WO2013007089A1 - 一种简单精确的射频定位系统和方法 - Google Patents

一种简单精确的射频定位系统和方法 Download PDF

Info

Publication number
WO2013007089A1
WO2013007089A1 PCT/CN2011/084355 CN2011084355W WO2013007089A1 WO 2013007089 A1 WO2013007089 A1 WO 2013007089A1 CN 2011084355 W CN2011084355 W CN 2011084355W WO 2013007089 A1 WO2013007089 A1 WO 2013007089A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
location
mobile
information
signal
Prior art date
Application number
PCT/CN2011/084355
Other languages
English (en)
French (fr)
Inventor
廖应成
Original Assignee
成都西谷曙光数字技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都西谷曙光数字技术有限公司 filed Critical 成都西谷曙光数字技术有限公司
Priority to EP11869492.6A priority Critical patent/EP2733503A4/en
Publication of WO2013007089A1 publication Critical patent/WO2013007089A1/zh
Priority to US14/152,466 priority patent/US9436858B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • G01S5/0289Relative positioning of multiple transceivers, e.g. in ad hoc networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0295Proximity-based methods, e.g. position inferred from reception of particular signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10118Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the sensing being preceded by at least one preliminary step

Definitions

  • the present invention relates to precise positioning techniques for active electronic tags.
  • the existing general radio frequency positioning technology is based on the premise that there is no occlusion between the radio frequency signal source (electronic tag) and the wireless signal receiver (reader/writer). .
  • the radio frequency signal source electronic tag
  • the wireless signal receiver reader/writer
  • Unobstructed small positioning space, or a number of different positioning positions (Cell-ID positioning method) centered on the reader. Due to various factors such as cost, this often becomes unrealistic and the reliability of the system is low. Therefore, how to accurately locate material equipment, personnel, etc. in a complex environment, such as warehouses, workshops, exhibitions, etc., becomes a major problem in RF positioning technology.
  • the present invention utilizes interactive active electronic tag (i-RFID) technology to effectively replace mobile devices in a complex environment by using a plurality of active electronic tags having a fixed position to replace a plurality of readers requiring network connections.
  • i-RFID interactive active electronic tag
  • the present invention utilizes one or more mobile tags to communicate with one or more location tags having a fixed location to generate information including information for determining the location of the mobile tag. Then, through the location label or the mobile label, the remote location transmission method is directly transmitted to the management computer through a reader located at the center of the positioning area, thereby realizing the positioning of the mobile label.
  • the invention does not use the mobile tag to transmit the ID to one or more adjacent readers, and transmits the ID to the management computer through a network connecting a plurality of readers, and then calculates and processes the related information through the computer, and obtains the location information of the mobile tag.
  • Traditional positioning method Thereby the cartridge is efficient and at a low cost achieves precise positioning of the moving target.
  • the present invention also utilizes a coordinator to establish a short communication with the moment when the latter listens to the signal by continuously transmitting the command signal to the position tag and the mobile tag in the periodic sleep for a short period of time.
  • a coordinator to establish a short communication with the moment when the latter listens to the signal by continuously transmitting the command signal to the position tag and the mobile tag in the periodic sleep for a short period of time.
  • the working duty ratio of the moving label and the position label during the positioning process is greatly reduced, the battery life of the moving label and the position label is prolonged, and the positioning accuracy is improved.
  • the positioning reader network since the positioning reader network is not required, the cost of the system is greatly reduced and the reliability of the system operation is improved.
  • the location tag and the mobile tag are battery-powered general active electronic tags that use a periodic sleep waking signal to monitor the signal for a moment.
  • the system of the present invention consists of a coordinator, a reader, a mobile tag, a location tag, and a management computer.
  • the coordinator and reader are fixedly mounted in a central location within each location that enables long-distance communication with all tags, typically powered by an external power source and connected to the management computer via wire or wireless.
  • the coordinator can also work independently from the computer in accordance with pre-installed procedures.
  • Each location tag and mobile tag has a unique identity ID, and the corresponding program can be preset according to the needs of the actual application.
  • the position labels are dispersedly mounted at different fixed positions throughout the positioning area.
  • the location tag can also carry its own coordinate position information when needed.
  • the mobile tag is installed on a moving target that needs to be positioned, or carried by a moving target.
  • the mobile tag and the location tag are usually in a periodic sleep, and after waking up, the low-power state of the coordinator command signal is monitored on the coordinated channel (F1 channel).
  • F1 channel coordinated channel
  • DNA detection radio frequency signal
  • the location tag and the mobile tag will delay receiving the entire command signal packet (i-RFID), and listen for a long enough time after each wake to ensure that a complete one can be received.
  • Coordinator instruction The way the signal packet is, etc.
  • the sleep awake period for the location tag and the mobile tag can be determined as needed, typically 1 second.
  • the coordinator will continuously transmit the work instruction signal to the mobile tag and the location tag on the F1 channel continuously for a short period of time (generally greater than the sleep awake period of the tag). Communicate specific work instructions to them.
  • the location tag and the mobile tag will establish a short inter-communication link on the F2 channel in accordance with the mode of operation required by the coordinator command. That is, the location tag or the mobile tag transmits information including its own ID to the adjacent mobile tag or location tag as required by the instruction to generate information including information that can be used to locate the mobile tag. Then, through the location tag or the mobile tag, the information related to the location of the mobile tag is directly transmitted to the reader over the F3 channel wirelessly.
  • a transmitting tag any label that transmits signals to other tags, whether it is a position tag or a moving tag
  • a receiving tag that receives a signal is called a receiving tag.
  • the communication distance between the location tag or the mobile tag and the reader is generally much larger than the communication distance determined by the system positioning accuracy between the location tag and the mobile tag.
  • the former generally ranges from tens of meters to hundreds of meters, or even more than kilometers; the latter often only has a distance of a few meters or one or twenty meters.
  • the mobile tag adopts the following two methods, and the received information, together with its own ID, or the information After the self-position information obtained by the calculation process is transmitted to the management computer through the reader together with its own ID:
  • the mobile tag When real-time positioning of the mobile tag is required, the mobile tag will use the larger transmit power after receiving the information sent by the location tag, and immediately send its ID and related information to the remote location on the F3 channel. Device. If the number of mobile tags involved is large, it is also necessary to adopt corresponding anti-signal collision processing measures in the process of communicating the mobile tag with the reader.
  • the mobile tag When the system only needs to track the location of the mobile tag and possibly other related information, the mobile tag does not need to send the message to the reader immediately, but first sends the information.
  • the record, or after processing the cartridge, is recorded in its own memory. Only when receiving an instruction from the management computer to read the information (for example, the bus returns to the terminal), the mobile tag will record the information itself. Passed to the management computer through the reader. At this point, the mobile tag often contains a clock inside to record the location of the mobile tag at different times.
  • the information exchange between the location tag and the mobile tag may include the transmit power level used when transmitting the ID, the signal strength (RSSI) when receiving the ID, the coordinates of the location tag, etc., and the information will be Used to further improve the positioning accuracy of mobile tags.
  • the information exchanged between the location tag and the mobile tag may also be other information including sensor information.
  • the benefits of the present invention are obvious: it not only has a low cost of the structure, does not require a complicated network and a corresponding external power supply, uses a No. 5 lithium battery, and a position label can be used continuously for 5-10 years.
  • the battery does not need to be replaced, so installation and maintenance are very convenient; moreover, the positioning accuracy and reliability of the system are greatly improved.
  • Figure 3 Cell-ID positioning method and positioning accuracy.
  • Figure 4 shows the relationship between signal coverage and tag transmit power.
  • the first thing to note is the method used to determine the specific location of the mobile tag. The difference, the way the corresponding location label is installed, and the power setting of the location tag or mobile tag transmit signal are also different.
  • the Cell-ID positioning method we define here is: If the location of the moving label is at the same time, it can only be associated with one, or two, or three (two-dimensional or more), or four ( In the three-dimensional space, the position tag realizes communication, and the geometric center position of the one, two, three or four position tags is the position of the moving tag; if the position of the moving tag can communicate with the plurality of position tags at the same time, Then the geometric center position of the two (one-dimensional space), three (two-dimensional space) or four (three-dimensional space) position labels with the strongest RSSI signal is the position of the moving label.
  • Other general positioning methods require at least 2 mobile tags in any case.
