WO2013005745A1 - Window glass - Google Patents

Window glass Download PDF

Info

Publication number
WO2013005745A1
WO2013005745A1 PCT/JP2012/067003 JP2012067003W WO2013005745A1 WO 2013005745 A1 WO2013005745 A1 WO 2013005745A1 JP 2012067003 W JP2012067003 W JP 2012067003W WO 2013005745 A1 WO2013005745 A1 WO 2013005745A1
Authority
WO
WIPO (PCT)
Prior art keywords
window glass
diffraction grating
transparent resin
resin layer
layer
Prior art date
Application number
PCT/JP2012/067003
Other languages
French (fr)
Japanese (ja)
Inventor
康宏 池田
寛 坂本
海田 由里子
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013005745A1 publication Critical patent/WO2013005745A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/1044Invariable transmission
    • B32B17/10449Wavelength selective transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2417Light path control; means to control reflection
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2476Solar cells

Definitions

  • the present invention relates to a window glass having a diffraction grating and having a solar cell.
  • a window glass of a building As a window glass of a building, a glass plate in which a diffraction grating is formed (see Patent Document 1), and a film in which a diffraction grating is formed between two glass plates (see Patent Document 2). Proposed.
  • the amount of transmitted infrared light can be controlled according to the season (the altitude of the sun, that is, the incident angle of sunlight). The rise can be suppressed, and in the winter, infrared rays of sunlight can be efficiently taken into the room to raise the room temperature.
  • the angle at which the incident angle to the interface when the infrared ray of sunlight incident on the window glass is emitted from the window glass to the air in summer when the incident angle of sunlight is large is equal to or greater than the critical angle at the interface.
  • the grid line spacing and the grid line surface inclination are set so that the sunlight incident on the window glass is not diffracted in the winter when the incident angle of sunlight is small.
  • the infrared rays of sunlight that are incident on the window glass and diffracted by the diffraction grating are totally reflected at the interface between the window glass and air, so that they are confined inside the window glass.
  • sunlight incident on the window glass passes through the window glass without being diffracted by the diffraction grating.
  • the present invention provides a window glass that can control the amount of infrared transmission according to the incident angle of sunlight and can effectively use the infrared light energy that has not been transmitted for solar cells.
  • the window glass of the present invention comprises a window glass body having a diffraction grating and a solar cell disposed on at least one side of the window glass body. It is preferable that the window glass body has a diffraction grating sheet provided with a glass plate and the diffraction grating.
  • the diffraction grating sheet has a transparent resin layer having a first main surface and a second main surface parallel to each other, and a diffraction grating composed of a plurality of grating lines arranged in parallel to each other at a predetermined pitch.
  • the lattice lines are made of a thin film made of a material having a refractive index different from that of the transparent resin layer, and the lattice lines have a length direction with respect to the first main surface and the second main surface of the transparent resin layer. It is preferably embedded in the transparent resin layer so as to extend in parallel.
  • the lattice line is formed so that the length direction extends parallel to the first main surface and the second main surface of the transparent resin layer, and the surface of the thin film has a gradient. It is preferably embedded in the layer.
  • the grid lines are preferably made of a dielectric thin film having a refractive index larger than that of the transparent resin layer.
  • the refractive index of the dielectric thin film constituting the lattice line is preferably 0.0001 to 1.8 higher than the refractive index of the transparent resin layer.
  • the diffraction grating sheet preferably further includes a first transparent substrate in contact with the first main surface.
  • the window glass main body may be a laminated glass in which two glass plates and a diffraction grating sheet sandwiched therebetween are bonded via an intermediate film.
  • the window glass main body may be a multi-layer glass in which two glass plates are arranged at a predetermined interval and a diffraction grating sheet is adhered to the inner surface of at least one glass plate.
  • the window glass body may have a diffraction grating sheet attached to the surface of a glass plate. It is preferable that the solar cell is arranged on a side parallel to the length direction of the grating line of the diffraction grating in the diffraction grating sheet among at least one side of the window glass body.
  • the window glass of the present invention can control the amount of infrared transmission according to the incident angle of sunlight, and can effectively use the infrared light energy that has not been transmitted for solar cells.
  • the side of the window glass body in the present invention refers to a line segment that forms a polygon of the window glass body when the window glass body is viewed from the front, that is, a side surface of the window glass body.
  • the upper side of the window glass main body in the present invention refers to the uppermost side when the window glass is installed on an object such as a building or a vehicle among a plurality of sides of the window glass main body.
  • the lower side of the window glass body in the present invention refers to a side located on the lowermost side when the window glass is installed on an object such as a building or a vehicle among a plurality of sides of the window glass body.
  • Transparent in the present invention means that visible light and infrared light are transmitted.
  • the refractive index in the present invention is a refractive index at a wavelength of 589 nm.
  • Each dimension of the diffraction grating sheet in the present invention is an average value obtained by measuring each dimension at three positions in a transmission electron microscope (TEM) image or an atomic force microscope (AFM) image of the cross section of the diffraction grating sheet. .
  • the window glass of this invention comprises the window glass main body which has a diffraction grating, and the solar cell arrange
  • the window glass of the present invention it efficiently diffracts the infrared rays of sunlight in the south-medium direction in summer when the light energy per unit area is the maximum in one year, and further totally reflects it at the interface between the window glass and air.
  • positioned at at least one of the upper side and lower side of a window glass main body is preferable, and the thing by which a solar cell is arrange
  • the shape of the window glass body may be a shape that allows solar cells to be arranged on at least one side, that is, a polygonal shape. For example, in the case of a building or the like, usually a quadrangle (square, rectangular, trapezoid, etc.) It is. Further, it may be curved glass, and the sides and corners may be curved.
  • the following (A) can be used because it can efficiently diffract sunlight with a wavelength in the infrared band at a wide angle of incidence, compared with a glass plate having a regular diffraction grating formed on the surface.
  • the window glass main body of (C) is preferable, and the window glass main body of (A) is more preferable because it can be easily manufactured in a relatively short time and can easily be enlarged.
  • Examples of the window glass body (A) include the following (A-1) to (A-3).
  • (A-1) Laminated glass in which two glass plates and a diffraction grating sheet, which will be described later, sandwiched between them are bonded via an intermediate film (first embodiment).
  • (A-2) Multi-layer glass in which two glass plates are arranged at a predetermined interval, and a diffraction grating sheet described later is adhered to the inner surface of at least one glass plate (second embodiment).
  • the solar cell may be any size as long as it can be disposed on at least one side of the window glass body and can receive light emitted from the side of the window glass body. From the viewpoint of ease of installation of the window glass, it is preferable that the length is approximately the same as or slightly smaller than the length of the side of the window glass body and the width is approximately equal to or slightly smaller than the thickness of the window glass body.
  • Such a solar cell is disposed such that its light receiving surface (that is, a surface for taking in light) is on one side of the window glass body, for example, on the end surface side of the window glass body.
  • the types of solar cells include single crystal silicon type, polycrystalline silicon type, microcrystalline silicon type, amorphous silicon type, hybrid type, thin film silicon type, spherical silicon type, tandem type, multijunction type, compound type (GaAs type, CIS type, CIGS type, CZTS type, CdTe type, etc.), dye sensitized type, organic thin film type, quantum dot type and the like.
  • Examples of the window glass of the present invention having the window glass body (A) include the window glasses of the first to third embodiments.
  • FIG. 1 is a cross-sectional view showing a first embodiment of the window glass of the present invention.
  • the window glass 3 is an upper side of a laminated glass (laminated glass type window glass main body 6) in which two glass plates 50 and a diffraction grating sheet 1 (described later) sandwiched therebetween are bonded via an intermediate film 52.
  • the solar cell 62 is arrange
  • the upper side and the lower side of the laminated glass are sides parallel to the length direction of the grating line 22 of the diffraction grating 20 in the diffraction grating sheet 1.
  • the solar cell 62 is arranged on a side parallel to the length direction of the grating line 22 of the diffraction grating 20 in the diffraction grating sheet 1 of the laminated glass.
  • solar cells 62 are disposed adjacent to the upper end face and the lower end face of the window glass body 6.
  • the upper side and the lower side of the laminated glass need only be substantially parallel to the length direction of the lattice lines 22 and may not be completely parallel.
  • the glass plate 50 a known glass plate for window glass may be used.
  • the glass plate may be obtained by a float method or a downdraw method, or may be a template glass.
  • the glass plate material include soda lime glass, borosilicate glass, aluminosilicate glass, and alkali-free glass.
  • an intermediate film (polyvinyl butyral film or the like) used for a known laminated glass may be used.
  • FIG. 2 is a cross-sectional view showing a second embodiment of the window glass of the present invention.
  • the window glass 4 includes two glass plates 50, a frame-like spacer 56 disposed at the peripheral edge of the glass plate 50 so that a gap 54 is formed between the glass plates 50, the spacer 56, and the glass plate 50.
  • a primary sealant 58 provided between the spacer 56, a secondary sealant 59 provided at the periphery of the spacer 56, and an inner surface of one glass plate 50, which is attached via an adhesive layer 60, which will be described later.
  • the spacer In the double glazing (double glazing type window glass body 6) having the diffraction grating sheet 1, the spacers on the upper side and the lower side (left side and right side of the double glazing in the figure) among the four sides of the spacer 56.
  • Reference numeral 56 denotes a solar cell 62.
  • the upper side and the lower side of the multilayer glass are sides parallel to the length direction of the grating line 22 of the diffraction grating 20 in the diffraction grating sheet 1. That is, the solar cell 62 (spacer 56) is arranged on a side parallel to the length direction of the grating line 22 of the diffraction grating 20 in the diffraction grating sheet 1 of the multilayer glass.
  • solar cells 62 are arranged adjacent to the upper end face and the lower end face of the window glass body 6.
  • the upper side and the lower side of the multilayer glass may be substantially parallel to the length direction of the lattice lines 22 and may not be completely parallel.
  • FIG. As the spacer 56 (excluding the solar cell 62), as the primary sealing material 58 and the secondary sealing material 59, for example, the spacer, the primary sealing material, and the secondary sealing material described in Japanese Patent No. 4479690 may be used. .
  • As the pressure-sensitive adhesive layer 60 a known pressure-sensitive adhesive sheet or the like used when various films are stuck on a glass plate may be used.
  • FIG. 3 is a cross-sectional view showing a third embodiment of the window glass of the present invention.
  • the window glass 5 is a sheet-attached glass (sheet-attached glass-type window glass body) having a glass plate 50 and a diffraction grating sheet 2 described later attached to the surface of the glass plate 50 via an adhesive layer 60. 6)
  • a solar cell 62 is disposed adjacent to the upper side and the lower side (the left side surface and the right side surface of the sheet pasting glass in the drawing).
  • the diffraction grating sheet 2 is attached to the surface of the glass plate 50 so that the hard coat layer 36 is the outermost layer.
  • the upper side and the lower side of the sheet sticking glass are sides parallel to the length direction of the grating line 22 of the diffraction grating 20 in the diffraction grating sheet 1. That is, the solar cell 62 is arranged on a side parallel to the length direction of the grating line 22 of the diffraction grating 20 in the diffraction grating sheet 2 of the sheet-adhered glass. In FIG. 3, solar cells 62 are arranged adjacent to the upper end face and the lower end face of the window glass body 6.
  • the upper side and the lower side of the sheet pasting glass only have to be substantially parallel to the length direction of the lattice lines 22 and may not be completely parallel.
  • FIG. 60 As the pressure-sensitive adhesive layer 60, the same layer as in the second embodiment may be used.
  • the window glass of the present invention only needs to have a window glass body having a diffraction grating and a solar cell disposed on at least one side of the window glass body, and is not limited to those shown in FIGS. Not.
  • the diffraction grating sheet provided with the diffraction grating does not have a transparent substrate (that is, does not have the first transparent substrate 32 and the second transparent substrate 34 as in FIG. 1), the transparent resin layer 10 and A diffraction grating sheet composed of only the diffraction grating 20 may be used.
  • the diffraction grating sheet may be a diffraction grating sheet having either one of the first transparent substrate 32 and the second transparent substrate 34 on the surface of the transparent resin layer 10.
  • seat mentioned later may be sufficient.
  • FIG. 4 is a cross-sectional view showing an embodiment of a diffraction grating sheet
  • FIG. 5 is a perspective view showing a transparent resin layer in the diffraction grating sheet.
  • the diffraction grating sheet 1 includes a flat transparent resin layer 10 having a first main surface 18 and a second main surface 19 that are parallel to each other; and embedded in the transparent resin layer 10 in parallel with each other at a predetermined pitch Pp.
  • a diffraction grating 20 comprising a plurality of grating lines 22; a first transparent substrate 32 in contact with the first main surface 18 of the transparent resin layer 10; a second contact in contact with the second main surface 19 of the transparent resin layer 10.
  • a transparent substrate 34 comprising a plurality of grating lines 22; a first transparent substrate 32 in contact with the first main surface 18 of the transparent resin layer 10; a second contact in contact with the second main surface 19 of the transparent resin layer 10.
  • the transparent resin layer 10 has a first main surface 18 and a second main surface 19 that are parallel to each other.
  • the first main surface 18 and the second main surface 19 may be formed substantially parallel to each other, and may not be formed completely parallel to each other.
  • the transparent resin layer 10 has a concavo-convex surface in which a plurality of ridges 12 whose cross-sectional shape is a right triangle as shown in FIG. 4 are formed on the surface in parallel with each other at a predetermined pitch Pp.
  • a first layer 14; a first layer 14; filled in a groove between the grid line 22 covering the first side surface of the ridge 12 and the ridge 12, and completely covering the top of the ridge 12 and the grid line 22. 2 is a laminate including two layers 16.
  • the interface between the first layer 14 and the first transparent substrate 32 is the first main surface 18 of the transparent resin layer 10, and the interface between the second layer 16 and the second transparent substrate 34 is a transparent resin. This is the second major surface 19 of the layer 10.
  • the ridge 12 is a portion that rises from the flat portion of the first layer 14 and that rises in one direction.
  • the ridge 12 may be integrated with the flat portion of the first layer 14 and may be made of the same material as the flat portion of the first layer 14, or may be made of a transparent resin different from the flat portion of the first layer 14. Good.
  • the ridges 12 are preferably integral with the flat portion of the first layer 14 and made of the same material as the flat portion of the first layer 14.
  • the plurality of ridges 12 may be formed substantially parallel to each other, and may not be formed completely parallel. Moreover, although the thing of the shape extended in linear form is preferable, the thing of the shape extended in the shape of a curve or a broken line may be sufficient in the range which the adjacent protruding item
  • the shape of the cross-section orthogonal to the length direction of the ridges 12 is substantially constant over the length direction, and all of the cross-sectional shapes of the plurality of ridges 12 are also substantially constant.
  • the cross-sectional shape of the ridge 12 is a shape in which the width gradually decreases from the bottom (the flat portion of the first layer 14) toward the top. Specific examples of the cross-sectional shape include a triangle and a trapezoid.
  • the corners in the cross-sectional shape may be curved. Further, the side (side surface) in the cross-sectional shape may be curved or may be stepped.
  • line 12 is not limited to these shapes, A rectangle etc. may be sufficient.
  • the top of the ridge 12 is a portion in which the highest portion of the cross-sectional shape is continuous in the length direction.
  • the top of the ridge 12 may be a surface or a line.
  • the cross-sectional shape is trapezoidal, the top portion forms a surface, and when the cross-sectional shape is triangular, the top portion forms a line.
  • the surface other than the top of the ridge 12 is referred to as a side surface of the ridge 12.
  • the ridge 12 has a first side surface and a second side surface.
  • the lattice line 22 is formed on at least a part of the first side surface.
  • at least the first side surface preferably has a gradient with respect to the first main surface 18.
  • the first side surface may be a flat surface, a curved surface, or a stepped shape.
  • the second side surface may be perpendicular to the first main surface 18 and may have a slope.
  • the first side surface may be handled as the left side surface of the ridge
  • the second side surface of the ridge may be handled as the right side surface of the ridge.
  • a thin film functioning as a lattice line is formed on the left side surface opposite to the right side surface described in FIG.
  • the transparent resin layer 10 (the first layer 14 and the second layer 16 are also collectively referred to as the transparent resin layer 10) is a layer made of a transparent resin.
  • a photo-curing resin or a thermoplastic resin is preferable from the viewpoint that the ridges 12 can be formed by the imprint method described later and the lattice lines 22 are easily embedded in the transparent resin layer 10.
  • a photo-curing resin is particularly preferable from the viewpoint that the ridges 12 can be formed by the above-mentioned method and that heat resistance and durability are excellent.
  • the photocurable resin a photocurable resin obtained by photocuring a photocurable composition that can be photocured by photoradical polymerization is preferable from the viewpoint of productivity.
  • the refractive index of the transparent resin layer 10 (the first layer 14 and the second layer 16) is preferably 1.25 to 1.8, and more preferably 1.3 to 1.7. If the refractive index of the transparent resin layer 10 is within the above range, the transparent resin layer 10 and the first transparent substrate 32 are appropriately selected by appropriately selecting the materials of the first transparent substrate 32 and the second transparent substrate 34. Alternatively, the difference in refractive index between the transparent resin layer 10 and the second transparent substrate 34 can be easily reduced.
  • the difference (absolute value) in refractive index between the first layer 14 and the second layer 16 is preferably 0.1 or less, and more preferably 0.05 or less. If the difference in refractive index is 0.05 or less, stray light and loss due to reflection, diffraction, etc. at the interface between the first layer 14 and the second layer 16 can be suppressed. Moreover, if the refractive index of the 1st layer 14 and the 2nd layer 16 is the same, optical design will become easy. From the viewpoint of reducing the difference in refractive index between the first layer 14 and the second layer 16, the material of the first layer 14 and the material of the second layer 16 are preferably substantially the same material. More preferably, they are the same material.
  • the diffraction grating 20 includes a plurality of grating lines 22 embedded in parallel with each other at a predetermined pitch Pp.
  • the term “lattice line” includes a thin-film lattice line and a lattice line having a predetermined width.
  • the plurality of grid lines 22 may be formed substantially parallel to each other, and may not be formed completely parallel.
  • the lattice lines 22 are preferably linear, but may be curved or polygonal as long as the adjacent lattice lines 22 do not contact each other.
  • the end surface in the length direction of the lattice line 22 may be exposed from the side surface of the transparent resin layer 10.
  • the plurality of lattice lines 22 are formed so that the length direction of the transparent resin layer 10 extends in parallel with a predetermined interval with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10.
  • the lattice lines 22 need only be formed substantially parallel to the length direction of the first main surface 18 and the second main surface 19 of the transparent resin layer 10, and are formed completely in parallel. It does not have to be.
  • the plurality of grid lines 22 are formed so that the length direction thereof extends in parallel to the upper side and the lower side of the window glass body 6.
  • the lattice lines 22 may be formed so that the length direction thereof is substantially parallel to the upper side and the lower side of the window glass body 6, and may not be formed completely in parallel.
  • the cross-sectional shape of the lattice line 22 in the direction orthogonal to the length direction is substantially constant over the length direction, and the cross-sectional shape of all the lattice lines 22 is also substantially constant.
  • the lattice lines 22 are composed of thin films extending in the length direction of the ridges 12.
  • the grid lines 22 preferably cover at least a part of the first side surface of the ridge 12, and more preferably completely cover the first side surface.
  • the lattice line 22 may cover a part or all of the top of the ridge 12, or cover all of the top of the ridge 12 and a part of the second side surface of the ridge 12. Also good.
  • the lattice line 22 may cover a part of the flat portion between the two adjacent ridges 12.
  • the lattice lines 22 are preferably formed so that the surfaces of the thin films constituting the lattice lines 22 have a gradient with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10. If the surface of the thin film has a gradient with respect to the first main surface 18 and the second main surface 19, the light diffracted by the diffraction grating is directed in the outdoor direction or toward the end of the transparent resin layer 10. Control of the emission direction such as emission becomes easy.
  • the gradient angle ⁇ g of the surface (lattice plane) of the thin film constituting the lattice line 22 with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10 is the first main surface 18 of the transparent resin layer 10.
  • the surface of the thin film may be a flat surface, a curved surface, or a step shape as long as it has a gradient.
  • the thin film which comprises the lattice line 22 with respect to the 1st main surface 18 and the 2nd main surface 19 of the pitch Pp of the lattice line 22, the height Hg of the lattice line 22, the thickness Dg of the lattice line 22, and the transparent resin layer 10
  • the surface gradient angle ⁇ g and the like may be appropriately set by, for example, a diffraction grating design method described later.
  • the pitch Pp of the grid lines 22 is the distance from the left end (or right end) of the cross section of the grid lines 22 to the left end (or right end) of the cross section of the grid lines 22 adjacent thereto, and the thickness of the grid lines 22 Dg is the maximum value of the thickness in the same direction as the width direction of the ridges 12 in the cross section perpendicular to the length direction of the grid lines 22, and the height Hg of the grid lines 22 is the length direction of the grid lines 22. It is the height in the same direction as the height direction of the ridge 12 in the cross section orthogonal to.
  • the lattice lines 22 are made of a thin film of a material having a refractive index different from that of the transparent resin layer 10 (hereinafter also referred to as a lattice line material).
  • the lattice line material include dielectrics (inorganic oxides, resins, etc.), metals, and the like.
  • the inorganic oxide include silicon dioxide, aluminum oxide, titanium oxide, and zirconium dioxide (hereinafter referred to as zirconia).
  • the resin include a photo-curing resin and a thermoplastic resin.
  • the metal include simple metals, alloys, metals containing dopants or impurities, and the like. Specifically, aluminum, silver, chromium, magnesium, an aluminum alloy, a silver alloy, and the like can be given.
  • the lattice lines 22 are preferably made of a dielectric thin film having a higher refractive index than the transparent resin layer 10.
  • the refractive index of the lattice line 22 (dielectric) smaller than the refractive index of the transparent resin layer 10 by making the refractive index of the lattice line 22 (dielectric) larger than the refractive index of the transparent resin layer 10 Compared to the above, it becomes easy to increase the refractive index difference and increase the diffraction efficiency. There are also more choices for dielectrics.
  • the grating line material is preferably a material having a large refractive index difference from the transparent resin material 10, and since the refractive index difference from the resin can be increased and the diffraction efficiency can be increased, the dielectric material Of these thin film materials, titanium oxide and zirconia are preferable, and zirconia is particularly preferable. Further, although the diffraction efficiency is lower than that of titanium oxide and zirconia, silicon dioxide is also preferable from the viewpoint of high transmittance for visible light and infrared rays, easy formation of a thin film, and low cost.
  • the refractive index of the thin film constituting the lattice line 22 is preferably 0.0001 to 1.8 higher than the refractive index of the transparent resin layer 10. Within this range, the diffraction efficiency is high and the wavelength dispersion of the transmittance hardly occurs.
  • the diffraction grating sheet 1 has transparent substrates (a first transparent substrate 32 and a second transparent substrate 34) made of a thermoplastic resin or the like on the surface of the transparent resin layer 10.
  • the first transparent substrate and the second transparent substrate are, for example, (meth) acrylic resins such as polymethyl methacrylate, a copolymer of methyl methacrylate and other vinyl (meth) acrylate, a vinyl monomer such as styrene, and the like; Polycarbonate resins such as polycarbonate and diethylene glycol bisallyl carbonate (CR-39); (brominated) homopolymer or copolymer of bisphenol A type di (meth) acrylate, (brominated) bisphenol A mono (meth) acrylate Thermosetting (meth) acrylic resins such as polymers and copolymers of urethane-modified monomers; polyesters, especially polyethylene terephthalate, polyethylene naphthalate and unsaturated polyesters, acrylonit
  • the refractive index difference (absolute value) between the transparent substrate and the transparent resin layer 10 is preferably 0.1 or less, and more preferably 0.05 or less. If the difference in refractive index is 0.1 or less, light loss due to reflection occurring at the interface between the transparent resin layer 10 and the transparent substrate can be suppressed.
  • the diffraction grating sheet of the present invention includes a transparent resin layer having a first main surface and a second main surface parallel to each other, and a diffraction grating composed of a plurality of grating lines arranged in parallel to each other at a predetermined pitch Pp.
  • the grating line is made of a thin film made of a material having a refractive index different from that of the transparent resin layer, and the grating line is formed with respect to the first main surface and the second main surface of the transparent resin layer. As long as it is embedded in the transparent resin layer so that its length direction extends in parallel, it is not limited to those shown in FIGS.
  • the surface of the dielectric thin film constituting the lattice line 22 may not have a gradient with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10, that is, the first It may be perpendicular to one major surface 18 and second major surface 19.
  • a diffraction grating sheet including only the transparent resin layer 10 and the diffraction grating 20 may be used without the transparent substrates (the first transparent substrate 32 and the second transparent substrate 34).
  • seat which has any one among the 1st transparent substrate 32 and the 2nd transparent substrate 34 on the surface of the transparent resin layer 10 may be sufficient.
  • the diffraction grating sheet having the first transparent substrate 32 on the surface of the transparent resin layer 10 is easy to manufacture the diffraction grating sheet. preferable.
  • the diffraction grating sheet 2 having a hard coat layer 36 on the surface of the second transparent substrate 34 (or the first transparent substrate 32) may be used.
  • the material of the hard coat layer 36 include a resin (such as a photo-curing resin) and an inorganic oxide (such as silicon dioxide).
  • the angle of the gradient of the surface of the thin film which comprises the lattice line 22 with respect to the 1st main surface 18 and the 2nd main surface 19 of the length direction of the lattice line 22 in each transparent resin layer 10 and the transparent resin layer 10 ⁇ g , the pitch Pp of the lattice lines 22, etc. may be the same for each transparent resin layer 10, may be different for some transparent resin layers 10, or may be different for each transparent resin layer 10. .
  • a diffraction grating 20a in which the length direction of the grating line 22 extends in the x direction and the surface of the thin film constituting the grating line 22 slopes in the ⁇ z direction as it goes in the + y direction is embedded.
  • Transparent resin layer 10a a transparent resin in which a diffraction grating 20b in which the length direction of the grating line 22 extends in the x direction and the surface of the thin film constituting the grating line 22 is inclined in the + z direction as it goes in the + y direction is embedded
  • a transparent resin layer 10c in which a diffraction grating 20c in which the length direction of the grating line 22 extends in the z direction and the surface of the thin film constituting the grating line 22 slopes in the ⁇ x direction as it goes in the + y direction is embedded in the layer 10b
  • a transparent resin layer 10d in which a diffraction grating 20d in which the length direction of the grating line 22 extends in the z direction and the surface of the thin film constituting the grating line 22 is inclined in the + x direction as it goes in the + y direction is embedded.
  • the infrared rays of sunlight diffracted by the diffraction grating in any of the transparent resin layers are efficiently transmitted to the solar cell 62 regardless of the altitude and direction (morning, evening, and season) of the sun. Well incident. Moreover, even if the incident direction of sunlight changes when the traveling direction changes as in a vehicle (automobile or the like), any transparent resin is used regardless of the traveling direction of the vehicle (automobile or the like).
  • the infrared rays of sunlight diffracted by the diffraction grating 20 in the layer efficiently enter the solar cell 62.
  • the solar cell 62 may be provided on four sides of the window glass.
  • the direction of the gradient of the surface of the thin film constituting the lattice line 22 with respect to the length direction of the lattice line 22 and the first main surface 18 and the second main surface 19 of the transparent resin layer 10. and the angle phi g may be a diffraction grating sheet with a transparent resin layer 10e is embedded the same diffraction grating 20 and the transparent resin layer 10f has been transparent resin layer 10 laminated. According to the diffraction grating sheet, compared with the single transparent resin layer 10, the infrared diffraction efficiency of sunlight having a specific incident angle and wavelength desired to be diffracted can be further increased.
  • the gradient angle ⁇ g of the surface of the light source includes the range of the infrared wavelength for which the amount of transmission is desired to be suppressed, the range of the incident angle of sunlight for which the amount of infrared transmission is desired to be suppressed, and the materials constituting the diffraction grating sheet (transparent resin layer 10 ,
  • the angle ⁇ g of the gradient of the surface of the thin film constituting the lattice lines 22 with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10 is as follows.
  • the pitch Pp of the grid line 22 which is the distance from the left end (or right end) of the cross section of the grid line 22 to the left end (or right end) of the cross section of the grid line 22 adjacent thereto is set as follows. It can be calculated by obtaining a lattice line interval d in the normal direction of the line 22.
  • FIG. 9 shows the state of light refraction and diffraction in the transparent resin layer 10 of the window glass body 6 in which the surface of the thin film constituting the lattice line 22 is inclined toward the upper side (right side of the drawing) as it goes toward the sunlight incident surface.
  • the schematic which shows an example.
  • the window glass main body 6 in addition to the transparent resin layer 10, it has the transparent substrates 32 and 34, the intermediate film 52, and the glass plate 50, but between the air and the transparent resin layer 10 by Snell's law described later. Even if a material other than the transparent resin layer 10 is present, the angle of refraction of sunlight finally incident on the transparent resin layer 10 is the same as when no material other than the transparent resin layer 10 is present.
  • Sunlight that has entered the transparent resin layer 10 (refractive index n 1 ) from the air (refractive index n 0 ) at an incident angle ⁇ 0 is refracted at the refractive angle ⁇ 1 at the interface according to Snell's law, which will be described later.
  • a part of the refracted sunlight infrared rays
  • the grid lines 22 is the slope of the surface of the angle phi n of, at an incident angle phi n - [theta] 1, diffracted (reflected) by the diffraction angle phi n - [theta] 1.
  • the refracted sunlight is emitted from the transparent resin layer 10 to the air without being diffracted by the lattice line 22.
  • the diffracted infrared light is incident on the interface between the transparent resin layer 10 and air at an incident angle ⁇ .
  • the incident angle ⁇ is greater than or equal to the critical angle ⁇ at the interface ( ⁇ ⁇ 0)
  • the infrared rays are totally reflected at the interface and confined inside the window glass 3, and are reflected on the lower side (left side of the drawing). It is guided to a solar cell (not shown).
  • the incident angle ⁇ is less than the critical angle ⁇ at the interface ( ⁇ ⁇ 0)
  • infrared rays are refracted at the interface and emitted from the transparent resin layer 10 to the air.
  • the incident angle ⁇ is expressed by the following equation (1).
  • 2 ⁇ n ⁇ 1
  • the refraction angle ⁇ 1 is represented by the following expression (3) from Snell's law of the following expression (2).
  • n 0 sin ⁇ 0 n 1 sin ⁇ 1
  • ⁇ 1 arcsin ⁇ (n 0 / n 1 ) sin ⁇ 0 ⁇ (3)
  • the critical angle ⁇ is expressed by the following formula (4).
  • arcsin ⁇ n 0 / n 1 ⁇ (4)
  • ⁇ - ⁇ 2 ⁇ n -arcsin ⁇ (n 0 / n 1 ) sin ⁇ 0 ⁇ -arcsin ⁇ n 0 / n 1 ⁇ (5)
  • the incident angle theta 0 of infrared want diffracted formula (5) e.g., 60 °
  • the refractive index n 0 of air enter the refractive index n 1 of the transparent resin layer 10, such as the right-hand side is 0 or more
  • An angle ⁇ n of the surface gradient of the thin film constituting the lattice line 22 with respect to the normal lines of the first main surface 18 and the second main surface 19 of the transparent resin layer 10 is obtained.
  • the lattice line interval d causing diffraction is expressed by the Bragg condition of the following equation (6).
  • d ⁇ / ⁇ 2n 1 sin ( ⁇ n ⁇ 1 ) ⁇ (6)
  • Infrared wavelength ⁇ for example, 800 nm
  • refraction angle ⁇ 1 formula (3) to be diffracted into formula (6)
  • normal line of first main surface 18 and second main surface 19 of transparent resin layer 10 is input to obtain the lattice line interval d.
  • FIG. 10 shows the state of light refraction and diffraction in the transparent resin layer 10 of the window glass body 6 in which the surface of the thin film constituting the lattice line 22 is inclined toward the lower side (left side of the drawing) as it goes toward the sunlight incident surface.
  • It is the schematic which shows an example.
  • a method of obtaining the angle ⁇ n of the gradient of the surface of the thin film constituting the grid line 22 and the grid line spacing d with respect to the line will be described.
  • only two grid lines 22 in the transparent resin layer 10 are shown, and the other grid lines 22 are omitted.
  • Sunlight that has entered the transparent resin layer 10 (refractive index n 1 ) from the air (refractive index n 0 ) at an incident angle ⁇ 0 is refracted at the refractive angle ⁇ 1 at the interface according to Snell's law.
  • a part of the refracted sunlight (infrared rays) is the surface of the thin film constituting the lattice line 22 with respect to the normal line of the first main surface 18 and the second main surface 19 of the transparent resin layer 10.
  • the grid lines 22 is the angle of the gradient phi n, at an incident angle ⁇ n + ⁇ 1, diffracted (reflected) by the diffraction angle ⁇ n + ⁇ 1.
  • the refracted sunlight is emitted from the transparent resin layer 10 to the air without being diffracted by the lattice line 22.
  • the diffracted infrared light is incident on the interface between the transparent resin layer 10 and air at an incident angle ⁇ .
  • the incident angle ⁇ is greater than or equal to the critical angle ⁇ at the interface ( ⁇ ⁇ 0)
  • the infrared rays are totally reflected at the interface and confined inside the window glass 3, and are reflected on the upper side (right side of the drawing). It is guided to a solar cell (not shown).
  • the incident angle ⁇ is less than the critical angle ⁇ at the interface ( ⁇ ⁇ 0)
  • infrared rays are refracted at the interface and emitted from the transparent resin layer 10 to the air.
  • Equation (8) the incident angle ⁇ is expressed by the following equation (7).
  • 2 ⁇ n + ⁇ 1 (7)
  • Equation (8) substituting Equations (7), (3), and (4) into ⁇ - ⁇ yields Equation (8) below.
  • ⁇ - ⁇ 2 ⁇ n + arcsin ⁇ (n 0 / n 1 ) sin ⁇ 0 ⁇ -arcsin ⁇ n 0 / n 1 ⁇
  • the incident angle theta 0 of infrared want diffracted formula (8) e.g., 60 °
  • the refractive index n 0 of air enter the refractive index n 1 of the transparent resin layer 10, such as the right-hand side is 0 or more
  • An angle ⁇ n of the surface gradient of the thin film constituting the lattice line 22 with respect to the normal lines of the first main surface 18 and the second main surface 19 of the transparent resin layer 10 is obtained.
  • the lattice line interval d causing diffraction is expressed by the Bragg condition of the following equation (9).
  • d ⁇ / ⁇ 2n 1 sin ( ⁇ n + ⁇ 1 ) ⁇ (9)
  • Infrared wavelength ⁇ for example, 800 nm
  • refraction angle ⁇ 1 formula (3) to be diffracted into formula (9)
  • normal lines of first main surface 18 and second main surface 19 of transparent resin layer 10 is input to obtain the lattice line interval d.
  • the first main surface 18 and the second main surface 19 of the transparent resin layer 10 obtained using the incident angle ⁇ 0 of the infrared ray to be diffracted and the wavelength ⁇ of the infrared ray to be diffracted.
  • the angle ⁇ n of the gradient of the surface of the thin film constituting the lattice line 22 and the lattice line interval d with respect to the normal line are only one point each.
  • the gradient angle ⁇ n and the grating line of the surface of the thin film constituting the grating line 22 with respect to the normal lines of the first main surface 18 and the second main surface 19 of the transparent resin layer 10 Even if the distance d is fixed at one point, the range of incident angles having a certain width before and after the incident angle ⁇ 0 of infrared rays to be diffracted, and to some extent around the wavelength ⁇ of infrared rays to be diffracted Infrared rays in the wavelength range having a width of 2 are totally reflected at the interface between the transparent resin layer 10 and air and confined in the inside of the window glass body 6, on the lower side (case 1) or the upper side (case 2).
  • the window glass body 6 having the diffraction grating sheet 1 the light reflected again by the adjacent grating line 22, the window glass body 6 and the solar battery that have been guided to the lower side solar cell after being guided.
  • light other than the emission direction assumed in the above-described design may be generated, such as light that is reflected and returned from the interface. Therefore, in order to receive such light, it is preferable to place a solar cell also on the upper side of the window glass body 6 (that is, on both the lower side and the upper side).
  • the diffraction grating 20 By designing the diffraction grating 20 as described above, as shown in FIG. 11, in the summer when the altitude of the sun is high (sunlight incident angle ⁇ 0 is large), the sunlight that has entered the window glass body 6 Among them, a part of infrared rays having a long wavelength is diffracted by the diffraction grating 20, guided to the solar cell 62, and not taken into the room. On the other hand, as shown in FIG. 12, in the winter when the altitude of the sun is low (sunlight incident angle ⁇ 0 is small), the sunlight (visible light to infrared light) incident on the window glass body 6 is reflected by the diffraction grating 20. It is efficiently taken into the room without being diffracted.
  • the gradient angle ⁇ g ) and the grating line spacing d (pitch Pp) of the surface of the thin film constituting the grating line 22 with respect to the surface 18 and the second main surface 19 are as described in the above-described design method. It may be constant throughout 1 and may vary continuously or partially.
  • the window glass of the present invention is produced, for example, through the following steps (I) to (III).
  • (I) A step of producing a diffraction grating sheet.
  • (II) A step of attaching a diffraction grating sheet and a glass plate to obtain a window glass body.
  • (III) A step of obtaining the window glass of the present invention by disposing a solar cell on at least one side of the window glass body.
  • Step (I) Examples of the method for producing a diffraction grating sheet include a method having the following step (a), step (b), and step (c) in this order.
  • B Diffraction consisting of a plurality of lattice lines by dry-coating a material having a refractive index different from that of the transparent resin layer on at least a part of the surface of the ridge formed on the first layer. Forming a lattice;
  • C A step of forming the transparent resin layer including the first layer and the second layer by forming the second layer including the transparent resin on the uneven surface of the first layer and the surface of the diffraction grating. .
  • the method which has the following process (a '), the process (b), and the process (c') in this order, for example is mentioned.
  • a ′ On the surface of the first transparent substrate, one surface is an interface with the first transparent substrate, that is, the first main surface, and the other surface has a plurality of protrusions parallel to each other and A step of forming a first layer made of a transparent resin, which is an uneven surface formed at a predetermined pitch Pp.
  • a method for manufacturing the diffraction grating sheet 1 of FIG. 4 for example, a method including the following step (a ′′), step (b ′′), and step (c ′′) can be mentioned.
  • a ′′ On the surface of the first transparent substrate 32, one surface is an interface with the first transparent substrate 32 (that is, the first main surface 18), and the other surface is the first main surface 18.
  • B ′′ On the first side surface of the ridge 12 formed on the first layer (on the right side surface of each ridge 12 in FIG.
  • C ′′ a first transparent substrate 32 on which the first layer 14 and the diffraction grating 20 are formed, and a second transparent substrate 34 on which a coating film made of a photocurable composition is formed.
  • the first layer 14 and the second layer 16 are formed by bonding the first layer 14 and the diffraction grating 20 so that the coating film is in contact with each other and then photocuring the coating film to form the second layer 16.
  • Forming a transparent resin layer 10 comprising:
  • Examples of a method for producing the first layer 14 include an imprint method (an optical imprint method and a thermal imprint method), a lithography method, and the like.
  • the imprint method is preferable from the viewpoint that the area can be increased, and the optical imprint method is particularly preferable from the point that the ridges 12 can be formed with higher productivity and the groove of the mold can be transferred with high accuracy.
  • a mold in which a plurality of grooves are formed in parallel with each other and at a predetermined pitch Pp is formed by a combination of electron beam drawing and etching. This is a method of transferring to a photocurable composition applied to the surface of the substrate 32 and simultaneously photocuring the photocurable composition.
  • the production of the first layer 14 by the photoimprint method is preferably performed through the following steps (i) to (iv).
  • the photocurable composition is formed such that the groove 40 is in contact with the photocurable composition 24 in the mold 40 in which the plurality of grooves 42 are formed in parallel to each other and at a predetermined pitch Pp. The process of pressing against 24.
  • the production of the first layer 14 by the thermal imprint method is preferably performed through the following steps (i) to (iii).
  • Tg glass transition temperature
  • Tm melting point
  • the material of the mold 40 used in the imprint method examples include silicon, nickel, quartz glass, and resin.
  • the imprint method can be performed by a roll-to-roll method.
  • the lattice lines 22 are selectively formed on the surface of the side surface of the ridge 12 of the first layer 14 by dry-coating a material having a refractive index different from that of the transparent resin layer 10.
  • Examples of the dry coating method include a PVD method and a CVD method, and a vacuum deposition method, a sputtering method, and an ion plating method are preferable, and a vacuum deposition method is particularly preferable.
  • the vacuum deposition method the oblique deposition method is preferable because the incident direction of the evaporated particles with respect to the first layer 14 can be controlled and the dielectric can be selectively deposited on the surface of the ridge 12.
  • the lattice lines 22 are formed by the oblique deposition method as follows. First, as shown in FIG. 14, the following expression (10) is satisfied on the first side surface side with respect to the height direction H of the ridge 12 and substantially perpendicular to the length direction L of the ridge 12.
  • the angle of the gradient with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10 is ⁇ p
  • a thin film that covers a part or the whole of the first side surface of the ridge 12 is formed.
  • tan ( ⁇ R ⁇ 10) (Pp ⁇ Hp / tan ⁇ p ) / Hp (10)
  • the angle ⁇ R (°) in Expression (10) represents the angle for depositing the lattice wire material on the first side surface of the ridge 12 without being blocked by the adjacent ridge 12, and the distance between the top of the bottom and next to the ridge 12 of the first side (i.e., the distance minus the Hp / tan [phi p from the pitch Pp of the ridges 12 (Pp-Hp / tan ⁇ p )), next to the ridge 12 It is determined from the height Hp. “ ⁇ 10” is a swing width.
  • step (c), step (c ′), step (c ′′) As shown in FIG. 15, the first transparent substrate 32 having the first layer 14 and the diffraction grating 20 formed on the surface, and the second transparent having the coating film 26 made of the photocurable composition formed on the surface. The substrate 34 is bonded so that the coating layer 26 is in contact with the first layer 14 and the diffraction grating 20. Next, the transparent resin layer 10 including the first layer 14 and the second layer 16 is formed by photocuring the coating film 26 to form the second layer 16.
  • the manufacturing method of the diffraction grating sheet may be any method including the above-described steps (a) to (c), and the above-described steps (a ′) to (c ′) and steps (a ′′) to (c ′′) are performed.
  • the manufacturing method of the illustrated diffraction grating sheet is not limited.
  • the first side surface of the ridge 12 may not have a gradient with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10, that is, the first main surface. 18 and the second major surface 19 may be perpendicular.
  • the second side surface of the ridge 12 may have a gradient with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10.
  • the top of the ridge 12 may be a flat surface.
  • the surface of the thin film of the lattice line material constituting the lattice line 22 may be formed on the second side surface of the ridge 12 or may be formed on the top surface of the ridge 12.
  • the said process (c ') is changed as follows. do it.
  • (C ′) A coating film made of the photocurable composition is formed on the diffraction grating side surface of the first transparent substrate on which the first layer and the diffraction grating are formed, and then the coating film is photocured. Forming a transparent resin layer comprising the first layer and the second layer by forming the second layer.
  • the window glass body is a known method, that is, in the case of the laminated glass of the first embodiment, according to the known laminated glass manufacturing method.
  • the window glass body is a known multilayer glass.
  • the manufacturing method in the case of the sheet sticking glass of 3rd Embodiment, it manufactures with the manufacturing method of a well-known sheet sticking glass.
  • the window glass can be manufactured by a method in which the solar cell 62 is bonded to at least one side of the window glass main body, or a method in which the window glass main body is fitted in a frame body in which the solar cell 62 is provided in at least one side. .
  • the step (II) and the step (III) are performed simultaneously.
  • Example 1 is an example and Example 2 is a comparative example.
  • the transmittance was measured at an incident angle of 0 ° to 80 ° using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, UV3600). The incident angle corresponds to ⁇ 0 in FIGS. 11 and 12.
  • the solar transmittance was determined by simulation using the solar transmittance measurement software from the obtained spectrum (300-2100 nm).
  • Photocurable composition 1 To a 1000 mL four-necked flask equipped with a stirrer and a condenser, 60 g of monomer 1 (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-DPH, dipentaerythritol hexaacrylate), 40 g of monomer 2 (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-NPG, neopentyl glycol diacrylate), 4.0 g of photopolymerization initiator (manufactured by Ciba Specialty Chemicals, IRGACURE907), Fluorine-containing surfactant (manufactured by Asahi Glass Co., Ltd., co-oligomer of fluoroacrylate (CH 2 ⁇ CHCOO (CH 2 ) 2 (CF 2 ) 8 F) and butyl acrylate), fluorine content: about 30% by mass, mass average molecular weight
  • the flask was stirred and homogenized for 1 hour at room temperature and in a light-shielded state.
  • 100 g (solid content: 30 g) of colloidal silica was slowly added while stirring in the flask, and the mixture was further homogenized by stirring for 1 hour while keeping the temperature of the flask at room temperature and light shielding.
  • 340 g of cyclohexanone was added, and the solution was stirred for 1 hour with the inside of the flask at room temperature and light-shielded to obtain a solution of the photocurable composition 1.
  • the refractive index after curing of the photocurable composition 1 was 1.45.
  • Example 1 (Diffraction grating design)
  • the gradient angle ⁇ g of the surface of the thin film constituting the lattice line with respect to the first main surface and the second main surface of the transparent resin layer and the pitch Pp of the lattice line 22 are the incident angle ⁇ 0 of the infrared ray to be diffracted.
  • PET polyethylene terephthalate
  • Nickel mold in which a plurality of grooves are formed in parallel with each other at a predetermined pitch (area: 150 mm ⁇ 150 mm, pattern area: 100 mm ⁇ 100 mm, groove pitch Pp: 0.37 ⁇ m, groove depth Hp: 1.5 ⁇ m , Groove length: 100 mm, groove cross-sectional shape: substantially right triangle), photocurable at 0.5 MPa (gauge pressure) at 25 ° C. so that the groove is in contact with the coating film of the photocurable composition 1 Pressed against the coating film of composition 1.
  • 0.5 MPa gauge pressure
  • the PET film side was irradiated with light of a high-pressure mercury lamp (frequency: 1.5 kHz to 2.0 kHz, main wavelength light: irradiation energy at 255 nm, 315 nm and 365 nm, 365 nm: 1000 mJ) for 15 seconds.
  • a curable composition 1 is cured to form a first layer having a plurality of ridges corresponding to the grooves of the mold (ridge pitch Pp: 0.37 ⁇ m, ridge height Hp: 1.5 ⁇ m, transparent resin
  • the slope angle ⁇ p of the first side surface of the ridge with respect to the first main surface 18 and the second main surface 19 of the layer 10 was formed. The mold was slowly separated from the first layer.
  • a vacuum deposition device SEC-16CM, Showa Vacuum Co., Ltd.
  • Zirconia was vapor-deposited by the method, and lattice lines (lattice line pitch Pp: 0.37 ⁇ m, lattice line height Hg: 1.5 ⁇ m, lattice lines formed of a thin film of zirconia (refractive index (589 nm): 2.00) Thickness Dg: 72 nm, and the gradient angle ⁇ g of the surface of the thin film constituting the lattice lines with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10 was formed.
  • lattice lines lattice lines (lattice line pitch Pp: 0.37 ⁇ m, lattice line height Hg: 1.5 ⁇ m, lattice lines formed of a thin film of zirconia (refractive index (589 nm): 2.00) Thickness Dg: 72 nm, and the gradient angle ⁇ g of the surface of the thin film constituting the lattice lines with respect to the first main surface 18 and the second main
  • the thickness Dg of the lattice line is a target thickness designed by simulation, and the deposition amount Dg ′ was adjusted so as to be the thickness.
  • Dg ′ was measured by a film thickness monitor using a crystal resonator as a film thickness sensor.
  • the high pressure mercury lamp (frequency: 1.5 kHz to 2.0 kHz, main frequency) was pressed with 0.5 MPa (gauge pressure) at 25 ° C. so that the coating film was in contact with the first layer and the diffraction grating.
  • the photocurable composition 1 was cured to form a second layer, whereby a transparent resin layer composed of the first layer and the second layer was formed, and the diffraction grating sheet 1 shown in FIG. 4 was obtained.
  • a sandwich body in which a glass plate and an intermediate film are pre-pressed is placed in an autoclave and subjected to thermocompression bonding at a pressure of 1.3 MPa and a temperature of 135 ° C. to obtain a window glass body (laminated glass) shown in FIG. It was.
  • Table 1 shows the solar transmittance at an incident angle of 0 ° to 80 °.
  • Solar cells 62 are arranged adjacent to the upper and lower sides of the window glass body (laminated glass) to obtain the window glass 3 shown in FIG. That is, the length direction of the grating lines of the diffraction grating in the diffraction grating sheet is such that the light receiving surface of the solar cell 62 is in contact with the end face of the upper side and the lower side of the window glass body (laminated glass).
  • the solar cells are arranged so as to be parallel to the upper side and the lower side.
  • a single crystal silicon type solar cell is used as the solar cell 62.
  • FIG. 16 shows the spectral sensitivity characteristics (relationship between wavelength and quantum efficiency) of the single crystal silicon solar cell element.
  • FIG. 17 shows a spectrum of light emitted from the upper side and the lower side of the glass body to the solar cell side. The amount of power generated by the solar cell was calculated assuming that all the light in FIG. 17 was incident on the solar cell. The results are shown in Table 1.
  • Example 2 Table 1 shows the solar transmittance at an incident angle of 0 ° to 80 ° for a float glass sheet (FL, thickness 4 mm) manufactured by Asahi Glass Co., Ltd.
  • a window glass with a solar cell is obtained in the same manner as in Example 1 except that the above-mentioned float plate glass is used instead of the window glass main body (laminated glass) of Example 1.
  • Example 2 Of the sunlight that is incident on the window glass of Example 2 at an incident angle ⁇ 0 of 60 °, the reflected light reflected in the window glass, that is, confined inside the window glass, from the upper and lower sides of the window glass to the solar cell side.
  • the spectrum of the emitted light is shown in FIG.
  • the amount of power generated by the solar cell was calculated assuming that all the light in FIG. 17 was incident on the solar cell. The results are shown in Table 1.
  • the window glass of the present invention efficiently blocks the infrared rays of sunlight entering the room in the summer to suppress the indoor temperature rise, and efficiently takes the infrared rays of the sunlight into the room in the winter to increase the indoor temperature.
  • Building window glass, vehicle window glass (car roof glass, rear glass, windshield, etc.) that can be used as electrical energy by directing infrared light energy blocked in the summer to solar cells ) Is useful.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2011-149070 filed on July 5, 2011 are incorporated herein as the disclosure of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

