WO2013005912A1 - Navigation system using cloud computing technology, method for managing same, and computer-readable recording medium for recording a program for the system and method - Google Patents

Navigation system using cloud computing technology, method for managing same, and computer-readable recording medium for recording a program for the system and method Download PDF

Info

Publication number
WO2013005912A1
WO2013005912A1 PCT/KR2012/002850 KR2012002850W WO2013005912A1 WO 2013005912 A1 WO2013005912 A1 WO 2013005912A1 KR 2012002850 W KR2012002850 W KR 2012002850W WO 2013005912 A1 WO2013005912 A1 WO 2013005912A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
route
information
cloud
navigation
Prior art date
Application number
PCT/KR2012/002850
Other languages
French (fr)
Korean (ko)
Inventor
김철민
권재현
Original Assignee
가온미디어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가온미디어 주식회사 filed Critical 가온미디어 주식회사
Publication of WO2013005912A1 publication Critical patent/WO2013005912A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096833Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
    • G08G1/096844Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route where the complete route is dynamically recomputed based on new data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3492Special cost functions, i.e. other than distance or default speed limit of road segments employing speed data or traffic data, e.g. real-time or historical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096811Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard

Definitions

  • the present invention relates to a navigation technology that provides an optimal path of a vehicle by cloud computing.
  • the present invention uses a cloud computing technology that has a minimum input and output means in the navigation terminal of the vehicle and processes most of the information gathering and processing in a central server to connect the navigation mounted on different cars to the network and to the central server.
  • the present invention relates to a navigation technology that collects information on a large number of vehicles and provides an optimal route to a vehicle driver in consideration of current traffic as well as future time-phased traffic when an individual vehicle moves along a given route.
  • vehicle drivers can use a navigation terminal mounted on a car to search for a route to a destination they want to go to, and also obtain information about a time required for the destination.
  • the navigation terminal since the navigation terminal has a large amount of map data, it is possible to provide surrounding maps and road information of the region regardless of the region.
  • next-generation 4G mobile communication networks such as Wibro, Wifi, and LTE, which are capable of high-capacity high-speed data transmission
  • a foundation for implementing cloud computing technology using these communication resources is expected to be laid in the near future.
  • a vehicle navigation terminal technology that provides an optimal path in consideration of not only current traffic but also future time-phase traffic by using such cloud computing technology has not been actualized yet.
  • An object of the present invention can provide an optimal route to the vehicle driver in consideration of the current traffic conditions as well as future traffic conditions in the future time zone, minimize the configuration of the navigation terminal mounted on the vehicle, and load balancing of road traffic This makes it possible to provide cloud computing navigation technology that allows the road to be used efficiently throughout.
  • a cloud computing navigation system including: a computer-readable recording medium that records an operation program of a navigation terminal for receiving vehicle route information including a starting point and a destination from a user and transmitting the same to a cloud central server; A cloud database storing traffic information including a vehicle route database; Receives vehicle route information from the navigation terminal, generates a vehicle route database and stores it in the cloud database, calculates an estimated position for each vehicle from the vehicle route database, and estimates traffic time for each position based on the estimated position for each time zone And a cloud central server configured to calculate a recommendation route of the vehicle based on the estimated traffic information according to time slots and transmit the recommended route of the vehicle to the navigation terminal of the vehicle through the cloud network.
  • the cloud central server may include: an interface module configured to receive vehicle route information from a plurality of navigation terminals through a cloud network, and transmit an internally calculated recommendation route to a corresponding navigation terminal;
  • a vehicle route database generation module which collects vehicle route information from a plurality of navigation terminals, generates a vehicle route database, and stores the vehicle route database in a cloud database;
  • the navigation terminal transmits the current location information and waypoint information of the vehicle to the cloud central server, and the traffic prediction module adds time to each vehicle based on the current location information and waypoint information. It is preferable to calculate the estimated location for each unit, and to calculate the estimated traffic information for each time slot for each location and store the data in a cloud database.
  • the cloud central server in a cloud computing navigation system further comprises a vehicle information management module for extracting and managing road preference information for each vehicle by repeatedly comparing the difference with the recommended route by tracking the vehicle's location information in real time.
  • the optimum route calculation module receives road preference information for the vehicle from the vehicle information management module and calculates the recommendation route in consideration of the road preference.
  • the traffic prediction module in a cloud computing navigation system further comprises a traffic simulation module for simulating each vehicle registered in the vehicle path database to virtually move over time to calculate the estimated traffic information for each time zone for each location. It is preferred to be configured.
  • the optimum route calculation module simulates the movement of a specific vehicle according to a combination of various routes over time based on the estimated traffic information according to time slots calculated through the traffic simulation module to recommend the vehicle. It is preferably configured to further include; an optimal path simulation module for calculating a path.
  • a cloud computing method of operating a navigation comprising: (A) receiving vehicle route information including a starting point and a destination through a navigation terminal; (B) the navigation terminal transmits the vehicle route information to the cloud central server; (C) the cloud central server collecting vehicle route information from the plurality of navigation terminals to generate a vehicle route database; (D) the cloud central server calculating an estimated position for each vehicle based on a departure point and a destination included in the vehicle route database; (E) the cloud central server calculating the estimated traffic information according to time slots for each location based on the estimated time slots; (F) calculating, by the cloud central server, a recommended route of the vehicle based on the estimated traffic information for each time zone; (G) the cloud central server transmits the recommended route to the navigation terminal of the vehicle through the cloud network.
  • step further comprises the step of the navigation terminal to transmit the current location information and waypoint information of the vehicle to the cloud central server
  • step cloud central server The method may further include calculating an estimated position for each vehicle based on the current location information and waypoint information.
  • step (E) simulates the cloud central server to virtually move each vehicle registered in the vehicle route database over time, thereby calculating the estimated traffic information for each time slot. It is preferably configured to further comprise a step.
  • step (F) is based on the estimated traffic information according to time slots calculated through the simulation of step (E), and the movement of a specific vehicle is performed on a combination of various paths according to time.
  • the method may further include the step of simulating accordingly and calculating a recommended route of the vehicle from the results.
  • the present invention it is possible to provide an optimal route to the vehicle driver in consideration of not only the current traffic situation but also future traffic conditions according to the time zone, thereby significantly improving the reliability of providing the shortest time route.
  • the configuration of a navigation terminal mounted on a vehicle can be provided at a low cost, and further, a smartphone, a smart pad, a set top box for a vehicle, etc. Even if only the software is installed, it is possible to provide a high-performance navigation service.
  • FIG. 1 is a block diagram showing the overall configuration of a cloud computing navigation system
  • FIG. 2 is a block diagram showing in more detail the configuration of the cloud central server 300 in FIG.
  • Figure 5 is a flow chart showing the overall operation of the navigation operation method cloud computing method.
  • FIG. 1 is a block diagram showing the overall configuration of a cloud computing navigation system.
  • the navigation terminal 100 is a device that can be mounted on a vehicle such as a car and informs driving information through a screen, and is preferably configured with only a minimum input means and a display in accordance with the purpose of implementing cloud computing. That is, the navigation terminal 100 is provided with input means for allowing the driver to input vehicle route information such as a starting point and a destination, and a display means for providing a road guidance to the driver through a map screen.
  • the vehicle route information When the vehicle route information is input from the driver, it is transmitted to the cloud central server 300 through the cloud network 200.
  • the vehicle route information may include the current location information of the vehicle using GPS, the waypoint information separately input by the driver, in addition to the information about the starting point and the destination input by the driver.
  • the navigation terminal 100 constituting the present invention may be implemented in various forms.
  • it may be implemented as a navigation-only terminal mounted in a vehicle, or may be implemented by installing a related application on a smartphone (eg, an iPhone) or a smart pad (eg, an iPad).
  • the navigation terminal 100 may be implemented by mounting the relevant software on a vehicle AV system or various set-top boxes (eg, satellite set-top boxes, IPTV set-top boxes, etc.).
  • the navigation terminal 100 according to the present invention may be implemented by accessing a web page providing a vehicle route providing service according to the present invention through a laptop computer or the like through the Internet.
  • the cloud network 200 is a wired or wireless medium that connects the plurality of navigation terminals 100 and the cloud central server 300.
  • the cloud network 200 may transmit a large amount of data. It should be implemented as possible communication network.
  • the cloud network 200 may be implemented to include WiBro (Wibro), wireless LAN (Wifi, WiMax), a next-generation 4G mobile communication network (for example, LTE, etc.) capable of high-capacity high-speed data transmission.
  • WiBro Wibro
  • WiMax wireless LAN
  • WiMax next-generation 4G mobile communication network
  • the cloud central server 300 collects information from a number of navigation terminals 100 registered in a cloud computing service, processes cloud computing, and transmits the processing result to each navigation terminal 100.
  • the cloud central server 300 when the cloud central server 300 receives vehicle route information from the plurality of navigation terminals 100 through the cloud network 200, the cloud central server 300 generates a vehicle route database therefrom.
  • the generated vehicle route database is stored in the cloud database 400.
  • the cloud central server 300 uses the vehicle route database stored in the cloud database 400 to estimate the time-based estimated position for each time period, which roughly predicts which position at which time each vehicle will be reached when it moves along a given route. Calculate per vehicle. This may be calculated in consideration of the current road traffic situation by referring to the accumulated traffic information, or may be variously implemented in other ways.
  • the estimated traffic information for each location based on the calculated estimated time slots for each location, not only current traffic but also future traffic according to time slots can be estimated. For example, it is possible to calculate the traffic volume of a specific road point in a specific time zone through the predicted location of each vehicle time zone, thereby predicting future traffic for each location on the map.
  • the cloud central server 300 calculates the shortest time path for each vehicle based on the estimated traffic information for each time zone calculated through this process.
  • the shortest route can be selected to minimize the amount of traffic calculated at each time zone for each location of the route through which the vehicle will pass, and each vehicle registered in the service can be simulated through numerous calculations according to various combinations of routes over time. You can also choose an optimized path.
  • the cloud central server 300 holds the route information of a number of vehicles, it is possible to provide the optimal route suitable for each vehicle in real time by comprehensively analyzing it at once. In addition, this also has the side effect of enabling load balancing of road traffic.
  • the cloud central server 300 transmits the shortest time path or the optimized path to the navigation terminal 100 of the vehicle through the cloud network 200. Then, the navigation terminal 100 displays the result received from the cloud central server 300 on the screen, whereby the driver can use the optimal path calculated in consideration of future traffic.
  • the cloud database 400 stores various traffic information including a vehicle route database.
  • the cloud database 400 must be capable of high-capacity and high-speed input / output to be suitable for performing cloud computing, and is preferably implemented to be sufficiently backed up in case of an accident.
  • FIG. 2 is a block diagram illustrating an internal configuration of the cloud central server 300 and related components in FIG. 1 in more detail.
  • the navigation terminal 100 is preferably provided with a GPS module 110, the cloud central server 300, the interface module 310, vehicle route database generation module 320, traffic prediction module 330, The optimum path calculation module 340 and the vehicle information management module 350 are provided.
  • the interface module 310 receives vehicle route information from the plurality of navigation terminals 100 through the cloud network 200 and provides the vehicle route database generation module 320 to the vehicle route database generation module 320, and the shortest time route from the optimal route calculation module 340. By receiving the transmission to the corresponding navigation terminal 100 serves as an interface between the server and the network for cloud computing.
  • the vehicle route database generation module 320 When the vehicle route database generation module 320 receives the vehicle route information through the interface module 310, the vehicle route database generation module 320 accumulates the vehicle route information by accumulating the vehicle route information.
  • the vehicle route information includes information such as a starting point and a destination of the driving vehicle.
  • the vehicle route information may include current location information, waypoint information, preferred route information, priority, etc. of the driving vehicle.
  • the vehicle route database generation module 320 collects a lot of vehicle route information transmitted from the plurality of navigation terminals 100 connected to the cloud network 200, and then generates a vehicle route database.
  • the generated vehicle route database may be collectively managed by the server and may be stored in the cloud database 400 for the purpose of later statistical processing.
  • the traffic prediction module 330 reads the vehicle route database from the cloud database 400 and calculates future changes in road traffic on the basis of the starting point and the destination of each vehicle included in the vehicle route database.
  • each vehicle calculates an estimated location for each time zone, and future changes in road traffic may be derived by synthesizing the estimated location for each individual vehicle over time, or in a more theoretical way, for example statistical techniques or iterations. It can be expected by reflecting the simulation result.
  • the estimated position for each vehicle time zone is calculated based on the additional reference.
  • the estimated position of each vehicle by time is not merely adding up the average time required for each section as provided by the existing navigation service, but by utilizing the advantages of cloud computing, the number of vehicles included in the vehicle route database. It is calculated by considering each vehicle's destination, current road situation, and various fixed and measured variables.
  • the calculated estimated time zones of each vehicle are stored in the cloud database 400.
  • the traffic prediction module 330 calculates estimated traffic information according to time slots to know how much traffic will be in future for each location based on the estimated time slots calculated above.
  • the point at which the estimated traffic information for each time zone is calculated is implemented to be calculated for each discontinuous or continuous position on the map. For example, after 2 hours, it may be implemented by quantifying how much traffic is congested at Pangyo Junction.
  • the calculated estimated traffic information for each location for each time zone is stored in the cloud database 400.
  • the latter may be sequentially calculated from the former, or may be implemented so that a balanced value is calculated by linking the two information. have. That is, the location information of the vehicle and the traffic information of each location may feed back each other or organically combine the information, and simulate the virtual movement of a large number of vehicles registered in the vehicle route database over time through many operations. It is desirable to realize the traffic situation more accurately by making the most of the cloud computing resources.
  • the optimal route calculation module 340 calculates an optimized route for each individual vehicle based on the estimated traffic information according to time slots calculated by the traffic prediction module 330. That is, the shortest time path to reach the destination can be obtained for each individual vehicle. This recommends relatively less clogged roads for individual vehicles, resulting in a load balancing of the entire road.
  • Route recommendation in this way maximizes the use of social resources, maximizes the overall energy use efficiency, and further prevents road congestion by refraining from recommending routes to the area in advance, for example in the case of road construction. By additionally assisting the in and out of the construction vehicle, the additional effect of smoothly completing the construction can be achieved.
  • the optimized route may be calculated by organically combining or feeding back various types of information. It is also possible to obtain an optimized route by simulating a combination of various routes to calculate the shortest route of the vehicle.
  • the optimal path calculation module 340 provides the calculated route to the interface module 310, and the interface module 310 provides the optimized route through the cloud network 200 to each corresponding navigation terminal 100. ), The optimal path providing service of the cloud central server 300 is achieved.
  • the vehicle information management module 350 manages information on the navigation terminal 100 connected to the cloud network 200. Since the navigation terminal 100 is provided with the GPS module 110, the cloud central server 300 can grasp the current location information of the navigation terminal 100 in real time through the cloud network 200, and the information obtained through the navigation network 100. Can manage.
  • the cloud central server 300 may grasp the route in which the vehicle actually travels in real time or even after the fact. Through this, the cloud driver may determine the propensity of the vehicle driver. In particular, the vehicle driver may obtain information on a road that he or she particularly prefers. If a situation in which a particular road is repeated without following the recommended route is repeated, the driver may determine that the road is particularly preferred. Such a road preference of the driver is stored in the vehicle information management module 350, it is preferable to consider first when generating the recommendation route in the optimal path calculation module 340 in the future.
  • the recommendation route is designated as a waypoint by way of the designated route. You can think of how to rewrite it.
  • the vehicle information management module 350 may recognize the unique identifier (GPS ID) of the GPS module 110 embedded in the navigation terminal 100 and manage the update in real time. Through this, when the vehicle is stolen, the vehicle is lost, or theft of the navigation terminal 100 occurs, the cloud central server 300 may track the position of the GPS module 110.
  • GPS ID unique identifier
  • 3 is an exemplary view of calculating the estimated position for each time zone in the cloud central server 300.
  • the cloud central server 300 Since the cloud central server 300 has route information for each vehicle registered in the vehicle route database, each vehicle in consideration of the number of vehicles, the destination of each vehicle, the current road situation, and various fixed and measured variables You can estimate the timephased location of. Referring to FIG. 3, vehicle 1 is currently passing through Suwon. In view of the route and related traffic conditions presented to vehicle 1, it can be expected to pass Gimcheon in the next three hours. As the number of terminals receiving services according to the present invention increases, the number of vehicles approaching a specific region can be counted after several hours, so that future traffic conditions can be predicted relatively accurately.
  • 4 is an exemplary view of calculating the estimated traffic information for each time zone in the cloud central server 300.
  • the embodiment shown in FIG. 4 corresponds to future traffic information represented by quantifying congestion by discrete time for each discrete location, but is further divided by further subdividing a space unit and a time unit using high-performance cloud computing resources. Can be calculated.
  • future traffic information represented by quantifying congestion by discrete time for each discrete location, but is further divided by further subdividing a space unit and a time unit using high-performance cloud computing resources. Can be calculated.
  • expected traffic information instead of the simplified data, it is possible to construct expected traffic information in a form suitable for obtaining an optimal path by organically combining the received information and the result in real time.
  • FIG. 5 is a flowchart illustrating the overall operation of the cloud computing method navigation operation method.
  • a vehicle user operates the cloud computing dedicated navigation terminal 100 mounted on the vehicle to input vehicle route information such as a departure point, a destination, a waypoint, and the like (S100).
  • the navigation terminal 100 transmits the input vehicle path information to the cloud central server 300 through the cloud network 200 (S110).
  • the navigation terminal 100 may recognize the current location information of the vehicle using the GPS module 110 and transmit additional information to the cloud central server 300.
  • the current location information of the vehicle may be determined by using the GPS or other information communication technology directly from the cloud central server 300.
  • the cloud central server 300 collects vehicle route information from the plurality of navigation terminals 100 to generate a vehicle route database (S120).
  • the vehicle route database generated as described above is stored in the cloud database 400.
  • the cloud central server 300 calculates an estimated position for each vehicle in consideration of traffic conditions based on a departure point and a destination included in the vehicle route database (S130).
  • the estimated position of each vehicle may be calculated based on current location information and waypoint information of the driving vehicle.
  • the estimated position of each vehicle by time is not merely adding up the average time required for each section as provided by the existing navigation service, but by utilizing the advantages of cloud computing, the number of vehicles included in the vehicle route database. It is calculated by considering each vehicle's destination, current road situation, and various fixed and measured variables.
  • the cloud central server 300 provides the estimated traffic information according to time slots, which can know how much traffic will be required for each location based on the estimated time slots calculated above, and thus the traffic will be desired. It calculates (S140). At this time, the point at which the estimated traffic information for each time slot is calculated may be implemented to be calculated for each discontinuous or continuous position on the map, thereby making it possible to predict not only the current traffic but also future time-based traffic.
  • the cloud central server 300 it is possible to calculate the traffic volume of a specific road point in a specific time zone through the predicted location of each vehicle time zone, thereby predicting future traffic for each location on the map.
  • the high-performance cloud computing resources of the cloud central server 300 it is possible to calculate the estimated traffic information for each location by time by virtually simulating and moving a number of vehicles registered in the vehicle route database over time. .
  • the cloud central server 300 calculates the recommended route of the individual vehicle based on the estimated traffic information for each time zone (S150).
  • a preferred embodiment of the recommended route is the shortest route.
  • the shortest route may select a route so that the amount of traffic calculated at each time zone is minimized for each specific position of the route through which the vehicle will pass, and time movement of a specific vehicle based on the estimated traffic information at each time zone calculated through the simulation of the previous process. Depending on the combination of the various paths can be simulated to calculate the shortest time path of the vehicle.
  • the cloud central server 300 since the cloud central server 300 has route information of a number of vehicles utilizing the navigation service according to the present invention, it can be analyzed at once to provide an optimal route suitable for each vehicle in real time. This also enables load balancing of traffic.
  • the estimated position of each vehicle in each time zone, the estimated traffic information of each position in each time zone, the optimum route of a specific vehicle, and the like are not merely calculated in sequence, but are balanced by linking the respective information. It can also be implemented to be calculated. That is, it is desirable to implement the information to predict future traffic conditions more accurately by maximizing the resources of cloud computing, such as feeding back each information or organically combining the information, and applying virtual simulation as described above. Do.
  • the cloud central server 300 transmits the recommendation route calculated through the above process to the navigation terminal 100 of the vehicle through the cloud network 200 (S160). Then, the navigation terminal 100 displays the result of the transmission on the screen so that the driver can know the optimal route calculated in consideration of future traffic.
  • the cloud central server 300 continuously tracks the location of the vehicle in real time and continuously updates information about the vehicle (S170).
  • the driver may not drive the vehicle along the recommended route and takes into account abnormal situations such as vehicle theft or navigation theft.
  • the cloud central server 300 extracts and manages information for each vehicle (S180). It is desirable for the driver of the vehicle to check whether there is a road that he or she particularly prefers, and if there is a preferred road, it is desirable to consider this preferred road first for future route recommendations. For example, after deriving a recommendation route primarily in the optimum route calculation module 340, and if there is a road that the driver prefers within a certain distance from the recommendation route, the recommendation route is designated as a waypoint by way of the designated route. You can think of how to rewrite it. Alternatively, it is possible to implement a recommendation route selection algorithm by assigning an additional point to the preferred road. In addition, by real-time management of the current location for each GPS ID, it effectively responds to the theft of vehicle theft or navigation theft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Navigation (AREA)

