WO2013004532A1 - Kühlbauteil - Google Patents

Kühlbauteil Download PDF

Info

Publication number
WO2013004532A1
WO2013004532A1 PCT/EP2012/062219 EP2012062219W WO2013004532A1 WO 2013004532 A1 WO2013004532 A1 WO 2013004532A1 EP 2012062219 W EP2012062219 W EP 2012062219W WO 2013004532 A1 WO2013004532 A1 WO 2013004532A1
Authority
WO
WIPO (PCT)
Prior art keywords
ribs
cooling component
base body
metal foam
cooling
Prior art date
Application number
PCT/EP2012/062219
Other languages
English (en)
French (fr)
Inventor
Norbert Huber
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013004532A1 publication Critical patent/WO2013004532A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a cooling component comprising a
  • Basic body wherein at least one surface of the base body at least one cellular metal foam body is arranged.
  • these at corresponding surfaces in particular in the area of heat input to the cooling device, to be provided with metal ⁇ foam bodies, which have a high heat exchange potential due to their, attributable to their cellular structure, high specific surface.
  • the invention is based on the problem of specifying a corresponding cooling component with improved cooling properties.
  • a cooling component of the type mentioned at the outset which is characterized in that at least two ribs protrude from at least one of the surface of the base body, wherein the cellular metal foam body completely fills the gap formed between the ribs.
  • the invention is based on the idea of providing ribs or rib structures on at least one surface of the base body, that is to say preferably the surface directly exposed to the heat input , which due to their compact, ie non-cellular structure and wall thickness, increases the thermal input into the surface allow the area of the base body remote from the surface.
  • the problem of having provided at zellula ⁇ ren metal foam bodies base bodies limited heat input is achieved, since the heat input in addition or in particular over the compact, followed by ER that is in contrast to the metal foam body formed not cellular, ribs.
  • Under ribs in the context of the invention are any, from the respective surface of the body occidentalre ⁇ ckende elements to understand.
  • the ribs are in thermally conductive contact with the intermediate space formed between the adjacent ribs completely fills cellular metal foam body, so that the power absorbed by the ribs heat in the metal ⁇ foamed body can be deduced thereby achieve good cooling properties of the cooling member according to the invention because of its large specific surface area to let.
  • the ribs themselves may be integrally formed with the surface of the base ⁇ body or as a separate components of this solvable or insoluble, in particular via a likewise thermally conductive connection, such. B. a solder joint to be attached.
  • the ribs are made of a thermally conductive material, in particular aluminum or copper. In principle, it is desirable to completely fill all formed between entspre ⁇ sponding spaces between the ribs with the cellular metal foam body. In certain exceptions, however, certain spaces may be left empty be filled with another, in particular thermally conductive, material.
  • the distance of corresponding adjacent ribs is basically arbitrary, but it is advantageous if this corresponds to twice the heat penetration depth. It was found that with this particularly good cooling properties of the invention shown SEN cooling component can be achieved for a large number of different cooling conditions.
  • the projecting from the surface of the body ribs can also be arranged the same or different from each other, so that either equal or different sized spaces between adjacent ribs can be realized, which is useful, for example, when the cooling member sections should have different cooling properties.
  • the main body may be formed as a plate or as a plurality of, by corresponding corresponding surfaces having walls comprising ⁇ send hollow body.
  • the main body can be present in a variety of different geometric shapes and is therefore adaptable to individual geometric installation conditions.
  • the volume limited by the hollow body can be flowed through by a gaseous or liquid cooling medium.
  • the base body forms a kind of channel for a corresponding cooling medium such et ⁇ wa air or water.
  • the base body may have a hollow cylindrical shape, wherein the ribs protrude radially outwardly or inwardly from a surface of the base body.
  • the base body accordingly has the shape of a tube, on the outer diameter and / or inner diameter corresponding ribs to be compared with radial webs are arranged.
  • a suitable cooling component is particularly suitable as a heat pipe for a heat exchanger.
  • the base body comprises two hollow cylindrical elements of different diameters, wel ⁇ che are connected to each other via the corresponding radially extending ribs.
  • This embodiment relates to a substantially designed as a double-walled pipe base body consisting of two differently sized hollow cylindrical elements.
  • the ribs serve in addition to the improved heat input in the metal foam body in addition as connecting elements between the hollow cylindrical elements.
  • the metal foam body can be connected to both hollow cylindrical elements, so ⁇ this also serves as a connecting element.
  • the design as a double-walled tube gives the body a high degree of mechanical stability.
  • the cellular metal foam body can be connected by soldering to the surface of the base body and / or the ribs.
  • solder joints permit good heat transfer between the components to be connected, for which reason the heat input from the ribs into the metal foam body can be favored in the present case.
  • thermally conductive adhesive or the like for producing a thermally conductive as well as mechanically stable connection between the ribs and the metal foam body is conceivable.
  • the metal foam body can be formed, for example, from an aluminum, magnesium or copper foam.
  • the metal foam body can be in the form of both a closed-cell and open-cell foam body.
  • FIG. 1 is a schematic diagram of a cooling component according to a first exemplary embodiment of the invention
  • FIG. 2 is a schematic diagram of a cooling component according to a second exemplary embodiment of the invention.
  • FIG. 3 is a schematic diagram of a cooling component according to a third exemplary embodiment of the invention.
  • FIG. 4 is a schematic diagram of a cooling component according to a fourth exemplary embodiment of the invention.
  • Fig. 1 shows a schematic representation of a refrigeration device 1 ge ⁇ Gurss dung to a first exemplary embodiment of the inventions.
  • the cooling component 1 serves to cool a further, in particular electrical, component (not shown). Ersicht ⁇ After all, it is a sectional view (see. Also the other figures).
  • the cooling device 1 comprises a base body 2, whose FLAE ⁇ chen 3 delimit an inner volume. 4 From the heat input (see arrows 5) through the component to be cooled facing un ⁇ tere surface 3 of the body 2 protrude ribs 6 from.
  • the intermediate space 7 formed by adjacently arranged ribs 6 is in each case completely enclosed by a cell
  • Metal foam body 8 filled. Accordingly, the ribs 6 and the corresponding metal foam body 8 on the same height h.
  • the metal foam body 8 is formed for example from an open-cell copper foam.
  • the ribs 6 which may equally be formed of a thermally conductive material, such as copper, is an improved heat input in the cellular Metal foam body 8 possible. This is connected via a solder joint thermally conductive with the ribs 6.
  • the distance a of the ribs 6 corresponds to twice the heat penetration depth of the heat released by the component to be cooled. As a result, the heat penetration depth is about half the distance a of the ribs 6.
  • the principle of the invention allows by applying the conductive Me ⁇ tallschaum stresses 8 to corresponding heat fins 6 a high efficiency of heat transfer in the metal foam ⁇ body 8, so that its large specific surface area leads to a high cooling effect of the cooling device.
  • FIG. 2 shows a schematic representation of a cooling component 1 according to a second exemplary embodiment of the invention.
  • the basic body 2 here comprises only one surface 3. Consequently, the cooling component 1 or the main body 2 is plate-like and thus the ribs 6 and the metal foam body 8 can be overflowed freely by a cooling medium.
  • FIG. 3 shows a schematic representation of a cooling component according to a third exemplary embodiment of the invention.
  • the base body 2 is designed here as a hollow cylinder, that is, the base body 2 has the overall shape of a tube.
  • the ribs 6 are arranged in the form of radially outwardly projecting webs on the outer diameter of the base body 2. Again, located between the spaces formed by the respective ribs 6 7 metal foam body 8, which completely fill the corresponding interstices 7, so that the cooling member 1 to the outside substantially has a uniform diameter.
  • 4 shows a schematic diagram of a cooling component according to a fourth exemplary embodiment of the invention. The embodiment shown in Fig. 4 is similar to the embodiment shown in Fig.
  • inventions of the inventive cooling device 1 shown in Figs. 3, 4 respectively showing tubular cooling ⁇ components 1 are particularly suitable for use in heat exchangers ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Dispersion Chemistry (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Kühlbauteil (1), umfassend einen Grundkörper (2), wobei an wenigstens einer Fläche (3) des Grundkörpers (2) wenigstens ein zellularer Metallschaumkörper (8) angeordnet ist, wobei von wenigstens einer Fläche (3) des Grundkörpers (2) wenigstens zwei Rippen (6) abragen, wobei der zellulare Metallschaumkörper (8) den zwischen den Rippen (6) ausgebildeten Zwischenraum (7) vollständig ausfüllt.

Description

Beschreibung Kühlbauteil
Die Erfindung betrifft ein Kühlbauteil, umfassend einen
Grundkörper, wobei an wenigstens einer Fläche des Grundkörpers wenigstens ein zellularer Metallschaumkörper angeordnet ist .
Es ist bekannt, elektrischen Komponenten entsprechende Kühlbauteile zuzuordnen, um die während des Betriebs der Kompo¬ nenten entstehende Verlustwärme abzuführen. Derart kann die Betriebssicherheit entsprechender Komponenten sichergestellt werden, da das Überschreiten einer maximal zulässigen Betriebstemperatur derart in der Regel verhindert wird.
Zur Verbesserung entsprechender Kühlbauteile wurde vorgeschlagen, diese an entsprechenden Flächen, insbesondere im Bereich des Wärmeeintrags in das Kühlbauteil, mit Metall¬ schaumkörpern zu versehen, welche aufgrund ihrer, auf deren zellulare Struktur zurückzuführenden, großen spezifischen Oberflächen ein hohes Wärmeaustauschpotential aufweisen.
Hierbei zeigte es sich jedoch, dass der Wärmeeintrag in die Metallschäume vermutlich aufgrund der geringen Wandstärke der die Zellen des Metallschaums begrenzenden Zellwände sehr ge¬ ring ist. Mithin sind die Kühleigenschaften entsprechender mit Metallschäumen versehener Kühlbauteile nicht hinreichend zufrieden stellend.
Der Erfindung liegt das Problem zugrunde, ein entsprechendes Kühlbauteil mit verbesserten Kühleigenschaften anzugeben.
Das Problem wird erfindungsgemäß durch ein Kühlbauteil der eingangs genannten Art gelöst, welches sich dadurch auszeichnet, dass von wenigstens einer des Fläche des Grundkörpers wenigstens zwei Rippen abragen, wobei der zellulare Metall- schaumkörper den zwischen den Rippen ausgebildeten Zwischenraum vollständig ausfüllt.
Die Erfindung beruht auf dem Gedanken, an wenigstens einer Fläche des Grundkörpers, das heißt bevorzugt der dem Wärme¬ eintrag direkt ausgesetzten Fläche, Rippen bzw. Rippenstrukturen vorzusehen, welche aufgrund ihrer kompakten, d.h. nicht zellularen Struktur und Wandstärke einen erhöhten thermischen Eintrag in den von der Fläche abgewandten Bereich des Grund- körpers erlauben. Mithin ist das Problem des bei mit zellula¬ ren Metallschaumkörpern versehenen Grundkörpern begrenzten Wärmeeintrags gelöst, da der Wärmeeintrag zusätzlich bzw. insbesondere über die kompakt, das heißt im Gegensatz zu dem Metallschaumkörper nicht zellular ausgebildeten, Rippen er- folgt. Unter Rippen im erfindungsgemäßen Sinne sind jedwede, sich von der jeweiligen Fläche des Grundkörpers weg erstre¬ ckende Elemente zu verstehen.
Die Rippen stehen in thermisch leitfähigem Kontakt mit dem den zwischen den benachbarten Rippen gebildeten Zwischenraum vollständig ausfüllenden zellularen Metallschaumkörper, sodass die von den Rippen aufgenommene Wärme in den Metall¬ schaumkörper abgeleitet werden kann, wodurch sich aufgrund dessen großer spezifischer Oberfläche gute Kühleigenschaften des erfindungsgemäßen Kühlbauteils erreichen lassen.
Die Rippen selbst können integral mit der Fläche des Grund¬ körpers ausgebildet sein oder als separate Bauteile an diesem lösbar oder unlösbar, insbesondere über eine ebenfalls ther- misch leitfähige Anbindung, wie z. B. eine Lötverbindung, befestigt werden. Bevorzugt sind die Rippen aus einem thermisch leitfähigen Material, wie insbesondere Aluminium oder Kupfer, gebildet . Grundsätzlich wird angestrebt, sämtliche zwischen entspre¬ chenden Rippen ausgebildete Zwischenräume vollständig mit dem zellularen Metallschaumkörper auszufüllen. In Ausnahmen können bestimmte Zwischenräume jedoch auch frei gelassen oder mit einem anderen, insbesondere thermisch leitfähigen, Material gefüllt werden.
Der Abstand entsprechender benachbarter Rippen ist grundsätzlich frei wählbar, jedoch ist es vorteilhaft, wenn dieser der doppelten Wärmeeindringtiefe entspricht. Es zeigte sich, dass hiermit besonders gute Kühleigenschaften des erfindungsgemä¬ ßen Kühlbauteils für eine große Anzahl unterschiedlicher Kühlbedingungen erreicht werden können.
Die von der Fläche des Grundkörpers abragenden Rippen können aber auch jeweils gleich oder unterschiedlich voneinander beabstandet angeordnet sein, sodass sich entweder gleich große oder unterschiedlich große Zwischenräume zwischen benachbarten Rippen realisieren lassen, was beispielsweise zweckmäßig ist, wenn das Kühlbauteil abschnittsweise unterschiedliche Kühleigenschaften aufweisen soll.
Der Grundkörper kann als Platte oder als durch mehrere, durch entsprechende entsprechende Flächen aufweisende Wände umfas¬ sender Hohlkörper ausgebildet sein. Mithin kann der Grundkörper in einer Vielzahl an unterschiedlichen geometrischen Formen vorliegen und ist sonach an individuelle geometrische Einbaubedingungen anpassbar. Bei der Ausführung des Grundkörpers als Hohlkörper ist es möglich, dass das von dem Hohlkörper begrenzte Volumen von einem gasförmigen oder flüssigen Kühlmedium durchströmbar ist. Mithin bildet der Grundkörper hier eine Art Kanal für ein entsprechendes Kühlmedium wie et¬ wa Luft oder Wasser.
In einer möglichen Ausführungsform kann der Grundkörper beispielsweise eine hohlzylindrische Form aufweisen, wobei die Rippen radial nach außen oder innen von einer Fläche des Grundkörpers abragen. Der Grundkörper weist demnach die Form eines Rohrs auf, auf dessen Außendurchmesser und/oder Innendurchmesser entsprechende mit Radialstegen zu vergleichende Rippen angeordnet sind. Diese Ausführungsform des erfindungs- gemäßen Kühlbauteils eignet sich beispielsweise besonders als Wärmerohr für einen Wärmetauscher.
Es ist weiter denkbar, dass der Grundkörper zwei hohlzylindrische Elemente unterschiedlichen Durchmessers umfasst, wel¬ che über die entsprechenden radial verlaufenden Rippen miteinander verbunden sind. Diese Ausführungsform betrifft einen im Wesentlichen als doppelwandiges Rohr ausgebildeten Grundkörper, bestehend aus zwei unterschiedlich dimensionierten hohlzylindrischen Elementen. Die Rippen dienen hier neben dem verbesserten Wärmeeintrag in den Metallschaumkörper zusätzlich als Verbindungselemente zwischen den hohlzylindrischen Elementen. Selbstverständlich kann auch der Metallschaumkörper an beide hohlzylindrische Elemente angebunden sein, so¬ dass auch dieser zusätzlich als Verbindungselement dient. Die Ausführung als doppelwandiges Rohr verleiht dem Grundkörper ein hohes Maß an mechanischer Stabilität.
Wie erwähnt, kann der zellulare Metallschaumkörper durch Löten mit der Fläche des Grundkörpers und/oder den Rippen verbunden sein. Lötverbindungen erlauben neben einer mechanischen Stabilität einen guten Wärmeübergang zwischen den zu verbindenden Bauteilen, weshalb vorliegend der Wärmeeintrag von den Rippen in den Metallschaumkörper begünstigt werden kann. Alternativ oder zusätzlich ist auch die Verwendung thermisch leitfähiger Kleber oder dergleichen zur Herstellung einer thermisch leitfähigen wie auch mechanisch stabilen Verbindung zwischen den Rippen und dem Metallschaumkörper vorstellbar .
Der Metallschaumkörper kann beispielsweise aus einem Aluminium-, Magnesium- oder Kupferschaum gebildet sein. Der Metallschaumkörper kann sowohl in Form eines geschlossenzelligen als auch offenzeiligen Schaumkörpers vorliegen.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung er¬ geben sich aus den im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnungen. Dabei zeigen: Fig. 1 eine Prinzipdarstellung eines Kühlbauteils gemäß einer ersten beispielhaften Ausführungsform der Erfindung;
Fig. 2 eine Prinzipdarstellung eines Kühlbauteils gemäß einer zweiten beispielhaften Ausführungsform der Erfindung;
Fig. 3 eine Prinzipdarstellung eines Kühlbauteils gemäß einer dritten beispielhaften Ausführungsform der Erfindung; und
Fig. 4 eine Prinzipdarstellung eines Kühlbauteils gemäß einer vierten beispielhaften Ausführungsform der Erfindung .
Fig. 1 zeigt eine Prinzipdarstellung eines Kühlbauteils 1 ge¬ mäß einer ersten beispielhaften Ausführungsform der Erfin- dung. Das Kühlbauteil 1 dient zur Kühlung eines weiteren, insbesondere elektrischen, Bauteils (nicht gezeigt) . Ersicht¬ lich handelt es sich um eine Schnittansicht (vgl. auch die weiteren Figuren) . Das Kühlbauteil 1 weist einen Grundkörper 2 auf, dessen Flä¬ chen 3 ein Innenvolumen 4 begrenzen. Von der dem Wärmeeintrag (vgl. Pfeile 5) durch das zu kühlende Bauteil zugewandten un¬ teren Fläche 3 des Grundkörpers 2 ragen Rippen 6 ab. Der durch jeweils benachbart angeordnete Rippen 6 gebildete Zwi- schenraum 7 ist jeweils vollständig durch einen zellularen
Metallschaumkörper 8 ausgefüllt. Entsprechend weisen die Rippen 6 und die entsprechenden Metallschaumkörper 8 die gleiche Höhe h auf. Der Metallschaumkörper 8 ist beispielsweise aus einem offenzelligen Kupferschaum gebildet.
Durch die Rippen 6, welche gleichermaßen aus einem thermisch leitfähigen Material, wie zum Beispiel Kupfer, gebildet sein können, ist ein verbesserter Wärmeeintrag in den zellularen Metallschaumkörper 8 möglich. Dieser ist über eine Lötverbindung thermisch leitend mit den Rippen 6 verbunden. Der Abstand a der Rippen 6 entspricht der doppelten Wärmeeindringtiefe der von dem zu kühlenden Bauteil abgegebenen Wärmemen- ge . Demzufolge entspricht die Wärmeeindringtiefe etwa dem halben Abstand a der Rippen 6.
Das erfindungsgemäße Prinzip erlaubt durch Aufbringen des Me¬ tallschaumkörpers 8 auf entsprechende Wärme leitende Rippen 6 eine hohe Wirksamkeit des Wärmeübergangs in den Metallschaum¬ körper 8, sodass dessen große spezifische Oberfläche zu einer hohen Kühlwirkung des Kühlbauteils 1 führt.
Fig. 2 zeigt eine Prinzipdarstellung eines Kühlbauteils 1 ge- mäß einer zweiten beispielhaften Ausführungsform der Erfindung. Der wesentliche Unterschied zu der in Fig. 1 gezeigten Ausführungsform besteht darin, dass der Grundkörper 2 hier lediglich eine Fläche 3 umfasst. Mithin ist das Kühlbauteil 1 respektive der Grundkörper 2 plattenartig ausgebildet und so- mit die Rippen 6 sowie der Metallschaumkörper 8 frei von einem Kühlmedium überströmbar.
Fig. 3 zeigt eine Prinzipdarstellung eines Kühlbauteils gemäß einer dritten beispielhaften Ausführungsform der Erfindung. Ersichtlich ist der Grundkörper 2 hier als Hohlzylinder ausgebildet, das heißt, der Grundkörper 2 weist insgesamt die Form eines Rohres auf. Die Rippen 6 sind in Form von radial nach außen abragenden Stegen auf dem Außendurchmesser des Grundkörpers 2 angeordnet. Wiederum befinden sich zwischen den durch die jeweiligen Rippen 6 gebildeten Zwischenräumen 7 Metallschaumkörper 8, welche die entsprechenden Zwischenräume 7 vollständig ausfüllen, sodass das Kühlbauteil 1 nach außen im Wesentlichen einen einheitlichen Durchmesser aufweist. Fig. 4 zeigt eine Prinzipdarstellung eines Kühlbauteils gemäß einer vierten beispielhaften Ausführungsform der Erfindung. Die in Fig. 4 gezeigte Ausführungsform ist ähnlich der in Fig. 3 gezeigten Ausführungsform und unterscheidet sich le- diglich dahingehend, dass der Grundkörper 2 zwei hohlzylind¬ rische Elemente 2a, 2b unterschiedlichen Durchmessers um- fasst, welche über die radial verlaufenden Rippen 6 miteinander verbunden sind. Die Rippen 6 dienen sonach als radiale Verbindungsstege, welche eine stabile Befestigung der jewei¬ ligen hohlzylindrischen Elemente 2a, 2b miteinander ermöglichen .
Die in den Fig. 3, 4 gezeigten Ausführungsformen des erfin- dungsgemäßen Kühlbauteils 1, welche jeweils rohrförmige Kühl¬ bauteile 1 zeigen, sind insbesondere zur Verwendung in Wärme¬ tauschern geeignet.
Insgesamt kann mit dem erfindungsgemäßen Prinzip der Wärme- Übergang sowohl in Luft, Wasser oder allen anderen gasförmigen bzw. kondensierten Kühlmedien verbessert werden.
Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele einge¬ schränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen .

Claims

Patentansprüche
1. Kühlbauteil (1), umfassend einen Grundkörper (2), wobei an wenigstens einer Fläche (3) des Grundkörpers (2) wenigs- tens ein zellularer Metallschaumkörper (8) angeordnet ist, dadurch gekennzeichnet, dass von wenigstens einer Fläche (3) des Grundkörpers (2) wenigstens zwei Rippen (6) abragen, wo¬ bei der zellulare Metallschaumkörper (8) den zwischen den Rippen (6) ausgebildeten Zwischenraum (7) vollständig aus- füllt.
2. Kühlbauteil nach Anspruch 1, dadurch gekennzeichnet, dass der Abstand (a) der Rippen (6) der doppelten Wärmeeindringtiefe entspricht.
3. Kühlbauteil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Grundkörper (2) als Platte oder als durch mehrere, durch entsprechende entsprechende Flächen (3) aufwei¬ sende Wände umfassender Hohlkörper ausgebildet ist.
4. Kühlbauteil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Grundkörper (2) eine hohlzylindrische Form auf¬ weist, wobei die Rippen (6) radial nach außen oder innen von einer Fläche (3) des Grundkörpers (2) abragen.
5. Kühlbauteil nach Anspruch 4, dadurch gekennzeichnet, dass der Grundkörper (2) zwei hohlzylindrische Elemente (2a, 2b) unterschiedlichen Durchmessers umfasst, welche über die radial verlaufenden Rippen (6) miteinander verbunden sind.
6. Kühlbauteil nach einem der vorangehenden Ansprüche, da¬ durch gekennzeichnet, dass der zellulare Metallschaumkörper (8) durch Löten mit der Fläche (3) des Grundkörpers (2) und/oder den Rippen (6) verbunden ist.
7. Kühlbauteil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Metallschaumkörper (8) aus einem Aluminium-, Magnesium- oder Kupferschaum gebildet ist.
PCT/EP2012/062219 2011-07-05 2012-06-25 Kühlbauteil WO2013004532A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011078674A DE102011078674A1 (de) 2011-07-05 2011-07-05 Kühlbauteil
DE102011078674.0 2011-07-05

Publications (1)

Publication Number Publication Date
WO2013004532A1 true WO2013004532A1 (de) 2013-01-10

Family

ID=46465202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/062219 WO2013004532A1 (de) 2011-07-05 2012-06-25 Kühlbauteil

Country Status (2)

Country Link
DE (1) DE102011078674A1 (de)
WO (1) WO2013004532A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114273657A (zh) * 2020-10-01 2022-04-05 通用汽车环球科技运作有限责任公司 金属泡沫挤出方法和由其制造的制品

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014116126A1 (de) * 2014-11-05 2016-05-12 Noxmat Gmbh Rekuperatorbrenner
US9889624B2 (en) 2015-10-09 2018-02-13 Raytheon Company Anisotropic thermal conduit
US20170291388A1 (en) * 2016-04-12 2017-10-12 United Technologies Corporation Light weight component with internal reinforcement and method of making
US10399117B2 (en) 2016-04-12 2019-09-03 United Technologies Corporation Method of making light weight component with internal metallic foam and polymer reinforcement
US10619949B2 (en) 2016-04-12 2020-04-14 United Technologies Corporation Light weight housing for internal component with integrated thermal management features and method of making
US10724131B2 (en) 2016-04-12 2020-07-28 United Technologies Corporation Light weight component and method of making
US10335850B2 (en) 2016-04-12 2019-07-02 United Technologies Corporation Light weight housing for internal component and method of making
US10302017B2 (en) 2016-04-12 2019-05-28 United Technologies Corporation Light weight component with acoustic attenuation and method of making
US10323325B2 (en) 2016-04-12 2019-06-18 United Technologies Corporation Light weight housing for internal component and method of making
US11152279B2 (en) 2018-03-26 2021-10-19 Raytheon Company Monolithic microwave integrated circuit (MMIC) cooling structure
US10785863B2 (en) 2018-04-09 2020-09-22 Raytheon Company Circuit support and cooling structure
DE102019204847A1 (de) * 2019-04-04 2020-10-08 Siemens Aktiengesellschaft Vorrichtung zum Entwärmen elektrischer und/oder elektronischer Bauteile

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010045270A1 (en) * 2000-03-14 2001-11-29 Bhatti Mohinder Singh High-performance heat sink for electronics cooling
US20020108743A1 (en) * 2000-12-11 2002-08-15 Wirtz Richard A. Porous media heat sink apparatus
US6591897B1 (en) * 2002-02-20 2003-07-15 Delphi Technologies, Inc. High performance pin fin heat sink for electronics cooling
US20050082037A1 (en) * 2003-10-20 2005-04-21 Thayer John G. Porous media cold plate
DE102005004695B3 (de) * 2005-02-02 2006-09-28 Fpe Fischer Gmbh Kühlkörper für elektrische Bauelemente
WO2007024229A1 (en) * 2005-08-25 2007-03-01 Carrier Corporation Heat exchanger for thermoelectric applications
JP2011129620A (ja) * 2009-12-16 2011-06-30 Toyota Motor Corp 半導体装置
US20110315342A1 (en) * 2010-06-24 2011-12-29 Valeo Vision Heat exchange device, especially for an automotive vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424529B2 (en) * 2000-03-14 2002-07-23 Delphi Technologies, Inc. High performance heat exchange assembly
WO2001089745A1 (en) * 2000-05-22 2001-11-29 Materials Innovation, Inc. Porous heat sink for forced convective flow and method of making therefore
KR100381303B1 (ko) * 2001-01-16 2003-04-26 윤재석 다공성 히트싱크
DE10244805A1 (de) * 2002-09-26 2004-04-08 Sma Regelsysteme Gmbh Offenporig poröser Kühlkörper eines Wärmetauschers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010045270A1 (en) * 2000-03-14 2001-11-29 Bhatti Mohinder Singh High-performance heat sink for electronics cooling
US20020108743A1 (en) * 2000-12-11 2002-08-15 Wirtz Richard A. Porous media heat sink apparatus
US6591897B1 (en) * 2002-02-20 2003-07-15 Delphi Technologies, Inc. High performance pin fin heat sink for electronics cooling
US20050082037A1 (en) * 2003-10-20 2005-04-21 Thayer John G. Porous media cold plate
DE102005004695B3 (de) * 2005-02-02 2006-09-28 Fpe Fischer Gmbh Kühlkörper für elektrische Bauelemente
WO2007024229A1 (en) * 2005-08-25 2007-03-01 Carrier Corporation Heat exchanger for thermoelectric applications
JP2011129620A (ja) * 2009-12-16 2011-06-30 Toyota Motor Corp 半導体装置
US20110315342A1 (en) * 2010-06-24 2011-12-29 Valeo Vision Heat exchange device, especially for an automotive vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114273657A (zh) * 2020-10-01 2022-04-05 通用汽车环球科技运作有限责任公司 金属泡沫挤出方法和由其制造的制品

Also Published As

Publication number Publication date
DE102011078674A1 (de) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2013004532A1 (de) Kühlbauteil
EP0131270B1 (de) Feststoffabsorber für einen Absorptionskreisprozess
DE102006008786B4 (de) Adsorptions-Wärmepumpe, Adsorptions-Kältemaschine und darin enthaltene Adsorberelemente auf Basis eines offenporigen wärmeleitenden Festkörpers
DE112007002451B4 (de) Wärmetauschervorrichtung
EP2531705B1 (de) Thermoelektrischer generator mit integrierter vorgespannter lagerung
AT522326B1 (de) Kühlvorrichtung
AT12048U1 (de) Vorrichtung zur übertragung von wärme
DE112016004824B4 (de) Rohrelement, Wärmerohr und Kühlvorrichtung
DE10261402A1 (de) Wärmesenke in Form einer Heat-Pipe sowie Verfahren zum Herstellen einer solchen Wärmesenke
EP3143357B1 (de) Wärmeübertragungsvorrichtung und deren verwendung
EP3319148A1 (de) Batteriemodul
WO2010112433A2 (de) Arbeitsmittelspeicher, wärmeübertrager und wärmepumpe
EP1920202B1 (de) Anordnung von wärmetauscherplatten, die in thermischem kontakt mit einem adsorbens stehen
DE112005001950T5 (de) Flachrohr, plattenförmiger Körper zur Herstellung des Flachrohrs und Wärmetauscher
EP2377596B1 (de) Kältetrockner, insbesondere druckluftkältetrockner, sowie wärmetauscher für einen kältetrockner, insbesondere druckluftkältetrockner
DE102012013624B4 (de) Latentwärmespeichermodul und Hybridwärmespeicher
EP2937658B1 (de) Innerer wärmeübertrager
EP1634022B1 (de) Vorrichtung zum erwärmen eines im kreislauf einer wärme pumpe geführten kältemittels
EP1156293B1 (de) Wärmetauscher, insbesondere Mikrostruktur-Wärmetauscher
WO2013143568A1 (de) Kühlsystem für ein elektrisches system
DE102011118105A1 (de) Wärmespeichermodul und Wärmespeicher
EP3009780B1 (de) Wärmeübertrager
DE3011011A1 (de) Plattenwaermetauscher
DE2406432A1 (de) Kuehleinrichtung mit chemischem verdampfungs-kuehlmittel
DE112014004185T5 (de) Adsorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12732817

Country of ref document: EP

Kind code of ref document: A1