Provided is window glass that can control the amount of transmittance of infrared rays in accordance with the angle of incidence of solar light, and can effectively use the light energy of the infrared rays that are not transmitted. The window glass (3) is equipped with: laminated glass (main window glass body (6)) in which two glass sheets (50) and a diffraction grating sheet (1) sandwiched therebetween are pasted together with an intermediate film (52) therebetween; and a solar cell (62) disposed at both the top side and bottom side of the laminated glass main window glass body (6). The diffraction grating sheet (1) has: a transparent resin layer (10) having a first primary surface and a second primary surface that are parallel to each other; and a diffraction grating (20) comprising a plurality of lattice lines (22) disposed parallel to each other and at a predetermined pitch. The lattice lines (22) comprise a thin film of a material having a different refractive index from that of the transparent resin layer (10). The lattice lines (22) preferably are embedded in the transparent resin layer (10) in a manner so as to have a lengthwise direction extending parallel to the first primary surface and the second primary surface of the transparent resin layer (10).

Description

窓ガラスWindow glass
 本発明は、回折格子を有し、かつ太陽電池を有する窓ガラスに関する。 The present invention relates to a window glass having a diffraction grating and having a solar cell.
 建築物の窓ガラスとして、ガラス板の内部に回折格子が形成されたもの(特許文献1参照)、2枚のガラス板の間に回折格子が形成されたフィルムを挟んだもの(特許文献2参照)が提案されている。該窓ガラスによれば、季節(太陽の高度、すなわち太陽光の入射角)によって赤外線の透過量をコントロールできるため、夏季においては室内に侵入する太陽光の赤外線を効率よく遮断して室内の温度上昇を抑え、冬季においては太陽光の赤外線を室内に効率よく取り込んで室内の温度を上昇させることができる。 As a window glass of a building, a glass plate in which a diffraction grating is formed (see Patent Document 1), and a film in which a diffraction grating is formed between two glass plates (see Patent Document 2). Proposed. According to the window glass, the amount of transmitted infrared light can be controlled according to the season (the altitude of the sun, that is, the incident angle of sunlight). The rise can be suppressed, and in the winter, infrared rays of sunlight can be efficiently taken into the room to raise the room temperature.
 すなわち、太陽光の入射角が大きい夏季において窓ガラスに入射した太陽光の赤外線を、窓ガラスから空気へと出射する際の該界面への入射角が該界面における臨界角以上となるような角度に回折するように、かつ太陽光の入射角が小さい冬季において窓ガラスに入射した太陽光を回折しないように、格子線の間隔および格子線の表面の傾きが設定されている。そして、夏季において、窓ガラスに入射し、回折格子によって回折された太陽光の赤外線は、窓ガラスと空気との界面にて全反射するため、窓ガラスの内部に閉じ込められる。一方、太陽光の入射角が小さい冬季において、窓ガラスに入射した太陽光は、回折格子によって回折されることなく窓ガラスを透過する。 That is, the angle at which the incident angle to the interface when the infrared ray of sunlight incident on the window glass is emitted from the window glass to the air in summer when the incident angle of sunlight is large is equal to or greater than the critical angle at the interface. The grid line spacing and the grid line surface inclination are set so that the sunlight incident on the window glass is not diffracted in the winter when the incident angle of sunlight is small. In the summer, the infrared rays of sunlight that are incident on the window glass and diffracted by the diffraction grating are totally reflected at the interface between the window glass and air, so that they are confined inside the window glass. On the other hand, in the winter when the incident angle of sunlight is small, sunlight incident on the window glass passes through the window glass without being diffracted by the diffraction grating.
国際公開第2006/134983号International Publication No. 2006/134983 日本特開2008-126631号公報Japanese Unexamined Patent Application Publication No. 2008-126631
 しかし、夏季において、窓ガラスの内部に閉じ込められた赤外線は、ガラス板と空気との界面にて全反射を繰り返すうちに、窓ガラスにしだいに吸収される。そのため、閉じ込められた赤外線の光エネルギーを有効利用することができず、無駄にしてしまう。 However, in the summer, infrared light trapped inside the window glass is gradually absorbed by the window glass as it undergoes total reflection at the interface between the glass plate and air. Therefore, the trapped infrared light energy cannot be used effectively and is wasted.
 本発明は、太陽光の入射角に応じて赤外線の透過量をコントロールでき、かつ透過しなかった赤外線の光エネルギーを太陽電池用として有効利用することができる窓ガラスを提供する。 The present invention provides a window glass that can control the amount of infrared transmission according to the incident angle of sunlight and can effectively use the infrared light energy that has not been transmitted for solar cells.
 本発明の窓ガラスは、回折格子を有する窓ガラス本体と、前記窓ガラス本体の少なくとも1つの辺に配置された太陽電池とを具備することを特徴とする。
 前記窓ガラス本体は、ガラス板および前記回折格子を備えた回折格子シートを有することが好ましい。
 前記回折格子シートは、互いに平行な第1の主表面および第2の主表面を有する透明樹脂層と、互いに平行にかつ所定のピッチで配置された複数の格子線からなる回折格子とを有し、前記格子線が、前記透明樹脂層とは屈折率の異なる材料の薄膜からなり、前記格子線が、前記透明樹脂層の第1の主表面および第2の主表面に対して長さ方向が平行に延びるように、前記透明樹脂層内に埋設されたものであることが好ましい。
The window glass of the present invention comprises a window glass body having a diffraction grating and a solar cell disposed on at least one side of the window glass body.
It is preferable that the window glass body has a diffraction grating sheet provided with a glass plate and the diffraction grating.
The diffraction grating sheet has a transparent resin layer having a first main surface and a second main surface parallel to each other, and a diffraction grating composed of a plurality of grating lines arranged in parallel to each other at a predetermined pitch. The lattice lines are made of a thin film made of a material having a refractive index different from that of the transparent resin layer, and the lattice lines have a length direction with respect to the first main surface and the second main surface of the transparent resin layer. It is preferably embedded in the transparent resin layer so as to extend in parallel.
 前記格子線は、前記透明樹脂層の第1の主表面および第2の主表面に対して、長さ方向が平行に延びるように、かつ前記薄膜の表面が勾配を有するように、前記透明樹脂層内に埋設されたものであることが好ましい。
 前記格子線は、前記透明樹脂層より屈折率の大きい誘電体の薄膜からなるものであることが好ましい。また、前記格子線を構成する誘電体の薄膜の屈折率は、前記透明樹脂層の屈折率より、0.0001~1.8高いことが好ましい。
 前記回折格子シートは、前記第1の主表面に接する第1の透明基板をさらに有することが好ましい。
 前記窓ガラス本体は、2枚のガラス板と、その間に挟まれた回折格子シートとが、中間膜を介して貼り合わされた合わせガラスであってもよい。
 前記窓ガラス本体は、2枚のガラス板が所定の間隔をあけて配置され、少なくとも一方のガラス板の内面に回折格子シートが貼着された複層ガラスであってもよい。
 前記窓ガラス本体は、ガラス板の表面に回折格子シートが貼着されたものであってもよい。
 前記太陽電池が、窓ガラス本体の少なくとも1つの辺のうち、前記回折格子シートにおける回折格子の格子線の長さ方向に対して平行な辺に配されることが好ましい。
The lattice line is formed so that the length direction extends parallel to the first main surface and the second main surface of the transparent resin layer, and the surface of the thin film has a gradient. It is preferably embedded in the layer.
The grid lines are preferably made of a dielectric thin film having a refractive index larger than that of the transparent resin layer. The refractive index of the dielectric thin film constituting the lattice line is preferably 0.0001 to 1.8 higher than the refractive index of the transparent resin layer.
The diffraction grating sheet preferably further includes a first transparent substrate in contact with the first main surface.
The window glass main body may be a laminated glass in which two glass plates and a diffraction grating sheet sandwiched therebetween are bonded via an intermediate film.
The window glass main body may be a multi-layer glass in which two glass plates are arranged at a predetermined interval and a diffraction grating sheet is adhered to the inner surface of at least one glass plate.
The window glass body may have a diffraction grating sheet attached to the surface of a glass plate.
It is preferable that the solar cell is arranged on a side parallel to the length direction of the grating line of the diffraction grating in the diffraction grating sheet among at least one side of the window glass body.
 本発明の窓ガラスは、太陽光の入射角に応じて赤外線の透過量をコントロールでき、かつ透過しなかった赤外線の光エネルギーを太陽電池用として有効利用することができる。 The window glass of the present invention can control the amount of infrared transmission according to the incident angle of sunlight, and can effectively use the infrared light energy that has not been transmitted for solar cells.
本発明の窓ガラスの第1の実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the window glass of this invention. 本発明の窓ガラスの第2の実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the window glass of this invention. 本発明の窓ガラスの第3の実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the window glass of this invention. 回折格子シートの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a diffraction grating sheet | seat. 図4の回折格子シートにおける透明樹脂層を示す斜視図である。It is a perspective view which shows the transparent resin layer in the diffraction grating sheet | seat of FIG. 回折格子シートの他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a diffraction grating sheet | seat. 回折格子シートの他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a diffraction grating sheet | seat. 回折格子シートの他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a diffraction grating sheet | seat. 窓ガラス本体の透明樹脂層における光の屈折および回折の様子の一例を示す概略図である。It is the schematic which shows an example of the state of light refraction and diffraction in the transparent resin layer of a window glass main body. 窓ガラス本体の透明樹脂層における光の屈折および回折の様子の他の例を示す概略図である。It is the schematic which shows the other example of the state of light refraction and diffraction in the transparent resin layer of a window glass main body. 本発明の窓ガラスにおける夏季の太陽光の透過の様子を示す図である。It is a figure which shows the mode of permeation | transmission of the sunlight in the summer in the window glass of this invention. 本発明の窓ガラスにおける冬季の太陽光の透過の様子を示す図である。It is a figure which shows the mode of permeation | transmission of sunlight in the winter in the window glass of this invention. 回折格子シートの製造方法における工程(a)を説明する断面図である。It is sectional drawing explaining the process (a) in the manufacturing method of a diffraction grating sheet | seat. 回折格子シートの製造方法における工程(b)を説明する斜視図である。It is a perspective view explaining the process (b) in the manufacturing method of a diffraction grating sheet | seat. 回折格子シートの製造方法における工程(c)を説明する断面図である。It is sectional drawing explaining the process (c) in the manufacturing method of a diffraction grating sheet | seat. 実施例で用いた単結晶シリコン型太陽電池素子の分光感度特性(波長と量子効率との関係)を示すグラフである。It is a graph which shows the spectral sensitivity characteristic (relationship between a wavelength and quantum efficiency) of the single crystal silicon type solar cell element used in the example. 窓ガラスの内部に閉じ込められ、窓ガラス本体の上辺および下辺から太陽電池側に出射する光のスペクトルを示すグラフである。It is a graph which shows the spectrum of the light confined inside a window glass and radiate | emitted from the upper side and lower side of a window glass main body to the solar cell side.
 本発明における窓ガラス本体の辺とは、窓ガラス本体を正面から見たときに窓ガラス本体の多角形をつくっている線分、すなわち窓ガラス本体の側面をいう。
 本発明における窓ガラス本体の上辺とは、窓ガラス本体の複数の辺のうち、窓ガラスを建築物、車両等の対象物に設置した際に最も上側に位置する辺をいう。
 本発明における窓ガラス本体の下辺とは、窓ガラス本体の複数の辺のうち、窓ガラスを建築物、車両等の対象物に設置した際に最も下側に位置する辺をいう。
 本発明における透明とは、可視光線および赤外線を透過することを意味する。
 本発明における屈折率は、波長589nmにおける屈折率である。
 本発明における回折格子シートの各寸法は、回折格子シートの断面の透過型電子顕微鏡(TEM)像または原子間力顕微鏡(AFM)像において、3箇所の各寸法を測定し、平均した値とする。
The side of the window glass body in the present invention refers to a line segment that forms a polygon of the window glass body when the window glass body is viewed from the front, that is, a side surface of the window glass body.
The upper side of the window glass main body in the present invention refers to the uppermost side when the window glass is installed on an object such as a building or a vehicle among a plurality of sides of the window glass main body.
The lower side of the window glass body in the present invention refers to a side located on the lowermost side when the window glass is installed on an object such as a building or a vehicle among a plurality of sides of the window glass body.
Transparent in the present invention means that visible light and infrared light are transmitted.
The refractive index in the present invention is a refractive index at a wavelength of 589 nm.
Each dimension of the diffraction grating sheet in the present invention is an average value obtained by measuring each dimension at three positions in a transmission electron microscope (TEM) image or an atomic force microscope (AFM) image of the cross section of the diffraction grating sheet. .
<窓ガラス>
 本発明の窓ガラスは、回折格子を有する窓ガラス本体と、窓ガラス本体の少なくとも1つの辺に配置された太陽電池とを具備するものである。本発明の窓ガラスとしては、1年のうち単位面積あたりの光エネルギーが最大となる夏季の南中方向の太陽光の赤外線を回折させ、さらに窓ガラスと空気の界面にて全反射させて効率よく利用できる点から、窓ガラス本体の上辺および下辺の少なくとも一方に太陽電池が配置されたものが好ましく、窓ガラス本体の上辺および下辺の両方に太陽電池が配置されたものがより好ましい。
<Window glass>
The window glass of this invention comprises the window glass main body which has a diffraction grating, and the solar cell arrange | positioned at the at least 1 edge | side of a window glass main body. As the window glass of the present invention, it efficiently diffracts the infrared rays of sunlight in the south-medium direction in summer when the light energy per unit area is the maximum in one year, and further totally reflects it at the interface between the window glass and air. From the point which can be done, the thing by which a solar cell is arrange | positioned at at least one of the upper side and lower side of a window glass main body is preferable, and the thing by which a solar cell is arrange | positioned at both the upper side and lower side of a window glass main body is more preferable.
(窓ガラス本体)
 窓ガラス本体の形状は、少なくとも1つの辺に太陽電池を配置できるような形状、すなわち多角形であればよく、例えば、建築物等の場合には、通常は四角形(正方形、長方形、台形等)である。また、湾曲ガラスであってもよく、辺や角が曲線であってもよい。
(Window glass body)
The shape of the window glass body may be a shape that allows solar cells to be arranged on at least one side, that is, a polygonal shape. For example, in the case of a building or the like, usually a quadrangle (square, rectangular, trapezoid, etc.) It is. Further, it may be curved glass, and the sides and corners may be curved.
 窓ガラス本体としては、ガラス板の表面に凹凸からなる通常の回折格子が形成されたものに比べ、赤外線帯域の波長の太陽光を幅広い入射角において効率よく回折できる点から、下記の(A)~(C)の窓ガラス本体が好ましく、比較的短時間で簡便に製造でき、かつ大面積化が容易である点から、(A)の窓ガラス本体がより好ましい。 As a window glass body, the following (A) can be used because it can efficiently diffract sunlight with a wavelength in the infrared band at a wide angle of incidence, compared with a glass plate having a regular diffraction grating formed on the surface. The window glass main body of (C) is preferable, and the window glass main body of (A) is more preferable because it can be easily manufactured in a relatively short time and can easily be enlarged.
 (A)後述する回折格子シートと、ガラス板とを有するもの。
 (B)ガラス板にレーザ光の干渉光を照射して照射部分の屈折率を変化させることによって複数の格子線を形成した窓ガラス本体(特許文献1)。
 (C)フォトポリマーフィルムにレーザ光の干渉光を照射して照射部分の屈折率を変化させることによって複数の格子線を形成した回折格子フィルムを、2枚のガラス板の間に挟んだ窓ガラス本体(特許文献2)。
(A) What has a diffraction grating sheet | seat mentioned later and a glass plate.
(B) A window glass body in which a plurality of lattice lines are formed by irradiating a glass plate with interference light of laser light to change the refractive index of the irradiated portion (Patent Document 1).
(C) A window glass body in which a diffraction grating film in which a plurality of grating lines are formed by irradiating a photopolymer film with interference light of a laser beam to change the refractive index of the irradiated portion is sandwiched between two glass plates ( Patent Document 2).
 (A)の窓ガラス本体としては、たとえば、下記の(A-1)~(A-3)が挙げられる。
 (A-1)2枚のガラス板と、その間に挟まれた後述する回折格子シートとが、中間膜を介して貼り合わされた合わせガラス(第1の実施形態)。
 (A-2)2枚のガラス板が所定の間隔をあけて配置され、少なくとも一方のガラス板の内面に後述する回折格子シートが貼着されたた複層ガラス(第2の実施形態)。
 (A-3)ガラス板の表面に後述する回折格子シートが貼着されたシート貼着ガラス(第3の実施形態)。
Examples of the window glass body (A) include the following (A-1) to (A-3).
(A-1) Laminated glass in which two glass plates and a diffraction grating sheet, which will be described later, sandwiched between them are bonded via an intermediate film (first embodiment).
(A-2) Multi-layer glass in which two glass plates are arranged at a predetermined interval, and a diffraction grating sheet described later is adhered to the inner surface of at least one glass plate (second embodiment).
(A-3) Sheet-bonded glass in which a later-described diffraction grating sheet is bonded to the surface of a glass plate (third embodiment).
(太陽電池)
 太陽電池としては、窓ガラス本体の少なくとも1つの辺に配置でき、かつ窓ガラス本体の辺からの出射光を受光できる大きさのものであればよく、建築物、車両(自動車等)等への窓ガラスの設置のしやすさの点から、長さが窓ガラス本体の辺の長さとほぼ同じまたは若干小さくされ、かつ幅が窓ガラス本体の厚さとほぼ同じまたは若干小さくされたものが好ましい。かかる太陽電池は、その受光面(すなわち、光を取り入れる面)が窓ガラス本体の一つの辺側に、例えば窓ガラス本体の端面側になるように配置される。
(Solar cell)
The solar cell may be any size as long as it can be disposed on at least one side of the window glass body and can receive light emitted from the side of the window glass body. From the viewpoint of ease of installation of the window glass, it is preferable that the length is approximately the same as or slightly smaller than the length of the side of the window glass body and the width is approximately equal to or slightly smaller than the thickness of the window glass body. Such a solar cell is disposed such that its light receiving surface (that is, a surface for taking in light) is on one side of the window glass body, for example, on the end surface side of the window glass body.
 太陽電池としては、公知の太陽電池が挙げられる。太陽電池の種類としては、単結晶シリコン型、多結晶シリコン型、微結晶シリコン型、アモルファスシリコン型、ハイブリッド型、薄膜シリコン型、球状シリコン型、タンデム型、多接合型、化合物系(GaAs系、CIS系、CIGS系、CZTS系、CdTe系等)、色素増感型、有機薄膜型、量子ドット型等が挙げられる。 As the solar cell, a known solar cell can be mentioned. The types of solar cells include single crystal silicon type, polycrystalline silicon type, microcrystalline silicon type, amorphous silicon type, hybrid type, thin film silicon type, spherical silicon type, tandem type, multijunction type, compound type (GaAs type, CIS type, CIGS type, CZTS type, CdTe type, etc.), dye sensitized type, organic thin film type, quantum dot type and the like.
<窓ガラスの実施形態>
 (A)の窓ガラス本体を有する本発明の窓ガラスとしては、たとえば、第1~3の実施形態の窓ガラスが挙げられる。
<Embodiment of window glass>
Examples of the window glass of the present invention having the window glass body (A) include the window glasses of the first to third embodiments.
(第1の実施形態)
 図1は、本発明の窓ガラスの第1の実施形態を示す断面図である。窓ガラス3は、2枚のガラス板50と、その間に挟まれた後述する回折格子シート1とが、中間膜52を介して貼り合わされた合わせガラス(合わせガラスタイプの窓ガラス本体6)の上辺および下辺(図中、合わせガラスの左側面および右側面)に隣接して、太陽電池62を配置したものである。合わせガラスの上辺および下辺は、回折格子シート1における回折格子20の格子線22の長さ方向に対して平行な辺とする。すなわち、太陽電池62は、上記合わせガラスの回折格子シート1における回折格子20の格子線22の長さ方向に対して平行な辺に配される。図1においては、窓ガラス本体6の上辺の端面および下辺の端面に隣接して、太陽電池62が配されている。合わせガラスの上辺および下辺は、合わせガラスの上辺および下辺は、格子線22の長さ方向に対して実質的に平行となればよく、完全に平行でなくてもよい。
(First embodiment)
FIG. 1 is a cross-sectional view showing a first embodiment of the window glass of the present invention. The window glass 3 is an upper side of a laminated glass (laminated glass type window glass main body 6) in which two glass plates 50 and a diffraction grating sheet 1 (described later) sandwiched therebetween are bonded via an intermediate film 52. And the solar cell 62 is arrange | positioned adjacent to a lower side (the left side surface and right side surface of a laminated glass in a figure). The upper side and the lower side of the laminated glass are sides parallel to the length direction of the grating line 22 of the diffraction grating 20 in the diffraction grating sheet 1. That is, the solar cell 62 is arranged on a side parallel to the length direction of the grating line 22 of the diffraction grating 20 in the diffraction grating sheet 1 of the laminated glass. In FIG. 1, solar cells 62 are disposed adjacent to the upper end face and the lower end face of the window glass body 6. The upper side and the lower side of the laminated glass need only be substantially parallel to the length direction of the lattice lines 22 and may not be completely parallel.
 ガラス板50としては、窓ガラス用の公知のガラス板を用いればよい。ガラス板としては、フロート法またはダウンドロー法で得られたものであってもよく、型板ガラスであってもよい。ガラス板の材料としては、ソーダライムガラス、ホウケイ酸ガラス、アルミノケイ酸塩ガラス、無アルカリガラス等が挙げられる。
 中間膜52としては、公知の合わせガラスに用いられる中間膜(ポリビニルブチラールフィルム等)を用いればよい。
As the glass plate 50, a known glass plate for window glass may be used. The glass plate may be obtained by a float method or a downdraw method, or may be a template glass. Examples of the glass plate material include soda lime glass, borosilicate glass, aluminosilicate glass, and alkali-free glass.
As the intermediate film 52, an intermediate film (polyvinyl butyral film or the like) used for a known laminated glass may be used.
(第2の実施形態)
 図2は、本発明の窓ガラスの第2の実施形態を示す断面図である。窓ガラス4は、2枚のガラス板50と、ガラス板50間に空隙54が形成されるようにガラス板50の周縁部に介在配置される枠状のスペーサ56と、スペーサ56とガラス板50との間に設けられた1次シール材58と、スペーサ56の周縁に設けられた2次シール材59と、一方のガラス板50の内面に粘着剤層60を介して貼着された後述する回折格子シート1とを有する複層ガラス(複層ガラスタイプの窓ガラス本体6)において、4辺のスペーサ56のうち、上辺および下辺(図中、複層ガラスの左側面および右側面)のスペーサ56が太陽電池62とされたものである。複層ガラスの上辺および下辺は、回折格子シート1における回折格子20の格子線22の長さ方向に対して平行な辺とする。すなわち、太陽電池62(スペーサ56)は、上記複層ガラスの回折格子シート1における回折格子20の格子線22の長さ方向に対して平行な辺に配される。図2においては、窓ガラス本体6の上辺の端面および下辺の端面に隣接して、太陽電池62(スペーサ56)が配されている。複層ガラスの上辺および下辺は、格子線22の長さ方向に対して実質的に平行となればよく、完全に平行でなくてもよい。
(Second Embodiment)
