WO2013008277A1 - Position detection device - Google Patents

Position detection device Download PDF

Info

Publication number
WO2013008277A1
WO2013008277A1 PCT/JP2011/004007 JP2011004007W WO2013008277A1 WO 2013008277 A1 WO2013008277 A1 WO 2013008277A1 JP 2011004007 W JP2011004007 W JP 2011004007W WO 2013008277 A1 WO2013008277 A1 WO 2013008277A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic body
field generator
fixed magnetic
magnetic field
fixed
Prior art date
Application number
PCT/JP2011/004007
Other languages
French (fr)
Japanese (ja)
Inventor
吉澤 敏行
秀哲 有田
波多野 健太
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013523710A priority Critical patent/JP5683703B2/en
Priority to PCT/JP2011/004007 priority patent/WO2013008277A1/en
Publication of WO2013008277A1 publication Critical patent/WO2013008277A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the present invention relates to a position detection device that detects a moving position of an object that moves linearly.
  • FIG. 24 is a front view showing a configuration of a conventional position detection apparatus.
  • the position detection device includes a first fixed magnetic body (magnetic flux guide member) 91, a second fixed magnetic body (magnetic flux guide member) 92, a magnetic field generator (magnet) 93, and a magnetic sensor (magnetoelectric conversion element) 94.
  • the magnetic field generator 93 linearly moves between the opposing surfaces of the first fixed magnetic body 91 and the second fixed magnetic body 92 (in the direction indicated by the arrow X in FIG. 24), and these first fixed magnetic bodies 91 are moved.
  • the opposing inner surfaces of the second fixed magnetic body 92 have a curved shape.
  • the inner surfaces of the first fixed magnetic body 91 and the second fixed magnetic body 92 are curved so that the distance between the magnetic field generator 93 and the first and second fixed magnetic bodies 91 and 92 (see FIG. 24). (Indicated by an arrow Y) changes according to the movable position of the magnetic field generator 93.
  • the magnetic flux density passing through the magnetic sensor 94 changes according to the movable position of the magnetic field generator 93.
  • the amount of change in the magnetic flux density is detected by the magnetic sensor 94 and converted into an electric signal. Since this electric signal is a signal having a linear relationship with the position of the magnetic field generator 93, position information of the magnetic field generator 93 can be detected from the output signal of the magnetic sensor 94.
  • the distance between the magnetic field generator 93 and the first and second fixed magnetic bodies 91 and 92 is important for the accuracy of position information detection. Therefore, the positional relationship of each part becomes important in manufacturing.
  • the magnetic field generator 93 is sandwiched between the curved surfaces of the first and second fixed magnetic bodies 91 and 92, the curved surface and the magnetic field of the first and second fixed magnetic bodies 91 and 92 are configured. There existed a subject that it was difficult to position the distance with the generator 93 correctly.
  • a magnetic attractive force acts between the magnetic field generator 93 and the first and second fixed magnetic bodies 91 and 92. If the magnetic field generator 93 moves in the middle of the first and second fixed magnetic bodies 91 and 92, the magnetic attractive force is balanced, but the magnetic field generator 93 is either of the first and second fixed magnetic bodies 91 and 92. When the heel distance is short, the magnetic attractive force attracted to the fixed magnetic body on the near side works, and the magnetic field generator 93 cannot move stably. Further, it is necessary to provide vibration resistance so that the distance between the magnetic field generator 93 and the first and second fixed magnetic bodies 91 and 92 does not change with respect to external vibration.
  • the magnetic field generator 93 and the first and second fixed magnetic bodies 91 and 92 are moved while maintaining the same distance, and the magnetic field generator 93 is also resistant to external vibration. Is required to be provided on the outer side of the first and second fixed magnetic bodies 91 and 92 in order to move them stably. As described above, there is a problem that the position detection device becomes large by providing the vibration-proof mechanism and the guide mechanism.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a position detection device that facilitates assembly. It is another object of the present invention to obtain a position detection device that can secure a stable movement of a magnetic field generator and can be miniaturized.
  • the position detection device has an N-polar polarity surface and an S-polarity surface on the back side thereof, and is attached to a reciprocating drive shaft and moves in a direction perpendicular to the magnetic pole direction in which the NS poles are arranged.
  • a generator a first fixed magnetic body disposed opposite to one polar surface of the magnetic field generator, and a second fixed magnetic body disposed opposite to the other polar surface of the magnetic field generator; And a magnetic sensor for detecting a magnetic flux passing therethrough, the first fixed magnetic body having a polarity of one polarity.
  • the magnetic sensor is disposed between the opposing surfaces of the first fixed magnetic body and the second fixed magnetic body.
  • the surface facing the surface has a curved portion and two straight portions parallel to the moving direction of the magnetic field generator.
  • the second fixed magnetic body has a surface facing the other polar surface parallel to the moving direction.
  • the magnetic sensor includes a magnetic field generator and a first fixed magnetic field according to the reciprocating motion of the drive shaft. Distance pole direction between the body that changes, in which to detect the position of the magnetic field generator since the magnetic flux passing through changes.
  • the magnetic field generator facing surface of the first fixed magnetic body is a combination of a curved portion and a linear portion
  • the magnetic field generator facing surface of the second fixed magnetic body is a linear portion, thereby producing and assembling.
  • the first and second fixed magnetic bodies can be easily positioned using the opposing linear portions. Thereby, the positioning accuracy between the components can be improved, and the accuracy of the output detection linearity (linearity) can be improved.
  • this straight portion can be used as a movable guide or sliding surface of the magnetic field generator, so that the magnetic field generator can be moved stably. Therefore, there is no need to provide a guide outside. Therefore, the position detection device can be reduced in size.
  • FIG. 5 is a front view which shows the basic composition of the position detection apparatus which concerns on Embodiment 1 of this invention.
  • 5 is a front view for explaining a positioning method of the position detection device according to Embodiment 1.
  • FIG. It is a front view which shows another example of the position detection apparatus which concerns on Embodiment 1.
  • FIG. It is an external appearance perspective view which shows the example of an assembly
  • It is a front view which shows the basic composition of the position detection apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 10 is a front view showing another modification of the position detection device according to the second embodiment.
  • FIG. 10 is a front view showing another modification of the position detection device according to the second embodiment.
  • FIG. 10 is a front view showing another modification of the position detection device according to the second embodiment.
  • It is a front view which shows the basic composition of the position detection apparatus which concerns on Embodiment 3 of this invention. It is a graph showing the relationship of the input signal to the magnetic sensor according to the position of a magnetic field generator.
  • 12A shows a position detection apparatus that measures the graph shown in FIG. 12A.
  • FIG. 12B (a) shows a case where no step is provided, and FIGS.
  • FIG. 10 is a front view showing a modification of the position detection device according to the third embodiment. It is an external appearance perspective view which shows the basic composition of the position detection apparatus which concerns on Embodiment 4 of this invention.
  • FIG. 15A is a plan view and FIG. 15B is a front view of a basic configuration of a position detection device according to Embodiment 4 of the present invention. It is a front view which shows the basic composition of the position detection apparatus which concerns on Embodiment 5 of this invention.
  • FIG. 10 is an external perspective view in which a first fixed magnetic body and a second fixed magnetic body constituting a position detection device according to Embodiment 5 are integrated.
  • FIG. 18A is a front view
  • FIG. 18B and FIG. 18C are external perspective views, illustrating another example of a connecting portion that constitutes the position detection device according to the fifth embodiment.
  • It is a top view which shows the basic composition of the position detection apparatus which concerns on Embodiment 7 of this invention.
  • It is a longitudinal cross-sectional view of the actuator carrying the position detection apparatus based on Embodiment 8 of this invention.
  • FIG. 16 is a longitudinal sectional view showing another example of an actuator equipped with the position detection device according to the eighth embodiment. It is sectional drawing which cut
  • FIG. 1 shows a basic configuration diagram of a position detection apparatus according to Embodiment 1 of the present invention, in which a first fixed magnetic body 10 and a second fixed magnetic body 20 that become a stator, a magnetic field generator 30 and The magnetic sensor 40 is provided.
  • the magnetic field generator 30 includes surfaces having both N and S polarities, and the magnetic field generator 30 is orthogonal to the direction in which the N and S poles are arranged (hereinafter referred to as the magnetic pole direction Y) (hereinafter referred to as the magnetic pole direction Y). , Move in the moving direction X).
  • the first fixed magnetic body 10 is disposed opposite to one polar face of the magnetic field generator 30, and the second fixed magnetic body 20 is disposed opposite to the other polar face of the magnetic field generator 30. Yes.
  • FIG. 1 shows an example in which the first fixed magnetic body 10 is disposed on the N pole side and the second fixed magnetic body 20 is disposed on the S pole side, the polarities may be reversed.
  • the magnetic field generator 30 is attached to an actuator shaft (drive shaft) or the like, and the shaft reciprocates (moves linearly) in the movement direction X so that it is integrated with the shaft.
  • the magnetic field generator 30 also moves in the movement direction X.
  • the surface of the first fixed magnetic body 10 facing the magnetic field generator 30 is composed of a curved portion 11 and two straight portions 12 and 13.
  • the straight portions 12 and 13 are formed at both end portions of the moving range of the magnetic field generator 30, and the curved portion 11 is formed between the straight portions 12 and 13.
  • the curved portion 11 may not be a smooth curved shape, but may be a polygonal shape including a large number of straight lines.
  • the straight portions 12 and 13 have a straight shape parallel to the moving direction X of the magnetic field generator 30.
  • the surface of the second fixed magnetic body 20 on the side facing the magnetic field generator 30 (the surface facing the first fixed magnetic body 10 described above) is a linear portion 21 parallel to the moving direction X of the magnetic field generator 30. It consists of Accordingly, the magnetic field generator 30 has a certain distance from the straight portion 21 of the second fixed magnetic body 20 in the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20. It will move while keeping.
  • the magnetic field generator 30 is in a state where the magnetic field generator 30 and the first fixed magnetic body 10 and the magnetic field generator 30 and the second fixed magnetic body 20 are separated from each other.
  • the fixed magnetic body 10 and the second fixed magnetic body 20 are moved without being in contact with each other, but the present invention is not limited to this.
  • the magnetic field generator 30 and the linear portion 21 of the second fixed magnetic body 20 may be in contact with each other, and the magnetic field generator 30 may slide on the linear portion 21.
  • the linear portion 21 of the second fixed magnetic body 20 is covered with a resin so that the second fixed magnetic body 20 and the magnetic field generator 30 are separated from each other, and the magnetic field generator 30 is formed on the resin surface. May be configured to slide.
  • the magnetic field generator 30 may be covered with resin so that the resin surface of the magnetic field generator 30 slides on the straight portion 21 of the second fixed magnetic body 20.
  • both the linear portion 21 of the second fixed magnetic body 20 and the magnetic field generator 30 may be covered with resin.
  • a guide extending in the movement direction X may be provided outside the gap portion, and the magnetic field generator 30 may be moved along the guide.
  • a magnetic sensor 40 is disposed between the first fixed magnetic body 10 and the second fixed magnetic body 20, and a lead wire (electrode terminal) 41 is exposed to the outside.
  • the magnetic sensor 40 is installed between the linear portion 12 of the first fixed magnetic body 10 and the linear portion 21 of the second fixed magnetic body 20.
  • a magnetic sensor 40 is disposed on an extension line in the moving direction X of the magnetic field generator 30 in the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20. In this structure, the magnetic sensors 40 are arranged in a straight line.
  • the lines of magnetic force emitted from the N pole of the magnetic field generator 30 pass through the first fixed magnetic body 10 to the second fixed magnetic body 20 and return to the S pole of the magnetic field generator 30, so that the magnetic sensor 40 has the first fixed magnetism.
  • a magnetic flux passing between the body 10 and the second fixed magnetic body 20 is detected.
  • the distance in the magnetic pole direction Y between the magnetic field generator 30 and the second fixed magnetic body 20 changes to pass through the magnetic sensor 40. Since the magnetic flux (density) changes, the position of the magnetic field generator 30, and thus the position of the shaft, etc. can be detected.
  • the position detection principle of the position detection device is the same as the previous example.
  • the shapes of the curved portion 11 and the straight portions 12 and 13 of the first fixed magnetic body 10 are determined so that the magnetic flux density characteristics according to the movement of the magnetic field generator 30 are linear. .
  • the magnetic flux density increases when the magnetic field generator 30 moves toward the straight portion 12, and the magnetic flux density decreases when it moves toward the straight portion 13. Therefore, in order to increase the position detection accuracy, it is important to increase the positioning accuracy of the first fixed magnetic body 10 and the second fixed magnetic body 20 with the magnetic field generator 30 interposed therebetween. Therefore, in the first embodiment, there are linear portions 12, 13, and 21 on the magnetic pole facing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20, and the linear portions 12, 21 face each other.
  • the linear portions 13 and 21 are also opposed to each other.
  • the linear portions 12 and 21 and the opposing portions of the linear portions 13 and 21 are at two places in the movement range of the magnetic field generator 30, the first fixed magnetic body 10 and the second fixed magnetic body 20 Positioning between them is possible.
  • An example of the positioning method is shown in FIG.
  • the jig 50 shown in FIG. 2 is formed with a narrow portion and a wide portion.
  • the straight portions 12 and 21 are positioned at the narrow portion, and the straight portions 13 and 21 are positioned at the wide portion. .
  • a resin mold or the like may be used while maintaining the positional relationship between the first fixed magnetic body 10 and the second fixed magnetic body 20.
  • each of the components that affects the position detection performance in terms of assembly. As the positional relationship between the components requires only one gap and the management accuracy is one, assemblability is improved and the position detection accuracy is also improved.
  • FIG. 3 is a diagram showing another example of FIG.
  • the first and second fixed magnetic bodies 10 and 2 that are in the width in the magnetic pole direction Y of the magnetic sensor 40 are adjusted by adding the adjusting linear portion 14 separately from the linear portions 12 and 13 and adjusting the position thereof. Adjustment of the gap of the body 20 is facilitated.
  • FIG. 4 is a diagram illustrating an example of assembly with another apparatus after the position detection apparatus is assembled.
  • the magnetic field generator 30 and the magnetic sensor 40 are not shown.
  • insertion holes 61 and 62 are formed in the stator 60 of the actuator.
  • the shaft hole 63 is a hole through which the shaft of the actuator passes, and the magnetic field generator 30 is attached to one end of the shaft passing through the shaft hole 63.
  • the straight portions 13 and 21 whose opposing surfaces are linear with each other at one end of the first fixed magnetic body 10 and the second fixed magnetic body 20 are inserted into the insertion holes 61 and 61 of the stator 60. 62 is fitted.
  • FIG. 5 is a diagram showing another example of the assembly with another device after the assembly of the position detection device.
  • the straight portion 13 a of the first fixed magnetic body 10 has a shape in which the width is increased in a direction perpendicular to the plane formed by the moving direction X and the magnetic pole direction Y of the magnetic field generator 30. By adopting such a shape, it is possible to widen the positioning range, leading to an improvement in position accuracy. In addition, the length of the linear portion 13a in the moving direction X can be shortened, leading to downsizing of the position detection device.
  • the first fixed magnetic body 10 and the second fixed magnetic body 10 are formed so that the linear portions 12 and 13 of the first fixed magnetic body 10 overlap the moving range of the magnetic field generator 30.
  • the length of the fixed magnetic body 20 in the movement direction X can be reduced, and the position detection device can be downsized.
  • the magnetic field generator 30 is a permanent magnet, for example, a samarium / cobalt square magnet.
  • the magnetic sensor 40 includes a temperature detection element inside and uses a Hall element with an ASIC (Application Specific Integrated Circuit) that can program a temperature compensation function.
  • ASIC Application Specific Integrated Circuit
  • the Hall IC having these functions is used for the magnetic sensor 40, and the zero point and the output gradient are adjusted so that the output does not fluctuate even in a high temperature environment.
  • the position detection device has the N-polar polarity surface and the S-polarity surface on the back side thereof, and is attached to the reciprocating drive shaft so that the NS poles are aligned.
  • a magnetic field generator 30 that moves in a moving direction X orthogonal to Y, a first fixed magnetic body 10 that is disposed opposite to one polarity surface of the magnetic field generator 30, and the other polarity of the magnetic field generator 30.
  • the magnetic flux passing through the second fixed magnetic body 20 disposed opposite to the surface and sandwiched between the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 is detected.
  • the first fixed magnetic body 10 has a curved portion 11 and straight portions 12 and 13 parallel to the moving direction X on a surface facing one of the polar surfaces, and has a second fixed magnetism.
  • the body 20 has a straight portion 2 whose surface facing the other polar surface is parallel to the moving direction X.
  • the magnetic flux passing therethrough changes as the distance in the magnetic pole direction Y between the magnetic field generator 30 and the first fixed magnetic body 10 changes according to the reciprocating motion of the drive shaft. From this, the position of the magnetic field generator 30 is detected. For this reason, it becomes possible to position the surfaces of the first pinned magnetic body 10 and the second pinned magnetic body 20 sandwiching the magnetic field generator 30 with the straight portions 12 and 21 and the straight portions 13 and 21.
  • the positioning of the first fixed magnetic body 10 and the second fixed magnetic body 20 can be performed accurately and easily. Further, the linear portion 21 of the second fixed magnetic body 20 can be used as a guide for moving the magnetic field generator 30, and the magnetic field generator 30 is fixed to the first fixed magnetic body 10 and the second fixed magnetic body 20. It is possible to move the magnetic body 20 smoothly without changing with respect to the facing surface. Therefore, it is not necessary to separately provide a guide mechanism and a vibration proof mechanism, and the position detection device can be downsized.
  • the straight portions 12 and 13 of the first fixed magnetic body 10 are formed at both ends of the movement range of the surface facing the one polar surface of the magnetic field generator 30, and the curved portion 11. Is formed between the straight portions 12 and 13. For this reason, the linear portions 13 and 21 (or the linear portions 12 and 21) facing each other are provided at the end portions of the first fixed magnetic body 10 and the second fixed magnetic body 20 to have a movable portion whose position is to be detected. Assembly to the device can be easily performed. Further, since the straight portions 12 and 13 are located at both ends of the movement range, the first fixed magnetic body 10 and the second fixed magnetic body 20 can be positioned at the maximum position and the minimum position of the gap. Accuracy can be improved.
  • the curved portion 11 and the straight portions 12 and 13 of the first fixed magnetic body 10 are formed within the moving range of the surface facing the one polar surface of the magnetic field generator 30. Made the configuration. For this reason, the first fixed magnetic body 10 and the second fixed portion are compared with the case where the straight portions 12, 21 (or the straight portions 13, 21) used for positioning and assembling to other devices are formed outside the movement range.
  • the length of the magnetic body 20 in the moving direction X can be shortened, and the position detecting device can be downsized.
  • the gap formed by the facing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 extends on the extension line X in the movement direction of the magnetic field generator 30.
  • the magnetic sensor 40 is configured to be installed in a state sandwiched between opposing surfaces of the extended portion. For this reason, the gap extends in one direction, and the magnetic sensor 40 and the magnetic field generator 30 can be arranged in a straight line in the gap, so that the position management of the first fixed magnetic body 10 and the second fixed magnetic body 20 can be performed. It can be in one place. This facilitates assembly.
  • FIG. FIG. 6 is a diagram showing a position detection device according to Embodiment 2 of the present invention. 6 that are the same as or equivalent to those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • the second fixed magnetic body 20 has an L shape in which one end in the moving direction X of the magnetic field generator 30 is bent vertically, and the vertically bent protruding portion 22 is provided. It faces the first fixed magnetic body 10.
  • the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 is also bent vertically from the extension line in the moving direction X to the first fixed magnetic body 10 side. It is extended.
  • the magnetic field generator 30 and the magnetic sensor 40 are arranged vertically. That is, the magnetic pole direction Y of the magnetic field generator 30 and the magnetic flux detection direction of the magnetic sensor 40 are perpendicular.
  • the length of the installation portion of the magnetic sensor 40 can be shortened as compared with the configuration of the first embodiment shown in FIG. It becomes a structure.
  • the position management of the first fixed magnetic body 10 and the second fixed magnetic body 20 is also two places. .
  • FIG. 7 is a modification of the position detection device.
  • one end in the movement direction X of the first fixed magnetic body 10 is formed into an L shape which is bent vertically to the second fixed magnetic body 20 side, and the vertically bent protrusion 15 is the second fixed magnetic body. Opposes the body 20.
