WO2013004068A1 - 接触式激光超声探头装置 - Google Patents

接触式激光超声探头装置 Download PDF

Info

Publication number
WO2013004068A1
WO2013004068A1 PCT/CN2011/084990 CN2011084990W WO2013004068A1 WO 2013004068 A1 WO2013004068 A1 WO 2013004068A1 CN 2011084990 W CN2011084990 W CN 2011084990W WO 2013004068 A1 WO2013004068 A1 WO 2013004068A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
laser
ultrasonic
pulsed laser
ultrasonic probe
Prior art date
Application number
PCT/CN2011/084990
Other languages
English (en)
French (fr)
Inventor
杨先明
龙绒蓉
宋小领
高树超
王朝
Original Assignee
烟台富润实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台富润实业有限公司 filed Critical 烟台富润实业有限公司
Publication of WO2013004068A1 publication Critical patent/WO2013004068A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics

Definitions

  • the invention relates to the technical field of ultrasonic non-destructive testing systems for metal and non-metal materials, in particular to a contact ultrasonic probe device. Background technique
  • the probes used in the ultrasonic non-destructive testing system are all fabricated by the principle of piezoelectric effect, that is, electromagnetically excited quartz wafers are used to generate ultrasonic waves, and the returned ultrasonic signals are converted into electrical signals by piezoelectric wafers, and then filtered, noise-reduced, After amplification, it is passed to the software system for data analysis.
  • the ultrasonic probe made by the principle of piezoelectric effect can only produce one of longitudinal wave, transverse wave and surface wave at a time. If it is necessary to generate longitudinal wave, transverse wave and surface wave at the same time, three different ultrasonic probes are needed to increase the detection space. , it is easy to generate detection blind spots; and the real-time performance is relatively poor, it is difficult to achieve online detection. Since piezoelectric ultrasonic probes generally have a frequency of MHz, products requiring high detection accuracy, such as aerospace and special industry products, require ultrasonic probes to reach the detection frequency of GHz, which is difficult to achieve with piezoelectric ultrasonic probes. Summary of the invention
  • the present invention provides a contact type ultrasonic probe apparatus for solving the above problems.
  • a contact type ultrasonic probe device comprising a laser generator, an optical fiber, a photoacoustic converter and a broadband receiver which are sequentially connected,
  • the laser generator is configured to generate a pulsed laser, and the pulsed laser is emitted to the photoacoustic transducer through the optical fiber;
  • the photoacoustic transducer is configured to convert a pulsed laser into an ultrasonic wave and emit the ultrasonic wave onto the product to be tested;
  • the wideband receiver is configured to receive ultrasonic waves reflected from the interior of the product under test and convert them into electrical signals, and output the electrical signals to an external software system for data analysis.
  • the photoacoustic transducer converts the pulsed laser light into ultrasonic waves, and conducts the ultrasonic waves to the inside of the product to be tested through a coupling agent on the photoacoustic transducer.
  • the coupling agent is made of water or glycerin.
  • the pulsed laser is incident on the photoacoustic transducer to generate a non-radiative transition to generate ultrasonic waves.
  • the laser generator uses a ruby laser generator.
  • the contact ultrasonic probe device of the invention has the following advantages: high spatial resolution; laser excitation of ultrasonic waves, simultaneous generation of longitudinal waves, transverse waves, head waves and surface waves, no blind spots; broadband receiver For the ultrasonic signal received by the non-contact centering, the longitudinal wave and the transverse wave can be received simultaneously. According to the measured sound velocity and the density of the material to be tested, the elastic modulus and Poisson's ratio of the measured material can be calculated. The function that the probe is difficult to achieve.
  • FIG. 1 is a block diagram showing the structure of a contact type ultrasonic probe device of the present invention. detailed description
  • a contact ultrasonic probe device includes a laser generator, an optical fiber, a photoacoustic transducer, and a broadband receiver connected in sequence.
  • the laser generator is configured to generate a pulsed laser, and the pulsed laser is obliquely incident on the optical acoustic converter through the optical fiber;
  • the photoacoustic transducer is configured to convert a pulsed laser into an ultrasonic wave and conduct the ultrasonic wave to the inside of the product to be tested through a conductive medium on the photoacoustic transducer;
  • the broadband receiver is configured to receive ultrasonic waves reflected from the inside of the product to be tested, and convert the same It is an electrical signal, and the electrical signal is output to an external software system for data analysis.
  • the pulsed laser generated by the ruby laser generator passes through the optical fiber and is obliquely incident on the photoacoustic transducer.
  • the non-radiative transition and chemical action generate ultrasonic waves, that is, ultrasonic waves are emitted to the product to be tested, and the ultrasonic waves are transmitted to the inside of the tested product through water or glycerin coupling agent.
  • the tested product has defects exceeding spatial resolution, some of the ultrasonic waves are reflected and converted into electrical signals by the broadband receiver. After filtering, noise reduction, amplification, and transmitted to the software system for data analysis.
  • the pulsed laser is obliquely incident on the photoacoustic transducer, and the electrons absorbed by the electrons absorb the photon energy and transition to a high energy state; the electrons in the high energy state illuminate through the radiation transition, and the non-radiative transition collides with the lattice of the photoacoustic transducer.
  • the excess energy is given to the crystal lattice, causing the temperature of the photoacoustic transducer to rise at the illumination, and the local temperature rise causes an increase in the lattice kinetic energy.
  • the thermal bomb effect If the kinetic energy is still within the elastic limit of the photoacoustic transducer, it is a thermal bomb effect; If the kinetic energy of the crystal lattice exceeds the elastic limit, the internal electrons of the crystal lattice are broken, which is the melting effect. When the crystal lattice is subjected to the thermal bombing or the melting effect, the excess energy is released and returns to the ground state. Among them, the thermal bomb effect or the melting effect can be used. The ultrasonic wave is generated, and the efficiency of the ultrasonic wave is relatively low due to the thermal bombing.
  • the device uses the melting effect to excite the ultrasonic wave, in order to avoid damage to the surface of the photoacoustic transducer, water or glycerin is used as a coupling agent to improve the ultrasonic transmission efficiency, and To cool down, avoid damage to the photoacoustic transducer due to excessive temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种接触式超声探头装置,该装置包括依次连接的激光发生器、光纤、光声转换器和宽带接收器,激光发生用于产生脉冲激光,脉冲激光经过光纤斜射到光声转换器;光声转换器用于将脉冲激光转化为超声波,并将超声发射到被测产品上;宽带接收器用于接收从被测产品内部反射回的超声波,并将其转化为电信号,以及将电信号出至外部的软件系统进行数据分析。该装置的空间分辨率高;通过采用激光激发超声波,能一次同时产生纵波、横波、头波和表面波,没有检测盲区;采用宽带接收器作非接触式对心接收返回的超声波信号,可同时接收到纵波和横波。

Description

说 明 书
接触式激光超声探头装置
技术领域
本发明涉及金属和非金属材料超声无损检测系统技术领域,具体来讲就 是一种接触式超声探头装置。 背景技术
目前超声波无损检测系统所使用的探头都是利用压电效应原理制作的, 即采用电磁激励石英晶片来产生超声波,返回的缺陷超声波信号通过压电晶 片转换成电信号, 再经过滤波、 降噪、 放大后传到软件系统进行数据分析。
目前采用压电效应原理制作的超声探头, 一次只能产生纵波、 横波和表 面波其中的一种, 如果需要同时产生纵波、 横波和表面波, 需要用三个不同 的超声探头, 增加了检测空间, 容易产生检测盲区; 并且实时性比较差, 难 以实现在线检测。 由于压电超声探头一般频率为 MHz , 对于要求检测精度高 的的产品, 如航天航空及特殊行业的产品, 要求超声探头达到 GHz的检测频 率, 用压电超声探头难以实现。 发明内容
本发明为解决上述问题而提供一种接触式超声探头装置。
本发明解决上述技术问题的技术方案如下: 一种接触式超声探头装置, 它包括依次连接的激光发生器、 光纤、 光声转换器和宽带接收器,
所述激光发生器用于产生脉沖激光,脉沖激光经过所述光纤发射到所述 光声转换器;
所述光声转换器用于将脉沖激光转化为超声波, 并将超声波发射到被测 产品上; 所述宽带接收器用于接收从被测产品内部反射回的超声波, 并将其转化 为电信号, 并将电信号输出至外部的软件系统进行数据分析。
进一步的, 所述光声转换器将脉沖激光转化为超声波, 并通过所述光声 转换器上的耦合剂将超声波传导至被测产品内部。
进一步的, 所述耦合剂为水或甘油制成。
进一步的, 所述脉沖激光射到光声转换器上发生无辐射跃迁产生超声 波。
进一步的, 所述激光发生器采用红宝石激光发生器。
本发明的有益效果是: 本发明接触式超声探头装置具有以下优点: 空间 分辨率高; 采用激光激发超声波, 能一次同时产生纵波、 横波、 头波和表面 波,没有检测盲区;采用宽带接收器作非接触式对心接收返回的超声波信号, 可同时接收到纵波和横波, 根据测量的声速和被测材料的密度, 可以计算出 被测材料的弹性模量和泊松比, 这是普通压电探头难以实现的功能。 附图说明
图 1为本发明接触式超声探头装置的结构框图。 具体实施方式
以下结合附图对本发明的原理和特征进行描述, 所举实例只用于解释本 发明, 并非用于限定本发明的范围。
如图 1所示,一种接触式超声探头装置,它包括依次连接的激光发生器、 光纤、 光声转换器和宽带接收器,
所述激光发生器用于产生脉沖激光,脉沖激光经过光纤斜射到光声转换 器;
所述光声转换器用于将脉沖激光转化为超声波, 并通过光声转换器上的 传导介质将超声波传导至被测产品内部;
所述宽带接收器用于接收从被测产品内部反射回的超声波, 并将其转化 为电信号, 并将电信号输出至外部的软件系统进行数据分析。
红宝石激光发生器产生的脉沖激光经过光纤, 斜射到光声转换器上, 发 生无辐射跃迁和化学作用产生超声波, 即向被测产品发射超声波, 超声波通 过水或甘油耦合剂传导到被测产品内部,被测产品有超过空间分辨率的缺陷 时,有部分超声波发生反射,被宽带接收器转换为电信号, 经过滤波、 降噪、 放大后传到软件系统进行数据分析。
脉沖激光斜射到光声转换器上, 被照射处的电子吸收光子能量, 跃迁至 高能态; 处于高能态的电子通过辐射跃迁即发光, 无辐射跃迁即与光声转换 器的晶格相碰撞把多余的能量交给晶格, 引起照射处光声转换器温度升高, 局部温度升高引起晶格动能的增加,如果该动能还在光声转换器的弹性限度 之内, 为热弹作用; 如果晶格动能超过弹性限度, 晶格内部电子发生断键, 为熔融效应, 晶格发生热弹作用或出现熔融效应时, 会释放多余能量而返回 基态; 其中热弹作用或出现熔融效应皆可产生超声波, 由于热弹作用激发超 声波的效率比较低, 因为本装置采用熔融效应激发超声波, 为避免光声转换 器表面受损, 采用水或甘油作为耦合剂除提高超声波传输效率, 另外还可以 起到降温作用, 避免光声转换器因温度过高表面受损。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明 的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发 明的保护范围之内。

Claims

权 利 要 求 书
1. 一种接触式激光超声探头装置, 其特征在于: 它包括依次连接的激 光发生器、 光纤、 光声转换器和宽带接收器,
所述激光发生器用于产生脉沖激光,脉沖激光经过所述光纤发射到所述 光声转换器;
所述光声转换器用于将脉沖激光转化为超声波, 并将超声波发射到被测 产品上;
所述宽带接收器用于接收从被测产品内部反射回的超声波, 并将其转化 为电信号, 并将电信号输出至外部。
2. 根据权利要求 1所述的接触式超声探头装置, 其特征在于: 所述光 声转换器将脉沖激光转化为超声波, 并通过所述光声转换器上的耦合剂将超 声波传导至被测产品内部。
3. 根据权利要求 2所述的接触式超声探头装置, 其特征在于: 所述耦 合剂为水或甘油制成。
4. 根据权利要求 1所述的接触式超声探头装置, 其特征在于: 所述脉 沖激光射到所述光声转换器上发生无辐射跃迁产生超声波。
5. 根据权利要求 1至 4任一项所述的接触式超声探头装置, 其特征在 于: 所述激光发生器采用红宝石激光发生器。
PCT/CN2011/084990 2011-07-01 2011-12-30 接触式激光超声探头装置 WO2013004068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110183586 CN102279226A (zh) 2011-07-01 2011-07-01 接触式激光超声探头装置
CN201110183586.6 2011-07-01

Publications (1)

Publication Number Publication Date
WO2013004068A1 true WO2013004068A1 (zh) 2013-01-10

Family

ID=45104790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084990 WO2013004068A1 (zh) 2011-07-01 2011-12-30 接触式激光超声探头装置

Country Status (2)

Country Link
CN (1) CN102279226A (zh)
WO (1) WO2013004068A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279226A (zh) * 2011-07-01 2011-12-14 烟台富润实业有限公司 接触式激光超声探头装置
CN105092595B (zh) * 2015-08-31 2018-03-02 哈尔滨工业大学(威海) 应用于钢轨探伤的光声弹性成像方法及装置
CN112317450A (zh) * 2020-10-27 2021-02-05 天津大学 一种基于光声喷流效应的超声波定点清洗装置及方法
CN114589405B (zh) * 2022-02-28 2023-06-09 山东理工大学 一种基于双重空化效应提高激光加工微孔内壁质量的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257755A (ja) * 1996-03-22 1997-10-03 Nippon Steel Corp レーザー超音波検査装置及びレーザー超音波検査方法
JPH10288607A (ja) * 1997-04-15 1998-10-27 Mitsubishi Heavy Ind Ltd 超音波センサ
CN1249162A (zh) * 1998-09-25 2000-04-05 中国科学院西安光学精密机械研究所 一种识别结石和人体组织的安全方法
US20060184042A1 (en) * 2005-01-22 2006-08-17 The Texas A&M University System Method, system and apparatus for dark-field reflection-mode photoacoustic tomography
CN100446730C (zh) * 2005-12-16 2008-12-31 华南师范大学 基于声透镜的光声成像和层析成像方法及其装置
CN101813672A (zh) * 2010-03-30 2010-08-25 华南师范大学 一种基于面阵超声探测器的快速三维光声成像系统及方法
CN102279226A (zh) * 2011-07-01 2011-12-14 烟台富润实业有限公司 接触式激光超声探头装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202119757U (zh) * 2011-07-01 2012-01-18 烟台富润实业有限公司 接触式激光超声探头装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257755A (ja) * 1996-03-22 1997-10-03 Nippon Steel Corp レーザー超音波検査装置及びレーザー超音波検査方法
JPH10288607A (ja) * 1997-04-15 1998-10-27 Mitsubishi Heavy Ind Ltd 超音波センサ
CN1249162A (zh) * 1998-09-25 2000-04-05 中国科学院西安光学精密机械研究所 一种识别结石和人体组织的安全方法
US20060184042A1 (en) * 2005-01-22 2006-08-17 The Texas A&M University System Method, system and apparatus for dark-field reflection-mode photoacoustic tomography
CN100446730C (zh) * 2005-12-16 2008-12-31 华南师范大学 基于声透镜的光声成像和层析成像方法及其装置
CN101813672A (zh) * 2010-03-30 2010-08-25 华南师范大学 一种基于面阵超声探测器的快速三维光声成像系统及方法
CN102279226A (zh) * 2011-07-01 2011-12-14 烟台富润实业有限公司 接触式激光超声探头装置

Also Published As

Publication number Publication date
CN102279226A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
Sohn et al. Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer
JP4635186B2 (ja) 材料健全性評価装置
WO2013004068A1 (zh) 接触式激光超声探头装置
CN103674359A (zh) 一种复合材料残余应力的激光超声无损检测方法及设备
CN110686771A (zh) 一种基于光声效应的宽光谱脉冲光探测器和探测方法
Fierro et al. Nonlinear elastic imaging of barely visible impact damage in composite structures using a constructive nonlinear array sweep technique
CN202119757U (zh) 接触式激光超声探头装置
Dhital et al. Laser excitation and fully non-contact sensing ultrasonic propagation imaging system for damage evaluation
Nakase et al. Nondestructive evaluation of plane crack tip in a thin plate using laser-induced pulse wave and symmetric lamb wave
Qin et al. Quantitative characterization of laser ultrasonic based on energy loss and resonance phenomenon
CN114935547B (zh) 管道硬度内检方法及系统
Sohn et al. Non-contact laser ultrasonics for SHM in aerospace structures
CN104990521A (zh) 一种非接触式复合材料测厚装置及方法
周正干 et al. Laser ultrasonic detection of drilling-induced delamination in composite laminates
Liu et al. Quantitative rectangular notch detection of laser-induced lamb waves in aluminium plates with wavenumber analysis
CN102818621B (zh) 一种非接触聚集型探头
Xue et al. Nondestructive testing of internal defects by ring-laser-excited ultrasonic
Oe et al. Nondestructive internal defect detection using photoacoustic and self‐coupling effect
CN113702495B (zh) 一种激光电磁二合一探头及含其的无损检测装置
CN203630096U (zh) 一种用于铁磁材料的电磁超声信号激励装置
Zhenzhen et al. Laser ultrasonic three-dimensional imaging of aluminum block with artificial defects
Edwards et al. Laser generated ultrasound: efficiency and damage thresholds in carbon fibre reinforced composites
Imano et al. Detecting pipe wall reduction using air-coupled MHz range ultrasonic wave
Dutton et al. Graphite anisotropy measurements using laser-generated ultrasound
Wang et al. Source location techniques in plate-like structures based on fiber coupler sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868879

Country of ref document: EP

Kind code of ref document: A1