FIG. 2 is a cross-sectional view showing a second embodiment of the window glass of the present invention. The window glass 4 includes two glass plates 50, a frame-like spacer 56 disposed at the peripheral edge of the glass plate 50 so that a gap 54 is formed between the glass plates 50, the spacer 56, and the glass plate 50. A primary sealant 58 provided between the spacer 56, a secondary sealant 59 provided at the periphery of the spacer 56, and an inner surface of one glass plate 50, which is attached via an adhesive layer 60, which will be described later. In the double glazing (double glazing type window glass body 6) having the diffraction grating sheet 1, the spacers on the upper side and the lower side (left side and right side of the double glazing in the figure) among the four sides of the spacer 56. Reference numeral 56 denotes a solar cell 62. The upper side and the lower side of the multilayer glass are sides parallel to the length direction of the grating line 22 of the diffraction grating 20 in the diffraction grating sheet 1. That is, the solar cell 62 (spacer 56) is arranged on a side parallel to the length direction of the grating line 22 of the diffraction grating 20 in the diffraction grating sheet 1 of the multilayer glass. In FIG. 2, solar cells 62 (spacers 56) are arranged adjacent to the upper end face and the lower end face of the window glass body 6. The upper side and the lower side of the multilayer glass may be substantially parallel to the length direction of the lattice lines 22 and may not be completely parallel.
 ガラス板50としては、第1の実施形態と同様のものを用いればよい。
 スペーサ56(太陽電池62を除く。)、1次シール材58、2次シール材59としては、たとえば、特許第4479690号公報に記載のスペーサ、1次シール材、2次シール材を用いればよい。
 粘着剤層60としては、ガラス板に各種フィルムを貼着する際に用いられる公知の粘着シート等を用いればよい。
What is necessary is just to use the thing similar to 1st Embodiment as the glass plate 50. FIG.
As the spacer 56 (excluding the solar cell 62), as the primary sealing material 58 and the secondary sealing material 59, for example, the spacer, the primary sealing material, and the secondary sealing material described in Japanese Patent No. 4479690 may be used. .
As the pressure-sensitive adhesive layer 60, a known pressure-sensitive adhesive sheet or the like used when various films are stuck on a glass plate may be used.
(第3の実施形態)
 図3は、本発明の窓ガラスの第3の実施形態を示す断面図である。窓ガラス5は、ガラス板50と、ガラス板50の表面に粘着剤層60を介して貼着された後述する回折格子シート2とを有するシート貼着ガラス(シート貼着ガラスタイプの窓ガラス本体6)の上辺および下辺(図中、シート貼着ガラスの左側面および右側面)に隣接して、太陽電池62を配置したものである。回折格子シート2は、ハードコート層36が最外層となるようにガラス板50の表面に貼着される。シート貼着ガラスの上辺および下辺は、回折格子シート1における回折格子20の格子線22の長さ方向に対して平行な辺とする。すなわち、太陽電池62は、上記シート貼着ガラスの回折格子シート2における回折格子20の格子線22の長さ方向に対して平行な辺に配される。図3においては、窓ガラス本体6の上辺の端面および下辺の端面に隣接して、太陽電池62が配されている。シート貼着ガラスの上辺および下辺は、格子線22の長さ方向に対して実質的に平行となればよく、完全に平行でなくてもよい。
(Third embodiment)
FIG. 3 is a cross-sectional view showing a third embodiment of the window glass of the present invention. The window glass 5 is a sheet-attached glass (sheet-attached glass-type window glass body) having a glass plate 50 and a diffraction grating sheet 2 described later attached to the surface of the glass plate 50 via an adhesive layer 60. 6) A solar cell 62 is disposed adjacent to the upper side and the lower side (the left side surface and the right side surface of the sheet pasting glass in the drawing). The diffraction grating sheet 2 is attached to the surface of the glass plate 50 so that the hard coat layer 36 is the outermost layer. The upper side and the lower side of the sheet sticking glass are sides parallel to the length direction of the grating line 22 of the diffraction grating 20 in the diffraction grating sheet 1. That is, the solar cell 62 is arranged on a side parallel to the length direction of the grating line 22 of the diffraction grating 20 in the diffraction grating sheet 2 of the sheet-adhered glass. In FIG. 3, solar cells 62 are arranged adjacent to the upper end face and the lower end face of the window glass body 6. The upper side and the lower side of the sheet pasting glass only have to be substantially parallel to the length direction of the lattice lines 22 and may not be completely parallel.
 ガラス板50としては、第1の実施形態と同様のものを用いればよい。
 粘着剤層60としては、第2の実施形態と同様のものを用いればよい。
What is necessary is just to use the thing similar to 1st Embodiment as the glass plate 50. FIG.
As the pressure-sensitive adhesive layer 60, the same layer as in the second embodiment may be used.
(他の形態)
 本発明の窓ガラスは、回折格子を有する窓ガラス本体と、窓ガラス本体の少なくとも1つの辺に配置された太陽電池とを具備するものであればよく、図1~3に示すものに限定はされない。
(Other forms)
The window glass of the present invention only needs to have a window glass body having a diffraction grating and a solar cell disposed on at least one side of the window glass body, and is not limited to those shown in FIGS. Not.
 たとえば、回折格子を備えた回折格子シートが、透明基板を有さず(すなわち、図1のように第1の透明基板32および第2の透明基板34を有さず)、透明樹脂層10および回折格子20のみからなる回折格子シートであってもよい。
 また、回折格子シートが、透明樹脂層10の表面に第1の透明基板32および第2の透明基板34のうち、いずれか一方を有する回折格子シートであってもよい。
 また、後述する積層タイプの回折格子シートを有する窓ガラス本体であってもよい。
For example, the diffraction grating sheet provided with the diffraction grating does not have a transparent substrate (that is, does not have the first transparent substrate 32 and the second transparent substrate 34 as in FIG. 1), the transparent resin layer 10 and A diffraction grating sheet composed of only the diffraction grating 20 may be used.
Further, the diffraction grating sheet may be a diffraction grating sheet having either one of the first transparent substrate 32 and the second transparent substrate 34 on the surface of the transparent resin layer 10.
Moreover, the window glass main body which has the lamination type diffraction grating sheet | seat mentioned later may be sufficient.
<回折格子シートの実施形態>
 以下、(A)の窓ガラス本体に用いる回折格子シートの実施形態を、図を用いて説明する。以下の図は模式図であり、実際の回折格子シートは、図示したような理論的かつ理想的形状を有するものではない。たとえば、実際の回折格子シートにおいては、格子線等の形状に多少の崩れがある。
<Embodiment of diffraction grating sheet>
Hereinafter, an embodiment of a diffraction grating sheet used for the window glass body of (A) will be described with reference to the drawings. The following figures are schematic diagrams, and an actual diffraction grating sheet does not have a theoretical and ideal shape as shown in the figure. For example, in an actual diffraction grating sheet, the shape of the grating line and the like is somewhat distorted.
 図4は、回折格子シートの一実施形態を示す断面図であり、図5は、該回折格子シートにおける透明樹脂層を示す斜視図である。回折格子シート1は、互いに平行な第1の主表面18および第2の主表面19を有する平坦な透明樹脂層10と;透明樹脂層10内に、互いに平行に、所定のピッチPpで埋設された複数の格子線22からなる回折格子20と;透明樹脂層10の第1の主表面18に接する第1の透明基板32と;透明樹脂層10の第2の主表面19に接する第2の透明基板34とを有する。 FIG. 4 is a cross-sectional view showing an embodiment of a diffraction grating sheet, and FIG. 5 is a perspective view showing a transparent resin layer in the diffraction grating sheet. The diffraction grating sheet 1 includes a flat transparent resin layer 10 having a first main surface 18 and a second main surface 19 that are parallel to each other; and embedded in the transparent resin layer 10 in parallel with each other at a predetermined pitch Pp. A diffraction grating 20 comprising a plurality of grating lines 22; a first transparent substrate 32 in contact with the first main surface 18 of the transparent resin layer 10; a second contact in contact with the second main surface 19 of the transparent resin layer 10. And a transparent substrate 34.
(透明樹脂層)
 透明樹脂層10は、互いに平行な第1の主表面18および第2の主表面19を有する。第1の主表面18および第2の主表面19は、互いに実質的に平行に形成されていればよく、完全に平行に形成されてなくてもよい。
(Transparent resin layer)
The transparent resin layer 10 has a first main surface 18 and a second main surface 19 that are parallel to each other. The first main surface 18 and the second main surface 19 may be formed substantially parallel to each other, and may not be formed completely parallel to each other.
 透明樹脂層10は、具体的には、図4に示すような、断面形状が直角三角形である複数の凸条12が、互いに平行にかつ所定のピッチPpで表面に形成された凹凸面を有する第1の層14と;凸条12の第1の側面を被覆する格子線22と凸条12との間の溝に充填され、かつ凸条12の頂部および格子線22を完全に被覆する第2の層16とを有する積層体である。第1の層14と第1の透明基板32との界面が、透明樹脂層10の第1の主表面18であり、第2の層16と第2の透明基板34との界面が、透明樹脂層10の第2の主表面19である。 Specifically, the transparent resin layer 10 has a concavo-convex surface in which a plurality of ridges 12 whose cross-sectional shape is a right triangle as shown in FIG. 4 are formed on the surface in parallel with each other at a predetermined pitch Pp. A first layer 14; a first layer 14; filled in a groove between the grid line 22 covering the first side surface of the ridge 12 and the ridge 12, and completely covering the top of the ridge 12 and the grid line 22. 2 is a laminate including two layers 16. The interface between the first layer 14 and the first transparent substrate 32 is the first main surface 18 of the transparent resin layer 10, and the interface between the second layer 16 and the second transparent substrate 34 is a transparent resin. This is the second major surface 19 of the layer 10.
 凸条12は、第1の層14の平坦部から立ち上がり、かつその立ち上がりが一方向に伸びている部分である。凸条12は第1の層14の平坦部と一体で第1の層14の平坦部と同じ材料からなっていてもよく、第1の層14の平坦部と異なる透明樹脂からなっていてもよい。凸条12は第1の層14の平坦部と一体で、かつ第1の層14の平坦部と同じ材料からなっていることが好ましい。 The ridge 12 is a portion that rises from the flat portion of the first layer 14 and that rises in one direction. The ridge 12 may be integrated with the flat portion of the first layer 14 and may be made of the same material as the flat portion of the first layer 14, or may be made of a transparent resin different from the flat portion of the first layer 14. Good. The ridges 12 are preferably integral with the flat portion of the first layer 14 and made of the same material as the flat portion of the first layer 14.
 複数の凸条12は、互いに実質的に平行に形成されていればよく、完全に平行に形成されてなくてもよい。また、凸条12は、直線状に伸びている形状のものが好ましいが、隣接する凸条12が接触しない範囲で曲線状または折れ線状に伸びている形状のものであってもよい。 The plurality of ridges 12 may be formed substantially parallel to each other, and may not be formed completely parallel. Moreover, although the thing of the shape extended in linear form is preferable, the thing of the shape extended in the shape of a curve or a broken line may be sufficient in the range which the adjacent protruding item | line 12 does not contact.
 凸条12は、その長さ方向に直交する断面の形状が長さ方向にわたってほぼ一定であり、複数の凸条12においてもそれらの断面形状はすべてほぼ一定であることが好ましい。凸条12の断面形状は、底部(第1の層14の平坦部)から頂部に向かうにしたがって幅がしだいに狭くなる形状である。具体的な断面形状としては、たとえば、三角形、台形等が挙げられる。断面形状における角は曲線状であってもよい。また、断面形状における辺(側面)は曲線状であってもよく、階段状であってもよい。なお、凸条12の断面形状は、これら形状に限定されず、矩形等であってもよい。 It is preferable that the shape of the cross-section orthogonal to the length direction of the ridges 12 is substantially constant over the length direction, and all of the cross-sectional shapes of the plurality of ridges 12 are also substantially constant. The cross-sectional shape of the ridge 12 is a shape in which the width gradually decreases from the bottom (the flat portion of the first layer 14) toward the top. Specific examples of the cross-sectional shape include a triangle and a trapezoid. The corners in the cross-sectional shape may be curved. Further, the side (side surface) in the cross-sectional shape may be curved or may be stepped. In addition, the cross-sectional shape of the protruding item | line 12 is not limited to these shapes, A rectangle etc. may be sufficient.
 凸条12の頂部は、前記断面形状の最も高い部分が長さ方向に連なった部分である。凸条12の頂部は面であってもよく、線であってもよい。たとえば、断面形状が台形の場合には頂部は面をなし、断面形状が三角形の場合には頂部は線をなす。本発明において凸条12の頂部以外の表面を凸条12の側面という。 The top of the ridge 12 is a portion in which the highest portion of the cross-sectional shape is continuous in the length direction. The top of the ridge 12 may be a surface or a line. For example, when the cross-sectional shape is trapezoidal, the top portion forms a surface, and when the cross-sectional shape is triangular, the top portion forms a line. In the present invention, the surface other than the top of the ridge 12 is referred to as a side surface of the ridge 12.
 凸条12は、第1の側面および第2の側面を有する。第1の側面および第2の側面のうち、第1の側面の少なくとも一部に格子線22が形成される。第1の側面および第2の側面のうち、少なくとも第1の側面が第1の主表面18に対して勾配を有することが好ましい。第1の側面は、勾配を有する限りは、平面であってもよく、曲面であってもよく、階段状であってもよい。第2の側面は、第1の主表面18に対して垂直であってもよく、勾配を有していてもよい。
 上記説明において、凸条12の第1の側面を同凸条12の右側の面とし、この第1の側面に格子線として機能する薄膜を形成した例について説明したが、勿論図面の凸条の第1の側面を同凸条の左側の面とし、凸条の第2の側面を同凸条の右側の面として取り扱ってもよい。この場合、図1において説明した右側の側面と反対側の左側の側面に格子線として機能する薄膜が形成されることになる。以下、本明細書の説明において、同様である。
The ridge 12 has a first side surface and a second side surface. Of the first side surface and the second side surface, the lattice line 22 is formed on at least a part of the first side surface. Of the first side surface and the second side surface, at least the first side surface preferably has a gradient with respect to the first main surface 18. As long as it has a gradient, the first side surface may be a flat surface, a curved surface, or a stepped shape. The second side surface may be perpendicular to the first main surface 18 and may have a slope.
In the above description, the example in which the first side surface of the ridge 12 is the right side surface of the ridge 12 and a thin film functioning as a grid line is formed on the first side surface has been described. The first side surface may be handled as the left side surface of the ridge, and the second side surface of the ridge may be handled as the right side surface of the ridge. In this case, a thin film functioning as a lattice line is formed on the left side surface opposite to the right side surface described in FIG. Hereinafter, the same applies to the description of the present specification.
 透明樹脂層10(第1の層14および第2の層16を併せて透明樹脂層10とも呼ぶ。)は、透明樹脂からなる層である。
 透明樹脂としては、後述するインプリント法にて凸条12を形成できる点および格子線22を透明樹脂層10内に埋設しやすい点から、光硬化樹脂または熱可塑性樹脂が好ましく、光インプリント法にて凸条12を形成できる点ならびに耐熱性および耐久性に優れる点から、光硬化樹脂が特に好ましい。光硬化樹脂としては、生産性の点から、光ラジカル重合により光硬化し得る光硬化性組成物を光硬化して得られる光硬化樹脂が好ましい。
The transparent resin layer 10 (the first layer 14 and the second layer 16 are also collectively referred to as the transparent resin layer 10) is a layer made of a transparent resin.
As the transparent resin, a photo-curing resin or a thermoplastic resin is preferable from the viewpoint that the ridges 12 can be formed by the imprint method described later and the lattice lines 22 are easily embedded in the transparent resin layer 10. A photo-curing resin is particularly preferable from the viewpoint that the ridges 12 can be formed by the above-mentioned method and that heat resistance and durability are excellent. As the photocurable resin, a photocurable resin obtained by photocuring a photocurable composition that can be photocured by photoradical polymerization is preferable from the viewpoint of productivity.
 透明樹脂層10(第1の層14および第2の層16)の屈折率は、1.25~1.8が好ましく、1.3~1.7がより好ましい。透明樹脂層10の屈折率が前記範囲の間にあれば、第1の透明基板32、第2の透明基板34の材料を適宜選択することにより、透明樹脂層10と第1の透明基板32、もしくは透明樹脂層10と第2の透明基板34の間の屈折率の差を小さくしやすい。 The refractive index of the transparent resin layer 10 (the first layer 14 and the second layer 16) is preferably 1.25 to 1.8, and more preferably 1.3 to 1.7. If the refractive index of the transparent resin layer 10 is within the above range, the transparent resin layer 10 and the first transparent substrate 32 are appropriately selected by appropriately selecting the materials of the first transparent substrate 32 and the second transparent substrate 34. Alternatively, the difference in refractive index between the transparent resin layer 10 and the second transparent substrate 34 can be easily reduced.
 第1の層14と第2の層16との屈折率の差(絶対値)は、0.1以下が好ましく、0.05以下がより好ましい。屈折率の差が0.05以下であれば、第1の層14と第2の層16の界面における反射、回折等による迷光やロスが抑制できる。また第1の層14と第2の層16の屈折率が同一であれば、光学設計が容易になる。
 第1の層14と第2の層16との屈折率の差を小さくする点から、第1の層14の材料と第2の層16の材料は、実質的に同じ材料が好ましく、完全に同じ材料であることがより好ましい。
The difference (absolute value) in refractive index between the first layer 14 and the second layer 16 is preferably 0.1 or less, and more preferably 0.05 or less. If the difference in refractive index is 0.05 or less, stray light and loss due to reflection, diffraction, etc. at the interface between the first layer 14 and the second layer 16 can be suppressed. Moreover, if the refractive index of the 1st layer 14 and the 2nd layer 16 is the same, optical design will become easy.
From the viewpoint of reducing the difference in refractive index between the first layer 14 and the second layer 16, the material of the first layer 14 and the material of the second layer 16 are preferably substantially the same material. More preferably, they are the same material.
(格子線)
 回折格子20は、互いに平行に、所定のピッチPpで埋設された複数の格子線22からなる。本明細書において、薄膜状の格子線、所定幅の線条の格子線を含め、格子線と称する。複数の格子線22は、互いに実質的に平行に形成されていればよく、完全に平行に形成されてなくてもよい。また、格子線22は、直線状が好ましいが、隣接する格子線22が接触しない範囲で曲線状または折れ線状であってもよい。また、格子線22の長さ方向の端面は、透明樹脂層10の側面から露出していても構わない。
(Lattice line)
The diffraction grating 20 includes a plurality of grating lines 22 embedded in parallel with each other at a predetermined pitch Pp. In the present specification, the term “lattice line” includes a thin-film lattice line and a lattice line having a predetermined width. The plurality of grid lines 22 may be formed substantially parallel to each other, and may not be formed completely parallel. The lattice lines 22 are preferably linear, but may be curved or polygonal as long as the adjacent lattice lines 22 do not contact each other. Moreover, the end surface in the length direction of the lattice line 22 may be exposed from the side surface of the transparent resin layer 10.
 複数の格子線22は、透明樹脂層10の第1の主表面18および第2の主表面19に対して、その長さ方向が所定間隔をもって平行に延びるように形成される。格子線22は、透明樹脂層10の第1の主表面18および第2の主表面19に対して、その長さ方向が実質的に平行に形成されていればよく、完全に平行に形成されてなくてもよい。 The plurality of lattice lines 22 are formed so that the length direction of the transparent resin layer 10 extends in parallel with a predetermined interval with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10. The lattice lines 22 need only be formed substantially parallel to the length direction of the first main surface 18 and the second main surface 19 of the transparent resin layer 10, and are formed completely in parallel. It does not have to be.
 複数の格子線22は、窓ガラス本体6の上辺および下辺に対して、その長さ方向が平行に延びるように形成される。格子線22は、窓ガラス本体6の上辺および下辺に対して、その長さ方向が実質的に平行に形成されていればよく、完全に平行に形成されてなくてもよい。 The plurality of grid lines 22 are formed so that the length direction thereof extends in parallel to the upper side and the lower side of the window glass body 6. The lattice lines 22 may be formed so that the length direction thereof is substantially parallel to the upper side and the lower side of the window glass body 6, and may not be formed completely in parallel.
 格子線22は、その長さ方向に直交する方向の断面の形状が長さ方向にわたってほぼ一定であり、複数の格子線22においてもそれらの断面形状はすべてほぼ一定であることが好ましい。 It is preferable that the cross-sectional shape of the lattice line 22 in the direction orthogonal to the length direction is substantially constant over the length direction, and the cross-sectional shape of all the lattice lines 22 is also substantially constant.
 凸条12の表面の少なくとも一部に格子線22を形成した場合、格子線22は凸条12の長さ方向に延びる薄膜から構成される。格子線22は、凸条12の第1の側面の少なくとも一部を被覆することが好ましく、第1の側面を完全に被覆することがより好ましい。この際、格子線22は、凸条12の頂部の一部もしくは全部を被覆してもよく、または、凸条12の頂部の全部および凸条12の第2の側面の一部を被覆してもよい。また、格子線22は、隣接する2つの凸条12間の平坦部の一部を被覆していてもよい。 When the lattice lines 22 are formed on at least a part of the surface of the ridges 12, the lattice lines 22 are composed of thin films extending in the length direction of the ridges 12. The grid lines 22 preferably cover at least a part of the first side surface of the ridge 12, and more preferably completely cover the first side surface. At this time, the lattice line 22 may cover a part or all of the top of the ridge 12, or cover all of the top of the ridge 12 and a part of the second side surface of the ridge 12. Also good. The lattice line 22 may cover a part of the flat portion between the two adjacent ridges 12.
 格子線22は、格子線22を構成する薄膜の表面が、透明樹脂層10の第1の主表面18および第2の主表面19に対して勾配を有するように形成されることが好ましい。薄膜の表面が第1の主表面18および第2の主表面19に対して勾配を有していれば、回折格子において回折した光を、屋外の方向または透明樹脂層10の端部の方向へ出射する等の出射方向の制御が容易になる。透明樹脂層10の第1の主表面18および第2の主表面19に対する、格子線22を構成する薄膜の表面(格子面)の勾配の角度φは、透明樹脂層10の第1の主表面18および第2の主表面19に対する、凸条12の第1の側面の勾配の角度φ(図14参照)と同じになる。薄膜の表面は、勾配を有する限りは、平面であってもよく、曲面であってもよく、階段状であってもよい。 The lattice lines 22 are preferably formed so that the surfaces of the thin films constituting the lattice lines 22 have a gradient with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10. If the surface of the thin film has a gradient with respect to the first main surface 18 and the second main surface 19, the light diffracted by the diffraction grating is directed in the outdoor direction or toward the end of the transparent resin layer 10. Control of the emission direction such as emission becomes easy. The gradient angle φ g of the surface (lattice plane) of the thin film constituting the lattice line 22 with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10 is the first main surface 18 of the transparent resin layer 10. It becomes the same as the angle φ p (see FIG. 14) of the slope of the first side surface of the ridge 12 with respect to the surface 18 and the second main surface 19. The surface of the thin film may be a flat surface, a curved surface, or a step shape as long as it has a gradient.
 格子線22のピッチPp、格子線22の高さHg、格子線22の厚さDg、透明樹脂層10の第1の主表面18および第2の主表面19に対する、格子線22を構成する薄膜の表面の勾配の角度φ等は、たとえば、後述する回折格子の設計方法によって適宜設定すればよい。 The thin film which comprises the lattice line 22 with respect to the 1st main surface 18 and the 2nd main surface 19 of the pitch Pp of the lattice line 22, the height Hg of the lattice line 22, the thickness Dg of the lattice line 22, and the transparent resin layer 10 The surface gradient angle φ g and the like may be appropriately set by, for example, a diffraction grating design method described later.
