WO2013004978A1 - « dispositif pour détecter au moins un objet enfoui dans un amoncellement et procédé mis en oeuvre dans un tel dispositif.» - Google Patents

« dispositif pour détecter au moins un objet enfoui dans un amoncellement et procédé mis en oeuvre dans un tel dispositif.» Download PDF

Info

Publication number
WO2013004978A1
WO2013004978A1 PCT/FR2012/051591 FR2012051591W WO2013004978A1 WO 2013004978 A1 WO2013004978 A1 WO 2013004978A1 FR 2012051591 W FR2012051591 W FR 2012051591W WO 2013004978 A1 WO2013004978 A1 WO 2013004978A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
detecting
point
processing circuit
buried
Prior art date
Application number
PCT/FR2012/051591
Other languages
English (en)
Inventor
Claude Chekroun
Roland SENEOR
Mario DURAN
Original Assignee
Ingmat Ingenieros Matematicos Consultores Asociados S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingmat Ingenieros Matematicos Consultores Asociados S.A. filed Critical Ingmat Ingenieros Matematicos Consultores Asociados S.A.
Priority to EP12738572.2A priority Critical patent/EP2729832A1/fr
Publication of WO2013004978A1 publication Critical patent/WO2013004978A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00

Definitions

  • the present invention relates to a device for detecting at least one object buried in a pile, said device comprising a first exploration circuit for deep exploration composed of a deep exploratory part placed on a support for exploring said moving pile, relative to said support at a speed V, associated with a radiation set for transmitting signals at an exploration frequency penetrating inside said stack and for receiving signals reflected from said stack, of a first processing circuit (50) for providing indications of the reflectivity according to several directions concerning said pile.
  • a first exploration circuit for deep exploration composed of a deep exploratory part placed on a support for exploring said moving pile, relative to said support at a speed V, associated with a radiation set for transmitting signals at an exploration frequency penetrating inside said stack and for receiving signals reflected from said stack, of a first processing circuit (50) for providing indications of the reflectivity according to several directions concerning said pile.
  • the invention also relates to a method implemented in such a device.
  • the invention finds important applications in the field of ore mining.
  • Copper mines are often mined in the open.
  • the ore is taken from the ground by an excavator usually formed by a bucket with teeth digging the ground.
  • the ore is put in a truck body that transports it to a crusher.
  • a problem that arises as a result of stresses experienced by the excavator is the unintentional tearing of one or more teeth of the excavator. These teeth fall into the bucket of the truck and cause a deterioration of the crusher. This results in disassembly of it and from there, as a result of its interruption of service, brings a significant financial loss.
  • a device of the type mentioned in the preamble is described in patent document EP 0 812 005 and is intended for different applications. This known device is not suitable for object detection of relatively small dimensions and, moreover, it is inefficient to solve the problem mentioned above.
  • the present invention provides a device of the kind mentioned above which is remarkable in that the first scanning circuit comprises a radiation assembly formed of at least one antenna alignment arranged transversely to said speed V, in that there is provided a switching system cooperating with the first processing circuit for producing a synthetic antenna, each antenna of the alignment emitting a wave and receiving it after reflection, in that it comprises a second superficial scanning circuit consisting of a transmitting-receiving head for transmitting and receiving signals to said stack for the purpose of performing, with the aid of a second processing circuit (22), a topography of said pile and in that it comprises a third processing circuit for establishing the reflectivity of each point of said pile by combining the information from said first and second treatment circuits taking into account the electromagnetic properties of said pile.
  • the first scanning circuit comprises a radiation assembly formed of at least one antenna alignment arranged transversely to said speed V, in that there is provided a switching system cooperating with the first processing circuit for producing a synthetic antenna, each antenna of the alignment emitting a wave and receiving it after reflection, in that it
  • FIG. 1 shows a device according to the invention
  • FIG. 2 shows a diagram of the device of FIG. 1,
  • FIG. 3 explains the scanning of an area to be explored and the formation of a synthetic antenna
  • FIG. 4 explains the operation of the surface exploration circuit
  • FIG. 5 shows in section the pile disposed on the truck
  • the reference 1 indicates a truck carrying in its bucket 3, a pile of ore 5 or heap.
  • a device bearing the reference 10, for detecting at least one buried object, the tooth, in a pile.
  • This device 10 consists of a gantry 11 supported by two pillars 12 and 13 forming, between them, a passage for the truck 1.
  • This device comprises a first exploration circuit for a deep exploration that operates on the basis of waves electromagnetic or radioelectric which have the property of crossing the pile 5.
  • This deep exploration circuit is formed, on the one hand, by a deep exploratory part 15 placed on the gantry 11 to explore said pile 5 and on the other hand by a first processing circuit 16 placed in a console 17 disposed near the passage of the truck 1.
  • This exploration requires a relative speed V between this part and the truck 1. In other words, the truck moves to this speed V while the gantry remains fixed. Or, then, the truck remains motionless and the gantry moves at this speed V.
  • Part 15 supports a radiation assembly 18 formed of antennas 20 of the Vivaldi type preferably. These antennas are connected to an antenna switching system 28. It is assumed that the truck 1 moves in the passage at a speed V sufficiently low that the processing for the detection can be performed, according to the invention. The distance between the pile 5 and the antennas 20 is small so that the antennas can be considered in the near area. It is recalled that in the near-field area (Fresnel zone), the electric field and the magnetic field are not in a constant ratio and their distribution in space varies with the distance from the antenna.
  • the first processing circuit 16 processes the signals for the in-depth analysis.