  • the communication range between each location tag and the mobile tag (which can be referred to as positioning ⁇ ) is determined by the transmit power of the transmitting tag after the receiving tag receiving sensitivity is determined. Therefore, the size range can be changed by changing the transmitting tag. The transmit power is adjusted. After the spacing of the position tags is determined, the greater the transmission power of the transmitting tags, the more communication between the location tags and the mobile tags can be achieved, thereby receiving the information of the other party. This means more information processing and more signal collisions. Obviously, in order to reduce the useless information generated by the information exchange between the location tag and the mobile tag, we need to control the communication range between the two.
  • the communication distance between the moving label and the position label needs to be greater than the spacing between two adjacent position labels (see Figure 4).
  • the present invention is directed to a Cell-ID positioning method as defined above to describe the manner in which the system operates.
  • the spacing of the position labels depends on the positioning of the system as a whole for the moving target. Degree requirements, or different positioning accuracy requirements for different positioning areas.
  • all the position tags in the entire positioning area need to use the same transmitting power to transmit signals; and when different positioning areas have
  • the position labels located in different position areas will use different transmission powers to transmit signals.
  • the transmit power used by each location tag associated with the same mobile tag location must be the same.
  • a position signal is used to transmit a signal to a mobile tag, or a positioning method is used to transmit a signal to a position tag by a mobile tag
  • a positioning method is used to transmit a signal to a position tag by a mobile tag
  • the size of the positioning ⁇ determined for a given transmit power will change with time. Therefore, when the positioning ⁇ changes, the transmit power of the transmitting tag needs to be appropriately adjusted by the coordinator command.
  • the communication mode adopted by each other may be a method in which the transmitting tag periodically transmits a signal in a period of time, and the receiving tag is used in the manner of receiving the tag.
  • the mode of continuous monitoring of the signal of the other party within a short period of time (should be greater than the period during which the transmitting tag transmits the signal); (see Figure 5) may also be a way of communicating in accordance with the time slot and sequence of time scheduled by the coordinator.
  • the mobile tag receives the signal, or the mobile tag transmits the signal, and the position tag receives the signal, and the receiving tag is first.
  • the received signal must be the signal when the two are closest. As the transmit power increases, it will be the signal when the distance between the two is farther.
  • the information received by the receiving tag at the lowest transmitted power of the transmitting tag will be used as the only information to determine the location of the mobile tag, and the receiving tag will be subsequently received, and the transmitting tag will be transmitted with a higher transmit power profile. The information will be ignored. At this time, the receiving label will no longer receive the signal sent by the transmitting label.
  • the transmitting label can also be sent to notify the transmitting label to stop transmitting the signal. After receiving the receipt, the transmitting label will return to the F1 channel and enter the periodicity. After the sleep wakes up, the coordinator command signal is monitored for a momentary low power state.
  • the receiving tag will also transmit its own ID and location information on the F3 channel to the management computer via the reader in the manner required by the system, and return to F1 after receiving the receipt of the message successfully received by the reader.
  • Channel enters the low-power state of the coordinator command signal for a moment after the periodic sleep wakes up. (See Figure 4)
  • the method of determining the location of the mobile tag in addition to the aforementioned Cell-ID positioning mode (see FIG. 3), can also utilize the two strongest RSSI (one-dimensional space), three ( The position of the 2D space or 4 (3D space) position labels, the corresponding RSSI value, and the physical position and geometric relationship between the information are calculated as the position of the mobile tag; or the location tag will be used to transmit
  • the relevant information of the position of the mobile tag can be calculated, and the position calculated according to other radio frequency signal positioning methods is regarded as the position of the mobile tag.
  • the location tag In all of the above methods for determining the location of a mobile tag, the location tag must also have an RSSI indication function when it comes to using the RSSI.
  • the system only requires the location tag to have a long battery life, while the battery life requirement for the mobile tag is relatively low.
  • the mobile tag can be recharged every 10 days and a half. For example, the positioning of visitors in the exhibition hall.
  • clock information does not need to be carried in the work order issued by the coordinator to all tags.
  • the coordinator will continuously broadcast work orders to all tags in the location area for >1 second, telling them how they need to work.
  • all location tags are required to use a transmit power of -30 dBm for a period of 4 seconds after receiving the command from the coordinator, and 8 signals for a continuous time of 0.5 seconds at F2, or continuously at 5 Within minutes of working time, the signal is transmitted every 1 second without interruption; correspondingly, the mobile tag is required to wait for a sleep cycle (1 second) of a position tag after receiving the coordinator signal, continuously >
  • the monitor receives the signal from the location tag / or wakes up at regular intervals during 5 minutes of continuous operation, and wakes up for > 1 second.
  • the monitor receives the signal from the location tag.
  • the received message will be transmitted to the reader on the F3 channel in the manner required by the system.
  • the coordinator's command signal does not require external clock information, and the tags use their own internal clocks. (See Figure 4)
  • the system has high requirements for the battery life of the location label and the mobile label.
  • the mobile tag since the mobile tag is fixed on the baggage, it is impossible for us to charge the mobile tag at any time. This means that mobile tags are often required to have a long battery life; at the same time, the airport environment does not allow moving tags to continuously emit electromagnetic signals out of the box.
  • the tag transmits a work command signal.
  • each command signal packet here has clock information.
  • the associated tag obtains clock information by receiving the coordinator command signal packet at different wake-up times.
  • the coordinator can communicate the information between the location tag and the mobile tag in a shortest possible time slot to reduce the duty cycle of the tag.
  • the coordinator's instructions the specific location of the communication time slot between the two tags on the time axis, the size of the communication time slot, and the sequence of multiple transmit tags entering different time slots in the same communication time slot should also be included. Order information. If both tags have a sleep awake period of 1 second, considering that they may be in any one second cycle The time is awakened. Thus, the communication time slot of the location tag and the mobile tag will be scheduled one second after the coordinator starts to continuously transmit the wake-up command signal.
  • the way information is. Because the coordinator continuously transmits the same command signal continuously, the time required to transmit each command packet is the same, such as lmS. Therefore, when the tag receives the command signal packet with the sequence number at the moment of waking up, it also knows the relative time position of the signal packet when it receives the command signal packet, that is, starts transmitting the first command signal with respect to the coordinator. The moment of the package. (See Figure 2)
  • the time slot of the location label and the mobile label exchange information in addition to arranging the specific location and time slot length of the communication time slot on the time axis, since the same reception ticket is in the same time slot, it may be received at the same time. To the information sent by multiple adjacent transmitting tags, it is necessary to consider the signal collision problem.
  • the letter slots are arranged as short as possible to reduce the power consumption of the tags; on the other hand, in order to reduce the chance of signal collisions, it is desirable that the communication slots of both are arranged as long as possible.
  • the positioning system controls the communication distance range between the mobile tag and the location tag, so the receiving tag can only receive a very limited number of surrounding.
  • the signal that emits the tag In particular, when a position tag is used to transmit a signal to a mobile tag, the number of signals that can be received from different position tags in the mobile tag for a limited period of time generally does not exceed four. Therefore, the anti-signal collision processing method used in communication between tags should also consider this case.
  • N When the transmitting tag receives an instruction from the coordinator and is scheduled to transmit an ID signal within a specified communication time slot, in order to avoid signal collision, we may first arrange N in the beginning of the entire communication time slot.
  • Small time slots such as 4 or 8 hour slots, each of which can accommodate a time error in addition to a signal transmitted by a transmitting tag. The more the number of small time slots arranged, the less chance that the transmitted tag signal will collide, but the longer the receiving tag is received, the more power is consumed; The smaller the number of mini-slots, the more chances that the location tag will collide, but the shorter the time it takes to receive the tag, the less power it consumes.
  • these transmit tags will use a random delay method to shift the time of transmitting IDs from each other into different mini-slots (slots Alaho).
  • the random delay method may be that the tags randomly select one between 1 and N.
  • the location tag transmits different mini-slots according to the difference of 2 bits at the lowest end of its own ID, the bits are 00, 01, 10, 11 from small to large (equivalent to 0, 1, 2 in decimal).
  • 3) Multiply by the length of a small time slot (for example, 2.5mS) to delay transmission. At this time, the delay of the position tags of 4 bits will be 0, 2.5ms, 5ms and 7.5ms respectively.
  • the length of a small time slot here should include the time required to transmit a complete signal packet for each location tag plus various time errors.
  • the ID signal is transmitted.
  • the aforementioned 0, 2.5ms, 5ms and 7.5ms.
  • the location tag of the different colors around the mobile tag will automatically enter one of the pre-arranged 4-hour slots according to its preset fixed delay to complete communication with the mobile tag.
  • the coordinator needs to arrange longer communication time slots and more small time slots to accommodate the signal transmitting the tag.
  • the length of the entire communication time slot should be the sum of all the hour slots that may need to be scheduled. It is the upper limit of the time that the receiving tag can wait to receive the transmitted tag signal. For example, as long as the mobile tag can receive any signal sufficient to meet the positioning needs, the receiving location tag signal is immediately terminated and enters other working states.
  • the time when the mobile tag actually monitors the receiving location tag signal may be only one small time slot or several small time slots, or may be a time length of several tens or more hours (when using the location tag) Improve the way that multiple transmit powers transmit signals from low to high When positioning accuracy).
  • the mobile tag clearly knows that the number of the receiving location tag is different.
  • each location tag is I don't know how many position tags there are, and I receive the same signal from the same mobile tag.
  • the density distribution of the moving label is randomly varied and may be smaller or larger than the distribution density of the position label. Therefore, the system needs to adjust the size of the communication slot and the number of timeslots according to the distribution density of the mobile tags in the location area to accommodate more mobile tags while transmitting signals to adjacent location tags.
  • the location tag can also be used to monitor the RSSI before transmitting, and when the transmission channel is occupied, a random short delay is adopted. After listening, it is determined that the transmitting channel is not occupied and then transmitted.
  • Anti-collision processing when multiple receiving tags transmit signals to the reader.
  • the positioning system uses the information exchange between the location tag and the mobile tag to generate information including the location for determining the mobile tag, and needs to use the receiving tag that receives the information to directly transmit to the F3 channel on the F3 channel. And management computers. Since the number of receiving tags that transmit information to the reader tends to be large, countermeasures against signal collisions must be employed.
  • the transmission channel uses a random short delay and then listens to determine the anti-collision method after the transmission channel is not occupied, because
  • the number of location tags and the ID number within a jurisdiction's jurisdiction are fixed. Therefore, when the positioning is implemented by using the mobile tag to transmit the ID signal to the location tag, the clock information obtained by the location tag when receiving the coordinator command signal may also be used according to the IDs of all the known location tags in the location area, respectively.
  • the prior arrangement and the required mobile tag location information update period of the system, periodically entering different mini-slots, and packaging the received information to the reader.
  • the number of mobile tags that may occur within the jurisdiction of a reader is also limited, such as no more than 1000, and their ID numbers are also known.
  • each mobile tag can also be utilized for receiving The clock information obtained when the coordinator commands the signal, according to all the known mobile tag IDs that may appear in the location area, and the mobile tag location information update period required by the system, periodically enters different pre-arranged small time slots respectively.
  • a method of transmitting information to a reader is also limited, such as no more than 1000, and their ID numbers are also known.
  • the number of mobile tags within the jurisdiction of a new positioning reader is limited, and the movement of the mobile tags in the positioning area is very limited.
  • We can also periodically collect the ID of the mobile tag in the positioning area and First, according to the foregoing method, according to the collected mobile tag IDs, arrange their small time slots for transmitting information to the reader; then, other methods are used to collect the information of the newly entered mobile tags of unknown ID, such as the aforementioned first listening RSSI. The way to retransmit the signal.
  • the transmit tag ID number to group the transmit tags, and use the time division method to process the signals belonging to different groups in turn; or use the frequency division method to increase the number of readers in the same location area, and different groups
  • the tags are transmitted and distributed on more channels for processing; or one or more sets of location tags working on different channels are added to share the processing of moving tag information in the location area.
  • a position label is installed every 10 meters on the entire exhibition hall, and the installation method (see Figure 2) requires a total of 50 position labels for the entire exhibition hall.
  • Each adjacent location tag has a different fixed delay when entering the communication slot scheduled by the coordinator. (See Figure 6)
  • a coordinator and a reader are installed to connect to the management computer via a network cable or wirelessly. If the mobile tag location information is required to be updated faster, then Consider using frequency division to work, adding 1 or 2 readers.
  • the coordinator and reader are connected to the management computer by wire or wirelessly. The coordinator works on the F1 channel and the reader works on the F3 channel.
  • Each visitor will wear a card-type mobile electronic tag (mode A) powered by a rechargeable lithium battery, or a card-type mobile electronic tag (mode B) using a disposable lithium battery, which uses long-range active electronics Labels (visible distance > 300 m) ensure that all tags in the showroom communicate with the coordinator and reader in all occlusion situations.
  • mode A card-type mobile electronic tag
  • mode B card-type mobile electronic tag
  • long-range active electronics Labels visible distance > 300 m
  • the location tag and the mobile tag are usually in a periodic sleep, waking up once every second, and listening to the coordinator command signal on the F1 channel for a moment of low power operation.
  • the coordinator transmits a command signal packet to the tag, the location tag moves to the tag, and the mobile tag transmits the tag to the reader.
  • the length of the signal packet is calculated according to 22 bytes, and the time required to transmit a packet is 0.7 ms and 1.41 ms, respectively.
  • Step 1 After the start of the daily exhibition, the management computer will pass the coordinator every
  • a certain period of time continuously broadcasts a 1.1 second work order to all tags continuously, requiring each position tag to be continuously transmitted within 5 minutes with a preset transmit power (relative to the signal of the mobile tag)
  • the radius is about 7.5 meters
  • the position signal is transmitted on the F2 channel every 1 second, and after 5 minutes, it returns to the low power state of periodically monitoring the coordinator command on the F1 channel, so that the positioning system can be reserved.
  • the opportunity to issue different work orders to the label In order to maintain the communication distance between the mobile tag and the location tag within the range of 7.5 meters during the whole positioning process, we can pre-set two distances with a certain location tag in the positioning area, for example, 6.5.
  • Meters and 8.5 meters of monitoring tags are used to monitor the influence of the location tag and the mobile tag communication distance due to changes in the environmental noise platform, etc., so that the positional power of the position indicator can be adjusted at any time.
  • Each exhibitor is required to issue a portable mobile tag that is stored in the management computer database with information corresponding to each mobile tag wearer. After entering the exhibition hall, the mobile tag will also receive the broadcaster's broadcast work command signal, requesting the mobile tag to be in the 5 minute period, every 10 seconds. The clock continuously listens to the signal from the location tag for 1.1 seconds on the F2 channel.
  • Step 2 After the mobile tag continuously monitors the position tag signal for one second, it jumps to the F3 channel and transmits a position tag ID with the strongest signal to the reader. Since there are multiple mobile tags in the entire exhibition hall every 10 seconds, a signal is transmitted to the reader, which causes a signal collision. At this point, it is necessary to adopt the corresponding anti-collision treatment method.
  • Step 1 After the daily exhibition starts, when the mobile tag needs to be located (for example, every 10 seconds), the management computer will continuously and continuously broadcast the 1.1 second work order to all the tags through the coordinator. Different from the previous working mode A, each of the work instruction signal packets continuously transmitted here has a sequence number. Each position tag and mobile tag acquires the command signal packets at the same time as they wake up, and also obtain the relative clock information of their random wake-up moments. After receiving the coordinator's instruction, each location tag enters four different minislots that are coordinated by the coordinator and communicate with the mobile tag on the F2 channel according to its preset fixed delay.
  • the time slot at this time is arranged between 1010 - 1020 ms after the coordinator transmits the first command signal packet, and the four position labels with different fixed delays are respectively arranged at 1010-1012.5 ms, 1012.5 - 1015 ms, The 1015 - 1017.5ms and 1017.5-1020ms minislots are transmitted; the mobile tag is arranged between 1010420ms on the F2 channel waiting to receive the information sent by the location tag. (See Figure 2)
  • Step 2 After the mobile tag continuously monitors the position tag signal for 10ms, it will immediately jump to the F3 channel, and the location tag ID with the largest RSSI value received by itself, together with its own ID-channel, according to the working mode A step The working mode of the anti-signal collision in the second is transmitted to the reader, and after successful, returns to the coordinator channel F1 to enter the periodic sleep, and the low-power consumption of the monitoring command signal after awakening Status.
  • the position tag is required to increase the transmission power, so that the number of different position tags received by each mobile tag is > 3 each time. Then select the information of the 3 location tags with the largest RSSI as the information for calculating the location of the mobile tag.
  • Step three the same as working mode A.
  • the above is a further detailed description of the present invention in connection with the specific preferred embodiments. It is not intended that the specific embodiments of the invention are limited to the description. It will be apparent to those skilled in the art that the present invention may be practiced without departing from the spirit and scope of the invention.

Abstract

本发明利用低成本固定的有源电子标签,代替众多需要网络连接的阅读器来向移动标签提供位置信息,并通过移动或固定位置标签直接向处于定位区域中心的阅读器,远距离传送移动标签位置信息的办法,简单有效地解决了复杂环境中移动目标精确定位问题。本发明通过使用一个远距离协调器,利用发射指令中的时钟信息,来协调安排移动标签与位置标签彼此间通信时间的方法,保证了移动标签和位置标签超长的电池使用寿命。本发明还通过控制移动标签与位置标签之间通信距离,以及具体时隙分配的方式,解决了通信中的信号碰撞问题。本发明不仅大大降低了系统的建设成本和维护成本,极大地提高了整个系统的定位精度和系统工作的可靠性,而且使用十分简单方便。

Description

一种简单精确的射频定位系统和方法
【技术领域】
本发明涉及有源电子标签的精确定位技术。
【背景技术】
除了复杂和实用性差的 "指纹定位" 技术以外, 现有一般的射频定位技术, 都是以无线射频信号源 (电子标签) 与无线信号接收机(读写器)之间不存在 遮挡为前提的。 而在复杂环境条件下, 往往存在各种各样的障碍物, 因而, 要 实现比较精确的定位, 就需要安装大量的通过网络与管理计算机连接起来的读 写器, 将复杂环境划分为许多相对无遮挡的小定位空间, 或形成以阅读器为中 心的若干个大小不同的定位圏(Cell-ID定位方式)。 而由于成本等各种因素的考 虑, 这样做往往变得不现实, 而且系统的可靠性也较低。 因而, 如何低成本地 在复杂环境下, 例如仓库, 车间, 展览会等场合对物资设备, 人员等进行精确 定位就变成射频定位技术的一大难题。
【发明内容】
本发明利用交互式有源电子标签( i-RFID )技术, 通过使用筒单具有固定位 置的有源电子标签, 来代替众多需要网络连接的阅读器的办法, 筒单有效地解 决了复杂环境中移动目标精确定位的难题。
本发明利用一个或多个移动标签, 与一个或多个具有固定位置的位置标签 之间的信息交流, 生成包括用于确定移动标签位置在内的信息。 然后再通过位 置标签或移动标签, 采用远距离传输的方式, 直接通过位于定位区域中心的一 个阅读器传给管理计算机, 从而实现对移动标签的定位。 本发明没有采用由移 动标签向一个或多个邻近的阅读器发射 ID, 并通过连接众多阅读器的网络传给 管理计算机, 再经过计算机对相关信息进行计算处理后, 得出移动标签位置信 息的传统定位方式。 从而筒单有效, 且低成本地实现了对移动目标的精确定位。 本发明还利用一个协调器, 通过在一段短的时间内连续不间断地, 向处于 周期性睡眠的位置标签和移动标签发射指令信号, 抓住后者监听信号的瞬间与 之建立起短暂的通信联系, 向其传达工作指令。 并通过工作指令来指挥控制后 者的工作方式: 包括但不限于, 安排位置标签和移动标签之间相互通信的工作 频道, 使用的发射功率和具体通信时间等。 从而大大降低了在定位过程中移动 标签和位置标签的工作占空比, 延长了移动标签和位置标签的电池使用寿命, 并提高了定位精度。 同时, 由于不需要使用定位阅读器网络, 因而大大降低了 系统的成本和提高了系统工作的可靠性。
这里位置标签和移动标签都是以电池供电的一般有源电子标签, 采用了周 期性睡眠苏醒后监听信号一瞬间的工作方式。
系统结构
本发明系统由协调器, 阅读器, 移动标签, 位置标签以及管理计算机组成。 协调器和阅读器固定安装在每个定位区域内能够与所有标签进行远距离通信的 中心位置, 一般采用外接电源供电, 并通过有线或无线的方式与管理计算机连 接。 协调器也可按照预先置入的程序离开计算机独立工作。
每个位置标签和移动标签都有独一无二的身份 ID, 而且还可以根据实际应 用的需要预置相应的程序。 而位置标签则分散安装在整个定位区域中的不同固 定位置。 位置标签需要时还可携带自身的坐标位置信息。 而移动标签则安装在 需要定位的移动目标上, 或由移动目标随身携带。
系统工作方式
移动标签和位置标签平常处于周期性睡眠, 苏醒后在协调信道上( F1频道 ) 监听协调器指令信号一瞬间的低功耗状态。 其监听方式可有多种, 包括每次苏 醒后先只监听足以能够确定所接收的射频信号, 是否符合期待的协调器指令信 号射频特征( DNA检测)所需的 1个或几个比特的时间, 只有在通过 DNA检 测后, 位置标签和移动标签才会延时接收整个指令信号包的方式(i-RFID ), 以 及每次苏醒后都监听足够长的时间, 以保证能够接收到一个完整的协调器指令 信号包的方式等。
位置标签和移动标签的睡眠苏醒周期可根据需要来确定, 一般为 1 秒。 在 需要对移动标签定位时, 协调器将连续不间断地在一段短时间内 (一般应大于 标签的睡眠苏醒周期), 在 F1 频道上以广播的方式向移动标签和位置标签发射 工作指令信号, 向其传达具体的工作指令。
一当接收到来自协调器的指令信息后, 位置标签和移动标签将根据协调器 指令要求的工作方式, 在 F2频道上建立起短暂的相互通信联系。 即位置标签或 移动标签按照指令要求, 向邻近的移动标签或位置标签发射包括自己 ID在内的 信息, 以产生包括可以用于对移动标签进行定位在内的信息。 然后再通过位置 标签或移动标签, 直接将与移动标签位置相关的信息, 通过无线方式在 F3频道 上远距离发送给阅读器。 为了筒单起见, 以后, 凡是向其它标签发射信号的标 签, 无论是位置标签还是移动标签, 都称为发射标签; 而接收信号的标签则称 为接收标签。
这里的位置标签或移动标签与阅读器之间的通信距离, 一般都远大于位置 标签与移动标签之间由系统定位精度确定的通信距离。 前者一般从几十米到几 百米, 甚至超过千米; 而后者往往只有几米或一, 二十米的距离。
其中, 当采用由位置标签向移动标签发射信息的方式时, 移动标签在接收 到来自位置标签的信息后, 将采用如下两种方式, 将接收到的信息, 连同自己的 ID, 或者对这些信息进行计算处理得到的自身位置信息后, 连同自身的 ID通过 阅读器传给管理计算机:
A. 在需要对移动标签进行实时定位时, 移动标签在接收到位置标签发来的 信息后, 将采用较大的发射功率, 立即在 F3频道上将自己的 ID和相关信息远 距离发送给阅读器。 如果所涉及移动标签数量较大, 还需要在移动标签与阅读 器通信的过程中, 采用相应的防信号碰撞处理措施。
B. 而当系统仅只需要对移动标签曾经的位置, 以及可能的其它相关信息进 行事后追踪时, 移动标签并不需要立即向阅读器发送信息, 而是先将这些信息 记录, 或经过筒单处理后再记录在自己的内存中, 只有在接收到管理计算机发 来读取信息的指令时(例如公交车回到终点站), 移动标签才会将自己记录的信 息, 通过阅读器传给管理计算机。 此时, 移动标签内部往往包含了一个时钟, 以便记录移动标签在不同时间所在的位置。
位置标签与移动标签之间的信息交流, 除了彼此的 ID外,还可包括发射 ID 时所使用的发射功率档次, 接收 ID时的信号强度(RSSI ), 位置标签的坐标等, 这些信息将被用于进一步提高移动标签的定位精度。 另外, 在许多应用场景中, 位置标签与移动标签之间交流的信息, 还可以是包括传感器信息在内的其它信 息。
本发明所带来的效益是显而易见的: 它不仅结构筒单成本低, 不需要复杂 的网络和相应的外供电源, 使用一只 5 号锂电池, 一个位置标签就可以连续使 用 5-10年而不需要更换电池, 因而, 安装使用和维护都十分方便; 而且, 系统 的定位精度和可靠性都得到极大地提高。
【附图说明】
图 1 定位系统结构图工作方法。
图 2 定位系统信息交流方式。
图 3 Cell-ID定位方式和定位精度。
图 4 信号覆盖范围与标签发射功率的关系。
图 5 移动标签与位置标签之间不需协调器时钟信息的通信方式。
图 6 位置标签的安装布置。
【具体实施方式】
下面结合附图和较佳的实施例对本发明作进一步说明。
利用位置标签来划分定位区域。
在进行定位之前, 我们需要预先将位置标签分散安装在定位区域中各个不 同的固定位置。 首先需要说明的是, 由于确定移动标签具体位置所采用的方法 的差异, 相应的位置标签安装布置的方式, 以及位置标签或移动标签发射信号 的功率设置也有所不同。
采用筒单的 Cell-ID方法来定位时,并不要求同一个移动标签必须要同时与 一定数量的位置标签实现通信。 我们这里所定义的 Cell-ID定位方式就是: 如果 移动标签所在的位置, 在同一时刻只能与某 1个, 或某 2个, 或某 3个(二维 空间以上), 或某 4个(三维空间)位置标签实现通信, 则这 1个, 2个, 3个 或 4个位置标签的几何中心位置就是该移动标签的位置; 如果移动标签所在的 位置同时能与多个位置标签进行通信,则其中 RSSI信号最强的 2个(一维空间 ), 3个(二维空间)或 4个(三维空间)位置标签的几何中心位置, 就是该移动标 签的位置。 而其它一般定位方法, 在任何情况下都要求移动标签至少要与 2 个
(一维空间), 3个(二维空间)或 4个(三维空间)位置标签实现通信。
每个位置标签与移动标签之间的通信范围(可筒称为定位圏), 在接收标签 接收灵敏度确定以后, 是由发射标签的发射功率来决定的, 因而, 其大小范围 可以通过改变发射标签的发射功率来调整。 当位置标签彼此的间距确定以后, 发射标签的发射功率越大, 就有越多的位置标签与移动标签之间能够实现通信, 从而接收到对方的信息。 这就意味着更多信息处理量和更多信号碰撞的发生。 显然, 为了减少位置标签与移动标签之间信息交流产生的无用信息, 我们需要 对两者之间的通信范围进行控制。 当我们采用如上的 Cell-ID方式定位时, 如果 我们将位置标签之间的间距,与位置标签的信号覆盖半径安排为 4: 3的比例, 其定位精度可以达到位置标签间距的 1/4。当然,由于射频信号本身的传播特征, 我们实际上不可能将定位圏的半径控制得非常准确, 因而这只是一个理想值。 显然, 位置标签间距越小, 定位精度就越高, 但也就需要使用更多的位置标签
(参见图 3 )。
而采用其它定位方法时, 移动标签与位置标签之间的通信距离则需要大于 两个相邻位置标签之间的间距(参见图 4 )。
本发明主要针对如上定义的 Cell-ID定位方法, 来描述系统的工作方式。 如前所述, 位置标签的间距布置取决于系统对移动目标整体一致的定位精 度要求, 或各个不同定位区域的不同定位精度要求。 当我们采用由位置标签向 移动标签发射信号的定位方式时, 在整体一致的定位精度要求下, 整个定位区 域中所有位置标签就需要采用相同的发射功率来发射信号; 而当各个不同定位 区域有不同的定位精度要求时, 则位于不同位置区域的位置标签将采用不同的 发射功率来发射信号。 但与同一个移动标签定位相关的每个位置标签所使用的 发射功率则必须是相同的。
当我们采用由移动标签向位置标签发射信号的定位方式时, 在整体一致的 定位精度要求下, 我们只需将所有移动标签的发射功率设置为相同就行了; 而 当各个不同定位区域有不同的定位精度要求时, 情况则有所不同。 我们不可能 预先确定移动标签所处的位置, 因而, 无法要求移动标签在不同的位置使用不 同的发射功率来发射信号, 这往往就需要采用不同的处理方法, 例如要求所有 移动标签都统一采用较大的功率来发射信号, 或统一依次采用从小到大的多种 功率来发射信号。
无论采用由位置标签向移动标签发射信号, 或是由移动标签向位置标签发 射信号的定位方法, 当各个不同位置区域有不同的定位精度要求时, 都会出现 由于相邻的几个位置标签之间布置间距差别较大所产生的矛盾。 此时, 我们同 样可以要求所有发射信号的标签, 统一采用从小到大的功率顺序依次来发射信 号的方法。
另外, 由于环境噪声平台变化等原因, 对于一个给定发射功率所确定的定 位圏的大小, 会随时间发生一定的变化。 因而, 当定位圏发生变化时, 需要通 过协调器指令对发射标签的发射功率进行适当调整。
位置标签与移动标签之间的通信方式。
位置标签和移动标签在接收到协调器对移动标签进行定位的指令时, 彼此 间采用的通信方式, 既可以是发射标签周期性地在一段时间内向外发射信号的 方式, 而接收标签则采用在一段短的时间 (应大于发射标签发射信号的周期) 内连续监听对方信号的工作方式; (参见图 5 )也可以是按照协调器安排的时隙 和先后时间顺序来进行通信的方式。 (参见图 2 ) 需要说明的是, 当依次采用从小到大的功率来发射信号时, 无论采用由位 置标签发射信号, 移动标签接收信号; 还是由移动标签发射信号, 位置标签接 收信号的定位方式, 接收标签最先接收到的信号, 一定是两者距离最近时的信 号。 随着发射功率的增大, 才会是两者距离更远时的信号。 因而, 接收标签最 先接收到的, 发射标签在最低功率档上发射的信息, 将被用作为确定移动标签 位置的唯一信息, 而接收标签随后接收到的, 发射标签以更高发射功率档发射 的信息将被忽略。 此时, 接收标签也将不再接收发射标签发来的信号, 必要时 还可通过发送回执的方式通知发射标签停止继续发射信号, 发射标签收到回执 后, 将返回到 F1频道, 进入周期性睡眠苏醒后监听协调器指令信号一瞬间的低 功耗状态。
与此同时, 接收标签也将按照系统要求的方式, 将自身 ID 和位置信息在 F3频道上, 通过阅读器传给管理计算机, 并在接收到阅读器成功接收到信息的 回执后, 返回到 F1频道, 进入周期性睡眠苏醒后监听协调器指令信号一瞬间的 低功耗状态。 (参见图 4 )
移动标签位置的确定。
无论发射标签是移动标签还是位置标签, 确定移动标签位置的方法, 除了 前述的 Cell-ID定位方式外 (参见图 3 ) , 还可以利用 RSSI最强的 2个(一维空 间), 3个(二维空间)或 4个(三维空间)位置标签的位置, 对应的 RSSI值, 以及这些信息间的物理关系和几何关系计算得到的具体位置当作移动标签的位 置; 或者将利用位置标签发射的可计算移动标签位置的相关信息, 按照其它射 频信号定位方法计算出的位置当作移动标签的位置。
在所有以上确定移动标签位置的方法中, 在涉及使用 RSSI时,位置标签还 必须要具有 RSSI指示功能。
两种应用场景及两种协调器的工作指令。
系统仅仅要求位置标签具有长的电池使用寿命, 而对移动标签的电池寿命 要求则相对比较低, 例如移动标签可采用可充电电池, 每隔十天半月充电一次。 例如, 对展览会场中参观人员的定位。 此时, 在协调器向所有标签发布的工作指令中不需要携带时钟信息。 在需 要对移动标签进行定位时,协调器将向定位区域内所有标签连续在 >1秒钟的时 间段内, 不间断地广播工作指令, 告诉它们需要采用的工作方式。 例如, 要求 所有位置标签在接收到协调器的指令后, 连续在 4秒钟的时间段内使用 -30dBm 的发射功率, 在 F2上, 间隔 0.5秒的时间连续发射 8个信号 /或者连续在 5分钟 的工作时间内, 不间断地每隔 1 秒钟发射一次信号; 相应的, 则要求移动标签 在接收到协调器信号后, 在等待一个位置标签的睡眠苏醒周期(1秒)后, 连续 在 > 0.5秒钟的时间段内, 在 F2频道上, 监听接收来自位置标签发来的信号 / 或者连续在 5分钟的工作时间内,每隔一定时间苏醒来一次, 醒来后连续在 > 1 秒钟的时间内, 监听接收来自位置标签发来的信号。 移动标签在监听时间结束 后, 就会将接收到的信息, 按照系统要求的方式, 在 F3频道上向阅读器发射。 在这种情况下, 协调器的指令信号不需要外带时钟信息, 标签使用的是各自自 身内部的时钟。 (参见附图 4 )
B. 系统对位置标签和移动标签的电池使用寿命都有很高的要求。 例如, 在 对机场行李或人员进行跟踪定位应用场景中, 由于移动标签固定在行李上, 我 们不可能随时对移动标签进行充电。 也就是说往往要求移动标签也具有长的电 池使用寿命; 与此同时, 机场环境也不容许移动标签始终不间断地向外发射电 磁波信号。 为了减少移动标签的工作占空比, 我们只在需要对行李和人员进行 定位时, 例如, 我们可以通过协调器在相关的定位区域内连续在 1.1秒钟的时间 段内, 不间断地向相关标签发射工作指令信号。
与前面协调器发射的工作指令不同的是, 这里的每一个指令信号包都带有 时钟信息。 相关标签在不同的苏醒时刻通过接收协调器指令信号包而获得了时 钟信息。 这样, 协调器就可以将位置标签和移动标签相互之间的信息交流, 安 排在一个尽可能短的时隙内来完成, 以降低标签的工作占空比。 在协调器的指 令中, 还应包括两种标签之间的通信时隙在时间轴上的具体位置, 通信时隙的 大小, 以及多个发射标签在同一通信时隙中进入不同小时隙的先后顺序的信息。 假如两种标签的睡眠苏醒周期都为 1 秒, 考虑到它们可能在一秒的周期中任何 时刻苏醒. 因而, 位置标签和移动标签的通信时隙, 将被安排在协调器开始连续 发射唤醒指令信号后的 1秒以后。
协调器向标签传递的时钟信息的方式, 除了在每个协调器指令信号包中携 带绝对时钟信息外, 为了筒单起见, 还可以采用对每个指令信号包按先后顺序 编号, 来传递相对时钟信息的方式。 因为协调器在连续不间断地发射同一个指 令信号时, 其发射的每个指令信号包所需要时间都是相同的, 例如 lmS。 因而, 当标签在苏醒的瞬间接收到带有序列编号的指令信号包时, 也就知道自己在接 收到该指令信号包时所在的相对时间位置, 即相对于协调器开始发射第一个指 令信号包的时刻。 (参见图 2 )
位置标签与移动标签相互通信时的信号碰撞
当我们在安排位置标签和移动标签交流信息的时隙时, 除了安排通信时隙 在时间轴上的具体位置和时隙长度外, 由于同一个接收签在同一个时隙内, 可 能同时会接收到多个相邻的发射标签发来的信息, 这就需要考虑信号碰撞问题。
位置标签与移动标签相互通信时防信号碰撞的方法
一方面, 为了省电的目的我们希望将位置标签与移动标签的通
信时隙安排得尽可能的短, 这样可以减少标签的耗电; 而另一方面, 为了 减 少信号碰撞的机会, 则希望两者的通信时隙安排得越长越好。 我们这里需要 特别强调的是, 由于采用了前述的 Cell-ID定位方式, 定位系统对移动标签与位 置标签之间的通信距离范围进行了控制, 因而接收标签只可能接收到周围非常 有限的几个发射标签的信号。 特别是采用位置标签向移动标签发射信号时, 移 动标签在有限的时间内,能接收到来自不同位置标签的信号数量一般不会超过 4 个。 因而, 标签之间通信时采用的防信号碰撞处理方式也应考虑这个情况。
当发射标签收到协调器的指令, 被安排在规定的一个较大的通信时隙内发 射 ID信号时, 为了避免信号碰撞, 我们可以先在整个通信时隙的起始部分, 依 次安排 N个小时隙, 例如 4个或 8个小时隙, 每个小时隙除了可以容纳一个发 射标签发射的信号外, 还应考虑时间误差。 安排的小时隙数目越多, 发射标签 信号碰撞的机会越少, 但接收标签的接收时间就越长, 耗电也就越多; 相反, 小时隙数目越少, 位置标签碰撞的机会就越多, 但接收标签工作的时间就越短, 耗电也就越少。
此时,这些发射标签将采用随机延时的方法将彼此发射 ID的时间错开而进 入不同的小时隙 (时隙 Alaho ), 这里随机延时的方法可以是标签在 1到 N之间 随机选择一个整数, 再乘以一个小时隙长度的方法(N是小时隙的个数), 也可 以是按照发射标签自己 ID号低端几个比特位的数字作为随机数, 来进入分配的 小时隙。
例如,位置标签在按照自身 ID最低端 2个比特位的差异来安排不同的小时 隙进行发射时, 从小到大分别按比特位 00,01,10,11 (相当于十进制的 0,1,2,3 ) 乘以一个小时隙的长度(例如 2.5mS ) 来延时发射, 此时 4个比特位不同的位 置标签的延时, 将分别为 0, 2.5ms, 5ms和 7.5ms。 这里一个小时隙的长度应包 括每个位置标签发射一个完整信号包所需的时间加上各种时间误差。
另外, 我们还可将所有位置标签预先设定为 4种不同的固定延时, 就是说 当它们被安排进入位置标签与移动标签的通信时隙时, 它们将自动使用预先设 定的延时来发射 ID信号。 例如, 前述的 0, 2.5ms, 5ms和 7.5ms。 我们用 4种不 同的颜色来分别表示具有不同固定时延的位置标签。 我们在安装位置标签时, 必须要尽可能的将相邻位置标签的颜色错开(参见图 6 )。 移动标签周围的不同 颜色的位置标签在接收到协调器指令后, 将根据自己预先设定的固定时延, 自 动进入预先安排的 4个小时隙中的一个, 完成与移动标签的通信。
如果具体定位系统还要求发射标签使用更多的发射功率档次发射信号时, 协调器就需要安排更长的通信时隙和更多的小时隙来容纳发射标签的信号。 整 个通信时隙的长度, 应该是所有可能需要安排的若干个小时隙的总和。 是接收 标签能够等待接收发射标签信号的时间上限。 例如, 只要期间移动标签能够接 收到任何足以满足定位需要的信号, 就会立即终止接收位置标签信号, 进入其 它工作状态。 因此, 移动标签实际花在监听接收位置标签信号的时间, 可能只 有一个小时隙或几个小时隙的时间长度, 也可能是几十个或更多个小时隙的时 间长度(当利用位置标签使用从低到高的多个发射功率发射信号的方式来提高 定位精度时)。
反过来, 与位置标签向移动标签发射信号的定位方式中, 移动标签清楚知 道接收位置标签的数量情况不同, 当采用由移动标签向位置标签发射信号时, 除了管理计算机外, 每个位置标签并不知道有多少个位置标签, 同时接收到同 一移动标签发来的信号。 另外, 与位置标签具有固定间隔分布不同, 移动标签 的密度分布是随机变化的, 可能小于或大于位置标签的分布密度。 因而, 系统 需要根据定位区域中移动标签的分布密度, 来调整通信时隙的大小和 d、时隙的 数量, 以容纳更多移动标签同时向邻近的位置标签发射信号的情况。
除了以上通过在更大的通信时隙中, 安排更多小时隙的方式来避免信号碰 撞外, 还可采用位置标签在发射前先监听 RSSI, 发现发射频道被占用时, 则采 用随机短延时后再监听, 确定发射频道没被占用后再发射的方法。
多个接收标签向阅读器发射信号时的防碰撞处理。
定位系统通过位置标签和移动标签之间的信息交流, 生成包括用于确定移 动标签位置在内的信息后, 需要利用接收到这些信息的接收标签, 通过无线的 方式在 F3频道上直接发射给阅读器和管理计算机。 由于向阅读器发射信息的接 收标签的数量往往比较多, 因而必须要采用防信号碰撞的措施。
除了可以采用前述的时隙 Alaho, 和在发射前先监听 RSSI, 发现发射频道 被占用时, 采用随机短延时后再监听, 确定发射频道没被占用后再发射的防碰 撞方法外, 由于在一个阅读器所管辖范围内的位置标签的数量以及 ID号都是固 定不变的。 因而, 在采用由移动标签向位置标签发射 ID信号来实现定位时, 还 可利用位置标签在接收协调器指令信号时获得的时钟信息, 根据定位区域内所 有已知位置标签各自的 ID, 分别按照事先的安排和系统要求的移动标签位置信 息更新周期, 周期性地进入不同的小时隙, 将所接收到的信息打包向阅读器发 射的方法。
在许多时候, 在一个阅读器所管辖范围内可能出现的移动标签的数量也是 有限的, 例如不超过 1000个, 而且它们的 ID号也都是已知的。 因而, 当采用 位置标签向移动标签发射信息的定位方式时, 每个移动标签还可利用其在接收 协调器指令信号时获得的时钟信息, 按照定位区域内所有可能出现的已知的移 动标签 ID, 以及系统要求的移动标签位置信息更新周期, 周期性地分别进入事 先的安排的不同的小时隙, 向阅读器发射信息的方法。
另外, 在许多情况下, 新进出一个定位阅读器所管辖范围内的移动标签数 量有限, 而定位区域内移动标签的变化也非常有限, 我们还可以采用定期收集 定位区域内移动标签的 ID, 并先按照前面的方法, 根据这些采集到的移动标签 ID, 安排它们向阅读器发射信息的小时隙; 然后, 再采用其它方式采集新进入 的不明 ID的移动标签的信息, 例如前述的先监听 RSSI再发射信号的方式。
这里还需要说明的是, 在移动标签与位置标签之间, 以及它们与阅读器之 间的通信过程中, 如果同时向同一个接收信号的标签或阅读器发射信号的标签 数量太多, 使接收信号的标签或阅读器在单位时间内需要处理的信息量过大, 因而无法处理时。 我们还可以采用按照发射标签 ID号来对发射标签进行分组, 使用时分的方式依次处理属于不同分组的信号; 或者采用频分的方式, 通过增 加同一定位区域内阅读器的数量, 将不同分组的发射标签, 分散在更多的频道 上来进行处理; 或者增加一组或几组工作在不同频道上的位置标签, 来分担定 位区域内移动标签信息的处理工作。
应用实施例一: 展览会上的人员定位
要求:在一个 50x100米的展厅中,我们需要对 200个参观者进行实时定位。 并希望定位精度达到 5米左右; 位置标签的电池使用寿命 >5年, 移动标签在采 用工作模式 A时, 一般电池的使用寿命 >10天(可充电 ), 在采用工作模式 B 和一次性小容量电池的卡式移动电子标签时, 电池的使用寿命 >2年。
具体实施:
在整个展厅平均每隔 10米安装一个位置标签, 安装方式(参见附图 2 ), 整 个展厅一共需要 50个位置标签左右。 每个相邻的位置标签在进入协调器安排的 通信时隙时, 都有不同的固定时延。 (参见附图 6 )
在展厅的中心屋顶位置, 分别安装一个协调器和一个阅读器, 通过网线或 无线方式与管理计算机连接。 如果要求移动标签位置信息更新的速度较快, 则 可考虑采用频分的工作方式, 增加 1个或 2个阅读器。 协调器和阅读器通过有 线或无线的方式与管理计算机连接。协调器工作在 F1频道上, 阅读器工作在 F3 频道上。
每个参观人员将佩戴一个使用可充电锂电池供电的卡式移动电子标签(模 式 A ), 或使用一次性锂电池的卡式移动电子标签(模式 B ) , 移动电子标签使 用远距离有源电子标签(可视距离 >300米) 以保证在各种遮挡情况下, 都能实 现展厅中所有标签与协调器和阅读器之间的通信。
位置标签与移动标签平常都处于周期性睡眠每秒钟苏醒一次,在 F1频道上 监听协调器指令信号一瞬间的低功耗工作方式。
位置标签与移动标签之间, 以及标签与协调器和阅读器之间分别采用 250kbps和 125kbps 的通信速率, 协调器向标签发射指令信号包,位置标签向移 动标签, 移动标签向阅读器发射的位置信号包的长度都按照 22个字节计算, 发 射一个包耗时为分别为 0.7ms和 1.41ms。
工作模式 A:
步骤一: 在每天展览会开始后, 管理计算机将通过协调器每隔
一定时间(例如 5分钟)向所有标签连续不间断地广播 1.1秒钟的工作指令, 要求每个位置标签, 连续在 5 分钟的时间内, 以预先设定的发射功率 (相对移 动标签的信号覆盖半径在 7.5米左右 ),每隔 1秒钟在 F2频道上发射一次位置信 号, 并在 5分钟后返回到在 F1频道上周期性监听协调器指令的低功耗状态, 以 预留定位系统可以向标签下达不同工作指令的机会。 为了在整个定位过程中, 始终能够将移动标签与位置标签的通信距离, 维持在 7.5米左右的范围内, 我们 可以在定位区内, 预先设置两个与某个位置标签距离已知, 例如 6.5米和 8.5米 的监测标签, 用于监测由于环境噪声平台等的变化, 对位置标签与移动标签通 信距离的影响, 以便随时可以对位置标的发射功率进行及时调整。 而每个参展 人员都需要发放一个随身佩戴的卡式移动标签, 管理计算机数据库中储存有对 应于每个移动标签佩戴者的相关信息。 移动标签在进入展厅后, 同样将会接收 到协调器的广播工作指令信号, 要求移动标签在 5分钟的时间段内, 每隔 10秒 钟在 F2频道上连续监听来自位置标签的信号 1.1秒钟。 (参考附图 5 ) 步骤二,移动标签在连续监听位置标签信号一秒钟后,就跳转到 F3频道上, 向阅读器发射其中信号最强的一个位置标签 ID。 由于在整个展厅同时有多个移 动标签每隔 10秒钟, 都会向阅读器发射信号, 这就会造成信号碰撞。 此时, 也 就需要采用相应的防碰撞处理方式。 我们这里将采用移动标签发射前先监听 F3 信道的 RSSI的方法来避免碰撞。 如果 F3信道被占用, 则采用随机短延时后再 监听的方法, 只在监听到 F3频道没占用时, 才会将所选择的位置标签 ID以及 自身 ID—并发射给阅读器。 发射完后进入睡眠状态, 10秒钟之后再在 F2频道 上连续监听位置标签的信号一秒钟。 并在 5分钟后返回到在 F1频道上周期性监 听协调器指令的低功耗状态。
工作模式 B:
步骤一: 在每天展览会开始后, 需要对移动标签进行定位时 (例如每隔 10 秒钟定位一次), 管理计算机将通过协调器向所有标签连续不间断地广播 1.1秒 钟的工作指令。 与前面工作模式 A不同的是, 这里连续发射的每一个工作指令 信号包中的都带有一个序列编号。 每个位置标签和移动标签在睡眠苏醒的瞬间, 在接收到指令信号包的同时, 也就得到了它们随机苏醒时刻的相对时钟信息。 每个位置标签在接收到协调器的指令后, 就会根据自身预先设定的固定时延, 分别在 F2频道上, 分别进入协调器安排的与移动标签进行通信的四个不同的小 时隙, 此时的时隙是安排在协调器发射第一个指令信号包之后的第 1010 - 1020 ms之间, 4个具有不同固定时延的位置标签分别安排在第 1010-1012.5ms, 1012.5 -1015ms, 1015 - 1017.5ms和 1017.5-1020ms的小时隙中发射;而移动标 签则被安排在第 10104020ms之间在 F2 频道上等待接收位置标签发来的信息。 (参见图 2 )
步骤二,移动标签在连续监听位置标签信号的 10ms之后,就会立即跳转到 F3频道上, 将自己所接收到的 RSSI值最大的位置标签 ID, 连同自身 ID—道, 按照工作模式 A步骤二中的防信号碰撞的工作方式发射给阅读器, 并在成功之 后回到协调器频道 F1上进入周期性睡眠, 苏醒后监听指令信号一瞬间的低功耗 状态。
如果需要进一步提高定位精度,使用几个位置标签来对移动标签进行定位, 则需要位置标签增大发射功率, 使得每个移动标签每次接收到的不同位置标签 的数量 > 3个。 然后选择其中 RSSI最大的 3个位置标签的信息, 作为计算移动 标签位置的信息。
步骤三, 与工作模式 A相同。 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不 能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通 技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干筒单推演或替 换, 都应当视为属于本发明的保护范围。

Claims

权利要求
1.一种筒单精确的射频定位系统, 其特征在于, 包括: 位置标签, 安 装在整个定位区域的不同固定位置, 用于在 F1频道上,接收协调器发来的 工作指令信号, 并按照指令要求的方式, 在 F2频道上与移动标签进行信息 交流, 以生成包括用于确定移动标签位置在内的信息;
移动标签, 安装在需要被定位的移动目标上, 或由移动目标随身携带, 用于在 F1频道上接收协调器发来的工作指令, 并按照指令要求的方式, 在 F2频道上与位置标签进行信息交流, 以生成包括用于确定移动标签位置在 内的信息;
协调器, 其通过有线或无线的方式与管理计算机相连, 或按照预置程 序独立工作, 用于在 F1频道上, 通过在一段时间内, 连续不间断地向位置 标签和移动标签发射工作指令信号的方式, 抓住位置标签和移动标签接收 信号的瞬间, 与之建立通信联系, 并向其传达工作指令, 安排位置标签与 移动标签相互间进行信息交流的时间和方式, 以及它们与阅读器之间进行 信息交流的时间和方式;
阅读器, 用于在 F3频道上与移动标签或位置标签进行无线通信, 采集 包括用于确定移动标签位置在内的信息, 并通过有线或无线的方式传给管 理计算机;
管理计算机, 用于管理控制整个定位系统, 包括通过协调器在 F1频道 上, 向位置标签和移动标签下达工作指令, 或预先在协调器中写入向位置 标签和移动标签下达工作指令的预置程序,并在 F3频道上通过阅读器接收 包括用于确定移动标签位置在内的信息, 并按既定的方式确定移动标签的 具体位置后, 提供给应用程序; 管理计算机中储存有与每个位置标签 ID对 应的具体位置信息;
所述位置标签和移动标签, 都是采用电池供电和周期性睡眠, 苏醒后 在 Fl频道上监听协调器指令信号一瞬间的有源电子标签;它们自身都具有 独一无二的身份 ID, 其中位置标签还可携带自身的位置坐标信息; 位置标 签和移动标签之间的通信距离, 取决于系统对移动目标定位精度的要求。
2. 根据权利要求 1所述的系统, 其特征在于, 所述位置标签和移动标 签, 睡眠苏醒后监听协调器指令信号一瞬间的监听方式, 是先只花 ^艮短的 时间监听是否有符合协调器 "DNA" 检测的信号, 只有监听到符合 DNA" 检测的信号后, 才会延时接收整个协调器指令信号包的工作方式; 所述协 调器每次连续不间断地向位置标签和移动标签发射指令信号的持续时间, 不小于位置标签或移动标签的睡眠苏醒周期。
3. 根据权利要求 1或 2所述的系统, 其特征在于, 所述位置标签与移 动标签在 F2频道上进行的信息交流方式,是其中一种标签向另一种标签发 射包括自身 ID在内的信号的工作方式;接收信号的标签在接收到发射信号 的标签发射的信号后, 还需要将自身的 ID连同所接收到的信息, 按照系统 要求的方式在 F3频道上发送给阅读器; 同时, 当系统中有多个接收标签向 阅读器发射信息时, 接收标签与阅读器之间的通信还需要采用防信号碰撞 的处理措施。
4. 根据权利要求 3所述的系统, 其特征在于, 所述协调器向移动标签 和位置标签发送的工作指令中, 其对发射标签向接收标签发射信息的时间 安排方式包括, 但不限于: 发射标签周期性地在一段时间内向外发射信号, 而接收标签则采用在这一段时间内, 在一个或多个不小于发射标签发射周 期的小时段内, 等待接收发射标签信号的方式, 或按照协调器安排的特定 时隙和先后时间顺序向接收标签发射信号, 而接收标签则在该特定的时隙 内接收发射标签的信号的方式; 所述协调器向移动标签和位置标签发射的 工作指令中, 其对发射标签向接收标签发射信号方式的要求包括, 但不限 于: 当发射标签是位置标签时, 每个位置标签各自使用按系统定位精度要 求决定的, 相同或不同的单一固定功率发射信号, 或按照发射功率从小到 大的次序, 采用多种功率发射信号的方式; 当发射标签是移动标签时, 则 所有移动标签均使用按系统定位精度要求决定的单一固定功率发射信号, 或按照发射功率从小到大的次序, 采用多种功率发射信号的方式。
5. 根据权利要求 4所述的系统, 其特征在于, 在确定一个移动标签的 具体位置时, 在相关的位置标签与移动标签可实现的最大通信距离都相同 的前提下, 移动标签的位置是按如下方法确定的: 如果与同一个移动标签 能够实现通信的只有 1个位置标签, 则这个位置标签的位置就是该移动标 签的位置; 如果与同一个移动标签能够实现通信的有 2个或者 3个位置标 签, 则这个 2个或 3个位置标签的几何中心, 就是该移动标签的位置; 如 果与同一个移动标签能够实现通信的有 3 个以上的位置标签, 则将其中 RSSI信号最强的位置标签的几何中心当做该移动标签的位置, 或者利用这 3个位置标签的坐标位置, 对应的 RSSI值, 以及这些信息间的物理关系和 几何关系计算得到的位置当作移动标签的位置; 或者利用位置标签与移动 标签交流得到的其它信息, 按照其它射频信号定位方法计算出的位置当作 移动标签的位置; 在一维或三维空间中, 上述方法中所涉及的位置标签数 量将进行相应的调整。
6. 根据权利要求 5所述的系统, 其特征在于, 其中在采用 Cell-ID的 定位方式时, 位置标签与移动标签的最大通信距离, 是按照位置标签间距 的 3/4来控制的。
7. 根据权利要求 4, 5或 6所述的系统, 其特征在于, 当所述协调器通 过向位置标签和移动标签连续不间断地发射工作指令信号包, 要求位置标 签和移动标签在特定的时隙内交流信息, 特别是多个发射标签按照安排的 先后时间顺序, 进入各自分配的小时隙向接收标签发射信号时, 在所述的 工作指令信号包中, 每一个指令信号包都可以向移动标签和位置标签传递 时钟信息;包括, 但不限于通过对发射的每个工作指令信号包按顺序进行编 号的方式, 来向移动标签和位置标签传递时钟信息, 每个移动标签和位置 标签将根据这个时钟信息进入安排的小时隙内工作。
8. 根据权利要求 7所述的系统,其特征在于, 当发射标签是位置标签, 接收标签是移动标签时, 移动标签在通过接收位置标签发射的信息, 获得 自身的实时位置信息或与自身位置相关的信息后, 采用了如下两种方式将 这些信息通过阅读器传给管理计算机:
A. 移动标签立即在 F3频道上将这些信息发送给阅读器;
B. 移动标签先将自己的实时位置信息, 或对与确定自身位置相关的信 息进行筒单计算处理后得到的自身的实时位置信息,记录在自己的内存中, 只在接收到管理计算机发来读取路径信息的指令时, 才会将自己记录的路 径信息通过阅读器传给管理计算机。
9. 根据权利要 8所述的系统, 其特征在于, 在安排发射标签向接收标 签发射信号时, 除了通过控制发射标签的发射功率和发射方式, 使接收标 签只能接收到与其相邻的有限数量的发射标签的信号外, 这有限数量的几 个发射标签发射信号的时间, 也是被分配在同一个通信时隙中不同的小时 隙内错开时间发射的, 这包括, 但不限于: 使用时隙 Alaho方式; 利用位 置标签 ID末尾几个低字节位的差异分配小时隙的方式;以及当发射标签是 位置标签时, 预先将位置标签设置为, 具有与所分配的小时隙长短位置相 对应的不同固定发射时延, 同时在布置安装位置标签时, 将具有相同固定 发射延时的位置标签错开布置的方式。
10.根据权利要 7-9中所述的系统, 其特征在于, 当所述接收标签向阅 读器发射信息时, 采用了利用协调器指令信号包所传递的时钟信息, 直接 按照已知的每个接收标签的 ID,来分配它们各自发射信号的小时隙的方法。
11. 根据权利要求 1-10所述的系统, 其特征在于, 其所述的 Fl, F2和 F3三个频道互不相同, 只有在协调器与位置标签和移动标签之间的通信, 以及移动标签与位置标签之间的通信, 在采用分时错开的情况下, F1可以 与 F2相同; 同样, 当位置标签与移动标签之间的通信, 以及移动标签或位 置标签与阅读器之间的通信, 在采用分时错开的情况下, F2可以与 F3相 同。
12. 一种筒单精确的射频定位方法,其特征在于,包括协调器,阅读器, 管理计算机, 移动标签和具有固定位置的位置标签; 协调器利用在一段时 间内连续不间断地, 向采用周期性睡眠苏醒后在专用信道上监听信号一瞬 间方式工作的, 移动标签和位置标签发射工作指令的方式, 抓住后者苏醒 后监听信号的瞬间, 与之建立起通信联系, 并通过这个短暂的通信联系, 向位置标签和移动标签下达工作指令, 来协调安排它们相互间, 以及它们 与阅读器之间的通信时间和通信方式。
13.根据权利要求 12所述的方法, 其特征在于, 移动标签与位置标签 之间所进行的信息交流, 包括但不限于, 以移动标签定位为目的的信息交 流; 移动标签的位置信息, 是通过具有固定安装位置的位置标签和移动标 签之间的信息交流产生的, 是直接通过移动标签或位置标签, 以无线的方 式发送给与管理计算机连接的阅读器的。
14.根据权利要求 12或 13所述的方法,其特征在于,协调器在通过工 作指令安排位置标签与移动标签之间相互通信的时间时, 采用了在连续不 间断发射的每个指令信号包中携带时钟信息的方式; 这包括, 但不限于通 过对发射的每个工作指令信号包按顺序进行编号的方式, 向位置标签和移 动标签传递时钟信息; 后者将根据这个时钟信息, 在安排的时隙内进行通 信; 特别地, 当有多个发射信息的发射标签向同一个接收信息的接收标签, 或阅读器发射信息时, 发射标签将利用这个时钟信息, 按照安排的先后时 间顺序, 进入安排时隙中的不同的小时隙内发射信息, 以解决信号碰撞问 题。
15.根据权利要求 13或 14所述的方法,其特征在于,在安排位置标签 和移动标签彼此之间进行通信时, 还通过控制发射标签发射信号功率的方 式, 将与同一个移动标签可能实现通信的位置标签的数量, 控制在需要的 范围内。
16.根据权利要求 15所述的方法, 其特征在于, 在移动标签与位置标 签之间, 以及它们与阅读器之间的通信过程中, 当出现有多个发射信号的 标签同时向同一个接收信号的标签或阅读器发射信号的情况时, 还采用了 防信号碰撞的措施, 这包括, 但不限于: 使用时隙 Alaho方式; 利用发射 标签 ID末尾几个低字节位的差异来分配它们发射信号的小时隙的方式。
17.根据权利要求 15所述的方法, 其特征在于, 在处理相邻的多个位 置标签向移动标签发射信号时的信号碰撞问题时, 还采用了对这 3个或 4 个相邻的位置标签, 预先设定不同固定发射延时的方式来避免信号碰撞。
18.根据权利要求 16所述的方法, 其特征在于, 当所述位置标签或移 动标签向阅读器发射信息过程中, 还采用了利用协调器每个指令信号包所 传递的时钟信息, 按照定位区域内已知的每个位置标签或移动标签的 ID, 来分配它们各自发射信号的小时隙的方法。
19.根据权利要求 12-18所述的方法, 其特征在于, 在移动标签与位置 标签之间, 以及它们与阅读器之间的通信过程中, 如果同时向同一个接收 信号的标签或阅读器发射信号的标签数量太多, 使接收信号的标签或阅读 器在单位时间内需要处理的信息量过大, 因而无法处理时, 还采用了按照 发射标签 ID号进行分组, 使用时分或频分, 或减小位置标签布置间距, 或 减小每个阅读器的管辖范围, 或这几种措施任意组合的方式, 来减少每个 接收信号的标签或阅读器单位时间内的信息处理量。
20.根据权利要求 13-18所述的方法, 其特征在于, 在一个给定的定位 区域范围内, 除了直接通过无线方式采集移动标签位置信息, 与管理计算 机相连接的阅读器外, 并不需要使用任何其它的阅读器来生成移动标签的 位置信息; 移动标签定位精度的提高, 是通过增加位置标签的数量, 缩短 位置标签之间的安装间距,控制位置标签与移动标签之间的最大通信距离, 以及利用所采集到的用于确定移动标签位置的相关信息, 通过改进位置精 度的计算方法来实现, 而与所使用的阅读器的数量无关。
PCT/CN2011/084355 2011-07-11 2011-12-21 一种简单精确的射频定位系统和方法 WO2013007089A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11869492.6A EP2733503A4 (en) 2011-07-11 2011-12-21 SIMPLE AND PRECISE RADIO FREQUENCY POSITIONING SYSTEM AND METHOD
US14/152,466 US9436858B2 (en) 2011-07-11 2014-01-10 Simple and precise radio frequency locating system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110192032.2 2011-07-11
CN201110192032.2A CN102393896B (zh) 2011-07-11 2011-07-11 一种简单精确的射频定位系统和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/152,466 Continuation US9436858B2 (en) 2011-07-11 2014-01-10 Simple and precise radio frequency locating system and method

Publications (1)

Publication Number Publication Date
WO2013007089A1 true WO2013007089A1 (zh) 2013-01-17

Family

ID=45861219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084355 WO2013007089A1 (zh) 2011-07-11 2011-12-21 一种简单精确的射频定位系统和方法

Country Status (4)

Country Link
US (1) US9436858B2 (zh)
EP (1) EP2733503A4 (zh)
CN (1) CN102393896B (zh)
WO (1) WO2013007089A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014393681B2 (en) * 2014-05-14 2019-01-03 Ses-Imagotag Gmbh Method for locating a radio tag
CN111033576A (zh) * 2017-09-06 2020-04-17 索尼公司 闸门装置和闸门装置中的方法
WO2020188015A1 (en) 2019-03-21 2020-09-24 Onxeo A dbait molecule in combination with kinase inhibitor for the treatment of cancer
WO2021089791A1 (en) 2019-11-08 2021-05-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of cancers that have acquired resistance to kinase inhibitors
WO2021148581A1 (en) 2020-01-22 2021-07-29 Onxeo Novel dbait molecule and its use
CN113808293A (zh) * 2021-09-17 2021-12-17 上海万序健康科技有限公司 一种智能签到系统

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103136703A (zh) * 2012-12-27 2013-06-05 中州大学 一种统计处理游客密度分布的方法及系统
CN103150530B (zh) * 2013-02-25 2016-07-06 河南中多科技发展有限公司 一种煤矿井下人员定位方法
CN103398681B (zh) * 2013-07-18 2016-06-01 苏州亚和智能科技有限公司 一种六自由度立体定位装置和方法
CN103632117B (zh) * 2013-11-25 2017-01-18 电子科技大学 基于直接序列扩频技术的有源rfid定位方法
CN103761548B (zh) * 2013-12-31 2016-08-24 电子科技大学 一种有源rfid标签信息交互方法
CN106662632A (zh) * 2014-06-06 2017-05-10 Zih公司 改进利用多个位置技术的实时位置系统的方法、装置和计算机程序产品
CN104573587B (zh) * 2014-12-11 2018-01-12 天津中兴智联科技有限公司 一种具有双向通讯功能的多义性路径识别方法
CN105992259B (zh) * 2015-02-12 2020-01-21 阿里巴巴集团控股有限公司 定位检测方法及装置
US9767330B2 (en) * 2015-07-16 2017-09-19 Empire Technology Development Llc Distance determination between RFID tags
CN106255204B (zh) * 2016-09-30 2020-05-15 香港中文大学深圳研究院 一种基于角度定位系统的数据通讯方法及系统
EP3349516B1 (en) 2017-01-11 2020-11-11 ABL IP Holding LLC Asset tracking using active wireless tags that report via a local network of connected beacons
CN106695799B (zh) * 2017-02-28 2019-05-21 南京大邦智慧农业科技有限公司 基于云计算的智能交互机器人系统
RU2657185C1 (ru) * 2017-09-13 2018-06-08 Самсунг Электроникс Ко., Лтд. Высокоточная система локального позиционирования
CN108038401A (zh) * 2017-12-11 2018-05-15 苏州协同创新智能制造装备有限公司 基于rfid的三维空间定位系统
CN108174441B (zh) * 2017-12-11 2020-12-18 日立楼宇技术(广州)有限公司 综采工作面支架遥控人员的定位方法和装置
ES2884031T3 (es) * 2018-01-30 2021-12-10 Claitec Solutions Sl Sistema y procedimiento anticolisión entre objetos
US10210353B1 (en) 2018-03-09 2019-02-19 Abl Ip Holding Llc Asset tag tracking system and network architecture
US10502811B2 (en) 2018-03-09 2019-12-10 Abl Ip Holding Llc Network architecture, radio frequency based asset tracking and/or location estimation methods and systems
US10422848B1 (en) 2018-03-09 2019-09-24 Abl Ip Holding Llc More accurate asset tag locating of radio frequency devices
CN109001668B (zh) * 2018-04-10 2022-11-18 四川中电昆辰科技有限公司 定位周期集合内定位标签响应方法及系统
CN110636450B (zh) * 2018-06-06 2021-07-16 汉朔科技股份有限公司 电子价签定位方法、装置及系统
CN110650517A (zh) * 2018-06-26 2020-01-03 北京金坤科创技术有限公司 一种基于识别遮挡的uwb定位标签节电方案
US10950105B2 (en) * 2018-09-28 2021-03-16 Intel Corporation Autonomous sensor placement discovery method and apparatus
CN109633532A (zh) * 2018-12-21 2019-04-16 青岛安然物联网科技有限公司 一种无线信标定位系统及其定位方法
CN110095817A (zh) * 2019-03-19 2019-08-06 西人马(厦门)科技有限公司 可移动目标物定位方法和装置
CN111866732B (zh) * 2019-04-29 2022-08-19 汉朔科技股份有限公司 检测电子价签位置变化的方法、系统、控制器及电子价签
WO2020256630A1 (en) * 2019-06-18 2020-12-24 Cadi Scientific Pte Ltd Devices, systems, and methods for location tracking or proximity detection
CN110225461B (zh) * 2019-06-25 2021-07-23 国能龙源电气有限公司 一种基于uwb技术的室内定位方法
NL2023820B1 (nl) * 2019-09-12 2021-05-17 Nedap Nv Systeem voor het bepalen van posities van een veelvoud van labels.
CN111836192B (zh) * 2020-07-24 2022-08-09 成都精位科技有限公司 定位方法、装置、标签和系统及存储介质
CN112102508A (zh) * 2020-09-03 2020-12-18 中国联合网络通信集团有限公司 计费方法、计费终端和计算机可读介质
US11950567B2 (en) 2021-03-04 2024-04-09 Sky View Environmental Service Llc Condor monitoring systems and related methods
US11354524B1 (en) 2021-05-03 2022-06-07 Capital One Services, Llc User-based vehicle determination
CN113567910A (zh) * 2021-07-22 2021-10-29 青岛安然物联网科技有限公司 一种无线信标定位系统及其定位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090070797A1 (en) * 2006-03-31 2009-03-12 Arun Ramaswamy Methods, systems, and apparatus for multi-purpose metering
US20090102661A1 (en) * 2006-03-23 2009-04-23 Sharon Ann Barnes Wireless asset identification and location
CN101770009A (zh) * 2009-01-06 2010-07-07 西安西谷微功率数据技术有限责任公司 一种精确实用的射频定位新技术
CN102081743A (zh) * 2009-11-30 2011-06-01 西安西谷微功率数据技术有限责任公司 有源电子标签及其应用系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6217100A (en) * 1999-07-15 2001-02-05 Pinpoint Corporation Method and apparatus for mobile tag reading
US7825804B2 (en) * 2007-01-31 2010-11-02 Symbol Technologies, Inc. Methods and apparatus for opportunistic locationing of RF tags using location triggers
US8410906B1 (en) * 2008-09-05 2013-04-02 Intelleflex Corporation Battery assisted RFID system RF power control and interference mitigation methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090102661A1 (en) * 2006-03-23 2009-04-23 Sharon Ann Barnes Wireless asset identification and location
US20090070797A1 (en) * 2006-03-31 2009-03-12 Arun Ramaswamy Methods, systems, and apparatus for multi-purpose metering
CN101770009A (zh) * 2009-01-06 2010-07-07 西安西谷微功率数据技术有限责任公司 一种精确实用的射频定位新技术
CN102081743A (zh) * 2009-11-30 2011-06-01 西安西谷微功率数据技术有限责任公司 有源电子标签及其应用系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2733503A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047948B2 (en) 2014-05-14 2021-06-29 Ses-Imagotag Gmbh Method for locating a radio tag
EP3143422B1 (de) * 2014-05-14 2019-07-03 SES-imagotag GmbH Verfahren zum orten eines funk-tags
EP3540455A1 (de) * 2014-05-14 2019-09-18 SES-imagotag GmbH Verfahren zum orten eines funk-tags
EP3543730A1 (de) * 2014-05-14 2019-09-25 SES-imagotag GmbH Verfahren zum orten eines funk-tags
EP3543729A1 (de) * 2014-05-14 2019-09-25 SES-imagotag GmbH Verfahren zum orten eines funk-tags
US10585161B2 (en) 2014-05-14 2020-03-10 Ses-Imagotag Gmbh Method for locating a radio tag
AU2014393681B2 (en) * 2014-05-14 2019-01-03 Ses-Imagotag Gmbh Method for locating a radio tag
US11143737B2 (en) 2014-05-14 2021-10-12 Ses-Imagotag Gmbh Method for locating a radio tag
CN111033576A (zh) * 2017-09-06 2020-04-17 索尼公司 闸门装置和闸门装置中的方法
WO2020188015A1 (en) 2019-03-21 2020-09-24 Onxeo A dbait molecule in combination with kinase inhibitor for the treatment of cancer
WO2021089791A1 (en) 2019-11-08 2021-05-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of cancers that have acquired resistance to kinase inhibitors
WO2021148581A1 (en) 2020-01-22 2021-07-29 Onxeo Novel dbait molecule and its use
CN113808293A (zh) * 2021-09-17 2021-12-17 上海万序健康科技有限公司 一种智能签到系统

Also Published As

Publication number Publication date
EP2733503A4 (en) 2015-04-08
CN102393896B (zh) 2014-08-27
US20140125461A1 (en) 2014-05-08
CN102393896A (zh) 2012-03-28
US9436858B2 (en) 2016-09-06
EP2733503A1 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2013007089A1 (zh) 一种简单精确的射频定位系统和方法
EP1671210B1 (en) Method and system for improved wlan location
CN101350132B (zh) 一种井下定位系统及方法
KR100972081B1 (ko) 무선노드의 이동성을 지원하는 위치인식 메시징 방법
US8456282B2 (en) Synchronization of devices in a RFID communications environment
CN103729661B (zh) 一种超低功耗有源电子标签读写系统和方法
EP2724570B1 (en) Radio communication system
CN107996032A (zh) 用于无线数据通信网络的事务调度系统
US20100277284A1 (en) Data separation in high density environments
US20230038212A1 (en) Time-of-flight based unified positioning system and methods
CN108112003B (zh) 定位系统中基于频分和时分的通信方法
CN102938932B (zh) 一种提高基于到达时间的无线定位系统的容量的方法
CN112887912B (zh) 一种矿井人员定位系统及定位方法
CN102567699B (zh) 物联网物体定位系统及方法
CN202406123U (zh) 室内人员区域动态管理系统
CN113660603B (zh) 一种基于uwb技术的定位系统架构、定位方法
CN102572695B (zh) 一种基于Zigbee技术的定位系统
CN102577574A (zh) 用于在无线网络中发送数据的方法及其无线网络
EP3792650A1 (en) System for determining positions of a plurality of labels
CN202126499U (zh) 一种机场乘客定位系统及装置
CN111148109B (zh) 无线传感器网络及其参数优化方法与仓储系统
KR20240061197A (ko) Uwb를 이용한 twr 다중 태그 측위 시스템
CN117939632A (zh) 基于超宽带的铁路隧道内四电工程人员定位系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011869492

Country of ref document: EP