 なお、格子線22のピッチPpは、格子線22の断面の左端(または右端)から、これに隣接する格子線22の断面の左端(または右端)までの距離であり、格子線22の厚さDgは、格子線22の長さ方向に直交する断面における、凸条12の幅方向と同じ方向の厚さの最大値であり、格子線22の高さHgは、格子線22の長さ方向に直交する断面における、凸条12の高さ方向と同じ方向の高さである。 The pitch Pp of the grid lines 22 is the distance from the left end (or right end) of the cross section of the grid lines 22 to the left end (or right end) of the cross section of the grid lines 22 adjacent thereto, and the thickness of the grid lines 22 Dg is the maximum value of the thickness in the same direction as the width direction of the ridges 12 in the cross section perpendicular to the length direction of the grid lines 22, and the height Hg of the grid lines 22 is the length direction of the grid lines 22. It is the height in the same direction as the height direction of the ridge 12 in the cross section orthogonal to.
 格子線22は、透明樹脂層10とは屈折率の異なる材料(以下、格子線材料とも記す。)の薄膜からなる。
 格子線材料としては、誘電体(無機酸化物、樹脂等)、金属等が挙げられる。無機酸化物としては、二酸化ケイ素、酸化アルミニウム、酸化チタン、二酸化ジルコニウム(以下、ジルコニアと記す。)等が挙げられる。樹脂としては、光硬化樹脂、熱可塑性樹脂等が挙げられる。金属としては、金属単体、合金、ドーパントまたは不純物を含む金属等が挙げられる。具体的には、アルミニウム、銀、クロム、マグネシウム、アルミニウム系合金、銀系合金等が挙げられる。
The lattice lines 22 are made of a thin film of a material having a refractive index different from that of the transparent resin layer 10 (hereinafter also referred to as a lattice line material).
Examples of the lattice line material include dielectrics (inorganic oxides, resins, etc.), metals, and the like. Examples of the inorganic oxide include silicon dioxide, aluminum oxide, titanium oxide, and zirconium dioxide (hereinafter referred to as zirconia). Examples of the resin include a photo-curing resin and a thermoplastic resin. Examples of the metal include simple metals, alloys, metals containing dopants or impurities, and the like. Specifically, aluminum, silver, chromium, magnesium, an aluminum alloy, a silver alloy, and the like can be given.
 格子線22は、透明樹脂層10より屈折率の大きい誘電体の薄膜からなることが好ましい。格子線22(誘電体)の屈折率を、透明樹脂層10の屈折率よりも大きくすることによって、格子線22(誘電体)の屈折率を、透明樹脂層10の屈折率よりも小さくする場合に比べて、屈折率差をより大きくし、回折効率を上げることが容易になる。また誘電体の選択肢が増える。 The lattice lines 22 are preferably made of a dielectric thin film having a higher refractive index than the transparent resin layer 10. When making the refractive index of the lattice line 22 (dielectric) smaller than the refractive index of the transparent resin layer 10 by making the refractive index of the lattice line 22 (dielectric) larger than the refractive index of the transparent resin layer 10 Compared to the above, it becomes easy to increase the refractive index difference and increase the diffraction efficiency. There are also more choices for dielectrics.
 格子線材料としては、回折効率を向上させるためには、透明樹脂材料10との屈折率差が大きい材料が好ましく、樹脂との屈折率差を大きくし、回折効率を大きくできる点から、誘電体の薄膜の材料のうち、酸化チタン、ジルコニアが好ましく、ジルコニアが特に好ましい。また、回折効率は酸化チタン、ジルコニアよりも低下するものの、可視視光線や赤外線の透過率が高く、薄膜を形成しやすく、安価な点からは、二酸化ケイ素も好ましい。
 格子線22を構成する薄膜(すなわち、格子線材料)の屈折率は、透明樹脂層10の屈折率より、0.0001~1.8高いのが好ましい。この範囲であれば、回折効率が高く、透過率の波長分散が生じにくい。
In order to improve the diffraction efficiency, the grating line material is preferably a material having a large refractive index difference from the transparent resin material 10, and since the refractive index difference from the resin can be increased and the diffraction efficiency can be increased, the dielectric material Of these thin film materials, titanium oxide and zirconia are preferable, and zirconia is particularly preferable. Further, although the diffraction efficiency is lower than that of titanium oxide and zirconia, silicon dioxide is also preferable from the viewpoint of high transmittance for visible light and infrared rays, easy formation of a thin film, and low cost.
The refractive index of the thin film constituting the lattice line 22 (that is, the lattice line material) is preferably 0.0001 to 1.8 higher than the refractive index of the transparent resin layer 10. Within this range, the diffraction efficiency is high and the wavelength dispersion of the transmittance hardly occurs.
(透明基板)
 回折格子シート1は、透明樹脂層10の表面に、熱可塑性樹脂等からなる透明基板(第1の透明基板32および第2の透明基板34)を有する。第1の透明基板および第2の透明基板は、例えば、ポリメチルメタアクリレート、メチルメタクリレートと他のアルキル(メタ)アクリレート、スチレンなどといったビニルモノマーとの共重合体などの(メタ)アクリル系樹脂;ポリカーボネート、ジエチレングリコールビスアリルカーボネート(CR-39)などのポリカーボネート系樹脂;(臭素化)ビスフェノールA型のジ(メタ)アクリレートの単独重合体ないし共重合体、(臭素化)ビスフェノールAモノ(メタ)アクリレートのウレタン変性モノマーの重合体及び共重合体などといった熱硬化性(メタ)アクリル系樹脂;ポリエステル特にポリエチレンテレフタレート、ポリエチレンナフタレートおよび不飽和ポリエステル、アクリロニトリル-スチレン共重合体、ポリ塩化ビニル、ポリウレタン、エポキシ樹脂、ポリアリレート、ポリエーテルスルホン、ポリエーテルケトン、シクロオレフィンポリマー(商品名:アートン、ゼオノア)などが好ましい。また、耐熱性を考慮したアラミド系樹脂などが挙げられる。かかる第1の透明基板および第2の透明基板は、フィルム状であっても板状であってもよく、双方を含めて透明基板と称する。
(Transparent substrate)
The diffraction grating sheet 1 has transparent substrates (a first transparent substrate 32 and a second transparent substrate 34) made of a thermoplastic resin or the like on the surface of the transparent resin layer 10. The first transparent substrate and the second transparent substrate are, for example, (meth) acrylic resins such as polymethyl methacrylate, a copolymer of methyl methacrylate and other vinyl (meth) acrylate, a vinyl monomer such as styrene, and the like; Polycarbonate resins such as polycarbonate and diethylene glycol bisallyl carbonate (CR-39); (brominated) homopolymer or copolymer of bisphenol A type di (meth) acrylate, (brominated) bisphenol A mono (meth) acrylate Thermosetting (meth) acrylic resins such as polymers and copolymers of urethane-modified monomers; polyesters, especially polyethylene terephthalate, polyethylene naphthalate and unsaturated polyesters, acrylonitrile-styrene copolymers, polyvinyl chloride, Polyurethane, epoxy resins, polyarylate, polyether sulfone, polyether ketone, cycloolefin polymer (trade name: ARTON, ZEONOR) and the like are preferable. Moreover, the aramid resin etc. which considered heat resistance are mentioned. The first transparent substrate and the second transparent substrate may be film-like or plate-like, and both are referred to as transparent substrates.
 透明基板と透明樹脂層10との屈折率の差(絶対値)は、0.1以下が好ましく、0.05以下がより好ましい。屈折率の差が0.1以下であれば、透明樹脂層10と透明基板の界面でおこる反射による光のロスを抑えることができる。 The refractive index difference (absolute value) between the transparent substrate and the transparent resin layer 10 is preferably 0.1 or less, and more preferably 0.05 or less. If the difference in refractive index is 0.1 or less, light loss due to reflection occurring at the interface between the transparent resin layer 10 and the transparent substrate can be suppressed.
(他の形態)
 本発明における回折格子シートは、互いに平行な第1の主表面および第2の主表面を有する透明樹脂層と、互いに平行にかつ所定のピッチPpで配置された複数の格子線からなる回折格子とを有する回折格子シートであって、格子線が、透明樹脂層とは屈折率の異なる材料の薄膜からなり、かつ格子線が、透明樹脂層の第1の主表面および第2の主表面に対して長さ方向が平行に延びるように、透明樹脂層内に埋設されたものであればよく、図4、図5に示すものに限定はされない。
(Other forms)
The diffraction grating sheet of the present invention includes a transparent resin layer having a first main surface and a second main surface parallel to each other, and a diffraction grating composed of a plurality of grating lines arranged in parallel to each other at a predetermined pitch Pp. The grating line is made of a thin film made of a material having a refractive index different from that of the transparent resin layer, and the grating line is formed with respect to the first main surface and the second main surface of the transparent resin layer. As long as it is embedded in the transparent resin layer so that its length direction extends in parallel, it is not limited to those shown in FIGS.
 たとえば、格子線22を構成する誘電体の薄膜の表面は、透明樹脂層10の第1の主表面18および第2の主表面19に対して勾配を有していなくてもよい、すなわち、第1の主表面18および第2の主表面19に対して垂直であってもよい。
 また、透明基板(第1の透明基板32および第2の透明基板34)を有さず、透明樹脂層10および回折格子20のみからなる回折格子シートであってもよい。
 また、透明樹脂層10の表面に第1の透明基板32および第2の透明基板34のうち、いずれか一方を有する回折格子シートであってもよい。第1の透明基板32および第2の透明基板34のいずれか一方を有する場合、回折格子シートを製造しやすい点から、透明樹脂層10の表面に第1の透明基板32を有する回折格子シートが好ましい。
For example, the surface of the dielectric thin film constituting the lattice line 22 may not have a gradient with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10, that is, the first It may be perpendicular to one major surface 18 and second major surface 19.
In addition, a diffraction grating sheet including only the transparent resin layer 10 and the diffraction grating 20 may be used without the transparent substrates (the first transparent substrate 32 and the second transparent substrate 34).
Moreover, the diffraction grating sheet | seat which has any one among the 1st transparent substrate 32 and the 2nd transparent substrate 34 on the surface of the transparent resin layer 10 may be sufficient. In the case where either one of the first transparent substrate 32 and the second transparent substrate 34 is included, the diffraction grating sheet having the first transparent substrate 32 on the surface of the transparent resin layer 10 is easy to manufacture the diffraction grating sheet. preferable.
 また、図6に示すように、第2の透明基板34(または第1の透明基板32)の表面にハードコート層36を有する回折格子シート2であってもよい。
 ハードコート層36の材料としては、樹脂(光硬化樹脂等)、無機酸化物(二酸化ケイ素等)等が挙げられる。
Further, as shown in FIG. 6, the diffraction grating sheet 2 having a hard coat layer 36 on the surface of the second transparent substrate 34 (or the first transparent substrate 32) may be used.
Examples of the material of the hard coat layer 36 include a resin (such as a photo-curing resin) and an inorganic oxide (such as silicon dioxide).
 また、回折格子シート1を複数積層した回折格子シートであってもよく、回折格子20が埋設された透明樹脂層10を複数積層した回折格子シートであってもよい。この際、各透明樹脂層10における格子線22の長さ方向、透明樹脂層10の第1の主表面18および第2の主表面19に対する、格子線22を構成する薄膜の表面の勾配の角度φ、格子線22のピッチPp等は、各透明樹脂層10で同一であってもよく、一部の透明樹脂層10で異なっていてもよく、透明樹脂層10ごとに異なっていてもよい。 Further, it may be a diffraction grating sheet in which a plurality of diffraction grating sheets 1 are laminated, or a diffraction grating sheet in which a plurality of transparent resin layers 10 in which diffraction gratings 20 are embedded are laminated. Under the present circumstances, the angle of the gradient of the surface of the thin film which comprises the lattice line 22 with respect to the 1st main surface 18 and the 2nd main surface 19 of the length direction of the lattice line 22 in each transparent resin layer 10 and the transparent resin layer 10 φ g , the pitch Pp of the lattice lines 22, etc. may be the same for each transparent resin layer 10, may be different for some transparent resin layers 10, or may be different for each transparent resin layer 10. .
 たとえば、図7に示すように、格子線22の長さ方向がx方向に延び、+y方向に向かうにしたがって格子線22を構成する薄膜の表面が-z方向に勾配した回折格子20aが埋設された透明樹脂層10aと;格子線22の長さ方向がx方向に延び、+y方向に向かうにしたがって格子線22を構成する薄膜の表面が+z方向に勾配した回折格子20bが埋設された透明樹脂層10bと;格子線22の長さ方向がz方向に延び、+y方向に向かうにしたがって格子線22を構成する薄膜の表面が-x方向に勾配した回折格子20cが埋設された透明樹脂層10cと;格子線22の長さ方向がz方向に延び、+y方向に向かうにしたがって格子線22を構成する薄膜の表面が+x方向に勾配した回折格子20dが埋設された透明樹脂層10dとが積層された透明樹脂層10を有する回折格子シートであってもよい。該回折格子シートを有する窓ガラスによれば、太陽の高度や方角(朝昼夕、季節)によらず、いずれかの透明樹脂層における回折格子で回折した太陽光の赤外線が太陽電池62に効率よく入射する。また、車両(自動車等)のように、進行方向が変化すると、太陽光の入射方向が変化するような場合であっても、車両(自動車等)の進行方向によらず、いずれかの透明樹脂層における回折格子20で回折した太陽光の赤外線が太陽電池62に効率よく入射する。該回折格子シートを有する窓ガラスにおいては、太陽電池62は、窓ガラスの4つの辺に設けてもよい。 For example, as shown in FIG. 7, a diffraction grating 20a in which the length direction of the grating line 22 extends in the x direction and the surface of the thin film constituting the grating line 22 slopes in the −z direction as it goes in the + y direction is embedded. Transparent resin layer 10a; a transparent resin in which a diffraction grating 20b in which the length direction of the grating line 22 extends in the x direction and the surface of the thin film constituting the grating line 22 is inclined in the + z direction as it goes in the + y direction is embedded A transparent resin layer 10c in which a diffraction grating 20c in which the length direction of the grating line 22 extends in the z direction and the surface of the thin film constituting the grating line 22 slopes in the −x direction as it goes in the + y direction is embedded in the layer 10b; A transparent resin layer 10d in which a diffraction grating 20d in which the length direction of the grating line 22 extends in the z direction and the surface of the thin film constituting the grating line 22 is inclined in the + x direction as it goes in the + y direction is embedded. There may be a diffraction grating sheet with a transparent resin layer 10 which are stacked. According to the window glass having the diffraction grating sheet, the infrared rays of sunlight diffracted by the diffraction grating in any of the transparent resin layers are efficiently transmitted to the solar cell 62 regardless of the altitude and direction (morning, evening, and season) of the sun. Well incident. Moreover, even if the incident direction of sunlight changes when the traveling direction changes as in a vehicle (automobile or the like), any transparent resin is used regardless of the traveling direction of the vehicle (automobile or the like). The infrared rays of sunlight diffracted by the diffraction grating 20 in the layer efficiently enter the solar cell 62. In the window glass having the diffraction grating sheet, the solar cell 62 may be provided on four sides of the window glass.
 また、図8に示すように、格子線22の長さ方向、透明樹脂層10の第1の主表面18および第2の主表面19に対する、格子線22を構成する薄膜の表面の勾配の向きおよび角度φが同じ回折格子20が埋設された透明樹脂層10eと透明樹脂層10fとが積層された透明樹脂層10を有する回折格子シートであってもよい。該回折格子シートによれば、単層の透明樹脂層10に比べ、回折させたい特定の入射角や波長の太陽光の赤外線の回折効率をより高めることができる Further, as shown in FIG. 8, the direction of the gradient of the surface of the thin film constituting the lattice line 22 with respect to the length direction of the lattice line 22 and the first main surface 18 and the second main surface 19 of the transparent resin layer 10. and the angle phi g may be a diffraction grating sheet with a transparent resin layer 10e is embedded the same diffraction grating 20 and the transparent resin layer 10f has been transparent resin layer 10 laminated. According to the diffraction grating sheet, compared with the single transparent resin layer 10, the infrared diffraction efficiency of sunlight having a specific incident angle and wavelength desired to be diffracted can be further increased.
<回折格子の設計方法>
 格子線22のピッチPp、格子線22の高さHg、格子線22の厚さDg、透明樹脂層10の第1の主表面18および第2の主表面19に対する、格子線22を構成する薄膜の表面の勾配の角度φ等は、透過量を抑えたい赤外線の波長の範囲、赤外線の透過量を抑えたい太陽光の入射角の範囲、回折格子シートを構成する各材料(透明樹脂層10、格子線22の薄膜、第1の透明基板32、第2の透明基板34、ハードコート層36等)の屈折率、窓ガラスを構成する各材料(ガラス板50、中間膜52、粘着剤層60等)の屈折率、窓ガラスの設置角度等に応じ、公知の光学的な知見(特許文献1、2、その他)に基づいて適宜設定すればよい。
<Diffraction grating design method>
The thin film which comprises the lattice line 22 with respect to the 1st main surface 18 and the 2nd main surface 19 of the pitch Pp of the lattice line 22, the height Hg of the lattice line 22, the thickness Dg of the lattice line 22, and the transparent resin layer 10 The gradient angle φ g of the surface of the light source includes the range of the infrared wavelength for which the amount of transmission is desired to be suppressed, the range of the incident angle of sunlight for which the amount of infrared transmission is desired to be suppressed, and the materials constituting the diffraction grating sheet (transparent resin layer 10 , The thin film of the lattice line 22, the refractive index of the first transparent substrate 32, the second transparent substrate 34, the hard coat layer 36, etc., and each material constituting the window glass (glass plate 50, intermediate film 52, adhesive layer) 60) and the like, and may be set as appropriate based on known optical knowledge ( Patent Documents 1, 2, etc.).
 たとえば、透明樹脂層10の第1の主表面18および第2の主表面19に対する、格子線22を構成する薄膜の表面の勾配の角度φは、以下のようにして、透明樹脂層10の第1の主表面18および第2の主表面19の法線に対する、格子線22を構成する薄膜の表面の勾配の角度φを求め、φ=90-φから算出できる。
 また、格子線22の断面の左端(または右端)から、これに隣接する格子線22の断面の左端(または右端)までの距離である格子線22のピッチPpは、以下のようにして、格子線22の法線方向の格子線間隔dを求めることによって算出できる。
For example, the angle φ g of the gradient of the surface of the thin film constituting the lattice lines 22 with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10 is as follows. An angle φ n of the gradient of the surface of the thin film constituting the lattice line 22 with respect to the normal lines of the first main surface 18 and the second main surface 19 can be obtained and calculated from φ g = 90−φ n .
In addition, the pitch Pp of the grid line 22 which is the distance from the left end (or right end) of the cross section of the grid line 22 to the left end (or right end) of the cross section of the grid line 22 adjacent thereto is set as follows. It can be calculated by obtaining a lattice line interval d in the normal direction of the line 22.
(ケース1)
 図9は、太陽光の入射面に向かうにしたがって格子線22を構成する薄膜の表面が上辺側(図面の右側)に勾配した窓ガラス本体6の透明樹脂層10における光の屈折および回折の様子の一例を示す概略図である。なお、窓ガラス本体6の場合、透明樹脂層10の他に、透明基板32、34、中間膜52、ガラス板50を有するが、後述するSnellの法則より空気と透明樹脂層10との間に透明樹脂層10以外の材料が存在していても、最終的に透明樹脂層10に入射する太陽光の屈折角は、透明樹脂層10以外の材料が存在しない場合と同じになる。よって、簡略化のため、太陽光が空気から透明樹脂層10に直接入射するモデルを用いて、透明樹脂層10の第1の主表面18および第2の主表面19の法線に対する、格子線22を構成する薄膜の表面の勾配の角度φおよび格子線間隔dの求め方を説明する。また、図面の煩雑さを避けるため、透明樹脂層10中の格子線22は2本のみ図示し、他の格子線22は省略する。
(Case 1)
FIG. 9 shows the state of light refraction and diffraction in the transparent resin layer 10 of the window glass body 6 in which the surface of the thin film constituting the lattice line 22 is inclined toward the upper side (right side of the drawing) as it goes toward the sunlight incident surface. It is the schematic which shows an example. In addition, in the case of the window glass main body 6, in addition to the transparent resin layer 10, it has the transparent substrates 32 and 34, the intermediate film 52, and the glass plate 50, but between the air and the transparent resin layer 10 by Snell's law described later. Even if a material other than the transparent resin layer 10 is present, the angle of refraction of sunlight finally incident on the transparent resin layer 10 is the same as when no material other than the transparent resin layer 10 is present. Therefore, for the sake of simplification, using a model in which sunlight is directly incident on the transparent resin layer 10 from the air, lattice lines with respect to the normal lines of the first main surface 18 and the second main surface 19 of the transparent resin layer 10 are used. A method of obtaining the gradient angle φ n and the lattice line spacing d of the surface of the thin film constituting the film 22 will be described. In order to avoid the complexity of the drawing, only two grid lines 22 in the transparent resin layer 10 are shown, and the other grid lines 22 are omitted.
 空気(屈折率n)から透明樹脂層10(屈折率n)に入射角θで入射した太陽光は、後述するSnellの法則にしたがって該界面にて屈折角θで屈折する。
 後述するBragg条件を満たす場合、屈折した太陽光の一部(赤外線)は、透明樹脂層10の第1の主表面18および第2の主表面19の法線に対する、格子線22を構成する薄膜の表面の勾配の角度がφである格子線22に、入射角φ-θで入射し、回折角φ-θで回折(反射)する。一方、Bragg条件を満たさない場合、屈折した太陽光は、格子線22にて回折することなく、透明樹脂層10から空気に出射する。
 回折した赤外線は、透明樹脂層10と空気との界面に入射角βで入射する。入射角βが該界面における臨界角γ以上である場合(β-γ≧0)、赤外線は、該界面にて全反射し、窓ガラス3の内部に閉じ込められ、下辺側(図面の左側)の太陽電池(図示略)に導波する。一方、入射角βが該界面における臨界角γ未満である場合(β-γ<0)、赤外線は、該界面にて屈折し、透明樹脂層10から空気に出射する。
Sunlight that has entered the transparent resin layer 10 (refractive index n 1 ) from the air (refractive index n 0 ) at an incident angle θ 0 is refracted at the refractive angle θ 1 at the interface according to Snell's law, which will be described later.
When the Bragg condition described later is satisfied, a part of the refracted sunlight (infrared rays) is a thin film constituting the lattice line 22 with respect to the normal lines of the first main surface 18 and the second main surface 19 of the transparent resin layer 10. the grid lines 22 is the slope of the surface of the angle phi n of, at an incident angle phi n - [theta] 1, diffracted (reflected) by the diffraction angle phi n - [theta] 1. On the other hand, when the Bragg condition is not satisfied, the refracted sunlight is emitted from the transparent resin layer 10 to the air without being diffracted by the lattice line 22.
The diffracted infrared light is incident on the interface between the transparent resin layer 10 and air at an incident angle β. When the incident angle β is greater than or equal to the critical angle γ at the interface (β−γ ≧ 0), the infrared rays are totally reflected at the interface and confined inside the window glass 3, and are reflected on the lower side (left side of the drawing). It is guided to a solar cell (not shown). On the other hand, when the incident angle β is less than the critical angle γ at the interface (β−γ <0), infrared rays are refracted at the interface and emitted from the transparent resin layer 10 to the air.
 ここで、入射角βは、下式(1)で表される。
   β=2φ-θ ・・・(1)
 また、屈折角θは、下式(2)のSnellの法則から、下式(3)で表される。
   nsinθ=nsinθ ・・・(2)
   θ=arcsin{(n/n)sinθ} ・・・(3)
 また、臨界角γは、下式(4)で表される。
   γ=arcsin{n/n} ・・・(4)
 式(1)、(3)、(4)をβ-γに代入すると、下式(5)となる。
   β-γ=2φ-arcsin{(n/n)sinθ}-arcsin{n/n} ・・・(5)
 式(5)に回折させたい赤外線の入射角θ(たとえば、60°)、空気の屈折率n、透明樹脂層10の屈折率nを入力し、右辺が0以上となるような、透明樹脂層10の第1の主表面18および第2の主表面19の法線に対する、格子線22を構成する薄膜の表面の勾配の角度φを求める。
Here, the incident angle β is expressed by the following equation (1).
β = 2φ n −θ 1 (1)
Further, the refraction angle θ 1 is represented by the following expression (3) from Snell's law of the following expression (2).
n 0 sin θ 0 = n 1 sin θ 1 (2)
θ 1 = arcsin {(n 0 / n 1 ) sin θ 0 } (3)
The critical angle γ is expressed by the following formula (4).
γ = arcsin {n 0 / n 1 } (4)
Substituting Equations (1), (3), and (4) into β-γ yields Equation (5) below.
β-γ = 2φ n -arcsin {(n 0 / n 1 ) sin θ 0 } -arcsin {n 0 / n 1 } (5)
The incident angle theta 0 of infrared want diffracted formula (5) (e.g., 60 °), the refractive index n 0 of air, enter the refractive index n 1 of the transparent resin layer 10, such as the right-hand side is 0 or more, An angle φ n of the surface gradient of the thin film constituting the lattice line 22 with respect to the normal lines of the first main surface 18 and the second main surface 19 of the transparent resin layer 10 is obtained.
