WO2013007063A1 - Method for identifying lung fissure on ct image of lungs - Google Patents

Method for identifying lung fissure on ct image of lungs Download PDF

Info

Publication number
WO2013007063A1
WO2013007063A1 PCT/CN2011/079226 CN2011079226W WO2013007063A1 WO 2013007063 A1 WO2013007063 A1 WO 2013007063A1 CN 2011079226 W CN2011079226 W CN 2011079226W WO 2013007063 A1 WO2013007063 A1 WO 2013007063A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung
plane
fissure
lung fissure
image
Prior art date
Application number
PCT/CN2011/079226
Other languages
French (fr)
Chinese (zh)
Inventor
普建涛
孟鑫
Original Assignee
Pu Jiantao
Meng Xin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pu Jiantao, Meng Xin filed Critical Pu Jiantao
Publication of WO2013007063A1 publication Critical patent/WO2013007063A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30061Lung

Definitions

  • this method is not sensitive to noise or outliers.
  • FIGS. 18 through 20 show lung fissure recognition in an abnormality test with severe bronchiectasis (cystic fibrosis).
  • 21 to 23 are examples in which it is difficult to identify a lung fissure by the new invention method. It is very difficult to clearly see the location of the lungs. Applying the previous method [1] to this test is completely invalid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

An automatic detection and segmentation method for efficiently and accurately identifying a lung fissure on a CT image on the basis of three dimensional plane fitting. In the method, a CT image is regarded as a group of three dimensional space point clouds, a lung area is divided into small spherical subdivided bodies, and then a three dimensional plane fitting method is used to look for a lung fissure plane in the small spherical subdivided bodies, so as to convert lung fissure detection having free curve surface characteristics into plane detection, thereby obviously reducing the complexity of the problem. The method has the advantage of being insensitive to noise or abnormal values. Furthermore, in the process of lung fissure detection, identification of lung fissures of different types (that is, an oblique lung fissure and a horizontal lung fissure in left and right lungs) is completed through a simple clustering method. Compared with other methods, the method of the present invention has characteristics of high accuracy, stability, and high efficiency.