Abstract

The present invention relates to a navigation technology that provides an optimum route for a vehicle using a cloud computing technology. More particularly, the present invention relates to a navigation technology that uses the cloud computing technology having only a minimum of input/output means in a navigation terminal of the vehicle, and performs most information collection and calculation in a central server, such that the navigation terminal is connected to a navigation network installed in a plurality of vehicles, information from the plurality of vehicles is collected by the central server, and an optimized route can be provided to a driver of the vehicle in consideration of not only current traffic, but also of traffic in future time periods derived from each vehicle moving along suggested routes. According to the present invention, an optimized route can be provided to the driver of the vehicle by taking into consideration not only the current traffic conditions, but also the traffic conditions in future time periods, and the structure of the navigation terminal installed in the vehicle can be minimized. Further, according to the present invention, since load balancing of traffic is enabled, all roadways can be efficiently used.

Description

클라우드 컴퓨팅 방식의 네비게이션 시스템 및 그 운용방법, 그리고 이를 위한 프로그램을 기록한 컴퓨터로 판독가능한 기록매체Navigation system of cloud computing method and its operation method, and computer readable recording medium recording program therefor
본 발명은 클라우드 컴퓨팅 방식으로 자동차의 최적 경로를 제공해주는 네비게이션 기술에 관한 것이다. 특히, 본 발명은 차량의 네비게이션 단말기에는 최소한의 입출력 수단만을 구비하고 대부분의 정보수집과 연산처리를 중앙서버에서 처리하는 클라우드 컴퓨팅 기술을 이용함으로써 서로 다른 자동차에 장착된 네비게이션을 네트워크로 연결하고 중앙서버에서는 수많은 차량의 정보를 수집하고 현재의 트래픽 뿐만 아니라 개별 차량이 각자 제시된 경로를 따라 움직일 때의 향후 시간대별 트래픽까지 감안하여 최적의 경로를 차량 운전자에게 제공할 수 있는 네비게이션 기술에 관한 것이다.The present invention relates to a navigation technology that provides an optimal path of a vehicle by cloud computing. In particular, the present invention uses a cloud computing technology that has a minimum input and output means in the navigation terminal of the vehicle and processes most of the information gathering and processing in a central server to connect the navigation mounted on different cars to the network and to the central server. The present invention relates to a navigation technology that collects information on a large number of vehicles and provides an optimal route to a vehicle driver in consideration of current traffic as well as future time-phased traffic when an individual vehicle moves along a given route.
최근의 차량 운전자들은 자동차에 장착된 네비게이션 단말기를 사용하여 자신이 가고자 하는 목적지까지의 경로를 검색할 수 있으며, 또한 목적지까지의 소요시간에 대한 정보도 얻을 수가 있다. 또한, 네비게이션 단말기는 대용량의 지도 데이터를 보유함으로써 전국 어느 지역을 가더라도 해당 지역의 주변 지도와 도로 정보를 제공하는 것이 가능하다.Recently, vehicle drivers can use a navigation terminal mounted on a car to search for a route to a destination they want to go to, and also obtain information about a time required for the destination. In addition, since the navigation terminal has a large amount of map data, it is possible to provide surrounding maps and road information of the region regardless of the region.
이처럼 차량 네비게이션은 자동차 운전자에게 더 이상 부가적인 구성이 아닌 필수품으로 자리잡고 있다. 현재 출시되는 네비게이션 단말기는 GPS를 이용하여 차량의 현재 위치를 감지하고 이를 대용량 지도 데이터와 매칭시켜 차량의 위치를 화면상에 지도와 함께 표시한다. 또한, 지도 데이터를 3D로 구현함으로써 차량의 위치와 이동 방향을 더욱 입체적으로 파악할 수 있는 기능을 구비하고 있다.As such, vehicle navigation is no longer an additional component for motorists, but a necessity. Currently released navigation terminals detect the current location of the vehicle using GPS and match it with a large amount of map data to display the location of the vehicle along with a map on the screen. In addition, by implementing the map data in 3D, it has a function to more three-dimensionally determine the position and the moving direction of the vehicle.
이와 같이 대용량의 지도 데이터를 저장해두고 이를 통해 경로를 검색하기 위해서는 고사양의 컴퓨팅 기능이 네비게이션에 구비되어야 한다. 그리고, 지도 데이터는 수시로 변경되므로 차량 사용자는 네비게이션의 지도 데이터와 프로그램을 정기적으로 업데이트하여야 한다.As such, in order to store a large amount of map data and search a route through it, a high-end computing function must be provided in the navigation. In addition, since the map data changes from time to time, the vehicle user must regularly update the map data and the program of the navigation.
즉, 네비게이션의 정보 처리 성능이 높아질수록 네비게이션 단말기의 구입과 수리에 소요되는 가격 부담은 커지게 되며, 아무리 네비게이션 단말기의 성능이 높아진다 하더라도 수많은 차량에 의해 이루어지는 도로의 교통 상황을 예측하는 데에는 한계가 따른다는 문제점이 있다.In other words, the higher the information processing performance of the navigation, the greater the cost burden for the purchase and repair of the navigation terminal, and no matter how high the performance of the navigation terminal, there is a limit in predicting the traffic conditions of roads made by many vehicles. Has a problem.
최근 들어 대용량 고속 데이터 전송이 가능한 Wibro, Wifi, LTE 등의 차세대 4G 이동통신망이 상용화되기 시작함에 따라 이러한 통신 자원을 활용하여 클라우드 컴퓨팅 기술을 구현할 수 있는 기반이 앞으로 빠른 시일 내에 마련될 것으로 예상된다. 그러나, 아직까지는 이러한 클라우드 컴퓨팅 기술을 이용하여 현재의 트래픽뿐만 아니라 향후의 시간대별 트래픽까지 감안하여 최적의 경로를 제공하는 차량 네비게이션 단말 기술은 구체화되지 않고 있는 실정이다.Recently, as next-generation 4G mobile communication networks such as Wibro, Wifi, and LTE, which are capable of high-capacity high-speed data transmission, are commercialized, a foundation for implementing cloud computing technology using these communication resources is expected to be laid in the near future. However, a vehicle navigation terminal technology that provides an optimal path in consideration of not only current traffic but also future time-phase traffic by using such cloud computing technology has not been actualized yet.
본 발명의 목적은 차량 운전자에게 현재의 교통 상황뿐만 아니라 향후 시간대별 교통 상황까지 고려하여 최적의 경로를 제공할 수 있고, 차량에 장착된 네비게이션 단말기의 구성을 최소화할 수 있으며, 도로 트래픽의 로드 밸런싱이 가능하므로 전체적으로 도로를 효율적으로 사용할 수 있도록 해주는 클라우드 컴퓨팅 방식의 네비게이션 기술을 제공하는 것이다.An object of the present invention can provide an optimal route to the vehicle driver in consideration of the current traffic conditions as well as future traffic conditions in the future time zone, minimize the configuration of the navigation terminal mounted on the vehicle, and load balancing of road traffic This makes it possible to provide cloud computing navigation technology that allows the road to be used efficiently throughout.
본 발명에 따른 클라우드 컴퓨팅 방식의 네비게이션 시스템은, 사용자로부터 출발지와 목적지가 포함된 차량 경로 정보를 입력받아 클라우드 중앙서버로 전송하는 네비게이션 단말기의 동작 프로그램을 기록한 컴퓨터로 판독가능한 기록매체; 차량 경로 데이터베이스를 포함한 교통 정보가 저장되는 클라우드 데이터베이스; 네비게이션 단말기로부터 차량 경로 정보를 전송받아 차량 경로 데이터베이스를 생성하여 클라우드 데이터베이스에 저장하고, 차량 경로 데이터베이스로부터 각 차량마다 시간대별 예상 위치를 산출하고, 시간대별 예상 위치를 기준으로 위치마다 시간대별 예상 트래픽 정보를 산출하고, 시간대별 예상 트래픽 정보를 기준으로 해당 차량의 추천 경로를 산출하여 클라우드 네트워크를 통해 해당 차량의 네비게이션 단말기로 전송하는 클라우드 중앙서버;를 포함하여 구성된다.According to another aspect of the present invention, there is provided a cloud computing navigation system including: a computer-readable recording medium that records an operation program of a navigation terminal for receiving vehicle route information including a starting point and a destination from a user and transmitting the same to a cloud central server; A cloud database storing traffic information including a vehicle route database; Receives vehicle route information from the navigation terminal, generates a vehicle route database and stores it in the cloud database, calculates an estimated position for each vehicle from the vehicle route database, and estimates traffic time for each position based on the estimated position for each time zone And a cloud central server configured to calculate a recommendation route of the vehicle based on the estimated traffic information according to time slots and transmit the recommended route of the vehicle to the navigation terminal of the vehicle through the cloud network.
또한, 본 발명의 클라우드 컴퓨팅 방식의 네비게이션 시스템에서 클라우드 중앙서버는, 클라우드 네트워크를 통해 복수 개의 네비게이션 단말기로부터 차량 경로 정보를 전송받고, 내부 산출된 추천 경로를 해당 네비게이션 단말기로 전송하는 인터페이스 모듈; 복수 개의 네비게이션 단말기로부터 차량 경로 정보를 수집하여 차량 경로 데이터베이스를 생성하여 클라우드 데이터베이스에 저장하는 차량 경로 데이터베이스 생성 모듈; 차량 경로 데이터베이스에 포함된 각 차량의 출발지와 목적지를 기준으로 각 차량마다 시간대별 예상 위치를 산출하고, 시간대별 예상 위치를 기준으로 위치마다 시간대별 예상 트래픽 정보를 산출하여 클라우드 데이터베이스에 저장하는 트래픽 예측 모듈; 시간대별 예상 트래픽 정보를 기준으로 해당 차량의 추천 경로를 산출하는 최적경로 산출 모듈;을 포함하여 구성되는 것이 바람직하다.In addition, in the cloud computing type navigation system of the present invention, the cloud central server may include: an interface module configured to receive vehicle route information from a plurality of navigation terminals through a cloud network, and transmit an internally calculated recommendation route to a corresponding navigation terminal; A vehicle route database generation module which collects vehicle route information from a plurality of navigation terminals, generates a vehicle route database, and stores the vehicle route database in a cloud database; Estimated location for each vehicle based on the origin and destination of each vehicle included in the vehicle route database, and estimated traffic information for each location based on the estimated location for each time zone to store traffic in the cloud database module; It is preferably configured to include; optimal path calculation module for calculating the recommended route of the vehicle based on the estimated traffic information for each time zone.
또한, 클라우드 컴퓨팅 방식의 네비게이션 시스템에서 네비게이션 단말기는 차량의 현재 위치정보와 경유지 정보를 클라우드 중앙서버로 전송하는 것을 특징으로 하고, 트래픽 예측 모듈은 현재 위치정보와 경유지 정보를 추가 기준으로 각 차량마다 시간대별 예상 위치를 산출하고, 위치마다 시간대별 예상 트래픽 정보를 산출하여 클라우드 데이터베이스에 저장하는 것이 바람직하다.In addition, in the cloud computing type navigation system, the navigation terminal transmits the current location information and waypoint information of the vehicle to the cloud central server, and the traffic prediction module adds time to each vehicle based on the current location information and waypoint information. It is preferable to calculate the estimated location for each unit, and to calculate the estimated traffic information for each time slot for each location and store the data in a cloud database.