 回折を起こす格子線間隔dは、下式(6)のBragg条件で表される。
   d=λ/{2nsin(φ-θ)} ・・・(6)
 式(6)に回折させたい赤外線の波長λ(たとえば800nm)、屈折角θ(式(3))、透明樹脂層10の第1の主表面18および第2の主表面19の法線に対する、格子線22を構成する薄膜の表面の勾配の角度φを入力し、格子線間隔dを求める。
The lattice line interval d causing diffraction is expressed by the Bragg condition of the following equation (6).
d = λ / {2n 1 sin (φ n −θ 1 )} (6)
Infrared wavelength λ (for example, 800 nm), refraction angle θ 1 (formula (3)) to be diffracted into formula (6), normal line of first main surface 18 and second main surface 19 of transparent resin layer 10 Then, the gradient angle φ n of the surface of the thin film constituting the lattice line 22 is input to obtain the lattice line interval d.
(ケース2)
 図10は、太陽光の入射面に向かうにしたがって格子線22を構成する薄膜の表面が下辺側(図面の左側)に勾配した窓ガラス本体6の透明樹脂層10における光の屈折および回折の様子の一例を示す概略図である。なお、上述したように、簡略化のため、太陽光が空気から透明樹脂層10に直接入射するモデルを用いて、透明樹脂層10の第1の主表面18および第2の主表面19の法線に対する、格子線22を構成する薄膜の表面の勾配の角度φおよび格子線間隔dの求め方を説明する。また、図面の煩雑さを避けるため、透明樹脂層10中の格子線22は2本のみ図示し、他の格子線22は省略する。
(Case 2)
FIG. 10 shows the state of light refraction and diffraction in the transparent resin layer 10 of the window glass body 6 in which the surface of the thin film constituting the lattice line 22 is inclined toward the lower side (left side of the drawing) as it goes toward the sunlight incident surface. It is the schematic which shows an example. As described above, for simplification, the method of the first main surface 18 and the second main surface 19 of the transparent resin layer 10 using a model in which sunlight directly enters the transparent resin layer 10 from the air. A method of obtaining the angle φ n of the gradient of the surface of the thin film constituting the grid line 22 and the grid line spacing d with respect to the line will be described. In order to avoid the complexity of the drawing, only two grid lines 22 in the transparent resin layer 10 are shown, and the other grid lines 22 are omitted.
 空気(屈折率n)から透明樹脂層10(屈折率n)に入射角θで入射した太陽光は、Snellの法則にしたがって該界面にて屈折角θで屈折する。
 Bragg条件を満たす場合、屈折した太陽光の一部(赤外線)は、透明樹脂層10の第1の主表面18および第2の主表面19の法線に対する、格子線22を構成する薄膜の表面の勾配の角度がφである格子線22に、入射角φ+θで入射し、回折角φ+θで回折(反射)する。一方、Bragg条件を満たさない場合、屈折した太陽光は、格子線22にて回折することなく、透明樹脂層10から空気に出射する。
 回折した赤外線は、透明樹脂層10と空気との界面に入射角βで入射する。入射角βが該界面における臨界角γ以上である場合(β-γ≧0)、赤外線は、該界面にて全反射し、窓ガラス3の内部に閉じ込められ、上辺側(図面の右側)の太陽電池(図示略)に導波する。一方、入射角βが該界面における臨界角γ未満である場合(β-γ<0)、赤外線は、該界面にて屈折し、透明樹脂層10から空気に出射する。
Sunlight that has entered the transparent resin layer 10 (refractive index n 1 ) from the air (refractive index n 0 ) at an incident angle θ 0 is refracted at the refractive angle θ 1 at the interface according to Snell's law.
When the Bragg condition is satisfied, a part of the refracted sunlight (infrared rays) is the surface of the thin film constituting the lattice line 22 with respect to the normal line of the first main surface 18 and the second main surface 19 of the transparent resin layer 10. the grid lines 22 is the angle of the gradient phi n, at an incident angle φ n + θ 1, diffracted (reflected) by the diffraction angle φ n + θ 1. On the other hand, when the Bragg condition is not satisfied, the refracted sunlight is emitted from the transparent resin layer 10 to the air without being diffracted by the lattice line 22.
The diffracted infrared light is incident on the interface between the transparent resin layer 10 and air at an incident angle β. When the incident angle β is greater than or equal to the critical angle γ at the interface (β−γ ≧ 0), the infrared rays are totally reflected at the interface and confined inside the window glass 3, and are reflected on the upper side (right side of the drawing). It is guided to a solar cell (not shown). On the other hand, when the incident angle β is less than the critical angle γ at the interface (β−γ <0), infrared rays are refracted at the interface and emitted from the transparent resin layer 10 to the air.
 ここで、入射角βは、下式(7)で表される。
   β=2φ+θ ・・・(7)
 ケース1と同様に、式(7)、(3)、(4)をβ-γに代入すると、下式(8)となる。
   β-γ=2φ+arcsin{(n/n)sinθ}-arcsin{n/n} ・・・(8)
 式(8)に回折させたい赤外線の入射角θ(たとえば、60°)、空気の屈折率n、透明樹脂層10の屈折率nを入力し、右辺が0以上となるような、透明樹脂層10の第1の主表面18および第2の主表面19の法線に対する、格子線22を構成する薄膜の表面の勾配の角度φを求める。
Here, the incident angle β is expressed by the following equation (7).
β = 2φ n + θ 1 (7)
As in Case 1, substituting Equations (7), (3), and (4) into β-γ yields Equation (8) below.
β-γ = 2φ n + arcsin {(n 0 / n 1 ) sin θ 0 } -arcsin {n 0 / n 1 } (8)
The incident angle theta 0 of infrared want diffracted formula (8) (e.g., 60 °), the refractive index n 0 of air, enter the refractive index n 1 of the transparent resin layer 10, such as the right-hand side is 0 or more, An angle φ n of the surface gradient of the thin film constituting the lattice line 22 with respect to the normal lines of the first main surface 18 and the second main surface 19 of the transparent resin layer 10 is obtained.
 回折を起こす格子線間隔dは、下式(9)のBragg条件で表される。
   d=λ/{2nsin(φ+θ)} ・・・(9)
 式(9)に回折させたい赤外線の波長λ(たとえば800nm)、屈折角θ(式(3))、透明樹脂層10の第1の主表面18および第2の主表面19の法線に対する、格子線22を構成する薄膜の表面の勾配の角度φを入力し、格子線間隔dを求める。
The lattice line interval d causing diffraction is expressed by the Bragg condition of the following equation (9).
d = λ / {2n 1 sin (φ n + θ 1 )} (9)
Infrared wavelength λ (for example, 800 nm), refraction angle θ 1 (formula (3)) to be diffracted into formula (9), normal lines of first main surface 18 and second main surface 19 of transparent resin layer 10 Then, the gradient angle φ n of the surface of the thin film constituting the lattice line 22 is input to obtain the lattice line interval d.
 なお、ケース1およびケース2において、回折させたい赤外線の入射角θおよび回折させたい赤外線の波長λを用いて求められる、透明樹脂層10の第1の主表面18および第2の主表面19の法線に対する、格子線22を構成する薄膜の表面の勾配の角度φおよび格子線間隔dは、それぞれ1点のみである。しかし、実際の回折格子においては、透明樹脂層10の第1の主表面18および第2の主表面19の法線に対する、格子線22を構成する薄膜の表面の勾配の角度φおよび格子線間隔dが1点に固定されていても、回折させたい赤外線の入射角θを中心として前後にある程度の幅を有する入射角の範囲、および回折させたい赤外線の波長λを中心として前後にある程度の幅を有する波長の範囲における赤外線が、透明樹脂層10と空気との界面にて全反射し、窓ガラス本体6の内部に閉じ込められ、下辺側(ケース1)または上辺側(ケース2)の太陽電池(図示略)に導波する。
 また、回折格子シート1を有する実際の窓ガラス本体6においては、隣の格子線22で再度反射した光、導波して下辺側の太陽電池にいったん導波したものの窓ガラス本体6と太陽電池との界面で反射して戻ってくる光等、上述した設計で想定している出射方向以外の光が発生する可能性がある。そのため、このような光も受光するために、窓ガラス本体6の上辺側にも(すなわち、下辺側と上辺側の両方に)太陽電池を置くことが好ましい。
In case 1 and case 2, the first main surface 18 and the second main surface 19 of the transparent resin layer 10 obtained using the incident angle θ 0 of the infrared ray to be diffracted and the wavelength λ of the infrared ray to be diffracted. The angle φ n of the gradient of the surface of the thin film constituting the lattice line 22 and the lattice line interval d with respect to the normal line are only one point each. However, in the actual diffraction grating, the gradient angle φ n and the grating line of the surface of the thin film constituting the grating line 22 with respect to the normal lines of the first main surface 18 and the second main surface 19 of the transparent resin layer 10 Even if the distance d is fixed at one point, the range of incident angles having a certain width before and after the incident angle θ 0 of infrared rays to be diffracted, and to some extent around the wavelength λ of infrared rays to be diffracted Infrared rays in the wavelength range having a width of 2 are totally reflected at the interface between the transparent resin layer 10 and air and confined in the inside of the window glass body 6, on the lower side (case 1) or the upper side (case 2). It is guided to a solar cell (not shown).
Further, in the actual window glass body 6 having the diffraction grating sheet 1, the light reflected again by the adjacent grating line 22, the window glass body 6 and the solar battery that have been guided to the lower side solar cell after being guided. There is a possibility that light other than the emission direction assumed in the above-described design may be generated, such as light that is reflected and returned from the interface. Therefore, in order to receive such light, it is preferable to place a solar cell also on the upper side of the window glass body 6 (that is, on both the lower side and the upper side).
 以上のようにして回折格子20を設計することによって、図11に示すように、太陽の高度が高い(太陽光の入射角θが大きい)夏季においては、窓ガラス本体6に入射した太陽光のうち、波長の長い赤外線の一部が回折格子20によって回折され、太陽電池62へと導波され、室内に取り込まれることはない。一方、図12に示すように、太陽の高度が低い(太陽光の入射角θが小さい)冬季においては、窓ガラス本体6に入射した太陽光(可視光線~赤外線)は、回折格子20によって回折されることなく、室内に効率よく取り込まれる。
 なお、透明樹脂層10の第1の主表面18および第2の主表面19の法線に対する、格子線22を構成する薄膜の表面の勾配の角度φ(透明樹脂層10の第1の主表面18および第2の主表面19に対する、格子線22を構成する薄膜の表面の勾配の角度φ)および格子線間隔d(ピッチPp)は、上述した設計方法で設計したように回折格子シート1の全体にわたって一定であってもよく、連続的または部分的に変化させてもよい。
By designing the diffraction grating 20 as described above, as shown in FIG. 11, in the summer when the altitude of the sun is high (sunlight incident angle θ 0 is large), the sunlight that has entered the window glass body 6 Among them, a part of infrared rays having a long wavelength is diffracted by the diffraction grating 20, guided to the solar cell 62, and not taken into the room. On the other hand, as shown in FIG. 12, in the winter when the altitude of the sun is low (sunlight incident angle θ 0 is small), the sunlight (visible light to infrared light) incident on the window glass body 6 is reflected by the diffraction grating 20. It is efficiently taken into the room without being diffracted.
Note that the angle φ n of the gradient of the surface of the thin film constituting the lattice line 22 with respect to the normal lines of the first main surface 18 and the second main surface 19 of the transparent resin layer 10 (the first main surface of the transparent resin layer 10). The gradient angle φ g ) and the grating line spacing d (pitch Pp) of the surface of the thin film constituting the grating line 22 with respect to the surface 18 and the second main surface 19 are as described in the above-described design method. It may be constant throughout 1 and may vary continuously or partially.
<窓ガラスの製造方法>
 本発明の窓ガラスは、たとえば、下記の工程(I)~(III)を経て製造される。
 (I)回折格子シートを製造する工程。
 (II)回折格子シートとガラス板とを貼り合わせて窓ガラス本体を得る工程。
 (III)窓ガラス本体の少なくとも1つの辺に太陽電池を配置して本発明の窓ガラスを得る工程。
<Manufacturing method of window glass>
The window glass of the present invention is produced, for example, through the following steps (I) to (III).
(I) A step of producing a diffraction grating sheet.
(II) A step of attaching a diffraction grating sheet and a glass plate to obtain a window glass body.
(III) A step of obtaining the window glass of the present invention by disposing a solar cell on at least one side of the window glass body.
〔工程(I)〕
 回折格子シートの製造方法としては、たとえば、下記の工程(a)、工程(b)、工程(c)をこの順で有する方法が挙げられる。
 (a)一方の表面が第1の主表面であり、他方の表面が、複数の凸条が互いに平行にかつ所定のピッチPpで形成された凹凸面である、透明樹脂からなる第1の層を形成する工程。
 (b)第1の層に形成された凸条の表面の少なくとも一部に、透明樹脂層とは屈折率の異なる材料をドライコートして薄膜を形成することによって、複数の格子線からなる回折格子を形成する工程。
 (c)第1の層の凹凸面および回折格子の表面に、透明樹脂からなる第2の層を形成することによって、第1の層および第2の層からなる前記透明樹脂層を形成する工程。
[Step (I)]
Examples of the method for producing a diffraction grating sheet include a method having the following step (a), step (b), and step (c) in this order.
(A) A first layer made of a transparent resin, wherein one surface is a first main surface and the other surface is a concavo-convex surface in which a plurality of ridges are formed in parallel to each other and at a predetermined pitch Pp. Forming.
(B) Diffraction consisting of a plurality of lattice lines by dry-coating a material having a refractive index different from that of the transparent resin layer on at least a part of the surface of the ridge formed on the first layer. Forming a lattice;
(C) A step of forming the transparent resin layer including the first layer and the second layer by forming the second layer including the transparent resin on the uneven surface of the first layer and the surface of the diffraction grating. .
 また、透明基材を有する回折格子シート1の製造方法としては、たとえば、下記の工程(a’)、工程(b)、工程(c’)をこの順で有する方法が挙げられる。
 (a’)第1の透明基板の表面に、一方の表面が、第1の透明基板との界面、すなわち第1の主表面であり、他方の表面が、複数の凸条が互いに平行にかつ所定のピッチPpで形成された凹凸面である、透明樹脂からなる第1の層を形成する工程。
 (b)第1の層に形成された凸条の表面の少なくとも一部に、透明樹脂層とは屈折率の異なる材料をドライコートして薄膜を形成することによって、複数の格子線からなる回折格子を形成する工程。
 (c’)第1の層および回折格子が表面に形成された第1の透明基板と、光硬化性組成物からなる塗膜が表面に形成された第2の透明基板とを、第1の層および回折格子に塗膜が接するように貼り合わせ、ついで塗膜を光硬化させて第2の層を形成することによって、第1の層および第2の層からなる透明樹脂層を形成する工程。
Moreover, as a manufacturing method of the diffraction grating sheet 1 which has a transparent base material, the method which has the following process (a '), the process (b), and the process (c') in this order, for example is mentioned.
(A ′) On the surface of the first transparent substrate, one surface is an interface with the first transparent substrate, that is, the first main surface, and the other surface has a plurality of protrusions parallel to each other and A step of forming a first layer made of a transparent resin, which is an uneven surface formed at a predetermined pitch Pp.
(B) Diffraction consisting of a plurality of lattice lines by dry-coating a material having a refractive index different from that of the transparent resin layer on at least a part of the surface of the ridge formed on the first layer. Forming a lattice;
(C ′) a first transparent substrate having a first layer and a diffraction grating formed on the surface, and a second transparent substrate having a coating film made of the photocurable composition formed on the surface, The step of forming a transparent resin layer composed of the first layer and the second layer by bonding the layer and the diffraction grating so that the coating film is in contact, and then photocuring the coating film to form the second layer .
 具体的には、図4の回折格子シート1の製造方法としては、たとえば、下記の工程(a”)、工程(b”)、工程(c”)を有する方法が挙げられる。
 (a”)第1の透明基板32の表面に、一方の表面が第1の透明基板32との界面(すなわち第1の主表面18)であり、他方の表面が、第1の主表面18に対して勾配した第1の側面を有する複数の凸条12が互いに平行にかつ所定のピッチPpで形成された凹凸面である、透明樹脂からなる第1の層14を形成する工程。
 (b”)第1の層に形成された凸条12の第1の側面に(図4においては凸条12のそれぞれの右側の側面に)、透明樹脂層10とは屈折率の異なる材料をドライコートして薄膜(格子線22)を形成することによって、複数の格子線22からなる回折格子20を形成する工程。
 (c”)第1の層14および回折格子20が表面に形成された第1の透明基板32と、光硬化性組成物からなる塗膜が表面に形成された第2の透明基板34とを、第1の層14および回折格子20に塗膜が接するように貼り合わせ、ついで塗膜を光硬化させて第2の層16を形成することによって、第1の層14および第2の層16からなる透明樹脂層10を形成する工程。
Specifically, as a method for manufacturing the diffraction grating sheet 1 of FIG. 4, for example, a method including the following step (a ″), step (b ″), and step (c ″) can be mentioned.
(A ″) On the surface of the first transparent substrate 32, one surface is an interface with the first transparent substrate 32 (that is, the first main surface 18), and the other surface is the first main surface 18. Forming a first layer 14 made of a transparent resin, wherein the plurality of ridges 12 having first side surfaces that are inclined with respect to the surface are uneven surfaces formed in parallel with each other at a predetermined pitch Pp.
(B ″) On the first side surface of the ridge 12 formed on the first layer (on the right side surface of each ridge 12 in FIG. 4), a material having a refractive index different from that of the transparent resin layer 10 is used. A step of forming a diffraction grating 20 composed of a plurality of grating lines 22 by dry coating to form a thin film (grating lines 22).
(C ″) a first transparent substrate 32 on which the first layer 14 and the diffraction grating 20 are formed, and a second transparent substrate 34 on which a coating film made of a photocurable composition is formed. The first layer 14 and the second layer 16 are formed by bonding the first layer 14 and the diffraction grating 20 so that the coating film is in contact with each other and then photocuring the coating film to form the second layer 16. Forming a transparent resin layer 10 comprising:
(工程(a)、工程(a’)、工程(a”)の具体例の説明)
 第1の層14の作製方法としては、インプリント法(光インプリント法、熱インプリント法)、リソグラフィ法等が挙げられ、凸条12を生産性よく形成できる点および第1の層14を大面積化できる点から、インプリント法が好ましく、凸条12をより生産性よく形成できる点およびモールドの溝を精度よく転写できる点から、光インプリント法が特に好ましい。
(Description of specific examples of step (a), step (a ′), step (a ″))
Examples of a method for producing the first layer 14 include an imprint method (an optical imprint method and a thermal imprint method), a lithography method, and the like. The imprint method is preferable from the viewpoint that the area can be increased, and the optical imprint method is particularly preferable from the point that the ridges 12 can be formed with higher productivity and the groove of the mold can be transferred with high accuracy.
 光インプリント法は、たとえば、電子線描画とエッチングとの組み合わせ等により、複数の溝が互いに平行にかつ所定のピッチPpで形成されたモールドを作製し、該モールドの溝を、第1の透明基板32の表面に塗布された光硬化性組成物に転写し、同時に該光硬化性組成物を光硬化させる方法である。 In the optical imprint method, for example, a mold in which a plurality of grooves are formed in parallel with each other and at a predetermined pitch Pp is formed by a combination of electron beam drawing and etching. This is a method of transferring to a photocurable composition applied to the surface of the substrate 32 and simultaneously photocuring the photocurable composition.
 光インプリント法による第1の層14の作製は、具体的には下記の工程(i)~(iv)を経て行われることが好ましい。
 (i)光硬化性組成物を第1の透明基板32の表面に塗布する工程。
 (ii)図13に示すように、複数の溝42が互いに平行にかつ所定のピッチPpで形成されたモールド40を、溝42が光硬化性組成物24に接するように、光硬化性組成物24に押しつける工程。
 (iii)モールド40を光硬化性組成物24に押しつけた状態で放射線(紫外線、電子線等)を照射して光硬化性組成物24を硬化させて、モールド40の溝42に対応する複数の凸条12を有する第1の層14を作製する工程。
 (iv)第1の層14からモールド40を分離する工程。
Specifically, the production of the first layer 14 by the photoimprint method is preferably performed through the following steps (i) to (iv).
(I) A step of applying a photocurable composition to the surface of the first transparent substrate 32.
(Ii) As shown in FIG. 13, the photocurable composition is formed such that the groove 40 is in contact with the photocurable composition 24 in the mold 40 in which the plurality of grooves 42 are formed in parallel to each other and at a predetermined pitch Pp. The process of pressing against 24.
(Iii) In a state where the mold 40 is pressed against the photocurable composition 24, the photocurable composition 24 is cured by irradiating radiation (ultraviolet rays, electron beams, etc.), and a plurality of grooves 40 corresponding to the grooves 42 of the mold 40 are cured. The process of producing the 1st layer 14 which has the protruding item | line 12.
(Iv) A step of separating the mold 40 from the first layer 14.
 熱インプリント法による第1の層14の作製は、具体的には下記の工程(i)~(iii)を経て行われることが好ましい。
 (i)第1の透明基板32の表面に熱可塑性樹脂の被転写膜を形成する工程、または熱可塑性樹脂の被転写フィルムを作製する工程。
 (ii)複数の溝42が互いに平行にかつ一定のピッチPpで形成されたモールド40を、溝42が被転写膜または被転写フィルムに接するように、熱可塑性樹脂のガラス転移温度(Tg)または融点(Tm)以上に加熱した被転写膜または被転写フィルムに押しつけ、モールド40の溝42に対応する複数の凸条12を有する第1の層14を作製する工程。
 (iii)第1の層14をTgまたはTmより低い温度に冷却して第1の層14からモールド40を分離する工程。
Specifically, the production of the first layer 14 by the thermal imprint method is preferably performed through the following steps (i) to (iii).
(I) A step of forming a thermoplastic resin transfer film on the surface of the first transparent substrate 32, or a process of producing a thermoplastic resin transfer film.
(Ii) A glass 40 having a glass transition temperature (Tg) of a thermoplastic resin such that the groove 42 is in contact with the film to be transferred or the film to be transferred, or the mold 40 in which the plurality of grooves 42 are formed in parallel with each other and at a constant pitch Pp. A step of producing a first layer 14 having a plurality of ridges 12 corresponding to the grooves 42 of the mold 40 by being pressed against a film to be transferred or a film to be transferred heated to a melting point (Tm) or higher.
(Iii) A step of separating the mold 40 from the first layer 14 by cooling the first layer 14 to a temperature lower than Tg or Tm.
 インプリント法に用いられるモールド40の材料としては、シリコン、ニッケル、石英ガラス、樹脂等が挙げられる。
 樹脂フィルムを第1の透明基板32に用いた場合は、インプリント法は、ロール・ツウ・ロール(roll to roll)方式で行うことができる。
Examples of the material of the mold 40 used in the imprint method include silicon, nickel, quartz glass, and resin.
When a resin film is used for the first transparent substrate 32, the imprint method can be performed by a roll-to-roll method.
(工程(b)、工程(b”)の具体例の説明)
 格子線22は、第1の層14の凸条12の側面の表面に選択的に、透明樹脂層10とは屈折率の異なる材料をドライコートして形成される。
(Description of specific examples of step (b) and step (b ″))
The lattice lines 22 are selectively formed on the surface of the side surface of the ridge 12 of the first layer 14 by dry-coating a material having a refractive index different from that of the transparent resin layer 10.
 ドライコート法としては、PVD法またはCVD法が挙げられ、真空蒸着法、スパッタ法、イオンプレーティング法が好ましく、真空蒸着法が特に好ましい。真空蒸着法としては、蒸発粒子の第1の層14に対する入射方向を制御でき、凸条12の表面に選択的に誘電体を蒸着できる点から、斜方蒸着法が好ましい。 Examples of the dry coating method include a PVD method and a CVD method, and a vacuum deposition method, a sputtering method, and an ion plating method are preferable, and a vacuum deposition method is particularly preferable. As the vacuum deposition method, the oblique deposition method is preferable because the incident direction of the evaporated particles with respect to the first layer 14 can be controlled and the dielectric can be selectively deposited on the surface of the ridge 12.
 斜方蒸着法による格子線22の形成は、たとえば、下記のように行う。
 まず、図14に示すように、凸条12の長さ方向Lに対して略直交し、かつ凸条12の高さ方向Hに対して第1の側面の側に下式(10)を満たす角度θ(°)をなす方向V1から格子線材料を蒸着する工程を実施することによって、透明樹脂層10の第1の主表面18および第2の主表面19に対する勾配の角度がφである、凸条12の第1の側面の一部または全体を被覆する薄膜を形成する。