  • the radiation assembly 18 comprises an alignment of antennae 20 aligned and arranged transversely to the speed V of displacement of said vehicle 1.
  • a second exploratory circuit called the formed surface exploratory circuit, on the one hand, by a superficial exploratory part 21 placed, preferably, on the gantry 11 and by a second processing circuit 22 also arranged in the console 17.
  • the exploratory surface part 21 is constituted from a circuit of control 32 to act on a laser head 35 shown in dotted line in FIG. 1.
  • This exploratory surface portion 21 cooperates with the second processing circuit 22 to provide a topography or map of the pile 5 using waves that do not penetrate to inside this pile, but who think about it. Which is the case of laser beams.
  • the control circuit essentially comprises amplifiers 36, 37 and 38 for influencing the orientation of the laser head 35 on the basis of information produced by the second processing circuit 22.
  • a third processing circuit 40 it is possible through a third processing circuit 40 to establish the reflectivity of all points of the pile 5 and from there it is easy to determine, inside this pile, the location of any dangerous object for further processing of the ore transported by the truck 1.
  • a display screen 41 allows the user to see the relevant information on its load and in particular, as all the points are defined one can establish a 3D view of this pile 5.
  • FIG. 2 shows the diagram of the object detection device according to the invention.
  • Each antenna 20 is connected to a switching system 28 formed by high frequency switches SP32T type or otherwise found on the market.
  • switches 51, 52, 53 and 54 which each manage, on so-called accesses access upstream, thirty-two access so that the number of antennas is 128.
  • the downstream accesses of these switches 51 to 54 are connected to upstream ports of a fifth switch 60.
  • All these switches 51-54, 60 are on the dependence of the first processing circuit 30.
  • duplexing means 65 forming part of the first exploratory circuit 15 and constituted by at least one circulator, which makes it possible to separate the waves to be transmitted and the waves received. An access of this circulator is connected to the downstream access of the switch 60.
  • the waves to be emitted are produced from an oscillator 70.
  • the output wave of the oscillator 70 passes through an amplifier 72 which gives the necessary power to the wave that is going to be finally emitted by the antennas 20 and a directional coupler 74 which will take a small portion of the wave at the output of the amplifier 72.
  • each antenna that emits receives the reflected wave.
  • the waves in question are of the CW wave type so sinusoidal waves thus having no modulation.
  • Another access of the circulator 65 collects the received wave which is first amplified by an amplifier 76 before being applied to a quadrature detector 80 formed of two mixers 81 and 82 with two inputs, one of which receives the output signal.
  • the replicas applied to the inputs of the two mixers are phase shifted by 90 ° respectively. This is achieved by an appropriately connected 3dB coupler 85.
  • the output signals I and Q of the detector 80 are then processed by the processing circuit 16 arranged in the console 17.
  • the first scanning circuit 15, 16 operates on the basis of a synthetic antenna, as shown in FIG. 3.
  • the distance separating each antenna is at least 0.6 ⁇ ⁇ ⁇ , ⁇ ⁇ ⁇ corresponding to the maximum frequency of use ( ⁇ 3 or 4 GHz).
  • This trace 89 moves on the zone 87 at the speed V which is that of the truck and T represents the rate of scanning obtained by the sequential switching of the different antennas 20 by acting on the switches 51-54 and 60.
  • This synthetic antenna gives the necessary resolutions, of the order of 7 cm corresponding to the dimensions of the object to detect.
  • the distance is then a few meters and the illumination frequency varies between 500 MHz and 4 GHz. For some soils, we can take lower frequencies of the order of 1 GHz.
  • This first treatment performed on the radio beams is coupled to a treatment performed on light beams from the laser 35.
  • This treatment of the laser beam consists of emitting, with a period T1, light pulses on the pile 5 and measuring the return time. ⁇ of this pulse (see Figure 4). This therefore gives the distance between the laser and the surface of the pile 5.
  • the laser is mounted on an oscillating head which sweeps transversely the pile in the direction of the gantry 11. By this laser beam sweep a map is made, or topography of the heap 5 thanks to the measurement of different ⁇ .
  • the device of the invention operates as follows.
  • Figure 5 shows a section of the truck 1.
  • the load or the pile 5 is cut into different horizontal slices ..., Tri, Tri + 1, Tri + 2, ...
  • Each slice is decomposed into points of reflection ... Pj, Pj + 1, Pj + 2, ... for the radio frequency beam FH.
  • the signal received in a moment t will include the contribution of all these points which can be written:
  • - O j represents the phase corresponding to the path of the return wave from a point P j to j coordinates of a reference point C of the alignment of antennas 18
  • This signal comprises the contribution of the waves received by the different antennas of the network 20, behaving as a single antenna, and from different points.
  • This formula (2) represents the inverse operation of the previous one but has undergone an adaptive filtering, that is to say that the contribution of the other reflected waves outside the point considered in "j" has been suppressed.
  • represents the angle of incidence on which the wave penetrates inside the heap 5.
  • - e is the thickness of the sand in which is buried the object to be detected.
  • Figure 6 explains the treatment envisaged. We show more precisely how we take into account the path of the analyzed ray crossing the pile. To take into account the distance measurement given by the laser, a correction of the type will be made:
  • B is the origin
  • C is the point on the pile
  • D is the reflection point of the beam.
  • the distance BC is known by means of the laser beam which made it possible to establish the map.
  • the processing circuit (40) operates for a given point different calculations to establish the minimum path according to the point of incidence of the radio beam on said pile
  • Phase ⁇ ⁇ has two components one inside the pile ⁇ ⁇ and the other outside ⁇ ⁇
  • is the wavelength of the radiation of the wave
  • the EXT and L IT respectively represent the distances in the open air and inside the heap 5.
  • the path L EXT is determined in the open air
  • the invention proposes a method which is implemented and which comprises the following steps:

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Ce dispositif comporte un circuit pour exploration profonde composé d'une partie exploratoire profonde placée sur un support pour explorer ledit amoncellement (5)se déplaçant, relativement audit support à une vitesse V, associée à un ensemble de rayonnement (18) pour émettre des signaux à une fréquence d'exploration pénétrant à l'intérieur dudit amoncellement et pour recevoir des signaux réfléchis depuis ledit amoncellement (5), d'un premier circuit de traitement(16) pour fournir des indications de la réflectivité selon plusieurs directions concernant ledit amoncellement. Il comporte, en outre, un second circuit d'exploration superficielle composé d'une tête pour émettre et recevoir des signaux vers ledit amoncellement en vue d'effectuer une topographie dudit amoncellement. Un troisième circuit de traitement (40) est prévu pour établir la réflectivité de chaque point dudit amoncellement en combinant les informations en provenance desdits premier et second circuits de traitement tenant compte des propriétés électromagnétiques dudit amoncellement. Ref: Fig. Application: Détection de masses métalliques dans un chargement de minerai dans un camion.

Description

« Dispositif pour détecter au moins un objet enfoui dans un amoncellement et procédé mis en œuvre dans un tel dispositif.»
La présente invention concerne un dispositif pour détecter au moins un objet enfoui dans un amoncellement, ledit dispositif comportant un premier circuit d'exploration pour exploration profonde composé d'une partie exploratoire profonde placée sur un support pour explorer ledit amoncellement se déplaçant, relativement audit support à une vitesse V, associée à un ensemble de rayonnement pour émettre des signaux à une fréquence d'exploration pénétrant à l'intérieur dudit amoncellement et pour recevoir des signaux réfléchis depuis ledit amoncellement, d'un premier circuit de traitement (50) pour fournir des indications de la réflectivité selon plusieurs directions concernant ledit amoncellement.
L'invention concerne aussi un procédé mis en œuvre dans un tel dispositif. L'invention trouve des applications importantes dans le domaine d'exploitation des minerais. Notamment les minerais de cuivre. Les mines de cuivre sont souvent exploitées à ciel ouvert. Le minerai est prélevé sur le sol au moyen d'un excavateur formé usuellement d'un godet comportant des dents qui creusent le sol. Puis, le minerai est mis dans une benne de camion qui le transporte dans un concasseur. Un problème qui survient, par suite de contraintes que subit l'excavateur, est l'arrachage inopiné d'une ou de plusieurs dents de l'excavateur. Ces dents tombent dans la benne du camion et provoquent une détérioration du concasseur. Ceci entraîne un démontage de celui-ci et de là, par suite de son interruption de service, apporte une perte financière importante. Un dispositif du genre mentionné dans le préambule est décrit dans le document de brevet EP 0 812 005 et vise différentes applications. Ce dispositif connu n'est pas approprié pour la détection d'objet de dimensions relativement faibles et, en outre, il est inefficace pour résoudre le problème ci-dessus mentionné.
Pour résoudre ce problème, la présente invention propose un dispositif du genre mentionné ci-dessus qui est remarquable en ce que le premier circuit d'exploration comporte un ensemble de rayonnement formé d'au moins un alignement d'antennes disposé transversalement à ladite vitesse V, en ce qu'il est prévu un système de commutation coopérant avec le premier circuit de traitement pour réaliser une antenne synthétique, chaque antenne de l'alignement émettant une onde et la recevant après réflexion, en ce qu'il comporte un second circuit d'exploration pour exploration superficielle composée d'une tête d'émission-réception pour émettre et recevoir des signaux vers ledit amoncellement en vue d'effectuer, à l'aide d'un deuxième circuit de traitement (22), une topographie dudit amoncellement et en ce qu'il comporte un troisième circuit de traitement pour établir la réflectivité de chaque point dudit amoncellement en combinant les informations en provenance desdits premier et second circuits de traitement tenant compte des propriétés électromagnétiques dudit amoncellement.
La description suivante accompagnée des dessins ci-annexés, le tout donné à titre d'exemple non limitatif, fera bien comprendre comment l'invention peut être réalisée. Dans les dessins :
la figure 1 montre un dispositif conforme à l'invention,
- la figure 2 montre un schéma du dispositif de la figure 1,
la figure 3 explicite le balayage d'une zone à explorer et la formation d'une antenne synthétique,
la figure 4 explicite le fonctionnement du circuit d'exploration superficielle, la figure 5 montre en coupe l'amoncellement disposé sur le camion,
- la figure 6 explicite le fonctionnement pour déterminer le trajet de réflexion le plus court en tenant compte du trajet dans l'air et dans l'amoncellement.
Les éléments communs dans toutes les figures portent les mêmes références.
A la figure 1, la référence 1 indique un camion qui transporte, dans sa benne 3, un amoncellement de minerai 5 ou tas. Pour détecter, par exemple, la présence d'au moins une dent d'excavateur 7 enfouie dans ce tas, qui s'est malencontreusement détachée d'un excavateur, on a prévu, conformément à l'invention, un dispositif, portant la référence 10, pour détecter au moins un objet enfoui, la dent, dans un amoncellement.
Ce dispositif 10 est constitué par un portique 11 soutenu par deux piliers 12 et 13 formant, entre eux, un passage pour le camion 1. Ce dispositif comporte un premier circuit d'exploration pour une exploration profonde qui opère sur la base d'ondes électromagnétiques ou radioélectriques qui ont la propriété de traverser l'amoncellement 5. Ce circuit d'exploration profonde est formé, d'une part, par une partie exploratoire profonde 15 placée sur le portique 11 pour explorer ledit amoncellement 5 et, d'autre part, par un premier circuit de traitement 16 placé dans une console 17 disposée à proximité du passage du camion 1. Cette exploration nécessite une vitesse relative V entre cette partie et le camion 1. En d'autres termes, soit le camion se déplace à cette vitesse V alors que le portique reste fixe. Soit, alors, le camion reste immobile et le portique se déplace à cette vitesse V.
La partie 15 supporte un ensemble de rayonnement 18 formé d'antennes 20 du type Vivaldi de préférence. Ces antennes sont reliées à un système de commutation d'antennes 28. On admet que le camion 1 se déplace dans le passage à une vitesse V suffisamment faible pour que le traitement pour la détection puisse s'effectuer, selon l'invention. La distance entre l'amoncellement 5 et les antennes 20 est faible de sorte que les antennes peuvent être considérées en zone proche. On rappelle que dans la zone de champ proche (zone de Fresnel), le champ électrique et le champ magnétique ne sont pas dans un rapport constant et leur répartition dans l'espace varie avec la distance par rapport à l'antenne. Le premier circuit de traitement 16 traite les signaux pour l'analyse en profondeur.
Conformément à un aspect de l'invention, l'ensemble de rayonnement 18 comporte un alignement d'antennes 20 alignées et disposées transversalement à la vitesse V de déplacement dudit véhicule 1. Il est prévu aussi un second circuit exploratoire dit circuit exploratoire superficiel formé, d'une part, par une partie exploratoire superficielle 21 placée, de préférence, sur le portique 11 et par un deuxième circuit de traitement 22 disposé lui aussi dans la console 17. La partie exploratoire superficielle 21 est constituée à partir d'un circuit de pilotage 32 pour agir sur une tête laser 35 montrée en pointillé sur la figure 1. Cette partie exploratoire superficielle 21 coopère avec le second circuit de traitement 22 pour fournir une topographie ou carte de l'amoncellement 5 en utilisant des ondes qui ne pénètrent pas à l'intérieur de cet amoncellement, mais qui s'y réfléchissent. Ce qui est le cas des faisceaux laser. Le circuit de pilotage comporte essentiellement des amplificateurs 36, 37 et 38 pour agir sur l'orientation de la tête laser 35 en se basant sur des informations élaborées par le deuxième circuit de traitement 22. En combinant les informations d'une manière qui sera explicitée ci-dessous, il est possible grâce à un troisième circuit de traitement 40 d'établir la réflectivité de tous les points de l'amoncellement 5 et de là, il est facile de déterminer, à l'intérieur de cet amoncellement, l'emplacement de tout objet dangereux pour la suite du traitement du minerai transporté par le camion 1. Un écran de visualisation 41 permet à l'utilisateur de voir les informations pertinentes sur son chargement et notamment, comme tous les points sont définis on peut établir une vue en 3D de ce tas 5.
La figure 2 montre le schéma du dispositif de détection d'objets, conforme à l'invention. Chaque antenne 20 est reliée à un système de commutation 28 formé par des commutateurs haute fréquence de type SP32T ou autre que l'on trouve dans le commerce. Sur la figure on a montré quatre de ces commutateurs 51, 52, 53 et 54 qui gèrent, chacun, sur des accès dits accès amont, trente-deux accès de sorte que le nombre d'antennes s'élève à 128. A ces quatre accès amont de ces commutateurs, correspond un seul accès aval. Les accès aval de ces commutateurs 51 à 54 sont reliés à des accès amont d'un cinquième commutateur 60.
Tous ces commutateurs 51-54, 60 sont sur la dépendance du premier circuit de traitement 30.
Comme les antennes 20 travaillent tant en émission qu'en réception, on a prévu des moyens de duplexage 65 faisant partie du premier circuit exploratoire 15 et constitués par au moins un circulateur, ce qui permet de séparer les ondes à émettre et les ondes reçues. Un accès de ce circulateur est relié à l'accès aval du commutateur 60.
Les ondes à émettre sont élaborées à partir d'un oscillateur 70. Avant d'être appliquée au circulateur 65, l'onde de sortie de l'oscillateur 70 transite par un amplificateur 72 qui donne la puissance nécessaire à l'onde qui va être finalement émise par les antennes 20 et par un coupleur directif 74 qui va prélever une petite partie de l'onde à la sortie de l'amplificateur 72. Il est à noter que chaque antenne qui émet, reçoit l'onde réfléchie. Les ondes en question sont du type onde CW donc des ondes sinusoïdales ne présentant donc aucune modulation. Un autre accès du circulateur 65 recueille l'onde reçue qui est tout d'abord amplifiée par un amplificateur 76 avant d'être appliquée à un détecteur en quadrature 80 formé de deux mélangeurs 81 et 82 à deux entrées dont une reçoit le signal de sortie de l'amplificateur 76 et l'autre une réplique du signal de l'oscillateur 70 via le coupleur 74. Les répliques appliquées aux entrées des deux mélangeurs sont déphasées de 90° respectivement. Ceci est obtenu par un coupleur 3dB 85 branché adéquatement. Les signaux de sortie I et Q du détecteur 80 sont ensuite traités par le circuit de traitement 16 disposé dans la console 17.
Le premier circuit d'exploration 15, 16 fonctionne sur la base d'une antenne synthétique, comme cela est montré à la figure 3. La distance qui sépare chaque antenne est au moins 0,6 λΜχ, λΜχ correspondant à la fréquence maximale d'utilisation (~ 3 ou 4 GHz). Sur cette figure, on a montré une zone à explorer 87 et la trace 89 de l'antenne synthétique découlant du traitement effectué par le premier circuit de traitement 16. Cette trace 89 se déplace sur la zone 87 à la vitesse V qui est celle du camion et T représente la cadence du balayage obtenu par la commutation séquentielle des différentes antennes 20 en agissant sur les commutateurs 51-54 et 60. Cette antenne synthétique donne les résolutions nécessaires, de l'ordre de 7 cm correspondant aux dimensions de l'objet à détecter. La distance est alors de quelques mètres et la fréquence d'illumination variant entre 500 MHz et 4 GHz. Pour certains sols, on pourra prendre des fréquences plus basses de l'ordre de 1 GHz.
Ce premier traitement effectué sur les faisceaux radioélectriques est couplé à un traitement effectué sur des faisceaux lumineux issus du laser 35. Ce traitement du faisceau laser consiste à émettre, avec une période Tl des impulsions lumineuses sur le tas 5 et de mesurer le temps de retour τ de cette impulsion (voir la figure 4). Ceci donne donc la distance comprise entre le laser et la surface du tas 5. Le laser est monté sur une tête oscillante qui balaie transversalement le tas dans la direction du portique 11. Par ce balayage de faisceau laser on effectue une carte, ou topographie du tas 5 grâce à la mesure de différents τ.
Le dispositif de l'invention fonctionne de la manière suivante.
La figure 5 montre une coupe du camion 1. Le chargement ou le tas 5 est découpé en différente tranches horizontales..., Tri, Tri+1, Tri+2, ... Chaque tranche est décomposée en points de réflexion ... Pj, Pj+ 1 , Pj+2, ... pour le faisceau radioélectrique FH. Le signal reçu en un instant t va comporter la contribution de tous ces points ce qui peut s'écrire :
Figure imgf000008_0001
équation dans laquelle :
- j donne l'emplacement des points de l'ensemble J des points à considérer dans le tas 5.
- i étant tel que i2 = -1
- Oj représente la phase correspondant au trajet de l'onde de retour depuis un point Pj de coordonnées j vers un point de référence C de l'alignement d'antennes 18
- r la distance à laquelle se trouvent les points considérés, donc par rapport au point de référence B.
Ce signal comporte la contribution des ondes reçues par les différentes antennes du réseau 20, se comportant comme une antenne unique, et provenant des différents points.
Pour déterminer la réflexion en un point donné d, on lui fait correspondre sa phase Od. Au moyen du filtrage adaptatif on détermine alors la réflexion de ce point Aj donné par la phase Od. Pour cela, on utilise la formule suivante :
Ad =∑ S(t). exp[- ί{ ά + f(e, ε, θ(ί) j ))]
(2)
Cette formule (2) représente l'opération inverse de la précédente mais a subi un filtrage adaptatif c'est-à-dire qu'on a supprimé la contribution des autres ondes réfléchies hors du point considéré en « j ».
Dans cette dernière formule : exp[- ζ'Φ d ] correspond donc au filtrage adapté et
Figure imgf000009_0001
La formule (3) représente les perturbations apportées par le tas de sable. Les paramètres impliqués sont explicités à l'aide de la figure 5 :
- Θ représente l'angle d'incidence sur lequel l'onde pénètre à l'intérieur du tas 5.
- e est l'épaisseur du sable dans lequel est enfoui l'objet à détecter.
- ε est la constante diélectrique de ce sable.
Ce sont les différentes valeurs de Ad correspondant aux points analysés qui donneront sur l'écran 41 l'indication, par des variations de luminance, de la présence d'objets à détecter.
La figure 6 explicite le traitement envisagé. On montre plus précisément comment on tient compte du trajet du rayon analysé traversant le tas. Pour tenir compte de la mesure de distance donnée par le laser on amènera une correction de type :
BC + yfeCD
Dans cette formule, B est l'origine, C est le point situé sur le tas et D, le point de réflexion du faisceau.
La distance BC est connue au moyen du faisceau laser qui a permis d'établir la carte.
Selon une caractéristique importante de l'invention, le circuit de traitement (40) opère pour un point donné différents calculs pour établir le chemin minimum en fonction du point d'incidence du faisceau radioélectrique sur ledit amoncellement
On cherche le point C qui donne le chemin minimum apportant la même brillance. A ce point on analyse différents points C 'situés dans un même voisinage apportant une même brillance donc correspondant à un point D.
On va, donc pour chaque point considéré, faire le traitement suivant. La phase ΦΑ présente deux composantes une à l'intérieur du tas ΦΙΝ et l'autre à l'extérieur ΦΕΧΤ
Ce qui s'écrit :
Figure imgf000010_0001
λ est la longueur d'onde du rayonnement de l'onde,
LEXT et LI T représentent respectivement les distances à l'air libre et à l'intérieur du tas 5.
Si on fait intervenir les coordonnées des points :
Λ5
B
Figure imgf000010_0002
*d
D
yd
zd
On détermine le trajet LEXT à l'air libre
Figure imgf000010_0003
Figure imgf000010_0004
et le trajet LI T à l'intérieur du tas 5.
Figure imgf000011_0001
Pour déterminer plus précisément les point C, on va minimiser la fonction distance.
Figure imgf000011_0002
Pour cela : : dF(xy , yv , zv ) = 0
dxv
En respectant la contrainte : sin Θ = ë sin 6R
En considérant plusieurs x s ys, zSi on détermine xv yv z v.
Ceci peut être donc fait par approximations successives. Pour résumer, l'invention propose un procédé qui est mis en œuvre et qui comporte les étapes suivantes :
- émission d'une onde radioélectrique vers un amoncellement en vue de le traverser,
- émission d'un faisceau laser vers ledit amoncellement pour en déduire sa topologie,
- traitement de l'onde radioélectrique pour en déduire la réflectivité de chaque point dudit amoncellement,
- détermination du trajet le plus court entre le point d'émission de ladite onde radioélectrique et les points dudit amoncellement,
- visualisation desdites réflectivités pour déterminer la présence d'objet dans ledit amoncellement.

Claims

REVENDICATIONS
1- Dispositif pour détecter au moins un objet enfoui (7) dans un amoncellement (5), ledit dispositif comportant un premier circuit d'exploration pour une exploration profonde, composé d'une partie exploratoire profonde placée sur un support pour explorer ledit amoncellement se déplaçant relativement audit support à une vitesse V, ladite partie exploratoire étant associée à un ensemble de rayonnement (18) pour émettre des signaux à une fréquence d'exploration pénétrant à l'intérieur dudit amoncellement (5) et pour recevoir des signaux réfléchis depuis ledit amoncellement (5), d'un premier circuit de traitement (16) pour fournir des indications de la réflectivité selon plusieurs directions concernant ledit amoncellement, le premier circuit d'exploration comportant un ensemble de rayonnement (18) formé d'au moins un alignement d'antennes (20) disposé transversalement à ladite vitesse V, le premier circuit de traitement étant relié à un système de commutation (28), le dispositif comportant un deuxième circuit d'exploration pour une exploration superficielle (22, 32, 35) composée d'une tête d'émission-réception (35) pour émettre et recevoir des signaux vers ledit amoncellement (5) en vue d'effectuer, à l'aide d'un deuxième circuit de traitement (22), une topographie dudit amoncellement, caractérisé en ce que le premier circuit de traitement (16) coopère avec le système de commutation (28) pour réaliser une antenne synthétique, chaque antenne de l'alignement (20) émettant une onde et la recevant après réflexion, et en ce que le dispositif comporte un troisième circuit de traitement (40) pour établir la réflectivité de chaque point dudit amoncellement en combinant les informations en provenance desdits premier et deuxième circuits de traitement tenant compte des propriétés électromagnétiques dudit amoncellement.
2- Dispositif pour détecter au moins un objet enfoui dans un amoncellement selon la revendication 1 caractérisé en ce que le deuxième circuit d'exploration est constitué par un dispositif de laser (35) pour fournir un faisceau de balayage laser qui se réfléchit sur la surface dudit amoncellement (5).
3- Dispositif pour détecter au moins un objet enfoui dans un amoncellement selon la revendication 2 caractérisé en ce que le dispositif laser (35) est du type à impulsion dont le temps d'aller-retour (τ) définit ladite topographie par mesure de la distance dudit amoncellement par rapport à une référence (C). 4- Dispositif pour détecter au moins un objet enfoui dans un amoncellement selon l'une des revendications 1 à 3 caractérisé en que l'ensemble de rayonnement (18) émet des radiofréquences dont la valeur se situe entre 500MHz et 4 GHz.
5- Dispositif pour détecter au moins un objet enfoui dans un amoncellement selon l'une des revendications 1 à 4, caractérisé en ce que l'amoncellement est à une distance desdites antennes (20) telle qu'elles fonctionnent en zone proche.
6- Dispositif pour détecter au moins un objet enfoui dans un amoncellement selon l'une des revendications 1 à 5, caractérisé en ce que des moyens de duplexage constitués par au moins un circulateur (65), sont rattachés audit ensemble de rayonnement (18).
7- Dispositif pour détecter au moins un objet enfoui dans un amoncellement selon l'une des revendications 1 à 6, caractérisé en ce que lesdites antennes (20) sont constituées à partir d'antennes de type Vivaldi.
8- Dispositif pour détecter au moins un objet enfoui dans un amoncellement selon l'une des revendications 1 à 7, caractérisé en ce qu'un circuit de traitement (40) est prévu pour qu'à partir d'un signal reçu S(t) par les antennes dudit alignement: il élabore, après un filtrage adapté, un signal Ad représentatif de la réflexion d'un point d tel que :
Figure imgf000013_0001
dans cette dernière formule :
- Θ représente l'angle sous lequel les points au sol sont perçus et qui correspond à l'angle d'incidence de l'onde au niveau du point considéré
-j appartient en un ensemble J de points définissant des points de la zone à analyser
- i étant tel que i2 = -1
- Od représente la phase correspondant au trajet de l'onde de retour depuis ledit point d j vers un point de référence C de l'alignement d'antennes 18
Figure imgf000013_0002
où: - e est l'épaisseur du milieu dans lequel est enfouie l'objet à détecter.
- ε est le constant diélectrique de ce milieu.
9- Dispositif pour détecter au moins un objet enfoui dans un amoncellement selon l'une des revendications 1 à 8, caractérisé en ce que la distance qui sépare chaque antenne est au moins égale à 0,6 λΜχ, où λΜχ correspond à la fréquence maximale d'utilisation comprise entre environ 3 et 4 GHz.
10- Dispositif pour détecter au moins un objet enfoui dans un amoncellement selon l'une des revendications 1 à 9 caractérisé en ce qu'il comporte un écran 41 pour rendre perceptible une vue en trois dimensions dudit amoncellement (5) et mettre en évidence les objets à haute réflectivité.
11- Dispositif pour détecter au moins un objet enfoui dans un amoncellement selon l'une des revendications 1 à 10 caractérisé en ce que le circuit de traitement (40) opère pour un point donné différents calculs pour établir le chemin minimum en fonction du point d'incidence du faisceau radioélectrique sur ledit amoncellement. 12- Procédé mis en œuvre dans un dispositif pour détecter au moins un objet enfoui dans un amoncellement selon l'une des revendications 1 à 1 1 caractérisé en qu'il comporte les étapes suivantes :
- émission d'une onde radioélectrique vers un amoncellement (5) en vue de le traverser,
- émission d'un faisceau laser vers ledit amoncellement pour en déduire sa topologie,
- traitement de l'onde radioélectrique pour en déduire la réflectivité de chaque point dudit amoncellement,
- détermination du trajet le plus court entre le point d'émission de ladite onde radioélectrique et les points dudit amoncellement,
- visualisation desdites réflectivités pour déterminer la présence d'objet (7) dans ledit amoncellement (5).
PCT/FR2012/051591 2011-07-06 2012-07-05 « dispositif pour détecter au moins un objet enfoui dans un amoncellement et procédé mis en oeuvre dans un tel dispositif.» WO2013004978A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12738572.2A EP2729832A1 (fr) 2011-07-06 2012-07-05 « dispositif pour détecter au moins un objet enfoui dans un amoncellement et procédé mis en oeuvre dans un tel dispositif.»