또한, 클라우드 컴퓨팅 방식의 네비게이션 시스템에서 클라우드 중앙서버는, 차량의 위치 정보를 실시간 추적하여 추천 경로와의 차이를 반복 비교함으로써 차량 별로 도로 선호도 정보를 추출하여 관리하는 차량정보 관리모듈을 더 포함하여 구성되고, 최적경로 산출모듈은 추천 경로를 산출할 때 해당 차량에 대한 도로 선호도 정보를 차량정보 관리모듈로부터 제공받아 도로 선호도를 우선 감안하여 추천 경로를 산출하는 것이 바람직하다.In addition, the cloud central server in a cloud computing navigation system further comprises a vehicle information management module for extracting and managing road preference information for each vehicle by repeatedly comparing the difference with the recommended route by tracking the vehicle's location information in real time. When calculating the recommendation route, the optimum route calculation module receives road preference information for the vehicle from the vehicle information management module and calculates the recommendation route in consideration of the road preference.
또한, 클라우드 컴퓨팅 방식의 네비게이션 시스템에서 트래픽 예측 모듈은 차량 경로 데이터베이스에 등록된 각 차량을 시간 흐름에 따라 가상으로 이동하도록 시뮬레이션하여 위치마다 시간대별 예상 트래픽 정보를 산출하는 트래픽 시뮬레이션 모듈;을 더 포함하는 구성되는 것이 바람직하다.In addition, the traffic prediction module in a cloud computing navigation system further comprises a traffic simulation module for simulating each vehicle registered in the vehicle path database to virtually move over time to calculate the estimated traffic information for each time zone for each location. It is preferred to be configured.
또한, 클라우드 컴퓨팅 방식의 네비게이션 시스템에서 최적경로 산출 모듈은 트래픽 시뮬레이션 모듈을 통해 산출된 시간대별 예상 트래픽 정보를 기준으로 특정 차량의 이동을 시간 흐름에 따라 다양한 경로의 조합에 따라 시뮬레이션하여 해당 차량의 추천 경로를 산출하는 최적경로 시뮬레이션 모듈;을 더 포함하여 구성되는 것이 바람직하다.In addition, in the cloud computing type navigation system, the optimum route calculation module simulates the movement of a specific vehicle according to a combination of various routes over time based on the estimated traffic information according to time slots calculated through the traffic simulation module to recommend the vehicle. It is preferably configured to further include; an optimal path simulation module for calculating a path.
본 발명에 따른 클라우드 컴퓨팅 방식의 네비게이션 운용방법은, (A) 네비게이션 단말기를 통해 출발지와 목적지가 포함된 차량 경로 정보를 입력받는 단계; (B) 네비게이션 단말기가 차량 경로 정보를 클라우드 중앙서버로 전송하는 단계; (C) 클라우드 중앙서버가 복수 개의 네비게이션 단말기로부터 차량 경로 정보를 수집하여 차량 경로 데이터베이스를 생성하는 단계; (D) 클라우드 중앙서버가 차량 경로 데이터베이스에 포함된 출발지와 목적지를 기준으로 각 차량마다 시간대별 예상 위치를 산출하는 단계; (E) 클라우드 중앙서버가 시간대별 예상 위치를 기준으로 위치마다 시간대별 예상 트래픽 정보를 산출하는 단계; (F) 클라우드 중앙서버가 시간대별 예상 트래픽 정보를 기준으로 해당 차량의 추천 경로를 산출하는 단계; (G) 클라우드 중앙서버가 추천 경로를 클라우드 네트워크를 통해 해당 차량의 네비게이션 단말기로 전송하는 단계;를 포함한다.According to an aspect of the present invention, there is provided a cloud computing method of operating a navigation, comprising: (A) receiving vehicle route information including a starting point and a destination through a navigation terminal; (B) the navigation terminal transmits the vehicle route information to the cloud central server; (C) the cloud central server collecting vehicle route information from the plurality of navigation terminals to generate a vehicle route database; (D) the cloud central server calculating an estimated position for each vehicle based on a departure point and a destination included in the vehicle route database; (E) the cloud central server calculating the estimated traffic information according to time slots for each location based on the estimated time slots; (F) calculating, by the cloud central server, a recommended route of the vehicle based on the estimated traffic information for each time zone; (G) the cloud central server transmits the recommended route to the navigation terminal of the vehicle through the cloud network.
또한, 본 발명의 클라우드 컴퓨팅 방식의 네비게이션 운용방법에서 (B) 단계는 네비게이션 단말기가 차량의 현재 위치정보와 경유지 정보를 클라우드 중앙서버로 전송하는 단계를 더 포함하고, (D) 단계는 클라우드 중앙서버가 현재 위치정보와 경유지 정보를 추가 기준으로 각 차량마다 시간대별 예상 위치를 산출하는 단계를 더 포함하여 구성되는 것이 바람직하다.In addition, the cloud computing method of the navigation operation method of the present invention (B) step further comprises the step of the navigation terminal to transmit the current location information and waypoint information of the vehicle to the cloud central server, (D) step cloud central server The method may further include calculating an estimated position for each vehicle based on the current location information and waypoint information.
또한, 본 발명의 클라우드 컴퓨팅 방식의 네비게이션 운용방법에서 (E) 단계는 클라우드 중앙서버가 차량 경로 데이터베이스에 등록된 각 차량을 시간 흐름에 따라 가상으로 이동하도록 시뮬레이션하여 위치마다 시간대별 예상 트래픽 정보를 산출하는 단계를 더 포함하여 구성되는 것이 바람직하다.In addition, in the cloud computing type navigation operation method of the present invention, step (E) simulates the cloud central server to virtually move each vehicle registered in the vehicle route database over time, thereby calculating the estimated traffic information for each time slot. It is preferably configured to further comprise a step.
또한, 본 발명의 클라우드 컴퓨팅 방식의 네비게이션 운용방법에서 (F) 단계는 (E) 단계의 시뮬레이션을 통해 산출된 시간대별 예상 트래픽 정보를 기준으로 특정 차량의 이동을 시간 흐름에 따라 다양한 경로의 조합에 따라 시뮬레이션하고 그 결과로부터 해당 차량의 추천 경로를 산출하는 단계를 더 포함하여 구성되는 것이 바람직하다.In addition, in the cloud computing type navigation operation method of the present invention, step (F) is based on the estimated traffic information according to time slots calculated through the simulation of step (E), and the movement of a specific vehicle is performed on a combination of various paths according to time. The method may further include the step of simulating accordingly and calculating a recommended route of the vehicle from the results.
본 발명에 따르면 차량 운전자에게 현재의 교통 상황뿐만 아니라 향후 시간대별 교통 상황까지 고려하여 최적의 경로를 제공할 수 있으므로 최단시간 경로 제공의 신뢰도를 획기적으로 제고할 수 있는 장점이 있다.According to the present invention, it is possible to provide an optimal route to the vehicle driver in consideration of not only the current traffic situation but also future traffic conditions according to the time zone, thereby significantly improving the reliability of providing the shortest time route.
또한, 본 발명에 따르면 트래픽의 로드 밸런싱이 가능하므로 전체적으로 도로를 효율적으로 사용할 수 있는 효과가 있다. 특히, 개별 차량은 상대적으로 시간이 더 걸리더라도 전체 로드 밸런싱을 최적화하는 방식으로 경로를 추천할 수 있어 전체 도로의 사용효율을 극대화할 수도 있다.In addition, according to the present invention, since the load balancing of traffic is possible, there is an effect of effectively using the road as a whole. In particular, individual vehicles can recommend routes in a way that optimizes overall load balancing even if they take relatively longer time, thereby maximizing the efficiency of the entire roadway.
또한, 본 발명에 따르면 대부분의 프로세싱을 클라우드 네트워크에 연결된 중앙서버에서 수행하므로 차량에 장착된 네비게이션 단말기의 구성을 최소화하여 저렴하게 제공할 수 있으며, 나아가서는 스마트폰, 스마트패드, 차량용 셋톱박스 등에 관련 소프트웨어만 장착하더라도 고성능의 네비게이션 서비스의 제공이 가능해지는 효과가 있다.In addition, according to the present invention, since most of the processing is performed in a central server connected to a cloud network, the configuration of a navigation terminal mounted on a vehicle can be provided at a low cost, and further, a smartphone, a smart pad, a set top box for a vehicle, etc. Even if only the software is installed, it is possible to provide a high-performance navigation service.
도 1은 클라우드 컴퓨팅 방식의 네비게이션 시스템의 전체 구성을 나타낸 블록도,1 is a block diagram showing the overall configuration of a cloud computing navigation system;
도 2는 도 1에서 클라우드 중앙서버(300)의 구성을 보다 상세히 나타낸 블록도,2 is a block diagram showing in more detail the configuration of the cloud central server 300 in FIG.
도 3은 클라우드 중앙서버(300)에서 시간대별 예상 위치를 산출해낸 예시도,3 is an example of calculating the estimated position of each time zone in the cloud central server 300,
도 4는 클라우드 중앙서버(300)에서 시간대별 예상 트래픽 정보를 산출해낸 예시도,4 is an example of calculating the estimated traffic information for each time zone in the cloud central server 300,
도 5는 클라우드 컴퓨팅 방식의 네비게이션 운용방법의 전체 동작과정을 나타낸 순서도.Figure 5 is a flow chart showing the overall operation of the navigation operation method cloud computing method.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 클라우드 컴퓨팅 방식의 네비게이션 시스템의 전체 구성을 나타낸 블록도이다.1 is a block diagram showing the overall configuration of a cloud computing navigation system.
네비게이션 단말기(100)는 자동차 등의 차량에 장착 가능하여 화면을 통해 주행 정보를 알려주는 장치로서 클라우드 컴퓨팅의 구현 취지에 맞게 최소한의 입력 수단과 디스플레이만으로 구성되는 것이 바람직하다. 즉, 네비게이션 단말기(100)에는 운전자가 출발지와 목적지 등의 차량 경로 정보를 입력할 수 있는 입력 수단이 구비되며, 운전자에게 지도 화면을 통해 길안내를 해주는 디스플레이 수단이 구비된다. The navigation terminal 100 is a device that can be mounted on a vehicle such as a car and informs driving information through a screen, and is preferably configured with only a minimum input means and a display in accordance with the purpose of implementing cloud computing. That is, the navigation terminal 100 is provided with input means for allowing the driver to input vehicle route information such as a starting point and a destination, and a display means for providing a road guidance to the driver through a map screen.
운전자로부터 차량 경로 정보가 입력되면 이를 클라우드 네트워크(200)를 통해 클라우드 중앙서버(300)로 전송한다. 차량 경로 정보에는 운전자가 입력한 출발지와 목적지에 대한 정보 외에도 GPS 등을 이용한 차량의 현재 위치정보, 운전자가 별도로 입력한 경유지 정보 등이 포함될 수 있다.When the vehicle route information is input from the driver, it is transmitted to the cloud central server 300 through the cloud network 200. The vehicle route information may include the current location information of the vehicle using GPS, the waypoint information separately input by the driver, in addition to the information about the starting point and the destination input by the driver.
한편, 본 발명을 구성하는 네비게이션 단말기(100)는 다양한 형태로 구현될 수 있다. 예를 들어, 차량에 장착된 네비게이션 전용 단말기로 구현될 수도 있고, 스마트폰(예: 아이폰)이나 스마트패드(예: 아이패드)에 관련 어플리케이션을 설치하여 구현할 수도 있다. 또한, 네비게이션 단말기(100)는 차량용 AV 시스템이나 각종 셋톱박스(예: 위성셋톱박스, IPTV 셋톱박스 등)에 관련 소프트웨어를 장착하여 구현할 수도 있다. 또한, 본 발명에 따른 차량 경로제공 서비스를 제공하는 웹페이지를 랩톱컴퓨터 등에서 인터넷을 통해 액세스함으로써 본 발명에 따른 네비게이션 단말기(100)를 구현할 수도 있다.On the other hand, the navigation terminal 100 constituting the present invention may be implemented in various forms. For example, it may be implemented as a navigation-only terminal mounted in a vehicle, or may be implemented by installing a related application on a smartphone (eg, an iPhone) or a smart pad (eg, an iPad). In addition, the navigation terminal 100 may be implemented by mounting the relevant software on a vehicle AV system or various set-top boxes (eg, satellite set-top boxes, IPTV set-top boxes, etc.). In addition, the navigation terminal 100 according to the present invention may be implemented by accessing a web page providing a vehicle route providing service according to the present invention through a laptop computer or the like through the Internet.
클라우드 네트워크(200)는 복수 개의 네비게이션 단말기(100)와 클라우드 중앙서버(300)를 연결해주는 유무선 매개체이다. 이때, 클라우드 컴퓨팅이 가능하기 위해서는 네비게이션 단말기(100)에는 최소한의 입출력 수단만이 구비되고 대부분의 처리 과정이 클라우드 중앙서버(300)에서 이루어지는 것이 바람직하므로, 클라우드 네트워크(200)는 대용량의 데이터 전송이 가능한 통신 네트워크로 구현되어야 한다.The cloud network 200 is a wired or wireless medium that connects the plurality of navigation terminals 100 and the cloud central server 300. In this case, in order to enable cloud computing, since the navigation terminal 100 has only a minimum input / output means and most of the processing is performed in the cloud central server 300, the cloud network 200 may transmit a large amount of data. It should be implemented as possible communication network.
따라서, 클라우드 네트워크(200)는 대용량 고속 데이터 전송이 가능한 와이브로(Wibro), 무선랜(Wifi, WiMax), 차세대 4G 이동통신망(예: LTE 등) 등을 포함하여 구현됨이 바람직하다.Therefore, the cloud network 200 may be implemented to include WiBro (Wibro), wireless LAN (Wifi, WiMax), a next-generation 4G mobile communication network (for example, LTE, etc.) capable of high-capacity high-speed data transmission.
클라우드 중앙서버(300)는 클라우드 컴퓨팅 서비스에 등록된 수많은 네비게이션 단말기(100)로부터 정보를 수집하여 클라우드 컴퓨팅을 처리한 후 처리 결과를 각각의 네비게이션 단말기(100)로 전송하는 역할을 수행한다.The cloud central server 300 collects information from a number of navigation terminals 100 registered in a cloud computing service, processes cloud computing, and transmits the processing result to each navigation terminal 100.
먼저, 클라우드 중앙서버(300)는 클라우드 네트워크(200)를 통해 복수 개의 네비게이션 단말기(100)로부터 차량 경로 정보를 전송받으면 이로부터 차량 경로 데이터베이스를 생성한다. 그리고, 생성된 차량 경로 데이터베이스는 클라우드 데이터베이스(400)에 저장한다.First, when the cloud central server 300 receives vehicle route information from the plurality of navigation terminals 100 through the cloud network 200, the cloud central server 300 generates a vehicle route database therefrom. The generated vehicle route database is stored in the cloud database 400.
클라우드 중앙서버(300)에서는 클라우드 데이터베이스(400)에 저장된 차량 경로 데이터베이스를 통해 개별 차량이 각자 제시된 경로를 따라 움직일 때 어느 시간에 어느 위치에 도달하게 될 것인지를 대략적으로 예측하는 시간대별 예상 위치를 각 차량마다 산출한다. 이는 그동안 누적된 교통 정보를 참조하여 현재의 도로 교통 상황을 고려하여 산출해낼 수도 있고, 그 밖에 다른 방법으로 다양하게 구현될 수 있다.The cloud central server 300 uses the vehicle route database stored in the cloud database 400 to estimate the time-based estimated position for each time period, which roughly predicts which position at which time each vehicle will be reached when it moves along a given route. Calculate per vehicle. This may be calculated in consideration of the current road traffic situation by referring to the accumulated traffic information, or may be variously implemented in other ways.
그리고, 산출된 시간대별 예상 위치를 기준으로 위치마다 시간대별 예상 트래픽 정보를 산출함으로써 현재의 트래픽뿐만 아니라 향후의 시간대별 트래픽까지도 예상이 가능해진다. 예컨대, 각 차량의 시간대별 예상 위치를 통해 특정 시간대의 특정 도로 지점의 트래픽량을 산출해내는 것이 가능하며, 이를 통해 지도상의 각 위치마다의 향후 트래픽을 예측할 수 있다. In addition, by calculating the estimated traffic information for each location based on the calculated estimated time slots for each location, not only current traffic but also future traffic according to time slots can be estimated. For example, it is possible to calculate the traffic volume of a specific road point in a specific time zone through the predicted location of each vehicle time zone, thereby predicting future traffic for each location on the map.
또한, 클라우드 중앙서버(300)의 고성능 클라우팅 컴퓨팅 자원을 활용함으로써 수많은 차량의 움직임을 가상 시뮬레이션하여 이동시켜봄으로써 향후 시간대별 트래픽을 예측할 수도 있다. 그 밖에도 다양한 방식으로 향후 시간대별 트래픽을 예상하는 것이 가능하다. 시간대별 예상 위치와 시간대별 예상 트래픽 정보의 일 예가 도 3과 도 4에 도시되어 있다.In addition, by utilizing the high-performance cloud computing resources of the cloud central server 300 to simulate the movement of a number of vehicles by moving the virtual traffic can be predicted for each time zone in the future. In addition, it is possible to estimate future time-phased traffic in various ways. 3 and 4 show examples of the estimated time slots and the estimated time slots.
클라우드 중앙서버(300)는 이러한 과정을 통해 산출된 시간대별 예상 트래픽 정보를 기준으로 개별 차량마다 최단시간 경로를 산출해낸다. 최단시간 경로는 차량이 지나갈 경로의 특정 위치마다 시간대별로 산출된 트래픽량이 최소화되도록 경로를 선정할 수도 있고, 서비스에 등록된 각 차량을 시간 흐름에 따라 다양한 경로의 조합에 따라 수많은 연산을 통해 시뮬레이션하여 최적화된 경로를 선정할 수도 있다.The cloud central server 300 calculates the shortest time path for each vehicle based on the estimated traffic information for each time zone calculated through this process. The shortest route can be selected to minimize the amount of traffic calculated at each time zone for each location of the route through which the vehicle will pass, and each vehicle registered in the service can be simulated through numerous calculations according to various combinations of routes over time. You can also choose an optimized path.
즉, 클라우드 중앙서버(300)에서는 수많은 차량의 경로 정보를 보유하고 있으므로 이를 한꺼번에 종합적으로 분석함으로써 각 차량별로 적합한 최적의 경로를 실시간으로 제공할 수 있다. 또한, 이를 통해 도로 트래픽의 로드 밸런싱도 가능해지는 부수적인 효과도 얻을 수 있다.That is, since the cloud central server 300 holds the route information of a number of vehicles, it is possible to provide the optimal route suitable for each vehicle in real time by comprehensively analyzing it at once. In addition, this also has the side effect of enabling load balancing of road traffic.
클라우드 중앙서버(300)는 클라우드 네트워크(200)를 통해 최단시간 경로 또는 최적화된 경로를 해당 차량의 네비게이션 단말기(100)로 전송한다. 그러면, 네비게이션 단말기(100)에서는 클라우드 중앙서버(300)로부터 전송받은 결과를 화면에 디스플레이하고, 그에 따라 운전자는 향후 트래픽까지 고려하여 산출된 최적의 경로를 이용할 수 있게 된다.The cloud central server 300 transmits the shortest time path or the optimized path to the navigation terminal 100 of the vehicle through the cloud network 200. Then, the navigation terminal 100 displays the result received from the cloud central server 300 on the screen, whereby the driver can use the optimal path calculated in consideration of future traffic.
클라우드 데이터베이스(400)에는 차량 경로 데이터베이스를 포함하여 다양한 교통 정보가 저장된다. 클라우드 데이터베이스(400)는 클라우드 컴퓨팅을 수행하기에 적합하도록 고용량 고속의 입출력이 가능해야 하며, 만일의 사고에 대비하여 충분히 백업이 이루어지도록 구현되는 것이 바람직하다.The cloud database 400 stores various traffic information including a vehicle route database. The cloud database 400 must be capable of high-capacity and high-speed input / output to be suitable for performing cloud computing, and is preferably implemented to be sufficiently backed up in case of an accident.
도 2는 도 1에서 클라우드 중앙서버(300)와 관련 구성요소의 내부 구성을 좀더 상세하게 나타낸 블록도이다.FIG. 2 is a block diagram illustrating an internal configuration of the cloud central server 300 and related components in FIG. 1 in more detail.
본 발명에서 네비게이션 단말기(100)는 GPS 모듈(110)을 구비하는 것이 바람직하고, 클라우드 중앙서버(300)는 인터페이스 모듈(310), 차량 경로 데이터베이스 생성 모듈(320), 트래픽 예측 모듈(330), 최적경로 산출 모듈(340), 차량정보 관리모듈(350)을 구비하여 이루어진다.In the present invention, the navigation terminal 100 is preferably provided with a GPS module 110, the cloud central server 300, the interface module 310, vehicle route database generation module 320, traffic prediction module 330, The optimum path calculation module 340 and the vehicle information management module 350 are provided.
클라우드 중앙서버(300)의 상세 구성에 대해 살펴본다.It looks at the detailed configuration of the cloud central server 300.
인터페이스 모듈(310)은 클라우드 네트워크(200)를 통해 복수 개의 네비게이션 단말기(100)로부터 차량 경로 정보를 전송받아 차량 경로 데이터베이스 생성 모듈(320)로 제공하고, 최적경로 산출 모듈(340)로부터 최단시간 경로를 제공받아 해당 네비게이션 단말기(100)로 전송함으로써 클라우드 컴퓨팅을 위한 서버와 네트워크 사이의 인터페이스의 역할을 수행한다.The interface module 310 receives vehicle route information from the plurality of navigation terminals 100 through the cloud network 200 and provides the vehicle route database generation module 320 to the vehicle route database generation module 320, and the shortest time route from the optimal route calculation module 340. By receiving the transmission to the corresponding navigation terminal 100 serves as an interface between the server and the network for cloud computing.
차량 경로 데이터베이스 생성 모듈(320)은 인터페이스 모듈(310)을 통해 차량 경로 정보를 제공받으면, 이를 누적시킴으로써 수많은 차량 경로 정보를 수집한다. 차량 경로 정보에는 운전 차량의 출발지, 목적지 등과 같은 정보가 포함되는데, 그 밖에도 운전 차량의 현재 위치정보, 경유지 정보, 선호하는 경로정보, 우선순위 등이 포함될 수 있다.When the vehicle route database generation module 320 receives the vehicle route information through the interface module 310, the vehicle route database generation module 320 accumulates the vehicle route information by accumulating the vehicle route information. The vehicle route information includes information such as a starting point and a destination of the driving vehicle. In addition, the vehicle route information may include current location information, waypoint information, preferred route information, priority, etc. of the driving vehicle.
차량 경로 데이터베이스 생성 모듈(320)은 클라우드 네트워크(200)에 연결된 복수 개의 네비게이션 단말기(100)로부터 전송된 많은 차량 경로 정보를 수집한 후 이를 통해 차량 경로 데이터베이스를 생성한다. 생성된 차량 경로 데이터베이스는 서버에서 일괄적으로 관리할 수 있고, 추후 통계 처리 등의 목적을 위해 클라우드 데이터베이스(400)에 저장되는 것이 바람직하다.The vehicle route database generation module 320 collects a lot of vehicle route information transmitted from the plurality of navigation terminals 100 connected to the cloud network 200, and then generates a vehicle route database. The generated vehicle route database may be collectively managed by the server and may be stored in the cloud database 400 for the purpose of later statistical processing.
트래픽 예측 모듈(330)은 클라우드 데이터베이스(400)로부터 차량 경로 데이터베이스를 읽어와서 차량 경로 데이터베이스에 포함된 각 차량의 출발지와 목적지를 기준으로 전체적으로 도로 트래픽의 향후 변동상황을 산출한다. 바람직하게는 각 차량마다 시간대별 예상 위치를 산출하며, 도로 트래픽의 향후 변동상황은 이러한 개별 차량의 시간대별 예상 위치를 종합하여 도출할 수도 있고, 혹은 좀더 이론적인 방식, 예를 들어 통계적 기법이나 반복 시뮬레이션 결과를 반영하여 예상할 수도 있다. 또한, 운전 차량의 현재 위치정보와 경유지 정보를 차량 경로 데이터베이스로부터 판독할 수 있는 경우에는 이를 추가 기준으로 삼아 각 차량의 시간대별 예상 위치를 산출한다.The traffic prediction module 330 reads the vehicle route database from the cloud database 400 and calculates future changes in road traffic on the basis of the starting point and the destination of each vehicle included in the vehicle route database. Preferably, each vehicle calculates an estimated location for each time zone, and future changes in road traffic may be derived by synthesizing the estimated location for each individual vehicle over time, or in a more theoretical way, for example statistical techniques or iterations. It can be expected by reflecting the simulation result. In addition, when the current position information and waypoint information of the driving vehicle can be read from the vehicle route database, the estimated position for each vehicle time zone is calculated based on the additional reference.
이때, 개별 차량의 시간대별 예상 위치는 기존 네비게이션 서비스에서 제공하는 것처럼 각 구간마다 평균적으로 걸리는 소요시간을 합산하는 데에 불과한 것이 아니라, 클라우딩 컴퓨팅의 장점을 살려서 차량 경로 데이터베이스에 포함된 차량의 수, 각 차량의 목적지, 현재 도로상황, 기타 각종 고정 변수와 측정된 변수들을 고려하여 산출된다.At this time, the estimated position of each vehicle by time is not merely adding up the average time required for each section as provided by the existing navigation service, but by utilizing the advantages of cloud computing, the number of vehicles included in the vehicle route database. It is calculated by considering each vehicle's destination, current road situation, and various fixed and measured variables.
이후, 산출된 각 차량의 시간대별 예상 위치는 클라우드 데이터베이스(400)에 저장된다.Thereafter, the calculated estimated time zones of each vehicle are stored in the cloud database 400.
그리고, 트래픽 예측 모듈(330)은 앞서 산출된 시간대별 예상 위치를 기준으로 각 위치마다 향후 교통량이 얼마나 많아질 것이며 이로 인해 교통이 어느 정도 원할할 것인지를 알 수 있는 시간대별 예상 트래픽 정보를 산출한다. 이때, 시간대별 예상 트래픽 정보가 산출되는 지점은 지도상의 불연속 또는 연속된 위치마다 산출되도록 구현된다. 예컨대, 2시간 후에는 판교분기점에 교통이 어느 정도 혼잡할 것인가를 수치화하는 방식으로 구현될 수 있다.In addition, the traffic prediction module 330 calculates estimated traffic information according to time slots to know how much traffic will be in future for each location based on the estimated time slots calculated above. . At this time, the point at which the estimated traffic information for each time zone is calculated is implemented to be calculated for each discontinuous or continuous position on the map. For example, after 2 hours, it may be implemented by quantifying how much traffic is congested at Pangyo Junction.
이후, 산출된 각 위치별 시간대별 예상 트래픽 정보는 클라우드 데이터베이스(400)에 저장된다.Thereafter, the calculated estimated traffic information for each location for each time zone is stored in the cloud database 400.
또한, 각 차량마다 산출된 시간대별 예상 위치와 각 위치마다 산출된 시간대별 예상 트래픽 정보는 전자로부터 후자가 순차적으로 산출될 수도 있고, 선택적으로는 두 정보를 연계시켜 밸런스된 값이 산출되도록 구현할 수도 있다. 즉, 차량의 위치정보와 각 위치의 트래픽 정보는 서로를 피드백시키거나 유기적으로 정보를 결합시킬 수도 있고, 차량 경로 데이터베이스에 등록된 수많은 차량을 많은 연산처리를 통해 시간 흐름에 따라 가상으로 이동하도록 시뮬레이션하는 등 클라우딩 컴퓨팅의 자원을 최대한 활용함으로써 보다 정확하게 향후 교통 상황을 예측하도록 구현하는 것이 바람직하다.In addition, the latter may be sequentially calculated from the former, or may be implemented so that a balanced value is calculated by linking the two information. have. That is, the location information of the vehicle and the traffic information of each location may feed back each other or organically combine the information, and simulate the virtual movement of a large number of vehicles registered in the vehicle route database over time through many operations. It is desirable to realize the traffic situation more accurately by making the most of the cloud computing resources.
최적경로 산출 모듈(340)은 트래픽 예측 모듈(330)을 통해 산출된 시간대별 예상 트래픽 정보를 기준으로 개별 차량마다 최적화된 경로를 산출해낸다. 즉, 개별 차량마다 목적지에 도달할 수 있는 최단시간 경로를 구할 수 있다. 이는 개별 차량에 대해 상대적으로 덜 막히는 도로를 추천해주는 것이므로 결과적으로는 전체 도로의 로드 밸런싱을 달성할 수 있게 되는 것이다. The optimal route calculation module 340 calculates an optimized route for each individual vehicle based on the estimated traffic information according to time slots calculated by the traffic prediction module 330. That is, the shortest time path to reach the destination can be obtained for each individual vehicle. This recommends relatively less clogged roads for individual vehicles, resulting in a load balancing of the entire road.
선택적으로는, 좀더 적극적으로 전체 도로가 밸런스 있게 교통량이 분배되도록 각 차량에 대해 다소 지연된 경로를 제공하도록 구현할 수도 있다. 즉, 개별 차량의 관점에서는 최적 경로보다는 좀더 오래 걸리는 경로이지만, 전체 로드 밸런싱이라는 측면에서는 최상의 결과가 나올 수 있는 경로를 제공할 수 있다. 이러한 방식의 경로 추천을 통해 사회적 자원의 사용을 극대화하고, 전체 에너지 사용 효율도 극대화하는 한편, 나아가 예컨대 도로 공사를 하는 경우에도 미리 당해 지역에 대한 경로 추천을 자제함으로써 도로 혼잡을 선제적으로 예방하고 공사 차량의 진출입을 원활하게 보조함으로써 공사가 원활하게 완료될 수 있도록 하는 부가적인 작용도 달성할 수 있다.Optionally, it may be implemented to more aggressively provide a slightly delayed route for each vehicle so that the entire road is well balanced. That is, the route takes longer than the optimal route from the perspective of the individual vehicle, but can provide the route with the best result in terms of overall load balancing. Route recommendation in this way maximizes the use of social resources, maximizes the overall energy use efficiency, and further prevents road congestion by refraining from recommending routes to the area in advance, for example in the case of road construction. By additionally assisting the in and out of the construction vehicle, the additional effect of smoothly completing the construction can be achieved.
이때, 앞서 시간대별 예상 트래픽 정보를 산출할 때와 마찬가지로, 각종 정보를 유기적으로 결합하거나 피드백시켜 최적화된 경로를 산출할 수도 있고, 시간대별 예상 트래픽 정보를 기준으로 특정 차량의 이동을 시간 흐름에 따라 다양한 경로의 조합에 따라 시뮬레이션하여 해당 차량의 최단시간 경로를 산출함으로써 최적화된 경로를 얻을 수도 있다.In this case, as in the case of calculating the estimated traffic information according to the time zone, the optimized route may be calculated by organically combining or feeding back various types of information. It is also possible to obtain an optimized route by simulating a combination of various routes to calculate the shortest route of the vehicle.
그리고, 최적경로 산출 모듈(340)은 위 산출된 최적화된 경로를 인터페이스 모듈(310)로 제공하고, 인터페이스 모듈(310)은 클라우드 네트워크(200)를 통해 최적화된 경로를 각각의 해당 네비게이션 단말기(100)로 전송함으로써 클라우드 중앙서버(300)의 최적 경로 제공 서비스가 이루어진다.The optimal path calculation module 340 provides the calculated route to the interface module 310, and the interface module 310 provides the optimized route through the cloud network 200 to each corresponding navigation terminal 100. ), The optimal path providing service of the cloud central server 300 is achieved.
차량정보 관리모듈(350)은 클라우드 네트워크(200)에 연결된 네비게이션 단말기(100)에 대한 정보를 관리한다. 네비게이션 단말기(100)에는 GPS 모듈(110)이 구비되어 있으므로, 클라우드 중앙서버(300)에서는 클라우드 네트워크(200)를 통해 네비게이션 단말기(100)의 현재 위치 정보를 실시간으로 파악할 수 있고, 이를 통해 파악한 정보를 관리할 수 있다.The vehicle information management module 350 manages information on the navigation terminal 100 connected to the cloud network 200. Since the navigation terminal 100 is provided with the GPS module 110, the cloud central server 300 can grasp the current location information of the navigation terminal 100 in real time through the cloud network 200, and the information obtained through the navigation network 100. Can manage.
클라우드 중앙서버(300)는 경로를 추천한 후에 차량이 실제로 주행하는 경로를 실시간으로 혹은 사후에라도 파악할 수 있는데, 이를 통해 당해 차량 운전자의 성향을 파악할 수 있다. 특히, 차량 운전자가 특별히 선호하는 도로에 대한 정보를 얻을 수 있는데, 추천 경로를 따르지 않고 특정한 도로를 주행하는 상황이 반복되는 경우에는 당해 운전자가 특별히 그 도로를 선호한다고 판단할 수 있는 것이다. 이와 같은 운전자의 도로 선호도는 차량정보 관리모듈(350)에서 보관되어, 향후에 최적경로 산출모듈(340)에서 추천 경로를 생성할 때 우선 감안하는 것이 바람직하다. 예를 들어, 최적경로 산출모듈(340)에서 1차적으로 추천 경로를 도출한 후에, 그 추천 경로로부터 일정 거리 이내에 해당 차량 운전자가 특별히 선호하는 도로가 있다면 그 선호 도로를 경유지로 지정하여 추천 경로를 재작성하는 방식을 생각할 수 있다. 또는, 선호 도로에 대해서는 가산점을 부여하여 추천 경로 선정 알고리즘을 작동시키는 것도 구현할 수 있다.After recommending a route, the cloud central server 300 may grasp the route in which the vehicle actually travels in real time or even after the fact. Through this, the cloud driver may determine the propensity of the vehicle driver. In particular, the vehicle driver may obtain information on a road that he or she particularly prefers. If a situation in which a particular road is repeated without following the recommended route is repeated, the driver may determine that the road is particularly preferred. Such a road preference of the driver is stored in the vehicle information management module 350, it is preferable to consider first when generating the recommendation route in the optimal path calculation module 340 in the future. For example, after deriving a recommendation route primarily in the optimum route calculation module 340, and if there is a road that the driver prefers within a certain distance from the recommendation route, the recommendation route is designated as a waypoint by way of the designated route. You can think of how to rewrite it. Alternatively, it is possible to implement a recommendation route selection algorithm by assigning an additional point to the preferred road.
추가로, 차량정보 관리모듈(350)은 네비게이션 단말기(100)에 내장된 GPS 모듈(110)의 고유 식별자(GPS ID)를 인식하고 실시간 업데이트 관리하는 것이 바람직하다. 이를 통해, 차량 도난이나 차량 유실, 또는 네비게이션 단말기(100)의 도난 등이 발생하는 경우에 클라우드 중앙서버(300)에서 GPS 모듈(110)의 위치를 추적할 수 있게 된다.In addition, the vehicle information management module 350 may recognize the unique identifier (GPS ID) of the GPS module 110 embedded in the navigation terminal 100 and manage the update in real time. Through this, when the vehicle is stolen, the vehicle is lost, or theft of the navigation terminal 100 occurs, the cloud central server 300 may track the position of the GPS module 110.
도 3은 클라우드 중앙서버(300)에서 시간대별 예상 위치를 산출해낸 예시도이다.3 is an exemplary view of calculating the estimated position for each time zone in the cloud central server 300.
클라우드 중앙서버(300)는 차량 경로 데이터베이스에 등록된 각 차량에 대한 경로 정보를 보유하고 있으므로, 차량의 수, 각 차량의 목적지, 현재 도로상황, 기타 각종 고정 변수와 측정된 변수들을 고려하여 각 차량의 시간대별 위치를 예상할 수 있다. 도 3를 살펴보면, 1번 차량의 경우 현재 수원을 지나고 있는데, 1번 차량에게 제시된 경로와 관련 교통상황을 감안하면 앞으로 3시간 후에는 김천을 지날 것으로 예상할 수 있다. 그리고, 본 발명에 따른 서비스를 받는 단말기가 많아질수록 몇 시간 후에 특정 지역에 가까워지는 차량의 수를 집계할 수 있으므로 향후 트래픽 상황도 비교적 정확하게 예측할 수 있다.Since the cloud central server 300 has route information for each vehicle registered in the vehicle route database, each vehicle in consideration of the number of vehicles, the destination of each vehicle, the current road situation, and various fixed and measured variables You can estimate the timephased location of. Referring to FIG. 3, vehicle 1 is currently passing through Suwon. In view of the route and related traffic conditions presented to vehicle 1, it can be expected to pass Gimcheon in the next three hours. As the number of terminals receiving services according to the present invention increases, the number of vehicles approaching a specific region can be counted after several hours, so that future traffic conditions can be predicted relatively accurately.
도 4는 클라우드 중앙서버(300)에서 시간대별 예상 트래픽 정보를 산출해낸 예시도이다.4 is an exemplary view of calculating the estimated traffic information for each time zone in the cloud central server 300.
혼잡도를 1~10으로 설정하였을 경우, 판교분기점은 현재는 수치가 9이므로 매우 교통량이 많고 혼잡스러운 편이지만 앞으로 2시간 후에는 수치가 5로 떨어지므로 일반적인 교통량에 도달하게 됨을 예측할 수 있다.If the congestion level is set to 1 ~ 10, Pangyo Junction is currently 9, so the traffic is very heavy and crowded, but after 2 hours, it can be predicted that the general traffic volume will be reached.
그러나, 안성분기점의 경우에는 현재는 수치가 2로서 교통상황이 매우 원활하지만 2시간 후에는 교통량이 증가하여 판교분기점과 거의 동일한 교통량에 도달하게 됨을 알 수 있다.However, in the case of the eye component origin, the current value is 2, and the traffic situation is very smooth, but after 2 hours, the traffic volume increases, and it can be seen that the traffic volume is almost the same as the Pangyo junction.
도 4에 도시된 실시예는 불연속적인 특정 위치마다 역시 불연속적인 시간별로 혼잡도를 수치화하여 나타낸 향후 트래픽 정보에 해당되지만, 고성능의 클라우드 컴퓨팅 자원을 활용하여 공간 단위와 시간 단위를 더욱 세분화함으로써 연속적인 정보를 산출할 수 있다. 또한, 도시된 바와 같이 단순화된 데이터가 아니라 실시간으로 전송받은 정보와 결과물을 유기적으로 결합하여 최적경로를 얻어내기에 적합한 형태의 예상 트래픽 정보를 구축할 수도 있다.The embodiment shown in FIG. 4 corresponds to future traffic information represented by quantifying congestion by discrete time for each discrete location, but is further divided by further subdividing a space unit and a time unit using high-performance cloud computing resources. Can be calculated. In addition, as shown, instead of the simplified data, it is possible to construct expected traffic information in a form suitable for obtaining an optimal path by organically combining the received information and the result in real time.
도 5는 클라우드 컴퓨팅 방식의 네비게이션 운용방법의 전체 동작과정을 나타낸 순서도이다.5 is a flowchart illustrating the overall operation of the cloud computing method navigation operation method.
먼저, 차량 사용자(운전자)가 당해 차량에 장착된 클라우드 컴퓨팅 전용 네비게이션 단말기(100)를 조작하여 출발지, 목적지, 경유지 등과 같은 차량 경로 정보를 입력한다(S100).First, a vehicle user (driver) operates the cloud computing dedicated navigation terminal 100 mounted on the vehicle to input vehicle route information such as a departure point, a destination, a waypoint, and the like (S100).
그러면, 네비게이션 단말기(100)는 그 입력된 차량 경로 정보를 클라우드 네트워크(200)를 통해 클라우드 중앙서버(300)로 전송한다(S110). 또한, 네비게이션 단말기(100)는 GPS 모듈(110)을 이용하여 차량의 현재 위치정보를 인식하여 추가정보를 클라우드 중앙서버(300)로 전송할 수도 있다. 선택적으로는, 클라우드 중앙서버(300)에서 직접 GPS나 다른 정보통신 기술을 이용하여 차량의 현재 위치정보를 파악할 수도 있다.Then, the navigation terminal 100 transmits the input vehicle path information to the cloud central server 300 through the cloud network 200 (S110). In addition, the navigation terminal 100 may recognize the current location information of the vehicle using the GPS module 110 and transmit additional information to the cloud central server 300. Optionally, the current location information of the vehicle may be determined by using the GPS or other information communication technology directly from the cloud central server 300.
그 다음으로, 클라우드 중앙서버(300)가 복수 개의 네비게이션 단말기(100)로부터 차량 경로 정보를 수집하여 차량 경로 데이터베이스를 생성한다(S120). 그리고, 이렇게 생성된 차량 경로 데이터베이스는 클라우드 데이터베이스(400)에 저장한다.Next, the cloud central server 300 collects vehicle route information from the plurality of navigation terminals 100 to generate a vehicle route database (S120). The vehicle route database generated as described above is stored in the cloud database 400.
그 다음으로, 클라우드 중앙서버(300)에서는 차량 경로 데이터베이스에 포함된 출발지와 목적지를 기준으로 교통상황을 감안한 각 차량마다 시간대별 예상 위치를 산출한다(S130). 또는, 운전 차량의 현재 위치정보와 경유지 정보를 추가 기준으로 각 차량의 시간대별 예상 위치를 산출할 수도 있다.Next, the cloud central server 300 calculates an estimated position for each vehicle in consideration of traffic conditions based on a departure point and a destination included in the vehicle route database (S130). Alternatively, the estimated position of each vehicle may be calculated based on current location information and waypoint information of the driving vehicle.
즉, 개별 차량이 각자 제시된 경로를 따라 움직일 때 어느 시간에 어느 위치에 도달하게 될 것인지를 예측한다. 이는 그동안 누적된 교통 정보를 참조하여 현재의 도로 교통 상황을 고려하여 산출해낼 수도 있고, 그 밖에 다른 방법으로 다양하게 구현될 수 있다.In other words, it predicts at what time and at what position each individual vehicle will travel as it follows a given route. This may be calculated in consideration of the current road traffic situation by referring to the accumulated traffic information, or may be variously implemented in other ways.
이때, 개별 차량의 시간대별 예상 위치는 기존 네비게이션 서비스에서 제공하는 것처럼 각 구간마다 평균적으로 걸리는 소요시간을 합산하는 데에 불과한 것이 아니라, 클라우딩 컴퓨팅의 장점을 살려서 차량 경로 데이터베이스에 포함된 차량의 수, 각 차량의 목적지, 현재 도로상황, 기타 각종 고정 변수와 측정된 변수들을 고려하여 산출된다.At this time, the estimated position of each vehicle by time is not merely adding up the average time required for each section as provided by the existing navigation service, but by utilizing the advantages of cloud computing, the number of vehicles included in the vehicle route database. It is calculated by considering each vehicle's destination, current road situation, and various fixed and measured variables.
그 다음으로, 클라우드 중앙서버(300)는 앞서 산출된 시간대별 예상 위치를 기준으로 각 위치마다 향후 교통량이 얼마나 많아질 것이며 이로 인해 교통이 어느 정도 원할할 것인지를 알 수 있는 시간대별 예상 트래픽 정보를 산출한다(S140). 이때, 시간대별 예상 트래픽 정보가 산출되는 지점은 지도상의 불연속 또는 연속된 위치마다 산출되도록 구현될 수 있으며, 이를 통해 현재의 트래픽뿐만 아니라 향후의 시간대별 트래픽까지도 예상이 가능해진다.Next, the cloud central server 300 provides the estimated traffic information according to time slots, which can know how much traffic will be required for each location based on the estimated time slots calculated above, and thus the traffic will be desired. It calculates (S140). At this time, the point at which the estimated traffic information for each time slot is calculated may be implemented to be calculated for each discontinuous or continuous position on the map, thereby making it possible to predict not only the current traffic but also future time-based traffic.
예컨대, 각 차량의 시간대별 예상 위치를 통해 특정 시간대의 특정 도로 지점의 트래픽량을 산출해내는 것이 가능하며, 이를 통해 지도상의 각 위치마다의 향후 트래픽을 예측할 수 있다. 또한, 클라우드 중앙서버(300)의 고성능 클라우팅 컴퓨팅 자원을 활용함으로써 차량 경로 데이터베이스에 등록된 수많은 차량을 시간 흐름에 따라 가상으로 시뮬레이션하여 이동시켜봄으로써 위치마다 시간대별 예상 트래픽 정보를 산출할 수도 있다. 그 밖에도 다양한 방식으로 향후 시간대별 트래픽을 예상하는 것이 가능하다.For example, it is possible to calculate the traffic volume of a specific road point in a specific time zone through the predicted location of each vehicle time zone, thereby predicting future traffic for each location on the map. In addition, by utilizing the high-performance cloud computing resources of the cloud central server 300, it is possible to calculate the estimated traffic information for each location by time by virtually simulating and moving a number of vehicles registered in the vehicle route database over time. . In addition, it is possible to estimate future time-phased traffic in various ways.
그 다음으로, 클라우드 중앙서버(300)가 시간대별 예상 트래픽 정보를 기준으로 개별 차량의 추천 경로를 산출한다(S150). 추천 경로의 바람직한 실시예는 최단시간 경로이다. 최단시간 경로는 차량이 지나갈 경로의 특정 위치마다 시간대별로 산출된 트래픽량이 최소화되도록 경로를 선정할 수도 있고, 앞 과정의 시뮬레이션을 통해 산출된 시간대별 예상 트래픽 정보를 기준으로 특정 차량의 이동을 시간 흐름에 따라 다양한 경로의 조합에 따라 시뮬레이션하여 해당 차량의 최단시간 경로를 산출할 수도 있다.Next, the cloud central server 300 calculates the recommended route of the individual vehicle based on the estimated traffic information for each time zone (S150). A preferred embodiment of the recommended route is the shortest route. The shortest route may select a route so that the amount of traffic calculated at each time zone is minimized for each specific position of the route through which the vehicle will pass, and time movement of a specific vehicle based on the estimated traffic information at each time zone calculated through the simulation of the previous process. Depending on the combination of the various paths can be simulated to calculate the shortest time path of the vehicle.
즉, 클라우드 중앙서버(300)에서는 본 발명에 따른 네비게이션 서비스를 활용하는 수많은 차량의 경로 정보를 보유하고 있으므로 이를 한꺼번에 분석하여 각 차량별로 적합한 최적의 경로를 실시간으로 제공할 수 있다. 또한, 이를 통해 트래픽의 로드 밸런싱도 가능해진다.That is, since the cloud central server 300 has route information of a number of vehicles utilizing the navigation service according to the present invention, it can be analyzed at once to provide an optimal route suitable for each vehicle in real time. This also enables load balancing of traffic.
이상, 언급한 각 차량의 시간대별 예상 위치, 각 위치의 시간대별 예상 트래픽 정보, 특정 차량의 최적경로 등은 단순히 순차적으로 각 정보가 산출되는 데에 그치는 것이 아니라 각 정보들을 연계시켜 밸런스된 값이 산출되도록 구현할 수도 있다. 즉, 각각의 정보를 서로 피드백시키거나 유기적으로 정보를 결합시킬 수도 있고, 앞서 설명한 바와 같이 가상 시뮬레이션을 적용하는 등 클라우딩 컴퓨팅의 자원을 최대한 활용함으로써 보다 정확하게 향후 교통 상황을 예측하도록 구현하는 것이 바람직하다.As mentioned above, the estimated position of each vehicle in each time zone, the estimated traffic information of each position in each time zone, the optimum route of a specific vehicle, and the like are not merely calculated in sequence, but are balanced by linking the respective information. It can also be implemented to be calculated. That is, it is desirable to implement the information to predict future traffic conditions more accurately by maximizing the resources of cloud computing, such as feeding back each information or organically combining the information, and applying virtual simulation as described above. Do.
그 다음으로, 클라우드 중앙서버(300)가 지금까지의 과정을 통해 산출된 추천 경로를 클라우드 네트워크(200)를 통해 해당 차량의 네비게이션 단말기(100)로 전송한다(S160). 그러면, 네비게이션 단말기(100)에서는 전송받은 결과를 화면에 디스플레이함으로써 운전자는 향후 트래픽까지 고려하여 산출된 최적의 경로를 알 수 있게 된다.Next, the cloud central server 300 transmits the recommendation route calculated through the above process to the navigation terminal 100 of the vehicle through the cloud network 200 (S160). Then, the navigation terminal 100 displays the result of the transmission on the screen so that the driver can know the optimal route calculated in consideration of future traffic.
그 다음으로, 클라우드 중앙서버(300)는 차량의 위치를 실시간으로 추적하여 차량에 관한 정보를 지속적으로 업데이트한다(S170). 운전자가 추천 경로를 따라 차량을 주행하지 않을 수도 있고, 차량 도난이나 네비게이션 도난 등과 같은 비정상적인 상황도 감안한 것이다.Next, the cloud central server 300 continuously tracks the location of the vehicle in real time and continuously updates information about the vehicle (S170). The driver may not drive the vehicle along the recommended route and takes into account abnormal situations such as vehicle theft or navigation theft.
마지막으로, 클라우드 중앙서버(300)는 개별 차량별로 정보를 추출하고 관리한다(S180). 차량 운전자가 특별히 선호하는 도로가 있는지 여부를 체크하여, 만일 선호 도로가 있다면 이후의 경로 추천시에는 이러한 선호 도로를 우선 감안하는 것이 바람직하다. 예를 들어, 최적경로 산출모듈(340)에서 1차적으로 추천 경로를 도출한 후에, 그 추천 경로로부터 일정 거리 이내에 해당 차량 운전자가 특별히 선호하는 도로가 있다면 그 선호 도로를 경유지로 지정하여 추천 경로를 재작성하는 방식을 생각할 수 있다. 또는, 선호 도로에 대해서는 가산점을 부여하여 추천 경로 선정 알고리즘을 작동시키는 것도 구현할 수 있다. 또한, GPS ID 별로 현재 위치를 실시간 관리함으로써 차량 도난이나 네비게이션 도난 등이 발생하는 경우에 효과적으로 대응한다.Finally, the cloud central server 300 extracts and manages information for each vehicle (S180). It is desirable for the driver of the vehicle to check whether there is a road that he or she particularly prefers, and if there is a preferred road, it is desirable to consider this preferred road first for future route recommendations. For example, after deriving a recommendation route primarily in the optimum route calculation module 340, and if there is a road that the driver prefers within a certain distance from the recommendation route, the recommendation route is designated as a waypoint by way of the designated route. You can think of how to rewrite it. Alternatively, it is possible to implement a recommendation route selection algorithm by assigning an additional point to the preferred road. In addition, by real-time management of the current location for each GPS ID, it effectively responds to the theft of vehicle theft or navigation theft.

Claims (11)

  1. 사용자로부터 출발지와 목적지가 포함된 차량 경로 정보를 입력받아 클라우드 네트워크를 통해 중앙서버로 전송하는 네비게이션 단말기(100)의 동작 프로그램을 기록한 컴퓨터로 판독가능한 기록매체;A computer-readable recording medium having recorded thereon an operation program of the navigation terminal 100 which receives vehicle route information including a starting point and a destination from a user and transmits the vehicle route information to a central server through a cloud network;
    차량 경로 데이터베이스를 포함한 교통 정보가 저장되는 클라우드 데이터베이스(400);A cloud database 400 in which traffic information including a vehicle route database is stored;
    상기 네비게이션 단말기로부터 차량 경로 정보를 전송받아 차량 경로 데이터베이스를 생성하여 클라우드 데이터베이스에 저장하고, 차량 경로 데이터베이스로부터 각 차량마다 시간대별 예상 위치를 산출하고, 시간대별 예상 위치를 기준으로 위치마다 시간대별 예상 트래픽 정보를 산출하고, 시간대별 예상 트래픽 정보를 기준으로 해당 차량의 추천 경로를 산출하여 클라우드 네트워크를 통해 해당 차량의 네비게이션 단말기로 전송하는 클라우드 중앙서버(300);Receives vehicle route information from the navigation terminal, generates a vehicle route database and stores it in a cloud database, calculates an estimated position for each vehicle from a vehicle route database, and estimates traffic for each position based on the estimated position for each time slot. A cloud central server 300 that calculates information, calculates a recommended route of the vehicle based on the estimated traffic information according to time zones, and transmits the recommended route to the navigation terminal of the vehicle through the cloud network;
    를 포함하여 구성되는 클라우드 컴퓨팅 방식의 네비게이션 시스템.Cloud computing navigation system configured to include.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 클라우드 중앙서버(300)는,The cloud central server 300,
    클라우드 네트워크를 통해 복수 개의 네비게이션 단말기로부터 차량 경로 정보를 전송받고, 내부 산출된 추천 경로를 해당 네비게이션 단말기로 전송하는 인터페이스 모듈(310);An interface module 310 for receiving vehicle route information from a plurality of navigation terminals through a cloud network and transmitting an internally calculated recommendation route to a corresponding navigation terminal;
    복수 개의 네비게이션 단말기로부터 차량 경로 정보를 수집하여 차량 경로 데이터베이스를 생성하여 클라우드 데이터베이스에 저장하는 차량 경로 데이터베이스 생성 모듈(320);A vehicle route database generation module 320 for collecting vehicle route information from a plurality of navigation terminals to generate a vehicle route database and storing the vehicle route database in a cloud database;
    상기 차량 경로 데이터베이스에 포함된 각 차량의 출발지와 목적지를 기준으로 각 차량마다 시간대별 예상 위치를 산출하고, 시간대별 예상 위치를 기준으로 위치마다 시간대별 예상 트래픽 정보를 산출하여 클라우드 데이터베이스에 저장하는 트래픽 예측 모듈(330);Traffic estimated at each time zone based on the starting point and destination of each vehicle included in the vehicle route database, and estimated traffic information at each time slot based on the estimated time slots, and stored in the cloud database. Prediction module 330;
    상기 시간대별 예상 트래픽 정보를 기준으로 해당 차량의 추천 경로를 산출하는 최적경로 산출 모듈(340);An optimum route calculation module 340 for calculating a recommendation route of the corresponding vehicle based on the estimated traffic information for each time slot;
    을 포함하여 구성되는 것을 특징으로 하는 클라우드 컴퓨팅 방식의 네비게이션 시스템.Cloud computing method navigation system characterized in that it comprises a.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 네비게이션 단말기(100)는 GPS 모듈(110)로부터 획득한 차량의 현재 위치정보 및 경유지 정보를 클라우드 네트워크를 통해 클라우드 중앙서버(300)로 전송하는 것을 특징으로 하고,The navigation terminal 100 transmits the current location information and waypoint information of the vehicle obtained from the GPS module 110 to the cloud central server 300 through the cloud network,
    상기 트래픽 예측 모듈(330)은 현재 위치정보와 경유지 정보를 추가 기준으로 각 차량마다 시간대별 예상 위치를 산출하고, 위치마다 시간대별 예상 트래픽 정보를 산출하여 클라우드 데이터베이스(400)에 저장하는 것을 특징으로 하는 클라우드 컴퓨팅 방식의 네비게이션 시스템.The traffic prediction module 330 calculates an estimated position for each time zone based on the current location information and waypoint information, and calculates estimated traffic information for each time slot for each location and stores it in the cloud database 400. Cloud computing navigation system.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 클라우드 중앙서버(300)는, 차량의 위치 정보를 실시간 추적하여 상기 추천 경로와의 차이를 반복 비교함으로써 차량 별로 도로 선호도 정보를 추출하여 관리하는 차량정보 관리모듈(350)을 더 포함하여 구성되고,The cloud central server 300 is configured to further include a vehicle information management module 350 for extracting and managing road preference information for each vehicle by repeatedly tracking the location information of the vehicle in real time and comparing the difference with the recommended route. ,
    상기 최적경로 산출모듈(340)은 상기 추천 경로를 산출할 때 해당 차량에 대한 도로 선호도 정보를 상기 차량정보 관리모듈(350)로부터 제공받아 상기 도로 선호도에 따른 선호 도로를 우선 감안하여 상기 추천 경로를 산출하는 것을 특징으로 하는 클라우드 컴퓨팅 방식의 네비게이션 시스템.The optimum route calculation module 340 receives road preference information for the vehicle from the vehicle information management module 350 when calculating the recommendation route and considers the preferred route according to the road preference. Cloud computing method navigation system characterized in that the calculation.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 트래픽 예측 모듈(330)은 차량 경로 데이터베이스에 등록된 각 차량을 시간 흐름에 따라 가상으로 이동하도록 시뮬레이션하여 위치마다 시간대별 예상 트래픽 정보를 산출하는 트래픽 시뮬레이션 모듈(331);The traffic prediction module 330 may include: a traffic simulation module 331 for simulating virtually moving each vehicle registered in the vehicle route database according to a time flow to calculate estimated traffic information for each time zone;
    을 더 포함하는 구성되는 클라우드 컴퓨팅 방식의 네비게이션 시스템.The cloud computing method of the navigation system further comprises.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 최적경로 산출 모듈(340)은 상기 트래픽 시뮬레이션 모듈(331)을 통해 산출된 시간대별 예상 트래픽 정보를 기준으로 특정 차량의 이동을 시간 흐름에 따라 다양한 경로의 조합에 따라 시뮬레이션하여 해당 차량의 추천 경로를 산출하는 최적경로 시뮬레이션 모듈(341);The optimal path calculation module 340 simulates the movement of a specific vehicle based on a combination of various paths over time based on the estimated traffic information according to time slots calculated by the traffic simulation module 331, and recommends a route of the corresponding vehicle. An optimal path simulation module 341 that calculates a value;
    을 더 포함하여 구성되는 클라우드 컴퓨팅 방식의 네비게이션 시스템.The cloud computing system navigation system further comprises a.
  7. (A) 네비게이션 단말기를 통해 출발지와 목적지가 포함된 차량 경로 정보를 입력받는 단계;(A) receiving vehicle route information including a starting point and a destination through a navigation terminal;
    (B) 네비게이션 단말기가 차량 경로 정보를 클라우드 중앙서버로 전송하는 단계;(B) the navigation terminal transmits the vehicle route information to the cloud central server;
    (C) 클라우드 중앙서버가 복수 개의 네비게이션 단말기로부터 차량 경로 정보를 수집하여 차량 경로 데이터베이스를 생성하는 단계;(C) the cloud central server collecting vehicle route information from the plurality of navigation terminals to generate a vehicle route database;
    (D) 클라우드 중앙서버가 차량 경로 데이터베이스에 포함된 출발지와 목적지를 기준으로 각 차량마다 시간대별 예상 위치를 산출하는 단계;(D) the cloud central server calculating an estimated position for each vehicle based on a departure point and a destination included in the vehicle route database;
    (E) 클라우드 중앙서버가 시간대별 예상 위치를 기준으로 위치마다 시간대별 예상 트래픽 정보를 산출하는 단계;(E) the cloud central server calculating the estimated traffic information according to time slots for each location based on the estimated time slots;
    (F) 클라우드 중앙서버가 시간대별 예상 트래픽 정보를 기준으로 해당 차량의 추천 경로를 산출하는 단계;(F) calculating, by the cloud central server, a recommended route of the vehicle based on the estimated traffic information for each time zone;
    (G) 클라우드 중앙서버가 추천 경로를 클라우드 네트워크를 통해 해당 차량의 네비게이션 단말기로 전송하는 단계;(G) the cloud central server transmitting the recommended route to the navigation terminal of the vehicle through the cloud network;
    를 포함하여 구성되는 클라우드 컴퓨팅 방식의 네비게이션 운용방법.Cloud computing method navigation operation method comprising a.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 (B) 단계는 네비게이션 단말기가 차량의 현재 위치정보와 경유지 정보를 클라우드 중앙서버로 전송하는 단계를 더 포함하고,The step (B) further includes the navigation terminal transmitting the current location information and waypoint information of the vehicle to the cloud central server,
    상기 (D) 단계는 클라우드 중앙서버가 현재 위치정보와 경유지 정보를 추가 기준으로 각 차량마다 시간대별 예상 위치를 산출하는 단계를 더 포함하여 구성되는 것을 특징으로 하는 클라우드 컴퓨팅 방식의 네비게이션 운용방법.The step (D) is a cloud computing method of the cloud computing method, characterized in that the cloud central server further comprises the step of calculating the estimated position for each time zone based on the additional location information and waypoint information.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 (E) 단계는, Step (E),
    클라우드 중앙서버가 차량 경로 데이터베이스에 등록된 각 차량을 시간 흐름에 따라 가상으로 이동하도록 시뮬레이션하여 위치마다 시간대별 예상 트래픽 정보를 산출하는 단계;Calculating, by the cloud central server, virtually moving each vehicle registered in the vehicle route database according to a time flow, and calculating estimated traffic information according to time slots for each location;
    를 더 포함하여 구성되는 것을 특징으로 하는 클라우드 컴퓨팅 방식의 네비게이션 운용방법.Cloud computing method navigation operation method characterized in that it further comprises.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 (F) 단계는, Step (F) is
    상기 (E) 단계의 시뮬레이션을 통해 산출된 시간대별 예상 트래픽 정보를 기준으로 특정 차량의 이동을 시간 흐름에 따라 다양한 경로의 조합에 따라 시뮬레이션하여 해당 차량의 추천 경로를 산출하는 단계;Calculating a recommendation route of the vehicle by simulating a movement of a specific vehicle according to a combination of various routes according to time flow based on the estimated traffic information for each time zone calculated through the simulation of the step (E);
    를 더 포함하여 구성되는 것을 특징으로 하는 클라우드 컴퓨팅 방식의 네비게이션 운용방법.Cloud computing method navigation operation method characterized in that it further comprises.
  11. 청구항 7 내지 청구항 10 중 어느 하나의 항에 따른 클라우드 컴퓨팅 방식의 네비게이션 운용방법을 수행하기 위한 네비게이션 운용 프로그램을 기록한 컴퓨터로 판독가능한 기록매체.A computer-readable recording medium having recorded thereon a navigation operation program for performing a cloud computing type navigation operation method according to any one of claims 7 to 10.
PCT/KR2012/002850 2011-07-05 2012-04-14 Navigation system using cloud computing technology, method for managing same, and computer-readable recording medium for recording a program for the system and method WO2013005912A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0066357 2011-07-05
KR1020110066357A KR20130005035A (en) 2011-07-05 2011-07-05 Navigation system of cloud computing means and method for the same

Publications (1)

Publication Number Publication Date
WO2013005912A1 true WO2013005912A1 (en) 2013-01-10

Family

ID=47437235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002850 WO2013005912A1 (en) 2011-07-05 2012-04-14 Navigation system using cloud computing technology, method for managing same, and computer-readable recording medium for recording a program for the system and method

Country Status (2)

Country Link
KR (1) KR20130005035A (en)
WO (1) WO2013005912A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266651A (en) * 2014-07-31 2015-01-07 广东东纳软件科技有限公司 Precise-navigation scheduling and monitoring platform system and navigation scheduling method thereof
CN105825684A (en) * 2016-05-24 2016-08-03 佛山市中德光电特种照明有限公司 Smart city cloud street lamp system
WO2017188543A1 (en) * 2016-04-29 2017-11-02 상명대학교 천안산학협력단 High-capacity path combination apparatus for navigation, using collected path data, and method therefor
WO2018031759A3 (en) * 2016-08-10 2018-07-26 Surround.Io Corporaton Method and apparatus for providing goal oriented navigational directions
US10054454B2 (en) 2016-05-06 2018-08-21 Ford Global Technologies, Llc Network based storage of vehicle and infrastructure data for optimizing vehicle routing
CN111343283A (en) * 2020-03-17 2020-06-26 北京百度网讯科技有限公司 Navigation analog simulation method, device, terminal and storage medium
US10713955B2 (en) 2016-12-22 2020-07-14 Xevo Inc. Method and system for providing artificial intelligence analytic (AIA) services for performance prediction
US10882398B2 (en) 2019-02-13 2021-01-05 Xevo Inc. System and method for correlating user attention direction and outside view
US11068728B2 (en) 2016-06-13 2021-07-20 Xevo Inc. Method and system for providing behavior of vehicle operator using virtuous cycle
CN114694400A (en) * 2020-12-25 2022-07-01 上海棋语智能科技有限公司 Traffic guidance dispatching system and dispatching method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101728219B1 (en) * 2015-02-23 2017-04-19 전북대학교산학협력단 Traffic Dispersion Method and System with Space Time Control based on Duplex Communication
KR101601801B1 (en) 2015-04-02 2016-03-09 알엔에스 주식회사 LED light with arc-shaped light diffusing construction
CN112508411B (en) * 2020-12-10 2023-06-27 成都运达科技股份有限公司 Driver control level grading evaluation method and terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613118B2 (en) * 2000-02-18 2005-01-26 株式会社日立製作所 Traffic flow simulator and navigation terminal
KR20050050361A (en) * 2003-11-25 2005-05-31 삼성전자주식회사 Navigation system and method for guide path considered user freference
KR20080097320A (en) * 2007-05-01 2008-11-05 엘지전자 주식회사 Method of selecting a route and terminal thereof
KR20110071043A (en) * 2009-12-20 2011-06-28 이희성 Intelligent transportation system using information-navigation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613118B2 (en) * 2000-02-18 2005-01-26 株式会社日立製作所 Traffic flow simulator and navigation terminal
KR20050050361A (en) * 2003-11-25 2005-05-31 삼성전자주식회사 Navigation system and method for guide path considered user freference
KR20080097320A (en) * 2007-05-01 2008-11-05 엘지전자 주식회사 Method of selecting a route and terminal thereof
KR20110071043A (en) * 2009-12-20 2011-06-28 이희성 Intelligent transportation system using information-navigation

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266651A (en) * 2014-07-31 2015-01-07 广东东纳软件科技有限公司 Precise-navigation scheduling and monitoring platform system and navigation scheduling method thereof
WO2017188543A1 (en) * 2016-04-29 2017-11-02 상명대학교 천안산학협력단 High-capacity path combination apparatus for navigation, using collected path data, and method therefor
US10690507B2 (en) 2016-05-06 2020-06-23 Ford Global Technologies, Llc Network based storage of vehicle and infrastructure data for optimizing vehicle routing
US10054454B2 (en) 2016-05-06 2018-08-21 Ford Global Technologies, Llc Network based storage of vehicle and infrastructure data for optimizing vehicle routing
CN105825684A (en) * 2016-05-24 2016-08-03 佛山市中德光电特种照明有限公司 Smart city cloud street lamp system
US11068728B2 (en) 2016-06-13 2021-07-20 Xevo Inc. Method and system for providing behavior of vehicle operator using virtuous cycle
WO2018031759A3 (en) * 2016-08-10 2018-07-26 Surround.Io Corporaton Method and apparatus for providing goal oriented navigational directions
CN109964260A (en) * 2016-08-10 2019-07-02 兹沃公司 For providing the method and apparatus of object-oriented navigation direction
US10503988B2 (en) 2016-08-10 2019-12-10 Xevo Inc. Method and apparatus for providing goal oriented navigational directions
US10540557B2 (en) 2016-08-10 2020-01-21 Xevo Inc. Method and apparatus for providing driver information via audio and video metadata extraction
US10950132B2 (en) 2016-12-22 2021-03-16 Xevo Inc. Method and system for providing artificial intelligence analytic (AIA) services using operator fingerprints and cloud data
US10713955B2 (en) 2016-12-22 2020-07-14 Xevo Inc. Method and system for providing artificial intelligence analytic (AIA) services for performance prediction
US11335200B2 (en) 2016-12-22 2022-05-17 Xevo Inc. Method and system for providing artificial intelligence analytic (AIA) services using operator fingerprints and cloud data
US10882398B2 (en) 2019-02-13 2021-01-05 Xevo Inc. System and method for correlating user attention direction and outside view
CN111343283A (en) * 2020-03-17 2020-06-26 北京百度网讯科技有限公司 Navigation analog simulation method, device, terminal and storage medium
CN114694400A (en) * 2020-12-25 2022-07-01 上海棋语智能科技有限公司 Traffic guidance dispatching system and dispatching method thereof

Also Published As

Publication number Publication date
KR20130005035A (en) 2013-01-15

Similar Documents

Publication Publication Date Title
WO2013005912A1 (en) Navigation system using cloud computing technology, method for managing same, and computer-readable recording medium for recording a program for the system and method
US10102744B2 (en) Predictive traffic management using virtual lanes
Saw et al. Literature review of traffic assignment: static and dynamic
CN103177562B (en) A kind of method and device obtaining information of traffic condition prediction
Di Martino et al. An architecture for a mobility recommender system in smart cities
JP5604394B2 (en) Electric vehicle power consumption provision system
JP6090449B2 (en) Predictive energy remaining amount guidance system
US10801848B2 (en) Crowd sourcing to predict vehicle energy consumption
KR20140106206A (en) Vehicle apparatus and system for controlling group driving, and method for selecting preceding vehicle using the same
CN105459842A (en) Estimation method for endurance mileage of electric vehicle
JP6994203B2 (en) Highway system for connected self-driving cars and methods using it
JP2013210281A (en) Route search system and method for electric vehicle
JP5920309B2 (en) Movement support device, movement support method, and driving support system
JP2011170686A (en) Method and device for deciding transfer point, and car navigation device
JP2023535828A (en) Routing method, device, equipment and medium
JP2015161604A (en) Navigation device and navigation program
CN105046996A (en) Method and apparatus for predictive driving demand modeling
JP2021015087A (en) Traveling assistance device and computer program
CN111341093A (en) Control method, device, equipment and storage medium of motorcade
Engelhardt et al. Benefits of flexible boarding locations in on-demand ride-pooling systems
JP2020051763A (en) Information processing system, information processing program, and information processing method
Hou et al. Towards efficient vacant taxis cruising guidance
EP4282695A1 (en) Method and apparatus for providing a charging time window for an electric vehicle
WO2014107000A1 (en) Guidance system and method for walking route
CN116698064A (en) Vehicle travel planning method and device, electronic equipment and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12808157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12808157

Country of ref document: EP

Kind code of ref document: A1