   tan(θ±10)=(Pp-Hp/tanφ)/Hp ・・・(10)。
For example, the lattice lines 22 are formed by the oblique deposition method as follows.
First, as shown in FIG. 14, the following expression (10) is satisfied on the first side surface side with respect to the height direction H of the ridge 12 and substantially perpendicular to the length direction L of the ridge 12. By performing the process of depositing the lattice line material from the direction V1 forming the angle θ R (°), the angle of the gradient with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10 is φ p A thin film that covers a part or the whole of the first side surface of the ridge 12 is formed.
tan (θ R ± 10) = (Pp−Hp / tanφ p ) / Hp (10)
 式(10)の角度θ(°)は、隣の凸条12に遮られることなく、凸条12の第1の側面に格子線材料を蒸着するための角度を表わし、凸条12の第1の側面の底部と隣の凸条12の頂部との間隔(すなわち凸条12のピッチPpからHp/tanφを引いた距離(Pp-Hp/tanφ))と、隣の凸条12の高さHpとから決まる。「±10」は振れ幅である。
 角度θ(°)は、tan(θ±7)=(Pp-Hp/tanφ)/Hpを満たすことが好ましく、tan(θ±5)=(Pp-Hp/tanφ)/Hpを満たすことがより好ましい。
The angle θ R (°) in Expression (10) represents the angle for depositing the lattice wire material on the first side surface of the ridge 12 without being blocked by the adjacent ridge 12, and the distance between the top of the bottom and next to the ridge 12 of the first side (i.e., the distance minus the Hp / tan [phi p from the pitch Pp of the ridges 12 (Pp-Hp / tanφ p )), next to the ridge 12 It is determined from the height Hp. “± 10” is a swing width.
The angle θ R (°) preferably satisfies tan (θ R ± 7) = (Pp−Hp / tanφ p ) / Hp, and tan (θ R ± 5) = (Pp−Hp / tanφ p ) / Hp. It is more preferable to satisfy.
(工程(c)、工程(c’)、工程(c”)の具体例の説明)
 図15に示すように、第1の層14および回折格子20が表面に形成された第1の透明基板32と、光硬化性組成物からなる塗膜26が表面に形成された第2の透明基板34とを、第1の層14および回折格子20に塗膜26が接するように貼り合わせる。
 ついで、塗膜26を光硬化させて第2の層16を形成することによって、第1の層14および第2の層16からなる透明樹脂層10を形成する。
(Description of specific examples of step (c), step (c ′), step (c ″))
As shown in FIG. 15, the first transparent substrate 32 having the first layer 14 and the diffraction grating 20 formed on the surface, and the second transparent having the coating film 26 made of the photocurable composition formed on the surface. The substrate 34 is bonded so that the coating layer 26 is in contact with the first layer 14 and the diffraction grating 20.
Next, the transparent resin layer 10 including the first layer 14 and the second layer 16 is formed by photocuring the coating film 26 to form the second layer 16.
(他の形態)
 回折格子シートの製造方法は、上述の工程(a)~(c)を有する方法であればよく、上述の工程(a’)~(c’)、工程(a”)~(c”)を有する図示例の回折格子シートの製造方法に限定はされない。
(Other forms)
The manufacturing method of the diffraction grating sheet may be any method including the above-described steps (a) to (c), and the above-described steps (a ′) to (c ′) and steps (a ″) to (c ″) are performed. The manufacturing method of the illustrated diffraction grating sheet is not limited.
 たとえば、凸条12の第1の側面は、透明樹脂層10の第1の主表面18および第2の主表面19に対して勾配を有していなくてもよい、すなわち、第1の主表面18および第2の主表面19に対して垂直であってもよい。また、凸条12の第2の側面は、透明樹脂層10の第1の主表面18および第2の主表面19に対して勾配を有していてもよい。また、凸条12の頂部は、平面であってもよい。
 また、格子線22を構成する格子線材料の薄膜の表面は、凸条12の第2の側面に形成されてもよく、凸条12の頂部の平面に形成されてもよい。
 また、透明樹脂層10の表面に第1の透明基板32を有し、第2の透明基板34を有さない回折格子シートを製造する場合は、前記工程(c’)を下記のように変更すればよい。
 (c’)第1の層および回折格子が表面に形成された第1の透明基板の回折格子側の表面に、光硬化性組成物からなる塗膜を形成し、ついで塗膜を光硬化させて第2の層を形成することによって、第1の層および第2の層からなる透明樹脂層を形成する工程。
For example, the first side surface of the ridge 12 may not have a gradient with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10, that is, the first main surface. 18 and the second major surface 19 may be perpendicular. Further, the second side surface of the ridge 12 may have a gradient with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10. Further, the top of the ridge 12 may be a flat surface.
Moreover, the surface of the thin film of the lattice line material constituting the lattice line 22 may be formed on the second side surface of the ridge 12 or may be formed on the top surface of the ridge 12.
Moreover, when manufacturing the diffraction grating sheet | seat which has the 1st transparent substrate 32 on the surface of the transparent resin layer 10, and does not have the 2nd transparent substrate 34, the said process (c ') is changed as follows. do it.
(C ′) A coating film made of the photocurable composition is formed on the diffraction grating side surface of the first transparent substrate on which the first layer and the diffraction grating are formed, and then the coating film is photocured. Forming a transparent resin layer comprising the first layer and the second layer by forming the second layer.
〔工程(II)〕
 窓ガラス本体は、公知の方法、すなわち第1の実施形態の合わせガラスの場合は、公知の合わせガラスの製造方法によって、第2の実施形態の複層ガラスの場合は、公知の複層ガラスの製造方法によって、第3の実施形態のシート貼着ガラスの場合は、公知のシート貼着ガラスの製造方法によって製造される。
[Process (II)]
The window glass body is a known method, that is, in the case of the laminated glass of the first embodiment, according to the known laminated glass manufacturing method. In the case of the multilayer glass of the second embodiment, the window glass body is a known multilayer glass. By the manufacturing method, in the case of the sheet sticking glass of 3rd Embodiment, it manufactures with the manufacturing method of a well-known sheet sticking glass.
〔工程(III)〕
 窓ガラスは、窓ガラス本体の少なくとも1つの辺に太陽電池62を貼り合わせる方法、あるいは少なくとも1つの辺に太陽電池62が設けられた枠体の中に窓ガラス本体を嵌め合わせる方法等によって製造できる。第2の実施形態の複層ガラスの場合は、工程(II)と工程(III)が同時に行われる。
[Process (III)]
The window glass can be manufactured by a method in which the solar cell 62 is bonded to at least one side of the window glass main body, or a method in which the window glass main body is fitted in a frame body in which the solar cell 62 is provided in at least one side. . In the case of the multilayer glass of the second embodiment, the step (II) and the step (III) are performed simultaneously.
<作用効果>
 以上説明した本発明の窓ガラスにあっては、窓ガラス本体が回折格子を有するため、太陽光の入射角に応じて赤外線の透過量をコントロールできる。
 また、窓ガラス本体の少なくとも1つの辺に太陽電池が配置されているため、透過しなかった赤外線の光エネルギーを有効利用することができる。
<Effect>
In the window glass of this invention demonstrated above, since the window glass main body has a diffraction grating, the amount of infrared rays can be controlled according to the incident angle of sunlight.
Moreover, since the solar cell is arrange | positioned at the at least 1 edge | side of the window glass main body, the infrared light energy which did not permeate | transmit can be used effectively.
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。
 例1は実施例であり、例2は比較例である。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
Example 1 is an example and Example 2 is a comparative example.
(日射透過率)
 透過率は、紫外可視分光光度計(島津製作所社製、UV3600)を用いて入射角0°から80°にて測定した。入射角は、図11および図12におけるθに相当する。日射透過率は、得られた分光スペクトル(300~2100nm)から日射透過率測定ソフトウエアを用いシミュレーションにより求めた。
(Solar radiation transmittance)
The transmittance was measured at an incident angle of 0 ° to 80 ° using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, UV3600). The incident angle corresponds to θ 0 in FIGS. 11 and 12. The solar transmittance was determined by simulation using the solar transmittance measurement software from the obtained spectrum (300-2100 nm).
(光硬化性組成物1)
 撹拌機および冷却管を装着した1000mLの4つ口フラスコに、
 単量体1(新中村化学工業社製、NK エステル A-DPH、ジペンタエリスリトールヘキサアクリレート)の60g、
 単量体2(新中村化学工業社製、NK エステル A-NPG、ネオペンチルグリコールジアクリレート)の40g、
 光重合開始剤(チバスペシャリティーケミカルズ社製、IRGACURE907)の4.0g、
 含フッ素界面活性剤(旭硝子社製、フルオロアクリレート(CH=CHCOO(CH(CFF)とブチルアクリレートとのコオリゴマー、フッ素含有量:約30質量%、質量平均分子量:約3000)の0.1g、
 重合禁止剤(和光純薬社製、Q1301)の1.0g、および
 シクロヘキサノンの65.0gを入れた。
 フラスコ内を常温および遮光にした状態で、1時間撹拌して均一化した。ついで、フラスコ内を撹拌しながら、コロイド状シリカの100g(固形分:30g)をゆっくりと加え、さらにフラスコ内を常温および遮光にした状態で1時間撹拌して均一化した。ついで、シクロヘキサノンの340gを加え、フラスコ内を常温および遮光にした状態で1時間撹拌して光硬化性組成物1の溶液を得た。光硬化性組成物1の硬化後の屈折率は1.45であった。
(Photocurable composition 1)
To a 1000 mL four-necked flask equipped with a stirrer and a condenser,
60 g of monomer 1 (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-DPH, dipentaerythritol hexaacrylate),
40 g of monomer 2 (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-NPG, neopentyl glycol diacrylate),
4.0 g of photopolymerization initiator (manufactured by Ciba Specialty Chemicals, IRGACURE907),
Fluorine-containing surfactant (manufactured by Asahi Glass Co., Ltd., co-oligomer of fluoroacrylate (CH 2 ═CHCOO (CH 2 ) 2 (CF 2 ) 8 F) and butyl acrylate), fluorine content: about 30% by mass, mass average molecular weight: About 3000) 0.1 g,
1.0 g of a polymerization inhibitor (Q1301 manufactured by Wako Pure Chemical Industries, Ltd.) and 65.0 g of cyclohexanone were added.
The flask was stirred and homogenized for 1 hour at room temperature and in a light-shielded state. Next, 100 g (solid content: 30 g) of colloidal silica was slowly added while stirring in the flask, and the mixture was further homogenized by stirring for 1 hour while keeping the temperature of the flask at room temperature and light shielding. Next, 340 g of cyclohexanone was added, and the solution was stirred for 1 hour with the inside of the flask at room temperature and light-shielded to obtain a solution of the photocurable composition 1. The refractive index after curing of the photocurable composition 1 was 1.45.
〔例1〕
(回折格子の設計)
 透明樹脂層の第1の主表面および第2の主表面に対する、格子線を構成する薄膜の表面の勾配の角度φ、および格子線22のピッチPpは、回折させたい赤外線の入射角θを60°、および回折させたい赤外線の波長λを800nmに設定し、上述した回折格子の設計方法に基づいて、透明樹脂層の第1の主表面および第2の主表面の法線に対する、格子線を構成する薄膜の表面の勾配の角度φ、および格子線の法線方向の格子線間隔dを求めることによって算出した。結果を表1に示す。
[Example 1]
(Diffraction grating design)
The gradient angle φ g of the surface of the thin film constituting the lattice line with respect to the first main surface and the second main surface of the transparent resin layer and the pitch Pp of the lattice line 22 are the incident angle θ 0 of the infrared ray to be diffracted. Is set to 60 °, and the wavelength λ of infrared rays to be diffracted is set to 800 nm, and based on the above-described diffraction grating design method, a grating with respect to the normal lines of the first main surface and the second main surface of the transparent resin layer The gradient angle φ n on the surface of the thin film constituting the line and the lattice line spacing d in the normal direction of the lattice line were calculated. The results are shown in Table 1.
(工程(I))
 工程(a’):
 厚さ50μmの高透過ポリエチレンテレフタレート(PET)フィルム(東洋紡社製、A4300、100mm×100mm、屈折率(589nm):1.65)の表面に、光硬化性組成物1をスピンコート法により塗布し、光硬化性組成物1の塗膜を形成した。
 複数の溝が互いに平行にかつ所定のピッチで形成されたニッケル製モールド(面積:150mm×150mm、パターン面積:100mm×100mm、溝のピッチPp:0.37μm、溝の深さHp:1.5μm、溝の長さ:100mm、溝の断面形状:略直角三角形)を、溝が光硬化性組成物1の塗膜に接するように、25℃にて0.5MPa(ゲージ圧)で光硬化性組成物1の塗膜に押しつけた。
 該状態を保持したまま、PETフィルム側から高圧水銀灯(周波数:1.5kHz~2.0kHz、主波長光:255nm、315nmおよび365nm、365nmにおける照射エネルギー:1000mJ)の光を15秒間照射し、光硬化性組成物1を硬化させて、モールドの溝に対応する複数の凸条を有する第1の層(凸条のピッチPp:0.37μm、凸条の高さHp:1.5μm、透明樹脂層10の第1の主表面18および第2の主表面19に対する、凸条の第1の側面の勾配の角度φ:77°)を形成した。第1の層からモールドをゆっくり分離した。
(Process (I))
Step (a ′):
The photocurable composition 1 was applied by spin coating to the surface of a 50 μm thick highly transparent polyethylene terephthalate (PET) film (Toyobo Co., Ltd., A4300, 100 mm × 100 mm, refractive index (589 nm): 1.65). A coating film of the photocurable composition 1 was formed.
Nickel mold in which a plurality of grooves are formed in parallel with each other at a predetermined pitch (area: 150 mm × 150 mm, pattern area: 100 mm × 100 mm, groove pitch Pp: 0.37 μm, groove depth Hp: 1.5 μm , Groove length: 100 mm, groove cross-sectional shape: substantially right triangle), photocurable at 0.5 MPa (gauge pressure) at 25 ° C. so that the groove is in contact with the coating film of the photocurable composition 1 Pressed against the coating film of composition 1.
While maintaining this state, the PET film side was irradiated with light of a high-pressure mercury lamp (frequency: 1.5 kHz to 2.0 kHz, main wavelength light: irradiation energy at 255 nm, 315 nm and 365 nm, 365 nm: 1000 mJ) for 15 seconds. A curable composition 1 is cured to form a first layer having a plurality of ridges corresponding to the grooves of the mold (ridge pitch Pp: 0.37 μm, ridge height Hp: 1.5 μm, transparent resin The slope angle φ p of the first side surface of the ridge with respect to the first main surface 18 and the second main surface 19 of the layer 10 was formed. The mold was slowly separated from the first layer.
 工程(b):
 蒸着源に対向する第1の層付きPETフィルムの傾きを変更可能な真空蒸着装置(昭和真空社製、SEC-16CM)を用い、第1の層の凸条の第1の側面に斜方蒸着法にてジルコニアを蒸着させ、ジルコニア(屈折率(589nm):2.00)の薄膜からなる格子線(格子線のピッチPp:0.37μm、格子線の高さHg:1.5μm、格子線の厚さDg:72nm、透明樹脂層10の第1の主表面18および第2の主表面19に対する、格子線を構成する薄膜の表面の勾配の角度φ:77°)を形成した。
 この際、凸条の長さ方向Lに対して略直交し、かつ凸条の高さ方向Hに対して第1の側面の側に角度θをなす方向V1(すなわち第1の側面の側)からの蒸着を1回行い、かつ該蒸着における角度θおよび該蒸着で凸条が形成されていない平坦な領域に形成される薄膜の厚さ(すなわち蒸着量)Dg’を表1に示す角度および厚さとした。なお、格子線の厚さDgは、シミュレーションで設計した目的とする厚さであり、該厚さになるように、蒸着量Dg’を調整した。Dg’は水晶振動子を膜厚センサーとする膜厚モニターにより測定した。
Step (b):
Using a vacuum deposition device (SEC-16CM, Showa Vacuum Co., Ltd.) that can change the inclination of the PET film with the first layer facing the deposition source, oblique deposition is performed on the first side surface of the first layer of protrusions. Zirconia was vapor-deposited by the method, and lattice lines (lattice line pitch Pp: 0.37 μm, lattice line height Hg: 1.5 μm, lattice lines formed of a thin film of zirconia (refractive index (589 nm): 2.00) Thickness Dg: 72 nm, and the gradient angle φ g of the surface of the thin film constituting the lattice lines with respect to the first main surface 18 and the second main surface 19 of the transparent resin layer 10 was formed.
At this time, a direction V1 that is substantially perpendicular to the length direction L of the ridge and forms an angle θ R with respect to the height direction H of the ridge on the first side surface side (that is, the first side surface side). ) deposited performed once from and shows the angle theta R and the vapor deposition in a film thickness of the convex strip is formed in a flat region that is not formed (i.e. deposition amount) Dg 'in Table 1 in the vapor deposition Angle and thickness. In addition, the thickness Dg of the lattice line is a target thickness designed by simulation, and the deposition amount Dg ′ was adjusted so as to be the thickness. Dg ′ was measured by a film thickness monitor using a crystal resonator as a film thickness sensor.
 工程(c’):
 厚さ50μmのPETフィルム(東洋紡社製、A4300、100mm×100mm)の表面に、光硬化性組成物1をスピンコート法により塗布し、光硬化性組成物1の塗膜を形成した。
 第1の層および回折格子が表面に形成されたPETフィルム(第1の透明基板)に、光硬化性組成物1からなる塗膜が表面に形成されたPETフィルム(第2の透明基板)を、第1の層および回折格子に塗膜が接するように25℃にて0.5MPa(ゲージ圧)で押しつけ、該状態を保持したまま、高圧水銀灯(周波数:1.5kHz~2.0kHz、主波長光:255nm、315nmおよび365nm、365nmにおける照射エネルギー:1000mJ)の光を15秒間照射した。光硬化性組成物1を硬化させて第2の層を形成することによって、第1の層および第2の層からなる透明樹脂層を形成し、図4に示す回折格子シート1を得た。
Step (c ′):
The photocurable composition 1 was applied to the surface of a 50 μm thick PET film (Toyobo Co., Ltd., A4300, 100 mm × 100 mm) by a spin coating method to form a coating film of the photocurable composition 1.
A PET film (second transparent substrate) having a coating film made of the photocurable composition 1 formed on the surface of a PET film (first transparent substrate) having the first layer and diffraction grating formed on the surface. The high pressure mercury lamp (frequency: 1.5 kHz to 2.0 kHz, main frequency) was pressed with 0.5 MPa (gauge pressure) at 25 ° C. so that the coating film was in contact with the first layer and the diffraction grating. (Wavelength light: irradiation energy at 255 nm, 315 nm, 365 nm, and 365 nm: 1000 mJ) was irradiated for 15 seconds. The photocurable composition 1 was cured to form a second layer, whereby a transparent resin layer composed of the first layer and the second layer was formed, and the diffraction grating sheet 1 shown in FIG. 4 was obtained.
(工程(II))
 フロートガラス板(100mm×100mm×厚さ2mm、屈折率(589nm):1.52)の2枚およびその内側に配設された自動車窓ガラス用中間膜(積水化学社製、厚さ0.78mm、ポリビニルブチラールフィルム、屈折率(589nm):1.48)の2枚により、上記した工程(c’)により得られた回折格子シート1を挟持し、720mmHgの減圧下で4分間脱気し、脱気状態のままで、120℃のオーブン内に30分間入れた。ガラス板と中間膜とが予備圧着されたサンドイッチ体をオートクレーブ内に入れ、圧力:1.3MPa、温度:135℃で熱圧着処理することにより、図1に示す窓ガラス本体(合わせガラス)を得た。入射角0°から80°における日射透過率を表1に示す。
(Process (II))
Two sheets of float glass plate (100 mm × 100 mm × thickness 2 mm, refractive index (589 nm): 1.52) and an automotive window glass interlayer film (Sekisui Chemical Co., Ltd., thickness 0.78 mm) disposed on the inside Sandwiching the diffraction grating sheet 1 obtained by the above-mentioned step (c ′) by two sheets of polyvinyl butyral film, refractive index (589 nm): 1.48), and deaeration for 4 minutes under a reduced pressure of 720 mmHg, In the deaerated state, it was placed in an oven at 120 ° C. for 30 minutes. A sandwich body in which a glass plate and an intermediate film are pre-pressed is placed in an autoclave and subjected to thermocompression bonding at a pressure of 1.3 MPa and a temperature of 135 ° C. to obtain a window glass body (laminated glass) shown in FIG. It was. Table 1 shows the solar transmittance at an incident angle of 0 ° to 80 °.
(工程(III))
 窓ガラス本体(合わせガラス)の上辺および下辺に隣接して、太陽電池62を配置し、図1に示す窓ガラス3を得る。すなわち、窓ガラス本体(合わせガラス)の上辺の端面および下辺の端面に太陽電池62の受光面が当接するように、かつ回折格子シートにおける回折格子の格子線の長さ方向が、窓ガラス本体の上辺および下辺と平行となるように、太陽電池を配する。
 太陽電池62としては、単結晶シリコン型太陽電池を用いる。単結晶シリコン型太陽電池素子の分光感度特性(波長と量子効率との関係)を図16に示す。
(Process (III))
Solar cells 62 are arranged adjacent to the upper and lower sides of the window glass body (laminated glass) to obtain the window glass 3 shown in FIG. That is, the length direction of the grating lines of the diffraction grating in the diffraction grating sheet is such that the light receiving surface of the solar cell 62 is in contact with the end face of the upper side and the lower side of the window glass body (laminated glass). The solar cells are arranged so as to be parallel to the upper side and the lower side.
As the solar cell 62, a single crystal silicon type solar cell is used. FIG. 16 shows the spectral sensitivity characteristics (relationship between wavelength and quantum efficiency) of the single crystal silicon solar cell element.
 例1の窓ガラスに入射角θが60°で入射した太陽光のうち、回折格子で回折する-1次回折光および窓ガラス内で反射する反射光、すなわち窓ガラスの内部に閉じ込められ、窓ガラス本体の上辺および下辺から太陽電池側に出射する光のスペクトルを図17に示す。
 図17の光がすべて太陽電池に入射したと仮定した場合の太陽電池の発電量を計算した。結果を表1に示す。
Of the sunlight incident on the window glass of Example 1 at an incident angle θ 0 of 60 °, −1st order diffracted light diffracted by the diffraction grating and reflected light reflected in the window glass, that is, confined inside the window glass, FIG. 17 shows a spectrum of light emitted from the upper side and the lower side of the glass body to the solar cell side.
The amount of power generated by the solar cell was calculated assuming that all the light in FIG. 17 was incident on the solar cell. The results are shown in Table 1.
〔例2〕
 旭硝子社製フロート板ガラス(FL、厚さ4mm)について、入射角0°から80°における日射透過率を表1に示す。
 例1の窓ガラス本体(合わせガラス)の代わりに、上記したフロート板ガラスを用いた以外は、例1と同様にして太陽電池付きの窓ガラスを得る。
[Example 2]
Table 1 shows the solar transmittance at an incident angle of 0 ° to 80 ° for a float glass sheet (FL, thickness 4 mm) manufactured by Asahi Glass Co., Ltd.
A window glass with a solar cell is obtained in the same manner as in Example 1 except that the above-mentioned float plate glass is used instead of the window glass main body (laminated glass) of Example 1.
 例2の窓ガラスに入射角θが60°で入射した太陽光のうち、窓ガラス内で反射する反射光、すなわち窓ガラスの内部に閉じ込められ、窓ガラスの上辺および下辺から太陽電池側に出射する光のスペクトルを図17に示す。
 図17の光がすべて太陽電池に入射したと仮定した場合の太陽電池の発電量を計算した。結果を表1に示す。
Of the sunlight that is incident on the window glass of Example 2 at an incident angle θ 0 of 60 °, the reflected light reflected in the window glass, that is, confined inside the window glass, from the upper and lower sides of the window glass to the solar cell side. The spectrum of the emitted light is shown in FIG.
The amount of power generated by the solar cell was calculated assuming that all the light in FIG. 17 was incident on the solar cell. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の窓ガラスは、夏季においては室内に侵入する太陽光の赤外線を効率よく遮断して室内の温度上昇を抑え、冬季においては太陽光の赤外線を室内に効率よく取り込んで室内の温度を上昇させ、そして、夏季に遮断された赤外線の光エネルギーを太陽電池用に向け、電気エネルギーとして有効利用することができる建築物の窓ガラス、車両用窓ガラス(自動車のルーフガラス、リアガラス、フロントガラス等)として有用である。
 なお、2011年7月5日に出願された日本特許出願2011-149070号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The window glass of the present invention efficiently blocks the infrared rays of sunlight entering the room in the summer to suppress the indoor temperature rise, and efficiently takes the infrared rays of the sunlight into the room in the winter to increase the indoor temperature. Building window glass, vehicle window glass (car roof glass, rear glass, windshield, etc.) that can be used as electrical energy by directing infrared light energy blocked in the summer to solar cells ) Is useful.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2011-149070 filed on July 5, 2011 are incorporated herein as the disclosure of the present invention. .
 1 回折格子シート
 2 回折格子シート
 3 窓ガラス
 4 窓ガラス
 5 窓ガラス
 6 窓ガラス本体
 10 透明樹脂層
 18 第1の主表面
 19 第2の主表面
 20 回折格子
 22 格子線
 32 第1の透明基板
 34 第2の透明基板
 50 ガラス板
 52 中間膜
 62 太陽電池
DESCRIPTION OF SYMBOLS 1 Diffraction grating sheet 2 Diffraction grating sheet 3 Window glass 4 Window glass 5 Window glass 6 Window glass main body 10 Transparent resin layer 18 1st main surface 19 2nd main surface 20 Diffraction grating 22 Grid line 32 1st transparent substrate 34 Second transparent substrate 50 Glass plate 52 Intermediate film 62 Solar cell

Claims (11)

  1.  回折格子を有する窓ガラス本体と、
     前記窓ガラス本体の少なくとも1つの辺に配置された太陽電池と
     を具備する、窓ガラス。
    A window glass body having a diffraction grating;
    A window glass comprising: a solar cell disposed on at least one side of the window glass body.
  2.  前記窓ガラス本体が、ガラス板および前記回折格子を備えた回折格子シートを有する、請求項1に記載の窓ガラス。 The window glass according to claim 1, wherein the window glass body has a diffraction grating sheet provided with a glass plate and the diffraction grating.
  3.  前記回折格子シートが、
     互いに平行な第1の主表面および第2の主表面を有する透明樹脂層と、
     互いに平行にかつ所定のピッチで配置された複数の格子線からなる回折格子とを有し、
     前記格子線が、前記透明樹脂層とは屈折率の異なる材料の薄膜からなり、
     前記格子線が、前記透明樹脂層の第1の主表面および第2の主表面に対して長さ方向が平行に延びるように、前記透明樹脂層内に埋設された、回折格子シートである、請求項2に記載の窓ガラス。
    The diffraction grating sheet is
    A transparent resin layer having a first main surface and a second main surface parallel to each other;
    A diffraction grating composed of a plurality of grating lines arranged in parallel to each other at a predetermined pitch,
    The lattice line is made of a thin film of a material having a refractive index different from that of the transparent resin layer,
    The grating line is a diffraction grating sheet embedded in the transparent resin layer so that the length direction extends parallel to the first main surface and the second main surface of the transparent resin layer, The window glass according to claim 2.
  4.  前記格子線が、前記透明樹脂層の第1の主表面および第2の主表面に対して、長さ方向が平行に延びるように、かつ前記薄膜の表面が勾配を有するように、前記透明樹脂層内に埋設された、請求項3に記載の窓ガラス。 The transparent resin such that the lattice lines extend in parallel in the length direction with respect to the first main surface and the second main surface of the transparent resin layer, and the surface of the thin film has a gradient. The window glass according to claim 3, which is embedded in the layer.
  5.  前記格子線が、前記透明樹脂層より屈折率の大きい誘電体の薄膜からなる、請求項3または4に記載の窓ガラス。 The window glass according to claim 3 or 4, wherein the lattice lines are made of a dielectric thin film having a refractive index larger than that of the transparent resin layer.
  6.  前記格子線を構成する誘電体の薄膜の屈折率が、前記透明樹脂層の屈折率より、0.0001~1.8高い、請求項5に記載の窓ガラス。 6. The window glass according to claim 5, wherein a refractive index of the dielectric thin film constituting the lattice line is 0.0001 to 1.8 higher than a refractive index of the transparent resin layer.
  7.  前記回折格子シートが、前記第1の主表面に接する第1の透明基板をさらに有する、請求項3~6のいずれか一項に記載の窓ガラス。 The window glass according to any one of claims 3 to 6, wherein the diffraction grating sheet further includes a first transparent substrate in contact with the first main surface.
  8.  前記窓ガラス本体が、2枚のガラス板と、その間に挟まれた回折格子シートとが、中間膜を介して貼り合わされた合わせガラスである、請求項2~7のいずれか一項に記載の窓ガラス。 The window glass body is a laminated glass in which two glass plates and a diffraction grating sheet sandwiched between them are bonded via an intermediate film. Window glass.
  9.  前記窓ガラス本体が、2枚のガラス板が所定の間隔をあけて配置され、少なくとも一方のガラス板の内面に回折格子シートが貼着された複層ガラスである、請求項2~7のいずれか一項に記載の窓ガラス。 The window glass main body is a multi-layer glass in which two glass plates are arranged at a predetermined interval and a diffraction grating sheet is adhered to the inner surface of at least one glass plate. The window glass according to claim 1.
  10.  前記窓ガラス本体が、ガラス板の表面に回折格子シートが貼着されたものである、請求項2~7のいずれか一項に記載の窓ガラス。 The window glass according to any one of claims 2 to 7, wherein the window glass body has a diffraction grating sheet attached to the surface of a glass plate.
  11.  前記太陽電池が、窓ガラス本体の少なくとも1つの辺のうち、前記回折格子シートにおける回折格子の格子線の長さ方向に対して平行な辺に配される、請求項2~10のいずれか一項に記載の窓ガラス。 The solar cell is arranged on a side parallel to a length direction of a grating line of the diffraction grating in the diffraction grating sheet among at least one side of the window glass body. Window glass according to item.
PCT/JP2012/067003 2011-07-05 2012-07-03 Window glass WO2013005745A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-149070 2011-07-05
JP2011149070A JP2014177354A (en) 2011-07-05 2011-07-05 Window glass

