WO2013004017A1 - 一种实现自动增益控制的方法和系统 - Google Patents

一种实现自动增益控制的方法和系统 Download PDF

Info

Publication number
WO2013004017A1
WO2013004017A1 PCT/CN2011/076945 CN2011076945W WO2013004017A1 WO 2013004017 A1 WO2013004017 A1 WO 2013004017A1 CN 2011076945 W CN2011076945 W CN 2011076945W WO 2013004017 A1 WO2013004017 A1 WO 2013004017A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
channel
sequence
frame
power
Prior art date
Application number
PCT/CN2011/076945
Other languages
English (en)
French (fr)
Inventor
龚明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to PCT/CN2011/076945 priority Critical patent/WO2013004017A1/zh
Publication of WO2013004017A1 publication Critical patent/WO2013004017A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3078Circuits generating control signals for digitally modulated signals

Definitions

  • the present invention relates to the field of communications, and in particular to a method and system for implementing automatic gain control (AGC). Background technique
  • each user equipment UE, User Equipment
  • UE User Equipment
  • the synchronization signal is included in a specific location
  • TD-LTE Time Division Synchronous Code Division Multiple Access
  • FIG. 1 the UE uses the prior knowledge of the local synchronization sequence to receive the signal. Processing, through this process, the UE will obtain downlink time, frequency synchronization, search for a suitable cell identity, and provide necessary synchronization and related parameter preparation for further access to the cellular system.
  • the cell search process is an indispensable process. At the beginning of the startup, the UE knows very little about the wireless channel and the system parameters. In the cell search operation as the first step, there will be great uncertainty, and the strength of the received signal is unknown. Sex.
  • the received signal is subjected to antenna and RF processing to obtain a baseband analog signal, which is further converted into a digital signal by an analog-to-digital conversion device for subsequent digital signal processing module processing.
  • an analog-to-digital conversion device for subsequent digital signal processing module processing.
  • Amplitude-continuous analog signals may involve quantization errors and saturation truncation: If the signal is too small, the quantization error will be relatively large. If the input signal is too large, signal quantization saturation will occur. To this end, the receiver introduces automatic gain control.
  • the receiver pre-sets the gain, then receives a signal, detects the signal strength, outputs the appropriate gain to the RF module, and then receives a message. No., detect the signal strength, then update the RF gain, and so on, gradually converge. Finally, by controlling the appropriate gain of the RF related signal amplifier, the purpose of controlling the amplitude of the baseband analog signal is achieved.
  • AGC automatic gain control
  • the above AGC process is also required in the LTE UE receiver.
  • the normal AGC process will fail, resulting in difficulty or even failure of the cell search.
  • downlink resources are dynamically scheduled. Sometimes, there may be only a small number of cell reference signals and common channel signals in some downlink time slots. In the time domain, sometimes the radio frequency signals will have a minimum value.
  • 3 is a schematic diagram of baseband signal strength received by LTE. In the figure, there is no traffic scheduling in subframe 0 and subframe 1, and the signal energy is extremely small except for the symbol containing the cell reference signal and the common channel. Some uplink subframe energy may also be small, such as subframe 4.
  • the TD-LTE system In the TD-LTE system, it is divided into uplink and downlink time slots, and there are 7 uplink and downlink configuration options.
  • the ratio of the uplink and downlink signal strength is uncertain, as shown in Figure 3.
  • Uplink signals are sometimes small, and sometimes they can be unusually large. For example, when the user is turned on, there is a user with the same frequency nearby. The signal of the base station is small when it reaches the UE after the path is attenuated, but the uplink power of other users of the same frequency may be 4 inches, and the difference between the two may be above 80 dB. .
  • the UE During the initial cell search phase, the UE has no timing information at all, cannot identify the uplink and downlink boundaries, and cannot identify the cell reference signal and the time slot in which the common downlink channel is located. If the UE performs gain control according to the usual method, the AGC process is difficult to converge, and the signal received by the UE digital signal processing module is highly likely to be saturated or become extremely small to be submerged in the quantization noise, which inevitably leads to an increase in the probability of cell search failure. . Summary of the invention
  • the channel gain sequence calculates a half frame gain sequence from which gain offset control is performed to obtain a suitable RF gain.
  • the method for dividing a frame to form a plurality of time division receiving channels is: dividing a time of a frame into N parts to establish an equivalent plurality of time division receiving channels; wherein the N is an even number.
  • the method for measuring the power in the multi-channel is:
  • the multi-channel short-term average power is calculated based on the received frame signal.
  • the first half of the gain sequence and the second half of the gain sequence are calculated.
  • the gain control offset when performing the gain offset control, is set to be half a subframe.
  • a system for implementing an AGC the system comprising a multi-channel dividing unit, a multi-channel automatic gain control unit, and a half-frame gain offset control unit; wherein
  • the multi-channel dividing unit is configured to divide a frame to form a plurality of time-division receiving channels, and the multi-channel automatic gain control unit is configured to update the multi-channel RF gain according to the received power value sequence after receiving power statistics.
  • the power in the plurality of channels is measured accordingly to obtain a sequence of power values again to calculate an intra-frame multi-channel gain sequence;
  • the field offset shift control unit is configured to calculate a half frame gain sequence according to the intra-frame multi-channel gain sequence, and perform gain offset control accordingly to obtain a suitable radio frequency gain.
  • the multi-channel dividing unit is configured to: when dividing a frame to form a plurality of time-division receiving channels,
  • the multi-channel automatic gain control unit is configured to: when measuring power in the multi-channel:
  • the multi-channel short-term average power is calculated based on the received frame signal.
  • the half-frame gain offset control unit is configured to: calculate a first-half gain sequence and a second-half gain sequence when calculating a field gain sequence.
  • the sub-frame gain offset control unit performs the gain offset control, and is configured to: set the gain control offset to be half a subframe.
  • the technology of the present invention implements the AGC technology, and can solve the problem of initial fast automatic gain control in the LTE complex scenario, and can ensure that the subsequent cell search process can work in the ideal state of the front end to improve the cell search success rate. . DRAWINGS
  • FIG. 1 is a schematic diagram of a TD-LTE downlink frame format
  • Figure 2 is a schematic diagram of LTE downlink reception
  • 3 is a schematic diagram of baseband signal strength received by LTE
  • FIG. 4 is a flowchart of implementing an AGC according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of implementing an AGC according to an embodiment of the present invention.
  • FIG. 6 is a system diagram of implementing AGC according to an embodiment of the present invention. detailed description
  • FIG. 4 is a flowchart of implementing AGC according to an embodiment of the present invention, where the process includes the following steps:
  • the time of the frame may be divided into N parts (N may be an even number) to establish an equivalent plurality of time division receiving channels.
  • Step 2 Update the equivalent multi-channel RF gain
  • deltaGl and deltaG2 are two larger gain steps in dB; TF is the length of the sub-frame; Func(P(i), Pt) function is used to generate the fine-tuning step, and Pt is the target power of the digital baseband. .
  • Step 3 Receive a frame signal and calculate the multi-channel short-term average power
  • step 2 downlink data is received in one frame, and short-term average received power statistics are performed in units of fixed time T to obtain a power value sequence P(i);
  • P(i) corresponds to the short-term average power of tm+t(i);
  • N is the number of power values
  • Step 2 and Step 3 may be repeatedly performed, and the specific number of repeated executions may make a compromise between the AGC process overhead time and performance; of course, it is also possible to directly enter Step 5;
  • Step 4 Update the equivalent multi-channel RF gain
  • the intra-frame multi-channel gain sequence is calculated based on P(i) and A(i):
  • Step 6 Update the multi-channel RF gain according to the fixed time offset setting according to the half-frame gain sequence calculated in step 5;
  • Step 7 Cell search
  • the RF gain is set using the above RF gain C(i) and a cell search is performed.
  • steps 2 through 5 actually constitute a multi-channel automatic gain control process.
  • the gain control point is extended to N points, covering the radio frame with repeating characteristics; this is different from the traditional single channel method, which is beneficial to avoid the sub-frames and symbolic functions in the LTE system. Unfavorable factors with large fluctuations;
  • the half-frame gain sequence is calculated in step 5, which is an operation for the feature that the primary synchronization signal period in LTE is a half frame; and, the minimum value is used to combine the gain sequences calculated in the previous step. Specifically, in order to balance the gains of the subframe 0 and the subframe 5, the minimum operation can be used to effectively avoid the saturation of the useful signal;
  • Gain offset control is performed in step 7.
  • the symbol of the primary synchronization signal appears in LTE in a time slot after the PBCH. Therefore, setting the gain control offset to half a subframe ensures that the primary sync signal symbol gets the proper RF gain.
  • TD-LTE uses TD-LTE as an example to illustrate the specific application of the present invention.
  • H does not have a system bandwidth of 1.4M. If it is not 1.4M, the wideband signal can be filtered to obtain a 1.4M bandwidth signal by setting the RF receiving bandwidth.
  • the receiver counts the short-term average power within one frame (10 ms).
  • deltaGl and deltaG2 are two large gain steps in dB, for example: Thl can take 4Pt, Th2 can take Pt/2 A 10, and deltaGl can take 20dB to 50dB. deltaG2 can take 20dB;
  • Pt is the ideal target power
  • deltaGl, deltaG2, Thl, Th2 and Pt can be optimized according to the number of ADC bits and the signal peak-to-average ratio.
  • the power trial adjustment process may be repeated. Otherwise, the last adjustment is performed.
  • the specific adjustment method is the same as the foregoing corresponding method, but the specific adjustment value may be slightly changed, for example, the deltaG3 takes 20 dB. deltaG4 takes 10dB and so on.
  • the gain of the PBCH signal segment can be used to set the RF gain of the sync signal.
  • the synchronization signal transmission period is 5 ms
  • subframe 1 and subframe 6 contain synchronization signals
  • PBCH transmission period is 10 ms
  • subframe 0 contains PBCH
  • subframe 5 is downlink but does not contain PBCH
  • the base station does not schedule, the subframe may There are no signals other than the cell reference signal.
  • the following calculation method is used to determine the half-frame gain sequence:
  • the obtained gain value reflects the signal strength; and for the signal segment corresponding to subframe 5 5° apart from it, whether the base station transmits a signal is uncertain, if there is a signal, the gain value and the sub-score The gain value at frame 0 is equivalent. If there is no signal, the gain value may have an abnormally large value. Therefore, the gain values A(i) and A(i+N/2) of 5ms apart are taken when calculating the gain of the first half frame. Small value.
  • the latter RF gain is controlled by B(i).
  • the RF gain of the PBCH signal segment is reliable. It can be used to generate the control gain of the synchronization channel, and because the PBCH is in the 8th to 11th symbols of the subframe 0, the main synchronization signal is in the 3rd symbol of the subframe 1, and the difference between the two is 5 to 9 symbols. Therefore, the RF gain of the primary synchronization channel can be set to a reasonable level by delaying the gain B(i) corresponding to the PBCH by half a subframe (7 symbols).
  • the PBCH time span is 4 symbols, its power is relatively stable during this period, which ensures that the gain of the synchronization signal is stable throughout the symbol, which is beneficial to the completion of the cell synchronization search process.
  • the UE In the initial cell search phase, the UE is primarily concerned with the synchronization signal.
  • the received digital signal can be processed by using the local synchronization sequence prior knowledge during cell search; and, in order to improve the performance of the cell search algorithm, the baseband data processing can be combined with the previous RF gain value C(i) pair.
  • the data intensity is weighted.
  • the UE After the synchronization of the primary synchronization signal of the cell search is completed, the UE has learned the symbol timing and the 5ms timing. At this time, the UE can identify the uplink and downlink symbols, and can specifically identify the location of each channel. At this time, the conventional automatic gain control process can be used.
  • Step 510 Divide the frame to form a plurality of time division receiving channels.
  • Step 520 Update the multi-channel RF gain according to the received power value sequence after receiving the power statistics, and measure the power in the multi-channel to obtain the power value sequence again to calculate the intra-frame multi-channel gain sequence.
  • Step 530 Calculate a field gain sequence according to the intra-frame multi-channel gain sequence, and perform gain offset control accordingly to obtain a suitable RF gain.
  • FIG. 6 is a system diagram of implementing AGC according to an embodiment of the present invention, where the system includes a connected multi-channel dividing unit, a multi-channel automatic gain control unit, and a half-frame gain offset control unit.
  • the multi-channel dividing unit can divide the frame to form a plurality of time-division receiving channels.
  • the multi-channel automatic gain control unit can update the multi-channel RF gain according to the received power value sequence, and then measure the power in the multi-channel to obtain the power value sequence again to calculate the intra-frame multi-channel gain sequence.
  • the half frame gain offset control unit is capable of calculating a field gain sequence based on the intra-frame multi-channel gain sequence, and thereby performing gain offset control to obtain a suitable RF gain.
  • the present invention implements the AGC technology, and the LTE frame structure feature can solve the problem of initial fast automatic gain control in the LTE complex scenario, and can ensure that the subsequent cell search process can be The front end works under ideal conditions to improve the cell search success rate.

Landscapes

  • Circuits Of Receivers In General (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

本发明公开了一种实现AGC的方法和系统,均可对帧进行划分以形成多个时分接收通道;根据接收功率统计后所得到的功率值序列更新多通道的射频增益,据此测量所述多通道内的功率以再次得到功率值序列,以计算帧内多通道增益序列;根据所述帧内多通道增益序列计算半帧增益序列,据此进行增益偏移控制以得到适合的射频增益。本发明实现AGC的技术,针对LTE帧结构特点,可以解决LTE复杂场景中面临的初始快速自动增益控制的问题,可以保证后续的小区搜索过程能够在前端理想状态下工作,以提高小区搜索成功率。

Description

一种实现自动增益控制的方法和系统 技术领域
本发明涉及通信领域, 具体涉及一种实现自动增益控制 (AGC ) 的方 法和系统。 背景技术
在长期演进 ( LTE )通信系统中, 每个用户设备 ( UE, User Equipment ) 在上电开机后, 都要启动小区搜索 (Cell search )过程。 LTE下行时域信号 中, 在特定位置含有同步信号, 以时分同步码分多址的长期演进(TD-LTE ) 为例,如图 1所示, UE利用本地同步序列等先验知识对接收信号进行处理, 通过这个过程, UE将获得下行时间、 频率同步、 搜寻到合适的小区标识, 为进一步能够接入蜂窝系统提供必要的同步和相关参数准备。
小区搜索过程是不可或缺的过程。 UE在开机之初, 对所处无线信道以 及系统参数知之甚少, 在进行作为第一步的小区搜索操作中, 将面临极大 的不确定性, 其中接收信号的强度未知就是一大不确定性。
对于无线数字处理系统而言, 如图 2 所示, 接收信号经过天线、 射频 处理, 得到基带模拟信号, 该模拟信号再进一步经过模数转换器件转为数 字信号以供后续的数字信号处理模块处理。 一般而言, 由于模数转换器件 的精度限制以及数字信号处理模块的复杂度限制, 模拟信号的数字化位数 是有限的, 幅度连续的模拟信号可能会涉及量化误差以及饱和截位: 如果 输入模拟信号过小, 量化误差相对信号会比较大; 如果输入信号过大, 信 号量化饱和将会发生。 为此, 接收机引入自动增益控制。
图 2所示的 AGC控制环路中, 接收机会预先设置增益, 然后接收一段 信号, 探测信号强度, 将合适的增益输出到射频模块; 然后再接收一段信 号, 探测信号强度, 再更新射频增益, 如此反复, 逐步收敛。 最终通过控 制射频有关信号放大器的合适增益, 达到控制基带模拟信号幅度适中的目 的。 以上过程一般称为 AGC。
在 LTE的 UE接收机中同样需要上述的 AGC过程, 但是由于 LTE信 号设计和应用的特殊性, 在一些场景下, 普通的 AGC过程会失效, 导致小 区搜索困难甚至失败。
在 LTE系统中, 下行资源是动态调度的。 有时, 在有的下行时隙中可 能只有少量的小区参考信号以及公共信道信号, 在时间域上来看, 有时射 频信号会出现极小值。 图 3是 LTE接收的基带信号强度的示意图, 图中子 帧 0和子帧 1中没有业务调度, 除含有小区参考信号、 公共信道的符号外, 信号能量极小。 一些上行子帧能量也可能很小, 如子帧 4。
在 TD-LTE系统中, 分为上行和下行时隙, 且有 7种上下行配置选项。 在 UE看来, 上下行信号强度的比例是不确定的, 如图 3所示。 上行信号有 时很小, 有时却可能异常的大。 比如在用户开机时, 附近正好有同频的用 户,基站的信号经过路径衰减后到达 UE时已经很小, 而同频的其他用户的 上行功率却可能 4艮大, 两者可能差距在 80dB以上。
在初始小区搜索阶段, UE完全没有定时信息, 无法识别上下行边界, 也无法识别小区参考信号以及公共下行信道所在时隙。如果 UE按照通常方 法进行增益控制, 则 AGC过程难以收敛, UE数字信号处理模块收到的信 号极有可能饱和或者变得极小以至于淹没在量化噪声之中, 这必然导致小 区搜索失败概率增加。 发明内容
有鉴于此, 本发明的主要目的在于提供一种实现 AGC的方法和系统, 以提高小区搜索成功率。
为达到上述目的, 本发明的技术方案是这样实现的: 一种实现 AGC的方法, 对帧进行划分以形成多个时分接收通道; 该方 法还包括:
根据接收功率统计后所得到的功率值序列更新多通道的射频增益, 据 此测量所述多通道内的功率以再次得到功率值序列, 以计算帧内多通道增 益序列; 根据所述帧内多通道增益序列计算半帧增益序列, 据此进行增益 偏移控制以得到适合的射频增益。
其中, 所述对帧进行划分以形成多个时分接收通道的方法为: 将帧的时间划分为 N个部分, 以建立等效的多个时分接收通道; 所述 N为偶数。
其中, 测量所述多通道内的功率的方法为:
根据接收的帧信号, 计算多通道短时平均功率。
其中, 所述计算半帧增益序列的方法为:
计算前半帧增益序列以及后半帧增益序列。
其中, 所述进行增益偏移控制时, 设置增益控制偏移量为半个子帧。 一种实现 AGC的系统, 该系统包括多通道划分单元、 多通道自动增益 控制单元、 半帧增益偏移控制单元; 其中,
所述多通道划分单元, 用于对帧进行划分以形成多个时分接收通道; 所述多通道自动增益控制单元, 用于根据接收功率统计后所得到的功 率值序列更新多通道的射频增益, 据此测量所述多通道内的功率以再次得 到功率值序列, 以计算帧内多通道增益序列;
所述半帧增益偏移控制单元, 用于根据所述帧内多通道增益序列计算 半帧增益序列, 据此进行增益偏移控制以得到适合的射频增益。
其中, 所述多通道划分单元, 对帧进行划分以形成多个时分接收通道 时, 用于:
将帧的时间划分为 N个部分, 以建立等效的多个时分接收通道; 所述 N为偶数。
其中, 所述多通道自动增益控制单元在测量所述多通道内的功率时, 用于:
根据接收的帧信号, 计算多通道短时平均功率。
其中, 所述半帧增益偏移控制单元计算半帧增益序列时, 用于: 计算前半帧增益序列以及后半帧增益序列。
其中, 所述半帧增益偏移控制单元进行增益偏移控制时, 用于: 设置 增益控制偏移量为半个子帧。
本发明实现 AGC的技术, 针对 LTE帧结构特点, 可以解决 LTE复杂 场景中面临的初始快速自动增益控制的问题, 可以保证后续的小区搜索过 程能够在前端理想状态下工作, 以提高小区搜索成功率。 附图说明
图 1为 TD-LTE下行帧格式示意图;
图 2为 LTE下行接收原理图;
图 3为 LTE接收的基带信号强度的示意图;
图 4为本发明实施例实现 AGC的流程图;
图 5为本发明实施例实现 AGC的流程简图;
图 6为本发明实施例实现 AGC的系统图。 具体实施方式
为了使得 LTE初始小区搜索在各个场景中获得较高成功概率, 可以利 用 LTE的帧结构, 釆用两步 AGC控制方法, 达到快速准确的 AGC设置, 保证后续较高的小区搜索成功率。 值得指出的是, 本发明多以 TD-LTE进 行方法描述, 并不妨碍本发明用于频分双工的长期演进(FDD-LTE )等接 收机中。 参见图 4, 图 4为本发明实施例实现 AGC的流程图, 该流程包括以下 步骤:
步骤 1 : 初始化多通道射频增益 A(i) = A0, 接收一个帧信号, 并按照 T 计算多通道短时平均功率;
具体而言, 设定射频工作带宽, 设定射频初始增益为 AO (单位 dB), 令
A(i)=A0 , UE接收一个帧的下行数据, 在接收过程中以固定时间 T为单位 进行接收功率统计, 得到功率值序列 P(i); 其中, i=0,l, ...,N-1 , i取不同值 时的 P(i)分别对应 tm+t(i)时刻的短时平均功率;其中 N为功率值个数; tm=0, t(i)=i*T。需要说明的是,可以将帧的时间划分为 N个部分(N可以为偶数), 以建立等效的多个时分接收通道。
步骤 2: 更新等效多通道射频增益;
具体而言, 令 tm<=tm+TF, 根据 P(i)更新 tm+t(i)-T (下一个时间片) 时的射频增益为:
如果 P(i)大于门限 Thl , 更新 A(i)<=A(i)-deltaGl;
如果 P(i)小于门限 Th2 , 更新 A(i)<=A(i)+deltaG2;
如果 P(i)在 Thl与 Th2之间, 更新 A(i)<=A(i)-Func(P(i),Pt);
其中 deltaGl、 deltaG2是两个较大的增益步进, 以 dB为单位; TF为 子帧的长度; Func(P(i),Pt)函数用于产生微调步进, Pt为数字基带的目标功 率。
一般可 以 取 Func(P(i),Pt)=10*lg(P(i)/Pt) , 也可 以 近似地取
Func(P(i),Pt)=S { 10 *lg(P(i)) } - 10 *lg(Pt) , S ( * ) 可以为不同精度的分段量化 函数;
步骤 3: 接收一个帧信号, 计算多通道短时平均功率;
具体而言, 在步骤 2设定的射频增益基础上, 下行接收一个帧的数据, 以固定时间 T为单位进行短时平均接收功率统计,得到功率值序列 P(i); 其 中 i=0,l,...,N-l , i取不同值时的 P(i)分别对应 tm+t(i)的短时平均功率; 其中
N为功率值个数;
在此之后, 作为可选操作, 可以重复执行步骤 2和步骤 3 , 重复执行的 具体次数可以在 AGC过程开销时间与性能之间做出折中选择; 当然, 也可 以直接进入步骤 5;
步骤 4: 更新等效多通道射频增益;
具体而言, 根据 P(i)和 A(i), 计算帧内多通道增益序列:
如果 P(i)大于门限 Thl , 更新 A(i)<=A(i)-deltaG3;
如果 P(i)小于门限 Th2 , 更新 A(i)<=A(i)+deltaG4;
如果 P(i)在 Thl与 Th2之间, 更新 A(i)<=A(i)-Func(P(i),Pt);
其中, i=0,l, ...,N-1 , deltaG3、 deltaG4是两个较大的增益步进, 以 dB 为单位; Func(P(i),Pt)函数用于产生微调步进, Pt为数字基带的目标功率; 步骤 5:根据步骤 4中更新的等效多通道射频增益,计算半帧增益序列; 具体而言, 计算前半帧增益序列 B(i)=min{A(i),A(i+N/2)} , i=0,l,..., N/2-1 ;
计算后半帧增益序列 B(i+N/2)=B(i), i=0,l, ...,Ν/2-l ;
步骤 6: 根据步骤 5中所计算出的半帧增益序列, 按照固定时间偏移设 定更新多通道的射频增益;
具体而言,令 tm<=tm+TF,在 tm+t(i)-T设置射频增益 C(i)=B(i-MmodN); 其中, M为偏移量, M*T可以设为 0.5ms的时间;
步骤 7: 小区搜索;
具体而言, 利用以上射频增益 C(i)设置射频增益并进行小区搜索。 由上述可见, 步骤 2至步骤 5实际上构成一种多通道自动增益控制过 程。 从时域来看, 增益控制点扩展为 N点, 覆盖具有重复特性的无线帧; 这有别于传统的单一通道方法, 有利于回避 LTE系统中各个子帧、 符号功 率起伏较大的不利因素;
步骤 5中计算了半帧增益序列, 这是针对 LTE中主同步信号周期是半 帧的特点而进行的操作; 并且, 釆用求最小值的方式合并前一步骤所计算 得到的增益序列。 具体而言, 为了平衡子帧 0和子帧 5的增益, 可以釆用 求最小值操作, 有效避免有用信号被饱和的情况;
步骤 7 中进行了增益偏移控制。 在 LTE 中主同步信号的符号出现在 PBCH之后的一个时隙内。 所以,设置增益控制偏移量为半个子帧, 就可以 保证主同步信号符号得到适合的射频增益。
下面以 TD-LTE为例, 举例说明本发明的具体应用。
H没系统带宽为 1.4M, 如果不是 1.4M的情况, 可以通过设置射频接 收带宽将宽带信号滤波得到 1.4M带宽信号。 釆样率设为 1.92M, 釆样时间 间隔为 Ts=0.52us,在一个子帧内的基带釆样数 1920个,一个帧内的釆样数 为 19200。
一般射频增益范围为 60 dB 至 90dB , 在开机后, 可先设置 A(i)=A0=30dB, 这个初始取值可以居中偏小。
接收机统计一帧内 (10ms )的短时平均功率。 设开始时间 tm=0, 功率 统计间隔为 T=137Ts, 这样一个帧内含 N=140个值 P , 分别对应 tm+iT 的短时平均功率, i=0,l,...,139。
进入下一个帧, 时间参考点更新为 tm<=tm+10ms, 利用 P(i)计算得到 时刻 tm+t(i)-T的射频增益, 该增益值需要提前一个时间单位 T产生。
如果 P(i)大于门限 Thl , 更新 A(i)<=A(i)-deltaGl;
如果 P(i)小于门限 Th2 , 更新 A(i)<=A(i)+deltaG2;
如果 P(i)在 Thl与 Th2之间, 更新 A(i)<=A(i)-Func(P(i),Pt);
其中 deltaGl、 deltaG2是两个较大的增益步进, 以 dB为单位, 比如: Thl可以取 4Pt, Th2可以取 Pt/2A10, deltaGl可以取 20dB至 50dB, deltaG2可以取 20dB;
Pt为理想的目标功率, 可以根据 ADC位数以及信号峰均比优化设置 deltaGl , deltaG2、 Thl、 Th2以及 Pt。
Func(P(i),Pt)可以取 Func(P(i),Pt)=S{10*lg(P(i))}-10*lg(Pt), S ( * ) 可取 4段或者 8段分段量化函数。
在以上设定的射频增益基础上,下行接收一个帧的数据, 以固定时间 T 为单位进行短时平均接收功率统计, 再得到功率值序列 P(i) ; 其中, i=0,l, ...,N-1 , i取不同值时的 P(i)分别对应 tm+t(i)的短时平均功率。
如果 UE对于初始同步的要求不是很高,可以重复启动功率试探调整过 程, 否则进行最后一次调整, 具体的调整方法与前述相应方法相同, 不过 具体的调整值可以稍作改变, 比如 deltaG3取 20dB, deltaG4取 10dB等。
有了最后一次的射频增益序列 A(i), 就可以计算半帧的合理增益值。 可以利用 PBCH信号段训练的增益值设置同步信号的射频增益。 同步信号 发送周期为 5ms,子帧 1和子帧 6含有同步信号,而 PBCH发送周期为 10ms, 子帧 0含有 PBCH; 子帧 5虽然是下行但不含 PBCH, 如果基站不调度, 该 子帧可能除了小区参考信号外没有其他信号。 为了取得 5ms内合理的增益 值, 釆用如下计算方法来决定半帧增益序列:
计算前半帧增益序列 B(i)=min{A(i),A(i+N/2)} ; 其中, i=0,l,...,N/2-l ; 计算后半帧增益序列 B(i+N/2)=B(i); 其中, i=0,l, ...,Ν/2-l ;
对于子帧 0中的 PBCH信号段, 所得的增益值反映了该信号强度; 而 对于与其相距 5ms的子帧 5对应信号段, 基站是否发送信号则不确定, 如 果有信号, 该增益值与子帧 0处的增益值相当, 如果没有信号, 该增益值 可能出现异常大值, 因此在计算前半帧增益时对相距 5ms的增益值 A(i)和 A(i+N/2)取了其中的小值。
后面的射频增益釆用 B(i)来控制。 PBCH信号段的射频增益是可靠的, 可以用它来产生同步信道的控制增益, 又因为 PBCH在子帧 0的第 8个到 第 11个符号, 主同步信号在子帧 1的第 3个符号, 两者差距为 5至 9个符 号, 所以只要将 PBCH对应的增益 B ( i )延迟半个子帧 (7个符号) 即可 使主同步信道的射频增益设定在合理水平。
取 C(i)=B(i-MmodN);
其中, M为偏移量, M=7, MT为 0.5ms的时间;
因为 PBCH时间跨度为 4个符号, 其功率在此期间比较稳定, 这将保 证同步信号的增益在整个符号内是平稳的, 有利于小区同步搜索过程的完 成。
在小区初始搜索阶段, UE主要关心同步信号。 以上 AGC完成后, 在 进行小区搜索时可以利用本地同步序列先验知识处理接收的数字信号; 并 且, 为了提高小区搜索算法性能, 进行基带数据处理时可以结合之前的射 频增益值 C(i)对数据强度进行加权处理。
当小区搜索的主同步信号同步完成之后, UE 已经获知符号定时以及 5ms定时, 这时 UE可以辨识上下行符号, 可以具体识别各个信道的位置, 此时可以釆用常规的自动增益控制过程。
结合以上描述可知,本发明实现 AGC的操作思路可以表示如图 5所示 的流程, 该流程包括以下步骤:
步骤 510: 对帧进行划分以形成多个时分接收通道。
步骤 520:根据接收功率统计后所得到的功率值序列更新多通道的射频 增益, 据此测量所述多通道内的功率以再次得到功率值序列, 以计算帧内 多通道增益序列。
步骤 530: 根据所述帧内多通道增益序列计算半帧增益序列,据此进行 增益偏移控制以得到适合的射频增益。
为了保证上述技术描述和操作思路能够顺利实现, 可以进行如图 6所 示的设置。 参见图 6, 图 6为本发明实施例实现 AGC的系统图, 该系统包 括相连的多通道划分单元、 多通道自动增益控制单元、 半帧增益偏移控制 单元。
具体应用时, 多通道划分单元能够对帧进行划分以形成多个时分接收 通道。 多通道自动增益控制单元能够根据接收功率统计后所得到的功率值 序列更新多通道的射频增益, 据此测量所述多通道内的功率以再次得到功 率值序列, 以计算帧内多通道增益序列。 半帧增益偏移控制单元能够根据 所述帧内多通道增益序列计算半帧增益序列, 据此进行增益偏移控制以得 到适合的射频增益。
综上所述可见, 无论是方法还是系统, 本发明实现 AGC的技术, 针对 LTE帧结构特点, 可以解决 LTE复杂场景中面临的初始快速自动增益控制 的问题, 可以保证后续的小区搜索过程能够在前端理想状态下工作, 以提 高小区搜索成功率。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种实现自动增益控制 AGC的方法, 对帧进行划分以形成多个时 分接^:通道; 该方法还包括:
根据接收功率统计后所得到的功率值序列更新多通道的射频增益, 据 此测量所述多通道内的功率以再次得到功率值序列, 以计算帧内多通道增 益序列; 根据所述帧内多通道增益序列计算半帧增益序列, 据此进行增益 偏移控制以得到适合的射频增益。
2、 根据权利要求 1所述的方法, 其中, 所述对帧进行划分以形成多个 时分接收通道的方法为:
将帧的时间划分为 N个部分, 以建立等效的多个时分接收通道; 所述 N为偶数。
3、 根据权利要求 1所述的方法, 其中, 测量所述多通道内的功率的方 法为:
根据接收的帧信号, 计算多通道短时平均功率。
4、 根据权利要求 1所述的方法, 其中, 所述计算半帧增益序列的方法 为:
计算前半帧增益序列以及后半帧增益序列。
5、 根据权利要求 1至 4任一项所述的方法, 其中, 所述进行增益偏移 控制时, 设置增益控制偏移量为半个子帧。
6、 一种实现 AGC的系统, 该系统包括多通道划分单元、 多通道自动 增益控制单元、 半帧增益偏移控制单元; 其中,
所述多通道划分单元, 用于对帧进行划分以形成多个时分接收通道; 所述多通道自动增益控制单元, 用于根据接收功率统计后所得到的功 率值序列更新多通道的射频增益, 据此测量所述多通道内的功率以再次得 到功率值序列, 以计算帧内多通道增益序列; 所述半帧增益偏移控制单元, 用于根据所述帧内多通道增益序列计算 半帧增益序列, 据此进行增益偏移控制以得到适合的射频增益。
7、 根据权利要求 6所述的系统, 其中, 所述多通道划分单元, 对帧进 行划分以形成多个时分接收通道时, 用于:
将帧的时间划分为 N个部分, 以建立等效的多个时分接收通道; 所述 N为偶数。
8、 根据权利要求 6所述的系统, 其中, 所述多通道自动增益控制单元 在测量所述多通道内的功率时, 用于:
根据接收的帧信号, 计算多通道短时平均功率。
9、 根据权利要求 6所述的系统, 其中, 所述半帧增益偏移控制单元计 算半帧增益序列时, 用于:
计算前半帧增益序列以及后半帧增益序列。
10、 根据权利要求 6至 9任一项所述的系统, 其中, 所述半帧增益偏 移控制单元进行增益偏移控制时, 用于: 设置增益控制偏移量为半个子帧。
PCT/CN2011/076945 2011-07-07 2011-07-07 一种实现自动增益控制的方法和系统 WO2013004017A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076945 WO2013004017A1 (zh) 2011-07-07 2011-07-07 一种实现自动增益控制的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076945 WO2013004017A1 (zh) 2011-07-07 2011-07-07 一种实现自动增益控制的方法和系统

Publications (1)

Publication Number Publication Date
WO2013004017A1 true WO2013004017A1 (zh) 2013-01-10

Family

ID=47436462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076945 WO2013004017A1 (zh) 2011-07-07 2011-07-07 一种实现自动增益控制的方法和系统

Country Status (1)

Country Link
WO (1) WO2013004017A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466137A (zh) * 2009-01-12 2009-06-24 北京天碁科技有限公司 一种td-scdma终端及其自动增益控制方法
CN101527588A (zh) * 2008-03-06 2009-09-09 中兴通讯股份有限公司 一种无线接收系统的射频自动增益控制方法及系统
CN101959288A (zh) * 2009-07-15 2011-01-26 展讯通信(上海)有限公司 接收信号的自动增益控制调整方法及信号接收设备
CN101986581A (zh) * 2010-09-02 2011-03-16 湖北众友科技实业股份有限公司 用于td-lte终端自动增益控制校准的方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527588A (zh) * 2008-03-06 2009-09-09 中兴通讯股份有限公司 一种无线接收系统的射频自动增益控制方法及系统
CN101466137A (zh) * 2009-01-12 2009-06-24 北京天碁科技有限公司 一种td-scdma终端及其自动增益控制方法
CN101959288A (zh) * 2009-07-15 2011-01-26 展讯通信(上海)有限公司 接收信号的自动增益控制调整方法及信号接收设备
CN101986581A (zh) * 2010-09-02 2011-03-16 湖北众友科技实业股份有限公司 用于td-lte终端自动增益控制校准的方法和系统

Similar Documents

Publication Publication Date Title
US11451359B2 (en) Secondary cell activation in new radio system
JP7052058B2 (ja) キャリア・アグリゲーション及びデュアル・コネクティビティのためのセカンダリ・セルの改善されたアクティブ化
US11653413B2 (en) Secondary cell activation in new radio system
US20230063026A1 (en) Aspects of wake-up signal (wus) transmission in idle mode
JP2011521498A (ja) Dc補償およびagcのための方法およびシステム
US8644212B2 (en) Method and apparatus for automatic gain control in a TD-LTE system
WO2014082504A1 (zh) 一种td-lte自动增益控制方法及设备
US10512043B2 (en) Methods and apparatuses for receiving in a wireless communication system
US20170099129A1 (en) Transport format selection method and device
CN106559866B (zh) 一种自动增益控制方法及系统
JP2016058962A (ja) 無線通信デバイス
CN102413543A (zh) 一种lte系统的初始agc方法及设备
WO2013044638A1 (zh) 设置初始自动增益控制增益的方法及装置
EP2485523B1 (en) Cellular terminal gain control for inter-frequency measurements
TW201715851A (zh) 通訊接收端及其自動增益控制方法
EP3968705B1 (en) Gain control method and device, and computer-readable storage medium
WO2013004017A1 (zh) 一种实现自动增益控制的方法和系统
US10708002B2 (en) Adaptive channel estimation for power optimization for narrow band systems
TWI517598B (zh) 無線信號接收器及其信號處理方法
WO2021089858A1 (en) Methods for determining minimum scheduling offset application delay
US11317364B2 (en) Synchronization for extended DRX
CN201219265Y (zh) 一种自动增益控制装置
CN107438285B (zh) 一种上行同步调整方法和装置
US20240323054A1 (en) User equipment and operation method thereof
US11736179B2 (en) Method and apparatus for multi-antenna communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869034

Country of ref document: EP

Kind code of ref document: A1