106972206B (en) Battery control system and battery pack
EP2797201B1 (en) Electric storage device protection apparatus, electric storage apparatus, starter battery, and method of protecting electric storage device
US9444267B2 (en) Cell voltage equalizer for multi-cell battery pack which determines the waiting time between equalization operations based on the voltage difference and the state of charge level
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
JP6445190B2 (en) Battery control device
US8344700B2 (en) Charging method and charger
JP2007325458A (en) Vehicular battery pack uniformizing system
US20190094305A1 (en) Amount of charge calculation device, recording medium, and amount of charge calculation method
JP2009072029A (en) Battery controller for vehicle
US9780592B2 (en) Battery pack for selectively setting a high capacity mode having a high charge capacity until a full charge of a secondary battery
EP2731165A1 (en) Method for manufacturing battery pack and battery pack
JP5641215B2 (en) Secondary battery control device
US11796600B2 (en) Chargeable battery abnormality detection apparatus and chargeable battery abnormality detection method
US20110025272A1 (en) Charging method, charging device, and battery pack
WO2014148018A1 (en) Secondary-battery charging system and method and battery pack
KR20130098611A (en) Charging device for battery and method of the same
WO2015178075A1 (en) Battery control device
JP5959566B2 (en) Storage battery control device
JP2004172058A (en) Battery management system and battery pack
WO2013008396A1 (en) Battery pack, charging control system and charging method
JP2009296699A (en) Charging control circuit, power supply, and charging control method
US11050267B2 (en) Power supply system
JP2009232659A (en) Charge-discharge control method and charge-discharge control device of battery
JP2011058961A (en) Battery control apparatus and method of estimating internal resistance of battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523785

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811296

Country of ref document: EP

Kind code of ref document: A1