Publications (1)

Publication Number Publication Date
WO2013005745A1 true WO2013005745A1 (en) 2013-01-10

Family

ID=47437093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067003 WO2013005745A1 (en) 2011-07-05 2012-07-03 Window glass

Country Status (2)

Country Link
JP (1) JP2014177354A (en)
WO (1) WO2013005745A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015044525A1 (en) * 2013-09-25 2015-04-02 Jyväskylän Yliopisto Window, photovoltaic cell, method and system for collecting solar power
WO2016012813A2 (en) 2014-07-24 2016-01-28 Bowater Holographic Research Limited Holographic windows
WO2021041817A1 (en) * 2019-08-30 2021-03-04 Carlex Glass America, Llc Laminated glazing having holographic film laminated therein
US11104720B2 (en) 2011-10-11 2021-08-31 Viela Bio, Inc. Nucleic acids encoding a Tn3 scaffold comprising a CD40L-specific monomer subunit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141596A (en) * 2015-02-02 2016-08-08 旭硝子株式会社 Laminated glass, and multi-layered glass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198023A (en) * 1989-12-27 1991-08-29 Dainippon Printing Co Ltd Optical device
JP2001298515A (en) * 2000-04-11 2001-10-26 Tdk Corp Power adapter for portable telephone set and communication system
JP2008126631A (en) * 2006-11-24 2008-06-05 Asahi Glass Co Ltd Laminated transparent plate body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198023A (en) * 1989-12-27 1991-08-29 Dainippon Printing Co Ltd Optical device
JP2001298515A (en) * 2000-04-11 2001-10-26 Tdk Corp Power adapter for portable telephone set and communication system
JP2008126631A (en) * 2006-11-24 2008-06-05 Asahi Glass Co Ltd Laminated transparent plate body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11104720B2 (en) 2011-10-11 2021-08-31 Viela Bio, Inc. Nucleic acids encoding a Tn3 scaffold comprising a CD40L-specific monomer subunit
WO2015044525A1 (en) * 2013-09-25 2015-04-02 Jyväskylän Yliopisto Window, photovoltaic cell, method and system for collecting solar power
WO2016012813A2 (en) 2014-07-24 2016-01-28 Bowater Holographic Research Limited Holographic windows
WO2021041817A1 (en) * 2019-08-30 2021-03-04 Carlex Glass America, Llc Laminated glazing having holographic film laminated therein

Also Published As

Publication number Publication date
JP2014177354A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
US20170363789A1 (en) Ir reflective film
JP6420401B2 (en) Transparent member with diffuse reflection
WO2013005745A1 (en) Window glass
EP3129811B1 (en) Infrared transmitting cover sheet
JP5434245B2 (en) Light control sheet and building
US8730575B2 (en) Wire-grid polarizer and process for producing the same
KR102485161B1 (en) Layered elements made of transparent layers that provide directional diffuse reflection
KR101755685B1 (en) Optical laminated product and fitting
EP1767964B1 (en) Heat-reflecting pane with zero-order diffractive filter
JP6152623B2 (en) Daylighting panel and method for manufacturing daylighting panel
EP2787377A1 (en) Optical element, window material, fitting, solar shading device, and building
TW201329010A (en) Opto-electronic frontplane substrate
KR101806559B1 (en) A wire grid polarizer, liquid crystal display including the same and method of manufacturing the wire grid polarizer
JP2016525711A (en) Solar management
WO2013005746A1 (en) Solar cell cover member and solar cell
JPWO2010126110A1 (en) Wire grid polarizer and method of manufacturing the same
JP2016132934A (en) Heat ray shielding unit and heat ray shielding method
JP2012079772A (en) Solar battery module
CN102637752B (en) Thin-film solar cell
WO2012124809A1 (en) Manufacturing method for diffraction grating sheet, diffraction grating sheet, and window glass
JP2012194442A (en) Method for manufacturing diffraction grating sheet, diffraction grating sheet, and window pane
JP5607406B2 (en) Flexible shape functional laminate and functional structure
US20210276307A1 (en) Functional film and functional laminated glass
JP6851715B2 (en) Manufacturing method of optical member
JP2009094362A (en) Optical film for solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12808163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12808163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP