WO2013002439A1 - Antifungal composition comprising cis-cyclo(l-phe-l-pro) having genus ganoderma fungus-specific antifungal activity - Google Patents

Antifungal composition comprising cis-cyclo(l-phe-l-pro) having genus ganoderma fungus-specific antifungal activity Download PDF

Info

Publication number
WO2013002439A1
WO2013002439A1 PCT/KR2011/004770 KR2011004770W WO2013002439A1 WO 2013002439 A1 WO2013002439 A1 WO 2013002439A1 KR 2011004770 W KR2011004770 W KR 2011004770W WO 2013002439 A1 WO2013002439 A1 WO 2013002439A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactobacillus
genus
antifungal
pediococcus
ganoderma
Prior art date
Application number
PCT/KR2011/004770
Other languages
French (fr)
Korean (ko)
Inventor
강사욱
곽민규
유예
권준오
오은선
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Priority to PCT/KR2011/004770 priority Critical patent/WO2013002439A1/en
Priority to MYPI2013702565A priority patent/MY174593A/en
Publication of WO2013002439A1 publication Critical patent/WO2013002439A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/401Proline; Derivatives thereof, e.g. captopril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics

Definitions

  • the present invention relates to novel uses of cis- cyclo (L-phenylalanine-L-proline). More specifically, the present invention includes cis- cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L-Pro)) as an active ingredient, and the fungus of genus Ganoderma It relates to an antifungal composition characterized by having a specific antifungal activity.
  • lactic acid fermentation efficacy depends primarily on organic acid accumulation and substrate oxidation.
  • Metabolites such as acetaldehyde, diacetyl compounds, hydrogen peroxide and carbon dioxide are important for inhibiting the growth of bacteria, pathogens and rot.
  • non-protein substrates inhibit Gram-negative bacteria as well as Gram-positive and fungal bacteria.
  • the first low molecular weight antibiotic, Reutericyclin was purified from Lactobacillus reuteri LTH2584 isolated from fermented bread.
  • Ryutercycline is somewhat sensitive to microorganisms such as Gram-positive bacteria, Gram-negative bacteria, yeasts and fungi.
  • Lactic acid bacteria (LAB) have been used for a long time in various foods for humans and animals, and they are useful for fermenting, storing and storing food like yeast.
  • LABs generally secrete extracellular antagonist compounds to combat many microorganisms and alter the extracellular environment by endogenous metabolite byproducts.
  • various kinds of antimicrobial metabolites can be classified into bacteriocins having low molecular weight of less than 1000 and molecular weights of less than 1000.
  • Many studies of antimicrobial activity by LAB have focused on bacteriocins.
  • the bacteriocin produced by LAB is one of a heterogeneous group of antimicrobial peptides and proteins that varies over a broad spectrum in terms of activity, mode of action, molecular weight, genetic origin and biochemical properties, [8,9] This class of peptides and proteins has been classified into three groups based on the sequence of mature peptides and prepeptides. [10,11,12,13]
  • Pediosin is a type of bacteriocin known to be produced by Pediococcus pentosaceus . [14] Most of these compounds contain cationic molecules and small sized substrates. [15], and these compounds may generally kill several gram positive pathogenic strains, such as Bacillus subtilis (Bacillus subtilis), Listeria species (Listeria species) and Staphylococcus aureus (Staphylococcus aureus). [16,17,18] In addition, some bacteriocins can kill food pathogenic strains such as Escherichia coli and Salmonella spp. [19] Proline-containing 2,5-diketopiperazine, a cyclic dipeptide, has been intensively investigated.
  • a cycloalkyl (L- phenylalanine -L- proline) represents the (cis -cyclo (L-Phe- L-Pro)) having excellent antifungal activity against fungi of the genus Kano Derma (Genus Ganoderma) -
  • the dipeptide of cis By clarifying, this invention was completed.
  • an object of the present invention comprises cis- cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L-Pro)) as an active ingredient, and to the fungus of genus Ganoderma It is an object of the present invention to provide an antifungal composition characterized by having specific antifungal activity.
  • Another object of the present invention comprises cis- cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L-Pro)) as an active ingredient, and to the fungus of genus Ganoderma It is an object of the present invention to provide a pesticide composition characterized by having specific antifungal activity.
  • Still another object of the present invention is to provide a method for producing an antifungal agent against fungi of genus Ganoderma .
  • the present invention comprises cis- cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L-Pro)) as an active ingredient, Genus Ganoderma It provides an antifungal composition, characterized in that it has a specific antifungal activity against the fungi.
  • a cycloalkyl (L- phenylalanine -L- proline) represents the (cis -cyclo (L-Phe- L-Pro)) having excellent antifungal activity against fungi of the genus Kano Derma (Genus Ganoderma) -
  • the dipeptide of cis By clarifying, this invention was completed.
  • Cis contained as an effective ingredient in the present invention are cis in nature - including a cycloalkyl (L- phenylalanine -L- proline), cis-bicyclo (L- -L-phenylalanine Chemical formula for -proline) is shown in FIG. 22 in the context of the present invention.
  • the present invention is characterized by having excellent antifungal activity against fungi of genus Ganoderma.
  • the present invention comprises at least one genus Ganoderma selected from the group consisting of Ganoderma boninense , Ganoderma applanatum and Ganoderma zonatum . It has antifungal activity against fungi, and more preferably has antifungal activity against Ganoderma boninense .
  • System included as an active ingredient of the present invention -cycloalkyl (L- phenylalanine -L- proline) is a system separated from the lactic acid - include cycloalkyl (L- phenylalanine -L- proline).
  • cis- cyclo (L-phenylalanine-L-proline) included as an active ingredient in the present invention is composed of the genus Pediococcus , Lactobacillus, and Leuconostoc . It is isolated from one or more lactic acid bacteria selected from the group.
  • the bacterium pediococcus is Pediococcus pentosaceus , Pediococcus acidilactici , Pediococcus cellicola , Pediococcus claussenii , Pediococcus damnosus , Pediococcus ethanoliduus Pediococcus ethanolidurans), Phedi OKO to kusu Ino Pina tooth (Pediococcus inopinatus), Phedi OKO kusu wave bulruseu (Pediococcus parvulus) and Phedi OKO kusu steel Lacey (Pediococcus stilesii) comprises a group of one or more Phedi OKO kusu in
  • the cis- cyclo (L-phenylalanine-L-proline) included as an active ingredient in the present invention is isolated from the pepiococcus lactic acid bacterium, the Pediococcus bacterium is Pediococcus pentosaceus bacterium. to be.
  • the cis- cyclo (L-phenylalanine-L-proline) included as an active ingredient in the present invention is isolated from Lactobacillus of Lactobacillus , Lactobacillus of Lactobacillus plantarum ( Lactobacillus plantarum ), Lactobacillus kimchi ( Lactobacillus kimchii ), Lactobacillus rhamnosus , Lactobacillus casei , Lactobacillus acidophilus , Lactobacillus acidophilus , Lactobacillus brevis , Lactobacillus buccinerus Lactobacillus Lactobacillus fermentum , Lactobacillus helveticus ( Lactobacillus helveticus ), Lactobacillus reuteri and Lactobacillus genus Lactic acid bacteria selected from the group consisting of Lactobacillus sakei .
  • the cis- cyclo (L-phenylalanine-L-proline) included as an active ingredient in the present invention is isolated from Lactobacillus spp., Lactobacillus spp. Is Lactobacillus plantarum.
  • the lactic acid bacteria of the leuconosstock are Leuconostoc mesenteroides ), Ryukono Stock Kimchi ( Leuconostoc kimchii ), Leukonostock lactis ( Leuconostoc lactis ), Due to leukonostock ( Leuconostoc inhae ), Leukonostock Gelidum ( Leuconostoc gelidum ), Leukonostock Paramesenteroides ( Leuconostoc paramesenteroides ), Leukonostock Citrium ( Leuconostoc citreum ), Leukono stock pseudometheroides Leuconostoc pseudomesenteroides ) And leukonostock Holzappelli ( Leuconostoc holzapfelii Lactic acid bacteria of the genus
  • antifungal activity refers to the growth inhibition, growth inhibition and killing action of the fungus, and the term “fungal” is used interchangeably with the “fungus” in the present specification.
  • the present invention comprises cis- cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L-Pro)) as an active ingredient, Genus Ganoderma It provides a pesticide composition characterized in that it has a specific antifungal activity against the fungi.
  • composition of the present invention also provides an agrochemical composition comprising an agrochemically effective amount of cis- cyclo (L-phenylalanine-L-proline) of the present invention described above.
  • the pesticide composition of the present invention comprises an agrochemically effective amount of cis- cyclo (L-phenylalanine-L-proline); And (b) at least one component or additive selected from the group consisting of agrochemically acceptable solvents, carriers, emulsifiers and dispersants.
  • agricultural effective amount is the above-mentioned cis-against fungi of the cyclo (L- phenylalanine -L- proline) (cis -cyclo (L-Phe -L-Pro)) in Kano Derma (Genus Ganoderma) of By an amount sufficient to achieve antifungal efficacy or activity.
  • the pesticide composition of the present invention includes an agriculturally acceptable solvent.
  • solvents include water, aromatic solvents (eg Solvesso products, xylene), paraffins (eg mineral oil fractions), alcohols (eg methanol, butanol, pentanol, benzyl alcohol), ketones (eg For example cyclohexanone, gamma-butyrolactone), pyrrolidone (NMP, NOP), acetates (glycol diacetate), glycols, fatty acid dimethylamides, fatty acids and fatty acid esters (in principle, solvent mixtures may be used) Etc. are included.
  • the pesticide composition of the present invention when the composition of the present invention is made of a pesticide composition, the pesticide composition of the present invention includes an agriculturally acceptable carrier.
  • such carriers include, for example, ground natural minerals (eg kaolin, clay, talc, chalk) and ground synthetic minerals (eg highly dispersed silica, silicates).
  • the pesticide composition of the present invention when the composition of the present invention is prepared as a pesticide composition, the pesticide composition of the present invention includes an agriculturally acceptable emulsifier.
  • the emulsifiers include nonionic and anionic emulsifiers (eg, polyoxyethylene fatty alcohol ethers, alkylsulfonates and arylsulfonates).
  • the pesticide composition of the present invention when the composition of the present invention is prepared as a pesticide composition, the pesticide composition of the present invention includes an agriculturally acceptable dispersant.
  • the propellant includes lignin-sulfite waste liquor and methylcellulose.
  • the present invention provides a system including the above-mentioned anti-fungal composition, so pesticide composition comprising cyclo (L- phenylalanine -L- proline) (cis -cyclo (L-Phe -L-Pro)) as an active ingredient, in common with the two
  • cyclo L- phenylalanine -L- proline
  • cis -cyclo L-Phe -L-Pro
  • the present invention comprises the steps of (a) culturing the lactic acid bacteria to prepare a lactic acid bacteria culture medium; And (b) concentrating the cis- cyclo (L-phenylalanine-L-proline) in the culture medium at an effective concentration for antifungal, wherein the method for producing an antifungal agent against fungi of Genus Ganoderma . to provide.
  • Lactic acid bacteria in step (a) in the present invention Phedi OKO kusu in (Pediococcus), Lactobacillus (Lactobacillus) and is in flow Pocono stock in lactic acid bacteria selected from the group consisting of (Leuconostoc) or more.
  • the Pediococcus spp. Is Pediococcus pentosaceus , Pediococcus asidyllactic acid ( Pediococcus acidilactici , Pediococcus cellicola , Pediococcus claussenii , Pediococcus damnosus , Pediococcus ethanolidurans Pediococcus ethanolidurans the blood or tooth (Pediococcus inopinatus), Phedi OKO kusu wave bulruseu (Pediococcus parvulus) and Phedi OKO kusu steel Lacey (Pediococcus stilesii) comprises a group of one or more lactic acid bacteria selected from the genus Phedi OKO kus
  • the Lactobacillus genus is Lactobacillus plantarum , Lactobacillus kimchii , Lactobacillus kimchii , Lactobacillus rhamnosus ( Lactobacillus rhamnosus ), Lactobacillus casei , Lactobacillus acidophilus , Lactobacillus brevis , Lactobacillus Buchyne , Lactobacillus buchneri , Lactobacillus pertusum L.
  • Lactobacillus helveticus Lactobacillus reuteri and Lactobacillus sakei
  • one or more Lactobacillus genus lactic acid bacteria selected from the group consisting of. More preferably, the genus Lactobacillus is Lactobacillus plantarum bacteria.
  • the genus Leukono stock bacteria are leukonostock mesenteroides ( Leuconostoc mesenteroides ), Ryukono Stock Kimchi ( Leuconostoc kimchii ), Leukonostock lactis ( Leuconostoc lactis ), Due to leukonostock ( Leuconostoc inhae ), Leukonostock Gelidum ( Leuconostoc gelidum ), Leukonostock Paramesenteroides ( Leuconostoc paramesenteroides ), Leukonostock Citrium ( Leuconostoc citreum ), Leukono stock pseudometheroides Leuconostoc pseudomesenteroides ) And leukonostock Holzappelli ( Leuconostoc holzapfelii Lactic acid bacteria of the genus Lyukonostok selected from the group
  • step of preparing the lactic acid bacteria culture medium in step (a) can be carried out using a medium composition and additives available in the art.
  • Step of concentration in step (b) from the culture broth in the present invention are cis-bicyclo (L- phenylalanine -L- proline) (cis -cyclo (L-Phe -L-Pro)) and the separation step of purification by concentration or Concentrating the culture comprising cis- cyclo (L-phenylalanine-L-proline).
  • step (b) of the present invention Separation and purification of cis- cyclo (L-phenylalanine-L-proline) in step (b) of the present invention is carried out through various known methods.
  • fractions obtained by passing the water through an ultrafiltration membrane having a constant molecular weight cut-off value separation by various chromatography (manufactured for separation according to size, charge, hydrophobicity or affinity), etc. It is carried out through the purification method.
  • concentration of an effective concentration means that the lactic acid bacteria culture medium containing cis- cyclo (L-phenylalanine-L-proline) or cis- cyclo (L-phenylalanine-L-proline) is genus Ganoderma . It means to concentrate to the concentration showing the antifungal activity against the fungi of.
  • the cis-bicyclo (L- phenylalanine -L- proline) or the sheath contained in the culture-cell density of nenseu (Ganoderma boninense) effective Kano Thomas I of cyclo (L- phenylalanine -L- proline) is 50.24 mm 2 ( 16 ⁇ ) at 6.82 mM (20.47 ⁇ mol / 3 ml medium).
  • the present invention provides a system including the above-mentioned antifungal composition because it is a method of producing cyclo (L- phenylalanine -L- proline) (cis -cyclo (L-Phe -L-Pro)), the common information and the two are present Omitted to avoid undue description of the specification.
  • the present invention includes cis- cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L-Pro)) as an active ingredient and against fungi of Genus Ganoderma . It provides an antifungal composition, agrochemical composition and antifungal production method for fungi of genus Ganoderma, characterized by having specific antifungal activity.
  • the present invention exhibits excellent antifungal activity against the fungi of Genus Ganoderma , and thus the need for the removal and prevention of fungi (particularly, Ganoderma boninense fungi) in Ganoderma genus . It can be applied to various industrial fields, and in particular, since it shows antifungal activity even in a small amount, it has economic advantages in terms of use.
  • the present invention also provides basic data as biological agents for cis- cyclo (L-phenylalanine-L-proline) in the pesticide industry using biological agents.
  • Disc 1 is a result of comparing the antimicrobial activity in the plant extract.
  • the disk containing the culture solution was prepared as follows.
  • Disc 1 is Wishella Sibaria ( W. cibaria ) LBP-B06 medium containing the culture medium
  • disk 2 is Lactobacillus sakei ( L. sakei )
  • disk 3 is Lactobacillus kimchi ( L. kimchii ) LBP-B02 medium containing the culture medium
  • disc 4 is Lactobacillus plantarum ( Lb. plantarum )
  • the disk 5 is Lactobacillus citreum LBP-K11 ( L.
  • LBP-K11 citreum LBP-K11
  • disk 6 is Leukonostock Mesenteroides LBP-K06 ( L. mesenteroides LBP-K06) is a disk containing the culture.
  • the left panel is Bacillus subtilis ( Bacillus subtilis )
  • the right panel shows Escherichia coli ( Escherichia coli ) It is the result using the indicator strain. All experiments were performed three times independently.
  • Lactobacillus plantarum The normal growth of LBP-K10 is a graph showing the absorbance and pH change at 600 nm. After 28 hours, pH (closed circle) and OD 600 (open circle) was maintained for 2 weeks and the pH was kept at pH 3.8 (left panel). In addition, Lactobacillus plantarum Changes in the antimicrobial activity during normal growth of LBP-K10 were observed by a disk diffusion assay (right panel). I was.
  • Figure 5 shows the characteristics of the culture medium having the effect of a non-protein antimicrobial when treated with proteolytic enzymes.
  • Various anti-proteinases were treated to observe antimicrobial activity.
  • Proteinase K and chymotrypsin were treated in the culture medium, wherein the culture medium was treated with YM-1 cut-off (YM1C) and YM-1 supernatant (YM1S), and as a control, as described in the following Examples based on molecular weight 1,000. The experiment was divided.
  • a is CH 2 Cl 2 Antibacterial activity of the supernatant after extraction with (methylene chloride)
  • b is CH 2 Cl 2 Shows the antimicrobial activity of the culture supernatant
  • c is CH 2 Cl 2 It shows the antibacterial activity of the lower layer solution extracted with (methylene chloride).
  • FIG. 7 shows the results of semi-prep HPLC analysis of Lactobacillus plantarum LBP-K10 using ZORBAX C18 octadedosil silica hydrophobic resin. Each fraction was collected by liquid-liquid extraction. These analyzes were recorded at ultraviolet wavelengths 210, 260 and 280 nm, respectively. All fractionated materials could be divided into about 10 each. The ten fractionated materials thus collected were collected and concentrated as described in the Examples below.
  • Candida albicas ( Candida albicans ) Cells were seeded on SD agar plates, which were minimal nutrient medium, and growth was observed for 3 days at 28 ° C. (Initially inoculated Candida cells were 1 ⁇ 10 per well). 4 dog).
  • FIG. 13 is a result of chromatograms of substances fractionated from various lactic acid bacteria identified separately.
  • Semi-prep HPLC chromatograms of the various lactic acid bacteria strains identified using the same extraction method were observed.
  • the strains used in this experiment were Pediococcus pentosaceus MCPP, Leukonostock mesenteroides LBP-K06, Lactobacillus plantarum LBP-K10, Weilscilla sibaria ( Weissella cibaria ) LBP-K15, WelCella Confusa ( Weissella confusa LBP-K16, Lactobacillus sakei ( Lactobacillus sakei ) LBP-S01, Lactobacillus plantarum / pentos ( Lactobacillus plantarum / pentos LBP-S02, lactococcus lactis ( Lactococcus lactis LBP-S03, lactococcus lactis ( Lactococcus lac
  • FIG. 14 shows the results of analyzing N10 of Lactobacillus plantarum LBP-K10 using electron ionization (EI).
  • FIG. 15 is a result of analyzing N10 of Lactobacillus plantarum LBP-K10 using chemical ionization (CI).
  • FIG. 16 shows the results of analyzing N10 of Lactobacillus plantarum LBP-K10 using 1 H-nuclear magnetic resonance method (500 MHz, in 100% DMSO).
  • FIG. 17 shows the results of 2D HSQC analysis using 1 H / 13 C nuclear magnetic resonance (600 MHz, in 100% MeOD) at N10 of Lactobacillus plantarum LBP-K10.
  • FIG. 22 finally shows the structure of P10 isolated from Lactobacillus plantarum LBP-K10.
  • Separate antifungal material is C 14 H 16 O 2 system with the molecular formula N 2 - was confirmed by cycloalkyl (L- phenylalanine -L- proline) (cis -cyclo (L-Phe -L-Pro).
  • Various lactic acid bacteria were separated into fresh kimchi, dolmul kimchi and Chinese cabbage kimchi. Each of the prepared materials was ground with a blender, and freshly divided kimchi and dolmen kimchi with and without 5% NaCl and stored at 4 ° C, 22 ° C and 30 ° C, respectively. All plant experimental groups were sampled for 30 days at intervals of one day, and the concentration of each experimental group was appropriately diluted in sterile distilled water and plated on MRS (de Mann Rogosa Sharpe) solid medium, which is a lactic acid bacteria separation medium, and then, at 30 ° C. Incubate for about 3 days. After incubation, the well-separated cells were selected and subjected to 16s rDNA sequencing, and cultured in liquid MRS medium for comparison with genomic information.
  • MRS de Mann Rogosa Sharpe
  • lactic acid bacteria were identified by 16S rDNA sequencing to identify lactic acid bacteria isolated from fermented plants.
  • Primers for PCR include primers targeting general sedative bacteria, 27F (5'-AGA GTT TGA TCM TGG CTC AG-3 '(SEQ ID NO: 1) and 1492R (5'-GGY TAC CTT) GTT ACG ACT T-3 '(SEQ ID NO: 2))
  • the PCR reaction was subjected to pre-denaturation for 5 minutes at 94 ° C., followed by denaturation at 94 ° C. for 1 minute. ), Annealing at 55 ° C. for 1 minute, and extension at 1 minute at 72 ° C.
  • 16S rDNA amplified by 0.7% agarose gel electrophoresis after polymerase chain reaction, and DNA sequencing was analyzed. The homology of 16S rDNA sequencing of selected strains was determined by NCBI's nucleotide BLAST program. Comparison was made using http://www.ncbi.nlm.nih.gov .
  • Lactobacillus plantarum LBP-K10 Lactobacillus plantarum LBP-K10 identified from Chinese cabbage kimchi was used as the main strain.
  • Pediococcus pentosaceus As a lactic acid bacterium used to find antibacterial substances, Pediococcus pentosaceus ( Pediococcus pentosaceus ) , Lactobacillus plantar room Lactobacillus plantarum ) And leukonostock mesenteroides ( Leuconostoc mesenteroides ), And as an indicator strain for measuring antimicrobial activity, Escherichia coli ( Escherichia coli ), Bacillus subtilis ( Bacillus subtilis ), Salmonella typhimurium ( Salmonella typhimurium ), Shigella Sonei ( Shigella sonnei ), Staphylococcus Areus ( Staphylococcus areus ) And Listeria innocua Listeria innocua ) And the like.
  • Escherichia coli Escherichia coli
  • Bacillus subtilis Bacillus subtilis
  • Salmonella typhimurium Salmonella
  • seed inoculums seed inoculums inoculated with an appropriate amount of lactic acid bacteria in MRS broth were used, and the seed strains were inoculated again to 0.1-0.2% in MRS liquid medium and then cultured at 30 ° C. for 3 days.
  • Listeria genus Listeria Most pathogenic strains were cultured in Luria-Bertani (LB) broth, except Listia spp. It was.
  • the medium dilution method was prepared by concentrating the culture solution, and then examined the antibacterial activity of the lactic acid bacteria culture medium through serial dilution.
  • Antagonism is an experiment to determine the antimicrobial activity of lactic acid bacteria. After lactic acid bacteria used in the experiment for 24 hours to measure the absorbance at 600 nm was adjusted to 1 and 1 ml dropping in MRS medium was incubated at 30 °C for 24 hours. The indicator strain incubated for 3-5 hours in advance was mixed with 1% soft agar and overlayed, and then incubated at an appropriate temperature for the indicator strain for 24 hours. The presence or absence of antimicrobial activity was confirmed by confirming the growth inhibitory ring produced after the culture.
  • the culture medium and the antimicrobial material were dipped on a 6 mm paper disk (Toyo Roshi kaisha, ltd), and the indicator strain was prepared by incubating for 3-5 hours.
  • Inoculant was inoculated with 1% of indicator strain in liquid agar in a liquid state, and then the disk was placed and incubated at the incubation temperature of the indicator strain for 24 hours.
  • the antimicrobial activity was confirmed through the diameter (mm) of the growth resistant ring produced after the culture.
  • Lactobacillus plantarum grown overnight LBP-K10 was inoculated at 1.0% in modified MRS broth and cultured at 30 °. After inoculation, absorbance was measured at 600 nm every 4 hours until entering the stationary phase. After centrifugation, the supernatant was obtained to measure pH and antibacterial activity. Antimicrobial activity over time was obtained by a disk diffusion method once every 24 hours for a week after inoculation.
  • Lactobacillus plantarum to investigate the effect of heat on antimicrobial substances The day 3 culture of LBP-K10 was heat treated by heating or sterilizing at 100 ° C. for 60 minutes and 120 minutes and at 121 ° C. for 15 minutes, respectively. In addition, after heating to room temperature, the culture medium that was not heat treated as a control was used as a control, the antimicrobial activity was measured by the disk diffusion method.
  • Lactobacillus plantarum Modified MRS was used to separate antifungal material from LBP-K10.
  • mMRS is 10 g of peptone per liter, (NH 4 ) 2 HC 6 H 5 O 7 2 g, NaC 2 H 3 O 2 5 g, MnSO 4 0.1 g, MnSO 4 (H 2 O) 0.05 g, K 2 HPO 4 2 g, 5 g of yeast extract and 20 g of glucose were made and glucose was isolated and sterilized.
  • Lactobacillus plantarum LBP-K10 was incubated in mMRS for 3 days at 30 ° C and centrifuged at 8,000 rpm for 30 minutes. Experiment).
  • the culture solution was freeze-dried and concentrated about 10 times, and then liquid-liquid extraction was performed with 5 times the concentration of CH 2 Cl 2 (methylene chloride).
  • CH 2 Cl 2 methylene chloride
  • the mixture of the culture solution and CH 2 Cl 2 was stored at room temperature for one day, and then allowed to stand until the aqueous solution layer and the organic solvent layer were separated using a separatory funnel. When the layers were separated well, the stopper was opened, the CH 2 Cl 2 layer was taken out, and the organic solvent was removed at 55 ° C. using an evaporator. Aqueous solutions were also received separately and used for experiments comparing antifungal activity. The organic solvent was removed and the remaining extract (MCK10) was dissolved in an appropriate amount of distilled water and filtered through a 0.22 ⁇ m filter.
  • This eluate was separated again by eluting with 100% methyl alcohol through an SPE cartridge using C18 SPE (Solid phase extraction; Waters Sep-pak C18 plus cartridge, Millipore Corp., Marlborou, Mass.).
  • the SPE cartridge was activated with 100% methyl alcohol and washed with 100% distilled water before passing the liquid material to elute.
  • the solution to be eluted was then passed through SPE and washed again with 100% distilled water.
  • the eluted solution was collected by passing SPE colum through 100% methyl alcohol, and the organic solvent was concentrated by evaporating an organic solvent through an evaporator and then dissolved in an appropriate amount in 100% sterilized water.
  • the filtered MCK10 culture was filtered through a 0.22 ⁇ m acetate cellulose membrane for analysis of antifungal substances, and then analyzed and separated through a high-performance liquid chromatography (semi-prep HPLC system, Agilent 1200 series, USA) analysis equipment based on the filtrate. And an ODS C-18 column (octadedosyl-C18 hydrophobic semi-preparative column; 9.4 x 250 mm, Agilent, USA) was analyzed using reverse phase high pressure liquid chromatography. The temperature of the column was kept constant at 40 ° C. and the mobile phase was operated for 35 minutes under conditions of 67% tertiary distilled water, 30% methanol and 3% acetonitrile.
  • Each fraction material separated through a high performance liquid chromatography system was collected and concentrated using a lyophilizer and antifungal activity was measured using a 6 well cell culture plate (SPL Lifescience, Korea). Antifungal activity was measured by applying two strains, Candida albicans and Ganoderma boninense , to the 6-well plate.
  • the antifungal activity was measured by using the same method as Korea, and the higher activity among the materials separated by peaks was obtained in a single peak after more detailed separation according to the aforementioned method, followed by GC-MS, elemental analysis and NMR structure analysis. was used for the structural analysis.
  • a 1.0 mg sample of pure material isolated from Lactobacillus plantarum was dissolved in 0.6 ml dimethyl sulfoxide (DMSO) containing D 2 O and D 2 O, and then the proton and carbon structures, the bonds, and the sequence of binding were analyzed by NMR spectroscopy. It was confirmed using.
  • the wavelength used for nuclear magnetic resonance was measured using a Bruker AVANCE-500 spectrometer equipped with a 300 K CryoProbe16 using XWIN-NMR 3.5 software. [20,38,39] All two-dimensional nuclear magnetic resonance methods were subjected to Bruker's standard pulse sequence. The results by nuclear magnetic resonance analysis were analyzed using the XWIN-NMR 3.5 software package (Karlsruhe, Germany).
  • Nuclear magnetic resonance is a Z gradient, using a 5 mm broadband inverse detector (BBI) for proton nuclear magnetic resonance at a frequency of 500.13 MHz, and carbon nuclear magnetic resonance at a frequency of 125.77 MHz for the AVANCE 500 spectrometer (Bruker). -Biospin). All nuclear magnetic resonance wavelengths were recorded at 293 K in heavy water, including heavy water and DMSO.
  • An elemental analyzer (CE Instruments EA1110, EA1112) was used to analyze the constituent elements of the purely isolated material in Lactobacillus plantarum. Elemental analyzers were performed for carbon, hydrogen, oxygen and nitrogen analysis. It was also used for the explosive evaluation through oxygen balance (OB). Oxygen balance was calculated through element ratios such as carbon, hydrogen, oxygen and nitrogen.
  • Crystal structure analysis using X-ray diffraction was performed to investigate the three-dimensional structure of the purely separated material in Lactobacillus plantarum.
  • 20.0 mg of the separated material sample was dissolved in 35% ethyl alcohol and 65% CH 2 Cl 2, and then left in a dehumidifying dryer to observe the crystallization process.
  • the resulting sample crystals were obtained at a wavelength of 1.6 ⁇ through a Bruker Proteum 300 CCD at Beamline 6B in Pohang Accelerator Laboratory.
  • lactic acid bacteria were isolated from various Korean botanical materials, gat kimchi, sedum kimchi and general kimchi.
  • a total of 400 lactic acid bacteria were isolated from these plant materials, and 200 strains with antifungal activity were selected through an antagonism method.
  • Selected strains were subjected to PCR to identify via 16S rDNA sequencing.
  • strains of the genus Leukonostok, Lactobacillus, Lactococcus and Weissella were isolated and identified as a whole (Table 1).
  • the genus Ryuconostock and Lactobacillus were separated, and Lactobacillus Lactobacillus was also isolated from.
  • the genus Ryuconosstock was mainly isolated between 1-2 days of fermentation, and as time passed (2-3 days), Lactobacillus genus was isolated as a major lactic acid bacteria strain.
  • Lactic acid bacteria have antimicrobial activity by producing a variety of secondary metabolites in growth.
  • the antimicrobial activity of each strain was compared through the antagonism method and the broth microdilution method (Table 2). .
  • test strain an indicator strain used in the antibacterial activity test of lactic acid bacteria, Escherichia coli (Gram negative bacteria) Escherichia coli ) And Gram-positive bacteria Bacillus subtilis ( Bacillu subtilis ) was used.
  • Escherichia coli Gram negative bacteria
  • Bacillus subtilis Bacillu subtilis
  • Figure 1 Lactobacillus plantarum among the lactic acid bacteria identified through the above experiments It was confirmed that the best activity of LBP-K10. Therefore, in this experiment, Pediococcus pentosaceus ( Pediococcus pentosaceus ), Leukonostock Mesenteroides LBP-K06 and Lactobacillus plantarum Future experiments were conducted using LBP-K10 as the experimental strain.
  • a means diameter indicating an antimicrobial activity range (indicator strain: Bacillus subtilis). + Means diameter ⁇ 15 mm, ++ means diameter ⁇ 22 mm, and +++ means diameter ⁇ 22 mm.
  • b is the minimum inhibitory concentration (MIC).
  • c means the magnification of the minimum inhibitory concentration. + Means 1 fold, ++ means 0.5 fold, +++ means 0.25 fold (indicator strain: Bacillus subtilis).
  • the 16S rDNA sequence of Lactobacillus plantarum LBP-K10 was compared with the base sequence of NCBI using the BLAST program, and found to be 100% identical to that of Lactobacillus plantarum IMAU10173 (data not shown).
  • the OD 600 value was observed simultaneously for 28 hours, which showed a significant change in pH and the growth of lactic acid bacteria (left panel of FIG. 2).
  • Growth and pH change were inversely proportional to each other. In the case of growth curve, it was entered into the log phase from 8 hours after inoculation, and after 28 hours, it was confirmed to be in stagnant phase. After entering the plateau, it was confirmed that the pH value remained almost constant, and the growth was also constant (left panel of FIG. 2).
  • Lactobacillus plantarum In order to determine whether LBP-K10 has an antimicrobial activity against pathogenic bacteria, the antimicrobial activity was confirmed through a disk diffusion method as described above for various strains (FIG. 3). Lactobacillus plantarum performed here Culture of LBP-K10 was performed by performing a total of three independent disk diffusion method to determine the growth inhibition ring (mm) activity for each strain.
  • Lactobacillus plantarum The culture medium of LBP-K10 was Bacillus subtilis ( Bacillus subtilis ), Staphylococcus aureus ( Staphylococcus aureus ) And Listeria innocua Listeria innocua Salmonella typhimurium (as well as Gram-positive bacteria) Salmonella typhimuruium ), Shigella Sonei ( Shigella sonnei ), Streptococcus pneumoniae ( Streptococcus pneumonia ) And Escherichia coli ( Escherichia coli Gram-negative bacteria such as), and Candida albicans ( Candida albicans Activity was also observed in fungi such as) (FIG. 3).
  • the experiment was performed after the enzyme was treated in the culture solution (FIG. 5). The cultures were incubated for 72 hours for the experiment, and before the enzyme treatment, the cultures were cut off with acetate membrane YM-1 (Amicon, USA) to separate the proteinaceous and nonproteinaceous portions, It divided into the above.
  • protease proteinase K, chymotrypsin and trypsin
  • a sample (YM1S) having a molecular weight of 1000 or more and a sample (YM1C) having a molecular weight of 1000 or less were prepared as a culture solution (CS) and an experimental group, and the final concentrations of the enzymes were treated to 1 mg / ml. .
  • CS culture solution
  • YM1C sample having a molecular weight of 1000 or less
  • the experimental group prepared through such a pretreatment process was concentrated to an appropriate amount of the fractions fractionated in the semi-prep HPLC chromatogram and carried out an antimicrobial activity experiment, and identified 10 fractions in the chromatogram of Lactobacillus plantarum. And, the peaks coming out during each time period were collected by fractionation to check the antimicrobial activity of each fraction (Fig. 7 and Table 3).
  • Indicator strain MIC a Fraction Cell class identified by nucleotide sequence Bacillus subtilis +++ M8 Lc. mesenteroides LBP-K06 +++ N8 Lb. plantarum LBP-K10 +++ P8 P. pentosaceus MCPP Escherichia collie ++ M8 Lc. mesenteroides Staphylococcus aureus ++ M8 Lc. mesenteroides Streptococcus pneumoniae ++ M8 Lc. mesenteroides Shigella descenteri ++ M8 Lc.mesenteroides
  • P10, N10 and M10 of Pediococcus pentosaceus, Lactobacillus plantarum and Leukonostock mesenteroides isolated by HPLC were prepared in powder form with a freeze dryer to analyze the structure of the antifungal substance.
  • Molecular weight was determined by direct chromatography (DIP, Direct Insertion Probe) as described in Experimental Materials and Methods (Agilent 6890 series GC, Agilent Technologies, Waldron, Germany; high-resolution mass spectrometer, JEOL JMS-700, Tokyo , Japan) (GC-MS) and analyzed (Figs. 14 to 15).
  • EI electron ionization
  • CI chemical ionization
  • crystal structure analysis results using X-ray diffraction and various structure analysis results were cis-cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L) having a structure of C 14 H 16 O 2 N 2 . -Pro)) (Figs. 20 and 21).
  • the final chemical structures of P10, N10 and M10 of Pediococcus pentosaceus, Lactobacillus plantarum and Leukonostock mesenteroides isolated by HPLC to analyze the structure of the antifungal substance are shown in FIG. 22.
  • Lactobacillus plantarium Mi-LAB 393 produce the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol. 68: 4322-4327.
  • Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol. 68: 4322-4327.
  • Lactobacillus plantarum inhibits growth of Listeria monocytogenes in an in vitro continuous flow gut model, but promotes invasion of L. monocytogenes in the gut of gnotobiotic rats. Int J Food Microbiol. 108: 10-14.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Epidemiology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention provides an antifungal composition comprising cis-cyclo(L-Phe-L-Pro) as an active ingredient and having Genus Ganoderma fungus-specific antifungal activity, an insecticide composition, and a method for producing an antifungal agent for Genus Ganoderma fungi. The present invention exhibits superior antifungal activity to the Genus Ganoderma fungi (especially, to Ganoderma boninense fungi) and thus can be applied to various industrial fields requiring removal and prevention of Genus Ganoderma fungi, and is economically advantageous in terms of usage due to the antifungal activity even with a small amount. In addition, the present invention provides basic material as a biological agent regarding cis-cyclo(L-Phe-L-Pro) to the insecticide industry which uses biological agents.