Description

发明名称: 肺部 CT图像上的蹄裂识别方法 Title of Invention: Method for identifying hoof cracks on CT images of the lungs
技术领域: Technical field:
本发明涉及以分段三维平面拟合方法为基础, 从全新的角度, 高效地识别胸部 CT图像上的肺裂。  The invention relates to the efficient identification of a lung fissure on a chest CT image based on a segmented three-dimensional plane fitting method.
背景技术- 肺叶间裂 (简称肺裂) 是体现人体肺部结构的重要标识。 对肺裂的完整度和结构的全面认识, 在早期肺 部疾病检测, 分类, 病情发展以及疾病的治疗上, 都具有很大的临床实用价值。 因此, 肺裂的准确识别对临 床来说很重要的。 可借的是, 高分辩率 CT检查通常包含大量的图像, 让专家通过手动方式一张一张图片去 标志肺裂所在空间位置非常耗时, 面且肺裂在 CT图像上通常表现得并不是很清楚, 往往无法保证结果的准 确性和一致性 BACKGROUND OF THE INVENTION - Interlobular fissures (referred to as lung fissures) are important markers that reflect the structure of the human lung. A comprehensive understanding of the integrity and structure of the lung fissure has great clinical value in the early detection, classification, disease progression and treatment of lung diseases. Therefore, accurate identification of the lung fissure is important for clinical use. It can be borrowed that high-resolution CT examinations usually contain a large number of images, so it is very time-consuming for experts to manually mark the spatial location of the lung fissure by a picture. The lung fissure usually does not appear on the CT image. It is clear that the accuracy and consistency of the results are often not guaranteed.
目前, 世界范囤内提出了很多肺裂识别方法, 其中大部分方法包括两个阶段, 即初始识别和进一步优化 改进。 在具体实现过程^ 初始检测 I识别一般通过确定感兴趣区 (ROlh region -of-interest)来实现。 比如, 普等人 通过一个简单的阈值化处理来识^感兴趣区域; Wumker等人 利用 Hessum矩阵和结构张量滤波 确定初始区域 另外在文献 [5.·8]中, 初始区域是通过歸裂与血管、 支气管之间在解剖上的关系来确定 在确 定初始区域之后, —F—歩就是具体确定肺裂的空间位置, 这方面的方法基本是通过在二维空间中确定直线或 者在三维空间寻找曲面或者平面来实现。 二维直线 (2D ) 方法包括了增长曲线方法 [9- 1 0] , Vanderbrug 的线 性特征检测 [i i], 边缘检测 [8]和高斯分布和 /或是平均曲率分析 [ 12]。 考虑到在识另 ^市裂方面, 三维曲面或者 平面 (3D ) 要比二维直线 (2D ) 更加全面、 准确, Ukil等人 m提出了一种具有 3D图搜索功能的脊度测量 法 [13]在感兴趣区内寻找平面; 普等人 [1] 提出了一种用包括拉普拉斯平滑和扩展高斯图像 (EGI: extended Gaussian image)在内的计算几 学方法; Rikxoort等人 [3-4]提出利用二阶逻辑计算将点组合成平面; Kutaigk[6j 等人提出了一种交互式三维分水岭算法。 与这些方法不同, 张等人 [ 14-16]提出了一种以图库为基础的模版匹 配方法来寻找歸裂。  At present, many methods for identifying lung fissures have been proposed in the world, and most of them include two stages, namely initial identification and further optimization. In the specific implementation process ^ initial detection I identification is generally achieved by determining the region of interest (ROlh region -of-interest). For example, Pu et al. used a simple thresholding process to identify the region of interest; Wumker et al. used the Hessum matrix and structural tensor filtering to determine the initial region. In addition, in the literature [5.·8], the initial region is transformed by The anatomical relationship with the blood vessels and the bronchus determines that the spatial position of the lung fissure is specifically determined after the initial region is determined. The method is basically to determine the straight line in the two-dimensional space or in the three-dimensional space. Find a surface or plane to achieve. The two-dimensional line (2D) method includes the growth curve method [9- 1 0], Vanderbrug's linear feature detection [i i], edge detection [8] and Gaussian distribution and/or average curvature analysis [12]. Considering that the three-dimensional surface or plane (3D) is more comprehensive and accurate than the two-dimensional line (2D), Ukil et al. proposed a ridge measurement method with 3D map search function [13]. Finding planes in the region of interest; Pu et al. [1] proposed a computational methodology using Laplacian smoothing and extended Gaussian images (EGI: extended Gaussian image); Rikxoort et al. [3] -4] proposes the use of second-order logic to combine points into planes; Kutaigk [6j et al. proposed an interactive three-dimensional watershed algorithm. Different from these methods, Zhang et al. [14-16] proposed a template-based template matching method to find the original.
发 内 Inside
肺时间裂在 CT图像上有两个特点. 第一是与肺裂周围的肺部组织相比, 歸裂相对较高的亮度, 这也是 为什么人眼可以看到肺裂的原 S ; 第二是肺裂在以体素为基础的图像空间中有较高的密度。 为了充分挖掘这 两个特点, 这项发明提出了一种以平面拟合为基础, 高效、 准硗地识别 CT图像上肺裂的方法。 考虑到三维自由曲面可以用很多小的平面来准确逼近, 我们提出将三维肺部区域细分为很多小的球形细 分体(这些细分体之间相互交叠), 这样肺裂的识别 题就转换为在每一个球体中寻找一系列平面问题。这个 方法包括了五个基本歩骤(如图 1至图 5 ) : ( 1 )肺部区域分割(图 1 ), ( 2 )姉部区域空间细分(图 2 ) , ( 3 ) 中值滤波 (图 3 ), ( 4 ) 用平面拟合方法识别各个细分体中的蹄裂 (图 4), ( 5 ) 肺裂分类 (图 5 )。 过滤是 利用了相对较高的肺裂对比度, 平面拟合利用了肺裂在体素空间中相对较高的密度的特点 The lung time split has two characteristics on the CT image. The first is the relatively high brightness of the lung tissue compared with the lung tissue around the lung fissure, which is why the human eye can see the original S of the lung fissure; It is the lung fissure that has a higher density in the voxel-based image space. In order to fully exploit this Two features, this invention proposes a method for efficiently and accurately identifying lung fissures on CT images based on plane fitting. Considering that 3D freeform surfaces can be accurately approximated by many small planes, we propose to subdivide the three-dimensional lung region into many small spherical subdivisions (these subdivisions overlap each other), so that the identification of the lung fissure It is converted to look for a series of plane problems in each sphere. This method consists of five basic steps (Figures 1 to 5): (1) segmentation of the lung region (Fig. 1), (2) spatial segmentation of the crotch region (Fig. 2), (3) median filtering (Fig. 3), (4) Identify the lobes in each subdivision using the plane fitting method (Fig. 4), (5) Classification of the spurs (Fig. 5). Filtration utilizes a relatively high lung fissure contrast, and plane fitting takes advantage of the relatively high density of the lung fissure in the voxel space.
在这个方法 CT影像被看作是一组三维点云数据, 肺部区域被细分为许多小的球体, 称为细分体, 肺 裂的识^是通过在每一细分球体中通过平面拟合来寻找相应的平面。  In this method, the CT image is treated as a set of three-dimensional point cloud data. The lung region is subdivided into many small spheres called subdivisions. The knowledge of the lung fissure is through the plane in each subdivision sphere. Fit to find the corresponding plane.
此项发明具有很多特点- 首先, 这种方法非常通用, 既可以识别 2D空间中的直线, 也可以识别 3D空间中的平面。  The invention has many features - first, this method is very versatile, recognizing both straight lines in 2D space and planes in 3D space.
第二, 在稳定性方面, 这种方法对于噪音或者异常值并不敏感。  Second, in terms of stability, this method is not sensitive to noise or outliers.
第三, 在计算效率上, 整个肺裂识别过程只需要大约 s分钟, 而之篛提到的普等人发明的方法 大概需 要 20分钟, 而由 vais Rikxoort等人发明的方法 [ί7]需要大约 90分钟。  Third, in terms of computational efficiency, the entire lung fissure recognition process takes only about s minutes, and the method invented by Pu'er et al. takes about 20 minutes, while the method invented by VAis Rikxoort et al. [ί7] requires approximately 90 minutes.
第四, 在准确性上, 新发明的方法具有较高的准确性。  Fourth, in terms of accuracy, the newly invented method has higher accuracy.
第五, 这种方法的实现过程非常筒洁, 只要将平面拟合方法直接应用于在肺部区域的细分体即可。 另外, 不同类型沛裂的识别在肺裂检测过程时通过一个简牟.的聚类方法即可同时完成。 据我们所知, 现在还没有哪 一种方法可以同时进行肺裂的识别和分类。  Fifth, the implementation of this method is very clean, as long as the plane fitting method is directly applied to the segmentation in the lung region. In addition, the identification of different types of cleavage can be completed simultaneously by a simple clustering method during the lung splitting detection process. To the best of our knowledge, there is currently no way to identify and classify lung fissures at the same time.
附图说明 DRAWINGS
具体的实施方式将通过下面的附图进行详细描述。  Specific embodiments will be described in detail through the following drawings.
图 1至图 5是!沛裂分割方法的基本步骤- 图 1肺部区域分割;  Figure 1 to Figure 5 are the basic steps of the split-splitting method - Figure 1 lung segmentation;
图 2肺部区域细分;  Figure 2 breakdown of the lung area;
图 3中值滤波:  Figure 3 median filtering:
图 4用平面拟合分析法识别肺裂; 图 5不同类型蹄裂分类。 Figure 4 identifies the lung fissure by plane fitting analysis; Figure 5 Classification of different types of hoof cracks.
