WO2013007063A1 - Procédé destiné à l'identification d'une scissure des poumons sur une image ct de poumons - Google Patents

Procédé destiné à l'identification d'une scissure des poumons sur une image ct de poumons Download PDF

Info

Publication number
WO2013007063A1
WO2013007063A1 PCT/CN2011/079226 CN2011079226W WO2013007063A1 WO 2013007063 A1 WO2013007063 A1 WO 2013007063A1 CN 2011079226 W CN2011079226 W CN 2011079226W WO 2013007063 A1 WO2013007063 A1 WO 2013007063A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung
plane
fissure
lung fissure
image
Prior art date
Application number
PCT/CN2011/079226
Other languages
English (en)
Chinese (zh)
Inventor
普建涛
孟鑫
Original Assignee
Pu Jiantao
Meng Xin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pu Jiantao, Meng Xin filed Critical Pu Jiantao
Publication of WO2013007063A1 publication Critical patent/WO2013007063A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30061Lung

Definitions

  • this method is not sensitive to noise or outliers.
  • FIGS. 18 through 20 show lung fissure recognition in an abnormality test with severe bronchiectasis (cystic fibrosis).
  • 21 to 23 are examples in which it is difficult to identify a lung fissure by the new invention method. It is very difficult to clearly see the location of the lungs. Applying the previous method [1] to this test is completely invalid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

L'invention a trait à un procédé de détection et de segmentation automatiques destiné à l'identification efficace et précise d'une scissure des poumons sur une image CT grâce à une adaptation de plan en trois dimensions. Selon ce procédé, une image CT est considérée comme un groupe de nuages de points spatiaux en trois dimensions, une zone des poumons est divisée en petits corps sphériques subdivisés, puis un procédé d'adaptation de plan en trois dimensions est utilisé pour rechercher un plan de scissure des poumons dans ces petits corps sphériques subdivisés, de manière à convertir la détection de scissure des poumons ayant des caractéristiques de surface courbe libre en détection de plan, ce qui réduit bien évidemment la complexité du problème. Ce procédé présente l'avantage d'être insensible au bruit ainsi qu'aux valeurs anormales. De plus, au cours du processus de détection d'une scissure des poumons, l'identification des scissures de différents types (autrement dit d'une scissure oblique et d'une scissure horizontale sur les poumons gauche et droit) est achevée grâce à un simple procédé de groupement. Par rapport aux autres procédés, le procédé de la présente invention est très précis, stable et extrêmement efficace.
PCT/CN2011/079226 2011-07-08 2011-09-01 Procédé destiné à l'identification d'une scissure des poumons sur une image ct de poumons WO2013007063A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110190797.2 2011-07-08
CN2011101907972A CN102254097A (zh) 2011-07-08 2011-07-08 肺部ct图像上的肺裂识别方法

Publications (1)

Publication Number Publication Date
WO2013007063A1 true WO2013007063A1 (fr) 2013-01-17

Family

ID=44981358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079226 WO2013007063A1 (fr) 2011-07-08 2011-09-01 Procédé destiné à l'identification d'une scissure des poumons sur une image ct de poumons

Country Status (2)

Country Link
CN (1) CN102254097A (fr)
WO (1) WO2013007063A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3968271A1 (fr) 2020-09-11 2022-03-16 Bayer AG Analyse des branches intrapulmonaires
US11295451B2 (en) 2016-08-02 2022-04-05 Koninklijke Philips N.V. Robust pulmonary lobe segmentation

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629327A (zh) * 2011-12-02 2012-08-08 普建涛 气道壁识别方法
AU2015284303B2 (en) * 2014-07-02 2019-07-25 Covidien Lp System and method for detecting trachea
CN104574319B (zh) * 2015-01-22 2017-10-13 深圳大学 一种肺部ct图像的血管增强方法及系统
CN106373118B (zh) * 2016-08-30 2017-09-22 华中科技大学 可有效保留边界和局部特征的复杂曲面零件点云精简方法
CN106875379A (zh) * 2017-01-10 2017-06-20 陕西渭南神州德信医学成像技术有限公司 肺裂完整度评估方法、装置和系统
WO2019000455A1 (fr) 2017-06-30 2019-01-03 上海联影医疗科技有限公司 Procédé et système de segmentation d'image
CN107392910B (zh) * 2017-07-06 2020-01-07 东软医疗系统股份有限公司 一种基于ct图像的肺叶分割方法及装置
CN111709953B (zh) * 2017-11-03 2023-04-07 杭州依图医疗技术有限公司 Ct影像的肺叶段分割中的输出方法、装置
CN109300122B (zh) * 2018-09-14 2023-04-07 东软医疗系统股份有限公司 图像处理与阈值确定方法、装置及设备
CN109658425B (zh) * 2018-12-12 2021-12-28 上海联影医疗科技股份有限公司 一种肺叶分割方法、装置、计算机设备及存储介质
CN111986299B (zh) * 2019-05-24 2024-03-01 北京京东乾石科技有限公司 点云数据处理方法、装置、设备及存储介质
CN113160186B (zh) * 2021-04-27 2022-10-25 青岛海信医疗设备股份有限公司 一种肺叶分割方法及相关装置
CN114092470B (zh) * 2021-12-08 2022-08-09 之江实验室 一种基于深度学习的肺裂自动检测方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142481A (ja) * 2006-12-13 2008-06-26 Med Solution Kk 肺を肺区域の単位に自動的にセグメンテーションする装置およびプログラム
US20100322493A1 (en) * 2009-06-19 2010-12-23 Edda Technology Inc. Systems, methods, apparatuses, and computer program products for computer aided lung nodule detection in chest tomosynthesis images