Description

[규칙 제26조에 의한 보정 16.09.2011] 가노더마 속의 진균에 대하여 특이적인 항진균 활성을 가지는 시스-사이클로(L-페닐알라닌-L-프롤린)을 포함하는 항진균용 조성물[Correction 16.09.2011] according to Rule 26. Antifungal composition comprising cis-cyclo (L-phenylalanine-L-proline) having specific antifungal activity against fungi in genus ganoderma
본 발명은 시스-사이클로(L-페닐알라닌-L-프롤린)의 신규한 용도에 관한 것이다. 보다 구체적으로는, 본 발명은 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))을 유효성분으로 포함하고, 가노더마 속(Genus Ganoderma)의 진균에 대하여 특이적인 항진균 활성을 가지는 것을 특징으로 하는 항진균용 조성물에 관한 것이다.The present invention relates to novel uses of cis- cyclo (L-phenylalanine-L-proline). More specifically, the present invention includes cis- cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L-Pro)) as an active ingredient, and the fungus of genus Ganoderma It relates to an antifungal composition characterized by having a specific antifungal activity.
일반적으로, 젖산 발효 효능은 주로 유기산 축적과 기질 산화에 의존을 받는다.[1,2,3] 아세트알데히드, 디아세틸 화합물, 과산화수소 및 이산화탄소와 같은 대사산물은 박테리아균, 병원균 및 부패균의 성장을 억제하는데 중요하다.[1,2,3] 또한, 비-단백질 기질이 그람 양성균과 곰팡이균뿐 만 아니라 그람 음성균을 억제시키는 것으로 보고되었다.[4] In general, lactic acid fermentation efficacy depends primarily on organic acid accumulation and substrate oxidation. [1,2,3] Metabolites such as acetaldehyde, diacetyl compounds, hydrogen peroxide and carbon dioxide are important for inhibiting the growth of bacteria, pathogens and rot. [1,2,3] It has also been reported that non-protein substrates inhibit Gram-negative bacteria as well as Gram-positive and fungal bacteria. [4]
최초 저분자량 항생제인 류테리사이클린(Reutericyclin)은 발효빵으로부터 분리된 락토바실러스 레우테리 LTH2584(Lactobacillus reuteri LTH2584)로부터 정제되었다. 류테리사이클린은 그람양성균, 그람음성균, 효모균 및 곰팡이와 같은 미생물에 다소 민감하다.[5] 젖산균 또는 유산균(Lactic acid bacteria: LAB)은 오랜 시간 동안 인류 및 동물에 있어 다양한 식량으로 이용되어 왔으며, 효모처럼 음식 발효, 보관 및 저장에 있어서 유용하였다.[1,2,3] The first low molecular weight antibiotic, Reutericyclin, was purified from Lactobacillus reuteri LTH2584 isolated from fermented bread. Ryutercycline is somewhat sensitive to microorganisms such as Gram-positive bacteria, Gram-negative bacteria, yeasts and fungi. [5] Lactic acid bacteria (LAB) have been used for a long time in various foods for humans and animals, and they are useful for fermenting, storing and storing food like yeast. [1,2,3]
LAB는 일반적으로 세포외 길항제 화합물을 분비하여 많은 미생물과 대항하며, 내재성 대사 부산물에 의하여 세포외 환경을 변화시킨다.[6] LAB에 의하여 배설되는 화합물 중에서 다양한 종류의 항균 대사산물은 1000이하의 저분자량 화합물과 1000이하로 평가된 분자량을 가진 박테리오신(bacteriocins)로 분류될 수 있다.[7] LAB에 의한 항균활성에 대한 많은 연구들은 박테리오신에 초점을 맞추었다. LAB가 생산하는 박테리오신은 활성, 작용 모드, 분자량, 유전적 기원 및 생화학적 특성 측면에서 폭 넓은 스펙트럼에 따라 차이를 나타내는 항균 펩타이드와 단백질의 이종(heterogeneous) 그룹 중 한 종류이며,[8,9] 이러한 부류의 펩타이드와 단백질은 성숙 펩타이드(peptide) 및 프리펩타이드(prepeptide)의 서열을 기초로 3개로 분류되었다.[10,11,12,13] LABs generally secrete extracellular antagonist compounds to combat many microorganisms and alter the extracellular environment by endogenous metabolite byproducts. [6] Among the compounds excreted by LAB, various kinds of antimicrobial metabolites can be classified into bacteriocins having low molecular weight of less than 1000 and molecular weights of less than 1000. [7] Many studies of antimicrobial activity by LAB have focused on bacteriocins. The bacteriocin produced by LAB is one of a heterogeneous group of antimicrobial peptides and proteins that varies over a broad spectrum in terms of activity, mode of action, molecular weight, genetic origin and biochemical properties, [8,9] This class of peptides and proteins has been classified into three groups based on the sequence of mature peptides and prepeptides. [10,11,12,13]
페디오신은 페디오코쿠스 펜토사세우스(Pediococcus pentosaceus)에 의하여 생산된 것으로 알려져 있는 박테리오신의 한 종류이다.[14] 대부분의 이와 같은 화합물들은 양이온성 분자와 작은 크기의 기질들이 포함된다.[15] 그리고 이런 화합물들은 일반적으로 바실러스 서브틸리스(Bacillus subtilis), 리스테리아 종(Listeria species) 및 스타필로코쿠스 아우레우스(Staphylococcus aureus)와 같은 그람 양성 몇몇 병원성 균주를 죽일 수 있다.[16,17,18] 또한, 어떤 박테리오신은 대장균(Escherichia coli)과 살모넬라 속과 같은 식품 병원성 균주들을 죽일 수 있다.[19] 지금까지는 사이클릭 다이펩타이드인 프롤린-함유 2,5-디케토피페라진(Proline-containing 2,5-diketopiperazine)이 집중적으로 연구 조사되어져 왔다.[6,20,22,23,24,25,26,27] 이러한 많은 사이클릭 또는 사이클로 다이펩타이드들은 많은 생물학적 이벤트와 현상 측면에서 기질로서 작용하는 것으로 여겨져 왔다.[22,23,24,25,26] 특히, 이와 같은 사이클릭 다이펩타이드의 잠재적인 치료 및 예방 효능은 박테라아균, 곰팡이균, 바이러스 및 암에 대하여 다양한 항생 활성들을 가지는 것으로 판명되었다.[6,23,26,27,28] 또한, 이러한 항균성 사이클릭 다이펩타이드들은 효모, 지의류 및 곰팡이 배양에서 확인되었다.[20,29] 스트렙토마이스 종으로부터 사이클로(1-류실-1-프로필)과 사이클로(1-페닐알라닐-1-프롤릴)의 분리는 이미 보고되었다.[20,24,25,29] 항균 활성 사이클릭 펩타이드들은 자연계 어디에서나 존재하며 인간을 위한 생물학적 타겟의 폭 넓은 다양성에 영향을 미친다.[22,23,25] Pediosin is a type of bacteriocin known to be produced by Pediococcus pentosaceus . [14] Most of these compounds contain cationic molecules and small sized substrates. [15], and these compounds may generally kill several gram positive pathogenic strains, such as Bacillus subtilis (Bacillus subtilis), Listeria species (Listeria species) and Staphylococcus aureus (Staphylococcus aureus). [16,17,18] In addition, some bacteriocins can kill food pathogenic strains such as Escherichia coli and Salmonella spp. [19] Proline-containing 2,5-diketopiperazine, a cyclic dipeptide, has been intensively investigated. [6,20,22,23,24,25,26,27] Many of these cyclic or cyclodipeptides have been considered to act as substrates in terms of many biological events and phenomena. [22,23,24,25,26] In particular, the potential therapeutic and prophylactic efficacy of such cyclic dipeptides has been shown to have a variety of antibiotic activities against Bacteria, fungi, viruses and cancer. [6,23,26,27,28] These antimicrobial cyclic dipeptides have also been identified in yeast, lichen and fungal cultures. [20,29] Separation of cyclo (1-leusil-1-propyl) and cyclo (1-phenylalanyl-1-prolyl) from Streptomyces species has already been reported. [20,24,25,29] Antimicrobially active cyclic peptides exist everywhere in nature and influence the wide variety of biological targets for humans. [22,23,25]
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Throughout this specification, many papers and patent documents are referenced and their citations are indicated. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly explained.
본 발명자들은 진균, 특히 가노더마 속(Genus Ganoderma)의 진균에 대하여 우수한 항진균 활성을 가지는 신규한 물질을 찾고자 노력하였다. 그 결과, 다이펩타이드 중 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))이 가노더마 속(Genus Ganoderma)의 진균에 대하여 우수한 항진균 활성을 나타냄을 규명함으로써, 본 발명을 완성하게 되었다.The inventors have sought to find novel substances having good antifungal activity against fungi, particularly fungi of the genus Ganoderma . A cycloalkyl (L- phenylalanine -L- proline) represents the (cis -cyclo (L-Phe- L-Pro)) having excellent antifungal activity against fungi of the genus Kano Derma (Genus Ganoderma) - As a result, the dipeptide of cis By clarifying, this invention was completed.
따라서, 본 발명의 목적은 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))을 유효성분으로 포함하고, 가노더마 속(Genus Ganoderma)의 진균에 대하여 특이적인 항진균 활성을 가지는 것을 특징으로 하는 항진균용 조성물을 제공하는 것을 목적으로 한다.Therefore, an object of the present invention comprises cis- cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L-Pro)) as an active ingredient, and to the fungus of genus Ganoderma It is an object of the present invention to provide an antifungal composition characterized by having specific antifungal activity.
본 발명의 또 다른 목적은 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))을 유효성분으로 포함하고, 가노더마 속(Genus Ganoderma)의 진균에 대하여 특이적인 항진균 활성을 가지는 것을 특징으로 하는 농약 조성물을 제공하는 것을 목적으로 한다.Another object of the present invention comprises cis- cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L-Pro)) as an active ingredient, and to the fungus of genus Ganoderma It is an object of the present invention to provide a pesticide composition characterized by having specific antifungal activity.
본 발명의 또 다른 목적은 가노더마 속(Genus Ganoderma)의 진균에 대한 항진균제의 생산 방법을 제공하는 것을 목적으로 한다.Still another object of the present invention is to provide a method for producing an antifungal agent against fungi of genus Ganoderma .
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
본 발명의 일 양태에 따르면, 본 발명은 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))을 유효성분으로 포함하고, 가노더마 속(Genus Ganoderma)의 진균에 대하여 특이적인 항진균 활성을 가지는 것을 특징으로 하는 항진균용 조성물을 제공한다.According to an aspect of the present invention, the present invention comprises cis- cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L-Pro)) as an active ingredient, Genus Ganoderma It provides an antifungal composition, characterized in that it has a specific antifungal activity against the fungi.
본 발명자들은 진균, 특히 가노더마 속(Genus Ganoderma)의 진균에 대하여 우수한 항진균 활성을 가지는 신규한 물질을 찾고자 노력하였다. 그 결과, 다이펩타이드 중 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))이 가노더마 속(Genus Ganoderma)의 진균에 대하여 우수한 항진균 활성을 나타냄을 규명함으로써, 본 발명을 완성하게 되었다.The inventors have sought to find novel substances having good antifungal activity against fungi, particularly fungi of the genus Ganoderma . A cycloalkyl (L- phenylalanine -L- proline) represents the (cis -cyclo (L-Phe- L-Pro)) having excellent antifungal activity against fungi of the genus Kano Derma (Genus Ganoderma) - As a result, the dipeptide of cis By clarifying, this invention was completed.
본 발명에서 유효성분으로 포함되는 시스-사이클로(L-페닐알라닌-L-프롤린)은 자연계에 존재하는 시스-사이클로(L-페닐알라닌-L-프롤린)를 포함하며, 시스-사이클로(L-페닐알라닌-L-프롤린)에 대한 화학구조식은 본 발명의 명세서에서의 도 22에 나타내었다. Cis contained as an effective ingredient in the present invention -cycloalkyl (L- phenylalanine -L- proline) are cis in nature - including a cycloalkyl (L- phenylalanine -L- proline), cis-bicyclo (L- -L-phenylalanine Chemical formula for -proline) is shown in FIG. 22 in the context of the present invention.
본 발명은 가노더마 속의 진균에 대하여 우수한 항진균 활성을 가지는 것을 특징으로 한다.The present invention is characterized by having excellent antifungal activity against fungi of genus Ganoderma.
본 발명의 바람직한 구현예에 따르면, 본 발명은 가노더마 보니넨스(Ganoderma boninense), 가노더마 아플라나툼(Ganoderma applanatum) 및 가노더마 조나툼(Ganoderma zonatum)으로 이루진 군으로부터 선택된 하나 이상의 가노더마 속 진균에 대하여 항진균 활성을 가지고, 보다 바람직하게는 가노더마 보니넨스(Ganoderma boninense)에 대하여 항진균 활성을 가진다.According to a preferred embodiment of the present invention, the present invention comprises at least one genus Ganoderma selected from the group consisting of Ganoderma boninense , Ganoderma applanatum and Ganoderma zonatum . It has antifungal activity against fungi, and more preferably has antifungal activity against Ganoderma boninense .
본 발명에서의 유효성분으로서 포함되는 시스-사이클로(L-페닐알라닌-L-프롤린)은 젖산균으로부터 분리된 시스-사이클로(L-페닐알라닌-L-프롤린)을 포함한다. System included as an active ingredient of the present invention -cycloalkyl (L- phenylalanine -L- proline) is a system separated from the lactic acid - include cycloalkyl (L- phenylalanine -L- proline).
바람직하게는, 본 발명에서의 유효성분으로서 포함되는 시스-사이클로(L-페닐알라닌-L-프롤린)은 페디오코쿠스 속(Pediococcus), 락토바실러스(Lactobacillus) 속 및 류코노스톡 속(Leuconostoc)으로 이루어진 군으로부터 선택된 하나 이상의 젖산균으로부터 분리된 것이다.Preferably, cis- cyclo (L-phenylalanine-L-proline) included as an active ingredient in the present invention is composed of the genus Pediococcus , Lactobacillus, and Leuconostoc . It is isolated from one or more lactic acid bacteria selected from the group.
본 발명에서의 유효성분으로서 포함되는 시스-사이클로(L-페닐알라닌-L-프롤린)을 페디오코쿠스 속 젖산균으로부터 분리하는 경우, 페디오코쿠스 속 균은 페디오코쿠스 펜토사세우스(Pediococcus pentosaceus), 페디오코쿠스 아시딜락티시(Pediococcus acidilactici), 페디오코쿠스 셀리콜라(Pediococcus cellicola), 페디오코쿠스 클라우스세니(Pediococcus claussenii), 페디오코쿠스 담노수스(Pediococcus damnosus), 페디오코쿠스 에탄올리듀란스(Pediococcus ethanolidurans), 페디오코쿠스 이노피나투스(Pediococcus inopinatus), 페디오코쿠스 파불루스(Pediococcus parvulus) 및 페디오코쿠스 스틸레시(Pediococcus stilesii)로 이루어진 군으로부터 선택된 하나 이상의 페디오코쿠스 속 젖산균을 포함한다. 바람직하게는, 본 발명에서의 유효성분으로서 포함되는 시스-사이클로(L-페닐알라닌-L-프롤린)을 페디오코쿠스 속 젖산균으로부터 분리하는 경우, 페디오코쿠스 속 균은 페디오코쿠스 펜토사세우스 균이다.When the cis- cyclo (L-phenylalanine-L-proline) included as an active ingredient in the present invention is isolated from the pediccoccus lactic acid bacterium, the bacterium pediococcus is Pediococcus pentosaceus , Pediococcus acidilactici , Pediococcus cellicola , Pediococcus claussenii , Pediococcus damnosus , Pediococcus ethanoliduus Pediococcus ethanolidurans), Phedi OKO to kusu Ino Pina tooth (Pediococcus inopinatus), Phedi OKO kusu wave bulruseu (Pediococcus parvulus) and Phedi OKO kusu steel Lacey (Pediococcus stilesii) comprises a group of one or more Phedi OKO kusu in lactic acid bacteria selected from the consisting of. Preferably, when the cis- cyclo (L-phenylalanine-L-proline) included as an active ingredient in the present invention is isolated from the pepiococcus lactic acid bacterium, the Pediococcus bacterium is Pediococcus pentosaceus bacterium. to be.
본 발명에서의 유효성분으로서 포함되는 시스-사이클로(L-페닐알라닌-L-프롤린)을 락토바실러스 속 젖산균으로부터 분리하는 경우, 락토바실러스 속 젖산균은 락토바실러스 플란타룸(Lactobacillus plantarum), 락토바실러스 김치이(Lactobacillus kimchii), 락토바실러스 람노수스(Lactobacillus rhamnosus), 락토바실러스 카제이(Lactobacillus casei), 락토바실러스 아시도필루스(Lactobacillus acidophilus), 락토바실러스 브레비스(Lactobacillus brevis), 락토바실러스 부치네리(Lactobacillus buchneri), 락토바실러스 퍼멘툼(Lactobacillus fermentum), 락토바실러스 헬베티쿠스(Lactobacillus helveticus), 락토바실러스 레우테리(Lactobacillus reuteri) 및 락토바실러스 사케이(Lactobacillus sakei)로 이루어진 군으로부터 선택된 하나 이상의 락토바실러스 속 젖산균을 포함한다. 바람직하게는, 본 발명에서의 유효성분으로서 포함되는 시스-사이클로(L-페닐알라닌-L-프롤린)을 락토바실러스 속 젖산균으로부터 분리하는 경우, 락토바실러스 속 균은 락토바실러스 플란타룸 균이다.When the cis- cyclo (L-phenylalanine-L-proline) included as an active ingredient in the present invention is isolated from Lactobacillus of Lactobacillus , Lactobacillus of Lactobacillus plantarum ( Lactobacillus plantarum ), Lactobacillus kimchi ( Lactobacillus kimchii ), Lactobacillus rhamnosus , Lactobacillus casei , Lactobacillus acidophilus , Lactobacillus acidophilus , Lactobacillus brevis , Lactobacillus buccinerus Lactobacillus Lactobacillus fermentum , Lactobacillus helveticus ( Lactobacillus helveticus ), Lactobacillus reuteri and Lactobacillus genus Lactic acid bacteria selected from the group consisting of Lactobacillus sakei . . Preferably, when the cis- cyclo (L-phenylalanine-L-proline) included as an active ingredient in the present invention is isolated from Lactobacillus spp., Lactobacillus spp. Is Lactobacillus plantarum.
본 발명에서의 유효성분으로서 포함되는 시스-사이클로(L-페닐알라닌-L-프롤린)을 류코노스톡 속 젖산균으로부터 분리하는 경우, 류코노스톡 속 젖산균은 류코노스톡 메센테로이데스(Leuconostoc mesenteroides), 류코노스톡 김치이(Leuconostoc kimchii), 류코노스톡 락티스(Leuconostoc lactis), 류코노스톡 인해(Leuconostoc inhae), 류코노스톡 겔리둠(Leuconostoc gelidum), 류코노스톡 파라메센테로이데스(Leuconostoc paramesenteroides), 류코노스톡 시트륨(Leuconostoc citreum), 류코노스톡 슈도메센테로이데스(Leuconostoc pseudomesenteroides) 및 류코노스톡 홀쯔아펠리(Leuconostoc holzapfelii)으로 이루어진 군으로부터 선택된 하나 이상의 류코노스톡 속 젖산균을 포함한다. 바람직하게는, 본 발명에서의 유효성분으로서 포함되는 시스-사이클로(L-페닐알라닌-L-프롤린)을 류코노스톡 속 젖산균으로부터 분리하는 경우, 류코노스톡 속 균은 류코노스톡 메센테로이데스이다.Included as an active ingredient in the present inventionSheathWhen cyclo (L-phenylalanine-L-proline) is separated from the lactic acid bacteria of the leuconosstock, the lactic acid bacteria of the leuconosstock areLeuconostoc mesenteroides), Ryukono Stock Kimchi (Leuconostoc kimchii), Leukonostock lactis (Leuconostoc lactis), Due to leukonostock (Leuconostoc inhae), Leukonostock Gelidum (Leuconostoc gelidum), Leukonostock Paramesenteroides (Leuconostoc paramesenteroides), Leukonostock Citrium (Leuconostoc citreum), Leukono stock pseudometheroidesLeuconostoc pseudomesenteroides) And leukonostock Holzappelli (Leuconostoc holzapfeliiLactic acid bacteria of the genus Lyukonostok selected from the group consisting of Preferably, included as an active ingredient in the present inventionSheathWhen cyclo (L-phenylalanine-L-proline) is separated from lactic acid bacteria of the genus Leukonostock, the genus of the genus Leukonostock is leukonostock mesenteroides.
본 발명의 명세서에서 용어 "항진균 활성"은 곰팡이의 성장 억제, 증식 억제 및 사멸 작용을 의미하며, 본 명세서에서는 용어 "진균"은 "곰팡이"와 혼용되어 사용된다.As used herein, the term "antifungal activity" refers to the growth inhibition, growth inhibition and killing action of the fungus, and the term "fungal" is used interchangeably with the "fungus" in the present specification.
본 발명의 다른 양태에 따르면, 본 발명은 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))을 유효성분으로 포함하고, 가노더마 속(Genus Ganoderma)의 진균에 대하여 특이적인 항진균 활성을 가지는 것을 특징으로 하는 농약 조성물을 제공한다.According to another aspect of the present invention, the present invention comprises cis- cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L-Pro)) as an active ingredient, Genus Ganoderma It provides a pesticide composition characterized in that it has a specific antifungal activity against the fungi.
또한, 본 발명의 조성물은 상술한 본 발명의 시스-사이클로(L-페닐알라닌-L-프롤린)의 농약학적 유효량을 포함하는 농약 조성물을 제공한다.The composition of the present invention also provides an agrochemical composition comprising an agrochemically effective amount of cis- cyclo (L-phenylalanine-L-proline) of the present invention described above.
보다 바람직하게는, 본 발명의 농약 조성물은 시스-사이클로(L-페닐알라닌-L-프롤린)의 농약학적 유효량; 및 (b) 농약학적으로 허용되는 용매, 담체, 유화제 및 분산제로 이루어진 군으로부터 선택된 하나 이상의 성분 또는 첨가물을 추가적으로 포함하는 농약 조성물이다. 본 명세서에서 용어 "농약학적 유효량"은 상술한 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))의 가노더마 속(Genus Ganoderma)의 진균에 대하여 항진균 효능 또는 활성을 달성하는 데 충분한 양을 의미한다.More preferably, the pesticide composition of the present invention comprises an agrochemically effective amount of cis- cyclo (L-phenylalanine-L-proline); And (b) at least one component or additive selected from the group consisting of agrochemically acceptable solvents, carriers, emulsifiers and dispersants. The term of the terms "agricultural effective amount" is the above-mentioned cis-against fungi of the cyclo (L- phenylalanine -L- proline) (cis -cyclo (L-Phe -L-Pro)) in Kano Derma (Genus Ganoderma) of By an amount sufficient to achieve antifungal efficacy or activity.
본 발명의 조성물이 농약 조성물로 제조되는 경우, 본 발명의 농약 조성물은 농약학적으로 허용되는 용매를 포함한다. 상기 용매로는 물, 방향족 용매 (예를 들어 솔베소(Solvesso) 제품, 크실렌), 파라핀(예를 들어 광유분획물), 알코올(예를 들어 메탄올, 부탄올, 펜탄올, 벤질 알코올), 케톤(예를 들어 시클로헥사논, 감마-부티로락톤), 피롤리돈(NMP, NOP), 아세테이트(글리콜 디아세테이트), 글리콜, 지방산 디메틸아미드, 지방산 및 지방산 에스테르(원칙적으로, 용매 혼합물을 사용할 수도 있음) 등이 포함된다.When the composition of the present invention is prepared as a pesticide composition, the pesticide composition of the present invention includes an agriculturally acceptable solvent. Such solvents include water, aromatic solvents (eg Solvesso products, xylene), paraffins (eg mineral oil fractions), alcohols (eg methanol, butanol, pentanol, benzyl alcohol), ketones (eg For example cyclohexanone, gamma-butyrolactone), pyrrolidone (NMP, NOP), acetates (glycol diacetate), glycols, fatty acid dimethylamides, fatty acids and fatty acid esters (in principle, solvent mixtures may be used) Etc. are included.
또한, 본 발명의 조성물이 농약 조성물로 제조되는 경우, 본 발명의 농약 조성물은 농약학적으로 허용되는 담체를 포함한다. 예컨대, 상기 담체로는 예컨대 분쇄된 천연 광물(예를 들어 카올린, 점토, 활석, 백악) 및 분쇄된 합성 광물(예를 들어 고도로 분산된 실리카, 실리케이트)을 포함한다.In addition, when the composition of the present invention is made of a pesticide composition, the pesticide composition of the present invention includes an agriculturally acceptable carrier. For example, such carriers include, for example, ground natural minerals (eg kaolin, clay, talc, chalk) and ground synthetic minerals (eg highly dispersed silica, silicates).
또한, 본 발명의 조성물이 농약 조성물로 제조되는 경우, 본 발명의 농약 조성물은 농약학적으로 허용되는 유화제를 포함한다. 예컨대, 상기 유화제로는 비이온성 및 음이온성 유화제(예컨대, 폴리옥시에틸렌 지방 알코올 에테르, 알킬술포네이트 및 아릴술포네이트)를 포함한다.In addition, when the composition of the present invention is prepared as a pesticide composition, the pesticide composition of the present invention includes an agriculturally acceptable emulsifier. For example, the emulsifiers include nonionic and anionic emulsifiers (eg, polyoxyethylene fatty alcohol ethers, alkylsulfonates and arylsulfonates).
또한, 본 발명의 조성물이 농약 조성물로 제조되는 경우, 본 발명의 농약 조성물은 농약학적으로 허용되는 분산제를 포함한다. 예컨대, 상기 분사제는 리그닌-술파이트 폐액 및 메틸셀룰로오스를 포함한다.In addition, when the composition of the present invention is prepared as a pesticide composition, the pesticide composition of the present invention includes an agriculturally acceptable dispersant. For example, the propellant includes lignin-sulfite waste liquor and methylcellulose.
본 발명은 상기 항진균용 조성물에 포함된 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))을 유효성분으로 포함하는 농약조성물이므로, 이 둘과 공통적인 사항은 본 명세서의 과도한 기재를 피하기 위하여 생략한다.The present invention provides a system including the above-mentioned anti-fungal composition, so pesticide composition comprising cyclo (L- phenylalanine -L- proline) (cis -cyclo (L-Phe -L-Pro)) as an active ingredient, in common with the two The matters are omitted in order to avoid excessive description of this specification.
본 발명의 다른 양태에 따르면, 본 발명은 (a) 젖산균을 배양하여 젖산균 배양액을 제조하는 단계; 및 (b) 상기 배양액내 시스-사이클로(L-페닐알라닌-L-프롤린)를 항진균에 효과적인 농도로 농축하는 단계를 포함하는 것을 특징으로 하는 가노더마 속(Genus Ganoderma)의 진균에 대한 항진균제 생산 방법을 제공한다.According to another aspect of the present invention, the present invention comprises the steps of (a) culturing the lactic acid bacteria to prepare a lactic acid bacteria culture medium; And (b) concentrating the cis- cyclo (L-phenylalanine-L-proline) in the culture medium at an effective concentration for antifungal, wherein the method for producing an antifungal agent against fungi of Genus Ganoderma . to provide.
본 발명에서 단계 (a)에서의 젖산균은 페디오코쿠스 속(Pediococcus), 락토바실러스(Lactobacillus) 속 및 류코노스톡 속(Leuconostoc)으로 이루어진 군으로부터 선택된 하나 이상의 젖산균이다.Lactic acid bacteria in step (a) in the present invention Phedi OKO kusu in (Pediococcus), Lactobacillus (Lactobacillus) and is in flow Pocono stock in lactic acid bacteria selected from the group consisting of (Leuconostoc) or more.