图 6至图 Π通过用二维和三维例子说明平面拟合方法的性能:  Figure 6 to Figure 说明 illustrate the performance of the plane fitting method by using two-dimensional and three-dimensional examples:
图 6和图 7显示了二维图片中由点集合成的直线的拟合。 绿线代表由最小平方方法得出的结果, 而红线 代表了由本发明中描述的密度拟合方法得出的结果;  Figures 6 and 7 show the fit of a line of points assembled from points in a two-dimensional picture. The green line represents the result obtained by the least squares method, and the red line represents the result obtained by the density fitting method described in the present invention;
图 8显示一副从胸部 CT细分出的球体的 Ξ£维点云图:  Figure 8 shows a cloud map of a sphere that is subdivided from the chest CT:
图 9用点向量和范数向量的内积 (也就是式 (6p 可视化图 8中的点云;  Figure 9 uses the inner product of the point vector and the norm vector (that is, the equation (6p visualizes the point cloud in Figure 8;
图!0是通过应用此项发明所得到的 裂检测结果 (用红色表示);  Figure! 0 is the crack detection result (indicated in red) obtained by applying the invention;
图 11显示对应图 8中三维点云的函数 («,  Figure 11 shows the function corresponding to the three-dimensional point cloud in Figure 8 («,
图 12至图 14清楚表示了肺裂识别和分类的结果:  Figures 12 through 14 clearly show the results of lung fissure identification and classification:
图 12—副 CT图像;  Figure 12 - Sub-CT image;
图 13经过识别, 分类的肺裂 (用不同的颜色表示);  Figure 13 identified, classified lung fissures (represented by different colors);
图 Μ是在移除了图 13中由箭头所表示的非肺裂区后得到的最终肺裂影像分割和分类图。  Figure Μ is the final segmentation and classification map of the final lung fissure obtained after removing the non-lung fissure region indicated by the arrow in Figure 13.
图 15至图 ί7是通过示例来展示所发明方法在识别 裂方面的性能。  Figures 15 through ί7 are examples showing the performance of the inventive method in identifying cracks.
图 18至图 20是针对有着严重的支气管扩张 (囊胞性纤维症) 的病倒中所识别到的肺裂的示例。  Figures 18 to 20 are examples of lung fissures identified in the disease with severe bronchiectasis (cystic fibrosis).
图 2 i至图 23是此发明方法识别肺裂示例. 这个例子中的 裂在图像上非常模糊。  Figures 2 through 23 are examples of the method of the invention for identifying lung fissures. The crack in this example is very blurry on the image.
具体实施方式 detailed description
平面拟合方法是此项新发明的关键部分, 下面我们将清晰描述。  The plane fitting method is a key part of this new invention and will be clearly described below.
第一步, 是目标函数的选择。  The first step is the choice of the objective function.
在欧氏三维空间内设定 N 个点 ρ;
Figure imgf000005_0001
- I,..., N, , 我们的目标是找到一个平面 F :: { p \ p e R f(p) 0 } , 来能量上最小化下面的目标函数:
Figure imgf000005_0002
其中, 00^, /:')是点/到平面 F的距离, w: > 0 (在这项研究中等于!) 是特定点 的权重 (等于 ί , 也就是 将在这项研究中所有点一律如权)。从公式 1中可 推出距离函数 在最小化中起关键作用。值得注意 的是, 在这项研究中, 将分散的点 定位在预定义的球体中 (细分体中) 这种采用包围球的限制不会影响 算法的通用性, 因为对于空闾中的一组己知点, 永远存在一个 '包围球'。 在欧氏王维空闾中, 平面的自由度 为 3 , 这个平面可由三个参数来决定的。 平面 F可定义为 f(p) = cos(<¾) sin(^)x + sin( ) sin(^) - + cos( z - p (2) 其中, (《,έ?,ρ)是定义平面 F的三个参数。 虽然用最小平方方法就能直接解出公式 ( i ), 其中 D{P:,F) =! (^)μ但是尽管效率高, 由最小平方方法解出的结果却很容易受到噪音或者异常值的干扰 (如 图 6-图 7)。 为此, 我们选择用由公式 (3) 定义的距离函数 D, 它具有相对准确的解法, 而且对异常值不敏感 [18-19]:
Set N points ρ in the Euclidean three-dimensional space ;
Figure imgf000005_0001
- I,..., N, , Our goal is to find a plane F :: { p \ pe R f(p) 0 } to minimize the energy of the following objective function:
Figure imgf000005_0002
Where 00^, /:') is the distance from point / to plane F, w : > 0 (equal to ! in this study) is the weight of a particular point (equal to ί , which will be all points in this study) All right.) From Equation 1, it can be deduced that the distance function plays a key role in minimizing. It is worth noting that in this study, the scattered points are located in a predefined sphere (in the subdivision). The versatility of the algorithm, because for a set of known points in the open space, there is always a 'surrounding ball'. In the Euclidean king's space, the degree of freedom of the plane is 3, which can be determined by three parameters. The plane F can be defined as f(p) = cos(<3⁄4) sin(^)x + sin( ) sin(^) - + cos( z - p (2) where (",έ?,ρ) is defined The three parameters of plane F. Although the formula (i) can be directly solved by the least squares method, where D{P:,F) =! (^)μ, although the efficiency is high, the result solved by the least square method is It is very susceptible to noise or outliers (Figure 6-7). To this end, we choose to use the distance function D defined by equation (3), which has a relatively accurate solution and is not sensitive to outliers [18-19]:
D{p F) ' (}}
Figure imgf000006_0001
D{p F) ' (}}
Figure imgf000006_0001
其中, 《是标量。 在这项研究中, 《和3市裂厚度紧密联系, 将《设为所描述的肺裂厚度大约一半的值(比方说 丛 .0到 L5毫米)。 这里, 我们可以重新将式 (!) 用公式表示为
Figure imgf000006_0002
将式 (1) 和式 (3) 带入式 ). 通过找到一组优化参数 (也就是 (cr^p)) 后, 平面拟合过程丛能量最小 化 CF) (也就是式 (1)) 转化为能量最大化 (也就是式 (5))。
Among them, "is a scalar. In this study, "there is a close relationship with the cracking thickness of the 3 cities, and it is set to a value of about half of the thickness of the lung fissure described (for example, plexus. 0 to L5 mm). Here, we can re-form the formula (!) as
Figure imgf000006_0002
Bringing equations (1) and (3) into equations. By finding a set of optimization parameters (ie (cr^p)), the plane fitting process plexus energy minimizes CF) (ie, equation (1)) Convert to energy maximization (ie, equation (5)).
N  N
Ε' (α, θ, ρ) Ε、 (F) ^¾2 ^ wf E(F) Ε' (α, θ, ρ) Ε, (F) ^3⁄4 2 ^ w f E(F)
=∑w;(u2 ~D(P;,F)2) =∑w ; (u 2 ~D( P; ,F) 2 )
= w< (·" ' - f(P: ) 2 ) + . w;- ( 2 - ·" '― )
Figure imgf000006_0003
= w<(·"' - f(P: ) 2 ) + . w;- ( 2 - ·"'― )
Figure imgf000006_0003
丛式 (5) 中可以看出, 只有当点到平面 F的距离小于《时, 这些点会影响到目标函数 Tf。 由于空闾内点的 密度是用来识 ^细分体内的肺裂平面的 (如有), 所为我们建议用式 (5) 的函数 1徐以平面 F(«,i? ,ρ)的横 断面面积3。 这样, 以密度为基础的平面拟合要解决的问题是通过最大化式 (6) 来找到优化参数 (《,6*,ρ),
Figure imgf000006_0004
As can be seen in the cluster (5), only when the distance from the point to the plane F is less than "these points affect the objective function Tf ." Since the density of the points in the open space is used to identify the plane of the lung fissure in the subdivision (if any), we propose to use the function of equation (5) to describe the plane F(«, i?, ρ). The cross-sectional area is 3. Thus, the problem to be solved by the density-based plane fitting is to find the optimization parameter (",6*,ρ) by maximizing equation (6),
Figure imgf000006_0004
其中 '?'表示内积, ) = r2— ·ο— )2)是相对于球体中平面 ( ,i?, )的横断面面积, o和 分别表示球体的中心和半径 用 除以 S是为了确保目标函数 S独立于 S 因此目标函数 S只 能是由平面附近的点密度决定。 由于目标函数式(6)不是凸函数, 因此不能用梯度下降法来优化参数。 虽然穷举搜索也是可行的, 但计 算复杂度相当高。 比如对于网格系统 - 时间丄的计算复杂度为^^^^ ^. 在实 际操作中很难被接受。 因此, 需要一个有效的优化算法 接下来是用积分的方法来优化参数 ρ 假设参数(《, )是固定的. 让《 = (cos(a) sin(^), sin(a) sln(^), cos(^))表示平面 F的范数 q;::: ρί . η:::: cos( ) ύη(θ)χ; + sin(a) sin(i?) v, + cos( s. (7) 将式 (7) 带入式 (6), 可以重新写为 wt. (u 1 - j p; ) 2 ) W; {u 1 - (qi - p)2) among them'? 'Expressing the inner product, ) = r 2 — · ο — ) 2 ) is the cross-sectional area relative to the plane of the sphere ( , i?, ), o and The center and radius of the sphere are respectively divided by S to ensure that the objective function S is independent of S. Therefore, the objective function S can only be determined by the dot density near the plane. Since the objective function (6) is not a convex function, the gradient descent method cannot be used to optimize the parameters. Although exhaustive search is also feasible, the computational complexity is quite high. For example, for grid system - the computational complexity of time 为 is ^^^^ ^. It is difficult to accept in actual operation. Therefore, an effective optimization algorithm is needed. Next, the integral method is used to optimize the parameter ρ. The hypothesis parameter (", ) is fixed. Let " = (cos(a) sin(^), sin(a) sln(^) , cos(^)) represents the norm q of the plane F ; ::: ρ ί . η:::: cos( ) ύη(θ)χ ; + sin(a) sin(i?) v, + cos( s (7) Bring equation (7) into equation (6) and rewrite it as w t . (u 1 - jp ; ) 2 ) W; {u 1 - (q i - p) 2 )
/(Λ) <«  /(Λ) <«
ε(ρ\α,θ)  ε(ρ\α, θ)
π τ -- (η . ο - ρ) " ) π " -- (η · ο -- ρ) 1 ) π τ^ -- (η - ο - ρΥ) π τ -- (η . ο - ρ) " ) π " -- (η · ο -- ρ) 1 ) π τ^ -- (η - ο - ρΥ)
(8) 设一个变量 和一个单位向量 Μ, 当 二 miri , max q,- < m + 2r . 点存在以 r为半径
Figure imgf000007_0001
(8) Let a variable and a unit vector Μ, when two miri, max q, - < m + 2r .
Figure imgf000007_0001
ci二 — w Ci II - w
( 一 ] ) 其中, N = 2r/ λ, 是离散 p的格间距。 这里, 我们将 设为一个小值 (比方说, ( 毫米), A,B,C 为式 (10) 中 a,b,c的积分 =  (a)) where N = 2r/ λ, which is the lattice spacing of discrete p. Here, we will set a small value (say, (mm), A, B, C is the integral of a, b, c in equation (10) =
(30) (30)
Cj ::::Lci ::::C, 〗十 p(^m + jl), i†算目标函数式 (8) 为: 其中, l = (p~m~u)/A, = — w + )/ 。 这里 p.- 和 it 是 A的整倍数; 因此, Z和 是整数。 用积分的方法, 我们可以得到优化的参数 并且可以将计算复杂度 )λ 0(Ν χ Ν ρ )减少到 0(N + Np ) 最后一步是用逐步细化策略来优化 让 ^ ( ,έ?)表示 maxf (ρ β,6 , 通过解出式 (12) 能够得出优化参数对(《。pi,6 pi)Cj :::: L c i ::::C , 〗10 p(^m + jl), i 目标 The objective function formula (8) is: Where l = (p~m~u)/A, = — w + )/ . Here p.- and it are integral multiples of A; therefore, Z and are integers. Using the integral method, we can get the optimized parameters and reduce the computational complexity) λ 0(Ν χ Ν ρ ) to 0(N + N p ). The final step is to use the step-by-step refinement strategy to optimize the ^( ,έ ?) denotes maxf (ρ β,6 , and can obtain the optimal parameter pair by solving the equation (12) (" .pi ,6 pi )
-gmax ε ( J) . (12) 虽然目标函数 (cr, i?)不是与 (《, έ?)相关的凸函数,但是在最优参数对(《。ρ 的附近区域 ( Ω )的函数 值与在(图 1!中描述) 区域的函数值同样大 利用此特点, 我们提出用逐步细化策略来有效地搜索最优参数 对(α,6 。 我们首先用一个相对较大的误差 (也就是, 搜索间距《 到 :) 在 在空间内搜索式 (12) 中的近似最优参数对(ί^, ) , 然后, 再用预定义较小误差 8refine (比方说 ::: 0.01 ) 在由 i\ac ~05δ,αε +0.5^]and[^c -~0,5ό,θ(, +0.5 ])定义的细分空闾内来搜索最终优化参数对(《。ρί, 6^)。考 虑到肺裂的特点, 为了避免在局部极小值中受眼, 对于初始搜索来说 δ =0.1就足够了。 比如, 在图 8—11, 从胸部 CT检查中取出的点云构成的球形细分体, Ω =2 {(α, Θ) I ''(« - aop 十. (Θ - θορ:† < 0.3} , 图 11显 示对应图 8中的三维点云目标函数 (《,?), 其中, S(«,i?) = maxs(p|«, )。 利用逐歩细化策略, 搜索 ρ -gmax ε ( J) . (12) Although the objective function (cr, i?) is not a convex function related to (", έ?), but in the optimal parameter pair (". ρ near the region ( Ω ) function The value is as large as the function value in the region (described in Figure 1!). We propose to use a step-by-step refinement strategy to efficiently search for the optimal parameter pair (α,6 . We first use a relatively large error ( that is, the pitch search "to search in the space :) in the formula (12) is near optimal parameters (ί ^,), then the predefined error is small then 8 refine (e.g. ::: 0.01) Search for the final optimization parameter pair in the subdivision space defined by i\a c ~05δ,α ε +0.5^]and[^ c -~0,5ό,θ ( , +0.5 ]) (". ρί , 6^). Considering the characteristics of the lung fissure, in order to avoid eye damage in the local minimum, δ = 0.1 is sufficient for the initial search. For example, in Figure 8-11, the point taken from the chest CT examination A spherical subdivision of clouds, Ω = 2 {(α, Θ) I ''(« - a op十. (Θ - θ ορ :† < 0.3} , Figure 11 shows the corresponding 3D point cloud target in Figure 8. function(",? ), where S(«,i?) = maxs(p|«, ). Search for ρ using the thinning strategy
(« )的时间从^ --减少到 +
Figure imgf000008_0001
, ( )的实际搜索时间由原先
(« ) time reduced from ^ -- to +
Figure imgf000008_0001
, ( ) actual search time from the original
Srefir.e ^ efine ' 的大概 105下降到 103。 为了提高效率并保证所期望的准确度, 在半个单位球体表面上匀化 (也就是统一抽样) 对应 (《, 的候 选范数向量《=(cos(«)sin(6 ,sin(«)sin(^,cos( ))。 否则, 当 值小时 (比方说, =0,即使设 为不同 的值, 《::::(0,0,1)也是相同的。), 将有许多相似方向搜索被重复 在本发明中, 为了各自生成 (《, 对和范 2 The approximate 10 5 of Srefir.e ^ efine ' drops to 10 3 . In order to improve efficiency and ensure the desired accuracy, homogenization (that is, uniform sampling) corresponds to the surface of a half unit sphere (", candidate norm vector "=(cos(«)sin(6,sin(«) Sin(^,cos( )). Otherwise, when the value is small (say, =0, even if set to a different value, "::::(0,0,1) is the same.), there will be many similarities Direction search is repeated in the present invention, for each generation (", and Fan 2
数向量 η, 指定 Θ = 0: : π和 α 0: /sin{6): 搜索优化参数对( ί?)的时间由 + - Γ·一下降到 The number vector η, specifying Θ = 0: : π and α 0: /sin{6): The time to search for the optimization parameter pair ( ί?) is reduced from + - Γ · one to
S ' S r'ej -me  S ' S r'ej -me
2π , δΔ 2π , δ Δ
δ2 ' ό、 r2ej.m. e 。 图 6-图 11通过二维和三维的示例验证了拟合算法的性能。 尽管有许多的异常值干扰, 图片中的线和表 面 (平面) 还是被准硗的识别出来。 图 6和图 7显示了二维图片中点集合的直线拟合。 绿线代表由最小平方 方法得出的结果, 而红线代表了由所发明的密度拟合方法得出的结果。 图 8显示一副从胸部 CT抽取出的球 体的三维点云图。 图 9用点向量和范数向量的內积 (也就是式 (6)) 可视化图 8中的点云。 图 iO是通过应用 此项发明的方法显示了拟合平面 (用红色表示)。 图 U显示对应图 8中三维点云的函数 («,?) δ 2 ' ό, r 2 ej.m. e . Figures 6-11 verify the performance of the fitting algorithm by two-dimensional and three-dimensional examples. Although there are many outliers, the lines and surfaces (planes) in the picture are still recognized by the quasi-硗. Figures 6 and 7 show the straight line fit of the set of points in a two-dimensional picture. The green line represents the result from the least squares method, while the red line represents the result from the invented density fitting method. Figure 8 shows a pair of balls drawn from the chest CT 3D point cloud image of the body. Figure 9 visualizes the point cloud in Figure 8 using the inner product of the point vector and the norm vector (i.e., equation (6)). Figure iO shows the fit plane (indicated in red) by applying the method of the invention. Figure U shows the function («,?) corresponding to the three-dimensional point cloud in Figure 8.
肺裂分割的基本步骤:如图 1至图 5所示  Basic steps of splitting the lung fissure: as shown in Figures 1 to 5
* 肺部分割: 肺部区域分割(如图 2)主要目的是缩小肺裂识别的搜索空闾, 从而提高 算效率, 消除 了在肺部区域以外产生肺裂识别错误 (假 性) 的可能性。  * Pulmonary segmentation: The main purpose of segmentation of the lungs (Figure 2) is to narrow the search for cleft palate recognition, thereby improving computational efficiency and eliminating the possibility of penile crack recognition errors (false) outside the lung region. .
* 蹄部区域细分: 对分割的肺部区域进行进一步细分。 首先, 用轴对齐包围盒 AABB为每一个 CT中的 月市部区域创建一个细分网格系统, 每一个单元格大小是 5x5x5 立方毫米。 细分球体的中心设在格系 统的顶点, 以 r为半径 (如图 3)。 由于肺裂一般具有相对较低的曲率, 我们将将 r值设在 10毫米。 我 之所以用球体面不是立方体是因为球体的旋转不变性和可以高效计算球体在任何方向的横断面 面积。 设格间隔为 5mm, 在欧氏三维空间中, 任一点 G到最近的顶点 0約距离 fdj小于 ^3 x 52 / 2毫 米或是 4.4毫米。 * Hoof area subdivision: Further subdivision of the segmented lung area. First, create a subdivision grid system for each month of the month in the CT with the axis-aligned bounding box AABB, each cell size is 5x5x5 mm3. The center of the subdivision sphere is set at the apex of the grid system, with radius r (see Figure 3). Since the lung fissure generally has a relatively low curvature, we will set the r value to 10 mm. The reason why I use a spherical surface is not a cube because of the rotation invariance of the sphere and the efficient calculation of the cross-sectional area of the sphere in any direction. The spacing is 5 mm. In the Euclidean three-dimensional space, any point G to the nearest vertex 0 is less than ^3 x 5 2 / 2 mm or 4.4 mm.
* 点过滤: 为了缩小肺裂的搜索空闾, 我们用两个滤波器处理蹄部区域。 首先, 由 市裂的亮度值 一般是从— 900HU (豪斯菲尔德单位)到— 300HU, 这样, 这个亮度值范围之外的体素作为非裂隙体 素被剔除。 第二, 由于大部分肺裂区域要比周围环绕区域 (体素) 具有更高的亮度, 因此可以提出 局部区域 一些小于中间强度值的体素。 感兴趣局部区域大小定义为在肺部区域细分中的球体大小。 * Point filtering: In order to narrow the search for lung fissures, we use two filters to process the hoof area. First, the luminance value from the city crack is generally from -900 HU (Hausfield unit) to -300 HU, so that voxels outside this luminance value range are eliminated as non-fractured voxels. Second, since most of the fissure regions have higher brightness than the surrounding area (voxels), some voxels with local values smaller than the intermediate intensity values can be proposed. The size of the local area of interest is defined as the size of the sphere in the subdivision of the lung region.
