WO2013007123A1 - 一种太阳能热发电系统及其热电转化装置 - Google Patents

一种太阳能热发电系统及其热电转化装置 Download PDF

Info

Publication number
WO2013007123A1
WO2013007123A1 PCT/CN2012/074750 CN2012074750W WO2013007123A1 WO 2013007123 A1 WO2013007123 A1 WO 2013007123A1 CN 2012074750 W CN2012074750 W CN 2012074750W WO 2013007123 A1 WO2013007123 A1 WO 2013007123A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
turbine
conversion device
compressor
generator
Prior art date
Application number
PCT/CN2012/074750
Other languages
English (en)
French (fr)
Inventor
王曙辉
王旻晖
张越雷
牟密
李月英
马迎召
Original Assignee
湘潭电机力源模具有限公司
湘潭电机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湘潭电机力源模具有限公司, 湘潭电机股份有限公司 filed Critical 湘潭电机力源模具有限公司
Priority to EP12811363.6A priority Critical patent/EP2733328A4/en
Priority to US13/981,358 priority patent/US9284951B2/en
Publication of WO2013007123A1 publication Critical patent/WO2013007123A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/064Devices for producing mechanical power from solar energy with solar energy concentrating means having a gas turbine cycle, i.e. compressor and gas turbine combination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to the field of solar thermal power generation technology, and more particularly to a thermoelectric conversion device for a solar thermal power generation system. Further, the present invention relates to a solar thermal power generation system including the above thermoelectric conversion device.
  • Solar energy is one of the most promising new energy sources that can solve the growing demand for energy in the future. It has the characteristics of unlimited reserves, universal distribution, cleanliness and economy. Solar thermal power generation has the characteristics of better adaptability to grid load, high photoelectric conversion efficiency, easy scale generation effect, more environmentally friendly manufacturing process of consumables, and better power adjustability. It is an important development direction for solar power utilization in the future.
  • the basic technical ideas of solar thermal power generation are: collecting sunlight through a heat collector, increasing the energy density of light energy, absorbing the concentrated light energy through a heat absorbing device, and converting it into heat energy, transferring heat energy to the working medium, making work
  • the internal energy can be increased, and then the internal energy in the working medium is converted into mechanical energy by a heat engine, and the generator is driven to convert the mechanical energy into electrical energy output.
  • the conversion of thermal energy into mechanical energy is one of the most critical aspects of energy conversion.
  • steam turbines based on the Rankine cycle
  • Stirling engines based on the Stirling cycle
  • small gas turbines based on the Brayton cycle.
  • steam turbines can use low-boiling, heat-stable hydrocarbons (halogenated hydrocarbons) or water as working fluids, but because the working medium is not subjected to high temperature, its thermal efficiency is not high, and it is generally used for collecting heat.
  • thermoelectric conversion device for a solar thermal power generation system, which does not require an external starting device to drive the compressor to rotate when starting, and has good startability, and the generator is in the process of thermoelectric conversion. It has better heat dissipation and has the advantage of better stability.
  • thermoelectric conversion device for a solar thermal power generation system, which does not require an external starting device to drive the compressor to rotate when starting, and has good startability, and the generator is in the process of thermoelectric conversion. It has better heat dissipation and has the advantage of better stability.
  • thermoelectric conversion device for a solar thermal power generation system, which does not require an external starting device to drive the compressor to rotate when starting, and has good startability, and the generator is in the process of thermoelectric conversion. It has better heat dissipation and has the advantage of better stability.
  • thermoelectric conversion device for a solar thermal power generation system, which does not require an external starting device to drive the compressor to rotate when starting, and has good startability, and the generator is in the process of thermoelectric conversion. It has better heat dis
  • thermoelectric conversion apparatus for a solar thermal power generation system, comprising: a generator, a compressor, a turbine, and an intermediate fixedly coupled between the compressor and the turbine;
  • the inside of the intermediate body is rotatably connected with a drive shaft, the transmission a shaft is fixedly connected to a rotating shaft of the generator, and a compressor impeller of the compressor, a turbine wheel of the turbine are mounted on the transmission shaft;
  • the generator is further connected with a wire for inputting current, the system When starting, the generator is used as a motor; when the system is in normal operation, the generator is used as a generator.
  • the generator is disposed in an intake runner inside the compressor.
  • a heat insulation disk is disposed between the rear side flange of the intermediate body and the turbine volute of the turbine, and the heat insulation disk forms a ring shape with a vertical rear side wall of the turbine volute Nozzle.
  • the nozzle is provided with at least one air flow guide vane that adjusts the spray ratio of the air flow within the nozzle.
  • the heat insulating disk is provided with a through hole in a front-rear direction, an outer end of the air flow vane is pivotally connected to the through hole, and an inner end of the air flow guide vane is along with the outer end
  • the through hole rotates and swings.
  • the rear side wall of the intermediate body is provided with an arc-shaped hole, and the arc-shaped hole is internally inserted with a lever that can slide along the arc thereof, and the lever is connected through the rear end of the intermediate body.
  • a sliding ball that rotates along the end surface;
  • a front side of the heat insulating disk is provided with a shifting fork, and an outer end of the air guiding vane is fixedly connected between the two fork portions of the shifting fork, the fork
  • the straight rod portion is slidably inserted into the through hole of the sliding ball.
  • the intermediate body is rotatably connected to the transmission shaft through a floating shaft, and the front side of the floating shaft 7 is provided with a thrust shaft 7 .
  • the top end of the intermediate body is provided with an oil inlet hole, and the oil inlet hole
  • the lower end is further provided with an oil retaining plate, and the oil retaining plate is inclined to the side of the oil drain hole.
  • the transition ring front end is provided with a sealing member at a contact with the bearing gland of the thrust bearing, and the transition ring is further provided with the transmission shaft between the sealing member and the oil deflector An oil slick on the outside.
  • a rear side of the rear floating bearing of the transmission shaft is provided with a convex ring, and the sealing member is disposed at a contact between the rear end of the convex ring and the side wall of the intermediate body.
  • thermoelectric conversion device of the solar thermal power generation system provided by the present invention, the interior of the intermediate body thereof
  • the drive shaft is rotatably connected, and the drive shaft is fixedly connected with the rotating shaft of the generator, and the compressor impeller of the compressor and the turbine impeller of the turbine are all mounted on the drive shaft; the generator is also connected with a wire for inputting current, when the system is started
  • the generator is used as a motor; when the system is in normal operation, the generator is used as a generator.
  • thermoelectric conversion device With this type of structure of the thermoelectric conversion device, when the system is started, the external current is input to the generator through the wire to drive the rotation of the shaft. At this time, the generator is used as a motor, and the generator drives the compressor impeller to rotate, in the compressor impeller. Under the action, the air from the atmospheric environment enters from the compressor inlet, flows through the air flow passage into the compressor impeller, and the air acquires energy in the vane flow passage of the compressor impeller, and the flow rate, temperature and pressure increase, and then enters the diffusing pressure.
  • the flow rate is reduced in the diffuser tube, the temperature and pressure are further increased, and high-pressure air is formed through the volute of the compressor and the outlet of the compressor; the high-pressure air enters the heat exchanger through the pipeline with the insulation layer, and then enters the work
  • the heating device is heated in a constant pressure to form high-temperature air, and then enters the turbine volute through the turbine inlet, then flows through the nozzle, expands in the nozzle to achieve pressure reduction, temperature reduction, speed increase, and partial pressure energy conversion.
  • the high-speed airflow from the nozzle impinges on the turbine impeller, in the turbine impeller Further expansion work in the flow channel to achieve depressurization, cooling, and speed increase, and to drive the turbine impeller to rotate, and finally discharged from the exhaust pipe of the turbine to form air after work, and then enter the heat exchanger through the pipeline with the insulation layer.
  • the remaining heat is transferred to the air from the compressor in the heat exchanger, and part of the energy is recovered to complete the entire cycle.
  • the turbine sends more and more power, and the required generator sends less and less power until the turbine sends more power than the compressor requires.
  • the motor becomes a generator, it starts to output electrical energy.
  • thermoelectric conversion device of the above structure in addition to the output electrical energy, the generator also rotates as a motor-driven compressor at the initial stage of the system startup, thereby converting the normal-temperature air into a high-temperature and high-pressure airflow.
  • the generator also rotates as a motor-driven compressor at the initial stage of the system startup, thereby converting the normal-temperature air into a high-temperature and high-pressure airflow.
  • the present invention also provides a solar thermal power generation system including a heat collector; further comprising a thermoelectric conversion device as described above, the thermoelectric conversion device being disposed at an output end of the heat collector.
