WO2013007121A1 - 获得臂架系统末端位置参数的方法、臂架系统及工程机械 - Google Patents

获得臂架系统末端位置参数的方法、臂架系统及工程机械 Download PDF

Info

Publication number
WO2013007121A1
WO2013007121A1 PCT/CN2012/074266 CN2012074266W WO2013007121A1 WO 2013007121 A1 WO2013007121 A1 WO 2013007121A1 CN 2012074266 W CN2012074266 W CN 2012074266W WO 2013007121 A1 WO2013007121 A1 WO 2013007121A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
boom system
deformation
length
xcos
Prior art date
Application number
PCT/CN2012/074266
Other languages
English (en)
French (fr)
Inventor
高明
黄罡
方剑
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2013007121A1 publication Critical patent/WO2013007121A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a boom control technology, and more particularly to a method for obtaining end position parameters of a boom system, and to a boom system and a construction machine including the boom system.
  • the boom system generally includes a multi-joint arm, and the large end of the lowermost end arm is hingedly connected to the predetermined chassis through a vertical axis, the arm being called an arm; the large end of the other pitch arm and the adjacent pitch arm The small end end is hinged by a horizontal hinge shaft; thus, the multi-joint arm is hingedly connected by a horizontal hinge shaft, and the endmost arm extends outward.
  • the arm is called a stub arm, and the outer end of the end arm forms a boom system.
  • a driving mechanism such as a hydraulic cylinder is disposed between the adjacent pitch arms to cause a predetermined change in the angle between the adjacent pitch arms to change the position of the end of the boom system to transport the material or article to a predetermined position.
  • Chinese Patent Publication No. CN101870110A discloses a control method of a boom system in which the shape of the corresponding pitch arm is obtained by using two tilt sensors. The variable is then corrected according to the shape variable of the pitch arm.
  • the control method can improve the accuracy of the end position parameter of the boom system, due to the limitation of the measurement accuracy of the tilt sensor, the deviation between the position parameter of the end of the boom system and the target position parameter is still large, and the arm frame cannot be satisfied.
  • the need for accurate positioning and control at the end of the system. Therefore, how to improve the accuracy of the end position parameter of the boom system is still a technical problem that a person skilled in the art needs to solve.
  • a first technical problem to be solved by the present invention is to provide a method for obtaining end position parameters of a boom system, by which positional parameters of the end of the boom system can be obtained more accurately.
  • a second technical problem to be solved by the present invention is to provide a boom system.
  • the present invention also provides a construction machine including the boom system.
  • the invention provides a method for obtaining the end position parameter of the boom system, comprising the steps of: obtaining an angle between the extension direction of each arm before the deformation and a predetermined reference plane, on a 2 2 a m ; obtaining a reference length of each arm before deformation, L 2 L m ; obtain the reference length L lx , L 2x L mx of each section of the arm deformation; the subscript numbers indicate the parameters of the corresponding section arm; wherein the parameter of the subscript m is the last section arm parameter;
  • the L 2 , . . . L m are respectively the distances between the hinge axes of the two ends of the corresponding section arm before deformation; L lx , L 2x , . . . L mx respectively The large separation between the hinge axes of the ends of the respective section arms after deformation.
  • the method further includes:
  • AY Y tip - ⁇ Lixsin(ai)+L 2 xsin(a 2 )+ L m xsin(a m ) ⁇ ;
  • L lr , L 2r ... L is the design length of the corresponding pitch arm.
  • the invention provides a seed boom system, which comprises a joint arm in which m joints are sequentially hingedly connected by a horizontal hinge shaft, and further includes a processor, a plurality of inclination sensors and a plurality of length sensors, and the plurality of inclination angles
  • the sensors are respectively mounted on the respective pitch arms for detecting the angles ⁇ , ⁇ 2 , ... a m between the corresponding pitch arms and the predetermined reference plane before the deformation;
  • the plurality of the length sensors respectively Installed on the corresponding joint arm, used to detect the reference length of each arm before deformation, L 2 1 ⁇ and the reference length L lx , L 2x L mx of each arm after deformation; the subscript numbers indicate the corresponding sections Arm parameters;
  • the processor (100) is configured to obtain a boom end position parameter according to the detection results of the tilt sensor and the length sensor:
  • the inclination sensors are respectively mounted at ends of the respective pitch arms, and the reference axis of the inclination sensor intersects and is perpendicular to the hinge axis of the end.
  • the tilt sensors are respectively mounted on the large end of the corresponding pitch arm.
  • the length sensor is a cable encoder, and the body of the cable encoder and the outer end of the cable are respectively connected to the two ends of the corresponding node arm.
  • the reference axis of the body of the cable encoder coincides with the hinge axis of one end of the corresponding pitch arm, and the fixed point of the outer end of the wire is coincident with the hinge axis of the other end of the corresponding pitch arm.
  • the processor further presets a design length L lr , L2 r , Lmr of each arm in the boom system.
  • the processor is further capable of obtaining a modified arm system end position parameter after obtaining a boom system end position parameter:
  • the construction machine provided by the present invention comprises a mechanical body and a boom system, the boom system being mounted on the mechanical body by a swing mechanism, the boom system being any of the above boom systems.
  • the length length sensor detects the reference length before and after the deformation of the arm, and then passes the reference length before and after the deformation.
  • the degree of change of the actual tilt angle of the corresponding arm before and after deformation is obtained; this can not only avoid the cumulative error caused by the accuracy of the tilt sensor, but also detect the reference length before and after the deformation of the arm by an appropriate length sensor, and it is easy to ensure the detection accuracy of the reference length of the arm
  • the actual tilt angle of the pitch arm is obtained more accurately, which in turn enables the positional parameters of the end of the boom system to be more accurate.
  • the reference length is the distance between the hinge axes of the respective ends of the respective pitch arms before and after the deformation. Based on the distance, the positional parameters of the end of the boom system can be obtained, and the deviation between the reference length and the effective length of the corresponding arm can be avoided to cause data deviation, thereby improving the accuracy of the end position parameter of the boom system.
  • the obtained deformation parameters of the boom system that is, the shape variables generated by the boom system, and the modified boom system end position parameters are obtained according to the deformation parameters and the design length of the corresponding joint arms. This can reduce the error caused by the inconsistency between the reference length and the effective length of the arm, and improve the accuracy of the end position parameters of the boom system.
  • the boom system provided by the present invention can implement the above method, and can also produce corresponding technical effects.
  • the inclination sensors are respectively mounted at the ends of the respective pitch arms, and the reference axis of the inclination sensor is kept intersecting and perpendicular to the hinge axis of the end; thus the obtained inclination angle of the pitch arms is more accurate. , improve the accuracy of the end position parameters of the boom system.
  • the length sensor is a cable encoder, and the body of the cable encoder and the outer end of the cable are respectively connected to the two ends of the corresponding arm; the cable encoder has higher precision and can be accurately measured.
  • the reference length of the corresponding arm increases the accuracy of the end position parameters of the boom system.
  • the construction machinery provided including the above-described boom system also has a corresponding technical effect.
  • FIG. 1 is a structural block diagram of a control part of a boom system according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a position where a tilt sensor and a cable encoder are mounted on an arm;
  • FIG. 3 is a schematic diagram of a detecting principle of a tilt sensor and a cable encoder;
  • Figure 4 is a schematic diagram showing the principle of obtaining the end position parameters of the boom system.
  • this section first describes the provided boom system, and describes a method for obtaining the end position parameters of the boom system based on the description of the boom system; obtaining the boom system
  • the method of the end position parameter can be implemented using the boom system of the present invention, but the method of implementation is not limited to the boom system provided by the present invention.
  • the boom system provided by the embodiment of the invention comprises five section arms hingedly connected by a horizontal hinge axis; the five section arms are respectively called one arm, two arms, three arms, four arms and five arms; one arm is installed in the corresponding On the chassis of the mechanical body, the five arms are the last arm; in each of the arms, the end of the mechanical body is a large end, and the other end is a small end; the large end and the small end respectively form a corresponding hinge axis.
  • FIG. 1 is a structural block diagram of a control portion of a boom system provided by the present invention.
  • the control portion of the boom system includes a processor 100, five tilt sensors 210 to 250, and five pull encoders 310 to 350. Five tilt sensors and five pull encoders are connected to the processor 100.
  • FIG. 2 is a schematic view showing the position of the inclination sensor and the cable encoder mounted on one arm;
  • FIG. 3 is a schematic diagram of the detection principle of the inclination sensor and the cable encoder.
  • the tilt sensor 210 is mounted at a predetermined position near the large end of an arm for detecting the angle between an arm and a horizontal plane.
  • the body of the wire encoder 310 is mounted at a predetermined position near the large end of the arm, and the outer end of the wire is fixedly fixed to the end of the arm near the small end; the wire encoder 310 is used to detect the predetermined length of one arm; This predetermined length is referred to as the reference length.
  • the wiring encoder 310 is provided with an extension cable 311 in addition to the self-pull wire, and the inner end of the extension cable 311 is connected to the outer end of the cable encoder 310 itself.
  • the distance between the reference axis of the body of the wire encoder 310 and the hinge axis O u of the large end of the arm is L PY , and the outer end of the extension wire 311 and the hinge axis of the small head end of the arm are extended. 0 12 coincides.
  • the X-axis and the Y-axis form a Cartesian coordinate system YOX, wherein the X-axis is parallel to the horizontal plane, the ⁇ -axis is perpendicular to the horizontal plane, and the plane formed by YOX is perpendicular to the hinge axis at both ends of one arm.
  • the hinge axis of the large end of one arm coincides with the origin 0 of the coordinate
  • A is the position of the hinge axis of the small end of the arm before deformation in the Cartesian coordinate system YOX
  • A is the small end of one arm after the deformation
  • the hinge axis is in the position of the Cartesian coordinate system.
  • a coordinate parameter be (X l Yj );
  • A, coordinate parameter be (X 1P , Y 1P );
  • ⁇ angle be value ZAOA' angle is value a lb , ⁇ angle is ia lx ;
  • OA is The length between the hinge axes of the two arms before the deformation is set to OA, which is the length between the hinge axes of the two ends of the arm after deformation, and is set to L lx .
  • ZAOX ⁇ angle values obtained by the angle detection sensor 210; ⁇ 1 and to pull detection encoder 310 is obtained.
  • the wire encoder 310 is in a stretched state of half a rated range, as shown in the figure, Where L S is the measured value of the pull encoder 310, L. x is the length of the extension wire 311. Similarly, after an arm is deformed, 1 ⁇ produces a corresponding change.
  • one arm is formed into an arc shape before and after deformation; according to the arc chord relationship, it can be determined that OA is smaller than OA; the vertical line passing through A and perpendicular to OA is AC, and then AA can be determined. Basically equal to AC. Let the vertical line passing through the origin 0 and perpendicular to AA intersect with AC to form OB.
  • FIG. 4 is a schematic diagram of the principle of obtaining the end position parameters of the boom system.
  • the subscript numbers indicate the parameters of the corresponding pitch arms.
  • the processor 100 is capable of obtaining the positional parameters X tip and Y tip of the end of the boom system based on the detection results of the plurality of tilt sensors and the plurality of cable encoders. Accurate control and positioning of the boom system is then achieved based on X tip and Y tip .
  • the tilt angle change of the corresponding pitch arm due to the deformation is measured by the tilt sensor, the tilt angle of the pitch arm is too small, and the position error of the end of the boom is obtained due to the excessive error of the tilt sensor.
  • the error is large.
  • the boom system is provided, and the reference lengths 1 ⁇ and 1 ⁇ before and after the deformation of the arm are obtained by the wire encoder, and the change of the tilt angle of the corresponding arm before and after the deformation is obtained by the length before and after the deformation;
  • the cumulative error due to the accuracy of the tilt sensor can be avoided, and the reference length before and after the deformation of the arm is detected by the cable encoder, and the detection accuracy of the length value can be easily ensured, and the positional parameters of the end of the boom system can be obtained more accurately.
  • the tilt sensor 210 is not limited to being mounted on the large end of one arm, but may be mounted on the small end of one arm, and the tilt angle ⁇ of the arm before the deformation is also obtained.
  • the reference axis of the tilt sensor 210 intersects and is perpendicular to the hinge axis of the big end or the small end end, so that the tilt angle obtained by the detection is closer to the actual tilt angle of one arm, the data error is reduced, and the end position parameter of the boom system is improved.
  • the accuracy is to install the tilt sensor 210 on the large end of one arm, so as to avoid the error caused by the gravity of one arm itself.
  • the corresponding inclination sensor can also be installed at a predetermined position of the corresponding pitch arm according to actual needs.
  • the reference axis of the body of the wire encoder 310 has a predetermined distance from the hinge axis of the large end of one arm; in a preferred embodiment, the reference of the body of the wire encoder 310 can also be made.
  • the axis is coincident with the hinge axis O u of the large end of one arm; thus, the detection value of the wire encoder 310 and the length of the extension wire 311 can be made straighter. Grounding obtains the reference length and 1 ⁇ before and after the deformation of the arm.
  • the appropriate part can be selected as the measurement object according to actual needs, and the predetermined reference length can be obtained.
  • the length of the arm before and after the deformation is not limited to the above description, and can also be selected according to actual needs.
  • a suitable way to detect the length before and after the deformation of the pitch arm in measuring other sections in the actual measurement, there is always a certain difference between the reference length detected by the pull encoder 310 and the effective length of one arm. This difference affects the accuracy of obtaining the end position parameters of the boom system.
  • the processor can also use the boom system distal end position parameters X tip and Y tip 100 performs the correction to obtain a corrected position of the end of the boom system parameter X tip. Revised and Y tip. Revised .
  • the overall shape variable can be decomposed into an overall shape variable in the X-axis direction and an overall shape variable ⁇ in the Y-axis direction, and ⁇ and ⁇ are called deformation parameters of the boom system.
  • the total length of the boom system in the X-axis direction is X «
  • the total length of the boom system in the Y-axis direction is Y «. among them:
  • Y terminal change X sin(ai) + L 2 x sin(a 2 )+L 3 x sin(a 3 )+L 4 ⁇ sin(a 4 )+L 5 ⁇ sin(a 5 ).
  • each section arm is further introduced, and the design length of each section arm (the distance between the hinge axes of both ends in design) is preset in the processor 100; the design length of one arm is L lr , and the two arms are The design length is L 2r , the design length of the three arms is L 3r , the design length of the four arms is , and the design length of the five arms is L 5r . It can be determined, after deformed at the boom system, the correction system of the boom position parameters X tip end Y tip repair and repair.:
  • the means for detecting the length before and after the deformation of each of the arm portions is not limited to the wire encoder, and may be other length sensors; the object of the present invention can be achieved as long as the length sensor can detect the length before and after the deformation of each of the arm portions.
  • the coordinate axis is not limited to be parallel or perpendicular to the horizontal plane, and the corresponding coordinate system may be set according to actual needs, so that the predetermined coordinate axis is parallel to the predetermined reference plane; Appropriate conversion of the sensor output angle values provides an angle between the corresponding arm and the predetermined reference plane.
  • the present invention also provides a construction machine comprising a mechanical body and a boom system, the boom system being mounted on the mechanical body by a swing mechanism, the boom system being A boom system according to any of the preceding claims. Since the boom system has the above technical effects, the construction machine including the boom system also has a corresponding technical effect.
  • the engineering machinery can be a pump truck, a boom or other construction machine.
  • the method for obtaining the end position parameters of the boom system comprises the following steps:
  • the angle parameter can be obtained by a tilt sensor mounted on the corresponding pitch arm, and the length parameter can be obtained by detecting the appropriate length sensor.
  • L 2 , ... L m are respectively preferably distances between the hinge axes of the respective ends of the respective arm before deformation
  • L lx , L 2x , ... L mx are respectively preferred The distance between the hinge axes of the two ends of the respective arm after deformation.
  • L lr and L 2r L are the design lengths of the respective arm sections.

Abstract

提供一种获得臂架系统末端位置参数的方法、臂架系统及包括该臂架系统的工程机械。获得臂架系统末端位置参数的方法包括:首先获取形变前各节臂倾斜角度、形变前后各节臂的参考长度;再根据各节臂形变前后长度确定相应节臂倾斜角度的变化,再根据各节臂倾斜角度的变化获得各节臂在预定方向上长度的变化,再对各节臂预定方向的长度求和,获得臂架系统末端位置参数。该获得臂架系统末端位置参数的方法不仅可以避免由于倾角传感器精度产生的累积误差,且通过适当的长度传感器检测各节臂形变前后的参考长度,容易保证各节臂参考长度的检测精度,更精确地获得各节臂实际倾斜角度,进而能够使臂架系统末端的位置参数更准确。

Description

获得臂架系统末端位置参数的方法、 臂架系统及工程机械 本申请要求于 2011 年 07 月 12 日提交中国专利局, 申请号为 201110194574.3、 发明名称为"获得臂架系统末端位置参数的方法、 臂架系 统及工程^ 的中国专利申请的优先权,其全部内容通过引用结合在本申 请中。
技术领域
本发明涉及一种臂架控制技术, 特别涉及一种获得臂架系统末端位置 参数的方法, 还涉及到一种臂架系统及包括该臂架系统的工程机械。
背景技术
当前, 臂架系统广泛地应用在泵车和布料杆中, 以实现对混凝土或其 他物料的输送。 臂架系统一般包括多节节臂, 最下端节臂的大头端与预定 的底盘通过一个竖向轴铰接相连, 该节臂称为一臂; 其他节臂的大头端与 相邻的节臂的小头端通过水平铰接轴铰接; 这样, 多节节臂通过水平铰接 轴顺序铰接相连, 最末端的节臂向外伸出, 该节臂称为末节臂, 末节臂的 外端形成臂架系统末端; 相邻的节臂之间设置有液压缸等驱动机构, 以使 相邻的节臂之间角度产生预定的变化, 使臂架系统末端的位置改变, 以将 物料或物品运送到预定的位置。
为了实现对臂架系统末端位置的自动控制, 需要确定臂架系统末端的 位置; 为了确定臂架系统末端的位置, 通常在控制系统中建立适当的坐标 系, 并通过该坐标系的坐标参数确定臂架系统的位置; 该末端的坐标参数 称为位置参数。 当前, 已经公开了多种确定臂架系统末端位置参数的技术 方案。 另外, 在利用臂架系统进行工作的过程中, 每节节臂均要承受相应 负载, 产生相应形变; 多节节臂形变的累积会导致臂架系统末端的位置参 数与目标位置参数之间具有很大的偏差。 为了减小由于节臂形变导致的臂 架系统末端的位置参数的偏差, 中国专利文献 CN101870110A公开了一种 臂架系统的控制方法, 该控制方法中, 利用两个倾角传感器获得相应节臂 的形变量, 再根据该形变量对节臂的位置参数进行修正。 该控制方法虽然 能够提高臂架系统末端位置参数的准确性, 但由于受到倾角传感器测量精 度的限制,臂架系统末端的位置参数与目标位置参数之间的偏差仍然较大, 无法满足对臂架系统末端的准确定位和控制的需要。 因此, 如何提高臂架系统末端位置参数的准确度, 仍然是本领域技术 人员需要解决的技术问题。
发明内容
本发明要解决的第一个技术问题为提供一种获得臂架系统末端位置 参数的方法, 利用该方法可以更准确地获得臂架系统末端的位置参数。
本发明要解决的第二个技术问题为提供一种臂架系统。 在提供臂架系 统的基础上, 本发明还提供一种包括该臂架系统的工程机械。
本发明提供获得臂架系统末端位置参数的方法包括以下步骤: 获取形变前各节臂延伸方向与预定参考平面之间的夹角 on、 α2 am; 获取形变前各节臂的参考长度 、 L2 Lm; 获取各节臂 形变后的参考长度 Llx、 L2x Lmx; 下标数字表示相应节臂的参数; 其 中下标为 m的参数为末节臂参数;
获得臂架系统末端位置参数:
Figure imgf000004_0001
{ ai-arccos(Li/Lix) } +L2x xcos { a2-arccos(L2/L2X) } + Lmxxcos { Om-arccosH x) };
Figure imgf000004_0002
{ ai-arccos(Li/Lix) } +L2x xsin { a2-arccos(L2/L2X) } +
Lmxxsin { ( -arccosH x) ^
可选的, 所述 、 L2、 ...... Lm分别为形变前相应节臂的两端的铰接轴 线之间的距离; Llx、 L2x、 ...... Lmx分别为形变后相应节臂的两端的铰接轴 线之间的 巨离。
可选的, 在获得臂架系统末端位置参数之后, 还包括:
获得臂架系统的形变参数:
Figure imgf000004_0003
{ LiXcos(ai)+L2xcos(a2)+ Lmxcos(am) } ;
AY=Ytip- { Lixsin(ai)+L2xsin(a2)+ Lmxsin(am) } ;
再获得修正的臂架系统末端位置参数:
Xtip.修 =Llr xcos(a1)+L2r xcos((X2)+ Lmrxcos(am)+AX;
Figure imgf000004_0004
其中, Llr、 L2r ...... L 为相应节臂的设计长度。
本发明提供的种臂架系统, 包括 m节通过水平铰接轴顺序铰接相连的 节臂, 还包括处理器、 多个倾角传感器和多个长度传感器, 多个所述倾角 传感器分别安装在相应的节臂上, 用于在形变前检测相对应节臂与预定参 考平面之间的夹角 αι、 α2、 ...... am; 多个所述长度传感器分别安装在相应 的节臂上, 用于在形变前检测各节臂的参考长度 、 L2 1^及在形变 后检测各节臂的参考长度 Llx、 L2x Lmx; 下标数字表示相应节臂的参 数;
所述处理器( 100 )用于根据倾角传感器和长度传感器的检测结果获得 臂架系统末端位置参数:
Figure imgf000005_0001
{ ai-arccos(Li/Lix) } +L2x xcos { a2-arccos(L2/L2X) } +
Lmxxcos { am-arccos(Lm/Lmx) };
Figure imgf000005_0002
{ ai-arccos(Li/Lix) } +L2x xsin { a2-arccos(L2/L2X) } +
Lmxxsin { ( -arccosH x) ^
可选的, 所述倾角传感器分别安装在相应节臂的端部, 且使该倾角传 感器的基准轴线与该端的铰接轴线之间相交并垂直。
可选的, 所述倾角传感器分别安装在相应节臂的大头端。
可选的, 所述长度传感器为拉线编码器, 所述拉线编码器的本体和拉 线外端分别与相应节臂的两端部相连。
可选的, 所述拉线编码器的本体的基准轴线与相应节臂一端的铰接轴 线重合, 所述拉线外端的固定点与相应节臂的另一端的铰接轴线重合。
可选的, 所述处理器还预置有臂架系统中各节臂的设计长度 Llr、 L2r、 Lmr?
所述处理器还能够在获得臂架系统末端位置参数之后, 获得修正的臂 架系统末端位置参数:
Xtip.修 =Llrxcos(a1)+L2rxcos(a2)+ Lmr cosCa +Xtip-
{ Li xcos(ai)+L2xcos(a2)+ Lmxcos(am) } ;
{ Li
Figure imgf000005_0003
本发明提供的工程机械包括机械本体和臂架系统, 所述臂架系统通过 回转机构安装在机械本体上, 所述臂架系统为上述任一种臂架系统。
与现有技术相比,本发明提供的获得臂架系统末端位置参数的方法中, 通过长度传感器检测节臂形变前后的参考长度, 再通过形变前后的参考长 度获得形变前后相应节臂实际倾斜角度的改变; 这样不仅可以避免由于倾 角传感器精度产生的累积误差, 且通过适当的长度传感器检测节臂形变前 后的参考长度, 容易保证节臂参考长度的检测精度, 更准确地获得节臂实 际倾斜角度, 进而能够使臂架系统末端的位置参数更准确。
在进一步的技术方案中, 参考长度为形变前后的相应节臂的两端铰接 轴线之间的距离。 以该距离为基础获得臂架系统末端的位置参数, 可以避 免参考长度与相应节臂的有效长度之间的偏差导致数据的偏差, 进而提高 臂架系统末端位置参数的准确性。
在进一步的技术方案中, 通过获得的臂架系统的形变参数, 即获得臂 架系统产生的形变量, 再根据形变参数及相应节臂的设计长度, 获得修正 的臂架系统末端位置参数。 这样可以减小由于参考长度与节臂的有效长度 不一致导致的误差, 提高臂架系统末端位置参数的准确性。
在提供上述获得臂架系统末端位置参数的方法的基础上, 本发明提供 的臂架系统能够实施上述方法, 同样能够产生相对应的技术效果。
在进一步的技术方案中,所述倾角传感器分别安装在相应节臂的端部, 且使倾角传感器的基准轴线与该端的铰接轴线保持相交并垂直; 这样可以 使获得的节臂的倾斜角度更准确, 提高臂架系统末端位置参数的准确性。
在进一步的技术方案中, 所述长度传感器为拉线编码器, 所述拉线编 码器的本体和拉线外端分别与相应节臂的两端部相连; 拉线编码器具有更 高的精度, 可以准确测量相应节臂的参考长度, 进而提高臂架系统末端位 置参数的准确性。
提供的包括上述臂架系统的工程机械也具有相对应的技术效果。
附图说明
图 1为本发明实施例提供的臂架系统控制部分的结构框图;
图 2是倾角传感器和拉线编码器安装在一臂上的位置示意图; 图 3是倾角传感器和拉线编码器的检测原理示意图;
图 4是获得臂架系统末端位置参数的原理示意图。
具体实施方式
下面结合附图对本发明进行详细描述, 本部分的描述仅是示范性和解 释性, 不应视为对本发明公开技术内容的限制。 为了更清楚地描述本发明提供的技术方案, 本部分先对提供的臂架系 统进行描述, 在对臂架系统描述的基础上对获得臂架系统末端位置参数的 方法进行描述; 获得臂架系统末端位置参数的方法可以应用本发明的提供 臂架系统实施, 但实施该方法不限于本发明提供的臂架系统。
本发明实施例提供的臂架系统包括 5节通过水平铰接轴顺序铰接相连 的节臂; 5 节节臂分别称为一臂、 二臂、 三臂、 四臂和五臂; 一臂安装在 相应机械本体的底盘上, 五臂为末节臂; 各节臂中, 靠近机械本体一端为 大头端, 相反的另一端为小头端; 大头端和小头端分别形成相应的铰接轴 线。
请参考图 1 , 该图是本发明提供的臂架系统控制部分的结构框图。 该 臂架系统的控制部分包括处理器 100、 5个倾角传感器 210至 250、 5个拉 线编码器 310至 350。 5个倾角传感器和 5个拉线编码器均与处理器 100 保持相连。
5 个倾角传感器与 5 节节臂一一对应, 并分别安装在一节节臂上; 5 个拉线编码器与 5节节臂一一对应, 并分别安装在一节节臂上。 请参考图 2和图 3 , 图 2是倾角传感器和拉线编码器安装在一臂上的位置示意图; 图 3是倾角传感器和拉线编码器的检测原理示意图。
图 2中, 倾角传感器 210安装在一臂的靠近大头端的预定位置, 用于 检测一臂与水平面之间的角度。 拉线编码器 310的本体安装在一臂的靠近 大头端的预定位置, 拉线的外端与一臂的靠近小头端的预定固定; 拉线编 码器 310用于检测一臂的预定长度; 为了描述的方便, 该预定长度称为参 考长度。 本例中, 为了满足检测一臂的参考长度的需要, 接线编码器 310 除了包括自身拉线外, 还设置有延长拉线 311 , 延长拉线 311 内端与拉线 编码器 310 自身拉线的外端相接。 本例中, 在一臂延伸方向上, 拉线编码 器 310的本体的基准轴线与一臂大头端的铰接轴线 Ou之间的距离为 LPY, 延长拉线 311外端与一臂小头端铰接轴线 012重合。
图 3中, X轴和 Y轴形成直角坐标系 YOX,其中 X轴与水平面平行, γ轴与水平面垂直, YOX形成的平面与一臂两端的铰接轴线保持垂直。一 臂的大头端的铰接轴线与坐标原点 0重合, A为形变前一臂的小头端的铰 接轴线在直角坐标系 YOX 中的位置, A,为发生了形变后一臂的小头端的 铰接轴线在直角坐标系的位置。
图 3中, 设 A的坐标参数为(Xl Yj ); A,的坐标参数为(X1P, Y1P ); ΖΑΟΧ角度为值 ZAOA'角度为值 alb, ΖΑΌΧ角度为i alx; OA为 形变前一臂的两端铰接轴线之间的长度, 设为 OA,为形变后一臂的两 端铰接轴线之间的长度, 设为 Llx。 其中, ZAOX角度值 αι由倾角传感器 210检测获得; 和1^为拉线编码器 310检测获得。 本例中, 在一臂形变 前, 使拉线编码器 310处于半个额定量程的拉伸状态, 如图所示, 此时,
Figure imgf000008_0001
其中 LS为拉线编码器 310测量值, L。x为延长拉线 311的 长度。 同样, 在一臂产生形变后, 1^产生相应变化,
Figure imgf000008_0002
根据经验可以确定, 一臂在形变前后, 一臂整体形成弧形; 根据弧弦 关系, 可以确定, OA,小于 OA; 设通过 A且垂直于 OA,的垂线为 AC, 进 而可以确定 AA,与 AC基本相等。设通过原点 0且垂直于 AA,的垂线与 AC 交于 B , 形成 OB ; 在实际工作中, ZAOA,一般小于 2 度, 进而 ZAOB-ZAOAV2; 进而 , AA, AC=2xOAxsin(ZAOAV2); 同 时, AC=OAxsin(ZAOA')„ sin ( 2° ) =0.034899, 2 sin ( 1。) =0.03490; 二者之 差为 0.00001;也就说 AA,与 AC之间的差值非常小, 在工程控制数据处理 中基本上忽略不计。 进而, alb=arccos ( OA/OA' ) =arccos ( I L )。
根据三角函数关系, 可以确定:
X1p=Llxxcos(alx)=Llxxcos(a1-alb)=Llxxcos { ai-arccos(L!/Llx) };
Y1p=Llxxsin(alx)=Llxxsin(a1-a1b)=Llxxsin { ai-arccos(Li/Lix) }。
这样就可以确定一臂小头端的铰接轴线 012相对于其大头端铰接轴线 Ou的相对位置。 同样的原理, 可以获得二臂、 三臂、 四臂及五臂等各节臂 小头端铰接轴线相对于其大头端铰接轴线的相对位置。 由于 5节节臂顺序 铰接相连。
进而可以获得在直角坐标系 YOX中的、 臂架系统末端位置参数 Xtip 和 Ytip。 请参考图 4、 该图是获得臂架系统末端位置参数的原理示意图。
Xtip=Lixxcos(aix)+L2Xxcos(a2x)+L3xxcos(a3x)+L4xxcos(a4x)+L5xxcos(a5X) =Lixxcos(ai-aib)+L2xxcos(a2-a2b)+L3xxcos(a3-a3b)+L4xxcos(a4-a4b)+L5xxcos(a5 -a5b)
=Llxxcos { ai-arccos(Li/Lix) } +L2x xcos { a2-arccos(L2/L2x) } +L3xxcos { a3-arccos(L3/L3x) }+L4xxcos{ a4-arccos(L4/L4x) }+L5xxcos{ a5-arccos(L5/L5x) }; Ytip=Lixxsin(aix)+L2Xxsin(a2x)+L3xxsin(a3x)+L4xxsin(a4x)+L5xxsin(a5X) =Lixxsin(ai-aib)+L2xxsin(a2-a2b)+L3xxsin(a3-a3b)+L4xxsin(a4-a4b)+L5xxsin(a5-a
5b)
=Llxxsin { ai-arccos(Li/Lix) } +L2x xsin { a2-arccos(L2/L2X) } +L3xxsin { a3-arccos(L3/L3x) }+L4xxsin{ a4-arccos(L4/L4x) }+L5xxsin{ a5-arccos(L5/L5x) }。
上述公式中, 下标数字表示相应节臂的参数。 进而, 根据上述公式, 处理器 100能够根据多个倾角传感器和多个拉线编码器的检测结果获得臂 架系统末端的位置参数 Xtip和 Ytip。 再根据 Xtip和 Ytip实现对臂架系统的精 确控制和定位。
根据现有技术提供的技术方案, 如用倾角传感器测量相应节臂由于形 变产生的倾斜角度变化, 会由于节臂倾斜角度变化过小, 且倾斜传感器误 差过大导致获得的臂架末端的位置参数误差较大。 而利用上述实施例提供 臂架系统, 通过拉线编码器获得节臂形变前后的参考长度 1^和1^, 再通 过形变前后的长度 和1^获得形变前后相应节臂倾斜角度的改变; 这样 不仅可以避免由于倾角传感器精度产生的累积误差, 且通过拉线编码器检 测节臂形变前后的参考长度, 容易保证长度值的检测精度, 进而能够更准 确地获得臂架系统末端的位置参数。
可以理解, 图 2中, 倾角传感器 210不限于安装在一臂的大头端, 也 可以安装在一臂的小头端, 同样可以获得产生形变前一臂的倾斜角度 αι; 优选技术方案中, 使倾角传感器 210的基准轴线与大头端或小头端的铰接 轴线之间相交并垂直, 可以使检测获得的倾斜角度与一臂的实际倾斜角度 更接近, 减小数据误差, 提高臂架系统末端位置参数的准确性。 优选技术 方案是将倾角传感器 210分别安装在一臂的大头端, 这样可以避免一臂本 身重力导致形变产生的误差。 同样, 测量其他节臂的倾斜角度时, 也可以 根据实际需要将相应的倾角传感器安装在相应节臂的预定位置。
如图 2所示, 本例中, 拉线编码器 310的本体的基准轴线与一臂大头 端的铰接轴线 之间具有预定的距离; 在优选技术方案中, 也可以使拉 线编码器 310的本体的基准轴线与一臂大头端的铰接轴线 Ou保持重合; 这样, 通过拉线编码器 310的检测值和延长拉线 311的长度, 就可以更直 接地获得该节臂形变前后的参考长度 和1^。 当然, 由于节臂两端部分 形变很小, 也可以根据实际需要选择适当的部分作为测量对象, 获得预定 的参考长度; 获得一臂形变前后长度不限于上述描述的方式, 也可以根据 实际需要选择合适的方式检测节臂形变前后的长度。 同样, 在测量其他节 在实际测量中, 根据拉线编码器 310检测的参考长度与一臂有效长度 总是存在一定的差别。 该差别会影响获得臂架系统末端位置参数的精度。 为此, 在进一步的实施例中, 还可以利用处理器 100对臂架系统末端位置 参数 Xtip和 Ytip进行修正,以获得修正的臂架系统末端位置参数 Xtip.修和 Ytip. 修。
在获得修正的臂架系统末端位置参数 Xtip.»和 Ytip.»之前, 需要获得臂 架系统产生的总体形变量。 在坐标系 YOX中, 该总体形变量可以分解为 在 X轴方向上的总体形变量 和在 Y轴方向上的总体形变量 ΔΥ, ΔΧ 和 ΔΥ称为臂架系统的形变参数。 设臂架产生形变之前, 臂架系统总体长 度在 X轴方向上的分量为 X «, 臂架系统总体长度在 Y轴方向上的分量 为 Y «。 其中:
X 末变 =L1xcos(a1)+L2xcos(a2)+L3xcos(a3)+L4xcos(( 4)+L5xcos(a5);
Y 末变 = X sin(ai)+L2 x sin(a2)+L3 x sin(a3)+L4 χ sin(a4)+L5 χ sin(a5)。
那么:
Figure imgf000010_0001
末变 =Xtip—
{ LiXcos(ai)+L2xcos(a2)+L3xcos(a3)+L4xcos(a4)+L5xcos(a5) } ;
△Y=Ytip-Y 末变 =Ytip- { Li x sin(ai)+L2 x sin(a2)+L3 χ sin(a3)+L4 χ sin(a4)+L5 χ sin(a5) }。
进而, 再引入各节臂的设计长度, 在处理器 100中预置各节臂的设计 长度(设计时两端铰接轴线之间的距离); 设一臂的设计长度为 Llr, 二臂 的设计长度为 L2r, 三臂的设计长度为 L3r, 四臂的设计长度为 , 五臂的 设计长度为 L5r。 那么, 可以确定, 在臂架系统产生形变后, 修正的臂架 系统末端位置参数 Xtip.修和 Ytip.修为:
Xtip.修 =Llrxcos(a1)+L2r xcos(a2) +L3rxcos(a3)++L4rxcos(a4)
+L5rxcos(a5)+AX; Ytip.修 = Llrxsin(ai)+L2r xsin (a2) +L3rxsin (a3) +L4rxsin (a4) +L5rxsin
5)+ΔΥ。
这样, 就可以减小由于相应臂架的参考长度与其实际有效长度之间的 误差产生的数据偏差, 提高臂架系统末端位置参数的准确性。 再根据 Xtip. 修和 Ytip.修实现对臂架系统的精确控制和定位。
可以理解, 检测各节臂产生形变前后长度的装置不限于拉线编码器, 也可以是其他长度传感器; 只要是通过长度传感器能够检测各节臂产生形 变前后长度, 就能够实现本发明的目的。
可以理解, 确定臂架系统末端的位置参数的坐标系中, 坐标轴不限于 与水平面平行或垂直, 也可以根据实际需要设定相应坐标系, 使预定坐标 轴与预定参考平面平行; 通过对倾角传感器输出角度值的适当换算, 就可 以获得相应各节臂与预定参考平面之间的夹角。
在提供上述臂架系统的基础上, 本发明还提供一种工程机械, 该工程 机械包括机械本体和臂架系统, 所述臂架系统通过回转机构安装在机械本 体上, 所述臂架系统为上述任一项所述的臂架系统。 由于臂架系统具有上 述技术效果, 包括该臂架系统的工程机械也具有相对应的技术效果。 该工 程机械可以是泵车、 布料杆或其他工程机械。
基于上述对臂架系统的描述, 本发明提供的获得臂架系统末端位置参 数的方法包括以下步骤:
获得形变前各节臂延伸方向与水平面或其他预定参考平面之间的夹角 αι、 a2 am; 获得形变前各节臂的参考长度 、 L2 Lm; 获得各 节臂形变后的参考长度 Llx、 L2x Lmx; 下标数字表示相应节臂的参数; 其中下标为 m的参数为末节臂的相应参数。 角度参数可以通过安装在相应 节臂上的倾角传感器检测获得, 长度参数可以通过适当的长度传感器检测 获得。
然后, 再获得臂架系统末端位置参数 Xtip和 Ytip:
Figure imgf000011_0001
{ ai-arccos(Li/Lix) } +L2x xcos { a2-arccos(L2/L2X) }
+ ...... Lmxxcos { am-arccos(Lm/Lmx) }; 即获得各节臂在预定坐标系 X轴方向 上的和。
Figure imgf000011_0002
ai-arccos(Li/Lix) }+L2x xsin{ a2-arccos(L2/L2X) }+ Lmxxsin { ( -arccosOVLmx) }; 即获得各节臂在预定坐标系 Y轴方向上的和。 其中, 所述 、 L2、 ...... Lm分别优选形变前相应各节臂的两端铰接轴 线之间的距离, Llx、 L2x、 ...... Lmx分别优选形变后相应各节臂的两端铰接 轴线之间的距离。
为了获得更准确地臂架系统末端位置参数, 在获得臂架系统末端位置 参数之后, 还包括获得臂架系统形变参数的步骤:
AX=Xtip-X 末变 =Xtip- { L1xcos(ai)+L2xcos(a2)+ Lmxcos(am) } ;
△Y=Ytip-Y 末变 =Ytip- { L1 sin(ai)+L2xsin(a2)+…… Lmxsin(am) } ; 再获得修正的臂架系统末端位置参数 Xtip.»和 Ytip.修:
XtiP.修 =Llrxcos(a1)+L2r xcos(a2)+ Lmrxcos(am)+AX;
Figure imgf000012_0001
其中, Llr、 L2r L 为相应各节臂的设计长度。
与臂架系统相对应, 本发明提供的方法也具有相对应的技术效果。 施例的说明只是用于帮助理解本发明提供的技术方案。 应当指出, 对于本 技术领域的普通技术人员来说, 在不脱离本发明原理的前提下, 还可以对 本发明进行若干改进和修饰, 这些改进和修饰也落入本发明权利要求的保 护范围内。

Claims

权 利 要 求
1、 一种获得臂架系统末端位置参数的方法, 其特征在于, 包括以下步 骤:
获取形变前各节臂延伸方向与预定参考平面之间的夹角 、 α2 am; 获取形变前各节臂的参考长度 、 L2 Lm; 获取各节臂 形变后的参考长度 Llx、 L2x Lmx; 下标数字表示相应各节臂的参数; 其中下标为 m的参数为末节臂参数;
获得臂架系统末端位置参数:
Figure imgf000013_0001
{ ai-arccos(Li/Lix) } +L2x xcos { a2-arccos(L2/L2X) } + Lmxxcos { Om-arccosH x) };
Figure imgf000013_0002
{ ai-arccos(Li/Lix) } +L2x xsin { a2-arccos(L2/L2X) } +
Lmxxsin { ( -arccosH x) ^
2、根据权利要求 1所述的获得臂架系统末端位置参数的方法,其特征 在于,
所述 、 L2、 Lm分别为形变前相应各节臂的两端的铰接轴线之间 的距离; Llx、 L2x、 ...... Lmx分别为形变后相应各节臂的两端的铰接轴线之 间的 巨离。
3、根据权利要求 1所述的获得臂架系统末端位置参数的方法,其特征 在于,
在获得臂架系统末端位置参数之后, 还包括:
获得臂架系统的形变参数:
Figure imgf000013_0003
{ LiXcos(ai)+L2xcos(a2)+ Lmxcos(am) } ;
AY=Ytip- { Lixsin(ai)+L2xsin(a2)+ Lmxsin(am) } ;
再获得修正的臂架系统末端位置参数:
Xtip.修 =Llrxcos(a1)+L2r xcos(a2)+ Lmrxcos(am)+AX;
Figure imgf000013_0004
其中, Llr、 L2r ...... L 为相应各节臂的设计长度。
4、 一种臂架系统, 包括 m节通过水平铰接轴顺序铰接相连的节臂, 其特征在于, 还包括处理器(100 )、 多个倾角传感器和多个长度传感器, 多个所述倾角传感器分别安装在相应的节臂上, 用于在形变前检测相对应 节臂与预定参考平面之间的夹角 ^、 α2 am; 多个所述长度传感器分 别安装在相应各节臂上, 用于在形变前检测各节臂的参考长度 、 L2、 ...... Lm及在形变后检测各节臂的参考长度 Llx、 L2x、 ...... Lmx; 下标数 字表示相应各节臂的参数;
所述处理器( 100 )用于根据倾角传感器和长度传感器的检测结果获得 臂架系统末端位置参数:
Figure imgf000014_0001
{ ai-arccos(L!/Llx) } +L2x xcos { a2-arccos(L2/L2x) } +
Lmxxcos { am-arccos(Lm/Lmx) };
Figure imgf000014_0002
{ ai-arccos(Li/Lix) } +L2x xsin { a2-arccos(L2/L2X) } + Lmxxsin { m-arccosH x) ^
5、根据权利要求 4所述的臂架系统, 其特征在于, 所述倾角传感器分 别安装在相应各节臂的端部, 且使该倾角传感器的基准轴线与该端的铰接 轴线之间相交并垂直。
6、根据权利要求 5所述的臂架系统, 其特征在于, 所述倾角传感器分 别安装在相应各节臂的大头端。
7、根据权利要求 4所述的臂架系统, 其特征在于, 所述长度传感器为 拉线编码器, 所述拉线编码器的本体和拉线外端分别与相应各节臂的两端 部相连。
8、根据权利要求 7所述的臂架系统, 其特征在于, 所述拉线编码器的 本体的基准轴线与相应节臂一端的铰接轴线重合, 所述拉线外端的固定点 与相应节臂的另一端的铰接轴线重合。
9、 根据权利要求 4-8任一项所述的臂架系统, 其特征在于, 所述处理 器还预置有臂架系统中各节臂的设计长度 Llr、 L2r Lm
所述处理器还能够在获得臂架系统末端位置参数之后, 获得修正的臂 架系统末端位置参数:
Xtip.修 =Llrxcos(a1)+L2rxcos(a2)+ Lmr cosCa +Xtip-
{ Li xcos(ai)+L2xcos(a2)+ Lmxcos(am) } ;
{ Li
Figure imgf000014_0003
10、 一种工程机械, 包括机械本体和臂架系统, 所述臂架系统通过回 转机构安装在机械本体上, 其特征在于, 所述臂架系统为权利要求 4-9任 一项所述的臂架系统。
+
PCT/CN2012/074266 2011-07-12 2012-04-18 获得臂架系统末端位置参数的方法、臂架系统及工程机械 WO2013007121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110194574 CN102346025B (zh) 2011-07-12 2011-07-12 获得臂架系统末端位置参数的方法、臂架系统及工程机械
CN201110194574.3 2011-07-12

Publications (1)

Publication Number Publication Date
WO2013007121A1 true WO2013007121A1 (zh) 2013-01-17

Family

ID=45544917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074266 WO2013007121A1 (zh) 2011-07-12 2012-04-18 获得臂架系统末端位置参数的方法、臂架系统及工程机械

Country Status (2)

Country Link
CN (1) CN102346025B (zh)
WO (1) WO2013007121A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705664A1 (de) 2019-03-07 2020-09-09 Liebherr-Mischtechnik GmbH Gelenkarm-steuerung einer betonpumpe
EP3705662A1 (de) 2019-03-07 2020-09-09 Liebherr-Mischtechnik GmbH Gelenkarm-steuerung einer betonpumpe
EP3705663A1 (de) 2019-03-07 2020-09-09 Liebherr-Mischtechnik GmbH Gelenkarm-steuerung einer betonpumpe

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346025B (zh) * 2011-07-12 2013-04-24 三一重工股份有限公司 获得臂架系统末端位置参数的方法、臂架系统及工程机械
CN103575248B (zh) * 2013-11-01 2016-02-03 中联重科股份有限公司 臂架目标位置检测设备、方法、系统以及吊装设备、方法和工程机械
CN103604408B (zh) * 2013-11-22 2017-01-25 长沙中联消防机械有限公司 臂架工作状态参数检测方法、设备、系统及工程机械
CN103728987B (zh) * 2013-12-13 2016-05-25 中联重科股份有限公司 臂架控制方法、臂架控制设备、臂架控制系统及工程机械
CN105806217B (zh) * 2016-03-12 2018-12-07 上海大学 用于物体空间位置测量的单拉线式测量系统和方法
CN107339970A (zh) * 2017-06-23 2017-11-10 徐州重型机械有限公司 一种基于全站仪的高空作业车辆臂架变形检测方法
CN107840285A (zh) * 2017-12-03 2018-03-27 湖南星邦重工有限公司 一种高空作业平台和臂架控制系统及方法
CN112828934B (zh) * 2021-01-04 2022-05-20 中联重科股份有限公司 确定臂架姿态的方法和装置、监控方法和装置及工程机械
CN114800502A (zh) * 2022-04-25 2022-07-29 上海睿尤准智控技术有限公司 臂架形变补偿方法、补偿控制系统及工程机械设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19503895A1 (de) * 1995-02-07 1996-08-08 Putzmeister Maschf Betonpumpe mit Verteilermast
US5640996A (en) * 1993-02-27 1997-06-24 Putzmeister-Werk Maschinenfabrik Gmbh Large manipulator, especially for self-propelled concrete pumps
JPH09328900A (ja) * 1991-08-02 1997-12-22 Fusao Yano 倣い運転装置を具備するコンクリ−トポンプ車における運転速度表示機構
CN101348216A (zh) * 2008-09-05 2009-01-21 湖南三一起重机械有限公司 一种起重机安全保护系统及其起重机
CN101633168A (zh) * 2009-07-28 2010-01-27 三一重工股份有限公司 一种大型工程机械手的控制方法及控制系统
CN101870110A (zh) * 2010-07-01 2010-10-27 三一重工股份有限公司 一种机械铰接臂的控制方法及控制装置
CN201872171U (zh) * 2010-07-01 2011-06-22 三一重工股份有限公司 一种机械铰接臂的控制装置
CN102346025A (zh) * 2011-07-12 2012-02-08 三一重工股份有限公司 获得臂架系统末端位置参数的方法、臂架系统及工程机械

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525944B (zh) * 2009-03-31 2011-09-21 北京易斯路电子有限公司 混凝土泵车智能臂架控制系统及其控制方法
CN101993008B (zh) * 2009-08-12 2013-10-09 中国船舶重工集团公司第七一三研究所 一种确定起重机吊钩位置的测量方法及其系统
JP2011102767A (ja) * 2009-11-11 2011-05-26 Nec Corp 非接触型位置・姿勢測定方法及び非接触型位置・姿勢測定装置並びにこれを備えた半導体実装装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09328900A (ja) * 1991-08-02 1997-12-22 Fusao Yano 倣い運転装置を具備するコンクリ−トポンプ車における運転速度表示機構
US5640996A (en) * 1993-02-27 1997-06-24 Putzmeister-Werk Maschinenfabrik Gmbh Large manipulator, especially for self-propelled concrete pumps
DE19503895A1 (de) * 1995-02-07 1996-08-08 Putzmeister Maschf Betonpumpe mit Verteilermast
CN101348216A (zh) * 2008-09-05 2009-01-21 湖南三一起重机械有限公司 一种起重机安全保护系统及其起重机
CN101633168A (zh) * 2009-07-28 2010-01-27 三一重工股份有限公司 一种大型工程机械手的控制方法及控制系统
CN101870110A (zh) * 2010-07-01 2010-10-27 三一重工股份有限公司 一种机械铰接臂的控制方法及控制装置
CN201872171U (zh) * 2010-07-01 2011-06-22 三一重工股份有限公司 一种机械铰接臂的控制装置
CN102346025A (zh) * 2011-07-12 2012-02-08 三一重工股份有限公司 获得臂架系统末端位置参数的方法、臂架系统及工程机械

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705664A1 (de) 2019-03-07 2020-09-09 Liebherr-Mischtechnik GmbH Gelenkarm-steuerung einer betonpumpe
EP3705662A1 (de) 2019-03-07 2020-09-09 Liebherr-Mischtechnik GmbH Gelenkarm-steuerung einer betonpumpe
EP3705663A1 (de) 2019-03-07 2020-09-09 Liebherr-Mischtechnik GmbH Gelenkarm-steuerung einer betonpumpe
DE102019105814A1 (de) * 2019-03-07 2020-09-10 Liebherr-Mischtechnik Gmbh Gelenkarm-Steuerung einer Betonpumpe
DE102019105871A1 (de) * 2019-03-07 2020-09-10 Liebherr-Mischtechnik Gmbh Gelenkarm-Steuerung einer Betonpumpe
DE102019105817A1 (de) * 2019-03-07 2020-09-10 Liebherr-Mischtechnik Gmbh Gelenkarm-Steuerung einer Betonpumpe

Also Published As

Publication number Publication date
CN102346025A (zh) 2012-02-08
CN102346025B (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2013007121A1 (zh) 获得臂架系统末端位置参数的方法、臂架系统及工程机械
WO2013117050A1 (zh) 臂架系统、工程机械和臂架系统末端位置参数获取方法
US10150215B2 (en) Robot control device and robot
EP2589470B1 (en) Method and device for controlling mechanical articulated arm
CN108340373B (zh) 臂架控制装置、系统、方法以及工程机械
JP5938954B2 (ja) ロボットのキャリブレーション方法及びキャリブレーション装置
EP2377653B1 (en) Method and system for controlling large-scale engineering manipulator
CN105364924B (zh) 机器人零点校准系统及机器人零点校准方法
WO2020073929A9 (zh) 作业台车及其机械臂光学标靶定位装置和定位方法
CN103862465B (zh) 多关节机械臂坐标校正方法和装置
WO2013007039A1 (zh) 机械臂的控制方法与控制装置以及工程机械
CN105800485B (zh) 臂架回转速度的控制方法、装置、系统及工程机械
JP2007138504A (ja) 作業機械における作業アームデータ補正方法および作業機械
CN102346024B (zh) 获得臂架系统末端位置参数的方法、臂架系统及工程机械
CN109070353A (zh) 尤其是混凝土泵的大型操纵器的臂架末端的笛卡尔控制
CN110370271A (zh) 工业串联机器人的关节传动比误差校准方法
CN102910533A (zh) 一种基于吊机的空间角度测量方法
JP2021037578A (ja) ロボットシステム
JP6155873B2 (ja) 建設機械
CN115354658A (zh) 打桩机桩体位姿调控系统和调控方法
CN201872171U (zh) 一种机械铰接臂的控制装置
CN111395767A (zh) 一种臂架泵车防倾翻保护系统
WO2013044463A1 (zh) 机械臂、工程机械和确定机械臂臂节位置的方法
CN112900878A (zh) 混凝土泵车臂架控制系统、方法及混凝土泵车
CN116494254B (zh) 工业机器人位置校正方法和工业机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810822

Country of ref document: EP

Kind code of ref document: A1