  • the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 is bent vertically from the extension line in the moving direction X to the second fixed magnetic body 20 side. It is extended.
  • the magnetic sensor 40 is arrange
  • FIG. 8 shows another modification of the position detection device.
  • one end of the first fixed magnetic body 10 and one end of the second fixed magnetic body 20 are both formed into an L shape bent in a direction perpendicular to the moving direction X of the magnetic field generator 30, and the projecting portions 15. , 22 face each other.
  • the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 is bent vertically from the extension line in the moving direction X to the second fixed magnetic body 20 side. It is extended.
  • the magnetic sensor 40 is arrange
  • the position detection device is downsized by reducing the overall length in the movement direction X.
  • FIG. 9 is a modification of the position detection device.
  • the projecting portions 15 and 22 are formed so as to project obliquely with respect to the movement direction X.
  • the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 is extended in a shape that is bent obliquely downward from the extension line in the movement direction X.
  • the magnetic sensor 40 is arrange
  • FIG. 10 shows another modification of the position detection device.
  • one end of the second fixed magnetic body 20 is bent vertically to the first fixed magnetic body 10 side, and the tip thereof is bent to the first fixed magnetic body 10 side to form a bowl-shaped bowl-shaped protrusion. 23.
  • the first fixed magnetic body 10 cuts the upper end portion opposed to the hook-shaped protrusion 23 within the range in which the flowing magnetic flux is not saturated, thereby forming the inclined portion 16.
  • the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 is folded back from the extension line in the moving direction X and extended in an oblique direction.
  • the magnetic sensor 40 is arrange
  • the gap formed by the opposed surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 of the position detection device is on the extension line X in the moving direction of the magnetic field generator 30.
  • the magnetic sensor 40 is installed in a state of being sandwiched between opposing surfaces of the extended portion. For this reason, the position detection device can be shortened (downsized) with respect to the moving direction X of the magnetic field generator 30.
  • the effect of downsizing the position detecting device in the moving direction X is great.
  • the first fixed magnetic body 10 is arranged on the surface opposite to the surface facing the one polar surface of the magnetic field generator 30 in the moving direction X of the magnetic field generator 30.
  • the second fixed magnetic body 20 has an inclined portion 16 that is inclined with respect to the first fixed magnetic body 10 and protrudes from the end of the surface facing the other polar surface of the magnetic field generator 30 to the first fixed magnetic body 10 side.
  • the gap extends along the opposing surface of the first fixed magnetic body 10 and the hook-like protrusion 23, and the magnetic sensor 40 is provided with the extension of the hook-like protrusion 23. It was set as the structure installed in the state pinched
  • FIG. FIG. 11 is a diagram showing a position detection apparatus according to Embodiment 3 of the present invention. 11 that are the same as or equivalent to those in FIG. 6 are given the same reference numerals, and descriptions thereof are omitted.
  • the third embodiment is a modification of the second embodiment, in which the length of the protruding portion 22 protruding in the direction perpendicular to the moving direction X of the magnetic field generator 30 is set to be perpendicular to the first fixed magnetic body 10.
  • a step ⁇ h is provided shorter than the length in the direction. By providing the step ⁇ h, the resolution of the magnetic flux detected by the magnetic sensor 40 can be increased.
  • FIG. 12A is a graph showing the relationship of the input signal (magnetic flux density) to the magnetic sensor 40 according to the position of the magnetic field generator 30, where the horizontal axis is the position of the magnetic field generator 30 and the vertical axis is the input of the magnetic sensor 40. Signal.
  • the magnetic sensor 40 has a characteristic (linearity) for linearly outputting an output signal with respect to an input signal (magnetic flux density)
  • the same result is obtained even if the vertical axis of the graph is the output signal.
  • the input signal and the output signal are not distinguished and are simply referred to as a detection signal.
  • 12B (a) shows a case where no step ⁇ h is provided, and FIG.
  • FIG. 12B (b) shows a case where a step ⁇ h in which the length of the protrusion 22 is shorter than the length of the first fixed magnetic body 10 is provided (same as FIG. 11).
  • FIG. 12B (c) shows a case where a step ⁇ h in which the length of the protruding portion 22 is longer than the length of the first fixed magnetic body 10 is provided.
  • the detection signals at the positions A and B of the magnetic field generator 30 shown in FIG. 12B correspond to A and B in the graph of FIG. 12A.
  • the magnetic flux density of the first fixed magnetic body 10 and the second fixed magnetic body 20 sandwiching the magnetic field generator 30 is increased. That is, the magnetic flux detected by the magnetic sensor 40 can be increased. Therefore, in the configuration of FIG. 12B (a) without the step ⁇ h, the detection signal width I of the magnetic sensor 40 in the graph of FIG. 12A is different from the detection signal width of the configuration of FIG. 12B (b) with the step ⁇ h. II, and the signal width increases. By increasing the signal width of the detection signal with respect to the position of the magnetic field generator 30, the resolution of the position of the magnetic field generator 30 can be increased. In FIG.
  • the length of the protrusion 22 is shorter than the length of the first fixed magnetic body 10, but the length of the first fixed magnetic body 10 protrudes as shown in FIG. 12B (c). Even if it is shorter than the length of the portion 22, it is the same. Further, in FIG. 12B (b), there is a space at the upper end portion of the protrusion 22 by the amount provided with the step ⁇ h, and in FIG. 12B (c), the first fixed magnetic body 10 is provided by the amount provided with the step ⁇ h. Since there is a space in the upper side portion, it is possible to route wiring or install an electronic substrate in this space, and the position detection device can be miniaturized.
  • FIG. FIG. 13 is a modified example of the position detection device according to the third embodiment, in which the portions where the magnetic sensor 40 abuts on each of the opposing surfaces of the protruding portion 22 and the first fixed magnetic body 10 are protruded and protruded. Installation surfaces 17 and 24 are formed. In the convex installation surfaces 17 and 24, the cross-sectional area is reduced to increase the magnetic resistance, and the distance between the convex installation surfaces 17 and 24 is shorter than the distance between the protrusion 22 and the first fixed magnetic body 10. Therefore, the magnetic flux flowing through the magnetic sensor 40 can be collected.
  • the detection range in the magnetic sensor 40 can be enlarged, and the resolution of the magnetic sensor 40 can be increased. Thereby, the shape of the magnetic field generator 30 can be reduced.
  • the convex installation surfaces 17 and 24 are formed on both the first fixed magnetic body 10 and the second fixed magnetic body 20, but the same effect can be obtained even if only one of them is formed. .
  • the adjustment linear portion 14 shown in FIG. 3 described above has the same effect as the convex installation surface.
  • the opposing surfaces constituting the gap between the first fixed magnetic body 10 and the second fixed magnetic body 20 have different lengths. For this reason, by changing the length, it is possible to reduce the size of one or both of the first fixed magnetic body 10 and the second fixed magnetic body 20 and reduce the size of the position detection device. It becomes. Moreover, since the detection range of the magnetic sensor 40 can be increased, the resolution can be increased.
  • the position detection device has a protruding configuration that protrudes from the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 and contacts the magnetic sensor 40.
  • the surfaces 17 and 24 were provided. For this reason, the magnetic flux which passes the magnetic sensor 40 can be concentrated, and the detection range of the magnetic sensor 40 can be enlarged to increase the resolution.
  • FIG. FIG. 14 is a diagram showing a position detection apparatus according to Embodiment 4 of the present invention.
  • the fourth embodiment is a modification of the third embodiment, in which the orientation of the lead wire 41 of the magnetic sensor 40 installed between the first fixed magnetic body 10 and the second fixed magnetic body 20 is changed to a magnetic field.
  • the generator 30 is arranged in a direction perpendicular to the moving direction X of the generator 30. More specifically, the lead wire 41 is extended in a direction perpendicular to the plane composed of the moving direction X and the magnetic pole direction Y (that is, the direction perpendicular to the paper surface).
  • the lead wire 41 can be connected to an external terminal or an electronic substrate (not shown) on the side surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20, and the total length of the position detection device in the movement direction X can be increased.
  • the structure can be reduced and reduced in size.
  • the direction of the lead wire 41 may be arranged in a direction perpendicular to the moving direction X (that is, upward direction on the paper). Also in this configuration, the total length of the movement detection device in the movement direction X can be reduced and the size can be reduced.
  • the magnetic sensor 40 is installed such that the direction of the lead wire 41 is perpendicular to the moving direction X of the magnetic field generator 30. For this reason, the arrangement location of the electronic substrate connected to the magnetic sensor 40 can be changed, and the position detection device can be downsized.
  • the configuration of the fourth embodiment is applied to the third embodiment.
  • the present invention is not limited to this, and can be applied to the first and second embodiments. is there.
  • FIG. 15A and 15B are views showing a position detection device according to Embodiment 5 of the present invention, in which FIG. 15A is a plan view and FIG. 15B is a front view. 15 that are the same as or equivalent to those in FIG. 11 are denoted by the same reference numerals and description thereof is omitted.
  • the fifth embodiment is a modification of the third embodiment, and the width w1 in the direction orthogonal to the moving direction X of the magnetic field generator 30 as viewed from the magnetic pole direction Y as shown in FIG.
  • the first fixed magnetic body 10 and the second fixed magnetic body 20 are configured to be larger than the width w2 in the orthogonal direction.
  • the width w1 is configured to be equal to or less than the width w2
  • the magnetic field generator 30 is moved to the first fixed magnetic body 10 and the second fixed magnetic body 10. Since the change occurs in the area overlapping with the fixed magnetic body 20, the sensor accuracy (linearity) is affected.
  • the width w1 is configured to be larger than the width w2 in the fifth embodiment, the magnetic flux density passing through the magnetic sensor 40 does not change even if a lateral displacement occurs, and the sensor accuracy is not affected.
  • this position detection device can be used in a high temperature atmosphere.
  • the width w1 of the magnetic field generator 30 is larger than the width w2 of the first fixed magnetic body 10 and the second fixed magnetic body 20 on the plane in which the magnetic field generator 30 moves. It comprised so that it might become. For this reason, even if a lateral displacement occurs in the magnetic field generator 30, the amount of magnetic flux passing through the first fixed magnetic body 10 and the second fixed magnetic body 20 does not change, and the detection accuracy of the magnetic sensor 40 is affected. I can not. In addition, since the surface area of the magnetic field generator 30 is increased, the cooling surface is increased, which is effective for cooling the magnet.
  • FIG. FIG. 16 is a view showing a position detection apparatus according to Embodiment 6 of the present invention
  • FIG. 17 shows an external perspective view in which the first fixed magnetic body 10 and the second fixed magnetic body 20 are integrated.
  • the same or corresponding parts as those in FIG. 6 are denoted by the same reference numerals and description thereof is omitted.
  • the sixth embodiment is a modification of the second embodiment.
  • the positional relationship accuracy between the first fixed magnetic body 10 and the second fixed magnetic body 20 is an important factor in sensor accuracy (linearity).
  • the positional relationship accuracy can be improved by integrating a part of the first fixed magnetic body 10 and the second fixed magnetic body 20 at the connecting portion 25. . By doing so, the positional accuracy of each component is improved, which leads to an improvement in sensor accuracy.
  • the width of the connecting portion 25 in the magnetic pole direction Y is narrowed so as to be magnetically saturated with respect to the magnetic flux of the magnetic field generator 30, the detected magnetic flux of the magnetic sensor 40 is not affected. Accuracy can be maintained.
  • the first fixed magnetic body 10 and the second fixed magnetic body 20 are a single component, the assemblability is improved and the manufacturing can be performed at a low cost.
  • the connecting portion 25 may be cut to make the first fixed magnetic body 10 and the second fixed magnetic body 20 separate parts. By doing so, the magnetic flux density passing through the magnetic sensor 40 can be stabilized at the same level as the configuration described in the second embodiment.
  • FIGS. 16 and 17 the connecting portion 25 is provided so as to partially connect the opposing surfaces of the protruding portion 22 formed for installing the magnetic sensor 40 and the first fixed magnetic body 10.
  • the position where the connecting portion 25 is provided is not limited to this.
  • FIG. 18 is another example of the connecting portion 25.
  • two connecting portions 25a and 25b are provided on the opposing surfaces of the protruding portion 22 where the magnetic sensor 40 is installed and the first fixed magnetic body 10, thereby A hole into which the magnetic sensor 40 is inserted can be formed in the fixed magnetic body including the first fixed magnetic body 10 and the second fixed magnetic body 20.
  • the magnetic sensor 40 can be inserted from the direction perpendicular to the paper surface, and the positioning accuracy for fixing the magnetic sensor 40 is improved.
  • the connection part 25 may be provided in places other than the example of illustration, and the 1st fixed magnetic body 10 and the 2nd fixed magnetic body 20 may be connected.
  • FIG. 18C shows an example in which the first fixed magnetic body 10 and the second fixed magnetic body 20 are formed of laminated steel plates.
  • the 1st fixed magnetic body 10 and the 2nd fixed magnetic body 20 should just be a magnetic body, it is more preferable that it is comprised with the laminated steel plate.
  • laminated steel sheets By using laminated steel sheets, eddy currents generated in the first fixed magnetic body 10 and the second fixed magnetic body 20 are suppressed, and the magnetic flux in the magnetic field generator 30 is easily detected by the magnetic sensor 40. is there. Moreover, you may form with the powder iron core. As with the laminated steel plate, eddy current can be suppressed.
  • the first fixed magnetic body 10 and the second fixed magnetic body 20 are partially connected. For this reason, by positioning the first fixed magnetic body 10 and the second fixed magnetic body 20 in a state where they are connected by the connecting portion 25, positioning accuracy can be ensured at the time of forming. And by ensuring positioning accuracy, it becomes possible to improve the output linearity (linearity) of the magnetic sensor 40. Moreover, since the 1st fixed magnetic body 10 and the 2nd fixed magnetic body 20 can be shape
  • the configuration of the sixth embodiment is applied to the second embodiment.
  • the present invention is not limited to this, and may be applied to the first, third, and fifth embodiments. Is possible.
  • FIG. 19 is a plan view showing a position detection apparatus according to Embodiment 7 of the present invention.
  • the seventh embodiment is a modification of the second embodiment, and is provided with a positioning mechanism that regulates the movable range in the movement direction X of the magnetic field generator 30.
  • the magnetic field generator 30 is configured with a magnetic field generator holder 70, and the magnetic field generator holder 70 is provided with a moving side stopper 71 having a shape protruding outward.
  • the movement-side stopper 71 and the fixed-side stopper 73a come into contact with each other, thereby restricting the movement of the magnetic field generator 30. At this position, the detection signal of the magnetic sensor 40 is maximized. On the other hand, at the position where the moving side stopper 71 and the fixed side stopper 73b abut, the detection signal of the magnetic sensor 40 is minimized. Therefore, the detection signal range of the magnetic sensor 40 in the movable range of the magnetic field generator 30 can be easily confirmed.
  • a Hall IC corresponding to the maximum magnetic flux density when the magnetic field generator 30 is in contact with the fixed side stopper 73a is prepared as the magnetic sensor 40, or information on the detection signal range is stored in the IC program. Can be written on. Therefore, it is possible to determine the detection signal range alone without assembling the position detection device to an actuator to be detected and measuring the detection signal range.
  • the fixed side stoppers 73a and 73b are provided to restrict the movement of the magnetic field generator 30 to both sides in the moving direction X.
  • the fixed side stopper 73a or the fixed side stopper is used. Only one of the portions 73b may be provided to restrict the movement in one direction of the movement direction X.
  • the position detection device includes the fixed-side stoppers 73a and 73b that are provided at both ends of the moving range of the magnetic field generator 30 and contact the magnetic field generator 30. Therefore, the movable range of the magnetic field generator 30 can be regulated.
  • FIG. FIG. 20 is a longitudinal section of an actuator (drive source) equipped with a position detection device according to Embodiment 8 of the present invention.
  • a motor will be described in the eighth embodiment.
  • the position detection device of the present invention can be used as long as it is an actuator that is linearly driven. 20 that are the same as or correspond to those in FIG. 11 are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 20 when a voltage is applied to a terminal 102 in an external input / output connector 101 provided in the actuator 100, a current flows through a coil 104 wound around a stator (yoke) 103, and polarization is applied to a plurality of poles.
  • the fixed stator 103 is NS magnetized according to the direction of current.
  • the rotor 106 provided with the magnet 105 magnetized with NS rotates.
  • the rotor 106 is held by a bearing (bearing) 107.
  • a screw mechanism 108 on the female screw side for converting the rotation into a linear motion is configured, and a screw mechanism 110 on the male screw side formed on the outer peripheral surface of the shaft (output shaft) 109; Engagement and rotation of the rotor 106 transmits force to the shaft 109.
  • the shaft 109 moves linearly.
  • the first fixed magnetic body 10, the second fixed magnetic body 20, and the magnetic sensor 40 are arranged, and the magnetic field generator 30 is made of a nonmagnetic material.
  • the sensor shaft (drive shaft) 112 is connected.
  • the sensor shaft 112 insert-molds the magnetic field generator 30 with a resin mold.
  • the sensor shaft 112 and the shaft 109 of the actuator 100 are connected at the end face, and the sensor shaft 112 and the magnetic field generator 30 move in conjunction with the linear movement of the shaft 109, and the position is detected by the magnetic sensor 40. It has a structure to detect.
  • the lead wire 41 of the magnetic sensor 40 is routed to the electronic substrate 113 side and is electrically connected to the terminal 102.
  • the shaft 109 and the sensor shaft 112 do not have to be connected and integrated.
  • the shaft 109 and the sensor shaft 112 are biased by a spring or the like from the position detection device side toward the shaft 109. It may be configured as described above.
  • the magnetic sensor 40 may malfunction due to the influence of noise generated from a motor including the stator 103 and the rotor 106. Therefore, the magnetic sensor 40 is arranged on the side (opposite side) far from the motor body, thereby reducing the influence of the noise and improving the noise resistance performance.
  • FIG. 21 is a longitudinal sectional view showing another example of the actuator, and shows a configuration diagram in which the magnetic sensor 40 is mounted on the side of the actuator 100 close to the motor.
  • FIG. 22 shows a cross-sectional view of the second fixed magnetic body 20 taken along the line AA of FIG.
  • the second fixed magnetic body 20 is formed with a hole 26 through which the sensor shaft 112 penetrates, and an enlarged diameter portion 27 having an enlarged cross-sectional area corresponding to the opening area of the hole 26 is formed to ensure a passage area of magnetic flux. is doing.
  • FIG. 23 shows a view of the second fixed magnetic body 20 and the sensor shaft 112 as seen from the direction of arrow B in FIG. In this example, the sensor shaft 112 is configured to be bifurcated in the middle to bypass the protrusion 22.
  • the direction of the lead wire 41 may be determined in accordance with the structure of the actuator 100, and it goes without saying that the lead wire 41 may be arranged in a direction other than the direction shown in FIGS.
  • the position detection device is configured to dispose the magnetic sensor 40 on the near side and the magnetic field generator 30 on the far side with respect to the actuator 100 that drives the sensor shaft 112. For this reason, the magnetic sensor 40 becomes less susceptible to noise and leakage magnetic fields from the motor and actuator 100, and the position detection error of the position detection device can be reduced.
  • the magnetic sensor 40 is disposed on the far side and the magnetic field generator 30 is disposed on the near side with respect to the actuator 100 that drives the sensor shaft 112. Good.
  • the lead wire 41 of the magnetic sensor 40 can be easily electrically connected to the motor and actuator 100 side, and productivity can be improved.
  • the magnetic sensor 40 approaches the motor and actuator 100 side, a space required for wiring and the like can be reduced, and the entire actuator 100 can be reduced in size.
  • the first fixed magnetic body 10 and the second fixed magnetic body 20 of the first to eighth embodiments may be magnetic bodies, but are composed of laminated steel plates. It is more preferable. Moreover, you may form with the powder iron core.
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • the position detection device since the position detection device according to the present invention has a vibration resistance while being reduced in size, a throttle valve, an EGR (Exhaust Gas Recirculation) valve, a WG (Waste Gate) valve mounted on the vehicle, It is suitable for use in a position detection device that detects the shaft position of an actuator that drives a movable vane or the like of a VG (Variable Geometric) turbo system.
  • first fixed magnetic body 11 curved portion, 12, 13, 13a linear portion, 14 adjusting linear portion, 15 protruding portion, 16 inclined portion, 17 convex installation surface
  • 20 second fixed magnetic body 21 linear Part, 22 projecting part, 23 bowl-shaped projecting part, 24 convex installation surface, 25, 25a, 25b connecting part, 26 holes, 27 diameter expanding part, 30 magnetic field generator, 40 magnetic sensor, 41 lead wire (electrode terminal) , 50 jig, 60 stator, 61, 62 insertion hole, 63 shaft hole, 70 magnetic field generator holding part, 71 moving side stopper part, 72 housing.
  • 73a, 73b fixed side stopper 91 first fixed magnetic body, 92 second fixed magnetic body, 93 magnetic field generator, 94 magnetic sensor, 100 actuator, 101 external input / output connector, 102 terminal, 103 stator, 104 coils, 105 magnets, 106 rotors, 107 bearings, 108, 110 screw mechanisms, 109 shafts, 111 bosses, 112 sensor shafts (drive shafts), 113 electronic boards.

Abstract

By making a surface facing a magnetic field generating body (30) in a first fixed magnetic body (10) a combination of a curved line (11) and two straight line portions (12, 13), and making a surface facing the magnetic field generating body (30) in a second fixed magnetic body (20) a straight line section (21), positioning can be accurately and easily carried out during manufacture and assembly by using the facing straight line sections (12, 21) and the straight line sections (13, 21). Furthermore, the magnetic field generating body (30) can be moved in a stable manner along the straight line section (21) of the second fixed magnetic body (20).

Description

位置検出装置Position detection device
 本発明は、直線運動をする物体の移動位置を検出する位置検出装置に関する。 The present invention relates to a position detection device that detects a moving position of an object that moves linearly.
 従来の位置検出装置は、例えば特許文献1に開示されている。図24は、従来の位置検出装置の構成を示す正面図である。位置検出装置は、第1の固定磁性体(磁束案内部材)91、第2の固定磁性体(磁束案内部材)92、磁界発生体(マグネット)93、磁気センサ(磁気電気変換要素)94で構成されている。磁界発生体93は、第1の固定磁性体91と第2の固定磁性体92の対向面間を直線的に可動し(図24に矢印Xで示す方向)、これら第1の固定磁性体91および第2の固定磁性体92の対向する内面側は曲線形状である。第1の固定磁性体91と第2の固定磁性体92の内面側を曲線形状とすることで、磁界発生体93と第1および第2の固定磁性体91,92との距離(図24に矢印Yで示す)が磁界発生体93の可動位置に応じて変化するようにしている。この距離(位置関係)が変わることにより、磁界発生体93の可動位置に応じて、磁気センサ94を通過する磁束密度が変化する。その磁束密度の変化量を磁気センサ94で検知し、電気信号に変換する。この電気信号が磁界発生体93の位置に対して直線的な関係を有する信号であることから、磁気センサ94の出力信号から磁界発生体93の位置情報を検出できる。 A conventional position detection device is disclosed in, for example, Patent Document 1. FIG. 24 is a front view showing a configuration of a conventional position detection apparatus. The position detection device includes a first fixed magnetic body (magnetic flux guide member) 91, a second fixed magnetic body (magnetic flux guide member) 92, a magnetic field generator (magnet) 93, and a magnetic sensor (magnetoelectric conversion element) 94. Has been. The magnetic field generator 93 linearly moves between the opposing surfaces of the first fixed magnetic body 91 and the second fixed magnetic body 92 (in the direction indicated by the arrow X in FIG. 24), and these first fixed magnetic bodies 91 are moved. The opposing inner surfaces of the second fixed magnetic body 92 have a curved shape. The inner surfaces of the first fixed magnetic body 91 and the second fixed magnetic body 92 are curved so that the distance between the magnetic field generator 93 and the first and second fixed magnetic bodies 91 and 92 (see FIG. 24). (Indicated by an arrow Y) changes according to the movable position of the magnetic field generator 93. By changing this distance (positional relationship), the magnetic flux density passing through the magnetic sensor 94 changes according to the movable position of the magnetic field generator 93. The amount of change in the magnetic flux density is detected by the magnetic sensor 94 and converted into an electric signal. Since this electric signal is a signal having a linear relationship with the position of the magnetic field generator 93, position information of the magnetic field generator 93 can be detected from the output signal of the magnetic sensor 94.
特表2005-515459号公報JP-T-2005-515459
 このような構成の位置検出装置では、磁界発生体93と第1および第2の固定磁性体91,92との距離が、位置情報検出の精度上重要である。従って、各部品の位置関係が製造上重要となってくる。しかしながら、第1および第2の固定磁性体91,92の曲線面間に磁界発生体93が挟まれて構成されることで、第1および第2の固定磁性体91,92の曲線面と磁界発生体93との距離を正確に位置決めすることが困難であるという課題があった。 In the position detection device having such a configuration, the distance between the magnetic field generator 93 and the first and second fixed magnetic bodies 91 and 92 is important for the accuracy of position information detection. Therefore, the positional relationship of each part becomes important in manufacturing. However, since the magnetic field generator 93 is sandwiched between the curved surfaces of the first and second fixed magnetic bodies 91 and 92, the curved surface and the magnetic field of the first and second fixed magnetic bodies 91 and 92 are configured. There existed a subject that it was difficult to position the distance with the generator 93 correctly.
 また、磁界発生体93と第1および第2の固定磁性体91,92との間で磁気吸引力が働く。磁界発生体93が第1および第2の固定磁性体91,92の真ん中を可動すれば磁気吸引力は釣り合うが、磁界発生体93が第1および第2の固定磁性体91,92のうちどちらかとの距離が近いと、近い側の固定磁性体に引きつけられる磁気吸引力が働き、磁界発生体93が安定して可動できない。また、外部からの振動に対して磁界発生体93と第1および第2の固定磁性体91,92との距離が変化しないように、耐振性を持たせる必要がある。
 また、磁界発生体93と第1および第2の固定磁性体91,92とが等距離を維持しながら磁界発生体93を可動させるために、また外部からの振動に対しても磁界発生体93を安定して可動させるために、第1および第2の固定磁性体91,92の外側にガイドを設ける必要がある。
 このように、耐振機構およびガイド機構などを設けることによって、位置検出装置が大きくなるという課題があった。
Further, a magnetic attractive force acts between the magnetic field generator 93 and the first and second fixed magnetic bodies 91 and 92. If the magnetic field generator 93 moves in the middle of the first and second fixed magnetic bodies 91 and 92, the magnetic attractive force is balanced, but the magnetic field generator 93 is either of the first and second fixed magnetic bodies 91 and 92. When the heel distance is short, the magnetic attractive force attracted to the fixed magnetic body on the near side works, and the magnetic field generator 93 cannot move stably. Further, it is necessary to provide vibration resistance so that the distance between the magnetic field generator 93 and the first and second fixed magnetic bodies 91 and 92 does not change with respect to external vibration.
In addition, the magnetic field generator 93 and the first and second fixed magnetic bodies 91 and 92 are moved while maintaining the same distance, and the magnetic field generator 93 is also resistant to external vibration. Is required to be provided on the outer side of the first and second fixed magnetic bodies 91 and 92 in order to move them stably.
As described above, there is a problem that the position detection device becomes large by providing the vibration-proof mechanism and the guide mechanism.
 この発明は、上記のような課題を解決するためになされたもので、組立性を容易にした位置検出装置を得ることを目的とする。さらに、磁界発生体の安定移動を確保して、小型化が可能な位置検出装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a position detection device that facilitates assembly. It is another object of the present invention to obtain a position detection device that can secure a stable movement of a magnetic field generator and can be miniaturized.
 この発明の位置検出装置は、N極の極性面およびその裏側にS極の極性面を有し、往復運動する駆動軸に取り付けられて当該NS極が並ぶ磁極方向と直交する方向に移動する磁界発生体と、磁界発生体の一方の極性面に対向して配置される第1の固定磁性体と、磁界発生体のもう一方の極性面に対向して配置される第2の固定磁性体と、第1の固定磁性体と第2の固定磁性体との対向面に挟まれた状態に設置され、通過する磁束を検知する磁気センサとを備え、第1の固定磁性体は、一方の極性面に対向する面に曲線部および磁界発生体の移動方向に平行な2箇所の直線部を有し、第2の固定磁性体は、もう一方の極性面に対向する面が移動方向に平行な直線部であり、磁気センサは、駆動軸の往復運動に応じて磁界発生体と第1の固定磁性体との間の磁極方向の距離が変化することで、通過する磁束が変化することから磁界発生体の位置を検出するようにしたものである。 The position detection device according to the present invention has an N-polar polarity surface and an S-polarity surface on the back side thereof, and is attached to a reciprocating drive shaft and moves in a direction perpendicular to the magnetic pole direction in which the NS poles are arranged. A generator, a first fixed magnetic body disposed opposite to one polar surface of the magnetic field generator, and a second fixed magnetic body disposed opposite to the other polar surface of the magnetic field generator; And a magnetic sensor for detecting a magnetic flux passing therethrough, the first fixed magnetic body having a polarity of one polarity. The magnetic sensor is disposed between the opposing surfaces of the first fixed magnetic body and the second fixed magnetic body. The surface facing the surface has a curved portion and two straight portions parallel to the moving direction of the magnetic field generator. The second fixed magnetic body has a surface facing the other polar surface parallel to the moving direction. The magnetic sensor includes a magnetic field generator and a first fixed magnetic field according to the reciprocating motion of the drive shaft. Distance pole direction between the body that changes, in which to detect the position of the magnetic field generator since the magnetic flux passing through changes.
 この発明によれば、第1の固定磁性体の磁界発生体対向面を曲線部と直線部の組み合わせとし、第2の固定磁性体の磁界発生体対向面を直線部とすることにより、製造組立時に第1および第2の固定磁性体の対向する直線部を利用して容易に位置決めできるようになる。これにより、各部品間の位置決め精度を向上させ、位置検出の出力線形性(直線性)の精度を向上させることができる。また、第2の固定磁性体の磁界発生体対向面を直線部とすることにより、この直線部を磁界発生体の可動ガイドまたは摺動面として利用できるので、磁界発生体を安定定に移動可能となり、外部にガイドを設ける必要がない。よって、位置検出装置を小型化できる。 According to the present invention, the magnetic field generator facing surface of the first fixed magnetic body is a combination of a curved portion and a linear portion, and the magnetic field generator facing surface of the second fixed magnetic body is a linear portion, thereby producing and assembling. Sometimes, the first and second fixed magnetic bodies can be easily positioned using the opposing linear portions. Thereby, the positioning accuracy between the components can be improved, and the accuracy of the output detection linearity (linearity) can be improved. In addition, by setting the second fixed magnetic body facing surface of the magnetic field generator as a straight portion, this straight portion can be used as a movable guide or sliding surface of the magnetic field generator, so that the magnetic field generator can be moved stably. Therefore, there is no need to provide a guide outside. Therefore, the position detection device can be reduced in size.
この発明の実施の形態1に係る位置検出装置の基本構成を示す正面図である。It is a front view which shows the basic composition of the position detection apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係る位置検出装置の位置決め方法を説明する正面図である。5 is a front view for explaining a positioning method of the position detection device according to Embodiment 1. FIG. 実施の形態1に係る位置検出装置の別例を示す正面図である。It is a front view which shows another example of the position detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る位置検出装置と他の装置との組付例を示す外観斜視図である。It is an external appearance perspective view which shows the example of an assembly | attachment with the position detection apparatus which concerns on Embodiment 1, and another apparatus. 実施の形態1に係る位置検出装置と他の装置との組付の別例を示す外観斜視図である。It is an external appearance perspective view which shows another example of the assembly | attachment with the position detection apparatus which concerns on Embodiment 1, and another apparatus. この発明の実施の形態2に係る位置検出装置の基本構成を示す正面図である。It is a front view which shows the basic composition of the position detection apparatus which concerns on Embodiment 2 of this invention. 実施の形態2に係る位置検出装置の変形例を示す正面図である。It is a front view which shows the modification of the position detection apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る位置検出装置の別の変形例を示す正面図である。FIG. 10 is a front view showing another modification of the position detection device according to the second embodiment. 実施の形態2に係る位置検出装置の別の変形例を示す正面図である。FIG. 10 is a front view showing another modification of the position detection device according to the second embodiment. 実施の形態2に係る位置検出装置の別の変形例を示す正面図である。FIG. 10 is a front view showing another modification of the position detection device according to the second embodiment. この発明の実施の形態3に係る位置検出装置の基本構成を示す正面図である。It is a front view which shows the basic composition of the position detection apparatus which concerns on Embodiment 3 of this invention. 磁界発生体の位置に応じた磁気センサへの入力信号の関係を表すグラフである。It is a graph showing the relationship of the input signal to the magnetic sensor according to the position of a magnetic field generator. 図12Aに示すグラフを測定した位置検出装置を示し、図12B(a)は段差を設けない場合、図12B(b),(c)は段差を設けた場合である。12A shows a position detection apparatus that measures the graph shown in FIG. 12A. FIG. 12B (a) shows a case where no step is provided, and FIGS. 12B (b) and (c) show a case where a step is provided. 実施の形態3に係る位置検出装置の変形例を示す正面図である。FIG. 10 is a front view showing a modification of the position detection device according to the third embodiment. この発明の実施の形態4に係る位置検出装置の基本構成を示す外観斜視図である。It is an external appearance perspective view which shows the basic composition of the position detection apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係る位置検出装置の基本構成を示し、図15(a)は平面図、図15(b)は正面図である。FIG. 15A is a plan view and FIG. 15B is a front view of a basic configuration of a position detection device according to Embodiment 4 of the present invention. この発明の実施の形態5に係る位置検出装置の基本構成を示す正面図である。It is a front view which shows the basic composition of the position detection apparatus which concerns on Embodiment 5 of this invention. 実施の形態5に係る位置検出装置を構成する第1の固定磁性体と第2の固定磁性体を一体化した外観斜視図である。FIG. 10 is an external perspective view in which a first fixed magnetic body and a second fixed magnetic body constituting a position detection device according to Embodiment 5 are integrated. 実施の形態5に係る位置検出装置を構成する連結部の別例を示し、図18(a)は正面図、図18(b),(c)は外観斜視図である。FIG. 18A is a front view, and FIG. 18B and FIG. 18C are external perspective views, illustrating another example of a connecting portion that constitutes the position detection device according to the fifth embodiment. この発明の実施の形態7に係る位置検出装置の基本構成を示す平面図である。It is a top view which shows the basic composition of the position detection apparatus which concerns on Embodiment 7 of this invention. この発明の実施の形態8に係る位置検出装置を搭載したアクチュエータの縦断面図である。It is a longitudinal cross-sectional view of the actuator carrying the position detection apparatus based on Embodiment 8 of this invention. 実施の形態8に係る位置検出装置を搭載したアクチュエータの別例を示す縦断面図である。FIG. 16 is a longitudinal sectional view showing another example of an actuator equipped with the position detection device according to the eighth embodiment. 実施の形態8に係る位置検出装置を、図21のAA線に沿って切断した断面図である。It is sectional drawing which cut | disconnected the position detection apparatus which concerns on Embodiment 8 along the AA line of FIG. 実施の形態8に係る位置検出装置を、図21の矢印B方向から見た図である。It is the figure which looked at the position detection apparatus which concerns on Embodiment 8 from the arrow B direction of FIG. 従来の位置検出装置の基本構成を示す正面図である。It is a front view which shows the basic composition of the conventional position detection apparatus.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1はこの発明の実施の形態1における位置検出装置の基本構成図を示しており、ステータとなる第1の固定磁性体10および第2の固定磁性体20と、マグネットの磁界発生体30と、磁気センサ40とを備えている。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 shows a basic configuration diagram of a position detection apparatus according to Embodiment 1 of the present invention, in which a first fixed magnetic body 10 and a second fixed magnetic body 20 that become a stator, a magnetic field generator 30 and The magnetic sensor 40 is provided.
 磁界発生体30は、N極とS極の双方の極性を有する面を備えており、この磁界発生体30はN極とS極が並ぶ方向(以下、磁極方向Y)と直交する方向(以下、移動方向X)に移動する。磁界発生体30の一方の極性面に対向して第1の固定磁性体10が配置され、磁界発生体30のもう一方の極性面に対向して、第2の固定磁性体20が配置されている。
 なお、図1では第1の固定磁性体10をN極側に、第2の固定磁性体20をS極側に配置した例を示したが、極性は逆であってもよい。また、図示は省略するが、この磁界発生体30はアクチュエータのシャフト(駆動軸)などに取り付けられており、シャフトが移動方向Xに往復運動(直動)することにより、このシャフトと一体になった磁界発生体30も移動方向Xへ移動する。
The magnetic field generator 30 includes surfaces having both N and S polarities, and the magnetic field generator 30 is orthogonal to the direction in which the N and S poles are arranged (hereinafter referred to as the magnetic pole direction Y) (hereinafter referred to as the magnetic pole direction Y). , Move in the moving direction X). The first fixed magnetic body 10 is disposed opposite to one polar face of the magnetic field generator 30, and the second fixed magnetic body 20 is disposed opposite to the other polar face of the magnetic field generator 30. Yes.
Although FIG. 1 shows an example in which the first fixed magnetic body 10 is disposed on the N pole side and the second fixed magnetic body 20 is disposed on the S pole side, the polarities may be reversed. Although not shown, the magnetic field generator 30 is attached to an actuator shaft (drive shaft) or the like, and the shaft reciprocates (moves linearly) in the movement direction X so that it is integrated with the shaft. The magnetic field generator 30 also moves in the movement direction X.
 第1の固定磁性体10の磁界発生体30に対向する側の面は、曲線部11と2箇所の直線部12,13とから構成されている。図1の例では、直線部12,13が磁界発生体30の移動範囲の両側端部に形成され、直線部12,13の間に曲線部11が形成されている。この曲線部11は、滑らかな曲線形状でなくてもよく、多数の直線を含む多角形状であってもよい。直線部12,13は、磁界発生体30の移動方向Xに平行な直線形状である。
 他方、第2の固定磁性体20の磁界発生体30に対向する側の面(先述の第1の固定磁性体10の対向面)は、磁界発生体30の移動方向Xと平行な直線部21で構成されている。従って、磁界発生体30は、第1の固定磁性体10と第2の固定磁性体20の対向面で構成されるギャップ中を、第2の固定磁性体20の直線部21と一定の距離を保ちながら移動することになる。
The surface of the first fixed magnetic body 10 facing the magnetic field generator 30 is composed of a curved portion 11 and two straight portions 12 and 13. In the example of FIG. 1, the straight portions 12 and 13 are formed at both end portions of the moving range of the magnetic field generator 30, and the curved portion 11 is formed between the straight portions 12 and 13. The curved portion 11 may not be a smooth curved shape, but may be a polygonal shape including a large number of straight lines. The straight portions 12 and 13 have a straight shape parallel to the moving direction X of the magnetic field generator 30.
On the other hand, the surface of the second fixed magnetic body 20 on the side facing the magnetic field generator 30 (the surface facing the first fixed magnetic body 10 described above) is a linear portion 21 parallel to the moving direction X of the magnetic field generator 30. It consists of Accordingly, the magnetic field generator 30 has a certain distance from the straight portion 21 of the second fixed magnetic body 20 in the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20. It will move while keeping.
 なお、図1では磁界発生体30と第1の固定磁性体10の間、および磁界発生体30と第2の固定磁性体20の間を離間させた状態にして、磁界発生体30が第1の固定磁性体10および第2の固定磁性体20に接触せず移動する構成にしたが、これに限定されるものではない。例えば、磁界発生体30と第2の固定磁性体20の直線部21を接触させた状態にして、直線部21上を磁界発生体30が摺動する構成にしてもよい。また例えば、第2の固定磁性体20の直線部21上を樹脂で被覆して第2の固定磁性体20と磁界発生体30を離間させた状態にしつつ、この樹脂面上を磁界発生体30が摺動する構成にしてもよい。反対に磁界発生体30を樹脂で被覆して、第2の固定磁性体20の直線部21上を磁界発生体30の樹脂面が摺動する構成にしてもよい。もちろん第2の固定磁性体20の直線部21と磁界発生体30とを両方樹脂で被覆してもよい。また例えば、ギャップ部分の外側に移動方向Xへ伸びるガイドを設け、このガイドに磁界発生体30を沿わせて移動させる構成にしてもよい。 In FIG. 1, the magnetic field generator 30 is in a state where the magnetic field generator 30 and the first fixed magnetic body 10 and the magnetic field generator 30 and the second fixed magnetic body 20 are separated from each other. The fixed magnetic body 10 and the second fixed magnetic body 20 are moved without being in contact with each other, but the present invention is not limited to this. For example, the magnetic field generator 30 and the linear portion 21 of the second fixed magnetic body 20 may be in contact with each other, and the magnetic field generator 30 may slide on the linear portion 21. Further, for example, the linear portion 21 of the second fixed magnetic body 20 is covered with a resin so that the second fixed magnetic body 20 and the magnetic field generator 30 are separated from each other, and the magnetic field generator 30 is formed on the resin surface. May be configured to slide. On the contrary, the magnetic field generator 30 may be covered with resin so that the resin surface of the magnetic field generator 30 slides on the straight portion 21 of the second fixed magnetic body 20. Of course, both the linear portion 21 of the second fixed magnetic body 20 and the magnetic field generator 30 may be covered with resin. Further, for example, a guide extending in the movement direction X may be provided outside the gap portion, and the magnetic field generator 30 may be moved along the guide.
 また、第1の固定磁性体10と第2の固定磁性体20の間に磁気センサ40が配置され、リードワイヤ(電極端子)41が外部へ出されている。図1の例においては、磁気センサ40が、第1の固定磁性体10の直線部12と第2の固定磁性体20の直線部21との間に挟まれた状態に設置されている。また、第1の固定磁性体10と第2の固定磁性体20の対向面で構成されるギャップにおいて、磁界発生体30の移動方向X延長線上に磁気センサ40が配置され、磁界発生体30と磁気センサ40が直線状に並ぶ構造である。 Further, a magnetic sensor 40 is disposed between the first fixed magnetic body 10 and the second fixed magnetic body 20, and a lead wire (electrode terminal) 41 is exposed to the outside. In the example of FIG. 1, the magnetic sensor 40 is installed between the linear portion 12 of the first fixed magnetic body 10 and the linear portion 21 of the second fixed magnetic body 20. In addition, a magnetic sensor 40 is disposed on an extension line in the moving direction X of the magnetic field generator 30 in the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20. In this structure, the magnetic sensors 40 are arranged in a straight line.
 磁界発生体30のN極から出る磁力線は、第1の固定磁性体10を通って第2の固定磁性体20へ抜け磁界発生体30のS極へ戻り、磁気センサ40が第1の固定磁性体10と第2の固定磁性体20の間を通過する磁束を検知する。そして、磁界発生体30の移動方向Xへの移動に応じて、磁界発生体30と第2の固定磁性体20との間の磁極方向Yの距離が変化することで、磁気センサ40を通過する磁束(密度)が変化することから、磁界発生体30の位置、ひいてはシャフトなどの位置を検出することができる。位置検出装置の位置検出原理は、先行例と同じである。 The lines of magnetic force emitted from the N pole of the magnetic field generator 30 pass through the first fixed magnetic body 10 to the second fixed magnetic body 20 and return to the S pole of the magnetic field generator 30, so that the magnetic sensor 40 has the first fixed magnetism. A magnetic flux passing between the body 10 and the second fixed magnetic body 20 is detected. Then, according to the movement of the magnetic field generator 30 in the movement direction X, the distance in the magnetic pole direction Y between the magnetic field generator 30 and the second fixed magnetic body 20 changes to pass through the magnetic sensor 40. Since the magnetic flux (density) changes, the position of the magnetic field generator 30, and thus the position of the shaft, etc. can be detected. The position detection principle of the position detection device is the same as the previous example.
 この位置検出装置は、磁界発生体30の移動に応じた磁束密度の特性が線形になるように、第1の固定磁性体10の曲線部11および直線部12,13の形状を決定している。図示例では磁界発生体30が直線部12側に移動すると磁束密度が高くなり、直線部13側に移動すると磁束密度が低くなる。従って、位置検出精度を高める上で、磁界発生体30を間に挟む第1の固定磁性体10と第2の固定磁性体20の位置決め精度を高めることが重要である。
 そこで、本実施の形態1では、第1の固定磁性体10と第2の固定磁性体20の磁極対向面に直線部12,13,21があり、この直線部12,21がお互いに対向し、また、直線部13,21もお互いに対向している。かつ、この直線部12,21、直線部13,21の対向部が磁界発生体30の移動範囲の2箇所にあることから、第1の固定磁性体10と第2の固定磁性体20との間の位置決めが可能である。位置決め方法の一例を図2に示す。図2に示す冶具50は幅が狭い部分と広い部分とが形成されており、幅の狭い部分で直線部12,21の位置決めを行い、幅の広い部分で直線部13,21の位置決めを行う。そして、第1の固定磁性体10と第2の固定磁性体20の位置関係を保持した状態で樹脂モールド等すればよい。これにより、第1の固定磁性体10と第2の固定磁性体20との間の位置決めを容易に行うことができる。また、直線部12,13が第1の固定磁性体10の両端にあるので、第2の固定磁性体20とのギャップの最大(即ち、直線部13,21間)と最小(即ち、直線部12,21間)で位置決めを行うことができる。よって、組立精度を向上させることができる。
In the position detection device, the shapes of the curved portion 11 and the straight portions 12 and 13 of the first fixed magnetic body 10 are determined so that the magnetic flux density characteristics according to the movement of the magnetic field generator 30 are linear. . In the illustrated example, the magnetic flux density increases when the magnetic field generator 30 moves toward the straight portion 12, and the magnetic flux density decreases when it moves toward the straight portion 13. Therefore, in order to increase the position detection accuracy, it is important to increase the positioning accuracy of the first fixed magnetic body 10 and the second fixed magnetic body 20 with the magnetic field generator 30 interposed therebetween.
Therefore, in the first embodiment, there are linear portions 12, 13, and 21 on the magnetic pole facing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20, and the linear portions 12, 21 face each other. Moreover, the linear portions 13 and 21 are also opposed to each other. In addition, since the linear portions 12 and 21 and the opposing portions of the linear portions 13 and 21 are at two places in the movement range of the magnetic field generator 30, the first fixed magnetic body 10 and the second fixed magnetic body 20 Positioning between them is possible. An example of the positioning method is shown in FIG. The jig 50 shown in FIG. 2 is formed with a narrow portion and a wide portion. The straight portions 12 and 21 are positioned at the narrow portion, and the straight portions 13 and 21 are positioned at the wide portion. . Then, a resin mold or the like may be used while maintaining the positional relationship between the first fixed magnetic body 10 and the second fixed magnetic body 20. Thereby, positioning between the 1st fixed magnetic body 10 and the 2nd fixed magnetic body 20 can be performed easily. Further, since the straight portions 12 and 13 are located at both ends of the first fixed magnetic body 10, the maximum gap (that is, between the straight portions 13 and 21) and the minimum (that is, the straight portion) with respect to the second fixed magnetic body 20. Positioning between 12 and 21). Therefore, assembly accuracy can be improved.
 また、第1の固定磁性体10と第2の固定磁性体20のギャップに、磁界発生体30と磁気センサ40とを直線状に配置することで、組立上、位置検出性能に影響を及ぼす各部品の位置関係として必要なギャップが1つになり管理する精度が1つになることで組立性が向上し、位置検出精度も向上する。 Further, by arranging the magnetic field generator 30 and the magnetic sensor 40 in a straight line in the gap between the first fixed magnetic body 10 and the second fixed magnetic body 20, each of the components that affects the position detection performance in terms of assembly. As the positional relationship between the components requires only one gap and the management accuracy is one, assemblability is improved and the position detection accuracy is also improved.
 図3は、図1の別例を示す図である。直線部12,13とは別に調整用直線部14を追加し、その位置を調整することで、磁気センサ40の磁極方向Yの幅にあった第1の固定磁性体10と第2の固定磁性体20の隙間の調整が容易となる。 FIG. 3 is a diagram showing another example of FIG. The first and second fixed magnetic bodies 10 and 2 that are in the width in the magnetic pole direction Y of the magnetic sensor 40 are adjusted by adding the adjusting linear portion 14 separately from the linear portions 12 and 13 and adjusting the position thereof. Adjustment of the gap of the body 20 is facilitated.
 図4は、位置検出装置の組付後、他の装置との組付の例を示す図である。なお、図4では磁界発生体30および磁気センサ40は図示を省略している。例えば位置検出装置をアクチュエータに組付ける場合、そのアクチュエータの固定子60には差し込み穴61,62を形成しておく。軸穴63は、アクチュエータのシャフトを通す穴であり、軸穴63を貫通したシャフトの一端部に磁界発生体30が取り付けられる。
 位置検出装置の組付後、第1の固定磁性体10と第2の固定磁性体20の一端部において対向面がお互い直線形状をした直線部13,21を、固定子60の差し込み穴61,62に嵌合させる。これにより、製作性および組付位置精度を向上させることができる。
 なお、図4の例では、対向する直線部13,21を固定子60に組付ける例を説明したが、反対に、直線部12,21を固定子60に組付ける構成にしてもよい。
FIG. 4 is a diagram illustrating an example of assembly with another apparatus after the position detection apparatus is assembled. In FIG. 4, the magnetic field generator 30 and the magnetic sensor 40 are not shown. For example, when the position detection device is assembled to an actuator, insertion holes 61 and 62 are formed in the stator 60 of the actuator. The shaft hole 63 is a hole through which the shaft of the actuator passes, and the magnetic field generator 30 is attached to one end of the shaft passing through the shaft hole 63.
After assembly of the position detection device, the straight portions 13 and 21 whose opposing surfaces are linear with each other at one end of the first fixed magnetic body 10 and the second fixed magnetic body 20 are inserted into the insertion holes 61 and 61 of the stator 60. 62 is fitted. Thereby, manufacturability and assembly position accuracy can be improved.
In the example of FIG. 4, the example in which the opposing straight portions 13 and 21 are assembled to the stator 60 has been described, but conversely, the linear portions 12 and 21 may be assembled to the stator 60.
 図5は、位置検出装置の組付後、他の装置との組付の別例を示す図である。第1の固定磁性体10の直線部13aは、磁界発生体30の移動方向Xと磁極方向Yからなる面に対して垂直の方向に、幅を広げた形状である。このような形状にすることにより、位置決めの範囲を広く取ることができ、位置精度向上につながる。また、直線部13aの移動方向Xの長さを短くすることができ、位置検出装置の小型化につながる。 FIG. 5 is a diagram showing another example of the assembly with another device after the assembly of the position detection device. The straight portion 13 a of the first fixed magnetic body 10 has a shape in which the width is increased in a direction perpendicular to the plane formed by the moving direction X and the magnetic pole direction Y of the magnetic field generator 30. By adopting such a shape, it is possible to widen the positioning range, leading to an improvement in position accuracy. In addition, the length of the linear portion 13a in the moving direction X can be shortened, leading to downsizing of the position detection device.
 なお、図1に示すように、第1の固定磁性体10の直線部12,13が磁界発生体30の移動範囲と重複するように形成することで、第1の固定磁性体10および第2の固定磁性体20の移動方向Xの長さを小さくすることが可能となり、位置検出装置を小型化できる。 As shown in FIG. 1, the first fixed magnetic body 10 and the second fixed magnetic body 10 are formed so that the linear portions 12 and 13 of the first fixed magnetic body 10 overlap the moving range of the magnetic field generator 30. The length of the fixed magnetic body 20 in the movement direction X can be reduced, and the position detection device can be downsized.
 なお、磁界発生体30は、永久磁石であり、例えば、サマリウム・コバルト系の方形磁石を使用する。
 磁気センサ40は、内部に温度検知素子が含まれ、温度補償機能をプログラムできるASIC(Application Specific Integrated Circuit;特定用途向け半導体)付きホール素子を使用する。そして、これらの機能を有するホールICを磁気センサ40に用い、ゼロ点および出力勾配を調整しておき、高温環境でも出力が変動しない構成にする。
The magnetic field generator 30 is a permanent magnet, for example, a samarium / cobalt square magnet.
The magnetic sensor 40 includes a temperature detection element inside and uses a Hall element with an ASIC (Application Specific Integrated Circuit) that can program a temperature compensation function. The Hall IC having these functions is used for the magnetic sensor 40, and the zero point and the output gradient are adjusted so that the output does not fluctuate even in a high temperature environment.
 以上より、実施の形態1によれば、位置検出装置は、N極の極性面およびその裏側にS極の極性面を有し、往復運動する駆動軸に取り付けられて当該NS極が並ぶ磁極方向Yと直交する移動方向Xに移動する磁界発生体30と、磁界発生体30の一方の極性面に対向して配置される第1の固定磁性体10と、磁界発生体30のもう一方の極性面に対向して配置される第2の固定磁性体20と、第1の固定磁性体10と第2の固定磁性体20との対向面に挟まれた状態に設置され、通過する磁束を検知する磁気センサ40とを備え、第1の固定磁性体10は、一方の極性面に対向する面に曲線部11および移動方向Xに平行な直線部12,13を有し、第2の固定磁性体20は、もう一方の極性面に対向する面が移動方向Xに平行な直線部21であり、磁気センサ40は、駆動軸の往復運動に応じて磁界発生体30と第1の固定磁性体10との間の磁極方向Yの距離が変化することで、通過する磁束が変化することから磁界発生体30の位置を検出するように構成した。このため、第1の固定磁性体10と第2の固定磁性体20の磁界発生体30を挟む面の位置決めを直線部12,21および直線部13,21で行うことができるようになり、第1の固定磁性体10と第2の固定磁性体20の位置決めを正確かつ容易に行うことが可能である。また、第2の固定磁性体20の直線部21を磁界発生体30の移動用のガイドに利用することができるようになり、磁界発生体30を第1の固定磁性体10と第2の固定磁性体20の対向面に対して変動することなくスムーズに動かすことが可能となる。よって、ガイド機構および耐振機構などを別途設ける必要がなく、位置検出装置の小型化が可能となる。 As described above, according to the first embodiment, the position detection device has the N-polar polarity surface and the S-polarity surface on the back side thereof, and is attached to the reciprocating drive shaft so that the NS poles are aligned. A magnetic field generator 30 that moves in a moving direction X orthogonal to Y, a first fixed magnetic body 10 that is disposed opposite to one polarity surface of the magnetic field generator 30, and the other polarity of the magnetic field generator 30. The magnetic flux passing through the second fixed magnetic body 20 disposed opposite to the surface and sandwiched between the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 is detected. The first fixed magnetic body 10 has a curved portion 11 and straight portions 12 and 13 parallel to the moving direction X on a surface facing one of the polar surfaces, and has a second fixed magnetism. The body 20 has a straight portion 2 whose surface facing the other polar surface is parallel to the moving direction X. In the magnetic sensor 40, the magnetic flux passing therethrough changes as the distance in the magnetic pole direction Y between the magnetic field generator 30 and the first fixed magnetic body 10 changes according to the reciprocating motion of the drive shaft. From this, the position of the magnetic field generator 30 is detected. For this reason, it becomes possible to position the surfaces of the first pinned magnetic body 10 and the second pinned magnetic body 20 sandwiching the magnetic field generator 30 with the straight portions 12 and 21 and the straight portions 13 and 21. The positioning of the first fixed magnetic body 10 and the second fixed magnetic body 20 can be performed accurately and easily. Further, the linear portion 21 of the second fixed magnetic body 20 can be used as a guide for moving the magnetic field generator 30, and the magnetic field generator 30 is fixed to the first fixed magnetic body 10 and the second fixed magnetic body 20. It is possible to move the magnetic body 20 smoothly without changing with respect to the facing surface. Therefore, it is not necessary to separately provide a guide mechanism and a vibration proof mechanism, and the position detection device can be downsized.
 また、実施の形態1によれば、第1の固定磁性体10の直線部12,13は、磁界発生体30の一方の極性面に対向する面の移動範囲の両端に形成され、曲線部11は、この直線部12,13間に形成される構成にした。このため、互いに対向する直線部13,21(または直線部12,21)を、第1の固定磁性体10と第2の固定磁性体20の端部に設けて、位置検出したい可動部をもつ装置への組付けを容易に行うことができる。また、直線部12,13が移動範囲の両端にあることで、ギャップの最大位置および最小位置で第1の固定磁性体10と第2の固定磁性体20の位置決めを行うことができるので、組立精度を向上させることができる。 Further, according to the first embodiment, the straight portions 12 and 13 of the first fixed magnetic body 10 are formed at both ends of the movement range of the surface facing the one polar surface of the magnetic field generator 30, and the curved portion 11. Is formed between the straight portions 12 and 13. For this reason, the linear portions 13 and 21 (or the linear portions 12 and 21) facing each other are provided at the end portions of the first fixed magnetic body 10 and the second fixed magnetic body 20 to have a movable portion whose position is to be detected. Assembly to the device can be easily performed. Further, since the straight portions 12 and 13 are located at both ends of the movement range, the first fixed magnetic body 10 and the second fixed magnetic body 20 can be positioned at the maximum position and the minimum position of the gap. Accuracy can be improved.
 また、実施の形態1によれば、第1の固定磁性体10の曲線部11および直線部12,13は、磁界発生体30の一方の極性面に対向する面の移動範囲内に形成される構成にした。このため、位置決めおよび他装置への組付けに利用する直線部12,21(または直線部13,21)を移動範囲外に形成する場合に比べ、第1の固定磁性体10と第2の固定磁性体20の移動方向Xの長さを短くすることが可能となり、位置検出装置を小型化できる。 In addition, according to the first embodiment, the curved portion 11 and the straight portions 12 and 13 of the first fixed magnetic body 10 are formed within the moving range of the surface facing the one polar surface of the magnetic field generator 30. Made the configuration. For this reason, the first fixed magnetic body 10 and the second fixed portion are compared with the case where the straight portions 12, 21 (or the straight portions 13, 21) used for positioning and assembling to other devices are formed outside the movement range. The length of the magnetic body 20 in the moving direction X can be shortened, and the position detecting device can be downsized.
 また、実施の形態1によれば、第1の固定磁性体10および第2の固定磁性体20の対向面で構成されるギャップは、磁界発生体30の移動方向X延長線上に延設され、磁気センサ40は当該延設部分の対向面に挟まれた状態に設置される構成にした。このため、ギャップは一方向に延び、そのギャップ中に磁気センサ40と磁界発生体30とを直線上に配置できるので、第1の固定磁性体10と第2の固定磁性体20の位置管理を1箇所にすることができる。これにより、組立が容易となる。 Further, according to the first embodiment, the gap formed by the facing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 extends on the extension line X in the movement direction of the magnetic field generator 30. The magnetic sensor 40 is configured to be installed in a state sandwiched between opposing surfaces of the extended portion. For this reason, the gap extends in one direction, and the magnetic sensor 40 and the magnetic field generator 30 can be arranged in a straight line in the gap, so that the position management of the first fixed magnetic body 10 and the second fixed magnetic body 20 can be performed. It can be in one place. This facilitates assembly.
実施の形態2.
 図6は、この発明の実施の形態2に係る位置検出装置を示す図である。なお、図6において図1と同一または相当の部分については同一の符号を付し説明を省略する。
 本実施の形態2に係る位置検出装置において、第2の固定磁性体20は、磁界発生体30の移動方向Xの一端を垂直に曲げたL形状であり、この垂直に曲げた突出部22が第1の固定磁性体10と対向する。これにより、第1の固定磁性体10と第2の固定磁性体20の対向面で構成されるギャップも、移動方向Xの延長線上から第1の固定磁性体10側へ垂直に曲がった形状に延設される。そして、この突出部22と第1の固定磁性体10の対向面間に磁気センサ40を配置することで、磁界発生体30と磁気センサ40を垂直に配置している。つまり、磁界発生体30の磁極方向Yと磁気センサ40の磁束検知方向とが垂直である。
 この構成の場合、図1等で示した上記実施の形態1の構成と比べ、磁気センサ40の設置部分の長さを短くすることができるので、位置検出装置の全長を小さくして小型化した構造となる。
 ただし、ギャップが、移動方向Xに延びた部分と磁極方向Yに延びた部分の2箇所となるので、第1の固定磁性体10と第2の固定磁性体20の位置管理も2箇所になる。
Embodiment 2. FIG.
FIG. 6 is a diagram showing a position detection device according to Embodiment 2 of the present invention. 6 that are the same as or equivalent to those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
In the position detection apparatus according to the second embodiment, the second fixed magnetic body 20 has an L shape in which one end in the moving direction X of the magnetic field generator 30 is bent vertically, and the vertically bent protruding portion 22 is provided. It faces the first fixed magnetic body 10. As a result, the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 is also bent vertically from the extension line in the moving direction X to the first fixed magnetic body 10 side. It is extended. Then, by arranging the magnetic sensor 40 between the opposing surfaces of the protruding portion 22 and the first fixed magnetic body 10, the magnetic field generator 30 and the magnetic sensor 40 are arranged vertically. That is, the magnetic pole direction Y of the magnetic field generator 30 and the magnetic flux detection direction of the magnetic sensor 40 are perpendicular.
In the case of this configuration, the length of the installation portion of the magnetic sensor 40 can be shortened as compared with the configuration of the first embodiment shown in FIG. It becomes a structure.
However, since there are two gaps, a portion extending in the movement direction X and a portion extending in the magnetic pole direction Y, the position management of the first fixed magnetic body 10 and the second fixed magnetic body 20 is also two places. .
 なお、図6の例ではギャップを移動方向Xに対して垂直な方向に曲げたL形状にするために、第2の固定磁性体20に突出部22を形成したが、これに限定されるものではない。
 図7は、位置検出装置の変形例である。この例では、第1の固定磁性体10の移動方向Xの一端を、第2の固定磁性体20側へ垂直に折り曲げたL形状にし、この垂直に曲げた突出部15が第2の固定磁性体20と対向する。これにより、第1の固定磁性体10と第2の固定磁性体20の対向面で構成されるギャップが、移動方向Xの延長線上から第2の固定磁性体20側へ垂直に曲がった形状に延設される。そして、延設部分に磁気センサ40を配置している。
 この構成の場合にも、位置検出装置の移動方向Xの全長を小さくして小型化した構造となる。
In the example of FIG. 6, the protrusion 22 is formed on the second fixed magnetic body 20 in order to make the gap bent in a direction perpendicular to the movement direction X, but the present invention is not limited to this. is not.
FIG. 7 is a modification of the position detection device. In this example, one end in the movement direction X of the first fixed magnetic body 10 is formed into an L shape which is bent vertically to the second fixed magnetic body 20 side, and the vertically bent protrusion 15 is the second fixed magnetic body. Opposes the body 20. Thereby, the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 is bent vertically from the extension line in the moving direction X to the second fixed magnetic body 20 side. It is extended. And the magnetic sensor 40 is arrange | positioned in the extended part.
In the case of this configuration as well, the position detection device is downsized by reducing the overall length in the movement direction X.
 図8は、位置検出装置の別の変形例である。この例では、第1の固定磁性体10の一端、第2の固定磁性体20の一端ともに、磁界発生体30の移動方向Xに対して垂直な方向に曲げたL形状にし、これら突出部15,22同士が対向する。これにより、第1の固定磁性体10と第2の固定磁性体20の対向面で構成されるギャップが、移動方向Xの延長線上から第2の固定磁性体20側へ垂直に曲がった形状に延設される。そして、延設部分に磁気センサ40を配置している。
 この構成の場合にも、位置検出装置の移動方向Xの全長を小さくして小型化した構造となる。
FIG. 8 shows another modification of the position detection device. In this example, one end of the first fixed magnetic body 10 and one end of the second fixed magnetic body 20 are both formed into an L shape bent in a direction perpendicular to the moving direction X of the magnetic field generator 30, and the projecting portions 15. , 22 face each other. Thereby, the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 is bent vertically from the extension line in the moving direction X to the second fixed magnetic body 20 side. It is extended. And the magnetic sensor 40 is arrange | positioned in the extended part.
In the case of this configuration as well, the position detection device is downsized by reducing the overall length in the movement direction X.
 なお、図6~図8の例では第1の固定磁性体10と第2の固定磁性体20の対向面で構成されるギャップを移動方向Xに対して垂直な方向へ延設して磁気センサ40を配置したが、垂直方向への延設に限定されるものではなく、移動方向Xに対して任意の角度で磁気センサ40を配置してもよい。
 図9は、位置検出装置の変形例である。この例では、突出部15,22を、移動方向Xに対して斜め方向に突出させた形状にしている。これにより、第1の固定磁性体10と第2の固定磁性体20の対向面で構成されるギャップが、移動方向Xの延長線上から斜め下方向に曲げた形状に延設される。そして、延設部分に磁気センサ40を配置している。
 この構成の場合にも、位置検出装置の移動方向Xの全長を小さくして小型化した構造となる。
In the examples of FIGS. 6 to 8, a magnetic sensor is formed by extending a gap formed by facing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 in a direction perpendicular to the moving direction X. However, the present invention is not limited to the vertical extension, and the magnetic sensor 40 may be arranged at an arbitrary angle with respect to the movement direction X.
FIG. 9 is a modification of the position detection device. In this example, the projecting portions 15 and 22 are formed so as to project obliquely with respect to the movement direction X. As a result, the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 is extended in a shape that is bent obliquely downward from the extension line in the movement direction X. And the magnetic sensor 40 is arrange | positioned in the extended part.
In the case of this configuration as well, the position detection device is downsized by reducing the overall length in the movement direction X.
 図10は、位置検出装置の別の変形例である。この例では、第2の固定磁性体20の一端を第1の固定磁性体10側へ垂直に折り曲げ、さらにその先端を第1の固定磁性体10側へ折り曲げて鉤型形状の鉤状突出部23にする。一方の第1の固定磁性体10は、流れる磁束が飽和しない範囲で、鉤状突出部23に対向する上端部分をカットし、傾斜部16にする。これにより、第1の固定磁性体10と第2の固定磁性体20の対向面で構成されるギャップが、移動方向Xの延長線上から折り返して斜め方向へ延設される。そして、移動方向Xに対して斜めに延びた延設部分に磁気センサ40を配置している。
 この構成の場合には、磁気センサ40を設置するための移動方向Xの長さおよび磁極方向Yの長さを短くすることができるので、位置検出装置をさらに小型化できる。
FIG. 10 shows another modification of the position detection device. In this example, one end of the second fixed magnetic body 20 is bent vertically to the first fixed magnetic body 10 side, and the tip thereof is bent to the first fixed magnetic body 10 side to form a bowl-shaped bowl-shaped protrusion. 23. On the other hand, the first fixed magnetic body 10 cuts the upper end portion opposed to the hook-shaped protrusion 23 within the range in which the flowing magnetic flux is not saturated, thereby forming the inclined portion 16. Thereby, the gap formed by the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 is folded back from the extension line in the moving direction X and extended in an oblique direction. And the magnetic sensor 40 is arrange | positioned in the extended part extended diagonally with respect to the moving direction X. As shown in FIG.
In the case of this configuration, since the length in the moving direction X and the length in the magnetic pole direction Y for installing the magnetic sensor 40 can be shortened, the position detecting device can be further downsized.
 以上より、実施の形態2によれば、位置検出装置の第1の固定磁性体10および第2の固定磁性体20の対向面で構成されるギャップは、磁界発生体30の移動方向X延長線上からずれた方向へ向けて延設され、磁気センサ40は当該延設部分の対向面に挟まれた状態に設置される構成とした。このため、磁界発生体30の移動方向Xに対して位置検出装置を短縮(小型化)することができる。
 特にギャップを磁界発生体30の移動方向X延長線上から垂直な方向へ向けて延設した場合、位置検出装置の移動方向Xに対する小型化の効果が大きい。
As described above, according to the second embodiment, the gap formed by the opposed surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 of the position detection device is on the extension line X in the moving direction of the magnetic field generator 30. The magnetic sensor 40 is installed in a state of being sandwiched between opposing surfaces of the extended portion. For this reason, the position detection device can be shortened (downsized) with respect to the moving direction X of the magnetic field generator 30.
In particular, when the gap is extended in the direction perpendicular to the moving direction X extension line of the magnetic field generator 30, the effect of downsizing the position detecting device in the moving direction X is great.
 また、実施の形態2によれば、第1の固定磁性体10は、磁界発生体30の一方の極性面に対向する面とは逆側の面に、当該磁界発生体30の移動方向Xに対して傾いた傾斜部16を有し、第2の固定磁性体20は、磁界発生体30のもう一方の極性面に対向する面の端部から第1の固定磁性体10側へ突出し、傾斜部16へ折り曲がった形状の鉤状突出部23を有し、ギャップは、第1の固定磁性体10と鉤状突出部23の対向面に沿って延設され、磁気センサ40は当該延設部分を構成する傾斜部16と鉤状突出部23の対向面に挟まれた状態に設置される構成とした。このため、第1の固定磁性体10に傾斜部16を形成するためにカットしたスペースに磁気センサ40を設置することができるので、位置検出装置をさらに小型化できる。 Further, according to the second embodiment, the first fixed magnetic body 10 is arranged on the surface opposite to the surface facing the one polar surface of the magnetic field generator 30 in the moving direction X of the magnetic field generator 30. The second fixed magnetic body 20 has an inclined portion 16 that is inclined with respect to the first fixed magnetic body 10 and protrudes from the end of the surface facing the other polar surface of the magnetic field generator 30 to the first fixed magnetic body 10 side. And the gap extends along the opposing surface of the first fixed magnetic body 10 and the hook-like protrusion 23, and the magnetic sensor 40 is provided with the extension of the hook-like protrusion 23. It was set as the structure installed in the state pinched | interposed into the opposing surface of the inclination part 16 and the hook-shaped protrusion part 23 which comprise a part. For this reason, since the magnetic sensor 40 can be installed in the space cut in order to form the inclination part 16 in the 1st fixed magnetic body 10, a position detection apparatus can be further reduced in size.
実施の形態3.
 図11は、この発明の実施の形態3に係る位置検出装置を示す図である。なお、図11において図6と同一または相当の部分については同一の符号を付し説明を省略する。
 本実施の形態3は上記実施の形態2の変形例であり、磁界発生体30の移動方向Xに垂直な方向に突出させた突出部22の長さを、第1の固定磁性体10の垂直方向の長さより短くし、段差Δhを設ける。段差Δhを設けることで、磁気センサ40の検出磁束の分解能を上げることができる。
Embodiment 3 FIG.
FIG. 11 is a diagram showing a position detection apparatus according to Embodiment 3 of the present invention. 11 that are the same as or equivalent to those in FIG. 6 are given the same reference numerals, and descriptions thereof are omitted.
The third embodiment is a modification of the second embodiment, in which the length of the protruding portion 22 protruding in the direction perpendicular to the moving direction X of the magnetic field generator 30 is set to be perpendicular to the first fixed magnetic body 10. A step Δh is provided shorter than the length in the direction. By providing the step Δh, the resolution of the magnetic flux detected by the magnetic sensor 40 can be increased.
 図12Aは、磁界発生体30の位置に応じた磁気センサ40への入力信号(磁束密度)の関係を示すグラフであり、横軸は磁界発生体30の位置、縦軸は磁気センサ40の入力信号である。ただし、磁気センサ40が、入力信号(磁束密度)に対して出力信号を線形で出力する特性(直線性)をもつ場合は、グラフの縦軸を出力信号にしても同じ結果になる。以下、入力信号と出力信号を区別せず、単に検知信号と呼ぶ。
 図12B(a)は段差Δhを設けない場合、図12B(b)は突出部22の長さを第1の固定磁性体10の長さより短くした段差Δhを設けた場合(図11と同じ)、図12B(c)は突出部22の長さを第1の固定磁性体10の長さより長くした段差Δhを設けた場合である。また、図12Bに示す磁界発生体30の位置A,Bにおける検知信号が、図12Aのグラフ中のA,Bに相当する。
FIG. 12A is a graph showing the relationship of the input signal (magnetic flux density) to the magnetic sensor 40 according to the position of the magnetic field generator 30, where the horizontal axis is the position of the magnetic field generator 30 and the vertical axis is the input of the magnetic sensor 40. Signal. However, when the magnetic sensor 40 has a characteristic (linearity) for linearly outputting an output signal with respect to an input signal (magnetic flux density), the same result is obtained even if the vertical axis of the graph is the output signal. Hereinafter, the input signal and the output signal are not distinguished and are simply referred to as a detection signal.
12B (a) shows a case where no step Δh is provided, and FIG. 12B (b) shows a case where a step Δh in which the length of the protrusion 22 is shorter than the length of the first fixed magnetic body 10 is provided (same as FIG. 11). FIG. 12B (c) shows a case where a step Δh in which the length of the protruding portion 22 is longer than the length of the first fixed magnetic body 10 is provided. Moreover, the detection signals at the positions A and B of the magnetic field generator 30 shown in FIG. 12B correspond to A and B in the graph of FIG. 12A.
 図12B(b),(c)のように、段差Δhを設けることにより、磁界発生体30を挟んでいる第1の固定磁性体10と第2の固定磁性体20の磁束密度を高くする、即ち、磁気センサ40での検知磁束を上げることが可能となる。そのため、段差Δhのない図12B(a)の構成では、図12Aのグラフにおいて磁気センサ40の検知信号幅Iであったのが、段差Δhを設けた図12B(b)の構成では検知信号幅IIとなり、信号幅が大きくなる。磁界発生体30の位置に対して検知信号の信号幅が大きくなることで、磁界発生体30の位置の分解能を上げることができる。図12B(b)では、突出部22の長さを第1の固定磁性体10の長さより短くしているが、図12B(c)のように第1の固定磁性体10の長さを突出部22の長さより短くしても同じである。
 また、図12B(b)では段差Δhを設けた分だけ突出部22の上端部にスペースができるので、また、図12B(c)では段差Δhを設けた分だけ第1の固定磁性体10の上辺部分にスペースができるので、このスペースに配線を引き回したり電子基板を設置したりすることが可能となり、位置検出装置の小型化を図ることができる。
As shown in FIGS. 12B (b) and 12 (c), by providing the step Δh, the magnetic flux density of the first fixed magnetic body 10 and the second fixed magnetic body 20 sandwiching the magnetic field generator 30 is increased. That is, the magnetic flux detected by the magnetic sensor 40 can be increased. Therefore, in the configuration of FIG. 12B (a) without the step Δh, the detection signal width I of the magnetic sensor 40 in the graph of FIG. 12A is different from the detection signal width of the configuration of FIG. 12B (b) with the step Δh. II, and the signal width increases. By increasing the signal width of the detection signal with respect to the position of the magnetic field generator 30, the resolution of the position of the magnetic field generator 30 can be increased. In FIG. 12B (b), the length of the protrusion 22 is shorter than the length of the first fixed magnetic body 10, but the length of the first fixed magnetic body 10 protrudes as shown in FIG. 12B (c). Even if it is shorter than the length of the portion 22, it is the same.
Further, in FIG. 12B (b), there is a space at the upper end portion of the protrusion 22 by the amount provided with the step Δh, and in FIG. 12B (c), the first fixed magnetic body 10 is provided by the amount provided with the step Δh. Since there is a space in the upper side portion, it is possible to route wiring or install an electronic substrate in this space, and the position detection device can be miniaturized.
 なお、磁気センサ40を通過する磁束密度を高めるために、例えば図13に示す構成にしてもよい。図13は、実施の形態3に係る位置検出装置の変形例であり、突出部22と第1の固定磁性体10の対向面それぞれの、磁気センサ40が当接する部分を突出させて、凸状設置面17,24を形成している。凸状設置面17,24において断面積を小さくして磁気抵抗を高めるようにし、さらに突出部22と第1の固定磁性体10の間の距離より凸状設置面17,24間の距離を短くしたので、磁気センサ40に流れる磁束を集めることができる。それにより、磁気センサ40での検知範囲を大きくすることができ、磁気センサ40の分解能を上げることができる。また、それにより、磁界発生体30の形状を小さくすることも可能となる。
 なお、図13の例では第1の固定磁性体10と第2の固定磁性体20の両方に凸状設置面17,24を形成したが、いずれか一方のみ形成しても同じ効果が得られる。例えば、先立って説明した図3に示す調整用直線部14は凸状設置面と同じ効果がある。
In order to increase the density of magnetic flux passing through the magnetic sensor 40, for example, the configuration shown in FIG. FIG. 13 is a modified example of the position detection device according to the third embodiment, in which the portions where the magnetic sensor 40 abuts on each of the opposing surfaces of the protruding portion 22 and the first fixed magnetic body 10 are protruded and protruded. Installation surfaces 17 and 24 are formed. In the convex installation surfaces 17 and 24, the cross-sectional area is reduced to increase the magnetic resistance, and the distance between the convex installation surfaces 17 and 24 is shorter than the distance between the protrusion 22 and the first fixed magnetic body 10. Therefore, the magnetic flux flowing through the magnetic sensor 40 can be collected. Thereby, the detection range in the magnetic sensor 40 can be enlarged, and the resolution of the magnetic sensor 40 can be increased. Thereby, the shape of the magnetic field generator 30 can be reduced.
In the example of FIG. 13, the convex installation surfaces 17 and 24 are formed on both the first fixed magnetic body 10 and the second fixed magnetic body 20, but the same effect can be obtained even if only one of them is formed. . For example, the adjustment linear portion 14 shown in FIG. 3 described above has the same effect as the convex installation surface.
 以上より、実施の形態3によれば、第1の固定磁性体10および第2の固定磁性体20のギャップを構成する対向面は、互いに長さが異なる構成とした。このため、長さを変えることで、第1の固定磁性体10および第2の固定磁性体20のいずれか一方、または両方の大きさを小さくして、位置検出装置を小型化することが可能となる。また、磁気センサ40の検知範囲を大きくすることができるので、分解能を上げることができる。 As described above, according to the third embodiment, the opposing surfaces constituting the gap between the first fixed magnetic body 10 and the second fixed magnetic body 20 have different lengths. For this reason, by changing the length, it is possible to reduce the size of one or both of the first fixed magnetic body 10 and the second fixed magnetic body 20 and reduce the size of the position detection device. It becomes. Moreover, since the detection range of the magnetic sensor 40 can be increased, the resolution can be increased.
 また、実施の形態3によれば、位置検出装置が、第1の固定磁性体10および第2の固定磁性体20の対向面それぞれから突出した形状であって磁気センサ40に当接する凸状設置面17,24を備えるように構成した。このため、磁気センサ40を通過する磁束を集中させることができ、磁気センサ40の検知範囲を大きくして分解能を上げることができる。 In addition, according to the third embodiment, the position detection device has a protruding configuration that protrudes from the opposing surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20 and contacts the magnetic sensor 40. The surfaces 17 and 24 were provided. For this reason, the magnetic flux which passes the magnetic sensor 40 can be concentrated, and the detection range of the magnetic sensor 40 can be enlarged to increase the resolution.
 なお、上記説明では、実施の形態3の構成を上記実施の形態2に適用した場合を示したが、これに限定されるものではなく、上記実施の形態1に適用することも可能である。 In the above description, the case where the configuration of the third embodiment is applied to the second embodiment has been described. However, the present invention is not limited to this, and can be applied to the first embodiment.
実施の形態4.
 図14は、この発明の実施の形態4に係る位置検出装置を示す図である。なお、図14において図11と同一または相当の部分については同一の符号を付し説明を省略する。
 本実施の形態4は上記実施の形態3の変形例であり、第1の固定磁性体10と第2の固定磁性体20の間に設置された磁気センサ40のリードワイヤ41の向きを、磁界発生体30の移動方向Xに対し垂直な方向に配置する。より具体的には、移動方向Xと磁極方向Yからなる面に対して垂直な方向(即ち、紙面垂直方向)にリードワイヤ41を出す。この構成により、第1の固定磁性体10と第2の固定磁性体20の側面でリードワイヤ41を外部端子または電子基板(不図示)と接続可能となり、位置検出装置の移動方向Xの全長を縮小でき、小型化できる構成としている。
Embodiment 4 FIG.
FIG. 14 is a diagram showing a position detection apparatus according to Embodiment 4 of the present invention. In FIG. 14, the same or corresponding parts as in FIG.
The fourth embodiment is a modification of the third embodiment, in which the orientation of the lead wire 41 of the magnetic sensor 40 installed between the first fixed magnetic body 10 and the second fixed magnetic body 20 is changed to a magnetic field. The generator 30 is arranged in a direction perpendicular to the moving direction X of the generator 30. More specifically, the lead wire 41 is extended in a direction perpendicular to the plane composed of the moving direction X and the magnetic pole direction Y (that is, the direction perpendicular to the paper surface). With this configuration, the lead wire 41 can be connected to an external terminal or an electronic substrate (not shown) on the side surfaces of the first fixed magnetic body 10 and the second fixed magnetic body 20, and the total length of the position detection device in the movement direction X can be increased. The structure can be reduced and reduced in size.
 あるいは、上記実施の形態2の図6に示したように、リードワイヤ41の向きを移動方向Xに対し垂直な方向(即ち、紙面上方向)に配置してもよい。この構成の場合にも、移動検出装置の移動方向Xの全長を縮小でき、小型化できる。 Alternatively, as shown in FIG. 6 of the second embodiment, the direction of the lead wire 41 may be arranged in a direction perpendicular to the moving direction X (that is, upward direction on the paper). Also in this configuration, the total length of the movement detection device in the movement direction X can be reduced and the size can be reduced.
 以上より、実施の形態4によれば、磁気センサ40は、リードワイヤ41の向きが磁界発生体30の移動方向Xに対し垂直になるよう設置される構成とした。このため、磁気センサ40と接続する電子基板の配置場所を変更することができ、位置検出装置の小型化を図ることが可能となる。 As described above, according to the fourth embodiment, the magnetic sensor 40 is installed such that the direction of the lead wire 41 is perpendicular to the moving direction X of the magnetic field generator 30. For this reason, the arrangement location of the electronic substrate connected to the magnetic sensor 40 can be changed, and the position detection device can be downsized.
 なお、上記説明では、実施の形態4の構成を上記実施の形態3に適用した場合を示したが、これに限定されるものではなく、上記実施の形態1,2に適用することも可能である。 In the above description, the configuration of the fourth embodiment is applied to the third embodiment. However, the present invention is not limited to this, and can be applied to the first and second embodiments. is there.
実施の形態5.
 図15は、この発明の実施の形態5に係る位置検出装置を示す図であり、図15(a)は平面図、図15(b)は正面図である。なお、図15において図11と同一または相当の部分については同一の符号を付し説明を省略する。
 本実施の形態5は上記実施の形態3の変形例であり、図15(a)に示すように磁極方向Yから見て、磁界発生体30の移動方向Xに直交する方向の幅w1を、第1の固定磁性体10および第2の固定磁性体20の当該直交する方向の幅w2より大きい構成にしている。幅w1が幅w2と同じかそれ以下に構成した場合、磁界発生体30の移動時に移動方向Xに直交する方向に横ずれが生じると、磁界発生体30が第1の固定磁性体10および第2の固定磁性体20と重なる面積に変化が生じるので、センサ精度(直線性)に影響を及ぼす。これに対し、本実施の形態5では幅w1を幅w2より大きく構成したので、移動横ずれが生じても磁気センサ40を通過する磁束密度に変化はなく、センサ精度に影響を及ぼさない。
 また、この構成では磁界発生体30の表面積が大きくなり冷却面が増えるので、磁界発生体30の磁石冷却の効果も持つ。よって、この位置検出装置を高温雰囲気で使用することができる。
Embodiment 5. FIG.
15A and 15B are views showing a position detection device according to Embodiment 5 of the present invention, in which FIG. 15A is a plan view and FIG. 15B is a front view. 15 that are the same as or equivalent to those in FIG. 11 are denoted by the same reference numerals and description thereof is omitted.
The fifth embodiment is a modification of the third embodiment, and the width w1 in the direction orthogonal to the moving direction X of the magnetic field generator 30 as viewed from the magnetic pole direction Y as shown in FIG. The first fixed magnetic body 10 and the second fixed magnetic body 20 are configured to be larger than the width w2 in the orthogonal direction. When the width w1 is configured to be equal to or less than the width w2, when the lateral displacement occurs in the direction orthogonal to the moving direction X when the magnetic field generator 30 is moved, the magnetic field generator 30 is moved to the first fixed magnetic body 10 and the second fixed magnetic body 10. Since the change occurs in the area overlapping with the fixed magnetic body 20, the sensor accuracy (linearity) is affected. On the other hand, since the width w1 is configured to be larger than the width w2 in the fifth embodiment, the magnetic flux density passing through the magnetic sensor 40 does not change even if a lateral displacement occurs, and the sensor accuracy is not affected.
Further, in this configuration, since the surface area of the magnetic field generator 30 is increased and the cooling surface is increased, the magnetic field generator 30 has an effect of cooling the magnet. Therefore, this position detection device can be used in a high temperature atmosphere.
 以上より、実施の形態5によれば、磁界発生体30の移動する平面上においてこの磁界発生体30の幅w1が第1の固定磁性体10および第2の固定磁性体20の幅w2より大きくなるよう構成した。このため、磁界発生体30に移動横ずれが生じても、第1の固定磁性体10および第2の固定磁性体20を通過する磁束量が変化せず、磁気センサ40の検知精度に影響を及ぼさないようにできる。また、磁界発生体30の表面積が大きくなるので、冷却面が増え、磁石の冷却にも効果がある。 As described above, according to the fifth embodiment, the width w1 of the magnetic field generator 30 is larger than the width w2 of the first fixed magnetic body 10 and the second fixed magnetic body 20 on the plane in which the magnetic field generator 30 moves. It comprised so that it might become. For this reason, even if a lateral displacement occurs in the magnetic field generator 30, the amount of magnetic flux passing through the first fixed magnetic body 10 and the second fixed magnetic body 20 does not change, and the detection accuracy of the magnetic sensor 40 is affected. I can not. In addition, since the surface area of the magnetic field generator 30 is increased, the cooling surface is increased, which is effective for cooling the magnet.
 なお、上記説明では、実施の形態5の構成を上記実施の形態3に適用した場合を示したが、これに限定されるものではなく、上記実施の形態1,2,4に適用することも可能である。 In the above description, the case where the configuration of the fifth embodiment is applied to the third embodiment has been described. However, the present invention is not limited to this and may be applied to the first, second, and fourth embodiments. Is possible.
実施の形態6.
 図16は、この発明の実施の形態6に係る位置検出装置を示す図であり、図17に第1の固定磁性体10と第2の固定磁性体20を一体化した外観斜視図を示す。なお、図16および図17において、図6と同一または相当の部分については同一の符号を付し説明を省略する。
 本実施の形態6は、上記実施の形態2の変形例である。第1の固定磁性体10と第2の固定磁性体20の位置関係精度がセンサ精度(直線性)において重要な要素であることは上述の通りであるが、さらにその精度を向上させる構成として、図16および図17に示す通り、第1の固定磁性体10と第2の固定磁性体20の一部を連結部25にて一体化することで位置関係精度を向上させることができる構成としている。そうすることで各部品の位置精度を向上させ、センサ精度向上につなげている。
Embodiment 6 FIG.
FIG. 16 is a view showing a position detection apparatus according to Embodiment 6 of the present invention, and FIG. 17 shows an external perspective view in which the first fixed magnetic body 10 and the second fixed magnetic body 20 are integrated. 16 and 17, the same or corresponding parts as those in FIG. 6 are denoted by the same reference numerals and description thereof is omitted.
The sixth embodiment is a modification of the second embodiment. As described above, the positional relationship accuracy between the first fixed magnetic body 10 and the second fixed magnetic body 20 is an important factor in sensor accuracy (linearity). However, as a configuration for further improving the accuracy, As shown in FIGS. 16 and 17, the positional relationship accuracy can be improved by integrating a part of the first fixed magnetic body 10 and the second fixed magnetic body 20 at the connecting portion 25. . By doing so, the positional accuracy of each component is improved, which leads to an improvement in sensor accuracy.
 なお、連結部25の磁極方向Yの幅を、磁界発生体30の磁束に対して磁気飽和する幅となるように細くしておけば、磁気センサ40の検出磁束に影響を及ぼさないので、センサ精度を維持できる。
 また、この構成は、第1の固定磁性体10と第2の固定磁性体20が一部品になるので、組立性向上にもつながり安価なコストで製作可能としている。また、第1の固定磁性体10、第2の固定磁性体20および連結部25を一体的に成形して、図17に示す状態の一部品にした後で(さらに、第1の固定磁性体10と第2の固定磁性体20が位置ずれしないよう固定した後で)、連結部25を切断して第1の固定磁性体10と第2の固定磁性体20を別部品にしてもよい。そうすることで、上記実施の形態2で述べた構成と同じレベルで、磁気センサ40を通過する磁束密度を安定させることができる。
Note that if the width of the connecting portion 25 in the magnetic pole direction Y is narrowed so as to be magnetically saturated with respect to the magnetic flux of the magnetic field generator 30, the detected magnetic flux of the magnetic sensor 40 is not affected. Accuracy can be maintained.
In addition, in this configuration, since the first fixed magnetic body 10 and the second fixed magnetic body 20 are a single component, the assemblability is improved and the manufacturing can be performed at a low cost. Further, after the first fixed magnetic body 10, the second fixed magnetic body 20 and the connecting portion 25 are integrally formed into one component shown in FIG. 17 (further, the first fixed magnetic body 10 and the second fixed magnetic body 20 may be separated from each other), the connecting portion 25 may be cut to make the first fixed magnetic body 10 and the second fixed magnetic body 20 separate parts. By doing so, the magnetic flux density passing through the magnetic sensor 40 can be stabilized at the same level as the configuration described in the second embodiment.
 なお、図16および図17では、磁気センサ40を設置するために形成した突出部22と第1の固定磁性体10との対向面間を部分的に連結させるように連結部25を設けたが、連結部25を設ける位置はこれに限定されるものではない。
 図18は、連結部25の別例である。この例では、図18(a)に示すように、磁気センサ40が設置される突出部22と第1の固定磁性体10の対向面に2箇所の連結部25a,25bを設けることで、第1の固定磁性体10と第2の固定磁性体20から成る固定磁性体に、磁気センサ40が入る穴を構成できる。そうすることで、図18(b)に示すように、磁気センサ40を紙面垂直方向から入れることができ、また磁気センサ40を固定するための位置決め精度も向上する。
 なお、図示例以外の場所に連結部25を設けて、第1の固定磁性体10と第2の固定磁性体20を連結してもよい。
In FIGS. 16 and 17, the connecting portion 25 is provided so as to partially connect the opposing surfaces of the protruding portion 22 formed for installing the magnetic sensor 40 and the first fixed magnetic body 10. The position where the connecting portion 25 is provided is not limited to this.
FIG. 18 is another example of the connecting portion 25. In this example, as shown in FIG. 18A, two connecting portions 25a and 25b are provided on the opposing surfaces of the protruding portion 22 where the magnetic sensor 40 is installed and the first fixed magnetic body 10, thereby A hole into which the magnetic sensor 40 is inserted can be formed in the fixed magnetic body including the first fixed magnetic body 10 and the second fixed magnetic body 20. By doing so, as shown in FIG. 18B, the magnetic sensor 40 can be inserted from the direction perpendicular to the paper surface, and the positioning accuracy for fixing the magnetic sensor 40 is improved.
In addition, the connection part 25 may be provided in places other than the example of illustration, and the 1st fixed magnetic body 10 and the 2nd fixed magnetic body 20 may be connected.
 図18(c)は、第1の固定磁性体10と第2の固定磁性体20を積層鋼板で構成した例である。第1の固定磁性体10と第2の固定磁性体20は磁性体であればよいが、積層鋼板で構成されている方がより好ましい。積層鋼板を使用することにより、第1の固定磁性体10および第2の固定磁性体20に発生する渦電流が抑制され、磁界発生体30での磁束を磁気センサ40で検出されやすくなるためである。
 また、圧粉鉄芯で形成されていてもよい。積層鋼板同様に、渦電流を抑制できる。
FIG. 18C shows an example in which the first fixed magnetic body 10 and the second fixed magnetic body 20 are formed of laminated steel plates. Although the 1st fixed magnetic body 10 and the 2nd fixed magnetic body 20 should just be a magnetic body, it is more preferable that it is comprised with the laminated steel plate. By using laminated steel sheets, eddy currents generated in the first fixed magnetic body 10 and the second fixed magnetic body 20 are suppressed, and the magnetic flux in the magnetic field generator 30 is easily detected by the magnetic sensor 40. is there.
Moreover, you may form with the powder iron core. As with the laminated steel plate, eddy current can be suppressed.
 以上より、実施の形態6によれば、第1の固定磁性体10および第2の固定磁性体20を一部連結して構成するようにした。このため、第1の固定磁性体10と第2の固定磁性体20を連結部25で連結した状態に成形することにより、位置決め精度を成形時に確保することができる。そして、位置決め精度が確保されることで、磁気センサ40の出力線形性(直線性)を向上させることが可能となる。また、第1の固定磁性体10と第2の固定磁性体20を一回で成形することができ、かつ、部品点数を削減することができるので、生産性を向上できる。
 特に、第1の固定磁性体10および第2の固定磁性体20の、磁気センサ40が設置される対向面を部分的に連結して構成することにより、磁気センサ40の検出磁束に影響を及ぼさず、センサ精度を維持できる。
As described above, according to the sixth embodiment, the first fixed magnetic body 10 and the second fixed magnetic body 20 are partially connected. For this reason, by positioning the first fixed magnetic body 10 and the second fixed magnetic body 20 in a state where they are connected by the connecting portion 25, positioning accuracy can be ensured at the time of forming. And by ensuring positioning accuracy, it becomes possible to improve the output linearity (linearity) of the magnetic sensor 40. Moreover, since the 1st fixed magnetic body 10 and the 2nd fixed magnetic body 20 can be shape | molded at once, and a number of parts can be reduced, productivity can be improved.
In particular, the first fixed magnetic body 10 and the second fixed magnetic body 20 are configured by partially connecting the opposing surfaces on which the magnetic sensor 40 is installed, thereby affecting the detected magnetic flux of the magnetic sensor 40. Therefore, the sensor accuracy can be maintained.
 なお、上記説明では、実施の形態6の構成を上記実施の形態2に適用した場合を示したが、これに限定されるものではなく、上記実施の形態1,3~5に適用することも可能である。 In the above description, the configuration of the sixth embodiment is applied to the second embodiment. However, the present invention is not limited to this, and may be applied to the first, third, and fifth embodiments. Is possible.
実施の形態7.
 図19は、この発明の実施の形態7に係る位置検出装置を示す平面図である。なお、図19において図6と同一または相当の部分については同一の符号を付し説明を省略する。
 本実施の形態7は上記実施の形態2の変形例であり、磁界発生体30の移動方向Xにおける可動範囲を規制する位置決め機構を設ける。図19の例では、磁界発生体30に磁界発生体保持部70を構成し、その磁界発生体保持部70には外方へ突出した形状の移動側当て止め部71が設けられている。そして、第1の固定磁性体10と第2の固定磁性体20の外面側を保持するハウジング72があり、そのハウジング72にも固定側当て止め部73a,73bが構成されている。磁界発生体30が移動方向Xに移動する際、移動側当て止め部71と固定側当て止め部73aが当接することにより、磁界発生体30の移動が規制される。この位置では、磁気センサ40の検知信号が最大となる。一方、移動側当て止め部71と固定側当て止め部73bが当接する位置では、磁気センサ40の検知信号が最小となる。よって、磁界発生体30の可動範囲における磁気センサ40の検知信号範囲を容易に確認できる。
Embodiment 7 FIG.
FIG. 19 is a plan view showing a position detection apparatus according to Embodiment 7 of the present invention. In FIG. 19, parts that are the same as or equivalent to those in FIG.
The seventh embodiment is a modification of the second embodiment, and is provided with a positioning mechanism that regulates the movable range in the movement direction X of the magnetic field generator 30. In the example of FIG. 19, the magnetic field generator 30 is configured with a magnetic field generator holder 70, and the magnetic field generator holder 70 is provided with a moving side stopper 71 having a shape protruding outward. There is a housing 72 that holds the outer surface sides of the first fixed magnetic body 10 and the second fixed magnetic body 20, and the housing 72 also includes fixed- side stoppers 73 a and 73 b. When the magnetic field generator 30 moves in the movement direction X, the movement-side stopper 71 and the fixed-side stopper 73a come into contact with each other, thereby restricting the movement of the magnetic field generator 30. At this position, the detection signal of the magnetic sensor 40 is maximized. On the other hand, at the position where the moving side stopper 71 and the fixed side stopper 73b abut, the detection signal of the magnetic sensor 40 is minimized. Therefore, the detection signal range of the magnetic sensor 40 in the movable range of the magnetic field generator 30 can be easily confirmed.
 これにより、例えば固定側当て止め部73aに磁界発生体30が当接した状態のときの最大の磁束密度に対応したホールICを磁気センサ40として用意したり、IC用プログラムに検知信号範囲の情報を書き込んでおいたりすることが可能となる。従って、位置検出装置を検出対象となるアクチュエータなどに組み付けて検知信号範囲を実測することなく、単独で検知信号範囲を決定できる。 Thereby, for example, a Hall IC corresponding to the maximum magnetic flux density when the magnetic field generator 30 is in contact with the fixed side stopper 73a is prepared as the magnetic sensor 40, or information on the detection signal range is stored in the IC program. Can be written on. Therefore, it is possible to determine the detection signal range alone without assembling the position detection device to an actuator to be detected and measuring the detection signal range.
 なお、図19の例では固定側当て止め部73a,73bを設けて、磁界発生体30の移動方向X両側への移動を規制する構成としたが、固定側当て止め部73aまたは固定側当て止め部73bのいずれか一方だけを設けて移動方向Xのいずれか一方側への移動を規制する構成としてもよい。
 また、磁界発生体30を保持する磁界発生体保持部70に当て止めを形成する代わりに、磁界発生体30を直接、固定側当て止め部73a,73bに当接させる構成としてもよい。
In the example of FIG. 19, the fixed side stoppers 73a and 73b are provided to restrict the movement of the magnetic field generator 30 to both sides in the moving direction X. However, the fixed side stopper 73a or the fixed side stopper is used. Only one of the portions 73b may be provided to restrict the movement in one direction of the movement direction X.
Moreover, it is good also as a structure which makes the magnetic field generator 30 contact | abut directly to the fixed side stopper part 73a, 73b instead of forming a stopper in the magnetic field generator holding | maintenance part 70 holding the magnetic field generator 30. FIG.
 以上より、実施の形態7によれば、位置検出装置は、磁界発生体30の移動範囲の両端に設けられて当該磁界発生体30を当接させる固定側当て止め部73a,73bを備える構成としたので、磁界発生体30の可動範囲を規制できる。 As described above, according to the seventh embodiment, the position detection device includes the fixed- side stoppers 73a and 73b that are provided at both ends of the moving range of the magnetic field generator 30 and contact the magnetic field generator 30. Therefore, the movable range of the magnetic field generator 30 can be regulated.
 なお、上記説明では、実施の形態7の構成を上記実施の形態2に適用した場合を示したが、これに限定されるものではなく、上記実施の形態1,3~6に適用することも可能である。 In the above description, the case where the configuration of the seventh embodiment is applied to the second embodiment has been described. However, the present invention is not limited to this and may be applied to the first, third to sixth embodiments. Is possible.
実施の形態8.
 図20は、この発明の実施の形態8に係る位置検出装置を搭載したアクチュエータ(駆動源)の縦断面である。そのアクチュエータとして、本実施の形態8においてモータを使用して説明する。なお、直動駆動するアクチュエータであれば本発明の位置検出装置が使用可能である。また、図20において図11と同一または相当する部分については同一の符号を付し説明を省略する。
Embodiment 8 FIG.
FIG. 20 is a longitudinal section of an actuator (drive source) equipped with a position detection device according to Embodiment 8 of the present invention. As the actuator, a motor will be described in the eighth embodiment. Note that the position detection device of the present invention can be used as long as it is an actuator that is linearly driven. 20 that are the same as or correspond to those in FIG. 11 are denoted by the same reference numerals and description thereof is omitted.
 図20において、アクチュエータ100に備えられた外部入出力コネクタ101にあるターミナル102に電圧が印加されることで、固定子(ヨーク)103に巻かれたコイル104に電流が流れ、複数の極に分極された固定子103が電流の向きに応じてNS磁化する。それにより、NS着磁されたマグネット105を備えた回転子106が回転する。回転子106はベアリング(軸受)107にて保持している。
 回転子106の内部には回転を直動に変換する為の雌ネジ側のネジ機構108が構成されており、シャフト(出力軸)109の外周面に構成された雄ネジ側のネジ機構110と噛合い、回転子106が回転することでシャフト109に力が伝達される。シャフト109を挿通したボス111の摺動部に回り止め機構を設けることで、シャフト109が直動運動する。
In FIG. 20, when a voltage is applied to a terminal 102 in an external input / output connector 101 provided in the actuator 100, a current flows through a coil 104 wound around a stator (yoke) 103, and polarization is applied to a plurality of poles. The fixed stator 103 is NS magnetized according to the direction of current. Thereby, the rotor 106 provided with the magnet 105 magnetized with NS rotates. The rotor 106 is held by a bearing (bearing) 107.
Inside the rotor 106, a screw mechanism 108 on the female screw side for converting the rotation into a linear motion is configured, and a screw mechanism 110 on the male screw side formed on the outer peripheral surface of the shaft (output shaft) 109; Engagement and rotation of the rotor 106 transmits force to the shaft 109. By providing a rotation prevention mechanism at the sliding portion of the boss 111 inserted through the shaft 109, the shaft 109 moves linearly.
 それに対し、位置検出装置側は、図20のように第1の固定磁性体10、第2の固定磁性体20、磁気センサ40が配置されており、磁界発生体30は非磁性の材質であるセンサシャフト(駆動軸)112と連結されている。例えば、センサシャフト112は樹脂モールドで磁界発生体30をインサート成形している。そのセンサシャフト112とアクチュエータ100のシャフト109とが端面で連結されており、シャフト109の直動移動に対して、センサシャフト112および磁界発生体30が連動して移動し、磁気センサ40にて位置検出する構造になっている。磁気センサ40のリードワイヤ41は電子基板113側へ引き回され、ターミナル102に電気的接続されている。
 なお、シャフト109とセンサシャフト112は連結して一体になっていなくともよく、例えばセンサシャフト112がシャフト109端面に当接した状態で、位置検出装置側からシャフト109の方向へバネ等によって付勢された構成にしてもよい。
On the other hand, on the side of the position detection device, as shown in FIG. 20, the first fixed magnetic body 10, the second fixed magnetic body 20, and the magnetic sensor 40 are arranged, and the magnetic field generator 30 is made of a nonmagnetic material. The sensor shaft (drive shaft) 112 is connected. For example, the sensor shaft 112 insert-molds the magnetic field generator 30 with a resin mold. The sensor shaft 112 and the shaft 109 of the actuator 100 are connected at the end face, and the sensor shaft 112 and the magnetic field generator 30 move in conjunction with the linear movement of the shaft 109, and the position is detected by the magnetic sensor 40. It has a structure to detect. The lead wire 41 of the magnetic sensor 40 is routed to the electronic substrate 113 side and is electrically connected to the terminal 102.
The shaft 109 and the sensor shaft 112 do not have to be connected and integrated. For example, in a state where the sensor shaft 112 is in contact with the end surface of the shaft 109, the shaft 109 and the sensor shaft 112 are biased by a spring or the like from the position detection device side toward the shaft 109. It may be configured as described above.
 そのようなアクチュエータ100において、固定子103および回転子106などから構成されるモータから発するノイズの影響を受け、磁気センサ40が誤動作する可能性がある。そこで、磁気センサ40をモータ本体と遠い側(反対側)に配置することで、そのノイズによる影響を小さくし、耐ノイズ性能を向上させた構造としている。 In such an actuator 100, the magnetic sensor 40 may malfunction due to the influence of noise generated from a motor including the stator 103 and the rotor 106. Therefore, the magnetic sensor 40 is arranged on the side (opposite side) far from the motor body, thereby reducing the influence of the noise and improving the noise resistance performance.
 反対に、磁気センサ40をモータ本体に近い側に配置してもよい。
 図21は、アクチュエータの別例を示す縦断面図であり、磁気センサ40がアクチュエータ100のモータに近い側に搭載されている構成図を示している。その構造とすることで、磁気センサ40のリードワイヤ41とターミナル102の電気的接続を容易にし、生産性を向上させることが可能となる。また、リードワイヤ41とターミナル102を接続する配線を引き回すスペースを低減できるので、アクチュエータ100の小型化にもつながる。また、磁気センサ40がアクチュエータ100の内部側に配置されるので、外部ノイズ、静電気などの影響を小さくできる。
Conversely, the magnetic sensor 40 may be disposed on the side close to the motor body.
FIG. 21 is a longitudinal sectional view showing another example of the actuator, and shows a configuration diagram in which the magnetic sensor 40 is mounted on the side of the actuator 100 close to the motor. With this structure, the electrical connection between the lead wire 41 of the magnetic sensor 40 and the terminal 102 can be facilitated, and productivity can be improved. In addition, since the space for routing the wiring connecting the lead wire 41 and the terminal 102 can be reduced, the actuator 100 can be downsized. Further, since the magnetic sensor 40 is disposed inside the actuator 100, the influence of external noise, static electricity, etc. can be reduced.
 なお、図21の場合にはセンサシャフト112が第2の固定磁性体20を通り抜けるように構成する必要がある。その一例として、図22に、第2の固定磁性体20を図21のAA線に沿って切断した断面図を示す。第2の固定磁性体20にはセンサシャフト112を貫通させる穴26を形成すると共に、この穴26の開口面積分、断面積を広げた拡径部27を形成して、磁束の通過面積を確保している。
 また別例として、図23に、第2の固定磁性体20とセンサシャフト112を図21の矢印B方向から見た図を示す。この例では、センサシャフト112を途中で二股に分岐させて、突出部22を迂回させるように構成している。
In the case of FIG. 21, the sensor shaft 112 needs to be configured to pass through the second fixed magnetic body 20. As an example, FIG. 22 shows a cross-sectional view of the second fixed magnetic body 20 taken along the line AA of FIG. The second fixed magnetic body 20 is formed with a hole 26 through which the sensor shaft 112 penetrates, and an enlarged diameter portion 27 having an enlarged cross-sectional area corresponding to the opening area of the hole 26 is formed to ensure a passage area of magnetic flux. is doing.
As another example, FIG. 23 shows a view of the second fixed magnetic body 20 and the sensor shaft 112 as seen from the direction of arrow B in FIG. In this example, the sensor shaft 112 is configured to be bifurcated in the middle to bypass the protrusion 22.
 なお、リードワイヤ41の向きは、アクチュエータ100の構造に合わせて決定すればよく、図20および図21に示す向き以外の方向に配置してもよいことは言うまでもない。 The direction of the lead wire 41 may be determined in accordance with the structure of the actuator 100, and it goes without saying that the lead wire 41 may be arranged in a direction other than the direction shown in FIGS.
 以上より、実施の形態8によれば、位置検出装置は、センサシャフト112を駆動するアクチュエータ100に対し、磁気センサ40を近い側に、磁界発生体30を遠い側に配置する構成にした。このため、磁気センサ40が、モータおよびアクチュエータ100からのノイズ、漏れ磁場の影響を受けにくくなり、位置検出装置の位置検出誤差を低減できる。 As described above, according to the eighth embodiment, the position detection device is configured to dispose the magnetic sensor 40 on the near side and the magnetic field generator 30 on the far side with respect to the actuator 100 that drives the sensor shaft 112. For this reason, the magnetic sensor 40 becomes less susceptible to noise and leakage magnetic fields from the motor and actuator 100, and the position detection error of the position detection device can be reduced.
 また、実施の形態8によれば、上記構成とは逆に、センサシャフト112を駆動するアクチュエータ100に対し、磁気センサ40を遠い側に、磁界発生体30を近い側に配置する構成にしてもよい。この場合には、磁気センサ40のリードワイヤ41をモータおよびアクチュエータ100側へ容易に電気的接続できるようになり、生産性を向上させることが可能となる。また、磁気センサ40がモータおよびアクチュエータ100側に近づくので、配線等に要するスペースを小さくでき、アクチュエータ100全体の小型化を図ることができる。 Further, according to the eighth embodiment, contrary to the above configuration, the magnetic sensor 40 is disposed on the far side and the magnetic field generator 30 is disposed on the near side with respect to the actuator 100 that drives the sensor shaft 112. Good. In this case, the lead wire 41 of the magnetic sensor 40 can be easily electrically connected to the motor and actuator 100 side, and productivity can be improved. Further, since the magnetic sensor 40 approaches the motor and actuator 100 side, a space required for wiring and the like can be reduced, and the entire actuator 100 can be reduced in size.
 なお、上記説明では、アクチュエータ100に上記実施の形態3の位置検出装置を搭載した場合を示したが、これに限定されるものではなく、上記実施の形態1,2,4~7の位置検出装置を搭載することも可能である。 In the above description, the case where the position detection device according to the third embodiment is mounted on the actuator 100 has been described. It is also possible to mount a device.
 また、上記実施の形態6でも述べた通り、上記実施の形態1~8の第1の固定磁性体10および第2の固定磁性体20は磁性体であればよいが、積層鋼板で構成されている方がより好ましい。また、圧粉鉄芯で形成されていてもよい。 Further, as described in the sixth embodiment, the first fixed magnetic body 10 and the second fixed magnetic body 20 of the first to eighth embodiments may be magnetic bodies, but are composed of laminated steel plates. It is more preferable. Moreover, you may form with the powder iron core.
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Further, within the scope of the present invention, the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
 以上のように、この発明に係る位置検出装置は、小型化を図りつつ耐振性を持たせたので、車両に搭載されるスロットルバルブ、EGR(Exhaust Gas Recirculation)バルブ、WG(Waste Gate)バルブ、VG(Variabe Geometric)ターボシステムの可動ベーンなどを駆動するアクチュエータのシャフト位置を検出する位置検出装置などに用いるのに適している。 As described above, since the position detection device according to the present invention has a vibration resistance while being reduced in size, a throttle valve, an EGR (Exhaust Gas Recirculation) valve, a WG (Waste Gate) valve mounted on the vehicle, It is suitable for use in a position detection device that detects the shaft position of an actuator that drives a movable vane or the like of a VG (Variable Geometric) turbo system.
 10 第1の固定磁性体、11 曲線部、12,13,13a 直線部、14 調整用直線部、15 突出部、16 傾斜部、17 凸状設置面、20 第2の固定磁性体、21 直線部、22 突出部、23 鉤状突出部、24 凸状設置面、25,25a,25b 連結部、26 穴、27 拡径部、30 磁界発生体、40 磁気センサ、41 リードワイヤ(電極端子)、50 冶具、60 固定子、61,62 差し込み穴、63 軸穴、70 磁界発生体保持部、71 移動側当て止め部、72 ハウジング。73a,73b 固定側当て止め部、91 第1の固定磁性体、92 第2の固定磁性体、93 磁界発生体、94 磁気センサ、100 アクチュエータ、101 外部入出力コネクタ、102 ターミナル、103 固定子、104 コイル、105 マグネット、106 回転子、107 ベアリング、108,110 ネジ機構、109 シャフト、111 ボス、112 センサシャフト(駆動軸)、113 電子基板。 10 first fixed magnetic body, 11 curved portion, 12, 13, 13a linear portion, 14 adjusting linear portion, 15 protruding portion, 16 inclined portion, 17 convex installation surface, 20 second fixed magnetic body, 21 linear Part, 22 projecting part, 23 bowl-shaped projecting part, 24 convex installation surface, 25, 25a, 25b connecting part, 26 holes, 27 diameter expanding part, 30 magnetic field generator, 40 magnetic sensor, 41 lead wire (electrode terminal) , 50 jig, 60 stator, 61, 62 insertion hole, 63 shaft hole, 70 magnetic field generator holding part, 71 moving side stopper part, 72 housing. 73a, 73b fixed side stopper, 91 first fixed magnetic body, 92 second fixed magnetic body, 93 magnetic field generator, 94 magnetic sensor, 100 actuator, 101 external input / output connector, 102 terminal, 103 stator, 104 coils, 105 magnets, 106 rotors, 107 bearings, 108, 110 screw mechanisms, 109 shafts, 111 bosses, 112 sensor shafts (drive shafts), 113 electronic boards.

Claims (16)

  1.  N極の極性面およびその裏側にS極の極性面を有し、往復運動する駆動軸に取り付けられて当該NS極が並ぶ磁極方向と直交する方向に移動する磁界発生体と、
     前記磁界発生体の一方の極性面に対向して配置される第1の固定磁性体と、
     前記磁界発生体のもう一方の極性面に対向して配置される第2の固定磁性体と、
     前記第1の固定磁性体と前記第2の固定磁性体との対向面に挟まれた状態に設置され、通過する磁束を検知する磁気センサとを備え、
     前記第1の固定磁性体は、前記一方の極性面に対向する面に曲線部および前記磁界発生体の移動方向に平行な2箇所の直線部を有し、
     前記第2の固定磁性体は、前記もう一方の極性面に対向する面が前記移動方向に平行な直線部であり、
     前記磁気センサは、前記駆動軸の往復運動に応じて前記磁界発生体と前記第1の固定磁性体との間の前記磁極方向の距離が変化することで、前記通過する磁束が変化することから前記磁界発生体の位置を検出することを特徴とする位置検出装置。
    A magnetic field generator having an N-polar polarity surface and an S-polarity surface on the back side thereof, attached to a reciprocating drive shaft and moving in a direction perpendicular to the magnetic pole direction in which the NS poles are arranged;
    A first fixed magnetic body disposed opposite to one polar surface of the magnetic field generator;
    A second fixed magnetic body disposed opposite to the other polar surface of the magnetic field generator;
    A magnetic sensor that is installed in a state sandwiched between opposing surfaces of the first fixed magnetic body and the second fixed magnetic body, and that detects a magnetic flux passing therethrough,
    The first fixed magnetic body has a curved portion on a surface facing the one polar surface and two straight portions parallel to the moving direction of the magnetic field generator,
    The second fixed magnetic body is a linear portion whose surface facing the other polar surface is parallel to the moving direction,
    In the magnetic sensor, the magnetic flux passing therethrough changes as the distance in the magnetic pole direction between the magnetic field generator and the first fixed magnetic body changes according to the reciprocating motion of the drive shaft. A position detection device for detecting a position of the magnetic field generator.
  2.  第1の固定磁性体の2箇所の直線部は、磁界発生体の一方の極性面に対向する面の移動範囲の両端に形成され、曲線部は、当該2箇所の直線部間に形成されていることを特徴とする請求項1記載の位置検出装置。 The two linear portions of the first fixed magnetic body are formed at both ends of the movement range of the surface facing the one polar surface of the magnetic field generator, and the curved portion is formed between the two linear portions. The position detection device according to claim 1, wherein
  3.  第1の固定磁性体の曲線部および2箇所の直線部は、磁界発生体の一方の極性面に対向する面の移動範囲内に形成されていることを特徴とする請求項2記載の位置検出装置。 3. The position detection according to claim 2, wherein the curved portion and the two straight portions of the first fixed magnetic body are formed within a moving range of a surface facing one polar surface of the magnetic field generator. apparatus.
  4.  第1の固定磁性体および第2の固定磁性体の対向面は、磁界発生体の移動方向延長線上に延設され、磁気センサは当該延設部分の対向面に挟まれた状態に設置されたことを特徴とする請求項1から請求項3のうちのいずれか1項記載の位置検出装置。 The opposing surfaces of the first fixed magnetic body and the second fixed magnetic body are extended on an extension line in the moving direction of the magnetic field generator, and the magnetic sensor is installed in a state sandwiched between the opposing surfaces of the extended portion. The position detection device according to any one of claims 1 to 3, wherein
  5.  第1の固定磁性体および第2の固定磁性体の対向面は、磁界発生体の移動方向延長線上からずれた方向へ向けて延設され、磁気センサは当該延設部分の対向面に挟まれた状態に設置されたことを特徴とする請求項1から請求項3のうちのいずれか1項記載の位置検出装置。 The opposing surfaces of the first fixed magnetic body and the second fixed magnetic body extend in a direction shifted from the extension line of the moving direction of the magnetic field generator, and the magnetic sensor is sandwiched between the opposing surfaces of the extended portion. The position detection device according to claim 1, wherein the position detection device is installed in a closed state.
  6.  第1の固定磁性体および第2の固定磁性体の対向面は、磁界発生体の移動方向延長線上から垂直な方向へ向けて延設されたことを特徴とする請求項5記載の位置検出装置。 6. The position detecting device according to claim 5, wherein the opposing surfaces of the first fixed magnetic body and the second fixed magnetic body are extended in a direction perpendicular to the moving direction extension line of the magnetic field generator. .
  7.  第1の固定磁性体は、磁界発生体の一方の極性面に対向する面とは逆側の面に、当該磁界発生体の移動方向に対して傾いた傾斜部を有し、
     第2の固定磁性体は、前記磁界発生体のもう一方の極性面に対向する面の端部から前記第1の固定磁性体側へ突出し、前記傾斜部へ折り曲がった形状の鉤状突出部を有し、
     磁気センサは、前記傾斜部と前記鉤状突出部の対向面に挟まれた状態に設置されたことを特徴とする請求項5記載の位置検出装置。
    The first fixed magnetic body has an inclined portion inclined with respect to the moving direction of the magnetic field generator on the surface opposite to the surface facing the one polar surface of the magnetic field generator,
    The second fixed magnetic body has a hook-shaped protrusion that protrudes from the end of the surface facing the other polar surface of the magnetic field generator toward the first fixed magnetic body and is bent toward the inclined portion. Have
    6. The position detecting device according to claim 5, wherein the magnetic sensor is installed in a state sandwiched between opposing surfaces of the inclined portion and the hook-shaped protruding portion.
  8.  第1の固定磁性体および第2の固定磁性体の対向面は、互いに長さが異なることを特徴とする請求項1から請求項7のうちのいずれか1項記載の位置検出装置。 The position detection device according to any one of claims 1 to 7, wherein the opposing surfaces of the first fixed magnetic body and the second fixed magnetic body have different lengths.
  9.  第1の固定磁性体および第2の固定磁性体の対向面のいずれか一方、または両方から突出した形状であって磁気センサに当接する凸状設置面を備えることを特徴とする請求項1から請求項8のうちのいずれか1項記載の位置検出装置。 2. A convex installation surface that protrudes from one or both of the opposing surfaces of the first fixed magnetic body and the second fixed magnetic body and that abuts against the magnetic sensor. The position detection device according to claim 8.
  10.  磁気センサは、電極端子の向きが磁界発生体の移動方向に対し垂直になるよう設置されたことを特徴とする請求項1から請求項9のうちのいずれか1項記載の位置検出装置。 10. The position detecting device according to claim 1, wherein the magnetic sensor is installed such that the direction of the electrode terminal is perpendicular to the moving direction of the magnetic field generator.
  11.  磁界発生体の移動する平面上において当該磁界発生体の幅が第1の固定磁性体および第2の固定磁性体の幅より大きいことを特徴とする請求項1から請求項10のうちのいずれか1項記載の位置検出装置。 The width of the magnetic field generator is larger than the widths of the first fixed magnetic body and the second fixed magnetic body on the plane in which the magnetic field generator moves. The position detection device according to claim 1.
  12.  第1の固定磁性体および第2の固定磁性体を一部連結して構成したことを特徴とする請求項1から請求項11のうちのいずれか1項記載の位置検出装置。 The position detecting device according to any one of claims 1 to 11, wherein the first fixed magnetic body and the second fixed magnetic body are partially connected to each other.
  13.  第1の固定磁性体および第2の固定磁性体は、磁気センサが設置される対向面を部分的に連結して構成したことを特徴とする請求項12記載の位置検出装置。 13. The position detecting device according to claim 12, wherein the first fixed magnetic body and the second fixed magnetic body are configured by partially connecting opposing surfaces on which the magnetic sensor is installed.
  14.  磁界発生体の移動範囲の両端または一端部分に設けられ、当該磁界発生体を当接させる当て止め部を備えることを特徴とする請求項1から請求項13のうちのいずれか1項記載の位置検出装置。 The position according to any one of claims 1 to 13, further comprising a stopper portion that is provided at both ends or one end portion of the moving range of the magnetic field generator and contacts the magnetic field generator. Detection device.
  15.  駆動軸を駆動する駆動源に対し、磁気センサが遠い側に、磁界発生体が近い側に配置されたことを特徴とする請求項1から請求項14のうちのいずれか1項記載の位置検出装置。 The position detection according to any one of claims 1 to 14, wherein a magnetic sensor is disposed on a far side and a magnetic field generator is disposed on a near side with respect to a drive source for driving the drive shaft. apparatus.
  16.  駆動軸を駆動する駆動源に対し、磁気センサが近い側に、磁界発生体が遠い側に配置されたことを特徴とする請求項1から請求項14のうちのいずれか1項記載の位置検出装置。 The position detection according to any one of claims 1 to 14, wherein a magnetic sensor is disposed on a side closer to a drive source for driving a drive shaft, and a magnetic field generator is disposed on a side farther from the drive source. apparatus.
PCT/JP2011/004007 2011-07-13 2011-07-13 Position detection device WO2013008277A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013523710A JP5683703B2 (en) 2011-07-13 2011-07-13 Position detection device
PCT/JP2011/004007 WO2013008277A1 (en) 2011-07-13 2011-07-13 Position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004007 WO2013008277A1 (en) 2011-07-13 2011-07-13 Position detection device

Publications (1)

Publication Number Publication Date
WO2013008277A1 true WO2013008277A1 (en) 2013-01-17

Family

ID=47505600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004007 WO2013008277A1 (en) 2011-07-13 2011-07-13 Position detection device

Country Status (2)

Country Link
JP (1) JP5683703B2 (en)
WO (1) WO2013008277A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163816A (en) * 2013-02-26 2014-09-08 Seiko Epson Corp Magnetic encoder, robot, and mobile object
JP2015096834A (en) * 2013-11-15 2015-05-21 三菱電機株式会社 Position detector
JP2019501816A (en) * 2015-11-17 2019-01-24 ハムリン・エレクトロニクス・(スージョウ)・カンパニー・リミテッドHamlin Electronics (Suzhou) Co., Ltd. Detection of seat belt sensor movement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549576A (en) * 1978-09-29 1980-04-10 Bosch Gmbh Robert Ignition device for internal combustion engine
JPH01180416A (en) * 1988-01-12 1989-07-18 Fujitsu Ltd Linear positioner
JP2001074409A (en) * 1999-09-09 2001-03-23 Mikuni Corp Noncontact type position sensor
JP2006073711A (en) * 2004-09-01 2006-03-16 Daido Steel Co Ltd Non-contact variable resistor
JP2006514750A (en) * 2004-03-10 2006-05-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Connecting member
WO2010032667A1 (en) * 2008-09-19 2010-03-25 アルプス電気株式会社 Position detection sensor
JP2010223252A (en) * 2009-03-19 2010-10-07 Honda Motor Co Ltd Position detecting device and belt type continuously variable transmission with the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3666441B2 (en) * 2001-05-11 2005-06-29 三菱電機株式会社 Position detection device
US6998838B2 (en) * 2003-02-25 2006-02-14 Delphi Technologies, Inc. Linear position sensor having enhanced sensing range to magnet size ratio
US20080303515A1 (en) * 2007-06-05 2008-12-11 Wolf Ronald J Position sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549576A (en) * 1978-09-29 1980-04-10 Bosch Gmbh Robert Ignition device for internal combustion engine
JPH01180416A (en) * 1988-01-12 1989-07-18 Fujitsu Ltd Linear positioner
JP2001074409A (en) * 1999-09-09 2001-03-23 Mikuni Corp Noncontact type position sensor
JP2006514750A (en) * 2004-03-10 2006-05-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Connecting member
JP2006073711A (en) * 2004-09-01 2006-03-16 Daido Steel Co Ltd Non-contact variable resistor
WO2010032667A1 (en) * 2008-09-19 2010-03-25 アルプス電気株式会社 Position detection sensor
JP2010223252A (en) * 2009-03-19 2010-10-07 Honda Motor Co Ltd Position detecting device and belt type continuously variable transmission with the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163816A (en) * 2013-02-26 2014-09-08 Seiko Epson Corp Magnetic encoder, robot, and mobile object
JP2015096834A (en) * 2013-11-15 2015-05-21 三菱電機株式会社 Position detector
JP2019501816A (en) * 2015-11-17 2019-01-24 ハムリン・エレクトロニクス・(スージョウ)・カンパニー・リミテッドHamlin Electronics (Suzhou) Co., Ltd. Detection of seat belt sensor movement

Also Published As

Publication number Publication date
JP5683703B2 (en) 2015-03-11
JPWO2013008277A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
US7078893B2 (en) Rotation angle detecting device
US20100188078A1 (en) Magnetic sensor with concentrator for increased sensing range
JP5408508B2 (en) Position detection device
JP2005195481A (en) Magnetic linear position sensor
US10082405B2 (en) Position detector with a minimum magnetic flux density position shifted from a center of a gap
JP4079043B2 (en) Rotation angle detector
JP5904252B2 (en) Position detection device
JP5683703B2 (en) Position detection device
US20070108968A1 (en) Rotation angle detection device
JP2006294363A (en) Magnetic proximity switch
KR20050024214A (en) Position detecting device
US7573361B2 (en) Solenoid actuator and biaxial actuator
JP5500389B2 (en) Stroke amount detection device
US9110109B2 (en) Potential measuring device
US20140184203A1 (en) Position detector
US10060760B2 (en) Magnetix flux position detector that detects the magnetic flux at minimum position along a magnetic circuit
JP5409972B2 (en) Position detection device
JP2004245703A (en) Rotational angle detection device
US20140184201A1 (en) Position detector
WO2014073055A1 (en) Position detection device
JP2010185854A (en) Position detection sensor and position detection device
WO2016125303A1 (en) Actuator
JP2013088172A (en) Position detection apparatus
JP2013088171A (en) Position detection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869342

Country of ref document: EP

Kind code of ref document: A1