  • thermoelectric conversion device Since the above-described thermoelectric conversion device has the above technical effects, the solar thermal power generation system including the thermoelectric conversion device should also have corresponding technical effects, and details are not described herein again.
  • thermoelectric conversion device 1 is a partial structural sectional view showing a specific embodiment of a thermoelectric conversion device according to the present invention
  • Figure 2 is an overall outline view of the thermoelectric conversion device including Figure 1;
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 4 is a cross-sectional view taken along line B-B of Figure 1;
  • Figure 5 is a partial enlarged view of the portion III in Figure 4.
  • Figure 6 is a partial enlarged view of II in Figure 1;
  • Figure 7 is a cross-sectional view taken along line C-C of Figure 6;
  • Figure 8 is a view taken along line F in Figure 1;
  • Figure 9 is a partial enlarged view of I in Figure 1;
  • Figure 10 is a schematic longitudinal cross-sectional view of the intermediate body.
  • the core of the invention is to provide a thermoelectric conversion device for a solar thermal power generation system, which does not require an external starting device to drive the compressor to rotate when starting, has good startability, and the generator during the thermoelectric conversion process It has better heat dissipation and has the advantage of better stability.
  • Another core of the present invention is to provide a solar thermal generation system including the above thermoelectric conversion device.
  • FIG. 1 is a partial cross-sectional view showing a specific embodiment of a thermoelectric conversion device according to the present invention
  • FIG. 2 is an overall outline view of the thermoelectric conversion device including FIG.
  • the thermoelectric conversion device mainly comprises a compressor, an intermediate body 12, a turbine, a heat exchanger 57, a working medium heating device 58, and a generator 5.
  • the compressor is a part that uses high-speed rotating blades to work on the ambient air 32 to increase the air pressure.
  • the turbine is an engine that uses the fluid to impinge on the impeller to generate power.
  • the intermediate 12 is connected to the middle of the compressor and the turbine.
  • the front side flange 11 and the rear side flange 24 are fixedly connected to the compressor and the turbine respectively.
  • the inner part of the intermediate body 12 is rotatably connected with a transmission shaft 28, and the transmission shaft 28 is fixedly connected with the generator shaft, and the compressor impeller 7 and vortex
  • the turbine impeller 18 is mounted on the drive shaft 28, and the generator 5 is also connected with a wire 3 for inputting current.
  • the generator 5 is used as a motor; when the system is in normal operation, the generator 5 is used as a generator.
  • thermoelectric conversion device of this structure when the system is started, an external current is input to the generator 5 through the wire 3 to drive the rotation of the shaft. At this time, the generator 5 is used as a motor, and the generator 5 drives the compressor impeller 7 to rotate. Under the action of the compressor impeller 7, air from the atmospheric environment enters from the compressor inlet, flows through the air flow passage into the compressor impeller 7, and the air acquires energy, flow rate, temperature and pressure in the vane flow passage of the compressor impeller 7.
  • expansion in the nozzle 16 to achieve pressure reduction, cooling, speed increase, part of the pressure can be converted into kinetic energy, high-speed airflow from the nozzle 16
  • the turbine impeller 18 is struck, further expands work in the flow path of the turbine impeller 18 to achieve depressurization, cooling, and speed increase, and pushes the turbine impeller 18 to rotate, and finally discharges from the exhaust pipe 19 of the turbine to form air 20 after work.
  • the heat exchanger 57 is then passed through a pipe with a heat insulating layer, and the remaining heat is transferred to the air from the compressor in the heat exchanger 57, and part of the energy is recovered to complete the entire cycle.
  • the power is getting larger and larger, and the required driving power of the generator 5 is getting smaller and smaller until the power generated by the turbine exceeds the power required by the compressor. At this time, the electric motor becomes the generator 5 and starts to output electric energy.
  • thermoelectric conversion device of the above structure in addition to the output of electric energy, the generator 5 also rotates as a motor-driven compressor at the initial stage of system startup, thereby converting the normal-temperature air 32 into a high-temperature and high-pressure air stream.
  • the generator 5 is provided with a conductor 3 for inputting current, and the generator 5 is simultaneously used as a thermoelectric conversion device for the starting device, it should fall within the scope of protection of the present invention.
  • the position "post” in the text refers to the flow direction of the normal temperature gas from the inlet of the compressor, that is, from left to right in Fig. 1, and the orientation word “front” is reversed, that is, from Fig. 1 Right-to-left direction; It should be understood that these orientation words are established on the basis of the drawings herein, and their appearance should not affect the scope of protection of the present invention.
  • the generator 5 may be disposed in the intake runner 4 inside the compressor.
  • part of the normal temperature air 32 flows between the cooling fins of the generator 5, and the generator 5 is forcibly dissipated to ensure that the operating temperature of the generator 5 is maintained within a reasonable range.
  • the service life of the generator 5 is ensured; compared with the prior art, there is no need to additionally provide an electric drive cooling fan, which better solves the heat dissipation problem and has the advantages of saving heat dissipation and power loss.
  • FIG. 3 the figure is a cross-sectional view taken along line AA of FIG. 1.
  • a motor support 2 may be further disposed inside the intake pipe 6 of the compressor, and the intake side of the motor support 2 may also be provided.
  • the inside of the shroud 31 may be provided with a bearing assembly 30.
  • the bearing assembly 30 and the generator 5 are both mounted on the motor support 2, and the wires 3 of the generator 5 are sequentially disposed from the motor support 2.
  • the inner passage of one leg and the wire hole in the intake pipe 6 are pierced and docked with other components outside the generator 5.
  • the above-mentioned generator and its wires are not limited to the above-described mounting manner, and may be other specific structural forms.
  • the turbine impeller 18 may be fixedly coupled to the rear end of the propeller shaft 28 by a pressing bolt 21, and the compressor impeller 7 may be fixedly coupled to the front end portion of the propeller shaft 28 by a compression nut 29, and the generator 5
  • the shaft is also connected to the foremost end of the transmission shaft by a nut; of course, the engine 5, the compressor impeller 7, and the turbine wheel 18 can be fixedly coupled to the transmission shaft 28 by other means.
  • the inlet portion of the intake pipe 6 of the above compressor may further be provided with an air filter assembly 1 for preliminary filtering of the normal temperature air 32 to prevent dust or impurities from entering the compressor, thereby ensuring the working stability and reliability of the thermoelectric device.
  • the diffuser tube 27 of the above compressor is an annular space formed between the end surface of the positioning boss 56 on the front side flange 11 of the intermediate body 12 and the corresponding portion of the compressor volute 8.
  • the use of the diffuser 27 of this structural shape enables the air entering the compressor to lower the flow rate, the temperature and the elevated pressure more quickly, thereby forming the high-pressure air 10.
  • thermoelectric conversion device can also be further provided.
  • a heat insulating disk 46 is disposed between the rear side flange 24 of the intermediate body 12 and the turbine volute 17, and a positioning pressure ring 54 may be disposed on the rear side flange 24, and the positioning pressure ring is disposed.
  • the heat shield 46 is secured to the turbine volute 17, and an annular nozzle 16 is formed between the heat shield 46 and the vertical rear sidewall of the turbine volute 17. Since the high temperature airflow enters the annular nozzle 16, it expands in the nozzle 16 to achieve temperature drop, pressure reduction and speed increase, so that the heat shield 46 is disposed between the intermediate body 12 and the turbine volute 17 to avoid high temperature gas. The heat is diffused outside the volute, causing unnecessary heat loss, thereby fully utilizing the heat of the high temperature gas, increasing the conversion rate and operational reliability of the thermoelectric conversion device.
  • the specific structural form of the heat insulating disk 46 is not limited herein.
  • the heat insulating groove 46 may be provided with a heat insulating groove, a heat insulating seam, a heat insulating coating, or the like, or a multi-layer heat insulating structure or the like may be adopted. Any of the heat insulating disks 46 that can be insulated between the rear side flange 24 of the intermediate body 12 and the turbine volute 17 should fall within the scope of the present invention.
  • FIG. 4 is a cross-sectional view taken along line BB of FIG. 1;
  • FIG. 5 is a partial enlarged view of portion III of FIG. 4;
  • at least one air flow guide vane 49 is disposed in the nozzle 16
  • the vanes 49 can adjust the spray ratio of the gas stream at the nozzle 16.
  • the heat insulating disk 46 may be provided with a through hole in the front and rear direction.
  • the outer end of the air flow guide vane 49 is pivotally connected to the through hole, and the inner end of the air flow guide vane 49 is swung with the outer end rotating in the through hole.
  • the vane 49 when the thermoelectric conversion device operates normally, the vane 49 is in the b position; when the pressure and flow rate of the high temperature air 23 entering the turbine inlet 22 are lower than the design value, the pivoting can be pivoted to the thermal pad.
  • the outer end of the air flow guide vane 49 of 46 drives the inner end of the air flow guide vane 49 to swing to the a position, reduces the cross-sectional area of the outlet of the nozzle 16, and increases the flow rate of the air entering the turbine wheel 18, thereby increasing the turbine speed, thereby
  • the boost pressure and air supply of the compressor will increase accordingly, so that the air flow rate and pressure entering the turbine increase; when the high temperature gas pressure and flow rate entering the turbine inlet 22 are higher than the design value, the air flow guide vane 49 can be rotated.
  • the above embodiments do not limit the front and rear thickness of the airflow vane 49 and the length of the outer end to the inner end, and the front and rear thickness may occupy the space between the heat insulating disk 46 and the vertical side wall of the turbine volute 18, and may also Only occupying part of the space, the length from the outer end to the inner end may be slightly larger than the radial width of the annular nozzle 16, and may be smaller than the radial width of the nozzle 16, and the user can select according to the size of the dialing angle and the amount of the target adjustment amount. .
  • the airflow vane 49 is not limited to the above manner, and may be other manners.
  • the inner end of the airflow vane 49 may be fixedly pivoted to the heat shield 46 and adjusted by the outer end of the airflow vane 49.
  • the spray ratio of the airflow in the nozzle 16 for example, the airflow guide vane 49 can be slidably inserted into the heat insulating disk 46 in the front-rear direction, and the airflow guide vane 49 is driven to slide forward and backward when the rotational speed fluctuates greatly.
  • the rotational speed of the turbine wheel 18 is adjusted by varying its front and rear thicknesses; in addition, the above-described flow regulating air flow vanes 49 may take other specific configurations.
  • orientation word “outer” refers to the direction in which the end face of the volute is outwardly diffused from the center of the turbine wheel 18, that is, the direction from bottom to top in FIG. 5; "Inside” is the opposite, that is, from top to bottom in Fig. 5, "end face” refers to the plane in the up and down direction in Fig. 1; it should be understood that these orientation words are established based on the drawings herein. Their appearance should not affect the scope of protection of the present invention.
  • FIG. 6 is a partial enlarged view of II in FIG. 1
  • FIG. 7 is a cross-sectional view taken along line C-C in FIG. 6, and FIG.
  • the rear side wall of the intermediate body 12 is provided with an arcuate hole 53 into which the lever 15 which can slide along the arc is inserted.
  • the shifting rod 15 is connected to the rear end of the intermediate body 12 with a sliding ball 42 that rotates along the end surface thereof; the front side of the heat insulating disk 46 is provided with a shifting fork 48, and the outer end of the air guiding vane 49 is fixedly connected to the shifting fork 48. Between the two fork portions, the straight portion of the shift fork 48 is slidably inserted into the through hole of the sliding ball 42.
  • the fixed connection of the outer end of the 49 is fixedly connected to the rotating shaft 50 inserted into the through hole of the heat insulating disk 46 through the pin assembly 51, and the through hole of the heat insulating disk 46 and the rotating shaft of the air flow guide 49
  • a retaining sleeve 52 can also be provided, and the retaining sleeve 52 is also fixedly connected with the fork portion of the shifting fork 48.
  • the retaining sleeve 52 can provide a certain protection to the rotating shaft 50 of the air guiding vane 49, thereby avoiding excessive rotation due to rotation thereof. It is subject to large wear and tear, which causes hot gas leakage and the like.
  • the specific embodiment does not limit the specific structure of the sliding rod 42 to rotate the sliding ball 42.
  • the connecting rod structure can be fixed at the rear end of the lever 15, and the sliding ball 42 is sandwiched in the clamping structure to enable Freely rotating, but not moving in the inner and outer directions.
  • a clamping main piece 43 and a clamping piece 47 may be respectively disposed on both sides of the sliding ball 42, and the two are integrally connected by the fastening component 44, and the clamping main piece 43 is
  • the inner end may also be provided with a damper 45 which presses the clamp assembly against the front side of the heat shield 46 so that the clamp structure can be rotated at the inner end of the end face.
  • the operation of adjusting the spray ratio in the nozzle 16 can be completely expressed as follows: First, the lever 15 is operated to slide in the arc hole 53, thereby driving the outer end of the clamp structure to rotate at the inner end thereof. The sliding ball 42 in the clamping seat assembly rolls, and then the straight rod portion of the shifting fork 48 slides in the sliding ball 42, and the fork portion drives the rotating shaft 50 of the airflow guide vane 49 to rotate, thereby realizing the position of the airflow vane 49. The change is made to adjust the spray ratio in the nozzle 16, and finally the purpose of adjusting the rotational speed of the turbine wheel 18 is achieved.
  • the above-mentioned lever 15 - the clamping structure - a sliding ball 42 - the shifting fork 48 - the air guiding vane 49 sequentially transmits the operating device with the control cylinder, convenient control and precise adjustment technical effect.
  • the above-mentioned operating device of the air flow vane 49 is not limited to the above specific structural form, and may be other various manipulation modes.
  • thermoelectric conversion device It is also possible to further provide a lubrication and cooling system in the above thermoelectric conversion device.
  • FIG. 9 is a partially enlarged view of a portion I of FIG. 1, and FIG. 10 is a longitudinal cross-sectional view of the intermediate body 12.
  • the intermediate body 12 is rotatably connected to the transmission shaft 28 via a floating bearing 37, and the front side of the floating shaft 37 is provided with a thrust shaft 7 35; the top end of the intermediate body 12 is provided with an oil inlet hole 13 The bottom end of the oil hole 13 is provided with a lubricating passage 36 leading to the two floating shafts 7 37 and the thrust shafts 7 35.
  • the bottom end of the intermediate body 12 is further provided with an oil drain hole 25; the front side of the thrust shaft 7 35 is also A thrust collar 38 and a transition ring 39 are provided.
  • the thrust collar 38 cooperates with the shoulder of the transmission shaft 28 and the thrust surface of the thrust shaft 735, and the thrust of the transition ring 39 and the compressor turbine 7 and the thrust shaft 7 35
  • the lower end of the transition ring 39 is provided with an oil baffle 26, and the lower end of the oil baffle 26 is inclined to one side of the oil discharge hole 25.
  • the lubricating oil 14 enters from the oil inlet hole 13 of the intermediate body 12, and is respectively sent to the floating bearing 37 and the friction pair of the thrust bearing through the lubrication passage 36 to lubricate the friction surface while taking away the rotational friction.
  • the generated heat, the temperature-raised lubricating oil 14 flows out from the oil drain hole 25 provided in the lower portion of the intermediate body 12; in addition, most of the lubricating oil 14 from the front side thrust bearing 35 is dripped to The oil retaining plate 26 slides down the oil retaining plate 26 to the oil drain hole 25.
  • the thrust bearing 35 may further have an oil hole formed therein, and the oil hole is aligned with the lubricating oil passage 36 to guide the lubricating oil 24 to achieve a better lubrication effect; of course, the above-mentioned thrust bearing 35
  • Other specific ways of communicating with the lubrication passage 36 are also possible.
  • the front end of the transition ring 39 and the thrust bearing 35 are provided with a bearing gland.
  • the bearing gland 41 is axially fixed to the thrust bearing 35 through the latch 33.
  • the contact portion is provided with a sealing member 34.
  • the transition ring 39 is further disposed outside the transmission shaft 28 between the sealing member 34 and the oil deflector 26.
  • a raised oil pan 40 is provided.
  • the rear side of the rear floating bearing 37 of the transmission shaft 28 is provided with a convex ring, and the above-mentioned sealing member 34 is provided at the contact of the convex ring with the side wall of the intermediate body 12.
  • the lubricating oil 14 from the turbine-side floating bearing 37 is first directly dropped onto the side wall of the intermediate body 12 and flows to the oil drain hole 25 even if a small amount of the lubricating oil 14 is along the transmission shaft 28 toward the turbine side.
  • the wetting is also swayed by the raised ring on the drive shaft 28 to prevent the lubricant 14 from leaking outward.
  • a small amount of lubricating oil 14 is wetted along the drive shaft 28 toward the turbine side and is statically sealed by the seal assembly 34 to ensure that the lubricant 14 does not leak from the turbine side.
  • the intermediate body 12 is a cavity structure, and two coaxially arranged shaft 7 holes 55 are disposed in the middle, and the front side flange 11 is provided with a positioning ring 56.
  • the rear side flange 24 is provided with a positioning pressing ring 54 for pressing and positioning with the turbine;
  • the oil inlet hole 13 is arranged above the middle position, and the oil inlet hole 13 is divided into 3 The road, wherein the two passages respectively lead to the two shafts 7
  • the oil inlet hole 13 and the oil drain hole 25 are not limited to the intermediate position of the intermediate body.
  • the intermediate body 12 is not limited to the above structure, and other structural forms may be employed.
  • the present invention also provides a solar thermal power generation system including a heat collector; further comprising a thermoelectric conversion device as described above, the thermoelectric conversion device being connected to the output end of the heat collector.
  • thermoelectric conversion device Since the above-described thermoelectric conversion device has the above technical effects, the solar thermal power generation system including the thermoelectric conversion device should also have corresponding technical effects, and details are not described herein again.
  • thermoelectric conversion apparatus a solar thermal power generation system and a thermoelectric conversion apparatus thereof provided by the present invention is merely for explaining the method of the present invention and its core idea. It is to be noted that a number of modifications and variations of the present invention may be made without departing from the spirit and scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种太阳能热发电系统及其热电转化装置,热电转化装置包括发电机(5)、压气机、涡轮机和固定连接于压气机和涡轮机之间的中间体(12);中间体(12)的内部可转动连接有传动轴(28),传动轴(28)与发电机(5)的转轴固定连接,且压气机的压气机叶轮(7)、涡轮机的涡轮机叶轮(18)均安装于传动轴(28)上;发电机(5)还连接有用于输入电流的导线(3);太阳能热发电系统包括集热器和上述热电转化装置,热电转化装置的压气机处于集热器上游,涡轮机处于集热器的下游。

Description

一种太阳能热发电系统及其热电转化装置 本申请要求于 2011 年 07 月 14 日提交中国专利局、 申请号为 201110197353.1、 发明名称为"一种太阳能热发电系统及其热电转化装置" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及太阳能热发电技术领域, 尤其涉及一种用于太阳能热发电 系统的热电转化装置。 此外, 本发明还涉及一种包括上述热电转化装置的 太阳能热发电系统。
背景技术
太阳能是最具发展前景、 最能解决未来社会发展能源需求不断增长的 新能源之一, 其具有储量无限性、 分布普遍性、 利用清洁性以及经济性等 特点。 太阳能热发电具有与电网负荷的适配性较好、 光电转化效率高、 容 易产生规模效应、 耗材的制造过程更加环保、 电力可调性更好等特点, 是 未来太阳能发电利用的重要发展方向。
太阳能热发电的基本技术思路是: 通过集热器将阳光汇聚, 提高光能 的能量密度, 通过吸热装置将汇聚后的光能吸收, 并转化为热能, 将热能 传递给工质, 使工质内能升高, 然后通过热机将工质中的内能转化为机械 能, 并驱动发电机, 将机械能再转化为电能输出。 能量的整个转化过程中, 将热能转化为机械能是其中最为关键的一环。
目前适合太阳能热发电系统的热机主要有三种, 分别为: 基于郎肯循 环的蒸汽轮机、 基于斯特林循环的斯特林发动机, 以及基于布雷顿循环的 小型燃气轮机。 其中, 蒸汽轮机可用低沸点、 热稳定性好的烃类物质 (卤 代烃)或水作为工质, 但因工质承受的温度不高, 所以其热效率不高, 一 般多用于集热温度不高的槽式发电系统; 斯特林发动机在工作时需要动密 封压力高达 15MPa以上的氢气或氦气工质,致使其工作的可靠性、稳定性、 寿命都受到一定的限制; 小型燃气轮机可直接采用空气作为工质, 即空气 经压气机压缩后, 在工质加热装置中吸热升温, 然后进入涡轮机膨胀、 做 功, 机械功反过来驱动压气机及发电机, 对外输出电流。 其设计筒单、 没 有苛刻的密封条件, 且工质直接来自大气、 排入大气, 可靠性及稳定性较 好。
然而, 小型燃气轮机用于太阳能热发电装备的热机除了高效率的压气 机及涡轮机叶轮、 高速发电机不易设计之外, 还有几个方面的问题需要克 服:
1 )系统启动性能: 因涡轮机和压气机之间相互耦合, 只有压气机驱动 高压气流进入集热器中才能吸收集热器产生的热量, 形成高温高压的气流 才能通过涡轮机对外输出机械功并驱动压气机及发电机,因此系统启动时, 需外加的启动装置给压气机一个初始的转速, 才能使整个系统顺利起动, 导致热电转化装置的结构较复杂。
2 ) 高速发电机寿命与可靠性: 因小型燃气轮机的工作转速高达 10 ~ 20 万转 /分钟, 对发电机的散热要求极为苛刻, 必须很好地解决发电机的 散热问题, 否则发电机影响寿命及可靠性。
3 )系统的运转稳定性与鲁棒性: 当由于阳光辐射波动等原因导致进入 涡轮机进气口的高温空气偏离涡轮机设计的工作温度及压力时, 涡轮机叶 轮的转速会较大的波动, 导致涡轮机叶轮的转速随之波动, 进入工质加热 装置的空气流量及压力也会波动, 进一步导致涡轮机叶轮的转速波动, 致 使系统失去稳定性。
发明内容
本发明要解决的技术问题为提供一种用于太阳能热发电系统的热电 转化装置, 其在启动时无需外加的启动装置驱动压气机转动, 具有较好的 启动性, 在热电转化过程中发电机的散热较好, 并且具有稳定性较好的优 点。 本发明要解决的另一个技术问题为提供一种包括上述热电转化装置的 太阳能热发电系统。
为解决上述技术问题, 本发明提供一种用于太阳能热发电系统的热电 转化装置, 包括发电机、 压气机、 涡轮机和固定连接于所述压气机和所述 涡轮机之间的中间体; 所述中间体的内部可转动连接有传动轴, 所述传动 轴与所述发电机的转轴固定连接, 且所述压气机的压气机叶轮、 所述涡轮 机的涡轮机叶轮均安装于所述传动轴上; 所述发电机还连接有用于输入电 流的导线, 系统启动时, 所述发电机作为电动机使用; 系统正常工作时, 所述发电机作为发电机使用。
优选地, 所述发电机设于所述压气机内部的进气流道中。
优选地, 所述中间体的后侧法兰与所述涡轮机的涡轮机蜗壳之间设有 隔热盘, 所述隔热盘与所述涡轮机蜗壳的竖直后侧壁之间形成环状喷管。
优选地, 所述喷管内设有至少一个可调节气流在所述喷管内的喷张比 的气流导叶。
优选地, 所述隔热盘上设有前后方向的通孔, 所述气流导叶的外端枢 接于所述通孔中, 所述气流导叶的内端随所述外端在所述通孔内转动而摆 动。
优选地, 所述中间体的后侧壁设有弧形孔, 所述弧形孔内插装有可沿 其弧度滑行的拨杆, 所述拨杆穿过所述中间体的后端连接有随其在端面转 动的滑动球; 所述隔热盘的前侧设有拨叉, 所述气流导叶的外端固定连接 于所述拨叉的两叉形部之间, 所述拨叉的直杆部可滑动地插装于所述滑动 球的通孔中。 端面与压气机蜗壳对应部位之间形成的环状空间。
优选地, 所述中间体通过浮动轴^与所述传动轴可转动连接, 所述浮 动轴 7?前侧设有止推轴 7 所述中间体顶端设有进油孔, 所述进油孔的底 端设有通向两个所述浮动轴承、 所述止推轴承的润滑通道, 所述中间体的 底端还设有排油孔; 所述止推轴 7|的前侧的过渡环下端还设有挡油板, 所 述挡油板向所述排油孔侧倾斜设置。
优选地, 所述过渡环前端与所述止推轴承的轴承压盖接触处设有密封 部件, 所述过渡环在所述密封部件和所述挡油板之间还设有向所述传动轴 外侧凸起的甩油盘。
优选地, 所述传动轴的后浮动轴承的后侧设有凸起环, 所述凸起环后 端与所述中间体侧壁的接触处设有所述密封部件。
本发明所提供的太阳能热发电系统的热电转化装置, 其中间体的内部 可转动连接有传动轴, 传动轴与发电机的转轴固定连接, 且压气机的压气 机叶轮、 涡轮机的涡轮机叶轮均安装于传动轴上; 发电机还连接有用于输 入电流的导线, 系统启动时, 所述发电机作为电动机使用; 系统正常工作 时, 所述发电机作为发电机使用。
采用这种结构形式的热电转化装置, 系统启动时, 通过导线向发电机 输入外部电流驱动其转轴转动, 此时发电机被当作电动机使用, 发电机带 动压气机叶轮转动, 在压气机叶轮的作用下, 来自大气环境下的空气从压 气机入口进入, 流经空气流道进入压气机叶轮, 空气在压气机叶轮的叶片 流道中获取能量, 流速、 温度和压力均升高, 然后进入扩压管, 在扩压管 中降低流速, 温度和压力进一步升高, 形成高压空气经压气机蜗壳、 压气 机出气口输出; 上述高压空气通过带保温层的管道进入换热器, 然后通入 工质加热装置, 在其中定压加热, 形成高温空气, 再经涡轮机进气口进入 涡轮机蜗壳中, 然后流过喷管, 在喷管中膨胀实现降压、 降温、 增速, 部 分压力能转化为动能, 由喷管流出的高速气流沖击涡轮机叶轮, 在涡轮机 叶轮的流道内进一步膨胀做功, 实现降压、 降温、 增速, 并推动涡轮机叶 轮转动, 最后从涡轮机的排气管中排出, 形成做功后的空气, 再经带有保 温层的管道进入换热器, 在换热器中将剩余的热量传递给来自压缩机的空 气, 将其中的部分能量回收, 完成整个循环过程。
随着发电机作为电动机驱动压气机叶轮的转速增加, 涡轮机发出的功 率越来越大, 所需发电机发出的驱动功率越来越小, 直至涡轮机发出的功 率超过压气机所需的功率, 此时电动机成为发电机, 开始对外输出电能。
由上述工作过程可以看出, 在上述结构的热电转化装置中, 发电机除 输出电能之外, 还在系统启动初期作为电动机驱动压气机转动, 从而将常 温空气转化为高温高压气流, 相比现有技术, 无需外加的启动设备驱动压 气机转动, 具有良好的启动性能, 使得热电转化装置的结构筒单紧凑, 其 外形尺寸也可相对减小、 占用空间也较小。
本发明还提供一种太阳能热发电系统, 包括集热器; 还包括如上所述 的热电转化装置, 所述热电转化装置设于所述集热器的输出端。
由于上述热电转化装置具有上述技术效果, 因此包括该热电转化装置 的太阳能热发电系统也应当具有相应的技术效果, 在此不再赘述。 附图说明