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1156090A FR2977681A1 (fr) 2011-07-06 2011-07-06 Dispositif pour detecter au moins un objet enfoui dans un amoncellement et procede mis en oeuvre dans un tel dispositif
FR1156090 2011-07-06

Publications (1)

Publication Number Publication Date
WO2013004978A1 true WO2013004978A1 (fr) 2013-01-10

Family

ID=46579233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/051591 WO2013004978A1 (fr) 2011-07-06 2012-07-05 « dispositif pour détecter au moins un objet enfoui dans un amoncellement et procédé mis en oeuvre dans un tel dispositif.»

Country Status (3)

Country Link
EP (1) EP2729832A1 (fr)
FR (1) FR2977681A1 (fr)
WO (1) WO2013004978A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014262221C1 (en) 2013-11-25 2021-06-10 Esco Group Llc Wear part monitoring
EP3256650B1 (fr) 2015-02-13 2023-06-28 ESCO Group LLC Contrôle de produits d'entrée en prise avec le sol pour équipement de terrassement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899322A (en) * 1987-10-02 1990-02-06 Crutcher William C Integrated geophysical survey system
EP0812005A2 (fr) 1996-06-06 1997-12-10 University Of Bristol Systèmes de détection à distance à focalisation de post-réception
US20030030582A1 (en) * 2001-08-10 2003-02-13 Vickers Roger S. Environment measurement methods, systems, media, signals and data structures
US20030117268A1 (en) * 2001-12-21 2003-06-26 Hewitt Matthew C. Industrial data capture system including a choke point portal and tracking software for radio frequency identification of cargo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899322A (en) * 1987-10-02 1990-02-06 Crutcher William C Integrated geophysical survey system
EP0812005A2 (fr) 1996-06-06 1997-12-10 University Of Bristol Systèmes de détection à distance à focalisation de post-réception
US20030030582A1 (en) * 2001-08-10 2003-02-13 Vickers Roger S. Environment measurement methods, systems, media, signals and data structures
US20030117268A1 (en) * 2001-12-21 2003-06-26 Hewitt Matthew C. Industrial data capture system including a choke point portal and tracking software for radio frequency identification of cargo

Also Published As

Publication number Publication date
EP2729832A1 (fr) 2014-05-14
FR2977681A1 (fr) 2013-01-11

Similar Documents

Publication Publication Date Title
US7777672B2 (en) Radar system and method
EP2217944B1 (fr) Dispositif de detection d'objets, notamment d'objets dangereux
EP2189810B1 (fr) Dispositif de radar pour la surveillance maritime
US6624781B1 (en) Apparatus and method for holographic detection and imaging of a foreign body in a relatively uniform mass
WO2008113750A1 (fr) Dispositif et procede de localisation d'un mobile a l'approche d'une surface reflechissant les ondes electromagnetiques
EP2472215B1 (fr) Procédé et dispositif de neutralisation d'une cible
EP3470890A1 (fr) Dispositif et procédé de détection d'objets ou matières non autorisés portés par un individu dans une zone à accès protégé
EP2600141B1 (fr) Appareil de contrôle d'une surface et procédé associé
EP3001882B1 (fr) Antenne rotative, scanner utilisant une telle antenne, et dispositif de controle des personnes
CA2840848C (fr) Dispositif pour detecter des objets tels que des mines
EP2737337B1 (fr) Dispositif de detection d'une cible resistant au fouillis
WO2013004978A1 (fr) « dispositif pour détecter au moins un objet enfoui dans un amoncellement et procédé mis en oeuvre dans un tel dispositif.»
EP3211452B1 (fr) Dispositif de detection d'objets portes par un individu
Huyghebaert et al. Multiple E-Region radar propagation modes measured by the VHF SIMONe Norway system during active ionospheric conditions
De Dominicis Underwater 3D vision, ranging and range gating
EP3077853B1 (fr) Système et procédé pour mesurer la largeur d'une faille d'un site à surveiller
FR2956907A1 (fr) Systeme radar multistatique pour la mesure precise de l'altitude
Mandrosov Fourier telescopy imaging through strongly inhomogeneous atmosphere at high level of additive noises
WO1997043660A1 (fr) Procede et dispositif de reperage de la position d'une source dotee d'un emetteur de micro-ondes
FR2886492A1 (fr) Detecteur d'objets par analyse d'echos hyperfrequences
EP1318619A1 (fr) Marqueur temporel optique-radio et procédé de localisation de sources d'ondes optiques par des signaux radio
FR3001537A1 (fr) Appareil et procede de determination de surface au moyen de micro-ondes
EP2243019A1 (fr) Appareil a fonctionnement radar pour la detection et la localisation de discontinuites ou de corps etrangers dans les materiaux
FR3021412A1 (fr) Dispositif d'estimation de la position tridimensionnelle d'un point et procede associe
FR2944606A1 (fr) Dispositif de detection d'objets, notamment portes par un individu.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012738572

Country of ref document: EP