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1205546C (zh) * 2001-12-30 2005-06-08 吴国雄 山区公路平面线形自动仿真设计方法
CN1598868A (zh) * 2004-09-06 2005-03-23 南京大学 模式识别中特征提取的一种变换方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142481A (ja) * 2006-12-13 2008-06-26 Med Solution Kk 肺を肺区域の単位に自動的にセグメンテーションする装置およびプログラム
US20100322493A1 (en) * 2009-06-19 2010-12-23 Edda Technology Inc. Systems, methods, apparatuses, and computer program products for computer aided lung nodule detection in chest tomosynthesis images

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG, QINGHUI ET AL.: "Slope3D-A Three-Dimensional Limit Equilibrium Analysis Software for Slope Stability and Its Application", CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING, vol. 22, no. 7, July 2003 (2003-07-01) *
PU, JIANTAO ET AL.: "A Computational Geometry Approach to Automated Pulmonary Fissure Segmentation in CT Examinations", IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 28, no. 5, May 2009 (2009-05-01), pages 711 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11295451B2 (en) 2016-08-02 2022-04-05 Koninklijke Philips N.V. Robust pulmonary lobe segmentation
EP3968271A1 (fr) 2020-09-11 2022-03-16 Bayer AG Analyse des branches intrapulmonaires

Also Published As

Publication number Publication date
CN102254097A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
WO2013007063A1 (fr) Procédé destiné à l'identification d'une scissure des poumons sur une image ct de poumons
Mansoor et al. A generic approach to pathological lung segmentation
Roy et al. A deep learning-shape driven level set synergism for pulmonary nodule segmentation
Wang et al. Shape–intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images
Hua et al. Segmentation of pathological and diseased lung tissue in CT images using a graph-search algorithm
EP2916738B1 (fr) Systèmes et procédés d'imagerie de poumon, de lobe et de fissure
Pu et al. A computational geometry approach to automated pulmonary fissure segmentation in CT examinations
Pu et al. A differential geometric approach to automated segmentation of human airway tree
Dhara et al. Computer-aided detection and analysis of pulmonary nodule from CT images: a survey
Singadkar et al. Automatic lung segmentation for the inclusion of juxtapleural nodules and pulmonary vessels using curvature based border correction
CN107154047A (zh) 多模式脑肿瘤图像混合分割方法和装置
Soliman et al. Segmentation of lung region based on using parallel implementation of joint MGRF: Validation on 3D realistic lung phantoms
Qi et al. Automatic pulmonary fissure detection and lobe segmentation in CT chest images
Zhao et al. An automated pulmonary parenchyma segmentation method based on an improved region growing algorithmin PET-CT imaging
Li et al. Supervised recursive segmentation of volumetric CT images for 3D reconstruction of lung and vessel tree
Jaffar et al. Ensemble classification of pulmonary nodules using gradient intensity feature descriptor and differential evolution
Li et al. Segmentation of pulmonary nodules using adaptive local region energy with probability density function-based similarity distance and multi-features clustering
US20240303822A1 (en) Machine-learning based segmentation of biological objects in medical images
EP3631806A1 (fr) Aspects quantifiés de lésions dans des images médicales
Li et al. Automated segmentation of prostate MR images using prior knowledge enhanced random walker
Lee et al. Hybrid airway segmentation using multi-scale tubular structure filters and texture analysis on 3D chest CT scans
Özsavaş et al. Automatic segmentation of anatomical structures from CT scans of thorax for RTP
Soliman et al. Segmentationof pathological lungs from CT chest images
Edwin et al. Liver and tumour segmentation from abdominal CT images using adaptive threshold method
Jamil et al. Adaptive thresholding technique for segmentation and juxtapleural nodules inclusion in lung segments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869376

Country of ref document: EP

Kind code of ref document: A1