바람직하게는, 본 발명의 단계 (a)에서 젖산균으로 페디오코쿠스 속 균을 이용하는 경우, 상기 페디오코쿠스 속 균은 페디오코쿠스 펜토사세우스(Pediococcus pentosaceus), 페디오코쿠스 아시딜락티시(Pediococcus acidilactici), 페디오코쿠스 셀리콜라(Pediococcus cellicola), 페디오코쿠스 클라우스세니(Pediococcus claussenii), 페디오코쿠스 담노수스(Pediococcus damnosus), 페디오코쿠스 에탄올리듀란스(Pediococcus ethanolidurans), 페디오코쿠스 이노피나투스(Pediococcus inopinatus), 페디오코쿠스 파불루스(Pediococcus parvulus) 및 페디오코쿠스 스틸레시(Pediococcus stilesii)로 이루어진 군으로부터 선택된 하나 이상의 페디오코쿠스 속 젖산균을 포함한다. 보다 바람직하게는, 상기 페디오코쿠스 속 균은 페디오코쿠스 펜토사세우스 균이다.Preferably, when using the Pediococcus spp. As a lactic acid bacterium in step (a) of the present invention, the Pediococcus spp. Is Pediococcus pentosaceus , Pediococcus asidyllactic acid ( Pediococcus acidilactici , Pediococcus cellicola , Pediococcus claussenii , Pediococcus damnosus , Pediococcus ethanolidurans Pediococcus ethanolidurans the blood or tooth (Pediococcus inopinatus), Phedi OKO kusu wave bulruseu (Pediococcus parvulus) and Phedi OKO kusu steel Lacey (Pediococcus stilesii) comprises a group of one or more lactic acid bacteria selected from the genus Phedi OKO kusu made. More preferably, the genus Pediococcus is Pediococcus pentosaceus.
바람직하게는, 본 발명의 단계 (a)에서 젖산균으로 락토바실러스 속 균을 이용하는 경우, 상기 락토바실러스 속 균은 락토바실러스 플란타룸(Lactobacillus plantarum), 락토바실러스 김치이(Lactobacillus kimchii), 락토바실러스 람노수스(Lactobacillus rhamnosus), 락토바실러스 카제이(Lactobacillus casei), 락토바실러스 아시도필루스(Lactobacillus acidophilus), 락토바실러스 브레비스(Lactobacillus brevis), 락토바실러스 부치네리(Lactobacillus buchneri), 락토바실러스 퍼멘툼(Lactobacillus fermentum), 락토바실러스 헬베티쿠스(Lactobacillus helveticus), 락토바실러스 레우테리(Lactobacillus reuteri) 및 락토바실러스 사케이(Lactobacillus sakei)로 이루어진 군으로부터 선택된 하나 이상의 락토바실러스 속 젖산균을 포함한다. 보다 바람직하게는, 상기 락토바실러스 속 균은 락토바실러스 플란타룸 균이다.Preferably, when the Lactobacillus genus bacteria are used as lactic acid bacteria in step (a) of the present invention, the Lactobacillus genus is Lactobacillus plantarum , Lactobacillus kimchii , Lactobacillus kimchii , Lactobacillus rhamnosus ( Lactobacillus rhamnosus ), Lactobacillus casei , Lactobacillus acidophilus , Lactobacillus brevis , Lactobacillus Buchyne , Lactobacillus buchneri , Lactobacillus pertusum L. , Lactobacillus helveticus , Lactobacillus reuteri and Lactobacillus sakei , and one or more Lactobacillus genus lactic acid bacteria selected from the group consisting of. More preferably, the genus Lactobacillus is Lactobacillus plantarum bacteria.
바람직하게는, 본 발명의 단계 (a)에서 젖산균으로 류코노스톡 속 균을 이용하는 경우, 상기 류코노스톡 속 균은 류코노스톡 메센테로이데스(Leuconostoc mesenteroides), 류코노스톡 김치이(Leuconostoc kimchii), 류코노스톡 락티스(Leuconostoc lactis), 류코노스톡 인해(Leuconostoc inhae), 류코노스톡 겔리둠(Leuconostoc gelidum), 류코노스톡 파라메센테로이데스(Leuconostoc paramesenteroides), 류코노스톡 시트륨(Leuconostoc citreum), 류코노스톡 슈도메센테로이데스(Leuconostoc pseudomesenteroides) 및 류코노스톡 홀쯔아펠리(Leuconostoc holzapfelii)으로 이루어진 군으로부터 선택된 하나 이상의 류코노스톡 속 젖산균을 포함한다. 보다 바람직하게는, 상기 류코노스톡 속 균은 류코노스톡 메센테로이데스이다.Preferably, in the case of using the present invention in the step (a) of the lactic acid bacteria as lactic acid bacteria, the genus Leukono stock bacteria are leukonostock mesenteroides (Leuconostoc mesenteroides), Ryukono Stock Kimchi (Leuconostoc kimchii), Leukonostock lactis (Leuconostoc lactis), Due to leukonostock (Leuconostoc inhae), Leukonostock Gelidum (Leuconostoc gelidum), Leukonostock Paramesenteroides (Leuconostoc paramesenteroides), Leukonostock Citrium (Leuconostoc citreum), Leukono stock pseudometheroidesLeuconostoc pseudomesenteroides) And leukonostock Holzappelli (Leuconostoc holzapfeliiLactic acid bacteria of the genus Lyukonostok selected from the group consisting of More preferably, the genus Leukonostock is leukonostock mesenteroides.
본 발명에서 단계 (a)에서의 젖산균 배양액을 제조하는 단계는 당업계에서 이용할 수 있는 배지 조성 및 첨가물을 이용하여 실시할 수 있다.In the present invention, the step of preparing the lactic acid bacteria culture medium in step (a) can be carried out using a medium composition and additives available in the art.
본 발명에서 단계 (b)에서의 농축시키는 단계는 배양액으로부터 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))을 분리 및 정제하여 농축시키는 단계 또는 시스-사이클로(L-페닐알라닌-L-프롤린)이 포함된 배양액을 농축시키는 단계를 포함한다.Step of concentration in step (b) from the culture broth in the present invention are cis-bicyclo (L- phenylalanine -L- proline) (cis -cyclo (L-Phe -L-Pro)) and the separation step of purification by concentration or Concentrating the culture comprising cis- cyclo (L-phenylalanine-L-proline).
본 발명의 단계 (b)에서 시스-사이클로(L-페닐알라닌-L-프롤린)를 분리 및 정제는 공지된 다양한 방법을 통하여 실시된다.Separation and purification of cis- cyclo (L-phenylalanine-L-proline) in step (b) of the present invention is carried out through various known methods.
예컨대, 상기 물을 일정한 분자량 컷-오프 값을 갖는 한외 여과막을 통과시켜 얻은 분획, 다양한 크로마토그래피 (크기, 전하, 소수성 또는 친화성에 따른 분리를 위해 제작된 것)에 의한 분리 등, 추가적으로 실시된 다양한 정제 방법을 통해 실시된다.For example, fractions obtained by passing the water through an ultrafiltration membrane having a constant molecular weight cut-off value, separation by various chromatography (manufactured for separation according to size, charge, hydrophobicity or affinity), etc. It is carried out through the purification method.
본 발명에서의 표현 "효과적인 농도로 농축"은 시스-사이클로(L-페닐알라닌-L-프롤린) 또는 시스-사이클로(L-페닐알라닌-L-프롤린)를 포함하는 젖산균 배양액이 가노더마 속(Genus Ganoderma)의 진균에 대하여 항진균 활성을 나타내는 농도로 농축시키는 것을 의미한다.The expression "concentrated to an effective concentration" in the present invention means that the lactic acid bacteria culture medium containing cis- cyclo (L-phenylalanine-L-proline) or cis- cyclo (L-phenylalanine-L-proline) is genus Ganoderma . It means to concentrate to the concentration showing the antifungal activity against the fungi of.
예컨대, 상기 시스-사이클로(L-페닐알라닌-L-프롤린) 또는 배양액에 포함된 시스-사이클로(L-페닐알라닌-L-프롤린)의 효과적인 가노도마 보니넨스(Ganoderma boninense)의 균체 농도는 50.24 mm2 (16π)에서 6.82 mM (20.47 μmol/3 ml 배지)이다. For example, the cis-bicyclo (L- phenylalanine -L- proline) or the sheath contained in the culture-cell density of nenseu (Ganoderma boninense) effective Kano Thomas I of cyclo (L- phenylalanine -L- proline) is 50.24 mm 2 ( 16π) at 6.82 mM (20.47 μmol / 3 ml medium).
본 발명은 상기 항진균용 조성물에 포함된 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))을 생산하는 방법이므로, 이 둘과 공통적인 사항은 본 명세서의 과도한 기재를 피하기 위하여 생략한다.The present invention provides a system including the above-mentioned antifungal composition because it is a method of producing cyclo (L- phenylalanine -L- proline) (cis -cyclo (L-Phe -L-Pro)), the common information and the two are present Omitted to avoid undue description of the specification.
본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:
(i) 본 발명은 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))을 유효성분으로 포함하고, 가노더마 속(Genus Ganoderma)의 진균에 대하여 특이적인 항진균 활성을 가지는 것을 특징으로 하는 항진균용 조성물, 농약 조성물 및 가노더마 속의 진균에 대한 항진균제 생산 방법을 제공한다.(i) The present invention includes cis- cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L-Pro)) as an active ingredient and against fungi of Genus Ganoderma . It provides an antifungal composition, agrochemical composition and antifungal production method for fungi of genus Ganoderma, characterized by having specific antifungal activity.
(ii) 본 발명은 가노더마 속(Genus Ganoderma)의 진균에 대하여 우수한 항진균 활성을 나타냄에 따라 가노더마 속의 진균(특히, 가노더마 보니넨스(Ganoderma boninense) 진균) 제거 및 발생의 예방을 필요로 하는 다양한 산업분야에 적용될 수 있으며, 특히 적은 양으로도 항진균 활성을 나타내기 때문에 이용면에 있어서 경제적인 장점을 가진다.(ii) The present invention exhibits excellent antifungal activity against the fungi of Genus Ganoderma , and thus the need for the removal and prevention of fungi (particularly, Ganoderma boninense fungi) in Ganoderma genus . It can be applied to various industrial fields, and in particular, since it shows antifungal activity even in a small amount, it has economic advantages in terms of use.
(iii) 또한, 본 발명은 생물학 제제를 이용하는 농약업계에 있어서 시스-사이클로(L-페닐알라닌-L-프롤린)에 대한 생물학 제제으로서의 기초적인 자료를 제공한다.(iii) The present invention also provides basic data as biological agents for cis- cyclo (L-phenylalanine-L-proline) in the pesticide industry using biological agents.
도 1은 식물 추출물에서의 항균 활성을 비교한 결과이다. 배양액이 포함된 디스크를 다음과 같이 준비하였다. 1번 디스크는 웨이셀라 시바리아(W. cibaria) LBP-B06 배양액이 포함된 디스크이며, 2번 디스크는 락토바실러스 사케이(L. sakei) LBP-S02 배양액이 포함된 디스크이고, 3번 디스크는 락토바실러스 김치(L. kimchii) LBP-B02 배양액이 포함된 디스크이며, 4번 디스크는 락토바실러스 플란타룸(Lb. plantarum) LBP-K10 배양액이 포함된 디스크이고, 5번 디스크는 락토바실러스 시트레움 LBP-K11(L. citreum LBP-K11) 배양액이 포함된 디스크이며, 6번 디스크는 류코노스톡 메센테로이데스 LBP-K06(L. mesenteroides LBP-K06) 배양이 포함된 디스크이다. 왼쪽 패널은 바실러스 서브틸리스(Bacillus subtilis) 지표 균주를 이용한 결과이며, 오른쪽 패널이 에스케리치아 콜리(Escherichia coli) 지표 균주를 이용한 결과이다. 모든 실험은 독립적으로 세 번 실행되었다. 1 is a result of comparing the antimicrobial activity in the plant extract. The disk containing the culture solution was prepared as follows. Disc 1 is Wishella Sibaria (W. cibaria) LBP-B06 medium containing the culture medium, disk 2 is Lactobacillus sakei (L. sakei) The disk containing the LBP-S02 culture medium, disk 3 is Lactobacillus kimchi (L. kimchii) LBP-B02 medium containing the culture medium, disc 4 is Lactobacillus plantarum (Lb. plantarum) A disk containing LBP-K10 culture medium, and the disk 5 is Lactobacillus citreum LBP-K11 (L. citreumLBP-K11) disk containing the culture medium, and disk 6 is Leukonostock Mesenteroides LBP-K06 (L. mesenteroidesLBP-K06) is a disk containing the culture. The left panel is Bacillus subtilis (Bacillus subtilis) And the right panel shows Escherichia coli (Escherichia coli) It is the result using the indicator strain. All experiments were performed three times independently.
도 2는 락토바실러스 플란타룸 LBP-K10의 정상적인 생장을 600 nm에서의 흡광도와 pH 변화를 나타낸 그래프이다. 28 시간 후, pH(closed circle)와 OD600(open circle)을 2주 동안 유지시켰으며, pH를 ph 3.8 정도로 계속 유지시켰다(왼쪽 패널). 또한, 락토바실러스 플란타룸 LBP-K10의 정상 생장 중 항균 활성의 변화를 디스크 확산법(disk diffusion assay)으로 수행하여 관찰하였으며(오른쪽 패널), 하루 동안 배양시킨 후 pH(closed circle)와 항균 활성(open circle)을 일주일 동안 유지시켰다.2 is Lactobacillus plantarum The normal growth of LBP-K10 is a graph showing the absorbance and pH change at 600 nm. After 28 hours, pH (closed circle) and OD600(open circle) was maintained for 2 weeks and the pH was kept at pH 3.8 (left panel). In addition, Lactobacillus plantarum Changes in the antimicrobial activity during normal growth of LBP-K10 were observed by a disk diffusion assay (right panel). I was.
도 3은 병원성균들의 생장 저지능력에 대한 결과이다. 배양액을 이용하여 그람 양성균(B. subtilis, L. monocytogens S. aureus), 그람 음성균(S. typhimurium, S. sonnei E. coli)과 기회성 진균으로 병원성을 가진 칸디다 알비칸스(C. albicans)를 한천 플레이트에서 저지환을 관찰하였다.3 is a result of the growth inhibition ability of pathogenic bacteria. Using the culture medium, Gram-positive bacteria ( B. subtilis, L. monocytogens and S. aureus ), Gram-negative bacteria ( S. typhimurium, S. sonnei and E. coli ) and pathogenic Candida albicans ( C. albicans) ) Was observed in the agar plate.
도 4는 락토바실러스 플란타룸 LBP-K10의 배양액에서 유도된 비단백성 항균 물질의 열 안정성에 대한 결과이다. 그람 양성균(B. subtilis)과 그람 음성균(E. coli)에서 비단백성 물질의 항균 활성은 여러 조건의 열처리한 배양액과 비교해 볼 때 대조군에 비해 큰 차이가 없이 유사하였고, 이를 디스크 확산법을 통한 생육저지환의 직경을 통해 관찰하였다. 4 shows the Lactobacillus plantarum Results of thermal stability of nonproteinaceous antimicrobial agents derived from the culture of LBP-K10. Gram-positive bacteria (B. subtilis) And Gram-negative bacteria (E. coliThe antimicrobial activity of the nonproteinaceous material was similar to that of the heat-treated medium under various conditions.
도 5는 단백분해 효소를 처리했을 때 비단백성 항균 물질의 효과를 가지는 배양액의 특징을 나타낸 것이다. 여러 가지 다양한 단백분해 효소를 처리하여 항균 활성을 관찰하였다. 프로테이나아제 K와 키모트립신을 배양액에 처리하였고, 이때 배양액은 분자량 1,000을 기준으로 하기 실시예에서 설명한 바와 같이 YM-1 컷-오프(YM1C)와 YM-1 상청액(YM1S), 그리고 대조군으로 나누어 실험하였다.Figure 5 shows the characteristics of the culture medium having the effect of a non-protein antimicrobial when treated with proteolytic enzymes. Various anti-proteinases were treated to observe antimicrobial activity. Proteinase K and chymotrypsin were treated in the culture medium, wherein the culture medium was treated with YM-1 cut-off (YM1C) and YM-1 supernatant (YM1S), and as a control, as described in the following Examples based on molecular weight 1,000. The experiment was divided.
도 6은 CH2Cl2를 이용하여 락토바실러스 플란타룸 LBP-K10 배양액을 추출한 결과이다. a는 CH2Cl2(methylene chloride)을 이용하여 추출한 후의 상청액의 항균활성을 나타낸 것이며, b는 CH2Cl2없는 배양 상청액의 항균활성을 나타낸 것이고, c는 CH2Cl2(methylene chloride)을 이용하여 추출한 하층액의 항균 활성을 나타낸 것이다.6 is CH2Cl2Lactobacillus Planta Room This is the result of extracting the LBP-K10 culture solution. a is CH2Cl2Antibacterial activity of the supernatant after extraction with (methylene chloride), b is CH2Cl2Shows the antimicrobial activity of the culture supernatant, c is CH2Cl2It shows the antibacterial activity of the lower layer solution extracted with (methylene chloride).
도 7은 ZORBAX C18 옥타데도실 실리카 하이드로포빅 레진을 이용한 락토바실러스 플란타룸 LBP-K10의 세미-프렙 HPLC 분석을 나타낸 결과이다. 각 분획은 액체-액체 추출법에 의해 수집하였다. 이러한 분석 내용은 자외선 파장 210, 260 그리고 280 nm에서 각각 기록하였다. 모든 분획된 물질은 10여개로 각각 나눌 수 있었다. 이렇게 모인 10개의 분획 물질을 하기 실시예에서 기술한 대로 수집하고 농축하였다.FIG. 7 shows the results of semi-prep HPLC analysis of Lactobacillus plantarum LBP-K10 using ZORBAX C18 octadedosil silica hydrophobic resin. Each fraction was collected by liquid-liquid extraction. These analyzes were recorded at ultraviolet wavelengths 210, 260 and 280 nm, respectively. All fractionated materials could be divided into about 10 each. The ten fractionated materials thus collected were collected and concentrated as described in the Examples below.
도 8 및 도 9는 류코노스톡 메센테로이데스 LBP-K06과 락토바실러스 플란타룸 LBP-K10으로부터 분리한 물질들의 항진균 활성을 나타낸 것이다. 으로부터 분리한 물질들의 항진균 활성을 나타낸 것이다. 가노더마 보니넨스(Ganoderma boninense)의 균사체(mycelium)를 PDA(potato dextrose agar) 플레이트에 접종한 후, 28℃에서 3일간 생장을 관찰하였다(초기 접종된 가노더마 균사체의 크기는 각 웰당 당 직경 8.0 ㎜의 원형태).8 and 9 show the antifungal activity of the substances isolated from Leukonostock Mesenteroides LBP-K06 and Lactobacillus plantarum LBP-K10. It shows the antifungal activity of the substances isolated from. Ganoderma BoniniensGanoderma boninenseMycelium) was inoculated on a PDA (potato dextrose agar) plate, and growth was observed at 28 ° C for 3 days (initial inoculated ganoderma). Mycelium size is in the shape of a circle with a diameter of 8.0 mm per well).
도 10 및 11은 류코노스톡 메센테로이데스 LBP-K06과 락토바실러스 플란타룸 LBP-K10으로부터 분리한 물질들의 기회성/병원성을 가진 진균에 대한 억제 활성을 나타낸 결과이다. 칸디다 알비카스(Candida albicans) 세포를 최소영양배지인 SD 한천 플레이트에 접종한 후, 역시 28℃에서 3일간 생장을 관찰하였다(초기 접종된 칸디다 세포는 각 웰 당 1 x 104개).10 and 11 show the inhibitory activity against the opportunistic / pathogenic fungi of substances isolated from Leukonostock Mesenteroides LBP-K06 and Lactobacillus plantarum LBP-K10. Candida albicas (Candida albicans) Cells were seeded on SD agar plates, which were minimal nutrient medium, and growth was observed for 3 days at 28 ° C. (Initially inoculated Candida cells were 1 × 10 per well).4dog).
도 12는 페디오코쿠스 펜토사세우스, 락토바실러스 플란타룸 LBP-K10 및 류코노스톡 메센테로이데스 LBP-K06에서 분획된 물질들의 크로마토그램에 대한 결과이다. 모든 균주는 CH2Cl2 추출법을 이용하여 분획하였다. 12 is Pediococcus pentosaceus.,Lactobacillus plantarum LBP-K10 And chromatograms of the substances fractionated in Leukonostock Mesenteroides LBP-K06. All strains are CH2Cl2 Fractionation was performed using extraction.
도 13은 분리하여 동정한 여러 유산균에서 분획된 물질들의 크로마토그램에 대한 결과이다. 동일한 추출 방법을 이용하여 동정된 다양한 유산균 균주들의 세미-프렙(semi-prep) HPLC 크로마토그램을 관찰하였다. 이 실험에 사용된 균주로는 페디오코쿠스 펜토사세우스 MCPP, 류코노스톡 메센테로이데스 LBP-K06, 락토바실러스 플란타룸 LBP-K10, 웰이셀라 시바리아(Weissella cibaria) LBP-K15, 웰이셀라 콘푸사(Weissella confusa) LBP-K16, 락토바실러스 사케이(Lactobacillus sakei) LBP-S01, 락토바실러스 플란타룸/펜토스(Lactobacillus plantarum/pentos) LBP-S02, 락토코쿠스 락티스(Lactococcus lactis) LBP-S03, 락토코쿠스 락티스(Lactococcus lactis) LBP-S06 및 스타필로코쿠스 시우리(Staphylococcus sciuri) LBP-S07을 이용하였다.FIG. 13 is a result of chromatograms of substances fractionated from various lactic acid bacteria identified separately. Semi-prep HPLC chromatograms of the various lactic acid bacteria strains identified using the same extraction method were observed. The strains used in this experiment were Pediococcus pentosaceus MCPP, Leukonostock mesenteroides LBP-K06, Lactobacillus plantarum LBP-K10, Weilscilla sibaria (Weissella cibaria) LBP-K15, WelCella Confusa (Weissella confusaLBP-K16, Lactobacillus sakei (Lactobacillus sakei) LBP-S01, Lactobacillus plantarum / pentos (Lactobacillus plantarum / pentosLBP-S02, lactococcus lactis (Lactococcus lactisLBP-S03, lactococcus lactis (Lactococcus lactis) LBP-S06 and Staphylococcus shiuri (Staphylococcus sciuri) LBP-S07 was used.
도 14는 전자충격이온화법(electron ionization, EI)을 이용하여 락토바실러스 플란타룸 LBP-K10의 N10을 분석한 결과이다.FIG. 14 shows the results of analyzing N10 of Lactobacillus plantarum LBP-K10 using electron ionization (EI).
도 15는 화학이온화법(chemical ionization, CI)을 이용하여 락토바실러스 플란타룸 LBP-K10의 N10을 분석한 결과이다.FIG. 15 is a result of analyzing N10 of Lactobacillus plantarum LBP-K10 using chemical ionization (CI).
도 16은 1H -핵자기공명법(500MHz, in 100 % DMSO)을 이용하여 락토바실러스 플란타룸 LBP-K10의 N10을 분석한 결과이다.FIG. 16 shows the results of analyzing N10 of Lactobacillus plantarum LBP-K10 using 1 H-nuclear magnetic resonance method (500 MHz, in 100% DMSO).
도 17은 락토바실러스 플란타룸 LBP-K10의 N10에서 1H/13C 핵자기공명법 (600MHz, in 100 % MeOD)를 이용하여 2D HSQC 분석을 한 결과이다.FIG. 17 shows the results of 2D HSQC analysis using 1 H / 13 C nuclear magnetic resonance (600 MHz, in 100% MeOD) at N10 of Lactobacillus plantarum LBP-K10.
도 18 및 도 19는 락토바실러스 플란타룸 LBP-K10의 N10에서 1H/1H 핵자기공명법(600 MHz, 각각 100% DMSO(도 18) 및 10% D2O가 함유된 DMSO(도 19))을 이용하여 2D COSY 분석을 한 결과이다. 18 and 19 show 1 H / 1 H nuclear magnetic resonance (600 MHz, 100% DMSO (FIG. 18) and 10% D 2 O containing DMSO in N10 of Lactobacillus plantarum LBP-K10 (FIG. 19)) is the result of 2D COSY analysis.
도 20 및 도21은 X-선 회절법을 이용하여 락토바실러스 플란타룸 LBP-K10에서 N10의 예상 구조식을 나타낸 것이다.20 and 21 show expected structural formulas of N10 in Lactobacillus plantarum LBP-K10 using X-ray diffraction.
도 22는 도 21은 락토바실러스 플란타룸 LBP-K10으로부터 분리된 P10의 구조를 최종적으로 나타낸 것이다. 분리된 항진균 물질은 C14H16O2N2 분자식을 가진 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro)로 확인되었다. FIG. 22 finally shows the structure of P10 isolated from Lactobacillus plantarum LBP-K10. Separate antifungal material is C 14 H 16 O 2 system with the molecular formula N 2 - was confirmed by cycloalkyl (L- phenylalanine -L- proline) (cis -cyclo (L-Phe -L-Pro).
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention more specifically, and the scope of the present invention according to the gist of the present invention is not limited by these examples.
실시예Example
재료 및 방법Materials and methods
실험 균주 및 유산균 분리Isolation of experimental strains and lactic acid bacteria
갓 김치와 돌나물 김치 및 배추 김치로 다양한 유산균들을 분리하였다. 준비된 각각의 재료를 믹서기로 갈아서, 갓 김치와 돌나물 김치의 경우에는 5% NaCl을 첨가한 것과 첨가하지 않은 것으로 나누었고, 각각 4℃, 22℃ 및 30℃에서 보관하였다. 모든 식물 실험군은 하루 간격으로 30일간 시료를 검체하였고, 각 실험군의 농도를 멸균한 증류수에 적당하게 희석하여 유산균 분리 배지인 MRS(de Mann Rogosa Sharpe) 고체 배지에 도말한 후, 30℃에서 2-3일 정도 배양하였다. 배양 후 잘 분리된 균체를 선별하여 16s rDNA 염기서열법을 수행하였으며, 유전체 정보와 비교하기 위해 액체 MRS 배지에 재배양하였다.Various lactic acid bacteria were separated into fresh kimchi, dolmul kimchi and Chinese cabbage kimchi. Each of the prepared materials was ground with a blender, and freshly divided kimchi and dolmen kimchi with and without 5% NaCl and stored at 4 ° C, 22 ° C and 30 ° C, respectively. All plant experimental groups were sampled for 30 days at intervals of one day, and the concentration of each experimental group was appropriately diluted in sterile distilled water and plated on MRS (de Mann Rogosa Sharpe) solid medium, which is a lactic acid bacteria separation medium, and then, at 30 ° C. Incubate for about 3 days. After incubation, the well-separated cells were selected and subjected to 16s rDNA sequencing, and cultured in liquid MRS medium for comparison with genomic information.
분리된 유산균의 동정Identification of Isolated Lactobacillus
본 실험에서는 발효된 식물에서 분리된 유산균을 동정을 위하여 16S rDNA 염기서열 결정법을 통해 유산균들을 동정하였다. PCR(중합효소연쇄반응)을 위한 프라이머로는 일반적인 진정세균을 대상으로 하는 프라이머로서 27F(5'-AGA GTT TGA TCM TGG CTC AG-3' (서열번호 1)와 1492R(5'-GGY TAC CTT GTT ACG ACT T-3'(서열번호 2))을 이용하였다. PCR반응은 94℃에서 5분간 프리-디네이쳐레이션(pre-denaturation) 과정을 거친 후, 94℃에서 1분간 디네이쳐레이션(denaturation), 55℃에서 1분간 어닐링(annealing), 72℃에서 1분간 익스텐션(extention) 과정을 30회 거쳐 최종적으로 72℃에서 7분간 엑스트라-익스텐션(extra-extention)을 해주었으며, 4℃에서 보관하였다. 중합효소연쇄반응 후 0.7% 아가로오스 젤 전기영동으로 증폭된 16S rDNA를 확인하고 DNA를 분리하여 염기서열을 분석하였다. 선별된 균주의 16S rDNA 염기서열의 상동관계는 NCBI의 뉴클레오타이드 BLAST 프로그램을 이용하여 비교하였다(http://www.ncbi.nlm.nih.gov). In this experiment, lactic acid bacteria were identified by 16S rDNA sequencing to identify lactic acid bacteria isolated from fermented plants. Primers for PCR (Polymerase Chain Reaction) include primers targeting general sedative bacteria, 27F (5'-AGA GTT TGA TCM TGG CTC AG-3 '(SEQ ID NO: 1) and 1492R (5'-GGY TAC CTT) GTT ACG ACT T-3 '(SEQ ID NO: 2)) The PCR reaction was subjected to pre-denaturation for 5 minutes at 94 ° C., followed by denaturation at 94 ° C. for 1 minute. ), Annealing at 55 ° C. for 1 minute, and extension at 1 minute at 72 ° C. for 30 times, followed by extra-extension at 72 ° C. for 7 minutes, and stored at 4 ° C. 16S rDNA amplified by 0.7% agarose gel electrophoresis after polymerase chain reaction, and DNA sequencing was analyzed.The homology of 16S rDNA sequencing of selected strains was determined by NCBI's nucleotide BLAST program. Comparison was made using http://www.ncbi.nlm.nih.gov .
배지와 배양 조건Medium and culture conditions
본 실험에서는 배추 김치에서 동정한 락토바실러스 플란타룸 LBP-K10(Lactobacillus plantarum LBP-K10)을 주 균주로 사용하였다. 분리된 락토바실러스 플란타룸 LBP-K10 유산균을 MRS 브로스(Difco, Laboratories, Detroit, MI)에 계대 배양하였다.In this experiment, Lactobacillus plantarum LBP-K10 ( Lactobacillus plantarum LBP-K10) identified from Chinese cabbage kimchi was used as the main strain. The isolated Lactobacillus plantarum LBP-K10 lactic acid bacteria were passaged in MRS broth (Difco, Laboratories, Detroit, MI).
항균 물질을 찾기 위해 사용한 유산균으로 페디오코쿠스 펜토사세우스(Pediococcus pentosaceus), 락토바실러스 플란타룸(Lactobacillus plantarum) 및 류코노스톡 메센테로이데스(Leuconostoc mesenteroides)를 이용하였고, 항균 활성을 측정하기 위한 지표 균주로는 에스케리치아 콜리(Escherichia coli), 바실러스 서브틸리스(Bacillus subtilis), 살모넬라 티피무리움(Salmonella typhimurium), 쉬젤라 소네이(Shigella sonnei), 스타필로코쿠스 아레우스(Staphylococcus areus) 및 리스테리아 이노쿠아(Listeria innocua)등을 이용하였다. MRS 브로스에 유산균을 적당량 접종한 근원 균주(seed inoculums)를 이용하였으며, 근원 균주를 다시 MRS 액체 배지에 0.1-0.2% 가 되도록 접종한 후 30℃에서 3일간 정치 배양하였다. 항균 활성 실험을 위하여 리스테리아 속(Listeria spp.)을 제외한 대부분의 병원성 균주들을 루리아-베르타니(Luria-Bertani: LB) 브로스에서 배양하였고, 리스테리아속은 브레인 하트 인퓨젼(Brain Heart infusion) 배양액(Difco, Laboratories, Detroit, MI)에서 따로 배양하였다.   As a lactic acid bacterium used to find antibacterial substances, Pediococcus pentosaceus (Pediococcus pentosaceus),Lactobacillus plantar roomLactobacillus plantarum) And leukonostock mesenteroides (Leuconostoc mesenteroides), And as an indicator strain for measuring antimicrobial activity, Escherichia coli (Escherichia coli), Bacillus subtilis (Bacillus subtilis), Salmonella typhimurium (Salmonella typhimurium), Shigella Sonei (Shigella sonnei), Staphylococcus Areus (Staphylococcus areus) And Listeria innocuaListeria innocua) And the like. The seed strains (seed inoculums) inoculated with an appropriate amount of lactic acid bacteria in MRS broth were used, and the seed strains were inoculated again to 0.1-0.2% in MRS liquid medium and then cultured at 30 ° C. for 3 days. For the antimicrobial activity test, Listeria genus (Listeria Most pathogenic strains were cultured in Luria-Bertani (LB) broth, except Listia spp. It was.
항균 활성 평가Antimicrobial Activity Assessment
항균 활성을 알아보기 위하여 배지희석법(broth microdilution test), 디스크 확산법(disk diffusion assay) 및 길항작용법(antagonism test)을 실시하였다. In order to determine the antimicrobial activity, broth microdilution test, disk diffusion assay and antagonism test were performed.
각각의 실험 방법은 다음과 같다.Each experimental method is as follows.
배지희석법은 배양액을 농축시켜 준비한 후, 연속 희석을 통해 유산균 배양액의 항균 활성 정도를 알아보았다.The medium dilution method was prepared by concentrating the culture solution, and then examined the antibacterial activity of the lactic acid bacteria culture medium through serial dilution.
길항작용법은 유산균의 항균 활성 유무를 알아보기 위한 실험으로서 실험에 사용 할 유산균을 24시간 배양 후 600 ㎚에서 흡광도를 측정하여 1로 맞춘 후 MRS배지에 1 ㎕씩 점적하여 30℃에서 24시간 배양하였다. 그 위에 3-5시간 미리 배양해둔 지표 균주를 1%의 소프트 아가(soft agar)와 잘 섞어 오버레이(overlay)시킨 후, 다시 24시간 동안 지표 균주의 적정 온도에서 배양하였다. 배양 후 생성되는 생육 저지환을 확인함으로써 항균 활성의 유무를 확인하였다.Antagonism is an experiment to determine the antimicrobial activity of lactic acid bacteria. After lactic acid bacteria used in the experiment for 24 hours to measure the absorbance at 600 ㎚ was adjusted to 1 and 1 ㎖ dropping in MRS medium was incubated at 30 ℃ for 24 hours. The indicator strain incubated for 3-5 hours in advance was mixed with 1% soft agar and overlayed, and then incubated at an appropriate temperature for the indicator strain for 24 hours. The presence or absence of antimicrobial activity was confirmed by confirming the growth inhibitory ring produced after the culture.
디스크 확산법은 배양액이나 항균물질을 6 ㎜의 종이 디스크(Toyo Roshi kaisha, ltd)에 점적시키고, 지표 균주는 3-5시간 배양시켜 준비하였다. 액체 상태의 스프트 아가에 지표 균주를 1%로 접종하여 굳힌 뒤에 디스크를 올려 지표 균주의 배양 온도에서 24시간 배양하였다. 배양 후 생성되는 생육 저지환의 지름 (㎜)을 통해 항균 활성을 확인할 수 있었다.In the disk diffusion method, the culture medium and the antimicrobial material were dipped on a 6 mm paper disk (Toyo Roshi kaisha, ltd), and the indicator strain was prepared by incubating for 3-5 hours. Inoculant was inoculated with 1% of indicator strain in liquid agar in a liquid state, and then the disk was placed and incubated at the incubation temperature of the indicator strain for 24 hours. The antimicrobial activity was confirmed through the diameter (mm) of the growth resistant ring produced after the culture.
생장에 따른 pH와 항균 활성의 변화Changes of pH and Antimicrobial Activity According to Growth
밤사이에 배양해 놓은 락토바실러스 플란타룸 LBP-K10를 변형 MRS 브로스에 1.0%로 접종하여 30??에서 정치 배양하였다. 접종 후 휴지기(stationary phase)로 진입할 때까지 4시간 마다 600 ㎚에서 흡광도를 측정하였으며, 원심분리 후 상층액을 얻어 pH와 항균 활성을 측정하였다. 시간에 따른 항균 활성은 접종 후 일주일 동안 24시간마다 한 번씩 시료를 얻어 디스크 확산법을 실시하였다.Lactobacillus plantarum grown overnight LBP-K10 was inoculated at 1.0% in modified MRS broth and cultured at 30 °. After inoculation, absorbance was measured at 600 nm every 4 hours until entering the stationary phase. After centrifugation, the supernatant was obtained to measure pH and antibacterial activity. Antimicrobial activity over time was obtained by a disk diffusion method once every 24 hours for a week after inoculation.
효소 처리Enzyme treatment
단백질성 물질과 비단백성 물질의 활성 중 병원성균에 미치는 영향을 비교하기 위하여 아세테이트 막 YM-1(acetate membrane YM-1(Amicon, Inc., USA))을 이용하여 분자량 1000이상과 1000이하를 분리한 배양액에 단백질 분해 효소인 프로테이나아제 K(proteinase K, Sigma-Aldrich, Inc., USA), 키모트립신(chymotrypsin, Boehringer Mannheim GmbH., Germany) 및 트립신(trypsin, Sigma-Aldrich, Inc., USA)을 최종 농도 1 ㎎/㎖로 맞추어 처리하여 민감도를 관찰하였다. 프로테이나아제 K를 제외한 나머지는 실온(25℃)에서, 프로테이나아제 K를 처리한 시료는 37℃에서 한 시간 동안 인큐베이션한 뒤, 95℃에서 5분간 열처리를 함으로써 효소의 활성을 제거하였으며 디스크 확산법을 통해 항균 활성을 측정하였다. In order to compare the effects of proteinaceous and nonproteinaceous agents on the pathogenic bacteria, the molecular weight of 1000 and below is separated by using the acetate membrane YM-1 (Amicon, Inc., USA). Proteinase K (proteinase K, Sigma-Aldrich, Inc., USA), chymotrypsin, Boehringer Mannheim GmbH., Germany, and trypsin, Sigma-Aldrich, Inc., USA) was treated at a final concentration of 1 mg / ml to observe sensitivity. Except for proteinase K, at room temperature (25 ° C), proteins treated with proteinase K were incubated at 37 ° C for one hour and then heat treated at 95 ° C for 5 minutes to remove enzyme activity. Antimicrobial activity was measured by the disk diffusion method.
열처리Heat treatment
항균물질에 열이 미치는 영향을 알아보기 위하여 락토바실러스 플란타룸 LBP-K10의 3일째 배양액을 각각 100℃에서 60분과 120분, 그리고 121℃에서 15분간 중탕 가열 혹은 멸균의 방식으로 열처리를 하였다. 또한, 가열 후에는 상온으로 옮긴 후 열처리 하지 않은 배양액을 대조군으로 하였으며, 디스크 확산법를 통해 항균 활성을 측정하였다.Lactobacillus plantarum to investigate the effect of heat on antimicrobial substances The day 3 culture of LBP-K10 was heat treated by heating or sterilizing at 100 ° C. for 60 minutes and 120 minutes and at 121 ° C. for 15 minutes, respectively. In addition, after heating to room temperature, the culture medium that was not heat treated as a control was used as a control, the antimicrobial activity was measured by the disk diffusion method.
항진균 물질의 분리 준비Preparation for the isolation of antifungal substances
락토바실러스 플란타룸 LBP-K10에서 항진균 물질을 분리하기 위해서 변형 MRS (mMRS)를 사용하였다. mMRS는 1리터 당 펩톤 10 g, (NH4)2HC6H5O7 2 g, NaC2H3O2 5 g, MnSO4 0.1 g, MnSO4(H2O) 0.05 g, K2HPO4 2 g, 효모 추출물 5 g 및 글루코오스 20 g의 조성으로 만들었고, 글루코오스는 분리하여 멸균하였다. 락토바실러스 플란타룸 LBP-K10을 mMRS에 30℃에서 3일 동안 정치 배양하였고, 8,000 rpm에서 30분간 원심 분리하여 얻은 배양액을 실험에 사용하였다(페디오코쿠스 펜토사세우스 및 류코노스톡 메센테로이데스에서도 같은 방법으로 실험을 진행).Lactobacillus plantarum Modified MRS (mMRS) was used to separate antifungal material from LBP-K10. mMRS is 10 g of peptone per liter, (NH4)2HC6H5O7 2 g, NaC2H3O2 5 g, MnSO4 0.1 g, MnSO4(H2O) 0.05 g, K2HPO4 2 g, 5 g of yeast extract and 20 g of glucose were made and glucose was isolated and sterilized. Lactobacillus plantarum LBP-K10 was incubated in mMRS for 3 days at 30 ° C and centrifuged at 8,000 rpm for 30 minutes. Experiment).
그 다음, 배양액을 동결 건조하여 10배 정도 농축시킨 후, 농축액 부피의 5배의 CH2Cl2(methylene chloride)로 액체-액체 추출을 수행하였다. 배양액과 CH2Cl2의 혼합물을 실온에서 하루 보관한 후, 분별 깔때기를 이용하여 수용액 층과 유기용매 층이 잘 분리될 때까지 방치하였다. 층이 잘 분리 되면 마개를 열고 CH2Cl2 층을 받아내어 증발기를 이용하여 55℃에서 유기용매를 제거하였다. 수용액 층도 따로 받아 항진균 활성을 비교하는 실험에 이용하였다. 유기용매를 제거하고 남은 추출물(MCK10)은 적당량의 증류수에 용해하여 0.22 ㎛ 필터로 여과하였다. 이 용리액은 C18 SPE (Solid phase extraction; Waters Sep-pak C18 plus cartridge, Millipore Corp., Marlborou, MA)법을 이용하여 SPE 카트리지를 통해 100% 메틸알코올로 용리하여 다시 분리하였다. 용리시킬 액상 물질을 통과시키기 전에 SPE 카트리지는 100% 메틸알코올로 활성화시키고 100% 증류수로 세척하였다. 그런 후에 용리시킬 액을 SPE에 통과시키고 다시 100% 증류수로 세척하였다. 마지막으로 100% 메틸알코올로 SPE 콜럼을 통과시켜 용리된 액을 모았고, 증발 건조기를 통해 유기 용매를 증발시켜 농축시킨 후 100% 멸균된 물에 적당량 녹여 준비하였다.Then, the culture solution was freeze-dried and concentrated about 10 times, and then liquid-liquid extraction was performed with 5 times the concentration of CH 2 Cl 2 (methylene chloride). The mixture of the culture solution and CH 2 Cl 2 was stored at room temperature for one day, and then allowed to stand until the aqueous solution layer and the organic solvent layer were separated using a separatory funnel. When the layers were separated well, the stopper was opened, the CH 2 Cl 2 layer was taken out, and the organic solvent was removed at 55 ° C. using an evaporator. Aqueous solutions were also received separately and used for experiments comparing antifungal activity. The organic solvent was removed and the remaining extract (MCK10) was dissolved in an appropriate amount of distilled water and filtered through a 0.22 μm filter. This eluate was separated again by eluting with 100% methyl alcohol through an SPE cartridge using C18 SPE (Solid phase extraction; Waters Sep-pak C18 plus cartridge, Millipore Corp., Marlborou, Mass.). The SPE cartridge was activated with 100% methyl alcohol and washed with 100% distilled water before passing the liquid material to elute. The solution to be eluted was then passed through SPE and washed again with 100% distilled water. Finally, the eluted solution was collected by passing SPE colum through 100% methyl alcohol, and the organic solvent was concentrated by evaporating an organic solvent through an evaporator and then dissolved in an appropriate amount in 100% sterilized water.
고성능 액체크로마토그래피 (HPLC) 분석을 통한 항진균 물질의 분리Isolation of Antifungal Substances by High Performance Liquid Chromatography (HPLC) Analysis
여과시킨 MCK10 배양액은 항진균 물질의 분석을 위해 0.22 ㎛ 아세테이트 셀룰로오스 막으로 여과시킨 후 이 여과액을 바탕으로 고성능 액체크로마토그래피(semi-prep HPLC system, Agilent 1200 series, USA) 분석 장비를 통해 분석 및 분리에 이용하였고, ODS C-18 콜럼(octadedosyl-C18 hydrophobic semi-preparative column; 9.4 x 250 ㎜, Agilent, USA)으로 역상 고압 액체 크로마토그래피를 이용하여 분석하였다. 콜럼의 온도는 40℃로 일정하게 유지시켰고, 이동상은 3차 증류수 67%, 메탄올 30% 및 아세토니트릴 3%의 조건에서 35분간 작동되었다. 이동상은 1.5 ㎖/분의 유속으로 각각의 210 ㎚, 260 ㎚ 및 280 ㎚ 파장에서 검출하였다. 분석 시 검출된 각 피크를 분획(fraction) 별로 프렙(prep)하여 증발건조기를 이용하여 유기용매를 제거한 후, 동결 건조하여 시료를 얻었다. The filtered MCK10 culture was filtered through a 0.22 μm acetate cellulose membrane for analysis of antifungal substances, and then analyzed and separated through a high-performance liquid chromatography (semi-prep HPLC system, Agilent 1200 series, USA) analysis equipment based on the filtrate. And an ODS C-18 column (octadedosyl-C18 hydrophobic semi-preparative column; 9.4 x 250 mm, Agilent, USA) was analyzed using reverse phase high pressure liquid chromatography. The temperature of the column was kept constant at 40 ° C. and the mobile phase was operated for 35 minutes under conditions of 67% tertiary distilled water, 30% methanol and 3% acetonitrile. Mobile phases were detected at each 210 nm, 260 nm and 280 nm wavelength at a flow rate of 1.5 ml / min. Each peak detected in the analysis was prepared by fractions, and the organic solvent was removed using an evaporator, and then freeze-dried to obtain a sample.
항진균 활성의 측정Determination of Antifungal Activity
고성능액체크로마토그래피 시스템을 통해 분리된 각 분획 물질들을 수집한 후 동결건조기를 사용하여 농축하였고 6웰 세포 배양 플레이트(SPL Lifescience, Korea)를 이용하여 항진균 활성을 측정하였다. 이러한 6-웰 플레이트로 칸디다 알비칸스(Candida albicans)와 가노더마 보니넨스(Ganoderma boninense)의 두 가지 균주를 적용함으로써 항진균 활성을 측정하였다. 먼저 각 웰당 2.5 ㎖의 SD 최소영양배지(2% D-글루코오스, 0.5% (NH4)2SO4, 아미노산과 (NH4)2SO4을 포함하지 않는 0.17% 효모 질소염(yeast nitrogen base: YNB; Becton Dickinson, USA)을 1.8% 마이크로아가(Difco, USA)를 섞어 칸디다 알비칸스에 대한 항진균력을 확인하였다. 가노더마 보니넨스의 경우는 4% PDA(Potato-Dextrose Agar, Kisanbiotech co ltd, Korea)를 사용하여 항진균 활성을 측정하였다. 피크별로 분리된 물질들 중에서 활성이 높은 것은 앞에서 언급한 방법대로 더욱 세밀히 분리하여 단일 피크로 얻은 후 이를 이후의 GC-MS, 원소분석 및 NMR구조 분석 등의 구조적 분석을 위해 사용하였다.Each fraction material separated through a high performance liquid chromatography system was collected and concentrated using a lyophilizer and antifungal activity was measured using a 6 well cell culture plate (SPL Lifescience, Korea). Antifungal activity was measured by applying two strains, Candida albicans and Ganoderma boninense , to the 6-well plate. First, 2.5 ml of SD minimal nutrient medium (2% D-glucose, 0.5% (NH 4 ) 2 SO 4 , 0.17% yeast nitrogen base without amino acids and (NH 4 ) 2 SO 4 ) per well: YNB; Becton Dickinson, USA) was mixed with 1.8% microagar (Difco, USA) to identify the antifungal activity against Candida albicans, and 4% PDA (Potato-Dextrose Agar, Kisanbiotech Co., Ltd.) for Ganoderma boninines. The antifungal activity was measured by using the same method as Korea, and the higher activity among the materials separated by peaks was obtained in a single peak after more detailed separation according to the aforementioned method, followed by GC-MS, elemental analysis and NMR structure analysis. Was used for the structural analysis.
전자충격이온화법(electron ionization: EI)과 화학이온화법(chemical ionization: CI)에 의한 분석Analysis by electron ionization (EI) and chemical ionization (CI)
락토바실러스 플란타룸에서 순수 분리한 물질들을 전자충격이온화법과 화학이온화법에 의한 질량수를 관찰하기 위하여 7679 시리즈 오토메틱 리퀴드 샘플러(7679 series automatic liquid sampler)를 장착한 엘지런트 6890 시리즈 GC(Agilent 6890 series GC; Agilent Technologies, Waldron, Germany)를 본 실험에 사용하였다. 또한 질량 분석은 고배율 질량분석기(high-resolution mass spectrometer; JEOL JMS-700, Tokyo, Japan)를 이용하여 분석하였다. 가스 크로마토그래피와 고배율 질량분석기 두 가지 기기 모두 JMS-700 M 스테이션 소프트웨어(JEOL JMS-700, Tokyo, Japan)를 사용하였다.Agilent 6890 series GC equipped with 7679 series automatic liquid sampler to observe mass numbers of purely separated materials from Lactobacillus plantarum by electron impact ionization and chemical ionization Agilent Technologies, Waldron, Germany) was used for this experiment. Mass spectrometry was also performed using a high-resolution mass spectrometer (Jeol JMS-700, Tokyo, Japan). Both gas chromatography and high magnification mass spectrometers used JMS-700 M station software (JEOL JMS-700, Tokyo, Japan).
1One H, H, 1313 C, HSQC 및 2D-COSY 핵자기공명 분석C, HSQC and 2D-COSY Nuclear Magnetic Resonance Analysis
락토바실러스 플란타룸에서 순수 분리한 물질 시료(1.0 mg)를 D2O와 D2O가 함유된 0.6 ㎖ DMSO(dimethyl sulfoxide)에 녹인 후 이를 양성자 및 탄소 구조, 결합, 그리고 결합 순서를 NMR 분광기를 이용하여 확인하였다. 핵자기공명법에 사용되는 파장은 XWIN-NMR 3.5 소프트웨어를 사용하는 300 K 규모의 CryoProbe16을 장착한 Bruker AVANCE-500 분광기를 이용하였다.[20,38,39] 모든 2차원 핵자기공명법에는 Bruker의 스탠다드 펄스 시퀀스(standard pulse sequence)를 수행하였다. 핵자기공명법에 의한 결과는 XWIN-NMR 3.5 소프트웨어 패키지(Karlsruhe, Germany)를 이용하여 분석하였다. 핵자기공명은 Z 그래디언트(gradient)로 5 mm의 BBI(broadband inverse detector)를 이용하여 양성자 핵자기공명법의 경우 500.13 MHz의 주파수에서 탄소 핵자기공명법은 125.77 MHz의 주파수에서 AVANCE 500 분광기(Bruker-Biospin)상에서 기록하였다. 293 K에서 중수와 DMSO를 포함한 중수에서 모든 핵자기공명 파장을 기록하였다.[40] A 1.0 mg sample of pure material isolated from Lactobacillus plantarum was dissolved in 0.6 ml dimethyl sulfoxide (DMSO) containing D 2 O and D 2 O, and then the proton and carbon structures, the bonds, and the sequence of binding were analyzed by NMR spectroscopy. It was confirmed using. The wavelength used for nuclear magnetic resonance was measured using a Bruker AVANCE-500 spectrometer equipped with a 300 K CryoProbe16 using XWIN-NMR 3.5 software. [20,38,39] All two-dimensional nuclear magnetic resonance methods were subjected to Bruker's standard pulse sequence. The results by nuclear magnetic resonance analysis were analyzed using the XWIN-NMR 3.5 software package (Karlsruhe, Germany). Nuclear magnetic resonance is a Z gradient, using a 5 mm broadband inverse detector (BBI) for proton nuclear magnetic resonance at a frequency of 500.13 MHz, and carbon nuclear magnetic resonance at a frequency of 125.77 MHz for the AVANCE 500 spectrometer (Bruker). -Biospin). All nuclear magnetic resonance wavelengths were recorded at 293 K in heavy water, including heavy water and DMSO. [40]
성분원소 분석을 통한 구조 분석Structure analysis through component element analysis
락토바실러스 플란타룸에서 순수 분리한 물질의 구성 원소 성분을 관찰하기 위하여 원소분석기(elemental analyzer, CE Instruments EA1110, EA1112)를 이용하여 분석하였다. 탄소, 수소, 산소 및 질소 분석을 위해 원소분석기를 수행하였다. 또한 산소 균형(Oxygen balance, OB)을 통해 폭발성 평가에 사용하였다. 탄소, 수소, 산소 및 질소 등의 원소비를 통해 산소 균형을 계산하였다.An elemental analyzer (CE Instruments EA1110, EA1112) was used to analyze the constituent elements of the purely isolated material in Lactobacillus plantarum. Elemental analyzers were performed for carbon, hydrogen, oxygen and nitrogen analysis. It was also used for the explosive evaluation through oxygen balance (OB). Oxygen balance was calculated through element ratios such as carbon, hydrogen, oxygen and nitrogen.
X선 회절을 이용한 결정 구조 분석Crystal structure analysis using X-ray diffraction
락토바실러스 플란타룸에서 순수 분리한 물질의 3차원적 구조를 규명하기 위하여 다음과 같이 X선 회절을 이용한 결정 구조 분석을 수행하였다. 분리한 물질 시료 20.0 ㎎을 35 % 에틸알코올과 65 % CH2Cl2로 녹인 후 제습용 건조기에 정치하고 결정화 과정을 관찰하였다. 생성된 시료 결정은 포항가속기 연구소 Beamline 6B에서 Bruker Proteum 300 CCD를 통해 1.6 Å 파장에서 얻었다.Crystal structure analysis using X-ray diffraction was performed to investigate the three-dimensional structure of the purely separated material in Lactobacillus plantarum. 20.0 mg of the separated material sample was dissolved in 35% ethyl alcohol and 65% CH 2 Cl 2, and then left in a dehumidifying dryer to observe the crystallization process. The resulting sample crystals were obtained at a wavelength of 1.6 통해 through a Bruker Proteum 300 CCD at Beamline 6B in Pohang Accelerator Laboratory.
실험 결과Experiment result
식물에서의 유산균 동정Identification of Lactic Acid Bacteria in Plants
다양한 한국의 식물 재료인 갓김치, 돌나물 김치 및 일반 김치로부터 많은 종류의 유산균을 분리하였다. 본 실험에서는 이러한 식물 재료로부터 총 400여 개의 유산균을 분리하였고, 길항작용법(antagonism method)를 통하여 항진균활성이 있는 균주 200여 개를 선별하였다. 선별된 균주는 16S rDNA 염기 서열법을 통해 동정하기 위해 PCR을 수행하였다. 염기 서열 확인 결과, 전체적으로 류코노스톡 속, 락토바실러스 속, 락토코쿠스 속 및 웨이셀라 속의 균주들이 분리 동정되었다(표 1). 이 중 모든 재료에서 주로 류코노스톡 속과 락토바실러스 속이 분리되었으며, 돌나물에서는 락토코쿠스 락티스도 분리되었다. 시간별로는 류코노스톡 속이 발효 초기인 1-2일 사이에 주로 많이 분리 되었으며, 시간이 지날수록(2-3일) 락토바실러스 속이 주요 유산균 균주로써 많이 분리 되었다.Many kinds of lactic acid bacteria were isolated from various Korean botanical materials, gat kimchi, sedum kimchi and general kimchi. In this experiment, a total of 400 lactic acid bacteria were isolated from these plant materials, and 200 strains with antifungal activity were selected through an antagonism method. Selected strains were subjected to PCR to identify via 16S rDNA sequencing. As a result of sequencing, strains of the genus Leukonostok, Lactobacillus, Lactococcus and Weissella were isolated and identified as a whole (Table 1). Among all the materials, the genus Ryuconostock and Lactobacillus were separated, and Lactobacillus Lactobacillus was also isolated from. By time The genus Ryuconosstock was mainly isolated between 1-2 days of fermentation, and as time passed (2-3 days), Lactobacillus genus was isolated as a major lactic acid bacteria strain.
표 1
균주 식물 재료에서의 균주 수
갓 김치 돌나물 김치 배추 김치
류코노스톡 속(Leuconostoc spp.) 93 10 28
락토바실러스 속(Lactobacillus spp.) 14 8 17
락토코쿠스 속(Lactococcus spp.) - 1 -
웨이젤라 속(Weisella spp.) 2 14 18
Table 1
Strain Number of strains in plant material
Freshly kimchi Sedum kimchi Kimchi
Leuconostoc spp. 93 10 28
Lactobacillus spp. 14 8 17
Lactococcus spp. - One -
Way in Gela (Weisella spp.) 2 14 18
분리 및 동정된 유산균의 항균 활성 비교Comparison of Antimicrobial Activity of Lactobacillus Isolated and Identified
유산균은 생장에 있어 여러 가지 2차 대사 산물을 생성함으로 항균 활성을 가지게 된다. 동정한 유산균들 중 가장 활성이 높은 균주를 확인하고, 향후의 실험을 진행하기 위해, 길항작용법(antagonism method)과 배지희석법(broth microdilution method)를 통하여 각 균주의 항균 활성을 비교해 보았다(표 2).Lactic acid bacteria have antimicrobial activity by producing a variety of secondary metabolites in growth. In order to identify the most active strains among the identified lactic acid bacteria and to carry out further experiments, the antimicrobial activity of each strain was compared through the antagonism method and the broth microdilution method (Table 2). .
또한, 디스크 확산법(disk diffusion assay)을 이용하여 항균 활성 실험을 한 결과, 웨이셀라 시바리아 LBP-B06(W. cibaria LBP-B06), 락토바실러스 사케이 LBP-S01(L. sakei LBP-S01), 락토바실러스 김치 LBP-B02(L. kimchii LBP-B02), 락토바실러스 플란타룸 LBP-K10(L. plantarum LBP-K10), 락토바실러스 시트레움 LBP-K11(L. citreum LBP-K11) 및 류코노스톡 메센테로이데스 LBP-K06(L. mesenteroides LBP-K06)의 항균 활성이 매우 유의적으로 높게 나타남을 관찰하였다(표 2). 유산균의 항균 활성 실험에 사용된 지표 균주인 피검균으로는 그람 음성균인 에스케리치아 콜리(Escherichia coli)와 그람 양성균인 바실러스 서브틸리스(Bacillu subtilis)를 사용하였다. 또한 도 1에 나타낸 바와 같이, 위의 실험들을 통하여 동정한 유산균 중 락토바실러스 플란타룸 LBP-K10의 활성이 가장 좋음을 확인할 수 있었다. 따라서, 본 실험에서는 페디오코쿠스 펜토사세우스(Pediococcus pentosaceus), 류코노스톡 메센테로이데스 LBP-K06 및 락토바실러스 플란타룸 LBP-K10을 실험 균주로 하여 향후의 실험들을 진행하였다.In addition, as a result of the antimicrobial activity experiment using the disk diffusion assay (wasteella sibaria LBP-B06 (W. cibariaLBP-B06), Lactobacillus sakei LBP-S01 (L. sakeiLBP-S01), Lactobacillus Kimchi LBP-B02 (L. kimchiiLBP-B02), Lactobacillus plantarum LBP-K10 (L. plantarumLBP-K10), Lactobacillus citreum LBP-K11 (L. citreumLBP-K11) and Leukonostock Mesenteroides LBP-K06 (L. mesenteroidesIt was observed that the antibacterial activity of LBP-K06) was very high (Table 2). As the test strain, an indicator strain used in the antibacterial activity test of lactic acid bacteria, Escherichia coli (Gram negative bacteria)Escherichia coli) And Gram-positive bacteria Bacillus subtilis (Bacillu subtilis) Was used. In addition, as shown in Figure 1, Lactobacillus plantarum among the lactic acid bacteria identified through the above experiments It was confirmed that the best activity of LBP-K10. Therefore, in this experiment, Pediococcus pentosaceus (Pediococcus pentosaceus), Leukonostock Mesenteroides LBP-K06 and Lactobacillus plantarum Future experiments were conducted using LBP-K10 as the experimental strain.
표 2
식물 재료 균주 길항 작용 테스트a MICb,c 염기서열로 확인한 균체 분류군
갓 김치 LBP-B01 ++ +++ Lb. sakei
LBP-B02 ++ ++ L. kimchii
LBP-B03 ++ ++ L. mesenteroides
LBP-B04 ++ ++ L. mesenteroides
LBP-B05 +++ ++ L. paramesenteroides
LBP-B06 +++ ++ W. cibaria
돌나물 김치 LBP-S01 ++ +++ Lb. sakei
LBP-S02 +++ +++ Lb. plantarum
LBP-S03 ++ ++ Lc. lactis
LBP-S04 ++ ++ L. citreum
LBP-S05 ++ ++ L. citreum
LBP-S06 + ++ L. lactis
LBP-S08 ++ ++ W. hellenica
배추 김치 LBP-K01 ++ +++ Lb. plantarum
LBP-K03 ++ ++ L. citreum
LBP-K04 ++ - L. citreum
LBP-K05 ++ ++ L. holzapfelii
LBP-K06 +++ ++ L. mesenteroides
LBP-K07 ++ ++ L. pseudomesenteroides
LBP-K08 ++ + L. mesenteroides
LBP-K09 ++ ++ Lb. brevis
LBP-K10 +++ +++ Lb. plantarum
LBP-K11 ++ ++ L. citreum
LBP-K12 +++ ++ L. mesenteroides
LBP-K13 ++ ++ L. mesenteroides
LBP-K14 ++ ++ L. pseudomesenteroides
LBP-K15 +++ ++ W. cibaria
LBP-K16 ++ ++ W. confusa
TABLE 2
Plant material Strain Antagonism test a MIC b, c Cell sorting group identified by nucleotide sequence
Freshly kimchi LBP-B01 ++ +++ Lb. sakei
LBP-B02 ++ ++ L. kimchii
LBP-B03 ++ ++ L. mesenteroides
LBP-B04 ++ ++ L. mesenteroides
LBP-B05 +++ ++ L. paramesenteroides
LBP-B06 +++ ++ W. cibaria
Sedum kimchi LBP-S01 ++ +++ Lb. sakei
LBP-S02 +++ +++ Lb. plantarum
LBP-S03 ++ ++ Lc. lactis
LBP-S04 ++ ++ L. citreum
LBP-S05 ++ ++ L. citreum
LBP-S06 + ++ L. lactis
LBP-S08 ++ ++ W. hellenica
Kimchi LBP-K01 ++ +++ Lb. plantarum
LBP-K03 ++ ++ L. citreum
LBP-K04 ++ - L. citreum
LBP-K05 ++ ++ L. holzapfelii
LBP-K06 +++ ++ L. mesenteroides
LBP-K07 ++ ++ L. pseudomesenteroides
LBP-K08 ++ + L. mesenteroides
LBP-K09 ++ ++ Lb. brevis
LBP-K10 +++ +++ Lb. plantarum
LBP-K11 ++ ++ L. citreum
LBP-K12 +++ ++ L. mesenteroides
LBP-K13 ++ ++ L. mesenteroides
LBP-K14 ++ ++ L. pseudomesenteroides
LBP-K15 +++ ++ W. cibaria
LBP-K16 ++ ++ W. confusa
a는 항균 활성 범위를 나타내는 지름을 의미한다(지표 균주: 바실러스 서브틸리스). +는 지름이 < 15 ㎜를 의미하고, ++는 지름이 < 22 ㎜를 의미하며, +++는 지름이 ≥ 22 ㎜를 의미한다.a means diameter indicating an antimicrobial activity range (indicator strain: Bacillus subtilis). + Means diameter <15 mm, ++ means diameter <22 mm, and +++ means diameter ≧ 22 mm.
b는 최소억제농도(Minimum inhibitory concentration:MIC)를 의미한다. b is the minimum inhibitory concentration (MIC).
c는 최소억제농도의 배율을 의미한다. +는 1배를 의미하고, ++는 0.5배를 의미하며, +++는 0.25배를 의미한다(지표 균주: 바실러스 서브틸리스).c means the magnification of the minimum inhibitory concentration. + Means 1 fold, ++ means 0.5 fold, +++ means 0.25 fold (indicator strain: Bacillus subtilis).
분리 및 동정한 락토바실러스 플란타룸 LBP-K10의 특성Isolation and Characterization of Lactobacillus Planta Room LBP-K10
락토바실러스 플란타룸 LBP-K10의 16S rDNA 염기서열을 NCBI의 염기서열을 BLAST 프로그램을 이용하여 비교한 결과, 락토바실러스 플란타룸 IMAU10173의 염기서열과 100% 일치 하는 것으로 나타났다(데이터 미제시). 락토바실러스 플란타룸 LBP-K10의 시간에 따른 pH 변화와 생장 곡선을 살펴보기 위해 OD600 값을 28시간 동안 동시에 관찰한 결과 pH와 유산균의 성장에 유의적인 변화가 나타났다(도 2의 왼쪽 패널). 생장과 pH의 변화는 서로 반비례 하며, 생장 곡선의 경우 접종한 지 8시간 후부터 대수기에 진입하게 되었고, 28시간 후에는 정체기로 접어듦을 확인하였다. 정체기에 접어든 후에는 pH 값이 거의 일정하게 유지되었고, 생장도 일정하게 유지됨을 확인할 수 있었다(도 2의 왼쪽 패널).The 16S rDNA sequence of Lactobacillus plantarum LBP-K10 was compared with the base sequence of NCBI using the BLAST program, and found to be 100% identical to that of Lactobacillus plantarum IMAU10173 (data not shown). In order to examine the pH change and growth curve of Lactobacillus plantarum LBP-K10 over time, the OD 600 value was observed simultaneously for 28 hours, which showed a significant change in pH and the growth of lactic acid bacteria (left panel of FIG. 2). . Growth and pH change were inversely proportional to each other. In the case of growth curve, it was entered into the log phase from 8 hours after inoculation, and after 28 hours, it was confirmed to be in stagnant phase. After entering the plateau, it was confirmed that the pH value remained almost constant, and the growth was also constant (left panel of FIG. 2).
시간에 따른 항균 활성에 미치는 영향을 알아보기 위해 하루 단위씩 3일간 배양액을 채취하여 실험을 하였다. 그 결과, 1일째부터는 활성이 나타나기 시작하였고, 2일째도 계속 증가하다가 3일째의 항균 활성이 가장 높은 것으로 관찰되었으며, 약 2주간 이 활성이 유지되었다(도 2의 오른쪽 패널). pH의 경우는 정상적인 생장 동안에는 계속 감소하다가 생장이 정체기 전후에 pH 4.1 정도로 나타나며 이후 일정하게 유지됨을 알 수 있었다. In order to determine the effect on the antimicrobial activity over time, the experiment was carried out by taking the culture solution for 3 days each day. As a result, activity began to appear from day 1, and continued to increase on day 2, and the highest antimicrobial activity was observed on day 3, and this activity was maintained for about 2 weeks (right panel in FIG. 2). In the case of pH, it was decreased continuously during normal growth, and the growth appeared to be around pH 4.1 before and after the stagnation period and then remained constant.
락토바실러스 플란타룸 LBP-K10이 병원성균에 대한 항균 활성이 있는지를 살펴보기 위하여 여러 균주에 대하여 위에서 설명한 방법대로 디스크 확산법을 통해 항균 활성을 확인해 보았다(도 3). 여기서 수행한 락토바실러스 플란타룸 LBP-K10의 배양액은 총 3회의 독립적인 디스크 확산법을 수행하여 각 균주에 대한 활성을 생장 저지환(mm)을 계산하여 측정하였다. 락토바실러스 플란타룸 LBP-K10의 배양액은 바실러스 서브틸리스(Bacillus subtilis), 스타필로코쿠스 아우레우스(Staphylococcus aureus) 및 리스테리아 이노쿠아(Listeria innocua)와 같은 그람 양성균 뿐만 아니라 살모넬라 티피무루이움(Salmonella typhimuruium), 쉬젤라 소네이(Shigella sonnei), 스트렙토코쿠스 뉴모니아(Streptococcus pneumonia) 및 에스케리치아 콜리(Escherichia coli)와 같은 그람 음성균, 그리고 칸디다 알비칸스(Candida albicans)와 같은 진균류에서도 활성이 관찰되었다(도 3).Lactobacillus plantarum In order to determine whether LBP-K10 has an antimicrobial activity against pathogenic bacteria, the antimicrobial activity was confirmed through a disk diffusion method as described above for various strains (FIG. 3). Lactobacillus plantarum performed here Culture of LBP-K10 was performed by performing a total of three independent disk diffusion method to determine the growth inhibition ring (mm) activity for each strain. Lactobacillus plantarum The culture medium of LBP-K10 was Bacillus subtilis (Bacillus subtilis), Staphylococcus aureus (Staphylococcus aureus) And Listeria innocuaListeria innocuaSalmonella typhimurium (as well as Gram-positive bacteria)Salmonella typhimuruium), Shigella Sonei (Shigella sonnei), Streptococcus pneumoniae (Streptococcus pneumonia) And Escherichia coli (Escherichia coliGram-negative bacteria such as), and Candida albicans (Candida                 albicansActivity was also observed in fungi such as) (FIG. 3).
또한, 항균 물질이 열에 안정한지 확인하기 위해 다양한 조건하에 열을 가한 후 배양액에 대한 항균 활성 시험을 하였다(도 4). 열처리한 배양액은 항균 활성이 변하지 않았다. 지표 균주로 그람 양성균인 바실러스 서브틸리스와 그람 음성균인 살모넬라 티피무루이움을 사용하여 배양액의 활성을 관찰한 결과, 열을 처리하지 않은 대조군과 비교하였을 때 열을 가한 조건에 관계없이 실험군 모두 대조군과 비슷한 양상을 보이는 것을 확인하였다. 또한, 항균 활성은 15분간 멸균기에서 121??로 열을 가해도 그대로 유지되었다. 이 결과로 보아 항균 활성을 가지는 물질이 열에 의해 변성되지 않고 안정함을 확인하였다(도 4).In addition, to confirm that the antimicrobial material is stable to heat, heat was applied under various conditions, and then the antimicrobial activity test on the culture solution (FIG. 4). The heat-treated culture did not change the antimicrobial activity. The activity of the culture medium was observed using the Gram-positive bacillus Bacillus subtilis and the Gram-negative bacterium Salmonella typhimurium, and the experimental groups were similar to the control group, regardless of the conditions in which the heat was applied. It was confirmed to show an aspect. In addition, the antimicrobial activity was maintained even after heating to 121 ?? in a sterilizer for 15 minutes. As a result, it was confirmed that the material having antimicrobial activity was stable without being denatured by heat (FIG. 4).
배양액에 있는 항균 물질이 단백분해효소(프로테이나아제 K, 키모트립신 및 트립신)에 영향을 받는지 확인하기 위하여 배양액에 효소를 처리한 후 실험을 진행하였다(도 5). 실험을 위해 72시간 배양한 배양액을 사용하였고, 효소를 처리하기 전에 배양액을 단백질성 부분과 비단백질성 부분으로 나누기 위해 아세테이트 멤브레인 YM-1(Amicon, USA)으로 컷-오프하여 분자량이 1000이하인 것과 이상인 것으로 나누었다. 대조군으로는 배양액(CS)과 실험군으로 분자량이 1000이상인 시료(YM1S)와 분자량이 1000이하인 시료(YM1C)를 준비하여 각 효소들의 최종농도가 1 ㎎/㎖이 되도록 처리하였고 항균 활성을 비교하여 보았다.[55] 단백분해효소를 처리하였을 때, 지표 균주인 바실러스 서브틸리스와 에스케리치아 콜리에서 생장 저지환으로 관찰한 결과 CS와 YM1S의 항균 활성이 감소하는 것을 확인할 수 있었다(도 5). 특히 대조군인 CS에서 프로테이나아제 K의 경우 활성이 거의 변하지 않았지만, 트립신을 처리하였을 때 10.5%, 키모트립신의 경우 6.5% 정도 활성이 감소하였다. 바실러스 서브틸리스와 비교하였을 때 에스케리치아 콜리는 프로테이나아제 K와 트립신이 대략 7.0% 정도 대조군에 비해 항균활성이 감소함을 보였다(도 5). 아세테이트 멤브레인 YM-1을 이용하여 분자량 1000을 기준으로 나누었기 때문에 CS와 YM1S에서의 항균 활성 감소는 대부분 단백질성 물질들이 분해되어 나타난 것임을 알 수 있었다. In order to determine whether the antimicrobial substance in the culture medium is affected by protease (proteinase K, chymotrypsin and trypsin), the experiment was performed after the enzyme was treated in the culture solution (FIG. 5). The cultures were incubated for 72 hours for the experiment, and before the enzyme treatment, the cultures were cut off with acetate membrane YM-1 (Amicon, USA) to separate the proteinaceous and nonproteinaceous portions, It divided into the above. As a control group, a sample (YM1S) having a molecular weight of 1000 or more and a sample (YM1C) having a molecular weight of 1000 or less were prepared as a culture solution (CS) and an experimental group, and the final concentrations of the enzymes were treated to 1 mg / ml. . [55] When the protease treatment, it was confirmed that the surface strain of Bacillus subtilis SJ result antimicrobial activity of CS and YM1S was observed in Escherichia coli as a growth stop ring reduction (Fig. 5). In particular, the activity of proteinase K was almost unchanged in the control group CS, but the activity was decreased by 10.5% when treated with trypsin and 6.5% by chymotrypsin. Escherichia coli showed an antimicrobial activity of proteinase K and trypsin about 7.0% compared to the control group when compared to Bacillus subtilis (FIG. 5). Dividing by molecular weight 1000 based on the acetate membrane YM-1, it can be seen that the decrease in the antimicrobial activity in CS and YM1S is mostly due to the degradation of proteinaceous substances.
전체적으로 항균 활성이 감소하는 양상을 확인할 수 있었지만 정도가 미미하였고, 열과 단백분해효소 실험을 통해서 볼 때 대부분의 활성이 유지되는 것으로 보아 항균 활성을 나타내는 물질은 비단백질성 물질임을 추정할 수 있었다(도 4 및 5).The overall antimicrobial activity was reduced, but the degree was insignificant, and heat and protease experiments showed that most of the activity was maintained, suggesting that the antimicrobial activity was a nonproteinaceous material (Fig. 4 and 5).
항진균 물질의 분리 및 특성Isolation and Characterization of Antifungal Substances
락토바실러스 플란타룸의 항균 물질의 순수 분리는 앞서 여러 가지 실험 결과를 토대로 3일간 배양한 상층 배양액을 가지고 실시하였다. 분리 과정은 CH2Cl2를 이용하여 액체-액체 추출법에 의해 배양액으로부터 항균 물질을 분리한 후 세미-프렙(semi-prep)용 HPLC를 이용하여 분획하고, 수집하였고 분획한 결과는 HPLC 크로마토그램으로 확인하였다(도 6 및 도 7). 이러한 실험을 실시하기 위하여 본 실험에서는 항균 물질의 순수 분리 과정에서 일부 불필요한 산성 불순물인 D-젖산이나 아세트산등을 제거하기 위해 CH2Cl2를 이용하여 추출한 하층 배양액, CH2Cl2로 추출한 상층 배양액과 CH2Cl2로 추출하지 않은 배양액의 항균 활성을 액체-액체 추출법으로 비교해 보았고 이후의 실험에 적용하였다(도 6). Pure separation of the antimicrobial material of Lactobacillus plantarum was carried out with the supernatant cultured for 3 days based on various experimental results. The separation process was performed by liquid-liquid extraction using CH 2 Cl 2 to separate the antimicrobial material from the culture medium, and then fractionated using semi-prep HPLC. The collected fractions were collected by HPLC chromatography. It was confirmed (FIGS. 6 and 7). In this experiment, in order to carry out these experiments, a lower layer extracted broth using a CH 2 Cl 2 to remove the unnecessary portion such as the D- lactic acid impurities or acid in a pure separation of the antimicrobial substance, the culture supernatant was extracted with CH 2 Cl 2 The antimicrobial activity of the culture medium not extracted with and CH 2 Cl 2 was compared by liquid-liquid extraction and applied to subsequent experiments (FIG. 6).
이 실험을 통해 배양액의 모든 항균 물질은 CH2Cl2 추출 후 하층액을 가지고 이후의 실험을 수행하였다(도 6). 즉, 앞서 설명한 방법으로 배양액의 CH2Cl2 추출 상층액과 하층액, 그리고 CH2Cl2 추출을 하지 않은 농축 배양액을 가지고 항균 활성 실험을 확인한 결과, CH2Cl2 추출 상층액과 CH2Cl2 추출을 하지 않은 농축 배양액의 항균 활성이 비슷하게 나타났으며 하층액의 경우 다른 두 가지 실험군보다 훨씬 더 높은 항균 활성을 가짐을 관찰하였다(도 6). 따라서 항균 물질의 분리는 CH2Cl2 추출의 하층액을 가지고 실험하는 것이 더욱 효율적임을 알 수 있었다(도 6).Through this experiment, all the antimicrobial material of the culture solution was performed after the experiment with the lower layer solution after extraction of CH 2 Cl 2 (Fig. 6). That is, with the concentrated culture solution is not the above the described method the culture of CH 2 Cl 2 extracted supernatant and the lower layer liquid, and the CH 2 Cl 2 extract confirm the antibacterial activity test results, CH 2 Cl 2 extraction supernatant with CH 2 Cl It was observed that the antimicrobial activity of the concentrated culture broth 2 without extraction was similar, and the lower layer had much higher antimicrobial activity than the other two experimental groups (FIG. 6). Therefore, the separation of the antimicrobial material was found to be more efficient to experiment with the lower layer of CH 2 Cl 2 extraction (Fig. 6).
또한, 이러한 전처리 과정을 통해 준비된 실험군은 세미-프렙 HPLC 크로마토그램에서 분획된 물질을 적당한 양으로 농축한 후 항균 활성 실험을 실시하였고 락토바실러스 플란타룸의 크로마토그램에서 10여 개의 분획된 물질이 확인되었으며, 시간대 별로 나오는 피크를 분획화하여 수집하여 각각의 분획에 대한 항균 활성을 확인해 보았다(도 7 및 표 3).In addition, the experimental group prepared through such a pretreatment process was concentrated to an appropriate amount of the fractions fractionated in the semi-prep HPLC chromatogram and carried out an antimicrobial activity experiment, and identified 10 fractions in the chromatogram of Lactobacillus plantarum. And, the peaks coming out during each time period were collected by fractionation to check the antimicrobial activity of each fraction (Fig. 7 and Table 3).
표 3
지표 균주 MICa 분획 염기서열로 확인된 균체 분류군
바실러스 서브틸리스 +++ M8 Lc. mesenteroides LBP-K06
+++ N8 Lb. plantarum LBP-K10
+++ P8 P. pentosaceus MCPP
에스케리치아 콜리 ++ M8 Lc. mesenteroides
스타필로코쿠스 아우레우스 ++ M8 Lc. mesenteroides
스트렙토코쿠스 뉴모니아 ++ M8 Lc. mesenteroides
쉬젤라 디센테리이 ++ M8 Lc.mesenteroides
TABLE 3
Indicator strain MIC a Fraction Cell class identified by nucleotide sequence
Bacillus subtilis +++ M8 Lc. mesenteroides LBP-K06
+++ N8 Lb. plantarum LBP-K10
+++ P8 P. pentosaceus MCPP
Escherichia collie ++ M8 Lc. mesenteroides
Staphylococcus aureus ++ M8 Lc. mesenteroides
Streptococcus pneumoniae ++ M8 Lc. mesenteroides
Shigella descenteri ++ M8 Lc.mesenteroides
a는 최소억제농도(Minimum inhibitory concentration:MIC)를 의미한다. +는 1배를 의미하고, ++는 0.5배를 의미하며, +++는 0.25배를 의미한다.a means minimum inhibitory concentration (MIC). + Means 1x, ++ means 0.5x, and +++ means 0.25x.
항진균 활성에 대한 결과를 도 8 내지 도 11에 나타내었다.Results for antifungal activity are shown in FIGS. 8 to 11.
페디오코쿠스 펜토사세우스, 락토바실러스 플란타룸 및 류코노스톡 메센테로이데스의 모든 분획된 물질에서 공통된 크로마토그램의 각 균주에 해당하는 분획 물질인 분획된 순수 분리 물질이 진균에 미치는 영향을 알아보기 위해 먼저 가노더마 보니넨스(Ganoderma boninense)의 항진균에 미치는 영향을 관찰하였다(도 8 내지 도 9). 10 일간 미리 배양한 가노더마 보니넨스를 8 ㎜ 직경의 원 형태로 준비하고, PDA(potato dextrose agar) 2.5 ㎖을 6-웰 플레이트에 접종한 후 28℃에서 3일간 배양한 후 관찰하였다(도 8 내지 도 9). 실험 결과, M3, M4, M6a, M7b 및 M10의 활성이 유의적으로 높게 나타났으며, 이 중에서도 M10 분획 물질의 항진균 활성이 가장 높음을 확인하였다(도 8 내지 도 9). 이와 더불어 칸디다 알비칸스(Candida albicans)를 최소영양배지에서 항진균 활성을 알아 보기 위하여 하룻밤 배양한 종균 배양(seed culture)을 최소영양배지인 SD 아가 플레이트에 칸디다 알비칸스 세포를 초기 1 x 104 개 정도로 각각 접종하고 28℃에서 3 일간 배양한 후 항진균 활성을 관찰하였다(도 10 및 도 11). 실험 결과, 가노더마 보니넨스의 결과와는 달리 M10 분획물의 활성만 관찰되었고, 그 활성이 매우 유의적으로 높은 것으로 판단되었다(도 10 및 도 11).Find out the effect of fractionated pure isolates on the fungi of all strains of the common chromatogram in all fractions of Pediococcus pentosaceus, Lactobacillus plantarum, and leukonostock mesenteroides. To see, first, the effect of Ganoderma boninense on the antifungal effect was observed (Figs. 8 to 9). Ganoderma boninens pre-incubated for 10 days was prepared in the form of an 8 mm diameter circle, and 2.5 ml of PDA (potato dextrose agar) was inoculated into a 6-well plate, followed by incubation at 28 ° C. for 3 days (FIG. 8). To Figure 9). As a result, the activities of M3, M4, M6a, M7b and M10 were significantly higher, and among them, the antifungal activity of the M10 fraction was the highest (FIGS. 8 to 9). In addition, in order to examine the antifungal activity of Candida albicans in the minimal nutrient medium, the overnight culture of the seed cultures of the Candida albicans on the SD agar plate of the minimum nutrient medium was 1 × 10 4 . After inoculation and incubation at 28 ° C. for 3 days, antifungal activity was observed (FIGS. 10 and 11). As a result, only the activity of the M10 fraction was observed, unlike the results of ganoderma boninines, and the activity was determined to be very high (Figs. 10 and 11).
각 분획된 물질들의 pH는 크로마토그램 앞부분의 분획하여 확인한 산성 물질을 제외하고 모두 중성 pH에 가까웠으며(표 4), 이러한 결과는 페디오코쿠스 펜토사세우스, 락토바실러스 플란타룸 및 류코노스톡 메센테로이데스에서 모두 비슷한 경향성을 보였다(도 8 내지 도 11, 및 표 4).The pH of each fractionated material was close to the neutral pH except for the acidic material identified by fractionation in the front of the chromatogram (Table 4). These results were found in Pediococcus pentosaceus, Lactobacillus plantarum and leukonostock. All showed similar trends in Mesenteroides (FIGS. 8-11, and Table 4).
표 4
분획 수
구분 P1 P2 P3 P4 P5 P6a P6b P7a P7b P8 P9 P10
g/l - 5.88 - - - 14.5 2.0 5.0 7.3 2.2 4.2 10.7
pH - 3.8 7.6 7.9 9.6 9.2 8.9 8.8 8.6 8.5 8.2 8.1
- : 활성 없음.
Table 4
Fraction number
division P1 P2 P3 P4 P5 P6a P6b P7a P7b P8 P9 P10
g / l - 5.88 - - - 14.5 2.0 5.0 7.3 2.2 4.2 10.7
pH - 3.8 7.6 7.9 9.6 9.2 8.9 8.8 8.6 8.5 8.2 8.1
-: No activity.
또한, 최소배지농도법의 결과를 토대로 본 실험에서 동정한 여러 가지 유산균을 가지고 HPLC로 크로마토그램을 비교 분석한 결과, 페디오코쿠스 펜토사세우스, 락토바실러스 플란타룸 및 류코노스톡 메센테로이데스에서 분획 물질의 분포가 비슷하다는 사실을 발견하였다(도 5a). 다른 유산균 균주들에서의 크로마토그램도 페디오코쿠스 펜토사세우스, 락토바실러스 플란타룸 및 류코노스톡 메센테로이데스와 유사한 분획 경향성이 보였다(도 12). 이러한 결과를 통해 유산균이 생장을 거치며 항진균 물질을 생성하고 생성된 대사산물이 서로 비슷하다는 것을 알 수 있었다(도 12 및 도 13).In addition, the chromatograms were analyzed by HPLC with the various lactic acid bacteria identified in this experiment based on the results of the minimum medium concentration method. Pediococcus pentosaceus, Lactobacillus plantarum and leukonostock mesenteroides The distribution of fractional substances was found to be similar (Fig. 5a). Chromatograms in other lactic acid bacteria strains also showed similar fractional trends as Pediococcus pentosaceus, Lactobacillus plantarum and leukonostock mesenteroides (FIG. 12). These results show that lactic acid bacteria grow and produce antifungal substances and the resulting metabolites are similar to each other (FIGS. 12 and 13).
항진균 물질의 구조 분석Structural Analysis of Antifungal Substances
항진균 물질의 구조를 분석하기 위해 HPLC로 분리한 페디오코쿠스 펜토사세우스, 락토바실러스 플란타룸 및 류코노스톡 메센테로이데스의 P10, N10 및 M10은 동결 건조기로 분말 형태로 만들어 준비하였다. 실험 재료 및 방법에서 기술한 대로 분자량은 다이렉트 크로마토그래피(DIP, Direct Insertion Probe)로 크로마토그래피 질량분석기(Agilent 6890 series GC, Agilent Technologies, Waldron, Germany; high-resolution mass spectrometer, JEOL JMS-700, Tokyo, Japan)(GC-MS)를 이용하여 분석하였다(도 14 내지 도 15).P10, N10 and M10 of Pediococcus pentosaceus, Lactobacillus plantarum and Leukonostock mesenteroides isolated by HPLC were prepared in powder form with a freeze dryer to analyze the structure of the antifungal substance. Molecular weight was determined by direct chromatography (DIP, Direct Insertion Probe) as described in Experimental Materials and Methods (Agilent 6890 series GC, Agilent Technologies, Waldron, Germany; high-resolution mass spectrometer, JEOL JMS-700, Tokyo , Japan) (GC-MS) and analyzed (Figs. 14 to 15).
전자충격이온화법(electron ionization, EI)과 화학이온화법(chemical ionization, CI)에 의한 분석을 하였고 참고치와의 연관성을 파악하였다. P10과N10의 분자량의 참고치는 분자량 244로 조사되었고, 전자충격이온화법(electron ionization, EI)과 화학이온화법(chemical ionization, CI)에 의한 분석 결과 페디오코쿠스 펜토사세우스 및 락토바실러스 플란타룸 모두 244로 나타났다(도 14 내지 도 15).The analysis was performed by electron ionization (EI) and chemical ionization (CI), and the correlation with reference values was determined. The reference values of the molecular weights of P10 and N10 were investigated at a molecular weight of 244. As a result of analysis by electron ionization (EI) and chemical ionization (CI), Pediococcus pentosaceus and Lactobacillus plantar All rooms were found to be 244 (FIGS. 14-15).
보다 정확한 분자 구조를 파악하고 선행 실험인 전자충격이온화법(electron ionization, EI)과 화학이온화법(chemical ionization, CI)에 의한 분석을 비교하기 위해 500 MHz 자기공명법을 이용하여 P10, N10 및 M10의 구조를 관찰하였다(도 16 내지 도 21). 100 % DMSO 가 처리된 P10과 10% 중수(D2O)가 DMSO와 혼합된 P10 분획물을 1H 핵자기공명법과 13C 핵자기공명법으로 분석하였다(도 16 내지 도 21).P10, N10, and M10 using 500 MHz magnetic resonance to identify more accurate molecular structures and to compare analyzes by previous experiments, electron ionization (EI) and chemical ionization (CI) The structure of was observed (FIGS. 16-21). P10 treated with 100% DMSO and P10 fractions mixed with 10% heavy water (D 2 O) with DMSO were analyzed by 1 H nuclear magnetic resonance method and 13 C nuclear magnetic resonance method (FIGS. 16 to 21).
또한 13C/1H 2D HSQC(500 MHz, 100% DMSO와 10% D2O가 함유된 DMSO) 핵자기공명법의 스펙트럼은 분리된 페디오코쿠스 펜토사세우스, 락토바실러스 플란타룸 및 류코노스톡 메센테로이데스의 M10, N10 및 P10의 탄소-수소에 대한 결과가 1H 핵자기공명법과 13C 핵자기공명법으로 분석한 선행 실험 결과와 일치함을 보였다(도 16 및 도 17). 락토바실러스 플란타룸에서 순수 분리한 N10을 100% DMSO로 처리한 P10은 8.0 ppm에서 전형적인 질소-수소 피크를 나타내지만(도 16), 10% D2O가 함유된 M10의 경우질소-수소 피크에서 중수로 치환되어 8.0 ppm의 피크가 사라지는 것을 1H/13C NMR (600MHz, 100% MeOD) HSQC 스펙트라를 통해 확인하였다(도 17).Also13C /OneH 2D HSQC (500 MHz, 100% DMSO and 10% D2The spectra of O-containing DMSO) nuclear magnetic resonance spectroscopy were obtained from the isolates of isolated Pediococcus pentosaceus, Lactobacillus plantarum and leukonostock mesenteroides. The results for carbon-hydrogen of M10, N10 and P10OneH nuclear magnetic resonance method13It was shown to be consistent with the results of previous experiments analyzed by C nuclear magnetic resonance (FIGS. 16 and 17). P10 treated with 100% DMSO purely isolated from Lactobacillus plantarum with 100% DMSO showed a typical nitrogen-hydrogen peak at 8.0 ppm (Figure 16), but 10% D2In case of M10 containing O, the 8.0 ppm peak disappears from the nitrogen-hydrogen peak to heavy water.OneH /13C NMR (600 MHz, 100% MeOD) was confirmed via HSQC spectra (FIG. 17).
P10의 13C 핵자기공명법을 통한 화학적 이동(Chemical shift)은 DMSO와 10% 중수를 함유한 DMSO 시료에서 모두 14개의 탄소를 가진 물질로 나타났다(도 17). 13C 핵자기공명법의 결과로 보아 P10 분획물은 전자충격이온화법과 화학이온화법에 의한 분석 결과에 대한 참고치와 그 결과가 일치하였다(도 17).Chemical shifts of P10 through 13 C nuclear magnetic resonance revealed 14 carbons in DMSO and DMSO samples containing 10% heavy water (FIG. 17). As a result of 13 C nuclear magnetic resonance method, the P10 fractions were consistent with the reference values for the analysis results by electron impact ionization and chemical ionization (FIG. 17).
이와 더불어 1H /1H 2D COSY 핵자기공명법에서 100% DMSO와 10% D2O가 함유된 DMSO에 녹인 시료 분석 수행 후, P10과 N10 구조를 예상할 수 있었다(도 18 및 도 19). 이러한 실험 결과를 바탕으로 원소 성분을 성분 분석기를 통해 분석해 본 결과 표 5와 같은 원소비를 얻을 수 있었다. In addition, after analyzing the samples dissolved in DMSO containing 100% DMSO and 10% D 2 O in 1 H / 1 H 2D COSY nuclear magnetic resonance, the P10 and N10 structures could be expected (Figs. 18 and 19). . Based on the experimental results, elemental components were analyzed by the component analyzer, and the element ratios shown in Table 5 were obtained.
표 5
성분 비율 (%) 검출된 질량 계산한 수 예측한 수 계산된 질량
탄소 66.9970 163.4727 13.6227 14 168
질소 11.2623 27.4800 1.9628 2 28
수소 6.3883 15.5875 15.5874 16 16
산소 13.1100 31.9884 1.9992 2 32
0.0000 0.0000 0.0000 0.0000 0.0000
총합 97.7576 238.5286 - - 244
Table 5
ingredient ratio (%) Detected mass Calculated number A predicted number Calculated mass
carbon 66.9970 163.4727 13.6227 14 168
nitrogen 11.2623 27.4800 1.9628 2 28
Hydrogen 6.3883 15.5875 15.5874 16 16
Oxygen 13.1100 31.9884 1.9992 2 32
sulfur 0.0000 0.0000 0.0000 0.0000 0.0000
total 97.7576 238.5286 - - 244
또한 X선 회절을 이용한 결정 구조 분석 결과와 여러 구조 분석 결과를 C14H16O2N2의 구조를 가지는 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))임을 확인하였다(도 20 및 도 21). 항진균 물질의 구조를 분석하기 위해 HPLC로 분리한 페디오코쿠스 펜토사세우스, 락토바실러스 플란타룸 및 류코노스톡 메센테로이데스 의 P10, N10 및 M10의 최종 화학구조는 도 22에 제시하였다.Also, the crystal structure analysis results using X-ray diffraction and various structure analysis results were cis-cyclo (L-phenylalanine-L-proline) ( cis- cyclo (L-Phe-L) having a structure of C 14 H 16 O 2 N 2 . -Pro)) (Figs. 20 and 21). The final chemical structures of P10, N10 and M10 of Pediococcus pentosaceus, Lactobacillus plantarum and Leukonostock mesenteroides isolated by HPLC to analyze the structure of the antifungal substance are shown in FIG. 22.
ESI-CID mass spectrum m/z 245 [MH]+ base peak, 153 [MH-C7H8]+, 125 [MH-C7H8-CO]+ ESI-CID mass spectrum m / z 245 [MH] + base peak, 153 [MH-C 7 H 8 ] + , 125 [MH-C 7 H 8 -CO] +
1H NMR (DMSO-d6) δ 1.41 - 1.45 (1H at C-5, m), 1.69 -1.74 (2H at C-4, m), 1.98 - 2.03 (1H at C-5, m), 3.01 -3.08 (2H at C-10, m), 3.24 - 3.42 (2H at C-3, m), 4.05 - 4.08 (1H at C-6, m), 4.33 - 4.35 (1H at C-9, m), 7.17-7.27 (5H at phenyl group, m) 7.98 (1H at N-8, s). 1 H NMR (DMSO-d 6 ) δ 1.41-1.45 (1H at C-5 , m), 1.69 -1.74 (2H at C-4 , m), 1.98-2.03 (1H at C-5 , m), 3.01 -3.08 (2H at C-10, m), 3.24 - 3.42 (2H at C-3, m), 4.05 - 4.08 (1H at C-6, m), 4.33 - 4.35 (1H at C-9, m) , 7.17-7.27 (5H at phenyl group , m) 7.98 (1H at N-8 , s).
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that such a specific technology is only a preferred embodiment, and the scope of the present invention is not limited thereto. Therefore, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.
참고 문헌references
[1] Schillinger, U., and W. H. Holzapfel. 1996. Guidelines for manuscripts on bacteriocins of lactic acid bacteria. Int J Food Microbiol. 33:iii-v.[1] Schillinger, U., and W. H. Holzapfel. 1996. Guidelines for manuscripts on bacteriocins of lactic acid bacteria. Int J Food Microbiol. 33: iii-v.
[2] Bottazzi, V. 1988. An introduction to rod-shaped lactic-acid bacteria. Biochimie. 70:303-315.[2] Bottazzi, V. 1988. An introduction to rod-shaped lactic-acid bacteria. Biochimie. 70: 303-315.
[3] Atrih, A., N. Rekhif., A. J. Moir., A. Lebrihi, and G. Lefebvre. 2001. Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. Int J Food Microbiol. 68:93-104.[3] Atrih, A., N. Rekhif., AJ Moir., A. Lebrihi, and G. Lefebvre. 2001.Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. Int J Food Microbiol. 68: 93-104.
[4] Ocana, V. S., A. A. Pesce De Ruiz Holgado., and M. E. Nader-Macㅽas. 1999. Characterization of a bacteriocin-like substance produced by a vaginal Lactobacillus salivarius strain. Appl Environ Microbiol. 65:5631-5635.[4] Ocana, VS, AA Pesce De Ruiz Holgado., And ME Nader-Maczas. Characterization of a bacteriocin-like substance produced by a vaginal Lactobacillus salivarius strain. Appl Environ Microbiol. 65: 5631-5635.
[5] Ganzle, M. G., A. Holtzel., J. Walter., G. Jung, and W. P. Hammes, 2000.Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol. 66:4325-4333.[5] Ganzle, M. G., A. Holtzel., J. Walter., G. Jung, and W. P. Hammes, 2000. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol. 66: 4325-4333.
[6] Lindgren, S. E., and W. J. Dobrogosz. 1990. Antagonistic activities of lactic-acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 87:149-163.[6] Lindgren, S. E., and W. J. Dobrogosz. 1990. Antagonistic activities of lactic-acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 87: 149-163.
[7] Niku-Paavola, M. L., A. Laitila, T. Mattila-Sandholm, and A. Haikara. 1999. New types of antimicrobial compounds produced by Lactobacillus plantarum. J Appl Microbiol. 86:29-35.[7] Niku-Paavola, ML, A. Laitila, T. Mattila-Sandholm, and A. Haikara. New types of antimicrobial compounds produced by Lactobacillus plantarum . J Appl Microbiol. 86: 29-35.
[8] Abee, T., L., Krockel., and C, Hill. 1995. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol. 28:169-185.[8] Abee, T., L., Krockel., And C, Hill. 1995. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol. 28: 169-185.
[9] De Vuyst, L., and F. Leroy.2007. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol. 13:194-199.[9] De Vuyst, L., and F. Leroy. 2007. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol. 13: 194-199.
[10] Nes, I. F., and H. Holo. 2000. Class II antimicrobial peptides from lactic acid bacteria. Biopolymers. 55:50-61.[10] Nes, I. F., and H. Holo. 2000. Class II antimicrobial peptides from lactic acid bacteria. Biopolymers. 55: 50-61.
[11] Nes, I. F., D. B. Diep., L. S. Havarstein., M. B. Brurberg, V. Eijsink, and H. Holo.1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek. 70:113-128.[11] Nes, I. F., D. B. Diep., L. S. Havarstein., M. B. Brurberg, V. Eijsink, and H. Holo. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek. 70: 113-128.
[12] Nes, I. F., and J. R. Tagg. 1996. Novel lantibiotics and their pre-peptides. Antonie Van Leeuwenhoek. 69:89-97.[12] Nes, I. F., and J. R. Tagg. 1996. Novel lantibiotics and their pre-peptides. Antonie Van Leeuwenhoek. 69: 89-97.
[13] Parente, E., and A. Ricciardi. 1999. Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl Microbiol Biotechnol. 52:628-638.[13] Parente, E., and A. Ricciardi. 1999. Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl Microbiol Biotechnol. 52: 628-638.
[14] Tominaga, T., and Y. Hatakeyama. 2007. Development of innovative pediocin PA-1 by DNA shuffling among class IIa bacteriocins. Appl Environ Microbiol. 73: 5292-5299.[14] Tominaga, T., and Y. Hatakeyama. 2007. Development of innovative pediocin PA-1 by DNA shuffling among class IIa bacteriocins. Appl Environ Microbiol. 73: 5292-5299.
[15] Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 12:39-85. [15] Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 12: 39-85.
[16] Joerger, M. C., and T. R. Klaenhammer. 1990. Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin. J Bacteriol. 172:6339-6347.[16] Joerger, MC, and TR Klaenhammer. 1990. Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin. J Bacteriol. 172: 6339-6347.
[17] Wu, C. W., L. J. Yin, and S. T. Jiang. 2004. Purification and characterization of bacteriocin from Pediococcus pentosaceus ACCEL. J Agric Food Chem. 52:1146-1151.[17] Wu, CW, LJ Yin, and ST Jiang. 2004. Purification and characterization of bacteriocin from Pediococcus pentosaceus ACCEL . J Agric Food Chem. 52: 1146-1151.
[18] Nardi, R. M., M. M. Santoro., J. S. Oliveira., A. M. Pimenta., V. P. Ferraz., L. C. Benchetrit, and J. R. Nicoli.2005. Purification and molecular characterization of antibacterial compounds produced by Lactobacillus murinus strain L1. J Appl Microbiol. 99:649-656.[18] Nardi, R. M., M. M. Santoro., J. S. Oliveira., A. M. Pimenta., V. P. Ferraz., L. C. Benchetrit, and J. R. Nicoli. 2005. Purification and molecular characterization of antibacterial compounds produced by Lactobacillus murinus strain L1. J Appl Microbiol. 99: 649-656.
[19] Stevens, K. A., B. W. Sheldon., N. A. Klapes, and T. R. Klaenhammer. 1991. Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl Environ Microbiol. 57: 3613-3615.[19] Stevens, KA, BW Sheldon., NA Klapes, and TR Klaenhammer. 1991. Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl Environ Microbiol. 57: 3613-3615.
[20] Graz, M., A, Hunt., H. Jamie., G. Grant, and P. Milne. 1999. Antimicrobial activity of selected cyclic dipeptides. Pharmazie. 54:772-775.[20] Graz, M., A, Hunt., H. Jamie., G. Grant, and P. Milne. 1999. Antimicrobial activity of selected cyclic dipeptides. Pharmazie. 54: 772-775.
[21] Strom, K., S., S. Jorgen., B, Anders, and S. John. 2002. Lactobacillus plantarium Mi-LAB 393 produce the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol. 68:4322-4327.[21] Strom, K., S., S. Jorgen., B, Anders, and S. John. 2002. Lactobacillus plantarium Mi-LAB 393 produce the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol. 68: 4322-4327.
[22] O'Neill, J. C., and H. E. Blackwell.2007. Solid-phase and microwave-assisted syntheses of 2,5-diketopiperazines: small molecules with great potential. Comb Chem High Throughput Screen. 10:857-876.[22] O'Neill, J. C., and H. E. Blackwell. 2007. Solid-phase and microwave-assisted syntheses of 2,5-diketopiperazines: small molecules with great potential. Comb Chem High Throughput Screen. 10: 857-876.
[23] Prasad, C. 1995. Bioactive cyclic dipeptides. Peptides. 16:151-164.[23] Prasad, C. 1995. Bioactive cyclic dipeptides. Peptides. 16: 151-164.
[24] Rhee, K. H., K. H. Choi., C. J. Kim., and C. H. Kim. 2001. Identification of Streptomyces sp. AMLK-335 producing antibiotic substance inhibitory to VRE (vancomycin-resistant enterococci). J Micribiol Biotechnol. 11:469-474.[24] Rhee, K. H., K. H. Choi., C. J. Kim., And C. H. Kim. 2001. Identification of Streptomyces sp. AMLK-335 producing antibiotic substance inhibitory to VRE (vancomycin-resistant enterococci). J Micribiol Biotechnol. 11: 469-474.
[25] Rhee KH. 2002. Isolation and characterization of Streptomyces sp. KH-614 producing anti-VRE (vancomycin-resistant enterococci) antibiotics. J Gen Appl Microbiol. 48:321-327.[25] Rhee KH. 2002. Isolation and characterization of Streptomyces sp. KH-614 producing anti-VRE (vancomycin-resistant enterococci) antibiotics. J Gen Appl Microbiol. 48: 321-327.
[26] Stark, T., and T. Hofmann. 2005. Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao). J Agric Food Chem. 53:7222-7231.[26] Stark, T., and T. Hofmann. 2005. Structures, sensory activity, and dose / response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao). J Agric Food Chem. 53: 7222-7231.
[27] Strㆆm, K., J. Sjㆆgren., A. Broberg, and J. Schnㆌrer. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol. 68:4322-4327.[27] Strm, K., J. Sj. Gren., A. Broberg, and J. Schn.rer. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol. 68: 4322-4327.
[28] Trabocchi, A., D. Scarpi., and A. Guarna. 2008. Structural diversity of bicyclic amino acids. Amino Acids. 34:1-24.[28] Trabocchi, A., D. Scarpi., And A. Guarna. 2008. Structural diversity of bicyclic amino acids. Amino Acids. 34: 1-24.
[29] Ottenheijm, H. C. J, J. D. M. Herscheid., G. P. C. Kerkhoff, and T. F. Spende. 1976. Preparation of episulfide DKPS from ZN2+ catalysed cyclization procedure. J Org Chem. 41:3433-3438.[29] Ottenheijm, HC J, JDM Herscheid., GPC Kerkhoff, and TF Spende. 1976. Preparation of episulfide DKPS from ZN 2+ catalysed cyclization procedure. J Org Chem. 41: 3433-3438.
[30] Woo, P. C., S. K. Lau., J. L. Teng., H. Tse, and K. Y. Yuen. 2008.Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect. 14:908-934.[30] Woo, P. C., S. K. Lau., J. L. Teng., H. Tse, and K. Y. Yuen. 2008 and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect. 14: 908-934.
[31] Holzapfel, W. H., P. Haberer., R. Geisen., J. Bjㆆrkroth, and U. Schillinger.2001. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr. 73:365S-373S. [31] Holzapfel, W. H., P. Haberer., R. Geisen., J. Bj.rkroth, and U. Schillinger. 2001. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr. 73: 365S-373S.
[32] Huys, G., K. D'Haene, and J. Swings. 2002. Influence of the culture medium on antibiotic susceptibility testing of food-associated lactic acid bacteria with the agar overlay disc diffusion method. Lett Appl Microbiol. 34:402-406.[32] Huys, G., K. D'Haene, and J. Swings. Influence of the culture medium on antibiotic susceptibility testing of food-associated lactic acid bacteria with the agar overlay disc diffusion method. Lett Appl Microbiol. 34: 402-406.
[33] Mathur, S., and R. Singh. 2005. Antibiotic resistance in food lactic acid bacteria-a review. Int J Food Microbiol. 105:281-295.[33] Mathur, S., and R. Singh. 2005. Antibiotic resistance in food lactic acid bacteria-a review. Int J Food Microbiol. 105: 281-295.
[34] Messens, W., and V. L. De. 2002. Inhibitory substances produced by Lactobacilli isolated from sourdoughs-a review. Int J Food Microbiol. 72:31-43.[34] Messens, W., and V. L. De. 2002.Inhibitory substances produced by Lactobacilli isolated from sourdoughs-a review. Int J Food Microbiol. 72: 31-43.
[35] Tㆆlgyessy, P., and J. Hrivnak. 2006. Analysis of volatiles in water using headspace solid-phase microcolumn extraction. J Chromatogr A. 1127: 295-297.[35] T ㆆ lgyessy, P., and J. Hrivnak. 2006. Analysis of volatiles in water using headspace solid-phase microcolumn extraction. J Chromatogr A. 1127: 295-297.
[36] Ahi, S., I. M. Reddy., A. Beotra., R. Lal., S. Jain, and T. Kaur. 2008. Sample purification procedure for confirmation of 3'-hydroxy stanozolol by gas chromatography/high resolution mass spectrometry. Indian J Pharmacol. 40:164-169.[36] Ahi, S., I. M. Reddy., A. Beotra., R. Lal., S. Jain, and T. Kaur. 2008. Sample purification procedure for confirmation of 3'-hydroxy stanozolol by gas chromatography / high resolution mass spectrometry. Indian J Pharmacol. 40: 164-169.
[37] Reynolds, W. F., and R. G. Enrㅽquez. 2002. Choosing the best pulse sequences, acquisition parameters, postacquisition processing strategies, and probes for natural product structure elucidation by NMR spectroscopy. Review. J Nat Prod. 65:221-244.[37] Reynolds, W. F., and R. G. Enr. 2002. Choosing the best pulse sequences, acquisition parameters, postacquisition processing strategies, and probes for natural product structure elucidation by NMR spectroscopy. Review. J Nat Prod. 65: 221-244.
[38] Lu, T. L., C. S. Chen., F. L. Yang., J. M. Fung., M. Y. Chen., S. S. Tsay., J. Li., W. Zou, and S. H. Wu. 2004. Structure of a major glycolipid from Thermus oshimai NTU-063. Carbohydr Res. 339:2593-2598.[38] Lu, TL, CS Chen., FL Yang., JM Fung., MY Chen., SS Tsay., J. Li., W. Zou, and SH Wu. 2004.Structure of a major glycolipid from Thermus oshimai NTU-063. Carbohydr Res. 339: 2593-2598.
[39] Baranovskii, A. V., R. P. Litvinovskaya., M. A. Aver'kova., N. B. Khripach, and V. A. Khripach. 2007. NMR spectra of androstane analogs of brassinosteroids. Appl Spectros. 74:642-650.[39] Baranovskii, AV, RP Litvinovskaya., MA Aver'kova., NB Khripach, and VA Khripach. 2007. NMR spectra of androstane analogs of brassinosteroids. Appl Spectros. 74: 642-650.
[40] Patel, S., N. Kasoju., U. Bora, and A. Goyal. 2010. Structural analysis and biomedical applications of dextran produced by a new isolate Pediococcus pentosaceus screened from biodiversity hot spot Assam. Bioresour Technol. 101:6852-6855.[40] Patel, S., N. Kasoju., U. Bora, and A. Goyal. 2010. Structural analysis and biomedical applications of dextran produced by a new isolate Pediococcus pentosaceus screened from biodiversity hot spot Assam. Bioresour Technol. 101: 6852-6855.
[41] Lonvaud-Funel, A., and Joyeux, A. 1993. Antagonism between lactic acid bacteria of wines: inhibition of Leuconostoc oenos by Lactobacillus plantarum and Pediococcus pentosaceus. Food Microbiology.10: 411-419.[41] Lonvaud-Funel, A., and Joyeux, A. 1993. Antagonism between lactic acid bacteria of wines: inhibition of Leuconostoc oenos by Lactobacillus plantarum and Pediococcus pentosaceus . Food Microbiology. 10: 411-419.
[42] Olasupo, N. A. 1996. Bacteriocins of Lactobacillus plantarum strains from fermented foods. Folia Microbiol (Praha). 41:130-136.[42] Olasupo, N. A. 1996. Bacteriocins of Lactobacillus plantarum strains from fermented foods. Folia Microbiol (Praha). 41: 130-136.
[43] Molin, G. 2001. Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am J Clin Nutr. 73:380S-385S.[43] Molin, G. 2001. Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am J Clin Nutr. 73: 380 S-385 S.
[44] Jamuna, M., and K. Jeevaratnam. 2004. Isolation and partial characterization of bacteriocins from Pediococcus species. Appl Microbiol Biotechnol.65:433-439.[44] Jamuna, M., and K. Jeevaratnam. 2004. Isolation and partial characterization of bacteriocins from Pediococcus species. Appl Microbiol Biotechnol. 65: 433-439.
[45] Gourama, H., and L. B. Bullerman. 1995. Inhibition of growth and aflatoxin production of Aspergillus flavus by Lactobacillus species. Journal of Food Protection. 58: 1249-1256.[45] Gourama, H., and LB Bullerman. 1995. Inhibition of growth and aflatoxin production of Aspergillus flavus by Lactobacillus species. Journal of Food Protection. 58: 1249-1256.
[46] Kim, J., J. Chun., and H. U. Han. 2000. Leuconostoc kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol. 50:1915-1919.[46] Kim, J., J. Chun., And HU Han. 2000. Leuconostoc kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol. 50: 1915-1919.
[47] Skyttㅴ, E., A. Haikara, and T. Mattila-Sandholm. 1993. Production and characterization of antibacterial compounds produced by Pediococcus damnosus and Pediococcus pentosaceus.J Appl Bacteriol. 74:134-142.[47] Skytt, E., A. Haikara, and T. Mattila-Sandholm. 1993. Production and characterization of antibacterial compounds produced by Pediococcus damnosus and Pediococcus pentosaceus.J Appl Bacteriol. 74: 134-142.
[48] Aguilar, C., C. Vanegas, and B. Klotz. 2010. Antagonistic effect of Lactobacillus strains against Escherichia coli and Listeria monocytogenes in milk. J Dairy Res. 3:1-8.[48] Aguilar, C., C. Vanegas, and B. Klotz. 2010. Antagonistic effect of Lactobacillus strains against Escherichia coli and Listeria monocytogenes in milk. J Dairy Res. 3: 1-8.
[49] Ganzle, M. G.2004. Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol. 64:326-332.[49] Ganzle, M. G. 2004. Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol. 64: 326-332.
[50] Bernbom, N., T. R. Licht., P. Saadbye., F. K. Vogensen, and B. Nㆈrrung. 2006. Lactobacillus plantarum inhibits growth of Listeria monocytogenesin an in vitro continuous flow gut model, but promotes invasion of L. monocytogenes in the gut of gnotobiotic rats. Int J Food Microbiol. 108:10-14.[50] Bernbom, N., TR Licht., P. Saadbye., FK Vogensen, and B. N ㆈ rrung. 2006. Lactobacillus plantarum inhibits growth of Listeria monocytogenes in an in vitro continuous flow gut model, but promotes invasion of L. monocytogenes in the gut of gnotobiotic rats. Int J Food Microbiol. 108: 10-14.
[51] Loessner, M., S. Guenther., S. Steffan, and S. Scherer S. A pediocin-producing Lactobacillus plantarum strain inhibits Listeria monocytogenesin a multispecies cheese surface microbial ripening consortium. Appl Environ Microbiol. 69:1854-1857.[51] Loessner, M., S. Guenther., S. Steffan, and S. Scherer S. A pediocin-producing Lactobacillus plantarum strain inhibits Listeria monocytogenes in a multispecies cheese surface microbial ripening consortium. Appl Environ Microbiol. 69: 1854-1857.
[52] Van Reenen, C. A., M. L. Chikindas., W. H. Van Zyl, and L. M. Dicks. 2003. Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int J Food Microbiol. 81:29-40.[52] Van Reenen, CA, ML Chikindas., WH Van Zyl, and LM Dicks. 2003. Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae . Int J Food Microbiol. 81: 29-40.
[53] van Reenen, C. A, L. M. Dicks, and M. L. Chikindas. 1998. Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol. 84:1131-1137.[53] van Reenen, C. A, LM Dicks, and ML Chikindas. Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum . J Appl Microbiol. 84: 1131-1137.
[54] Ennahar, S., O. Assobhel, and C. Hasselmann. 1998. Inhibition of Listeria monocytogenes in a smear-surface soft cheese by Lactobacillus plantarum WHE 92, a pediocin AcH producer. J Food Prot. 61:186-191.[54] Ennahar, S., O. Assobhel, and C. Hasselmann. Inhibition of Listeria monocytogenes in a smear-surface soft cheese by Lactobacillus plantarum WHE 92, a pediocin AcH producer. J Food Prot. 61: 186-191.
[55] Pangsomboon, K., S. Bansal., G. P. Martin., P. Suntinanalert, S. Kaewnopparat, and T. Srichana. 2009. Further characterization of a bacteriocin produced by Lactobacillus paracasei HL32. J Appl Microbiol. 106:1928-1940.[55] Pangsomboon, K., S. Bansal., GP Martin., P. Suntinanalert, S. Kaewnopparat, and T. Srichana. 2009. Further characterization of a bacteriocin produced by Lactobacillus paracasei HL32. J Appl Microbiol. 106: 1928-1940.

Claims (14)

  1. 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))을 유효성분으로 포함하고, 가노더마 속(Genus Ganoderma)의 진균에 대하여 특이적인 항진균 활성을 가지는 것을 특징으로 하는 항진균용 조성물. Cis-bicyclo with (L- phenylalanine -L- proline) (cis-cyclo (L- Phe-L-Pro)) the specific antifungal activity against fungi including, as an active ingredient, and Kano Derma in (Genus Ganoderma) Antifungal composition, characterized in that.
  2. 제 1 항에 있어서, 상기 가노더마 속 진균은 가노더마 보니넨스(Ganoderma boninense), 가노더마 아플라나툼(Ganoderma applanatum) 및 가노더마 조나툼(Ganoderma zonatum)으로 이루진 군으로부터 선택된 하나 이상의 가노더마 속 진균인 것을 특징으로 하는 항진균용 조성물.According to claim 1, wherein the genus of genus Ganoderma is one or more genus selected from the group consisting of Ganoderma boninense, Ganoderma applanatum and Ganoderma zonatum Antifungal composition, characterized in that the fungus.
  3. 제 2 항에 있어서, 상기 가노더마 속 진균은 가노더마 보니넨스(Ganoderma boninense)인 것을 특징으로 하는 항진균용 조성물.The antifungal composition according to claim 2, wherein the fungus of the genus Ganoderma is ganoderma boninense.
  4. 시스-사이클로(L-페닐알라닌-L-프롤린)(cis-cyclo(L-Phe-L-Pro))을 유효성분으로 포함하고, 가노더마 속(Genus Ganoderma)의 진균에 대하여 특이적인 항진균 활성을 가지는 것을 특징으로 하는 농약 조성물.It contains cis-cyclo (L-Phe-L-Pro) as an active ingredient and has specific antifungal activity against the fungus of Genus Ganoderma. Agrochemical composition, characterized in that.
  5. 제 4 항에 있어서, 상기 농약 조성물은 용매, 담체, 유화제 및 분산제로 이루어진 군으로부터 선택된 하나 이상의 성분 또는 첨가물을 추가적으로 포함하는 것을 특징으로 하는 농약 조성물.5. The pesticide composition of claim 4, wherein the pesticide composition further comprises one or more components or additives selected from the group consisting of solvents, carriers, emulsifiers and dispersants.
  6. (a) 젖산균을 배양하여 젖산균 배양액을 제조하는 단계; 및(A) culturing the lactic acid bacteria to prepare a lactic acid bacteria culture medium; And
    (b) 상기 배양액내 시스-사이클로(L-페닐알라닌-L-프롤린)를 항진균에 효과적인 농도로 농축하는 단계를 포함하는 것을 특징으로 하는 가노더마 속(Genus Ganoderma)의 진균에 대한 항진균제 생산 방법.(b) a method for producing an antifungal agent against fungi of genus Ganoderma, comprising the step of concentrating the cis-cyclo (L-phenylalanine-L-proline) in the culture at an effective concentration for antifungal.
  7. 제 6 항에 있어서, 상기 젖산균은 페디오코쿠스 속(Pediococcus), 락토바실러스(Lactobacillus) 속, 류코노스톡 속(Leuconostoc), 바이쎌라 속(Weissella) 및 락토코쿠스(Lactococcus)로 이루어진 군으로부터 선택된 하나 이상의 젖산균인 것을 특징으로 하는 항진균제 생산 방법.The method of claim 6, wherein the lactic acid bacterium is selected from the group consisting of Pediococcus, Lactobacillus, Leukonostoc, Weissella, and Lactococcus. Antifungal production method, characterized in that one or more lactic acid bacteria.
  8. 제 7 항에 있어서, 상기 페디오코쿠스 속 균은 페디오코쿠스 펜토사세우스(Pediococcus pentosaceus), 페디오코쿠스 아시딜락티시(Pediococcus acidilactici), 페디오코쿠스 셀리콜라(Pediococcus cellicola), 페디오코쿠스 클라우스세니(Pediococcus claussenii), 페디오코쿠스 담노수스(Pediococcus damnosus), 페디오코쿠스 에탄올리듀란스(Pediococcus ethanolidurans), 페디오코쿠스 이노피나투스(Pediococcus inopinatus), 페디오코쿠스 파불루스(Pediococcus parvulus) 및 페디오코쿠스 스틸레시(Pediococcus stilesii)로 이루어진 군으로부터 선택된 하나 이상의 페디오코쿠스 속 균인 것을 특징으로 하는 항진균제 생산 방법.The method of claim 7, wherein the genus Pediococcus is Pediococcus pentosaceus (Pediococcus pentosaceus), Pediococcus acidilactici (Pediococcus acidilactici), Pediococcus cellicola, Pediococcus Pediococcus claussenii, Pediococcus damnosus, Pediococcus ethanolidurans, Pediococcus inopinatus, Pediococcus parcous parcous pucous parcous Pediococcus stillesi (Pediococcus stilesii) Antifungal production method characterized in that the at least one Pediococcus genus selected from the group consisting of.
  9. 제 7 항에 있어서, 상기 락토바실러스 속 균은 락토바실러스 플란타룸(Lactobacillus plantarum), 락토바실러스 김치이(Lactobacillus kimchii), 락토바실러스 람노수스(Lactobacillus rhamnosus), 락토바실러스 카제이(Lactobacillus casei), 락토바실러스 아시도필루스(Lactobacillus acidophilus), 락토바실러스 브레비스(Lactobacillus brevis), 락토바실러스 부치네리(Lactobacillus buchneri), 락토바실러스 퍼멘툼(Lactobacillus fermentum), 락토바실러스 헬베티쿠스(Lactobacillus helveticus), 락토바실러스 레우테리(Lactobacillus reuteri) 및 락토바실러스 사케이(Lactobacillus sakei)로 이루어진 군으로부터 선택된 하나 이상의 락토바실러스 속 균인 것을 특징으로 하는 항진균제 생산 방법.According to claim 7, wherein the genus Lactobacillus Lactobacillus plantarum (Lactobacillus plantarum), Lactobacillus kimchii, Lactobacillus rhamnosus (Lactobacillus rhamnosus), Lactobacillus casei (Lactobacillus casei), Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus fermentum, Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus helveticus, Lactobacillus reuteri) and Lactobacillus sakei (Lactobacillus sakei) Antifungal production method, characterized in that at least one Lactobacillus genus selected from the group consisting of.
  10. 제 7 항에 있어서, 상기 류코노스톡 속 균은 류코노스톡 메센테로이데스(Leuconostoc mesenteroides), 류코노스톡 김치이(Leuconostoc kimchii), 류코노스톡 락티스(Leuconostoc lactis), 류코노스톡 인해(Leuconostoc inhae), 류코노스톡 겔리둠(Leuconostoc gelidum), 류코노스톡 파라메센테로이데스(Leuconostoc paramesenteroides), 류코노스톡 시트륨(Leuconostoc citreum), 류코노스톡 슈도메센테로이데스(Leuconostoc pseudomesenteroides) 및 류코노스톡 홀쯔아펠리(Leuconostoc holzapfelii)로 이루어진 군으로부터 선택된 하나 이상의 류코노스톡 속 균인 것을 특징으로 하는 항진균제 생산 방법.According to claim 7, wherein the genus Leukonostock is Leukonostoc mesenteroides (Leuconostoc mesenteroides), Leukonostoc kimchii (Leuconostoc kimchii), Leuconostoc lactis (Leuconostoc lactis), ), Leuconostoc gelidum, Leuconostoc paramesenteroides, Leuconostoc citreum, Leuconostoc pseudomesenteroides and Leuconostoc pseudomesenteroides A method for producing an antifungal agent, characterized in that it is one or more of the genus Leukonostock selected from the group consisting of Leuconostoc holzapfelii.
  11. 제 7 항에 있어서, 상기 바이쎌라 속 균은 바이쎌라 시바리아(Weissella cibaria), 바이쎌라 콘퓨사(Weissella confusa) 및 바이쎌라 헬레니카(Weissella hellenica)로 이루어진 군으로부터 선택된 하나 이상의 바이쎌라 속 균인 것을 특징으로 하는 항진균제 생산 방법.According to claim 7, wherein the genus Bacillus (Weissella cibaria), Weissella confusa (Weissella confusa) and Weissella hellenica (Weissella hellenica) is one or more Bacillus genus selected from the group consisting of. Antifungal production method characterized in that.
  12. 제 7 항에 있어서, 상기 락토코쿠스 속 균은 락토코쿠스 락티스(Lactococcus lactis), 락토코쿠스 플란타룸(Lactococcus plantarum) 및 락토코쿠스 피시움(Lactococcus piscium)으로 이루어진 군으로부터 선택된 하나 이상의 락토코쿠스 속 균인 것을 특징으로 하는 항진균제 생산 방법.According to claim 7, wherein the genus Lactococcus is at least one selected from the group consisting of Lactococcus lactis (Lactococcus lactis), Lactococcus plantarum and Lactococcus piscium (Lactococcus piscium) Antifungal production method, characterized in that the genus Lactococcus.
  13. 제 6 항에 있어서, 상기 가노더마 속 진균은 가노더마 보니넨스(Ganoderma boninense), 가노더마 아플라나툼(Ganoderma applanatum) 및 가노더마 조나툼(Ganoderma zonatum)으로 이루진 군으로부터 선택된 하나 이상의 가노더마 속 진균인 것을 특징으로 하는 항진균제 생산 방법.According to claim 6, wherein the genus of the genus Ganoderma is one or more genus selected from the group consisting of Ganoderma boninense, Ganoderma applanatum and Ganoderma zonatum Antifungal production method, characterized in that the fungus.
  14. 제 13 항에 있어서, 상기 가노더마 속 진균은 가노더마 보니넨스(Ganoderma boninense)인 것을 특징으로 하는 항진균제 생산 방법.The method of claim 13, wherein the genus fungus is Ganoderma boninense (Ganoderma boninense).
PCT/KR2011/004770 2011-06-29 2011-06-29 Antifungal composition comprising cis-cyclo(l-phe-l-pro) having genus ganoderma fungus-specific antifungal activity WO2013002439A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2011/004770 WO2013002439A1 (en) 2011-06-29 2011-06-29 Antifungal composition comprising cis-cyclo(l-phe-l-pro) having genus ganoderma fungus-specific antifungal activity
MYPI2013702565A MY174593A (en) 2011-06-29 2011-06-29 Antifungal composition comprising cis-cyclo(l-phe-l-pro) having genus ganoderma fungus-specific antifungal activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/004770 WO2013002439A1 (en) 2011-06-29 2011-06-29 Antifungal composition comprising cis-cyclo(l-phe-l-pro) having genus ganoderma fungus-specific antifungal activity