图 1是本发明所提供热电转化装置的一种具体实施方式的部分结构剖 视图;
图 2为包括图 1的热电转化装置的整体外形图;
图 3是图 1中 A-A向剖视图;
图 4是图 1中 B-B向剖视图;
图 5是图 4中 III处局部放大视图;
图 6是图 1中 II处局部放大视图;
图 7是图 6中 C-C向剖视图;
图 8是图 1中 F向视图;
图 9是图 1中 I处局部放大视图;
图 10是中间体的纵向剖视图示意图。
其中, 图 1至图 10中的附图标记与部件名称之间的对应关系为:
1 - 空气过滤组件 2 _电机支座 3 一导线
4 - _进气流道 5 发电机 6 进气管
7 - 压气机叶轮 8 压气机蜗壳 9 压气机出气口
10 -一高压空气 11 前侧法兰 12 中间体
13 - 进油孔 14 润滑油 15 拨杆
16 - 喷管 17 涡轮机蜗壳 18 涡轮机叶轮
19 - 排气管 20 做功后的空气 21 压紧螺栓
22 - 涡轮机进气口 23 古、'曰
—— ^ Jsa. is . -Xi 24 后侧法兰
25 - 4非油孔 26 挡油板 27 扩压管
28 - 传动轴 29 压紧螺母 30 轴承组件
31 -一导流罩 32 一常温空气 33 目 34——密封组件 35——推力轴 7? 36——润滑通道
37——浮动轴承 38——止推环 39——过渡环
40——甩油盘 41——轴承盖 42——滑动球 43——夹座主片 44——紧固组件 45——挡圏 46——隔热盘 47——夹座副片 48——拨叉 49——气流导叶 50——转轴 51——销轴组件 52——挡套 53——弧形孔 54——定位压环
55——轴承座孔 56——定位凸台 57——换热器 58——工质加热装置
具体实施方式
本发明的核心为提供一种用于太阳能热发电系统的热电转化装置, 该 热电转化装置在启动时无需外加的启动装置驱动压气机转动, 具有较好的 启动性, 在热电转化过程中发电机的散热较好, 并且具有稳定性较好的优 点。 本发明的另一个核心为提供一种包括上述热电转化装置的太阳能热发 电系统。
为了使本领域的技术人员更好地理解本发明的技术方案, 下面结合附 图和具体实施例对本发明作进一步的详细说明。
请参考图 1和图 2, 图 1是本发明所提供热电转化装置的一种具体实 施方式的部分结构剖视图,图 2为包括图 1的热电转化装置的整体外形图。
在一种具体实施方式中, 如图 1和图 2所示, 本发明所提供的热电转 化装置主要包括压气机、 中间体 12、 涡轮机、 换热器 57、 工质加热装置 58和发电机 5等几大部分; 压气机是利用高速旋转的叶片给常温空气 32 做功以提高空气压力的部件, 涡轮机是利用流体沖击叶轮转动而产生动力 的发动机, 中间体 12是连接压气机和涡轮机的中间部件, 其前侧法兰 11、 后侧法兰 24分别与压气机、 涡轮机固定连接, 中间体 12的内部可转动连 接有传动轴 28, 传动轴 28与发电机转轴固定连接, 且压气机叶轮 7和涡 轮机叶轮 18均安装于传动轴 28上, 发电机 5还连接有用于输入电流的导 线 3 , 系统启动时, 发电机 5作为电动机使用; 系统正常工作时, 发电机 5 作为发电机使用。
采用这种结构形式的热电转化装置, 系统启动时, 通过导线 3向发电 机 5输入外部电流驱动其转轴转动, 此时发电机 5被当作电动机使用, 发 电机 5带动压气机叶轮 7转动, 在压气机叶轮 7的作用下, 来自大气环境 下的空气从压气机入口进入, 流经空气流道进入压气机叶轮 7 , 空气在压 气机叶轮 7的叶片流道中获取能量, 流速、 温度和压力均升高, 然后进入 扩压管 27, 在扩压管 27中降低流速, 温度和压力进一步升高, 形成高压 空气 10经压气机蜗壳 8、 压气机出气口 9输出; 上述高压空气 10通过带 保温层的管道进入换热器 57,然后通入工质加热装置 58,在其中定压加热, 形成高温空气 23 , 再经涡轮机进气口 22进入涡轮机蜗壳 17中, 然后流过 喷管 16, 在喷管 16中膨胀实现降压、 降温、 增速, 部分压力能转化为动 能, 由喷管 16流出的高速气流沖击涡轮机叶轮 18, 在涡轮机叶轮 18的流 道内进一步膨胀做功, 实现降压、降温、增速,并推动涡轮机叶轮 18转动, 最后从涡轮机的排气管 19中排出, 形成做功后的空气 20, 再经带有保温 层的管道进入换热器 57, 在换热器 57中将剩余的热量传递给来自压缩机 的空气, 将其中的部分能量回收, 完成整个循环过程。 的功率越来越大, 所需发电机 5发出的驱动功率越来越小, 直至涡轮机发 出的功率超过压气机所需的功率, 此时电动机成为发电机 5 , 开始对外输 出电能。
由上述工作过程可以看出, 在上述结构的热电转化装置中, 发电机 5 除输出电能之外, 还在系统启动初期作为电动机驱动压气机转动, 从而将 常温空气 32转化为高温高压气流,相比现有技术,无需外加的启动设备驱 动压气机转动,具有良好的启动性能,使得热电转化装置的结构筒单紧凑, 其外形尺寸也可相对减小、 占用空间也较小。 凡是发电机 5上设有用于输入电流的导线 3 , 发电机 5同时作为启动设备 的热电转化装置, 均应当属于本发明的保护范围内。 此外, 本文中所出现的方位词 "后"指的是常温气体从压气机入口进入 后的流向, 即图 1中从左至右的方向, 方位词 "前"则相反, 即图 1中从右 至左的方向; 应当理解, 这些方位词是以本文中的附图为基准而设立的, 它们的出现不应当影响本发明的保护范围。
还可以进一步设置上述发电机 5的安装位置。
在另一种具体实施方式中, 如图 1所示, 上述发电机 5可以设于压气 机内部的进气流道 4中。 采用这种结构形式, 在机组正常工作时, 部分常 温空气 32从发电机 5的散热肋片之间流过,对发电机 5进行强制散热,保 证发电机 5的工作温度维持在合理范围内, 保证了发电机 5的使用寿命; 相比现有技术来说, 无需额外设置电驱动的散热风扇, 在较好地解决了散 热问题的同时, 还具有节省散热电能损耗的优点。
具体的方案中, 如图 3所示, 该图是图 1中 A-A向剖视图, 在压气机 的进气管 6的内部还可以设有电机支座 2, 电机支座 2的进气侧还可以设 有导流罩 31 ,导流罩 31的内部可以设有轴承组件 30,轴承组件 30和发电 机 5均安装于电机支座 2上, 发电机 5的导线 3依次从设在电机支座 2的 一条支腿的内部通道、 进气管 6上的导线孔中穿出, 与发电机 5外的其他 部件对接。 当然, 上述发电机及其导线并不限于上述安装方式, 还可以为 其他的具体结构形式。
更近一步地, 上述涡轮机叶轮 18可以通过压紧螺栓 21固定连接于传 动轴 28的后端, 上述压气机叶轮 7可以通过压紧螺母 29固定连接与传动 轴 28的前端部, 上述发电机 5的转轴也通过螺母连接于传动轴的最前端; 当然, 上述发动机 5、 压气机叶轮 7、 涡轮机叶轮 18还可以通过其他方式 与传动轴 28固定连接。上述压气机的进气管 6的进口部位还可以设有空气 过滤组件 1 , 以便对常温空气 32进行初步过滤, 防止空气中灰尘或杂质进 入压气机, 保证热电装置的工作稳定性和可靠性。
上述压气机的扩压管 27为中间体 12的前侧法兰 11上的定位凸台 56 端面与压气机蜗壳 8对应部位之间形成的环状空间。 采用这种结构形状的 扩压管 27, 能够使进入压气机的空气更快地降低流速, 温度和升高压力, 形成高压空气 10。
还可以进一步设置上述热电转化装置中的其他具体结构形式。 在另一种具体实施方式中, 上述中间体 12的后侧法兰 24与涡轮机蜗 壳 17之间设有隔热盘 46,后侧法兰 24上可以设有定位压环 54, 定位压环 54将隔热盘 46固定在涡轮机蜗壳 17上, 隔热盘 46与涡轮机蜗壳 17的竖 直后侧壁之间形成环状喷管 16。 由于进入环形喷管 16中的是高温气流, 其在喷管 16中膨胀实现降温、 降压和增速, 因此在中间体 12与涡轮机蜗 壳 17之间设置隔热盘 46能够避免高温气体的热量扩散至蜗壳外, 造成不 必要的热量损失, 从而充分利用高温气体的热量, 增加了热电转化装置的 转化率和工作可靠性。
当然, 这里并未限定隔热盘 46的具体结构形式, 例如, 可以在隔热盘 46上设置隔热槽、 隔热缝、 隔热涂层等措施, 或者采用多层隔热等结构形 式,凡是设于中间体 12的后侧法兰 24与涡轮机蜗壳 17之间, 能够起到隔 热作用的隔热盘 46均应当属于本发明的保护范围内。
进一步的方案中, 请参考图 4和图 5, 图 4是图 1中 B-B向剖视图; 图 5是图 4中 III处局部放大视图; 喷管 16内设有至少一个气流导叶 49, 该气流导叶 49可以调节气流在喷管 16的喷张比。 具体地, 上述隔热盘 46 上可以设有前后方向的通孔, 气流导叶 49的外端枢接于通孔中, 气流导叶 49的内端随外端在通孔内转动而摆动。
采用这种结构形式,当热电转化装置正常工作时,导叶 49处于 b位置; 当进入涡轮机进气口 22的高温空气 23的压力和流量低于设计值时, 可以 转动枢接于隔热盘 46的气流导叶 49外端, 带动气流导叶 49内端摆动到 a 位置,缩小喷管 16的出口截面积,增加空气进入涡轮机叶轮 18时的流速, 使涡轮机转速随之升高, 进而使得压气机的增压压力及供气量都会相应增 加,从而进入涡轮机的空气流速及压力增加; 当进入涡轮机进气口 22的高 温气体压力和流量高于设计值时, 可以将气流导叶 49转动到 c位置,增加 喷管 16的出口截面积, 降低高温空气 23的流速,使涡轮机转速随之降低, 进而使压气机的供气压力和供气流量减少, 从而使得进入涡轮机的空气流 速和压力减少, 避免系统超速。
通过上述调节过程可以看出,安装上述气流导叶 49能够调节涡轮机叶 轮 18的转动速度,使系统运行的转速处于设计范围,避免由于阳光辐射波 动较大等原因导致涡轮机叶轮 18的转速产生过大的波动,相比现有技术来 说, 大大提高了热电转化装置的工作稳定性和鲁棒性, 使其具有较好的抗 干扰性。
上述具体实施方式并未限定气流导叶 49的前后厚度和外端至内端的 长度, 其在前后厚度可以占满上述隔热盘 46和涡轮机蜗壳 18竖直侧壁之 间的空间, 也可以只占据部分空间, 其外端至内端的长度可以略大于环形 喷管 16的径向宽度, 还可以小于喷管 16的径向宽度, 用户可以根据拨动 角度大小和目标调节量的大小自行选择。
当然, 上述气流导叶 49并不限于上述方式, 还可以为其他的方式, 例 如也可以将气流导叶 49的内端固定枢接于隔热盘 46,通过气流导叶 49的 外端来调节气流在喷管 16中的喷张比; 再例如, 还可以将气流导叶 49前 后方向可滑动地插装于隔热盘 46中, 当转速波动较大时驱动气流导叶 49 前后方向滑动,通过改变其前后厚度来调节涡轮机叶轮 18的转速; 除此之 夕卜, 上述调节流量的气流导叶 49还可以采用其他具体结构形式。
需要说明的是, 本文中出现的方位词 "外"指的是在蜗壳的端面由所述 涡轮机叶轮 18的中心向外扩散的方向, 即附图 5中从下到上的方向; 方位 词"内"则相反, 即附图 5中从上到下的方向, "端面"指的是附图 1中上下 方向的平面; 应当理解这些方位词是以本文的附图为基准而设立的, 它们 的出现不应当影响本发明的保护范围。
请参考图 6、 图 7和图 8, 图 6是图 1中 II处局部放大视图; 图 7是图 6中 C-C向剖视图; 图 8是图 1中 F向视图。
更具体的方案中, 如图 6、 图 7和图 8所示, 上述中间体 12的后侧壁 设有弧形孔 53 , 弧形孔 53 内插装有可沿其弧度滑行的拨杆 15 , 拨杆 15 穿过中间体 12的后端连接有随其在端面转动的滑动球 42; 隔热盘 46的前 侧设有拨叉 48, 气流导叶 49的外端固定连接于拨叉 48的两叉形部之间, 拨叉 48的直杆部可滑动地插装于滑动球 42的通孔中。
采用这种结构形式, 当进入涡轮机进气口 22的高温空气 23的压力和 流量高于或低于设计值时, 只需转动拨杆 15 , 使其在上述弧形孔 53中滑 行, 带动其后端的滑动球 42相应转动, 由于拨叉 48的叉形部固定连接气 流叶片, 其直杆部可滑动地插装于滑动球 42的通孔中, 因此滑动球 42在 端面内的转动可以带动拨叉 48的叉形部适当转动,从而带动与之固定连接 的气流导叶 49外端转动, 最终实现对气流在喷管 16内喷张比的调节。 由此可见, 采用上述操纵结构, 当需要调节气流导叶 49的角度时, 操 作人员只需拨动拨杆 15 ,使其在弧形孔 53中滑行即可实现气流导叶 49的 角度调节,这使得调节其流通量的操作筒单, 当遇到太阳辐射波动较大时, 能够迅速完成调节过程, 具有较好的响应性。
49外端的固定连接方式, 其可以通过销轴组件 51与气流导叶 49插装于隔 热盘 46通孔中的转轴 50固定连接, 上述隔热盘 46通孔与气流导叶 49转 轴 50之间还可以设置挡套 52, 挡套 52也和拨叉 48的叉形部固定连接, 这里设置挡套 52能够对气流导叶 49的转轴 50起到一定的保护作用,避免 其因为旋转过多而受到较大的磨损, 从而引起热气泄漏等现象。
上述具体实施方式也并未限定拨杆 15带动滑动球 42转动的具体结构 形式, 具体地, 可以在拨杆 15后端固定连接夹座结构, 夹座结构中夹放滑 动球 42, 使其能自由转动, 但不能内外方向的移动, 更具体地, 可以在滑 动球 42两侧分别设置夹座主片 43和夹座副片 47, 二者通过紧固组件 44 连为一体, 夹座主片 43的内端还可以设有挡圏 45 , 该挡圏 45将夹座组件 压紧于隔热盘 46前侧, 使得夹座结构能够在端面饶其内端转动。
综上所述,上述调节喷管 16内喷张比的操作可以完整表述为: 首先操 纵拨杆 15使其在弧形孔 53中滑行, 从而带动夹座结构的外端饶其内端转 动, 夹座组件中的滑动球 42随之滚动, 进而带动拨叉 48的直杆部在滑动 球 42中滑行,其叉形部带动气流导叶 49的转轴 50转动,从而实现气流导 叶 49的位置发生变化, 起到调节喷管 16内喷张比的功能, 最终实现调节 涡轮机叶轮 18的转速的目的。
由此可见, 上述拨杆 15—夹座结构一滑动球 42—拨叉 48—气流导叶 49依次传递的操纵装置具有操纵筒单, 控制方便且调节精确的技术效果。 当然,上述气流导叶 49的操纵装置并不限于上述具体结构形式,还可以为 其他多种操纵方式。
还可以进一步设置上述热电转化装置中的润滑和冷却系统。
请结合图 1并参考图 9和图 10, 图 9是图 1中 I处局部放大视图, 图 10是中间体 12的纵向剖视图示意图。 在另一种具体实施方式中, 上述中间体 12通过浮动轴承 37与传动轴 28可转动连接,浮动轴 37前侧设有止推轴 7 35; 中间体 12顶端设有进 油孔 13 , 进油孔 13的底端设有通向两个浮动轴 7 37和止推轴 7 35的润 滑通道 36, 中间体 12的底端还设有排油孔 25; 止推轴 7 35的前侧还设有 止推环 38和过渡环 39,止推环 38与传动轴 28的轴肩及推力轴 7 35的止 推面配合, 过渡环 39与压气机涡轮 7及止推轴 7 35的止推面配合; 过渡 环 39的下端设有挡油板 26,挡油板 26下端向排油孔 25的一侧倾斜设置。
采用这种结构形式, 润滑油 14从中间体 12的进油孔 13进入,通过润 滑通道 36分别送至浮动轴承 37和推力轴承的摩擦副上, 对摩擦面进行润 滑的同时, 带走转动摩擦产生的热量,温度升高后的润滑油 14从设在中间 体 12下部分的排油孔 25流出; 除此之外,从前侧止推轴承 35出来的润滑 油 14绝大部分会滴落至挡油板 26上, 顺着挡油板 26滑落至排油孔 25流 出。
由此可见, 采用这种结构可以将大部分润滑油 14输入中间体 12, 润 滑和冷却各个轴承, 再通过挡油板 26的导流作用排出中间体 12, 具有结 构筒单、 加工制作方便的技术效果。 具体地, 上述止推轴承 35上还可以开 设油孔, 该油孔与润滑油道 36对齐, 从而对润滑油 24起到导流作用, 达 到更好的润滑效果; 当然, 上述止推轴承 35与润滑通道 36还可以采用其 他具体连通方式。
进一步的方案中, 上述过渡环 39前端与止推轴承 35前设有轴承压盖
41 ,该轴承压盖 41通过卡圏 33与止推轴承 35轴向固定,接触处设有密封 部件 34, 过渡环 39在密封部件 34和挡油板 26之间还设有向传动轴 28外 侧凸起的甩油盘 40。
采用这种结构, 润滑和冷却轴 7|后的润滑油 14的一部分流向过渡环 39后, 被甩油盘 40切断, 并在离心力的作用下被甩向轴 7 压盖 41的侧壁 流下,形成动密封; 而装置工作时少量的润滑油 14浸润过甩油盘 40之后, 会被密封组件 34静密封封住。 综上, 通过挡油板 26、 过渡环 39上的甩油 盘 40、 密封组件 34可以保证润滑油 14不会从中间体 12靠近压气机的一 侧泄漏, 具有良好的密封性能。
相类似地, 为了保证润滑油 14不会从中间体 12靠近涡轮机的一侧泄 漏, 传动轴 28的后浮动轴承 37 的后侧设有凸起环, 凸起环与中间体 12 侧壁的接触处设有上述密封部件 34。
采用这种结构, 从涡轮机侧浮动轴承 37出来的润滑油 14首先会直接 掉落至中间体 12的侧壁上并流向排油孔 25 , 即使有少量润滑油 14沿着传 动轴 28向涡轮机侧浸润, 也会被传动轴 28上的凸起环甩向四周, 阻止润 滑油 14向外泄漏。 系统不工作时, 少量润滑油 14沿着传动轴 28向涡轮机 侧浸润, 会被密封组件 34静密封, 从而保证润滑油 14不会从涡轮机侧泄 漏。
在另一种具体实施方式中, 如图 10所示, 中间体 12为一空腔结构, 中间设有两个同轴布置的轴 7 座孔 55 , 其前侧法兰 11上设有定位环 56, 用于与压气机定位连接; 其后侧法兰 24上设有定位压紧环 54, 用于与涡 轮机压紧定位; 其中间位置上方设有上述进油孔 13 , 进油孔 13分成 3路, 其中 2路分别通往两个轴 7|座孔 55 , 另一路通往安装止推轴 7| 35的孔, 中间位置下方设有上述排油孔 25。 当然, 上述进油孔 13、 排油孔 25并不 限设于中间体的中间位置,上述中间体 12并非限于上述结构,还可以采用 其他结构形式。
本发明还提供一种太阳能热发电系统, 包括集热器; 还包括如上所述 的热电转化装置, 热电转化装置连接集热器的输出端。
由于上述热电转化装置具有上述技术效果, 因此包括该热电转化装置 的太阳能热发电系统也应当具有相应的技术效果, 在此不再赘述。
以上对本发明所提供的一种太阳能热发电系统及其热电转化装置进行 述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。 应 当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原理的前 提下, 还可以对本发明进行若干改进和修饰, 这些改进和修饰也落入本发 明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种用于太阳能热发电系统的热电转化装置, 包括发电机(5)、 压 气机、 涡轮机和固定连接于所述压气机和所述涡轮机之间的中间体(12); 其特征在于, 所述中间体( 12 )的内部可转动连接有传动轴( 28 ), 所述传 动轴(28)与所述发电机(5)的转轴固定连接, 且所述压气机的压气机叶 轮(7)、 所述涡轮机的涡轮机叶轮(18) 均安装于所述传动轴(28)上; 所述发电机(5)还连接有用于输入电流的导线(3), 系统启动时, 所述发 电机(5)作为电动机使用; 系统正常工作时, 所述发电机(5)作为发电 机使用。
2、根据权利要求 1所述的热电转化装置,其特征在于,所述发电机( 5 ) 设于所述压气机内部的进气流道(4) 中。
3、根据权利要求 1所述的热电转化装置,其特征在于,所述中间体( 12) 的后侧法兰( 24 )与所述涡轮机的涡轮机蜗壳( 17 )之间设有隔热盘( 46 ), 所述隔热盘(46) 与所述涡轮机蜗壳 (17) 的竖直后侧壁之间形成环状喷 管 (16)。
4、根据权利要求 3所述的热电转化装置,其特征在于,所述喷管( 16 ) 内设有至少一个可调节气流在所述喷管( 16 )内的喷张比的气流导叶( 49 )。
5、根据权利要求 4所述的热电转化装置,其特征在于,所述隔热盘( 46 ) 上设有前后方向的通孔, 所述气流导叶 (49) 的外端枢接于所述通孔中, 所述气流导叶 (49) 的内端随所述外端在所述通孔内转动而摆动。
6、根据权利要求 5所述的热电转化装置,其特征在于,所述中间体( 12 ) 的后侧壁设有弧形孔( 53 ), 所述弧形孔( 53 )内插装有可沿其弧度滑行的 拨杆 ( 15 ), 所述拨杆 ( 15 )穿过所述中间体( 12 )的后端连接有随其在端 面转动的滑动球(42); 所述隔热盘(46) 的前侧设有拨叉(48), 所述气 流导叶 (49) 的外端固定连接于所述拨叉(48) 的两叉形部之间, 所述拨 叉(48) 的直杆部可滑动地插装于所述滑动球(42) 的通孔中。
7、 根据权利要求 1-6任一项所述的热电转化装置, 其特征在于, 所述 压气机的扩压管 (27) 为所述中间体(12) 的前侧法兰 (11)上的定位凸 台 (56)端面与压气机蜗壳 (8)对应部位之间形成的环状空间。
8、 根据权利要求 1-6任一项所述的热电转化装置, 其特征在于, 所述 中间体(12)通过浮动轴承(37)与所述传动轴 (28)可转动连接, 所述 浮动轴承( 37 )前侧设有止推轴承( 35 ); 所述中间体( 12 )顶端设有进油 孔(13), 所述进油孔(13) 的底端设有通向两个所述浮动轴承(37)、 所 述止推轴承( 35 )的润滑通道( 36 ), 所述中间体( 12 )的底端还设有排油 孔( 25 );所述止推轴承( 35 )的前侧的过渡环( 39 )下端还设有挡油板( 26 ), 所述挡油板(26) 向所述排油孔(25)侧倾斜设置。
9、根据权利要求 8所述的热电转化装置,其特征在于,所述过渡环( 39 ) 前端与所述止推轴承(35) 的轴承压盖(41)接触处设有密封部件(34), 所述过渡环 (39)在所述密封部件 (34)和所述挡油板 (26)之间还设有 向所述传动轴(28)外侧凸起的甩油盘(40)。
10、 根据权利要求 9所述的热电转化装置, 其特征在于, 所述传动轴 (28) 的后浮动轴承(37) 的后侧设有凸起环, 所述凸起环后端与所述中 间体(12)侧壁的接触处设有所述密封部件(34)。
11、 一种太阳能热发电系统, 包括集热器; 其特征在于, 还包括如权 利要求 1-10任一项所述的热电转化装置,所述热电转化装置的压气机处于 集热器上游, 涡轮机处于所述集热器的下游。
PCT/CN2012/074750 2011-07-14 2012-04-26 一种太阳能热发电系统及其热电转化装置 WO2013007123A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12811363.6A EP2733328A4 (en) 2011-07-14 2012-04-26 THERMAL ENERGY GENERATING SYSTEM WITH SOLAR ENERGY AND THERMOELECTRIC CONVERSION DEVICE THEREFOR
US13/981,358 US9284951B2 (en) 2011-07-14 2012-04-26 Solar-energy heat power-generating system and thermoelectric conversion device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110197353.1 2011-07-14
CN201110197353.1A CN102878033B (zh) 2011-07-14 2011-07-14 一种太阳能热发电系统及其热电转化装置