* 肺裂识别: 在每个细分体中通过平面拟合识另!歸裂。 假定一个以 0(X。, )为中心、 半径 为 10毫 米的球体, 在经过过滤操作之后的在球体内余下的待选点集^^; " 应用式(6) 的目标函数, 来拟 合由( , θ, ρ)参数化后的最优平面 f。由于代表肺裂的体素亮度值在不同的检测中和在相同的检测中 的不同区域中都很不相同. 将式 (6) 中所有的点的加权值设为相同的值 (也就是 ^ 1), 也就是 只考虑平面拟合密度分布。 为了准确识别每个细分体中的平面结构(即肺裂), 仅考虑到球体 (0)中心 的距离小于 5毫米的平面 _FO, p), 也就是^/ ^ /(^ ^5!7^, 其中在式 (2) 中定义了 (0)。 这样确保了球体; r(r2 -d2)中 F的横断面面积大于? r(102 -52) « 236 mm 任一点 G到最近的格 顶点的距离小于 5毫米, 那么就有从球体中心到感兴趣点 Λϊ 小于 5毫米的细分体(中心设在最近 顶点 ;)。因此,拟合过程中考虑了歸裂上的所有点。假定识别出的球体中的最优平面为 ^( , ) , 同时?^和( - Oj + ( ? . · ο 分别表明范数向量和与球形体积相关的 (圆) 橫断面中心, 如 果能量函数 £fF 大于预定阈值 7, 识别出的圆形横断面(平面)就看作是(假定是)肺裂的一部分。 在这项发明中, 应用自适应阈值 7 " (比方说, Γ
Figure imgf000010_0001
将密度基础拟合算法用于所有 的细分体中将会识别出肺裂 (如图 12—图 14所示)。 图 12—图 14表示了肺裂识别和分类结果: 图 12—副 CT图像: 图 13经过识别、 分类的肺裂(以不同的颜色覆盖), 图 14是在移除了图 13中由箭 头所表示的非肺裂区后得到的最终肺裂影像分割和分类图
* Pulmonary split recognition: Identify each other by plane fitting in each subdivision! Suppose a sphere with a radius of 10 mm centered at 0 (X., ), and the set of points to be selected in the sphere after the filtering operation ^^; "Apply the objective function of (6) to fit The optimal plane f after parameterization of ( , θ, ρ). Since the voxel brightness values representing the lung fissures are different in different detections and in different regions in the same detection. Equation (6) The weighting values of all the points in the point are set to the same value (that is, ^ 1), that is, only the plane fitting density distribution is considered. In order to accurately identify the planar structure in each subdivision (ie, the lung fissure), only the The plane of the sphere (0) is less than 5 mm in plane _FO, p), which is ^/ ^ /(^ ^5!7^, where (0) is defined in equation (2). This ensures the sphere; The cross-sectional area of F in r(r 2 -d 2 ) is larger than ? r(10 2 -5 2 ) « 236 mm The distance from any point G to the nearest lattice vertex is less than 5 mm, then there is interest from the center of the sphere to the Point 细分 Subdivision smaller than 5 mm (center is at the nearest vertex;) Therefore, all points on the mesh are considered in the fitting process. Assume the recognized ball Optimal plane ^ (,), At the same time, ^^ and ( - Oj + ( ? . · ο respectively indicate the norm vector and the (circle) cross-sectional center associated with the spherical volume, if the energy function £fF is greater than the predetermined threshold 7, the identified circular cross-section (plane It is considered to be (assuming) a part of the lung fissure. In this invention, an adaptive threshold of 7" is applied (say, Γ
Figure imgf000010_0001
Applying the density-based fitting algorithm to all subdivisions will identify the lung fissure (as shown in Figures 12-14). Figure 12 - Figure 14 shows the results of lung fissure recognition and classification: Figure 12 - Sub-CT image: Figure 13 identified, classified lung fissures (covered in different colors), Figure 14 is removed by the arrow in Figure 13 Final segmentation and classification map of the final lung fissure obtained after the non-lung fissure
* 肺裂分类: 除了识别肺裂, 这项新发明可以同时对肺裂进行分类 假定在两个相邻的球体中识别出 两个肺裂面片 f;和 如下列条件之一得到满足,就假设它俩是属于相同的聚集(也就是 〜 ),* Classification of lung fissures: In addition to identifying lung fissures, this new invention can simultaneously classify lung fissures by assuming that two lung fissure patches f are identified in two adjacent spheres ; and if one of the following conditions is met, Suppose the two belong to the same aggregation (that is, ~),
/是 Fj 的 26-连通近邻, 且 ί ·" ί > (¾ 且 G ÷
Figure imgf000010_0002
< e2.
/ is the 26-connected neighbor of Fj, and ί ·" ί > ( 3⁄4 and G ÷
Figure imgf000010_0002
< e 2 .
{2) 3k, sA.,E 〜 Fk; 〜 Fk{2) 3k, sA., E ~ F k and ; ~ F k .
假定在相邻的球体中识别出 和 平面块, 参数 <¾用来控制 和 之间曲率或是允许角, 参数 62用 来控制 和 之间距离的连续性。 这里, 凭经验将 设为 0.98毫米, 相^地将 e2设为 2毫米。 聚集区间按 每个聚集内所包含的 裂数量的递减顺序排列。 左肺 第一个 (最大) 聚集用来代表左斜裂。 右肺 第 一和第二个 (最大) 聚集分别用来代表右斜裂和横向肺裂 (如图 12—图 14)。 其它所有的聚集作为非肺裂区 被移除 Identified and assumed plane block parameters in the adjacent sphere <¾ to allow or curvature continuity between the control and the distance between the corner, and for controlling parameters of 62. Here, by experience, it will be set to 0.98 mm, and the e 2 will be set to 2 mm. The aggregation interval is arranged in descending order of the number of cracks contained in each aggregate. The first (largest) aggregate of the left lung is used to represent the left oblique split. The first and second (maximum) aggregates of the right lung are used to represent the right oblique and transverse lung fissures, respectively (Figures 12-14). All other aggregates were removed as non-lung fissures
结果  Result
为了评估所发明方法的性能, 我们收集了 2 0 Q例慢性阻塞性肺病 (COPD ) 詾部 CT数据, 并用该方法 检测这些数据中的肺裂,将结果与之前一种方法在同一组数据上进行比较。识别性能用 Hausdorff距离和累识 误差距离分布 (CEDD)进行度量 用这两种方法识别出的肺裂大约有 95%在 2毫米距离之内, 之闾的平均误差 大概在 0.6毫米, 平均裂隙最大误差是 16毫米。 计算时间方面, 这种新方法在一台普通电脑上(配置为英特 尔酷睿 13, 3.2赫兹中央 理器, 6.0G内存的台式电脑) 对 CT图像上的肺裂识. 大概耗时 8分钟。  To assess the performance of the invented method, we collected 20 Q cases of chronic obstructive pulmonary disease (COPD) cranial CT data and used this method to detect lung fissures in these data, using the same data as the previous method. Compare. The recognition performance is measured by Hausdorff distance and the cumulative error distance distribution (CEDD). The lung fissures identified by these two methods are about 95% within 2 mm, and the average error is about 0.6 mm. The average crack is the largest. The error is 16 mm. In terms of computing time, this new method takes about 8 minutes on a normal computer (configured as an Intel Core 13, 3.2 Hz central processor, 6.0G memory desktop) for lung fissure on CT images.
为了形象地展示新发明方法在肺裂识别上的性能, 我^提供了如图 15—图 17的示例。 例中, 识别出的 裂隙用颜色标志。  In order to visually demonstrate the performance of the new invention method in the detection of lung fissures, I have provided examples in Figures 15-17. In the example, the identified crack is color-coded.
图 18至图 20提供的例子, 显示了有着严重支气管扩张 (囊胞性纤维症) 的异常检测中肺裂识别。 图 21至图 23是用新发明方法识别肺裂中一个检测难度较大的例子。 想要清晰看清肺裂的硗切位置是非 常困难的。 而将之前的方法 [1]应用在这个检测中, 是完全失效 The examples provided in Figures 18 through 20 show lung fissure recognition in an abnormality test with severe bronchiectasis (cystic fibrosis). 21 to 23 are examples in which it is difficult to identify a lung fissure by the new invention method. It is very difficult to clearly see the location of the lungs. Applying the previous method [1] to this test is completely invalid.
这里, 描述了一个完全自动化的肺裂识别和分类方法, 通过利用图像空闾中肺裂的的密度分布的特点。 这种方法是将复杂的自由表面识别转化为系列平面拟合, 在方法具有通用性、 高效性等特点  Here, a fully automated method for identifying and classifying lung fissures is described, by exploiting the characteristics of the density distribution of the lung fissures in the open space of the image. This method converts complex free surface recognition into a series of plane fittings, which is characterized by versatility and efficiency.
虽然本发明己经通过参考其具体实施进行了描述, 但是本领域的普通技术人员将会领会到, 在不脱离本 发明的精神或范围的情况下可实现很多修改、加强和 /或变化。本发明旨在由其权利要求书及其等同物的范围 进行限定。 While the invention has been described by reference to the specific embodiments of the present invention, it will be understood that many modifications, modifications and/or changes may be made without departing from the spirit and scope of the invention. The invention is intended to be defined by the scope of the claims and their equivalents.
参考文献 references
[1] J. Puf J. Κ. Leader, Β. Zheng, F. noi!mann, C. Fuhrman, F. C. Sciurba, and D, Gur, "A computational geometry approach to automated puinionary fissure segmentation in ct examinations/' IEEE Transactions on Medical Imaging, voi. 28, no. Sf pp 710-719, 2009. [1] J. Pu f J. Κ. Leader, Β. Zheng, F. noi!mann, C. Fuhrman, FC Sciurba, and D, Gur, "A computational geometry approach to automated puinionary fissure segmentation in ct examinations/' IEEE Transactions on Medical Imaging, voi. 28, no. S f pp 710-719, 2009.
[2] R. Waemker, T, Blow, and T, Blaffert, "Unsupervised extraction of the puimonary interlobar fissures from hagh resolution thoracic ct data '" In Proc. 13th Int. Congress ExhlbitionComputer Assist. RadioL Surg. (CARS), Berlin, Germany, 2005( pp. 1121-1126. [2] R. Waemker, T, Blow, and T, Blaffert, "Unsupervised extraction of the puimonary interlobar fissures from hagh resolution thoracic ct data '" In Proc. 13th Int. Congress ExhlbitionComputer Assist. RadioL Surg. (CARS), Berlin , Germany, 2005 ( pp. 1121-1126.
[3] E. . van Rikxoor B, van Ginneken, iVL Kl k, and iVL Prokop, "Supervised enhancement filters: Apphcation to fissure detection in chest ct scans/' iEEE Transactions on Medical imaging, vol. 27, no. 1, pp. 1-10, Jan. 2008,  [3] E. . van Rikxoor B, van Ginneken, iVL Kl k, and iVL Prokop, "Supervised enhancement filters: Apphcation to fissure detection in chest ct scans/' iEEE Transactions on Medical imaging, vol. 27, no. 1, Pp. 1-10, Jan. 2008,
[4] E iVL v n Rikxoor B de Hoop, S van de Vorst, M, Prokop, and 8, van Ginneken, "Automate segmentation of pulmonary segments from voiumetric chest ct scans/' IEEE Transactions on Medical Imaging, vol. 28, no, 4; pp. 621—630, 2009 [4] E iVL vn Rikxoor B de Hoop, S van de Vorst, M, Prokop, and 8, van Ginneken, "Automate segmentation of pulmonary segments from voiumetric chest ct scans/' IEEE Transactions on Medical Imaging, vol. 28, no , 4 ; pp. 621-630, 2009
[5] S, Saiia, M. Kubo,. Y. Kawata, N. Niki, H. Ohmaisu, and N. Moriyama, "An algorithm for the extraction of puimonary Assures from low-dose muitisHce ct image " System and Computers in Japan, vol 37, no, 9, ppt 63-76, 2006. [5] S, Saiia, M. Kubo,. Y. Kawata, N. Niki, H. Ohmaisu, and N. Moriyama, "An algorithm for the extraction of puimonary Assures from low-dose muitisHce ct image " System and Computers in Japan, vol 37, no, 9, pp t 63-76, 2006.
[6] J. -M, Kuhnigk, H. K. Hahn, M. Hmdennach, V Dicken, S, rass, and H.-O. Peitgen, "Lung iobe segmentation by anatomy-gLfided 3d watershed transform/' in SP\Ef 2003, pp. 1482—1490. [6] J. -M, Kuhnigk, HK Hahn, M. Hmdennach, V Dicken, S, rass, and H.-O. Peitgen, "Lung iobe segmentation by anatomy-gLfided 3d watershed transform/' in SP\E f 2003, pp. 1482—1490.
[7] S UkH and J, IVL Reiniwdt "Anatomy-guided lung iobe segmentation m x-ray ct images;" IEEE Transactions on Medical Imaging, vol. 28, no. 2, pp. 202-214, 2009.  [7] S UkH and J, IVL Reiniwdt "Anatomy-guided lung iobe segmentation m x-ray ct images;" IEEE Transactions on Medical Imaging, vol. 28, no. 2, pp. 202-214, 2009.
[8] X. Zhou, T Hayashi, T, Mara,, H Fuji and R, Yokoyama, "Automatic recognition of lung lobes and Assures from muiis-slice ct images, in SPIE,. 2004, pp. 1629-1633.  [8] X. Zhou, T Hayashi, T, Mara,, H Fuji and R, Yokoyama, "Automatic recognition of lung lobes and Assures from muiis-slice ct images, in SPIE,. 2004, pp. 1629-1633.
[9]丄 Wang,, M, Betkel, and』, Ko, "Shape-based curve growing model and adaptive regu arization for pulmonary fissure segmentation in ct/'' in MiCCAI, LNCS 3216, 2004, pp, 541-548.  [9]丄Wang,, M, Betkel, and』, Ko, "Shape-based curvature growing model and adaptive regu arization for pulmonary fissure segmentation in ct/'' in MiCCAI, LNCS 3216, 2004, pp, 541-548.
[10] J. Wang, M. Betke,, and』, o,, "Pulmonary fissure segmentation on CT" Medical Image Analysis, voL 10, pp 530-547, 2006. [10] J. Wang, M. Betke, and and, o,, "Pulmonary fissure segmentation on CT" Medical Image Analysis, voL 10, pp 530-547, 2006.
[11] M, Kubo, N. Niki, S. Nakagawa. . Eguchi, . Kaneko, N oriyama, H. Omatsu, R. \ R, and N. Yamaguchi, "Extraction algorithm of pulmonary fissures from thin-section ci images based on linear feature detector method " ίΕΕΕ Transactions on Nuclear Science, vol 46, no. 6, pp. 2128—2133, 1999.  [11] M, Kubo, N. Niki, S. Nakagawa. . Eguchi, . Kaneko, N oriyama, H. Omatsu, R. \ R, and N. Yamaguchi, "Extraction algorithm of pulmonary fissures from thin-section ci images Based on linear feature detector method " ΕΕΕ on on Nuclear Science, vol 46, no. 6, pp. 2128-2133, 1999.
[12] . Kubo., Y. avvata, . Niki, K. Eguchi, H, Omatsu, R, K. R; M. aneko, , Kusumoto, N, oriyama., K, Mori, and H Nishiyama, "Automatic extraction of pulmonary fissures from multidetector-rovv ct images," In Proceedings of the IEEE international Conference on Image Processing (iCIPOl), 2001, pp. 1091-1094, [12] . Kubo., Y. avvata, . Niki, K. Eguchi, H, Omatsu, R, K. R ; M. aneko, , Kusumoto, N, oriyama., K, Mori, and H Nishiyama, "Automatic Extraction of pulmonary fissures from multidetector-rovv ct images," In Proceedings of the IEEE international Conference on Image Processing (iCIPOl), 2001, pp. 1091-1094,
[13] . Li, X. Wu, D Chen, and iVI Sonka, "Optima! surface segmentation in volumetric mages- a graph -theoretic approach/' iEEE transactions on Pattern Analysis and Machine InieHsgence, VoL IS, no. 1; pp. 119—134, 2006. [13] . Li, X. Wu, D Chen, and iVI Sonka, "Optima! surface segmentation in volumetric mages- a graph - theoretic approach/' iEEE transactions on Pattern Analysis and Machine InieHsgence, VoL IS, no. 1 ; pp 119-134, 2006.
[14] L 2hang and J, Reinhardt, "Detection of pulmonary lobar Assures using fuzzy logic, in Proc. of SPIE 1999, pp. 1SS --199. [14] L 2hang and J, Reinhardt, "Detection of pulmonary lobar Assures using fuzzy logic, in Proc. of SPIE 1999, pp. 1SS --199.
[15] L Zhang, Hoffman, and 』. Reinhardt "Pulmonary iobe segmentation by graph search with 3 -d shape constraints/' in SPIE, 2001, pp. 204-215.  [15] L Zhang, Hoffman, and 』. Reinhardt "Pulmonary iobe segmentation by graph search with 3 -d shape constraints/' in SPIE, 2001, pp. 204-215.
[16] L Zhang, E. A. Hoffman, and J. IVL Remhardt, "Atlas- driven lung iobe segmentation in vo umelnc x-ray cl images/' iEEE Transactions on Medical imaging, vol. 25, no. 1, . 1-16, 2006.  [16] L Zhang, EA Hoffman, and J. IVL Remhardt, "Atlas-driven lung iobe segmentation in vo umelnc x-ray cl images/' iEEE Transactions on Medical imaging, vol. 25, no. 1, . 1-16 , 2006.
[17] E van Rikxoort, M. Prokop, B. de Hoop,, M, V iergever, J. Pluim, and B. van Ginneken, "Automatic segmentation of pulmonary iobes robust against incomplete fissures," IEEE Transactions on Medical imaging, vol 29, no, 6, pp. 1286—1296, 2010,  [17] E van Rikxoort, M. Prokop, B. de Hoop,, M, V iergever, J. Pluim, and B. van Ginneken, "Automatic segmentation of pulmonary iobes robust against incomplete fissures," IEEE Transactions on Medical imaging, Vol 29, no, 6, pp. 1286—1296, 2010,
[IS] P. To rr and D. Murray, "The development and comparison of robust methods for estimating the fundamental matrix " !nternaisonai journal of Computer Vision, vol 24, no. pp. 271-300, 1997.  [IS] P. To rr and D. Murray, "The development and comparison of robust methods for estimating the fundamental matrix" !nternaisonai journal of Computer Vision, vol 24, no. pp. 271-300, 1997.
[19] S. Choi, T. Kim,, and W. Yu, "Performance evaluation of RAN SAC family/' in Proc. of the 20th Brstssh Machine Vision Conference, 2009; pp. 1. 12  [19] S. Choi, T. Kim, and W. Yu, "Performance evaluation of RAN SAC family/' in Proc. of the 20th Brstssh Machine Vision Conference, 2009; pp. 1. 12
[20]」. Pu, D. S. Pa k, X. eng, J. E, Roos, and G. D. Rubin, "Shape break-and-repair strategy and its application to computerized medical image segmentation/' IEEE Transactions on Visualization & Computer Graphics, vol 17, no. 1, [20]". Pu, DS Pa k, X. eng, J. E, Roos, and GD Rubin, "Shape break-and-repair strategy and its application to computerized medical image segmentation/' IEEE Transactions on Visualization & Computer Graphics , vol 17, no. 1,
ZZ6.0/llOZN3/X3d C90.00/CT0Z OAV ZZ6.0/llOZN3/X3d C90.00/CT0Z OAV

Claims

权利要求书  Claim
所述权利包括: The rights include:
1. 一种以解析平面拟合方法为基础肺裂识别的自动计算方法, 此方法包括 1. An automatic calculation method for lung fissure recognition based on an analytical plane fitting method, the method comprising
选择目标函数; 优化参数 优化参数对 Select the objective function; optimize the parameters
2.按照权利要求 1所述的方法, 其中目标函数的选择包括: 2. The method of claim 1 wherein the selection of the objective function comprises:
定为平面 F为 f(p) = cos(a) sin(i?)x + sin(a) sin( ' + ο%(θ)ζ - ρ; Set to plane F is f(p) = cos(a) sin(i?)x + sin(a) sin( ' + ο%(θ)ζ - ρ;
Ifip)2 if f(P;f <u Ifip) 2 if f(P;f <u
定义对噪音或者异常值不敏感的距离函数∑) D( DDefine a distance function that is insensitive to noise or outliers ∑) D( D
Figure imgf000015_0001
Figure imgf000015_0001
(α,θ, p):::: E'' (F):::: u 2 w; - E(F) 中的函数 '(«,ί?,ρ)除以平面 F(«, p)的(α,θ, p):::: E'' (F):::: u 2 w; - The function '(«, ί?, ρ) in E(F) divided by the plane F(«, p )of
= wi (u 2 - f(P; )2) ÷ v
Figure imgf000015_0002
橫断面面积 S是为了确保目标函数 f独立于 S之外, 因此, 目标函数 由平面附近的点密度决定
= w i ( u 2 - f(P; ) 2 ) ÷ v
Figure imgf000015_0002
The cross-sectional area S is to ensure that the objective function f is independent of S, therefore, the objective function is determined by the dot density near the plane
3. 按照权利要求 j所述的方法, 其中优化参数 还包括: 用积分的方法来优化参数 p。
Figure imgf000015_0003
其中优化参数对^^ , 还包括: 用多尺度或是由逐步细化方法来 有效搜索参数对
3. The method of claim j, wherein optimizing the parameter further comprises: optimizing the parameter p by means of integration.
Figure imgf000015_0003
The optimization parameter pair ^^ also includes: using a multi-scale or a step-by-step refinement method to effectively search for parameter pairs
5。 按照权利要求 4所述的方法, 还包括: ^一个相对较大误差 (搜索间距 Θ )在 (《, 空间 内搜索近似优化参数对 . ); 5. The method according to claim 4, further comprising: ^ a relatively large error (search pitch Θ) in (", searching for an approximate optimization parameter pair in space];
用预定义更小误差 . 0.01 )在由(|af. - 0.5δ, ac + 0.5c?] and [θ(: - 0.5 θ:: + (15δ])定 义的细分空间内来搜索最终优化参数对 (a。。t, θ0 λ。 Use a predefined smaller error. 0.01) to search within the subdivision space defined by (|a f . - 0.5δ, a c + 0.5c?] and [θ (: - 0.5 θ :: + (15δ]) Finally optimize the parameter pair ( a.t , θ 0 λ.
6. 肺部区域的细分方法, 包括使用轴对齐包围盒 ΑΑΒΒ为每一个 CT检测建一个细分体系统.: 6. Subdivision methods for the lung area, including the use of axis-aligned bounding boxes 建 Create a subdivision system for each CT test.:
7. ffl两个滤波器处理经过分割的肺部区域的方法。 7. ffl Two filters handle the segmented lung area.
8. 在待选细分体中识别歸裂的平面拟合方法。 8. Identify the planar fitting method of the segmentation in the candidate segment.
9. 在肺裂检测过程中为了同时识别不同种类的肺裂聚类方法。 9. In the process of lung fissure detection, in order to simultaneously identify different types of lung fissure clustering methods.
PCT/CN2011/079226 2011-07-08 2011-09-01 Method for identifying lung fissure on ct image of lungs WO2013007063A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110190797.2 2011-07-08
CN2011101907972A CN102254097A (en) 2011-07-08 2011-07-08 Method for identifying fissure on lung CT (computed tomography) image

Publications (1)

Publication Number Publication Date
WO2013007063A1 true WO2013007063A1 (en) 2013-01-17

Family

ID=44981358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079226 WO2013007063A1 (en) 2011-07-08 2011-09-01 Method for identifying lung fissure on ct image of lungs

Country Status (2)

Country Link
CN (1) CN102254097A (en)
WO (1) WO2013007063A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3968271A1 (en) 2020-09-11 2022-03-16 Bayer AG Analysis of intrapulmonary branches
US11295451B2 (en) 2016-08-02 2022-04-05 Koninklijke Philips N.V. Robust pulmonary lobe segmentation

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629327A (en) * 2011-12-02 2012-08-08 普建涛 Airway wall identification method
US9607395B2 (en) * 2014-07-02 2017-03-28 Covidien Lp System and method for detecting trachea
CN104574319B (en) * 2015-01-22 2017-10-13 深圳大学 The blood vessel Enhancement Method and system of a kind of lung CT image
CN106373118B (en) * 2016-08-30 2017-09-22 华中科技大学 The complex curved surface parts point cloud compressing method of border and local feature can be effectively retained
CN106875379A (en) * 2017-01-10 2017-06-20 陕西渭南神州德信医学成像技术有限公司 Lung splits integrity degree appraisal procedure, device and system
WO2019000455A1 (en) 2017-06-30 2019-01-03 上海联影医疗科技有限公司 Method and system for segmenting image
CN107392910B (en) * 2017-07-06 2020-01-07 东软医疗系统股份有限公司 Lung lobe segmentation method and device based on CT image
CN107909581B (en) * 2017-11-03 2019-01-29 杭州依图医疗技术有限公司 Lobe of the lung section dividing method, device, system, storage medium and the equipment of CT images
CN109300122B (en) * 2018-09-14 2023-04-07 东软医疗系统股份有限公司 Image processing and threshold determining method, device and equipment
CN109658425B (en) * 2018-12-12 2021-12-28 上海联影医疗科技股份有限公司 Lung lobe segmentation method and device, computer equipment and storage medium
CN111986299B (en) * 2019-05-24 2024-03-01 北京京东乾石科技有限公司 Point cloud data processing method, device, equipment and storage medium
CN113160186B (en) * 2021-04-27 2022-10-25 青岛海信医疗设备股份有限公司 Lung lobe segmentation method and related device
CN114092470B (en) * 2021-12-08 2022-08-09 之江实验室 Deep learning-based automatic detection method and device for pulmonary fissure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142481A (en) * 2006-12-13 2008-06-26 Med Solution Kk Apparatus and program for carrying out segmentation of lungs to units of pulmonary segment automatically
US20100322493A1 (en) * 2009-06-19 2010-12-23 Edda Technology Inc. Systems, methods, apparatuses, and computer program products for computer aided lung nodule detection in chest tomosynthesis images

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1205546C (en) * 2001-12-30 2005-06-08 吴国雄 Automatic design simulating system for plane figure of highway in mountain area
CN1598868A (en) * 2004-09-06 2005-03-23 南京大学 Changing method abstrated characteristic in mode recognition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142481A (en) * 2006-12-13 2008-06-26 Med Solution Kk Apparatus and program for carrying out segmentation of lungs to units of pulmonary segment automatically
US20100322493A1 (en) * 2009-06-19 2010-12-23 Edda Technology Inc. Systems, methods, apparatuses, and computer program products for computer aided lung nodule detection in chest tomosynthesis images

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG, QINGHUI ET AL.: "Slope3D-A Three-Dimensional Limit Equilibrium Analysis Software for Slope Stability and Its Application", CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING, vol. 22, no. 7, July 2003 (2003-07-01) *
PU, JIANTAO ET AL.: "A Computational Geometry Approach to Automated Pulmonary Fissure Segmentation in CT Examinations", IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 28, no. 5, May 2009 (2009-05-01), pages 711 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11295451B2 (en) 2016-08-02 2022-04-05 Koninklijke Philips N.V. Robust pulmonary lobe segmentation
EP3968271A1 (en) 2020-09-11 2022-03-16 Bayer AG Analysis of intrapulmonary branches

Also Published As

Publication number Publication date
CN102254097A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
WO2013007063A1 (en) Method for identifying lung fissure on ct image of lungs
Mansoor et al. A generic approach to pathological lung segmentation
Roy et al. A deep learning-shape driven level set synergism for pulmonary nodule segmentation
Hua et al. Segmentation of pathological and diseased lung tissue in CT images using a graph-search algorithm
Wang et al. Shape–intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images
EP2916738B1 (en) Lung, lobe, and fissure imaging systems and methods
Pu et al. A computational geometry approach to automated pulmonary fissure segmentation in CT examinations
Pu et al. A differential geometric approach to automated segmentation of human airway tree
Dhara et al. Computer-aided detection and analysis of pulmonary nodule from CT images: a survey
Singadkar et al. Automatic lung segmentation for the inclusion of juxtapleural nodules and pulmonary vessels using curvature based border correction
Korfiatis et al. Vessel tree segmentation in presence of interstitial lung disease in MDCT
Soliman et al. Segmentation of lung region based on using parallel implementation of joint MGRF: Validation on 3D realistic lung phantoms
Zhao et al. An automated pulmonary parenchyma segmentation method based on an improved region growing algorithmin PET-CT imaging
Qi et al. Automatic pulmonary fissure detection and lobe segmentation in CT chest images
Li et al. Supervised recursive segmentation of volumetric CT images for 3D reconstruction of lung and vessel tree
Jaffar et al. Ensemble classification of pulmonary nodules using gradient intensity feature descriptor and differential evolution
Li et al. Segmentation of pulmonary nodules using adaptive local region energy with probability density function-based similarity distance and multi-features clustering
EP3631806A1 (en) Quantified aspects of lesions in medical images
Li et al. Automated segmentation of prostate MR images using prior knowledge enhanced random walker
Lee et al. Hybrid airway segmentation using multi-scale tubular structure filters and texture analysis on 3D chest CT scans
Özsavaş et al. Automatic segmentation of anatomical structures from CT scans of thorax for RTP
Soliman et al. Segmentationof pathological lungs from CT chest images
Devaki et al. Study of computed tomography images of the lungs: A survey
Edwin et al. Liver and tumour segmentation from abdominal CT images using adaptive threshold method
Gu et al. Identification of pulmonary fissures using a piecewise plane fitting algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869376

Country of ref document: EP

Kind code of ref document: A1