Publications (1)

Publication Number Publication Date
WO2013002439A1 true WO2013002439A1 (en) 2013-01-03

Family

ID=47424319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004770 WO2013002439A1 (en) 2011-06-29 2011-06-29 Antifungal composition comprising cis-cyclo(l-phe-l-pro) having genus ganoderma fungus-specific antifungal activity

Country Status (1)

Country Link
WO (1) WO2013002439A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110325197A (en) * 2016-08-30 2019-10-11 (株)库恩生物 For prevent hair loss or it is trichogenous include show lipolysis effect bacterial strain composition
CN110776899A (en) * 2019-11-26 2020-02-11 西南石油大学 High-temperature high-salinity oil reservoir in-situ emulsification and viscosification system and application thereof
EP3508568A4 (en) * 2016-08-30 2020-04-22 Coenbio Co., Ltd. Leuconostoc holzapfelii strain having hair loss prevention, hair growth promotion or sexual function improvement effects, and composition comprising same
WO2023152569A1 (en) * 2022-02-14 2023-08-17 Croda International Plc Agrochemical adjuvants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1386543A1 (en) * 2001-12-20 2004-02-04 Medipharm AB New bacterial strain and the use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1386543A1 (en) * 2001-12-20 2004-02-04 Medipharm AB New bacterial strain and the use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAGNUSSON, J. ET AL.: "Broad and complex antifungal activity among environmental isolates of lactic acid bacteria", FEMS MICROBIOLOGY LETTERS, vol. 219, 2003, pages 129 - 135, XP002993413, DOI: doi:10.1016/S0378-1097(02)01207-7 *
SCHNURER, J. ET AL.: "Antifungal lactic acid bacteria as biopreservatives", TRENDS IN FOOD SCIENCE & TECHNOLOGY, vol. 16, 2005, pages 70 - 78, XP025324765, DOI: doi:10.1016/j.tifs.2004.02.014 *
STROM, K. ET AL.: "Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 68, 2002, pages 4322 - 4327 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110325197A (en) * 2016-08-30 2019-10-11 (株)库恩生物 For prevent hair loss or it is trichogenous include show lipolysis effect bacterial strain composition
EP3508568A4 (en) * 2016-08-30 2020-04-22 Coenbio Co., Ltd. Leuconostoc holzapfelii strain having hair loss prevention, hair growth promotion or sexual function improvement effects, and composition comprising same
EP3508208A4 (en) * 2016-08-30 2020-07-29 Coenbio Co., Ltd. Composition, for preventing hair loss or promoting hair growth, comprising strains showing lipolysis effect
EP3816304A3 (en) * 2016-08-30 2021-07-21 Coenbio Co., Ltd. Composition, for preventing hair loss or promoting hair growth, comprising strains showing lipolysis effect
CN110776899A (en) * 2019-11-26 2020-02-11 西南石油大学 High-temperature high-salinity oil reservoir in-situ emulsification and viscosification system and application thereof
WO2023152569A1 (en) * 2022-02-14 2023-08-17 Croda International Plc Agrochemical adjuvants

Similar Documents

Publication Publication Date Title
WO2014058114A1 (en) Composition, containing cis-cyclo(l-leu-l-pro) or cis-cyclo(l-phe-l-pro), for use as an antimicrobial and antiviral agent, and preparation method therefor
Siedler et al. Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food
Lin et al. Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102
Valerio et al. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid
KR101379518B1 (en) Novel Uses of Cis-Cyclo(L-Phe-L-Pro)
Ryu et al. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi
Chan et al. Structure-activity relationships in the peptide antibiotic nisin: role of dehydroalanine 5
Kalmokoff et al. Isolation and characterization of a bacteriocin (Butyrivibriocin AR10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens
Lv et al. Purification, characterization and action mechanism of plantaricin JY22, a novel bacteriocin against Bacillus cereus produced by Lactobacillus plantarum JY22 from golden carp intestine
Todorov et al. Characterization of a bacteriocin produced by Lactobacillus sakei R1333 isolated from smoked salmon
Kwak et al. Cyclic dipeptides from lactic acid bacteria inhibit proliferation of the influenza a virus
Compaoré et al. Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment
Moshafi et al. Antimicrobial activity of Bacillus sp. strain FAS 1 isolated from soil.
Deng et al. Isolation and characterization of peptide antibiotics LI-F04 and polymyxin B6 produced by Paenibacillus polymyxa strain JSa-9
WO2013002439A1 (en) Antifungal composition comprising cis-cyclo(l-phe-l-pro) having genus ganoderma fungus-specific antifungal activity
Mandal et al. Production and partial characterisation of an inducer‐dependent novel antifungal compound (s) by Pediococcus acidilactici LAB 5
Kumar et al. Biocontrol of Aspergillus species on peanut kernels by antifungal diketopiperazine producing Bacillus cereus associated with entomopathogenic nematode
Chen et al. Leucocin C-607, a novel Bacteriocin from the multiple-Bacteriocin-producing Leuconostoc pseudomesenteroides 607 isolated from persimmon
JPH04217999A (en) Bacteriocin and bacteriostasis using bacteriocin
Halami et al. Partial characterization of heat-stable, antilisterial and cell lytic bacteriocin of Pediococcus pentosaceus CFR SIII isolated from a vegetable source
Alvarez-Ordóñez et al. Investigation of the antimicrobial activity of Bacillus licheniformis strains isolated from retail powdered infant milk formulae
Ramos-Pereira et al. Antifungal activity of lactic acid bacteria isolated from milk against Penicillium commune, P. nordicum, and P. verrucosum
WO2016151005A1 (en) Novel anti-infective compound
KR101476054B1 (en) Novel Uses of Cis-Cyclo(L-Phe-L-Pro)
KR102019178B1 (en) Cosmetic composition comprising antibacterial extract from Bacillus sp. culture broth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/06/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11868756

Country of ref document: EP

Kind code of ref document: A1