Publications (1)

Publication Number Publication Date
WO2013007123A1 true WO2013007123A1 (zh) 2013-01-17

Family

ID=47479497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074750 WO2013007123A1 (zh) 2011-07-14 2012-04-26 一种太阳能热发电系统及其热电转化装置

Country Status (4)

Country Link
US (1) US9284951B2 (zh)
EP (1) EP2733328A4 (zh)
CN (1) CN102878033B (zh)
WO (1) WO2013007123A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018017831A1 (en) 2016-07-21 2018-01-25 Massachusetts Institute Of Technology Dummy-fluorescent protein fusions and methods of use

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331423B2 (ja) * 2014-01-29 2018-05-30 株式会社Ihi 可変容量型過給機
DE102014216755A1 (de) * 2014-08-22 2016-02-25 Rwe Deutschland Ag Verfahren zur Stromerzeugung innerhalb eines Gasnetzes sowie Gasdruckentspannungseinrichtung zur Verwendung bei dem Verfahren
CN106150699B (zh) * 2016-08-31 2018-03-30 中国科学院工程热物理研究所 供油喷嘴、燃气轮机及为燃气轮机中轴承供油的方法
US10323866B1 (en) * 2016-09-27 2019-06-18 Jacob Klein Efficiency heat pump system
CN106958466B (zh) * 2017-05-18 2018-07-17 山东青能动力股份有限公司 多级蒸汽流量调节速关机构及汽轮机
CN107893772B (zh) * 2017-10-09 2020-05-22 中国第一汽车股份有限公司 一种带能量回收功能的离心式燃料电池空气压缩机
CN110242354B (zh) * 2019-05-28 2024-03-29 华电电力科学研究院有限公司 一种改进的高效径向透平分布式余压发电系统及其工作方法
CN110578562B (zh) * 2019-08-30 2023-08-29 上海齐耀动力技术有限公司 一种冷却结构及其连接结构
CN111594278A (zh) * 2020-04-02 2020-08-28 中国核电工程有限公司 一种采用静密封的布雷顿循环热电转换系统
CN114542198A (zh) * 2022-03-11 2022-05-27 天津大学 透平膨胀发电一体机
CN114700175B (zh) * 2022-04-12 2024-05-24 如皋市井上捏和机械厂 一种捏合机的收缩式废气排气装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113290A (zh) * 1994-02-28 1995-12-13 奥马特工业有限公司 外燃联合循环燃气轮机系统
CN1156787A (zh) * 1995-08-08 1997-08-13 亚瑞亚·勃朗勃威力有限公司 一种联合装置的启动方法
EP1063763B1 (de) * 1999-06-23 2003-09-17 ALSTOM (Switzerland) Ltd Kraftwerksanlage mit einer Gasturbine sowie Verfahren zu deren Betrieb
EP1930587A2 (en) * 2006-12-08 2008-06-11 United Technologies Corporation Supercritical C02 turbine for use in solar power plants
CN101566101A (zh) * 2009-06-04 2009-10-28 上海交通大学 旋转催化回热型低热值燃气轮机发电方法
CN101592079A (zh) * 2009-07-02 2009-12-02 哈尔滨工业大学 太阳能分布式闭式燃气轮机发电系统
CN101761389A (zh) * 2010-01-15 2010-06-30 绍兴文理学院 一种工质相变燃气轮机循环的热力发电方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH422214A (de) * 1964-10-01 1966-10-15 Escher Wyss Ag Verstellvorrichtung für einen Kranz von um zur Kranzachse parallele Achsen schwenkbaren Schaufeln
US4659295A (en) * 1984-04-20 1987-04-21 The Garrett Corporation Gas seal vanes of variable nozzle turbine
CN2340962Y (zh) * 1997-11-24 1999-09-29 尹群 气电联动机
US7025579B2 (en) * 2001-10-16 2006-04-11 Innovative Turbo Systems Corporation Bearing system for high-speed rotating machinery
US6739845B2 (en) * 2002-05-30 2004-05-25 William E. Woollenweber Compact turbocharger
EP1418311B1 (de) * 2002-11-11 2007-01-17 BorgWarner Inc. Leitgitter variabler Geometrie
US7571607B2 (en) * 2006-03-06 2009-08-11 Honeywell International Inc. Two-shaft turbocharger
FR2904669B1 (fr) 2006-08-02 2012-05-18 Snecma Dispositif de commande d'aube a angle de calage variable de turbomachine
US7677041B2 (en) * 2006-10-11 2010-03-16 Woollenweber William E Bearing systems for high-speed rotating machinery
JP2008196323A (ja) * 2007-02-08 2008-08-28 Ihi Corp 電動アシスト式過給機用回転電動機の駆動ユニット用制御装置
CN201581979U (zh) * 2009-12-10 2010-09-15 湖南天雁机械有限责任公司 涡轮致冷增压器的低压级增压器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113290A (zh) * 1994-02-28 1995-12-13 奥马特工业有限公司 外燃联合循环燃气轮机系统
CN1156787A (zh) * 1995-08-08 1997-08-13 亚瑞亚·勃朗勃威力有限公司 一种联合装置的启动方法
EP1063763B1 (de) * 1999-06-23 2003-09-17 ALSTOM (Switzerland) Ltd Kraftwerksanlage mit einer Gasturbine sowie Verfahren zu deren Betrieb
EP1930587A2 (en) * 2006-12-08 2008-06-11 United Technologies Corporation Supercritical C02 turbine for use in solar power plants
CN101566101A (zh) * 2009-06-04 2009-10-28 上海交通大学 旋转催化回热型低热值燃气轮机发电方法
CN101592079A (zh) * 2009-07-02 2009-12-02 哈尔滨工业大学 太阳能分布式闭式燃气轮机发电系统
CN101761389A (zh) * 2010-01-15 2010-06-30 绍兴文理学院 一种工质相变燃气轮机循环的热力发电方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2733328A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018017831A1 (en) 2016-07-21 2018-01-25 Massachusetts Institute Of Technology Dummy-fluorescent protein fusions and methods of use

Also Published As

Publication number Publication date
EP2733328A1 (en) 2014-05-21
EP2733328A4 (en) 2015-03-11
CN102878033A (zh) 2013-01-16
US20130298555A1 (en) 2013-11-14
US9284951B2 (en) 2016-03-15
CN102878033B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2013007123A1 (zh) 一种太阳能热发电系统及其热电转化装置
WO2022228290A1 (zh) 涡轮压裂设备
US9239007B2 (en) Gas turbine compressor inlet pressurization having a torque converter system
CN112460056A (zh) 一种离心式空压机及氢燃料电池
CN108825380B (zh) 一种涡轴发动机
WO2013097171A1 (zh) 一种低温液力透平
US6711902B2 (en) Integrated cycle power system and method
CN111691926B (zh) 一种带空气流道的动力涡轮导叶组
CN116753075A (zh) 一种宽速域发动机的进气道与预冷器一体化构型
WO2019228199A1 (zh) 一种涡轮以及螺管燃气轮机
CN219472163U (zh) 高压气体驱动涡轮机构
TWI668370B (zh) 風力壓縮空氣裝置
CN112524824B (zh) 一种用于光热发电的超临界二氧化碳自冷却透平系统
RU2054563C1 (ru) Парогазовый двигатель
CN112727601B (zh) 微型燃气轮机及热力发电系统
CN113790086B (zh) 一种汽轮机用冷却水系统
CN219993997U (zh) 一种通过石墨烯辅助散热的离心压缩机散热系统
CN220910079U (zh) 一种具有新型结构的涡轮增压器
CN213983546U (zh) 具有空气增压功能的热源及换热系统
CN213206030U (zh) 一种防爆轴流风机
CN212272608U (zh) 一种适用于燃料电池系统的涡轮式空气压缩机
CN217976388U (zh) 一种空气布雷顿发电系统及分布式能源系统
CN214366252U (zh) 具有串联式特斯拉涡轮机的微型燃气轮机联合循环系统
CN216406919U (zh) 一种涡轮增压器轴承体用增强型自动循环冷凝散热装置
CN215733824U (zh) 一种微型涡轮发电机散热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012811363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13981358

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE