WO2013002259A1 - Pulse modulator, transmission device, wireless transmission device, and biometric information detection device - Google Patents

Pulse modulator, transmission device, wireless transmission device, and biometric information detection device Download PDF

Info

Publication number
WO2013002259A1
WO2013002259A1 PCT/JP2012/066389 JP2012066389W WO2013002259A1 WO 2013002259 A1 WO2013002259 A1 WO 2013002259A1 JP 2012066389 W JP2012066389 W JP 2012066389W WO 2013002259 A1 WO2013002259 A1 WO 2013002259A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
signal
wireless transmission
transmission device
modulation
Prior art date
Application number
PCT/JP2012/066389
Other languages
French (fr)
Japanese (ja)
Inventor
石田 誠
本注 具
Original Assignee
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人豊橋技術科学大学 filed Critical 国立大学法人豊橋技術科学大学
Publication of WO2013002259A1 publication Critical patent/WO2013002259A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/04Position modulation, i.e. PPM

Definitions

  • the present invention relates to a pulse modulator that generates a pulse modulation signal corresponding to an input signal, a transmission device including the pulse modulator, a wireless transmission device, and a biological information detection device including the wireless transmission device.
  • a pulse modulation signal S 1 corresponding to the signal level of the input signal is generated, and the generated pulse modulation signal S 1 and the oscillation signal Slo output from the oscillator 2 are mixed using a mixer 4.
  • a transmission apparatus configured to generate the transmission signal S3 is known.
  • the following modulation methods a) to e) are known as pulse modulation methods used to generate the pulse modulation signal S1 from the input signal Sin.
  • pulse modulation methods used to generate the pulse modulation signal S1 from the input signal Sin.
  • Pulse Amplitude Modulation that changes the amplitude of the pulse at a fixed period (time frame).
  • PAM Pulse Amplitude Modulation
  • PWM Pulse width modulation
  • PPM Pulse Position Modulation
  • PIM Pulse interval modulation
  • PFM Pulse frequency modulation
  • Smart sensors have functions for storing, processing, and transferring detection information by sensor elements, and communicate with each other between smart sensors and other control devices based on their own decision making.
  • a battery or a power generation device is used (see, for example, Patent Document 3).
  • the transmission signal is generated by superimposing the oscillation signal from the oscillator as a carrier wave on the pulse modulation signal S1. Therefore, in order to reduce the power consumption of the transmitter, the oscillator is operated only when the pulse modulation signal is at a high level and it is necessary to transmit a carrier wave, and when the pulse modulation signal is at a low level, the operation of the oscillator is performed. It is conceivable to stop.
  • the pulse width of the pulse modulation signal is constant. If the pulse width is shortened to shorten the operation time of the oscillator 2 (carrier wave transmission time), the receiving apparatus side Since it becomes impossible to accurately detect the signal level of the input signal from the amplitude of the pulse modulation signal, there is a limit in reducing the power consumption by shortening the operation time of the oscillator.
  • the power consumption by the oscillator cannot be limited.
  • PIM pulse interval modulation method
  • PFM pulse frequency modulation method
  • pulse modulation suitable for reducing power consumption of the entire transmission device It is desirable to be able to provide a vessel.
  • the pulse modulator of the present invention comprises reference signal generating means, comparing means, and pulse signal generating means. Then, the reference signal generating means generates a reference signal whose signal level changes in a sawtooth shape every certain time frame, and the comparing means compares the input signal with the reference signal generated by the reference signal generating means. Then, a pulse width modulation signal having a pulse width corresponding to the signal level of the input signal is generated.
  • the pulse width modulation signal is input to the pulse signal generation means, and the pulse signal generation means generates a pulse signal at the rising timing and the falling timing of the pulse width modulation signal, respectively.
  • DPPM dual pulse position modulation method
  • the input signal can be restored by detecting the pulse interval between the two pulse signals.
  • a synchronization signal needs to be transmitted to the receiving device so that the input signal can be restored on the receiving device side, as when the pulse position modulation method (PPM) is adopted as the pulse modulation method.
  • PPM pulse position modulation method
  • the transmission apparatus is configured using the pulse modulator of the present invention, a circuit for generating a synchronization signal is provided in the transmission apparatus as in the case of using a pulse position modulation (PPM) pulse modulator. Since it is not necessary, the configuration of the transmission apparatus can be simplified.
  • PPM pulse position modulation
  • the power consumption in the synchronization signal generation circuit can be reduced, the power consumption of the transmission apparatus can also be reduced. Further, as described above, in the case of pulse position modulation (PPM), when a reception error occurs in the synchronization signal on the reception device side, until the synchronization signal can be normally received next time, The transmitted data cannot be restored normally.
  • PPM pulse position modulation
  • DPPM dual pulse position modulation method
  • the transmission device is configured using the pulse modulator of the present invention, even if a reception error of the pulse signal occurs on the reception device side, the normal reception state is restored in the next cycle (time frame). be able to.
  • the pulse width of the pulse signal generated by the pulse signal generating means is shortened, and the oscillator that generates the communication carrier wave is turned on / off by the pulse signal. If so, the drive time of the oscillator can be limited.
  • the transmitter (as compared with the case where the above-described conventional pulse position modulation method (particularly, a modulation method such as PAM, PWM, PIM, PFM, etc.) is employed in the transmitter) As a result, the power consumption of the transmission device can be reduced.
  • the pulse modulator of the present invention two pulse signals are generated every fixed time frame. Therefore, in order to restore the input signal on the receiving device side, any of the pulse signals sequentially obtained from the received signal is used. It is necessary to be able to identify whether it is the first pulse in the time frame.
  • the first pulse signal generated from the received signal (carrier wave) on the receiving device side is the first pulse in the time frame
  • the next received pulse signal is the second pulse in the same time frame
  • the next received pulse signal is identified as the first pulse in the next time frame, and so on
  • the type of the pulse signal (first and second) is identified in the order of reception of the pulse signal, and the interval between the two pulse signals.
  • the input signal may be restored from the above.
  • the pulse width of the first pulse signal and the pulse width of the second pulse signal are constant and different from each other among the two pulse signals generated by the pulse modulation means per fixed time frame.
  • the pulse modulation means may be configured to have a width.
  • the transmission apparatus of the present invention is constituted by the above-described pulse modulator of the present invention, and generates pulse signal means for generating two pulse signals having an interval corresponding to the signal level of the input signal for every fixed time frame. Is provided.
  • the pulse signal generated by this pulse modulation signal is input to the oscillation means as a control signal for switching the oscillation means to the oscillation state or the oscillation stop state, and the oscillation operation of the oscillation means is changed to the pulse by the pulse modulation means. Limited when signal is generated.
  • the transmission apparatus of the present invention it is possible to reduce the power consumption as compared with the transmission apparatus including the conventional pulse modulator. Further, according to the transmission apparatus of the present invention, a synchronization signal is generated in the transmission apparatus and transmitted to the reception apparatus side, as in the case of using a pulse position modulation (PPM) pulse modulator. Therefore, the circuit configuration can be simplified.
  • PPM pulse position modulation
  • the transmission device including the pulse modulator of the present invention described above includes a semiconductor substrate formed as an integrated circuit for wireless transmission. .
  • the above-described transmission device of the present invention includes a semiconductor substrate formed as an integrated circuit for wireless transmission.
  • a metal pattern constituting an antenna for radiating a transmission signal (carrier wave) from the transmission device formed as an integrated circuit is formed on the surface of the semiconductor substrate.
  • the entire device can be reduced in size by forming the transmission device as an integrated circuit on the semiconductor substrate, and consequently, the wireless transmission device can be reduced in size with low power consumption. Can be realized.
  • the semiconductor substrate may be a silicon semiconductor substrate, and the metal pattern may be a spiral type. If the antenna (so-called on-chip antenna) is formed on the semiconductor substrate with the spiral metal pattern in this way, the number of turns of the spiral metal pattern and the outer circumference (for example, the diameter) are set in advance. By setting, it is possible to produce a wireless transmission device that can obtain stable transmission characteristics.
  • the antenna so-called on-chip antenna
  • the technique disclosed in this technical document forms an on-chip antenna composed of a spiral pattern and a capacitor on a silicon substrate, and impedance matching is performed between the on-chip antenna and a communication circuit formed on the silicon substrate.
  • the connection is made by wire bonding using an inductor.
  • the wireless transmission device of the present invention when a spiral metal pattern (hereinafter referred to as a spiral pattern) is formed on a semiconductor substrate, the spiral pattern is integrated for wireless transmission via a wiring pattern on a silicon substrate. Connect directly to the circuit and match the impedance of the connection.
  • a spiral metal pattern hereinafter referred to as a spiral pattern
  • the impedance of the spiral pattern viewed from the connection portion between the spiral pattern and the integrated circuit is matched with the integrated circuit for wireless transmission by adjusting the width and interval of the spiral pattern.
  • the manufacturing process when the wireless transmission device including the antenna is configured as an integrated circuit can be simplified, and the wireless transmission device can be reduced in size because there is no inductor for impedance matching. .
  • the wireless transmission device of the present invention by adopting the dual pulse position modulation method (DPPM) unique to the present invention as the modulation method of the input signal, the conventional pulse modulation method (PAM, PWM, PIM, Power consumption can be reduced as compared with those employing PFM, PPM, and the like.
  • DPPM dual pulse position modulation method
  • the wireless communication device of the present invention is used as a wireless transmission device that wirelessly transmits a detection signal from a sensor element in a smart sensor provided with the sensor element, the effect can be effectively exhibited. .
  • the wireless transmission device of the present invention can be used as a wireless transmission device that wirelessly transmits a detection signal in the smart sensor. Therefore, the power consumption of the smart sensor can be reduced.
  • the wireless transmission device of the present invention it is possible to reduce the size of the smart sensor because it can be reduced in size by being formed on the semiconductor substrate together with the antenna.
  • the wireless transmission device of the present invention is applied to a smart sensor in this way, more specifically, the sensor device for detecting biological information and the wireless transmission device of the present invention described above are provided, and the wireless transmission device is It may be applied to a biological information detection device configured to wirelessly transmit a detection signal from a sensor element.
  • the biological information detection device of the present invention configured as described above, the biological information detection device can be reduced in power and size, and the burden on the subject to whom the biological information detection device is attached can be reduced.
  • the biological information detection device detects the state of the subject and wirelessly transmits the detection result, and is sometimes attached to the subject and embedded in the subject's body. For this reason, once the battery is attached to the subject, battery replacement or the like cannot be easily performed. Therefore, it is required to suppress power consumption and extend the life of the apparatus. In addition, in order to reduce the burden on the subject, downsizing of the apparatus is required.
  • the amount of power consumption can be reduced and the size can be reduced as compared with the conventional device. It can be exhibited effectively.
  • FIG. 6 is a VI-VI sectional view showing a section of the antenna on the silicon substrate shown in FIG.
  • FIG. 6 is a cross-sectional view illustrating a state after contact holes are formed in a CMOS manufacturing process of the wireless transmission device illustrated in FIG. 5. It is sectional drawing showing the state which accumulated Al after the manufacturing process shown in FIG.
  • FIG. 10 is a cross-sectional view illustrating a state in which wiring and antenna patterns are formed after the manufacturing process illustrated in FIG. 9. It is sectional drawing showing the state after forming a wireless transmission integrated circuit and an antenna on a silicon substrate using a CMOS manufacturing process. It is a time chart showing the measurement result of the operation waveform of the dual pulse position modulation device of a 2nd embodiment.
  • Biological information detection device 110 ... Temperature sensor, 120 ... Wireless transmission device, 200 ... Reception device, 210 ... Antenna, 220 ... Band pass filter 230 ... Low noise amplifier 240 ... Detector 250 ... Comparator 260 ... Dual pulse position demodulator 270 ... interface, 300 ... information terminal.
  • the wireless transmission device of the present embodiment is used by being incorporated in a smart sensor together with a sensor element and a CPU for signal processing, and is configured as shown in FIG.
  • the wireless transmission device includes a dual pulse position modulation device 10 that performs pulse modulation on an information signal (in other words, an input signal) Sin output from a sensor element or CPU that constitutes a smart sensor, and dual pulse position modulation.
  • An on / off control oscillator that starts an oscillation operation in response to the pulse modulation signal S1 output from the device 10 and stops the oscillation operation when the output of the pulse modulation signal S1 from the dual pulse position modulation device 10 is stopped.
  • a power amplifying device 40 that generates a transmission signal Sout by amplifying power of an oscillation signal (that is, a wireless transmission carrier wave) S2 generated by the oscillation operation of the on / off control oscillation device 30.
  • the transmission signal Sout generated by the power amplification device 40 is output to the antenna 50 and is radiated from the antenna 50 as a transmission radio wave.
  • the dual pulse position modulation device 10 corresponds to an example of a pulse modulator (in other words, pulse modulation means) of the present invention, and is configured as shown in FIG.
  • the dual pulse position modulation device 10 includes a saw wave generator 12 that generates a reference signal Sst whose signal level changes in a sawtooth shape every certain time frame, and a saw output from the saw wave generator 12.
  • a comparator 14 that generates a pulse width modulation signal S11 having a pulse width corresponding to the signal level of the input signal Sin by comparing the wavy reference signal Sst and the input signal Sin.
  • the pulse width modulation signal S11 generated by the comparator 14 is distributed into two systems, one of the distributed pulse width modulation signals S11 is directly input to the differentiator 18, and the other pulse width modulation signal S11 is The signal is input to the differentiator 20 via an inverter (NOT gate) 16.
  • NOT gate inverter
  • the differentiator 18 outputs a differential signal S12 that rises in synchronization with the rise of the pulse width modulation signal S11, and the differentiator 20 differentiates the differential signal S13 that rises in synchronization with the fall of the pulse width modulation signal S11. Is output (see FIG. 3).
  • the outputs from the differentiators 18 and 20 are input to the NAND gate 26 via the inverters 22 and 24, respectively.
  • the inverters 22 and 24 are low when the output level from the differentiators 18 and 20 is equal to or higher than the threshold value, and when the output level from the differentiators 18 and 20 is less than the threshold value. It is configured to output a high level signal.
  • the pulse signals P1 and P2 which become high level for a certain time determined by the time constants of the differentiating devices 18 and 20 in synchronization with the rising timing and falling timing of the pulse width modulation signal S11.
  • the interval between the two pulse signals P1 and P2 changes according to the pulse width of the pulse width modulation signal S11 (in other words, the signal level of the input signal Sin) (FIG. 3). reference).
  • the dual pulse position modulation device 10 sets one cycle of the reference signal (sawtooth wave) generated by the sawtooth wave generation device 12 as a time frame T, and is spaced according to the signal level of the input signal Sin for each time frame T.
  • the reference signal sawtooth wave
  • two pulse signals P1 and P2 that change are generated.
  • the time constant of the differentiating device 20 by setting the time constant of the differentiating device 20 to a value larger than the time constant of the differentiating device 18, two of the two pulse signals P1 and P2 generated for each time frame T are represented by 2
  • the pulse width of the second pulse signal P2 generated is set to be larger than the pulse width of the pulse signal P1 generated first (see FIG. 3).
  • the sawtooth wave generator 12 corresponds to an example of the reference signal generator of the present invention
  • the comparator 14 corresponds to an example of the comparator of the present invention
  • 20, inverters 22, 24, and NAND gate 26 correspond to an example of the pulse signal generating means of the present invention.
  • the on / off control oscillation device 30 corresponds to an example of the oscillation means of the present invention.
  • a two-input NAND gate 32 and two inverters 34 and 36 are sequentially connected in series.
  • a known ring oscillation circuit in which the output of the inverter 36 in the final stage is connected to one input terminal of the NAND gate 32.
  • the ON / OFF control oscillation device 30 configured as described above, if the other input terminal of the NAND gate 32 is low level, the output of the NAND gate 32 is low level, the output of the inverter 34 is high level, When the output is at a low level, the oscillation is stopped, and when the other input terminal of the NAND gate 32 is at a high level, the output of the NAND gate 32, the inverter 34, and the inverter 36 is sequentially inverted.
  • the pulse modulation signal S1 from the dual pulse position modulation device 10 is input to the other input terminal of the NAND gate 32 as a control signal for switching on / off of the on / off control oscillation device 30.
  • the on / off control oscillation device 30 enters the oscillation state only when the pulse modulation signal S1 (specifically, the pulse signal P1 or P2) is output from the dual pulse position modulation device 10, and the inverter 36 The output is output as an oscillation signal (in other words, a carrier wave) S2 to the power amplifier 40, and when the pulse signal P1 or P2 is not output from the dual pulse position modulator 10, the on / off control oscillator 30 performs an oscillation operation. Will stop.
  • the dual pulse position modulation method (DPPM) is adopted to generate the pulse modulation signal corresponding to the input signal Sin, and the dual pulse position modulation method ( DPPM) is used to oscillate the on / off control oscillation device 30 using two pulse signals generated every fixed time frame.
  • a pulse modulation signal is generated by a conventional pulse modulation method (PAM, PWM, PIM, PFM, PPM, etc.), and the generated pulse modulation signal is turned on / off.
  • PAM pulse modulation method
  • PWM pulse modulation method
  • PIM pulse modulation method
  • PIM pulse modulation method
  • PFM pulse modulation method
  • PPM pulse modulation method
  • the wireless communication device includes a wireless transmission integrated circuit 60 including the above-described dual pulse position modulation device 10, on / off control oscillation device 30, and power amplification device 40.
  • the wireless communication device according to the first embodiment including the antenna 50 is integrally formed on the silicon substrate by forming the spiral pattern 70 on the surface of the silicon substrate using a CMOS manufacturing process. It is.
  • the spiral pattern 70 constituting the antenna 50 adjusts the number of turns and the outer diameter Dout to determine the inductance of the spiral pattern 70 and the capacitance between the spiral pattern 70 and the silicon substrate.
  • the corresponding resonance frequency is set, and the width of the spiral pattern 70 and the interval between the spiral patterns 70 are adjusted so that the transmission signal is not reflected at the connection portion between the spiral pattern 70 and the wireless transmission integrated circuit 60. Alignment is made.
  • the spiral pattern 70 is formed on the silicon substrate by growing an insulating film (SiO 2 ) on the silicon substrate and forming a metal layer (Al) thereon, and the cross section thereof is shown in FIG. As shown.
  • Ls is an inductance component of the spiral pattern 70, and is expressed by the following equation (1).
  • n is the number of turns
  • is the magnetic permeability
  • c1, c2, c3, and c4 are coefficients depending on the shape of the spiral pattern.
  • Rs is a resistance component caused by the metal forming the spiral pattern 70
  • Cox is a parasitic capacitance component generated between the silicon substrate and the metal layer
  • Csi is a capacitance component of the silicon substrate.
  • Rsi are resistance loss components generated from the substrate.
  • the values of the parasitic components of the spiral pattern 70 are as shown in the following formulas (2) to (5).
  • w is the width of the spiral pattern 70
  • t is the thickness of the spiral pattern 70
  • l is the length of the spiral pattern 70
  • is the skin depth from the frequency used
  • is the resistance of the metal .Epsilon.ox is the dielectric constant of the oxide film
  • tox is the thickness of the insulating film
  • Csub is the capacitance of the silicon substrate
  • Gsub is the conductivity per unit area.
  • the resonance frequency of the spiral pattern 70 is expressed by the following equation (6) depending on the inductance and capacitance components obtained from the equivalent circuit by the above equations (1) to (5).
  • the operating frequency of the antenna 50 can be adjusted by adjusting these parameters.
  • the resonance frequency of the spiral pattern 70 (in other words, the operating frequency of the antenna 50) can be set, and the width or interval of the spiral pattern 70 is adjusted.
  • the impedance can be matched with the wireless transmission integrated circuit 60.
  • the number of turns of the spiral pattern 70 is 11 and the outer diameter Dout is 1.
  • the design is 2 mm
  • the width of the spiral pattern 70 is 20 ⁇ m
  • the distance between the spiral patterns 70 is 20 ⁇ m
  • the inductance is 93.5 nH
  • Cox is 12.4 pF
  • Csi is 3.2 pF
  • Rs is 50.4 ⁇
  • Rsi is 185 k ⁇ .
  • the operating frequency of the antenna 50 can be calculated as 325 MHz, and the input impedance as 50.4 ⁇ .
  • the coefficient when the insulating film (SiO 2 ) between the circuit wiring and the silicon substrate is 1.5 ⁇ m, and the spiral pattern 70 is circular as shown in the figure, c1 is 1, c2 is 2.46, c3 Is 0 and c4 is 0.2.
  • the wireless transmission integrated circuit 60 including the dual pulse position modulation device 10, the on / off control oscillation device 30, and the power amplification device 40 is formed on a silicon substrate.
  • the wireless communication device including the antenna 50 is integrally formed on the silicon substrate, so that an extremely small wireless communication device with low power consumption can be realized.
  • the operating frequency frequency and impedance of the antenna 50 can be set by adjusting the number of turns of the spiral pattern 70, the outer diameter Dout, the width of the spiral pattern 70, and the interval therebetween. By determining each of these parameters, the antenna 50 capable of obtaining desired antenna characteristics can be formed on the silicon substrate.
  • the impedance of the antenna 50 can be set as appropriate by adjusting the width of the spiral pattern 70 and the interval thereof. Therefore, when the antenna 50 is connected to the wireless transmission integrated circuit 60, the impedance matching inductor is used. Can be directly connected by a connection pattern formed on a silicon substrate.
  • the manufacturing cost can be reduced by reducing the man-hour when the wireless communication device including the antenna 50 is integrally formed on the silicon substrate.
  • the wireless transmission integrated circuit 60 is formed on the silicon substrate 80 (specifically, n-type Si (100)) in the well-known CMOS manufacturing process. Then, an insulating film 81 made of SiO 2 was formed.
  • an aluminum layer (Al layer) 92 is deposited using an Al sputtering apparatus in order to form the wiring of the wireless transmission integrated circuit 60 and the spiral pattern 70.
  • a resist 94 for forming the wiring and spiral pattern 70 of the wireless transmission integrated circuit 60 is formed on the Al layer 92, and Al using a RIE (Reactive Ion Etching) apparatus. Layer 92 is etched.
  • RIE Reactive Ion Etching
  • the wiring 95 and the spiral pattern 70 of the wireless transmission integrated circuit 60 are formed by using the wiring forming process of the CMOS manufacturing process.
  • reference numeral 82 denotes a p-well region
  • reference numeral 83 denotes an n-MOS channel stopper
  • reference numeral 84 denotes a p-MOS channel stopper
  • reference numeral 85 denotes an n-MOS source / drain region
  • reference numeral Reference numeral 86 denotes a p-MOS source / drain region
  • reference numeral 87 denotes a channel stopper (n +)
  • reference numeral 88 denotes a channel stopper (p +)
  • reference numeral 89 denotes a poly-Si film.
  • FIG. 12 shows an input signal (information signal) Sin to the dual pulse position modulator 10, a reference signal Sst output from the sawtooth generator 12, an output (pulse width modulation signal) S11 from the comparator 14, and a dual The measurement result of the output (pulse modulation signal consisting of two pulse signals generated by DPPM) S1 from the pulse position modulation device 10 is shown.
  • the pulse signal P1 generated when the input signal Sin becomes higher than the sawtooth wave (reference signal) Sst (in other words, the rising timing of the pulse width modulation signal S11).
  • the pulse signal P2 generated when the input signal Sin becomes lower than the sawtooth wave (reference signal) Sst (in other words, the falling timing of the pulse width modulation signal S11).
  • the pulse width was 2 ⁇ s (see FIG. 14), and it was confirmed that the pulse widths of these two pulse signals P1 and P2 were different.
  • FIG. 15 shows an oscillation signal output from the on / off control oscillation device 30 when the on / off control oscillation device 30 starts an oscillation operation by the pulse modulation signal S1 output from the dual pulse position modulation device 10.
  • the measurement result of measuring (carrier wave) S2 is shown.
  • the on / off control oscillation device 30 is in the oscillation stop state.
  • the power consumption consumed by the on / off control oscillation device 30 and the power amplification device 40 was 2.45 mW (see Table 1).
  • the power consumption consumed by the on / off control oscillator 30 and the power amplifier 40 is 10.45 mW.
  • the power was 4 mW (see Table 1).
  • the average power consumption consumed by the dual pulse position modulation device 10 and the on / off control oscillation device 30 is 7.0 mW, and the input signal is 0.8V to 2.5V. It was almost constant even when changed.
  • the power consumption consumed by the pulse width modulation type modulation device composed of the dual pulse position modulation device 10 and a conventional oscillation device that cannot be controlled on / off changes in proportion to the input signal,
  • the maximum was 14.5 mW or more.
  • the power consumption can be reduced by 50% or more in comparison with the case where the dual pulse position modulation device 10 and the conventional oscillation device are combined.
  • a modulation device for generating a pulse modulation signal from an input signal a pulse width modulation (PWM) device composed of a sawtooth wave generator 12 and a comparator 14 is used.
  • PWM pulse width modulation
  • the wireless transmission integrated circuit is configured using the oscillation device 30, the power consumption changes within a range of 8.4 to 14.5 mW, and the power consumption may be larger than that of the wireless transmission device of the present embodiment. all right.
  • the wireless transmission device of the present embodiment by adopting the dual pulse position modulation method, two short pulse signals are generated for every fixed time frame, and the on / off control oscillation device 30 is generated by the pulse signals. Since the power is driven, the power consumption can be made substantially constant.
  • the antenna 50 of this embodiment configured with the spiral pattern 70 as described above had an operating frequency of 300 MHz and a return loss of ⁇ 24 dB as shown in FIG. Further, as shown in FIG. 17, the bandwidth was 270 to 360 MHz under the condition of VSWR (Voltage Standing Wave Ratio) ⁇ 2.
  • the input impedance is 51 ⁇ as shown in FIG. 18, and the radiation pattern is as shown in FIGS. 19 and 20, and it was found that the input impedance is substantially omnidirectional.
  • the maximum gain is ⁇ 40 dBi.
  • the error between the calculated value of the antenna characteristic and the measured value of the embodiment is caused by the error of the expression for obtaining the inductance and parasitic component of the spiral pattern 70 and the error generated in the manufacturing process. is there.
  • the antenna 50 is formed by the spiral pattern 70 and the operating frequency is adjusted and impedance matching is performed using the parasitic component, the length corresponding to the wavelength as described in Patent Document 2 is used.
  • the size can be reduced.
  • the antenna 50 can be manufactured by using a wiring formation process during the manufacturing process of the wireless transmission integrated circuit 60, a manufacturing process dedicated to the antenna 50 can be eliminated.
  • a reception system shown in FIG. 21 including a standard dipole antenna 510, a low noise amplifier (LNA) 520, and an oscilloscope 530 is used. The transmission signal from the wireless transmission device was measured.
  • reference numeral 540 indicates a smart sensor
  • reference numeral 550 indicates a power supply device.
  • FIG. 22 shows the measurement result. From this measurement result, according to the wireless transmission device of this embodiment, an antenna in which the pulse modulation signal generated by the dual pulse position modulation method is formed by the spiral pattern 70 is shown. 50 can be transmitted normally, and it has been found that the receiving side can identify two pulse signals generated every certain time frame from the received signal and detect the signal level of the input signal from the pulse interval. .
  • the spiral pattern 70 formed on the silicon substrate has been described as having a circular shape.
  • the spiral pattern 70 may have a polygonal shape such as a square or a hexagon.
  • the wireless transmission device is described as being incorporated and used in a smart sensor.
  • the wireless transmission device of the present invention may be any device that wirelessly transmits a pulse modulation signal. But it can be used.
  • an IC is formed as a semiconductor integrated circuit (in other words, Therefore, when applied to an apparatus that requires low power consumption or miniaturization, the effect can be effectively exhibited.
  • the wireless transmission device of the present invention (particularly, the second embodiment), it is possible to reduce the power consumption and the size of the device. When applied, the effect can be exhibited effectively.
  • FIG. 24 shows a configuration of a biological information detection system including the biological information detection device 100 in this case, the reception device 200 that receives a transmission radio wave from the biological information detection device 100, and restores the biological information, and the information terminal 300. Represents.
  • the biological information detection device 100 includes a wireless transmission device 120 configured in the same manner as that described in the second embodiment, and a temperature sensor 100 for detecting body temperature as biological information. It is configured by integrating as one electronic component.
  • the receiving device 200 corresponds to the frequency of the transmission signal (carrier wave) from the biological information detection device 100 among the antenna 210 that receives the transmission radio wave from the biological information detection device 100 and the reception signal from the antenna 210.
  • a band-pass filter (BPF) 220 that selectively passes signal components is provided.
  • the received signal that has passed through the BPF 220 is amplified by the low noise amplifier 230, envelope-detected by the detector 240, and input to the comparator 250.
  • the comparator 250 compares the received signal (detected signal) input from the detector 240 with a preset threshold value, thereby generating a pulse signal that becomes a high level when the received signal is larger than the threshold value.
  • This pulse signal corresponds to the pulse signal generated by the dual pulse position modulation device (DPPM modulation device) 10 in the biological information detection device.
  • the pulse signal is a dual pulse position demodulator (DPPM demodulator) configured to identify the two pulse signals before and after the pair from the pulse width of the pulse signal and detect the pulse interval (time width).
  • DPPM demodulator dual pulse position demodulator
  • the detection result of the pulse interval (time width) by the DPPM demodulator 260 is output to the information terminal 300 via the predetermined interface 270.
  • the information terminal 300 is configured by a personal computer or a dedicated computer for biological information processing, and based on the pulse interval (time width) input from the receiving device 200 via the interface 270, the biological information ( In other words, the temperature information detected by the temperature sensor 110 is restored, and the restoration result is recorded.
  • the wireless transmission device of the present invention when applied to a biological information detection device, it can measure biological information of a predetermined part of a subject and automatically wirelessly transmit it to the reception device 200.
  • the condition of the subject can be monitored well.
  • the wireless transmission device of the present invention can be reduced in size as compared with the conventional one, the biological information detection device 100 can be reduced in size and extended in life, and the burden on the subject can be reduced.
  • the pulse modulator of the present invention uses dual pulse position modulation to modulate an input signal. If the modulated signal is transmitted, the present invention can be applied similarly to the above embodiment.
  • the pulse modulator of the present invention can be applied in the same manner as in the above embodiment to obtain the same effect even in a wired transmission device that transmits a transmission signal via a transmission line. .

Abstract

A pulse modulator as laid out in the present invention is provided with: reference signal generation means for generating a reference signal for which the signal level changes in a sawtooth form at regular time frames; comparison means which, by comparing an input signal with a reference signal generated by the reference signal generation means, generates a pulse width modulated signal having a pulse width corresponding to the signal level of the input signal; and pulse signal generation means which generates a pulse signal at each of a timing of rising and a timing of falling of the pulse width modulated signal generated at the comparison means.

Description

パルス変調器、送信装置、無線送信装置、及び、生体情報検知装置Pulse modulator, transmission device, wireless transmission device, and biological information detection device 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2011年6月27日に日本国特許庁に出願された日本国特許出願第2011-142041号に基づく優先権を主張するものであり、日本国特許出願第2011-142041号の全内容を参照により本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2011-142041 filed with the Japan Patent Office on June 27, 2011. The entire contents are incorporated herein by reference.
 本発明は、入力信号に対応したパルス変調信号を生成するパルス変調器、このパルス変調器を備えた送信装置、無線送信装置、及び、この無線送信装置を備えた生体情報検知装置に関する。 The present invention relates to a pulse modulator that generates a pulse modulation signal corresponding to an input signal, a transmission device including the pulse modulator, a wireless transmission device, and a biological information detection device including the wireless transmission device.
 従来、図25に示すように、入力信号の信号レベルに対応したパルス変調信号S1を生成し、その生成したパルス変調信号S1と発振器2から出力される発振信号Sloとをミキサ4を用いて混合することで、送信信号S3を生成するよう構成された送信装置が知られている。 Conventionally, as shown in FIG. 25, a pulse modulation signal S 1 corresponding to the signal level of the input signal is generated, and the generated pulse modulation signal S 1 and the oscillation signal Slo output from the oscillator 2 are mixed using a mixer 4. Thus, a transmission apparatus configured to generate the transmission signal S3 is known.
 また、図26に示すように、この種の送信装置において、入力信号Sinからパルス変調信号S1を生成するのに利用されるパルス変調方式としては、下記a)~e)の変調方式が知られている(例えば、特許文献1、非特許文献1等参照)。 As shown in FIG. 26, in this type of transmission apparatus, the following modulation methods a) to e) are known as pulse modulation methods used to generate the pulse modulation signal S1 from the input signal Sin. (For example, refer to Patent Document 1, Non-Patent Document 1, etc.).
 a)一定周期(時間フレーム)毎にパルスの振幅を変化させるパルス振幅変調方式(PAM:Pulse Amplitude Modulation)。
 b)一定周期(時間フレーム)毎にパルスのオン時間(つまりデューティ比)を変化させるパルス幅変調方式(PWM:Pulse Width Modulation)。
a) Pulse Amplitude Modulation (PAM) that changes the amplitude of the pulse at a fixed period (time frame).
b) Pulse width modulation (PWM) that changes the pulse on-time (ie, duty ratio) at regular intervals (time frame).
 c)一定周期(時間フレーム)毎にパルスの位置を変化させるパルス位置変調方式(PPM:Pulse Position Modulation )。
 d)短いパルスの発生間隔を変化させるパルス間隔変調方式(PIM:Pulse Interval Modulation )。
c) A pulse position modulation method (PPM: Pulse Position Modulation) in which the position of the pulse is changed at regular intervals (time frames).
d) Pulse interval modulation (PIM) that changes the interval of short pulses.
 e)短いパルスの発生周波数を変化させるパルス周波数変調方式(PFM:Pulse Frequency Modulation)。
 ところで、この種の送信装置は、無線通信用の集積回路として小型化され(例えば、特許文献2等参照)、センサ素子や信号処理用のCPUと共に、スマートセンサに組み込まれることがある。
e) Pulse frequency modulation (PFM) that changes the frequency of short pulses.
By the way, this type of transmission device is miniaturized as an integrated circuit for wireless communication (see, for example, Patent Document 2) and may be incorporated in a smart sensor together with a sensor element and a CPU for signal processing.
 スマートセンサは、センサ素子による検出情報の蓄積、加工、転送機能を持ち、スマートセンサ自身の意志決定によって、スマートセンサ間や他の制御装置との間で通信を行うものであり、その駆動電源には、バッテリ若しくは発電装置が利用される(例えば、特許文献3等参照)。 Smart sensors have functions for storing, processing, and transferring detection information by sensor elements, and communicate with each other between smart sensors and other control devices based on their own decision making. A battery or a power generation device is used (see, for example, Patent Document 3).
 このため、上記送信装置をスマートセンサに組み込む場合には、スマートセンサ全体の消費電力を抑えるために、送信装置自体の消費電力を低減する必要がある。 For this reason, when the transmitter is incorporated in a smart sensor, it is necessary to reduce the power consumption of the transmitter itself in order to suppress the power consumption of the entire smart sensor.
特開2001-208511号公報JP 2001-208511 A 特開2007-281305号公報JP 2007-281305 A 特表2008-502404号公報Special table 2008-502404
 上記従来の送信装置において、送信信号は、発振器からの発振信号を搬送波としてパルス変調信号S1に重畳させることにより生成される。
 このため、送信装置の消費電力を低減するには、パルス変調信号がハイレベルで、搬送波を送信する必要があるときだけ、発振器を動作させ、パルス変調信号がローレベルであるときには、発振器の動作を停止させることが考えられる。
In the conventional transmission apparatus, the transmission signal is generated by superimposing the oscillation signal from the oscillator as a carrier wave on the pulse modulation signal S1.
Therefore, in order to reduce the power consumption of the transmitter, the oscillator is operated only when the pulse modulation signal is at a high level and it is necessary to transmit a carrier wave, and when the pulse modulation signal is at a low level, the operation of the oscillator is performed. It is conceivable to stop.
 つまり、このように発振器の発振動作を、送信信号である搬送波を送信するときに制限することで、発振器の不必要な発振動作を禁止し、送信装置内で、発振器や、発振器からの搬送波を増幅する増幅器により消費される消費電力を低減するのである。 In other words, by limiting the oscillation operation of the oscillator when transmitting a carrier wave as a transmission signal in this way, unnecessary oscillation operation of the oscillator is prohibited, and the oscillator and the carrier wave from the oscillator are The power consumed by the amplifier to be amplified is reduced.
 しかしながら、入力信号の変調方式として、上記a)、b)、d)、e)の変調方式(PAM、PWM、PIM、PFM)を採用した送信装置においては、送信装置の消費電力を低減することができないという問題があった。 However, in a transmission device that employs the modulation methods (PAM, PWM, PIM, PFM) of a), b), d), and e) as modulation methods of the input signal, the power consumption of the transmission device should be reduced. There was a problem that could not.
 つまり、まず、パルス振幅変調方式(PAM)では、パルス変調信号のパルス幅は一定であり、そのパルス幅を短くして発振器2の動作時間(搬送波の送信時間)を短くすると、受信装置側でパルス変調信号の振幅から入力信号の信号レベルを正確に検知できなくなるので、発振器の動作時間を短くして消費電力を低減するには限界がある。 That is, first, in the pulse amplitude modulation method (PAM), the pulse width of the pulse modulation signal is constant. If the pulse width is shortened to shorten the operation time of the oscillator 2 (carrier wave transmission time), the receiving apparatus side Since it becomes impossible to accurately detect the signal level of the input signal from the amplitude of the pulse modulation signal, there is a limit in reducing the power consumption by shortening the operation time of the oscillator.
 また、パルス幅変調方式(PWM)では、入力信号の信号レベルが高く、パルス幅変調信号のデューティ比が100%近くになった場合に、発振器による消費電力を制限することができなくなる。 Also, in the pulse width modulation method (PWM), when the signal level of the input signal is high and the duty ratio of the pulse width modulation signal is close to 100%, the power consumption by the oscillator cannot be limited.
 また、パルス間隔変調方式(PIM)では、入力信号の信号レベルが低いとき、短いパルスの発生頻度が高くなるため、発振器による消費電力を充分低減することができない。
 逆に、パルス周波数変調方式(PFM)では、入力信号の信号レベルが高いとき、短いパルスの発生頻度が高くなるため、発振器による消費電力を充分低減することができない。
Further, in the pulse interval modulation method (PIM), when the signal level of the input signal is low, the frequency of occurrence of short pulses increases, so that the power consumption by the oscillator cannot be sufficiently reduced.
On the other hand, in the pulse frequency modulation method (PFM), when the signal level of the input signal is high, the frequency of occurrence of short pulses increases, so that the power consumption by the oscillator cannot be sufficiently reduced.
 一方、パルス位置変調方式(PPM)では、入力信号の信号レベルに応じて短いパルスの位置を変化させるだけであるので、そのパルスに対応した発振器の動作時間を短くして消費電力を低減することはできる。 On the other hand, in the pulse position modulation method (PPM), only the position of a short pulse is changed according to the signal level of the input signal, so that the operating time of the oscillator corresponding to the pulse is shortened to reduce power consumption. I can.
 しかし、パルス位置変調方式(PPM)では、送信装置と受信装置との間で時間フレームを同期させる必要がある。
 そして、その同期化のためには、送信装置内に、パルス位置変調方式(PPM)の変調器とは別に、定期的に同期化信号を生成して送信させる回路を設ける必要があることから、その回路の消費電力によって、送信装置全体の消費電力を低減することはできないという問題がある。
However, in the pulse position modulation method (PPM), it is necessary to synchronize the time frame between the transmission device and the reception device.
In order to achieve the synchronization, it is necessary to provide a circuit that periodically generates and transmits a synchronization signal, in addition to a pulse position modulation (PPM) modulator, in the transmission device. There is a problem that the power consumption of the entire transmitter cannot be reduced by the power consumption of the circuit.
 また、パルス位置変調方式の場合、受信装置側で、同期化信号の受信ミスが発生すると、次に同期化信号を正常に受信できるまでの間、送信装置からの送信データを復元することができないという問題もある。 In the case of the pulse position modulation method, if a reception error of the synchronization signal occurs on the reception device side, transmission data from the transmission device cannot be restored until the next synchronization signal can be normally received. There is also a problem.
 本発明の一側面においては、入力信号に対応したパルス変調信号を生成し、そのパルス変調信号に対応した搬送波を送信する送信装置において、送信装置全体の消費電力を低減するのに好適なパルス変調器を提供できることが望ましい。 In one aspect of the present invention, in a transmission device that generates a pulse modulation signal corresponding to an input signal and transmits a carrier wave corresponding to the pulse modulation signal, pulse modulation suitable for reducing power consumption of the entire transmission device It is desirable to be able to provide a vessel.
 本発明のパルス変調器は、基準信号発生手段と、比較手段と、パルス信号発生手段とを備える。
 そして、基準信号発生手段は、一定の時間フレーム毎に信号レベルが鋸波状に変化する基準信号を発生し、比較手段は、入力信号と基準信号発生手段が発生した基準信号とを比較することで、入力信号の信号レベルに対応したパルス幅を有するパルス幅変調信号を生成する。
The pulse modulator of the present invention comprises reference signal generating means, comparing means, and pulse signal generating means.
Then, the reference signal generating means generates a reference signal whose signal level changes in a sawtooth shape every certain time frame, and the comparing means compares the input signal with the reference signal generated by the reference signal generating means. Then, a pulse width modulation signal having a pulse width corresponding to the signal level of the input signal is generated.
 そして、このパルス幅変調信号は、パルス信号発生手段に入力され、パルス信号発生手段は、パルス幅変調信号の立ち上がりタイミング及び立ち下がりタイミングに、それぞれ、パルス信号を発生する。 The pulse width modulation signal is input to the pulse signal generation means, and the pulse signal generation means generates a pulse signal at the rising timing and the falling timing of the pulse width modulation signal, respectively.
 従って、本発明のパルス変調器からは、一定の時間フレーム毎に、入力信号の信号レベルに対応した間隔を有する2つのパルス信号が出力されることになる。以下、本発明のパルス変調器により実現されるパルス変調方式を、デュアルパルスポジション変調方式(DPPM)という。 Therefore, two pulse signals having an interval corresponding to the signal level of the input signal are output from the pulse modulator of the present invention at every fixed time frame. Hereinafter, the pulse modulation method realized by the pulse modulator of the present invention is referred to as a dual pulse position modulation method (DPPM).
 よって、本発明のパルス変調器から出力されたパルス信号を受信する受信装置側では、2つのパルス信号のパルス間隔を検出することで、入力信号を復元できる。
 そして、この場合、パルス変調方式としてパルス位置変調方式(PPM)を採用したときのように、受信装置側で入力信号を復元できるようにするために、受信装置に対し同期化信号を送信する必要がない。
Therefore, on the receiving device side that receives the pulse signal output from the pulse modulator of the present invention, the input signal can be restored by detecting the pulse interval between the two pulse signals.
In this case, a synchronization signal needs to be transmitted to the receiving device so that the input signal can be restored on the receiving device side, as when the pulse position modulation method (PPM) is adopted as the pulse modulation method. There is no.
 従って、本発明のパルス変調器を用いて送信装置を構成すれば、パルス位置変調方式(PPM)のパルス変調器を用いたときのように、送信装置内に同期化信号生成用の回路を設ける必要がないので、送信装置の構成を簡単にすることができる。 Therefore, if the transmission apparatus is configured using the pulse modulator of the present invention, a circuit for generating a synchronization signal is provided in the transmission apparatus as in the case of using a pulse position modulation (PPM) pulse modulator. Since it is not necessary, the configuration of the transmission apparatus can be simplified.
 また、この場合、同期化信号生成用回路での消費電力を削減できるので、送信装置の消費電力量を低減することもできる。
 また、上述したように、パルス位置変調方式(PPM)の場合、受信装置側で、同期化信号の受信ミスが発生すると、次に同期化信号を正常に受信できるまでの間、送信装置からの送信データを正常に復元できなくなる。
In this case, since the power consumption in the synchronization signal generation circuit can be reduced, the power consumption of the transmission apparatus can also be reduced.
Further, as described above, in the case of pulse position modulation (PPM), when a reception error occurs in the synchronization signal on the reception device side, until the synchronization signal can be normally received next time, The transmitted data cannot be restored normally.
 しかし、本発明のデュアルパルスポジション変調方式(DPPM)によれば、受信装置側で2つのパルス信号の間隔を検出できれば、入力信号を復元することができ、送・受信装置間で同期をとる必要がない。 However, according to the dual pulse position modulation method (DPPM) of the present invention, if the interval between two pulse signals can be detected on the receiving device side, the input signal can be restored, and synchronization between the transmitting and receiving devices is required. There is no.
 このため、本発明のパルス変調器を用いて送信装置を構成すれば、受信装置側でパルス信号の受信ミスが発生しても、次の周期(時間フレーム)で、正常な受信状態に復帰することができる。 For this reason, if the transmission device is configured using the pulse modulator of the present invention, even if a reception error of the pulse signal occurs on the reception device side, the normal reception state is restored in the next cycle (time frame). be able to.
 そして、受信状態が正常に復帰すれば、受信データの誤り訂正等によって、正常なデータを復元することができ、受信データの信頼性を向上できる。
 また次に、本発明のパルス変調器によれば、パルス信号発生手段が発生するパルス信号のパルス幅を短くし、そのパルス信号にて、通信用の搬送波を発生する発振器をオン・オフさせるようにすれば、発振器の駆動時間を制限することができる。
If the reception state returns to normal, normal data can be restored by error correction of the received data, and the reliability of the received data can be improved.
Next, according to the pulse modulator of the present invention, the pulse width of the pulse signal generated by the pulse signal generating means is shortened, and the oscillator that generates the communication carrier wave is turned on / off by the pulse signal. If so, the drive time of the oscillator can be limited.
 よって、本発明のパルス変調方式を利用すれば、送信装置において、上述した従来のパルス位置変調方式(特に、PAM、PWM、PIM、PFM等の変調方式)を採用した場合に比べて、発振器(延いては、送信装置)の消費電力量を低減することができる。 Therefore, if the pulse modulation method of the present invention is used, the transmitter (as compared with the case where the above-described conventional pulse position modulation method (particularly, a modulation method such as PAM, PWM, PIM, PFM, etc.) is employed in the transmitter) As a result, the power consumption of the transmission device can be reduced.
 なお、本発明のパルス変調器においては、一定の時間フレーム毎に2つのパルス信号を生成することから、受信装置側で入力信号を復元するには、受信信号から順次得られるパルス信号の何れが時間フレーム内の先頭パルスであるかを識別できるようにする必要がある。 In the pulse modulator of the present invention, two pulse signals are generated every fixed time frame. Therefore, in order to restore the input signal on the receiving device side, any of the pulse signals sequentially obtained from the received signal is used. It is necessary to be able to identify whether it is the first pulse in the time frame.
 そして、このためには、受信装置側で受信信号(搬送波)から最初に生成したパルス信号を、時間フレーム内の先頭パルス、次に受信したパルス信号を、同一時間フレーム内の2番目のパルス、その次に受信したパルス信号を、次の時間フレーム内の先頭パルス、…というように、パルス信号の受信順にパルス信号の種別(先頭・2番目)を識別して、その2つのパルス信号の間隔から入力信号を復元するようにしてもよい。 For this purpose, the first pulse signal generated from the received signal (carrier wave) on the receiving device side is the first pulse in the time frame, the next received pulse signal is the second pulse in the same time frame, The next received pulse signal is identified as the first pulse in the next time frame, and so on, and the type of the pulse signal (first and second) is identified in the order of reception of the pulse signal, and the interval between the two pulse signals. The input signal may be restored from the above.
 しかし、より好ましくは、パルス変調手段が一定の時間フレーム当たりに生成する2つのパルス信号の内、最初のパルス信号のパルス幅と2番目のパルス信号のパルス幅とが、それぞれ一定で互いに異なるパルス幅となるよう、パルス変調手段を構成するとよい。 However, more preferably, the pulse width of the first pulse signal and the pulse width of the second pulse signal are constant and different from each other among the two pulse signals generated by the pulse modulation means per fixed time frame. The pulse modulation means may be configured to have a width.
 つまり、このようにすれば、受信装置側で受信信号(搬送波)からパルス信号を生成する度に、そのパルス信号のパルス幅から、今回受信したパルス信号は時間フレーム内の先頭パルスであるか2番目のパルスであるかをより正確に識別することができるようになり、その2つのパルス信号の間隔から入力信号を正確に復元することが可能となる。 That is, in this way, every time a pulse signal is generated from a received signal (carrier wave) on the receiving device side, it is determined from the pulse width of the pulse signal whether the currently received pulse signal is the first pulse in the time frame. It becomes possible to more accurately identify whether the pulse is the first pulse, and the input signal can be accurately restored from the interval between the two pulse signals.
 次に、本発明の送信装置は、上述した本発明のパルス変調器によって構成され、一定の時間フレーム毎に、入力信号の信号レベルに対応した間隔を有する2つのパルス信号を生成するパルス変調手段を備える。 Next, the transmission apparatus of the present invention is constituted by the above-described pulse modulator of the present invention, and generates pulse signal means for generating two pulse signals having an interval corresponding to the signal level of the input signal for every fixed time frame. Is provided.
 そして、このパルス変調信号にて生成されたパルス信号は、発振手段を発振状態又は発振停止状態に切り換えるための制御信号として、発振手段に入力され、発振手段の発振動作が、パルス変調手段によるパルス信号の発生時に制限される。 The pulse signal generated by this pulse modulation signal is input to the oscillation means as a control signal for switching the oscillation means to the oscillation state or the oscillation stop state, and the oscillation operation of the oscillation means is changed to the pulse by the pulse modulation means. Limited when signal is generated.
 従って、本発明の送信装置によれば、従来のパルス変調器を備えた送信装置に比べ、消費電力量を低減することができる。
 また、本発明の送信装置によれば、パルス変調器としてパルス位置変調方式(PPM)のものを利用したときのように、送信装置内に、同期化信号を生成して受信装置側に送信するための回路を設ける必要がないので、回路構成を簡単にすることができる。
Therefore, according to the transmission apparatus of the present invention, it is possible to reduce the power consumption as compared with the transmission apparatus including the conventional pulse modulator.
Further, according to the transmission apparatus of the present invention, a synchronization signal is generated in the transmission apparatus and transmitted to the reception apparatus side, as in the case of using a pulse position modulation (PPM) pulse modulator. Therefore, the circuit configuration can be simplified.
 また、受信装置側では、送信データを復元するのに同期化信号を用いる必要がないので、データ通信の信頼性を向上することができる。
 次に、本発明の無線送信装置の内、第1局面における無線送信装置においては、上述した本発明のパルス変調器を含む送信装置が、無線送信用の集積回路として形成された半導体基板を備える。
Further, since it is not necessary on the receiving apparatus side to use the synchronization signal to restore the transmission data, the reliability of data communication can be improved.
Next, in the wireless transmission device according to the first aspect of the wireless transmission device of the present invention, the transmission device including the pulse modulator of the present invention described above includes a semiconductor substrate formed as an integrated circuit for wireless transmission. .
 また、第2局面における無線送信装置においては、上述した本発明の送信装置が、無線送信用の集積回路として形成された半導体基板を備える。
 そして、これら各無線送信装置において、半導体基板の表面には、集積回路として形成された送信装置からの送信信号(搬送波)を放射するためのアンテナを構成する金属パターンが形成される。
In the wireless transmission device according to the second aspect, the above-described transmission device of the present invention includes a semiconductor substrate formed as an integrated circuit for wireless transmission.
In each of these wireless transmission devices, a metal pattern constituting an antenna for radiating a transmission signal (carrier wave) from the transmission device formed as an integrated circuit is formed on the surface of the semiconductor substrate.
 このため、本発明の無線送信装置によれば、送信装置を集積回路として半導体基板に形成することで、装置全体を小型化することができ、延いては、低消費電力で小型の無線送信装置を実現できる。 For this reason, according to the wireless transmission device of the present invention, the entire device can be reduced in size by forming the transmission device as an integrated circuit on the semiconductor substrate, and consequently, the wireless transmission device can be reduced in size with low power consumption. Can be realized.
 なお、本発明の無線送信装置において、半導体基板は、シリコン半導体基板にて構成するとよく、金属パターンは、スパイラル型にするとよい。
 そして、このように、スパイラル型の金属パターンにて、半導体基板にアンテナ(所謂オンチップアンテナ)を形成するようにすれば、スパイラル型金属パターンの巻き数や外周の大きさ(例えば直径)を予め設定しておくことで、安定した送信特性が得られる無線送信装置を生産することができる。
In the wireless transmission device of the present invention, the semiconductor substrate may be a silicon semiconductor substrate, and the metal pattern may be a spiral type.
If the antenna (so-called on-chip antenna) is formed on the semiconductor substrate with the spiral metal pattern in this way, the number of turns of the spiral metal pattern and the outer circumference (for example, the diameter) are set in advance. By setting, it is possible to produce a wireless transmission device that can obtain stable transmission characteristics.
 なお、シリコン基板へのスパイラルパターンの形成技術については、下記の技術文献に記載されている。
 技術文献:Jong-Wan Kim、Hidekuni Takao、Kazuaki Sawada、Makoto Ishida、“Integrated Inductors for RF Transmitters in CMOS/MEMS Smart Microsensor System”、Sensors、Volume7、PP.1387-1398、2007
The technology for forming a spiral pattern on a silicon substrate is described in the following technical literature.
Technical literature: Jong-Wan Kim, Hidekuni Takao, Kazuaki Sawada, Makoto Ishida, “Integrated Inductors for RF Transmitters in CMOS / MEMS Smart Microsensor System”, Sensors, Volume 7, PP.1387-1398, 2007
 但し、この技術文献に開示された技術は、シリコン基板上にスパイラルパターンとキャパシタとで構成されるオンチップアンテナを形成し、このオンチップアンテナとシリコン基板に形成された通信回路とを、インピーダンス整合用のインダクタを用いたワイヤボンディング法にて接続する、というものである。 However, the technique disclosed in this technical document forms an on-chip antenna composed of a spiral pattern and a capacitor on a silicon substrate, and impedance matching is performed between the on-chip antenna and a communication circuit formed on the silicon substrate. The connection is made by wire bonding using an inductor.
 従って、この技術を利用してスパイラルパターンを形成するようにすると、インピーダンス整合用のインダクタを設けることになり、このインダクタによりアンテナが大きくなってしまうという問題がある。 Therefore, when the spiral pattern is formed using this technique, an inductor for impedance matching is provided, and there is a problem that the antenna becomes large due to this inductor.
 このため、本発明の無線送信装置において、半導体基板にスパイラル型金属パターン(以下、スパイラルパターンという)を形成する際には、スパイラルパターンは、シリコン基板上の配線パターンを介して無線送信用の集積回路と直接接続し、その接続部のインピーダンスを整合させるとよい。 Therefore, in the wireless transmission device of the present invention, when a spiral metal pattern (hereinafter referred to as a spiral pattern) is formed on a semiconductor substrate, the spiral pattern is integrated for wireless transmission via a wiring pattern on a silicon substrate. Connect directly to the circuit and match the impedance of the connection.
 つまり、スパイラルパターンと集積回路との接続部から見たスパイラルパターンのインピーダンスを、スパイラルパターンの幅及び間隔を調整することにより、無線送信用の集積回路と整合させるのである。 That is, the impedance of the spiral pattern viewed from the connection portion between the spiral pattern and the integrated circuit is matched with the integrated circuit for wireless transmission by adjusting the width and interval of the spiral pattern.
 そして、このようにすれば、スパイラルパターンと無線送信用の集積回路とを、インピーダンス整合用のインダクタを用いたワイヤボンディングにより接続する必要がない。
 従って、この場合、アンテナを含む無線送信装置を集積回路として構成する際の製造工程を簡単にすることができ、しかも、インピーダンス整合用のインダクタがない分、無線送信装置を小型化することができる。
In this way, it is not necessary to connect the spiral pattern and the wireless transmission integrated circuit by wire bonding using an inductor for impedance matching.
Therefore, in this case, the manufacturing process when the wireless transmission device including the antenna is configured as an integrated circuit can be simplified, and the wireless transmission device can be reduced in size because there is no inductor for impedance matching. .
 次に、本発明の無線送信装置によれば、入力信号の変調方式として、本発明特有のデュアルパルスポジション変調方式(DPPM)を採用することにより、従来のパルス変調方式(PAM、PWM、PIM、PFM、PPM等)を採用したものに比べて、消費電力を低減することができる。 Next, according to the wireless transmission device of the present invention, by adopting the dual pulse position modulation method (DPPM) unique to the present invention as the modulation method of the input signal, the conventional pulse modulation method (PAM, PWM, PIM, Power consumption can be reduced as compared with those employing PFM, PPM, and the like.
 このため、本発明の無線通信装置は、センサ素子を備えたスマートセンサにおいて、センサ素子からの検出信号を無線送信する無線送信装置として用いるようにすれば、その効果を有効に発揮することができる。 For this reason, if the wireless communication device of the present invention is used as a wireless transmission device that wirelessly transmits a detection signal from a sensor element in a smart sensor provided with the sensor element, the effect can be effectively exhibited. .
 つまり、上述したように、スマートセンサは、低消費電力化が要求されていることから、本発明の無線送信装置を、スマートセンサにおいて検出信号を無線送信する無線送信装置として利用するようにすれば、スマートセンサの低消費電力化を図ることができる。 That is, as described above, since the smart sensor is required to reduce power consumption, the wireless transmission device of the present invention can be used as a wireless transmission device that wirelessly transmits a detection signal in the smart sensor. Therefore, the power consumption of the smart sensor can be reduced.
 また、特に、本発明の無線送信装置によれば、アンテナと共に半導体基板に形成することで、小型化することができるため、スマートセンサの小型化を図ることもできる。
 なお、このように本発明の無線送信装置をスマートセンサに適用する場合、より具体的には、生体情報を検出するセンサ素子と、上述した本発明の無線送信装置とを備え、無線送信装置が、センサ素子からの検出信号を無線送信するよう構成された生体情報検知装置に適用するとよい。
In particular, according to the wireless transmission device of the present invention, it is possible to reduce the size of the smart sensor because it can be reduced in size by being formed on the semiconductor substrate together with the antenna.
When the wireless transmission device of the present invention is applied to a smart sensor in this way, more specifically, the sensor device for detecting biological information and the wireless transmission device of the present invention described above are provided, and the wireless transmission device is It may be applied to a biological information detection device configured to wirelessly transmit a detection signal from a sensor element.
 そして、このように構成された本発明の生体情報検知装置によれば、生体情報検知装置の省電力化及び小型化を図り、生体情報検知装置が装着される被験者の負担を軽減できる。 Then, according to the biological information detection device of the present invention configured as described above, the biological information detection device can be reduced in power and size, and the burden on the subject to whom the biological information detection device is attached can be reduced.
 つまり、生体情報検知装置は、被験者の状態を検知して、検知結果を無線送信するものであり、被験者に装着され、被験者の体内に埋め込まれることもある。
 このため、被験者に一旦装着されると、電池交換等を簡単に行うことができないので、消費電力量を抑えて、装置の寿命を長くすることが要求されている。また、被験者の負担を軽減するため、装置の小型化が要求されている。
That is, the biological information detection device detects the state of the subject and wirelessly transmits the detection result, and is sometimes attached to the subject and embedded in the subject's body.
For this reason, once the battery is attached to the subject, battery replacement or the like cannot be easily performed. Therefore, it is required to suppress power consumption and extend the life of the apparatus. In addition, in order to reduce the burden on the subject, downsizing of the apparatus is required.
 これに対し、本発明の無線通信装置によれば、従来のものに対し、消費電力量を低減し、小型化を図ることもできるので、こうした生体情報検知装置に適用すれば、その効果をより有効に発揮することができる。 On the other hand, according to the wireless communication device of the present invention, the amount of power consumption can be reduced and the size can be reduced as compared with the conventional device. It can be exhibited effectively.
第1実施形態の無線送信装置全体の構成を表すブロック図である。It is a block diagram showing the structure of the whole radio | wireless transmitter of 1st Embodiment. 第1実施形態のデュアルパルスポジション変調装置の構成を表す構成図である。It is a block diagram showing the structure of the dual pulse position modulation apparatus of 1st Embodiment. 第1実施形態のデュアルパルスポジション変調装置の動作を説明するタイムチャートである。It is a time chart explaining operation | movement of the dual pulse position modulation apparatus of 1st Embodiment. 第1実施形態のオン・オフ制御発振装置の構成を表す構成図である。It is a block diagram showing the structure of the on / off control oscillation apparatus of 1st Embodiment. 無線送信装置の各回路をアンテナと共にシリコン基板上に形成した第2実施形態の無線送信装置の概略構成を表す説明図である。It is explanatory drawing showing schematic structure of the radio | wireless transmission apparatus of 2nd Embodiment which formed each circuit of the radio | wireless transmission apparatus on the silicon substrate with the antenna. 図5に示すシリコン基板上のアンテナの断面を表すVI-VI断面図である。FIG. 6 is a VI-VI sectional view showing a section of the antenna on the silicon substrate shown in FIG. 5; 第2実施形態のアンテナの等価回路を表す説明図である。It is explanatory drawing showing the equivalent circuit of the antenna of 2nd Embodiment. 図5に示す無線送信装置のCMOS製作工程におけるコンタクトホール形成後の状態を表す断面図である。FIG. 6 is a cross-sectional view illustrating a state after contact holes are formed in a CMOS manufacturing process of the wireless transmission device illustrated in FIG. 5. 図8に示す製作工程後にAlを堆積した状態を表す断面図である。It is sectional drawing showing the state which accumulated Al after the manufacturing process shown in FIG. 図9に示す製作工程後に配線及びアンテナのパターンを形成した状態を表す断面図である。FIG. 10 is a cross-sectional view illustrating a state in which wiring and antenna patterns are formed after the manufacturing process illustrated in FIG. 9. CMOS製作工程を用いてシリコン基板上に無線送信集積回路及びアンテナを形成した後の状態を表す断面図である。It is sectional drawing showing the state after forming a wireless transmission integrated circuit and an antenna on a silicon substrate using a CMOS manufacturing process. 第2実施形態のデュアルパルスポジション変調装置の動作波形の測定結果を表すタイムチャートである。It is a time chart showing the measurement result of the operation waveform of the dual pulse position modulation device of a 2nd embodiment. 第2実施形態のデュアルパルスポジション変調装置において生成される第1のパルス信号を表す説明図である。It is explanatory drawing showing the 1st pulse signal produced | generated in the dual pulse position modulation apparatus of 2nd Embodiment. 第2実施形態のデュアルパルスポジション変調装置において生成される第2のパルス信号を表す説明図である。It is explanatory drawing showing the 2nd pulse signal produced | generated in the dual pulse position modulation apparatus of 2nd Embodiment. 第2実施形態の発振装置の動作を表す説明図である。It is explanatory drawing showing operation | movement of the oscillation apparatus of 2nd Embodiment. 第2実施形態のアンテナのリターンロスの測定結果を表す説明図である。It is explanatory drawing showing the measurement result of the return loss of the antenna of 2nd Embodiment. 第2実施形態のアンテナの電圧定在波比(VSWR)の測定結果を表す説明図である。It is explanatory drawing showing the measurement result of the voltage standing wave ratio (VSWR) of the antenna of 2nd Embodiment. 第2実施形態のアンテナの入力インピーダンスの測定結果を表す説明図である。It is explanatory drawing showing the measurement result of the input impedance of the antenna of 2nd Embodiment. 第2実施形態のアンテナのx-y軸方向の放射パターンの測定結果を表す説明図である。It is explanatory drawing showing the measurement result of the radiation pattern of the xy-axis direction of the antenna of 2nd Embodiment. 第2実施形態のアンテナのy-z軸方向の放射パターンの測定結果を表す説明図である。It is explanatory drawing showing the measurement result of the radiation pattern of the yz-axis direction of the antenna of 2nd Embodiment. 第2実施形態の無線送信装置からの送信電波を測定するのに用いた測定システムの構成を表す説明図である。It is explanatory drawing showing the structure of the measurement system used in measuring the transmission radio wave from the radio | wireless transmitter of 2nd Embodiment. 図21に示した測定システムによる測定結果を表す説明図である。It is explanatory drawing showing the measurement result by the measurement system shown in FIG. 実施形態及び従来(PWM方式)の無線送信装置で生じる消費電力の測定結果を表す説明図である。It is explanatory drawing showing the measurement result of the power consumption which arises with embodiment and the conventional (PWM system) radio | wireless transmitter. 本発明の無線送信装置を利用した生体情報検知システム全体の構成を表すブロック図である。It is a block diagram showing the structure of the whole biometric information detection system using the wireless transmitter of this invention. 従来の無線送信装置の概略構成を表すブロック図である。It is a block diagram showing schematic structure of the conventional radio | wireless transmitter. 従来のパルス変調方式の種類及びパルス変調信号を表す説明図である。It is explanatory drawing showing the kind and pulse modulation signal of the conventional pulse modulation system.
 2…発振器、4…ミキサ、10…デュアルパルスポジション変調装置、12…鋸波発生装置、14…比較器、16,22,24…インバータ、18,20…微分装置、26…NANDゲート、30…オン・オフ制御発振装置、32…NANDゲート、34,36…インバータ、40…電力増幅装置、50…アンテナ、60…無線送信集積回路、70…スパイラルパターン、80…シリコン基板、81…絶縁膜、90…コンタクトホール、92…Al層、94…レジスト、95…配線、100…生体情報検知装置、110…温度センサ、120…無線送信装置、200…受信装置、210…アンテナ、220…バンドパスフィルタ、230…ローノイズアンプ、240…検波器、250…比較器、260…デュアルパルスポジション復調装置、270…インターフェース、300…情報端末。 DESCRIPTION OF SYMBOLS 2 ... Oscillator, 4 ... Mixer, 10 ... Dual pulse position modulation device, 12 ... Saw wave generator, 14 ... Comparator, 16, 22, 24 ... Inverter, 18, 20 ... Differentiation device, 26 ... NAND gate, 30 ... ON / OFF controlled oscillation device, 32 ... NAND gate, 34, 36 ... inverter, 40 ... power amplification device, 50 ... antenna, 60 ... wireless transmission integrated circuit, 70 ... spiral pattern, 80 ... silicon substrate, 81 ... insulating film, DESCRIPTION OF SYMBOLS 90 ... Contact hole, 92 ... Al layer, 94 ... Resist, 95 ... Wiring, 100 ... Biological information detection device, 110 ... Temperature sensor, 120 ... Wireless transmission device, 200 ... Reception device, 210 ... Antenna, 220 ... Band pass filter 230 ... Low noise amplifier 240 ... Detector 250 ... Comparator 260 ... Dual pulse position demodulator 270 ... interface, 300 ... information terminal.
 以下に本発明の実施形態を図面と共に説明する。
[第1実施形態]
 本実施形態の無線送信装置は、センサ素子や信号処理用のCPUと共に、スマートセンサに組み込むことにより使用されるものであり、図1に示すように構成されている。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
The wireless transmission device of the present embodiment is used by being incorporated in a smart sensor together with a sensor element and a CPU for signal processing, and is configured as shown in FIG.
 すなわち、本実施形態の無線送信装置は、スマートセンサを構成するセンサ素子若しくはCPUから出力される情報信号(換言すれば入力信号)Sinをパルス変調するデュアルパルスポジション変調装置10と、デュアルパルスポジション変調装置10から出力されるパルス変調信号S1を受けて発振動作を開始し、デュアルパルスポジション変調装置10からのパルス変調信号S1の出力が停止されると、発振動作を停止するオン・オフ制御発振装置30と、オン・オフ制御発振装置30の発振動作によって生成される発振信号(つまり無線送信用の搬送波)S2を電力増幅することで送信信号Soutを生成する電力増幅装置40と、を備える。 That is, the wireless transmission device according to the present embodiment includes a dual pulse position modulation device 10 that performs pulse modulation on an information signal (in other words, an input signal) Sin output from a sensor element or CPU that constitutes a smart sensor, and dual pulse position modulation. An on / off control oscillator that starts an oscillation operation in response to the pulse modulation signal S1 output from the device 10 and stops the oscillation operation when the output of the pulse modulation signal S1 from the dual pulse position modulation device 10 is stopped. 30 and a power amplifying device 40 that generates a transmission signal Sout by amplifying power of an oscillation signal (that is, a wireless transmission carrier wave) S2 generated by the oscillation operation of the on / off control oscillation device 30.
 そして、電力増幅装置40にて生成された送信信号Soutは、アンテナ50に出力され、アンテナ50から送信電波として放射される。
 次に、デュアルパルスポジション変調装置10は、本発明のパルス変調器(換言すればパルス変調手段)の一例に相当するものであり、図2に示すように構成されている。
The transmission signal Sout generated by the power amplification device 40 is output to the antenna 50 and is radiated from the antenna 50 as a transmission radio wave.
Next, the dual pulse position modulation device 10 corresponds to an example of a pulse modulator (in other words, pulse modulation means) of the present invention, and is configured as shown in FIG.
 すなわち、デュアルパルスポジション変調装置10は、一定の時間フレーム毎に信号レベルが鋸波状に変化する基準信号Sstを発生する鋸(のこぎり)波発生装置12と、鋸波発生装置12から出力される鋸波状の基準信号Sstと入力信号Sinとを比較することで、入力信号Sinの信号レベルに対応したパルス幅を有するパルス幅変調信号S11を生成する比較器14と、を備える。 That is, the dual pulse position modulation device 10 includes a saw wave generator 12 that generates a reference signal Sst whose signal level changes in a sawtooth shape every certain time frame, and a saw output from the saw wave generator 12. A comparator 14 that generates a pulse width modulation signal S11 having a pulse width corresponding to the signal level of the input signal Sin by comparing the wavy reference signal Sst and the input signal Sin.
 そして、比較器14にて生成されたパルス幅変調信号S11は2系統に分配され、その分配された一方のパルス幅変調信号S11は微分装置18に直接入力され、他方のパルス幅変調信号S11はインバータ(NOTゲート)16を介して、微分装置20に入力される。 Then, the pulse width modulation signal S11 generated by the comparator 14 is distributed into two systems, one of the distributed pulse width modulation signals S11 is directly input to the differentiator 18, and the other pulse width modulation signal S11 is The signal is input to the differentiator 20 via an inverter (NOT gate) 16.
 この結果、微分装置18からは、パルス幅変調信号S11の立ち上がりに同期して立ち上がる微分信号S12が出力され、微分装置20からは、パルス幅変調信号S11の立ち下がりに同期して立ち上がる微分信号S13が出力されることになる(図3参照)。 As a result, the differentiator 18 outputs a differential signal S12 that rises in synchronization with the rise of the pulse width modulation signal S11, and the differentiator 20 differentiates the differential signal S13 that rises in synchronization with the fall of the pulse width modulation signal S11. Is output (see FIG. 3).
 そして、これら各微分装置18、20からの出力は、それぞれ、インバータ22、24を介してNANDゲート26に入力される。
 また、インバータ22、24は、各微分装置18、20からの出力レベルがしきい値以上であるときにローレベルとなり、各微分装置18、20からの出力レベルがしきい値未満であるときにハイレベルとなる信号を出力するように構成されている。
The outputs from the differentiators 18 and 20 are input to the NAND gate 26 via the inverters 22 and 24, respectively.
The inverters 22 and 24 are low when the output level from the differentiators 18 and 20 is equal to or higher than the threshold value, and when the output level from the differentiators 18 and 20 is less than the threshold value. It is configured to output a high level signal.
 この結果、NANDゲート26からは、パルス幅変調信号S11の立ち上がりタイミング及び立ち下がりタイミングに同期して、各微分装置18、20の時定数で決まる一定時間だけハイレベルとなるパルス信号P1、P2がそれぞれ出力されることになり、この2つのパルス信号P1、P2の間隔は、パルス幅変調信号S11のパルス幅(換言すれば入力信号Sinの信号レベル)に応じて変化することになる(図3参照)。 As a result, from the NAND gate 26, the pulse signals P1 and P2 which become high level for a certain time determined by the time constants of the differentiating devices 18 and 20 in synchronization with the rising timing and falling timing of the pulse width modulation signal S11. The interval between the two pulse signals P1 and P2 changes according to the pulse width of the pulse width modulation signal S11 (in other words, the signal level of the input signal Sin) (FIG. 3). reference).
 つまり、デュアルパルスポジション変調装置10は、鋸波発生装置12が発生する基準信号(鋸波)の一周期を時間フレームTとして、その時間フレームT毎に、入力信号Sinの信号レベルに応じて間隔が変化する2つのパルス信号P1、P2を生成するのである。 That is, the dual pulse position modulation device 10 sets one cycle of the reference signal (sawtooth wave) generated by the sawtooth wave generation device 12 as a time frame T, and is spaced according to the signal level of the input signal Sin for each time frame T. Thus, two pulse signals P1 and P2 that change are generated.
 なお、本実施形態では、微分装置20の時定数を、微分装置18の時定数よりも大きい値に設定することにより、時間フレームT毎に生成される2つのパルス信号P1、P2の内、2番目に生成されるパルス信号P2のパルス幅が、最初に生成されるパルス信号P1のパルス幅よりも大きくなるようにされている(図3参照)。 In the present embodiment, by setting the time constant of the differentiating device 20 to a value larger than the time constant of the differentiating device 18, two of the two pulse signals P1 and P2 generated for each time frame T are represented by 2 The pulse width of the second pulse signal P2 generated is set to be larger than the pulse width of the pulse signal P1 generated first (see FIG. 3).
 これは、受信装置側で受信信号からパルス信号を生成したときに、そのパルス信号のパルス幅から、今回受信したパルス信号が時間フレームの最初のパルス幅であるか2番目のパルス信号であるかを識別できるようにするためである。 This is because when the pulse signal is generated from the received signal on the receiving device side, whether the pulse signal received this time is the first pulse width or the second pulse signal of the time frame based on the pulse width of the pulse signal. This is so that it can be identified.
 ここで、本実施形態において、鋸波発生装置12は、本発明の基準信号発生手段の一例に相当し、比較器14は、本発明の比較手段の一例に相当し、インバータ16、微分装置18、20、インバータ22、24、及びNANDゲート26は、本発明のパルス信号発生手段の一例に相当する。 Here, in this embodiment, the sawtooth wave generator 12 corresponds to an example of the reference signal generator of the present invention, the comparator 14 corresponds to an example of the comparator of the present invention, and the inverter 16 and the differentiator 18. , 20, inverters 22, 24, and NAND gate 26 correspond to an example of the pulse signal generating means of the present invention.
 次に、オン・オフ制御発振装置30は、本発明の発振手段の一例に相当するものであり、図4に示すように、2入力のNANDゲート32と2つのインバータ34、36とを順次直列に接続し、最終段のインバータ36の出力をNANDゲート32の一方の入力端子に接続した、周知のリング発振回路にて構成されている。 Next, the on / off control oscillation device 30 corresponds to an example of the oscillation means of the present invention. As shown in FIG. 4, a two-input NAND gate 32 and two inverters 34 and 36 are sequentially connected in series. And a known ring oscillation circuit in which the output of the inverter 36 in the final stage is connected to one input terminal of the NAND gate 32.
 このように構成されたオン・オフ制御発振装置30は、NANDゲート32の他方の入力端子がローレベルであれば、NANDゲート32の出力がローレベル、インバータ34の出力がハイレベル、インバータ36の出力がローレベルとなって、発振停止状態となり、NANDゲート32の他方の入力端子がハイレベルになると、NANDゲート32、インバータ34、及び、インバータ36の出力が順次反転する発振状態となる。 In the ON / OFF control oscillation device 30 configured as described above, if the other input terminal of the NAND gate 32 is low level, the output of the NAND gate 32 is low level, the output of the inverter 34 is high level, When the output is at a low level, the oscillation is stopped, and when the other input terminal of the NAND gate 32 is at a high level, the output of the NAND gate 32, the inverter 34, and the inverter 36 is sequentially inverted.
 そこで、本実施形態では、オン・オフ制御発振装置30の発振・停止を切り換える制御信号として、デュアルパルスポジション変調装置10からのパルス変調信号S1を、NANDゲート32の他方の入力端子に入力する。 Therefore, in this embodiment, the pulse modulation signal S1 from the dual pulse position modulation device 10 is input to the other input terminal of the NAND gate 32 as a control signal for switching on / off of the on / off control oscillation device 30.
 この結果、オン・オフ制御発振装置30は、デュアルパルスポジション変調装置10からパルス変調信号S1(詳しくはパルス信号P1又はP2)が出力されているときにだけ、発振状態となって、インバータ36の出力が発振信号(換言すれば搬送波)S2として電力増幅装置40に出力され、デュアルパルスポジション変調装置10からパルス信号P1又はP2が出力されていないときには、オン・オフ制御発振装置30が発振動作を停止することになる。 As a result, the on / off control oscillation device 30 enters the oscillation state only when the pulse modulation signal S1 (specifically, the pulse signal P1 or P2) is output from the dual pulse position modulation device 10, and the inverter 36 The output is output as an oscillation signal (in other words, a carrier wave) S2 to the power amplifier 40, and when the pulse signal P1 or P2 is not output from the dual pulse position modulator 10, the on / off control oscillator 30 performs an oscillation operation. Will stop.
 以上説明したように、本実施形態の無線送信装置においては、入力信号Sinに対応したパルス変調信号を生成するのに、デュアルパルスポジション変調方式(DPPM)を採用し、そのデュアルパルスポジション変調方式(DPPM)にて一定の時間フレーム毎に生成される2つのパルス信号を用いて、オン・オフ制御発振装置30を発振させる。 As described above, in the wireless transmission device according to the present embodiment, the dual pulse position modulation method (DPPM) is adopted to generate the pulse modulation signal corresponding to the input signal Sin, and the dual pulse position modulation method ( DPPM) is used to oscillate the on / off control oscillation device 30 using two pulse signals generated every fixed time frame.
 このため、本実施形態の無線送信装置によれば、従来のパルス変調方式(PAM、PWM、PIM、PFM、PPM等)にてパルス変調信号を生成し、その生成したパルス変調信号にてオン・オフ制御発振装置30の発振動作を切り換えるようにした場合に比べて、オン・オフ制御発振装置30の動作時間を短縮して、無線送信装置で消費される電力量を低減することができる。 Therefore, according to the wireless transmission device of the present embodiment, a pulse modulation signal is generated by a conventional pulse modulation method (PAM, PWM, PIM, PFM, PPM, etc.), and the generated pulse modulation signal is turned on / off. Compared with the case where the oscillation operation of the off-control oscillation device 30 is switched, the operation time of the on-off control oscillation device 30 can be shortened and the amount of power consumed by the wireless transmission device can be reduced.
 また、従来のパルス位置変調方式(PPM)を採用したときのように、送信装置側と受信装置側とで時間フレームを同期させるための同期化信号を生成する必要がないため、無線送信装置の装置構成を簡単にすることができる。
[第2実施形態]
 次に、本発明の第2実施形態について説明する。
Further, unlike the case of adopting the conventional pulse position modulation method (PPM), it is not necessary to generate a synchronization signal for synchronizing the time frame between the transmission device side and the reception device side. The apparatus configuration can be simplified.
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
 本実施形態の無線通信装置は、図5に示すように、上述したデュアルパルスポジション変調装置10、オン・オフ制御発振装置30、及び、電力増幅装置40からなる無線送信集積回路60を、周知のCMOS製作工程を利用してシリコン基板に形成し、更に、そのシリコン基板の表面にスパイラルパターン70を形成することで、アンテナ50を含む第1実施形態の無線通信装置をシリコン基板に一体形成したものである。 As shown in FIG. 5, the wireless communication device according to the present embodiment includes a wireless transmission integrated circuit 60 including the above-described dual pulse position modulation device 10, on / off control oscillation device 30, and power amplification device 40. The wireless communication device according to the first embodiment including the antenna 50 is integrally formed on the silicon substrate by forming the spiral pattern 70 on the surface of the silicon substrate using a CMOS manufacturing process. It is.
 アンテナ50を構成するスパイラルパターン70は、巻き数及び外周の直径Doutを調整して、スパイラルパターン70のインダクタンス、及び、スパイラルパターン70とシリコン基板との間のキャパシタンスを決定することで、送信信号に対応した共振周波数が設定され、スパイラルパターン70の幅およびスパイラルパターン70の間隔を調整することで、スパイラルパターン70と無線送信集積回路60との接続部において送信信号の反射が生じることのないようインピーダンス整合がなされる。 The spiral pattern 70 constituting the antenna 50 adjusts the number of turns and the outer diameter Dout to determine the inductance of the spiral pattern 70 and the capacitance between the spiral pattern 70 and the silicon substrate. The corresponding resonance frequency is set, and the width of the spiral pattern 70 and the interval between the spiral patterns 70 are adjusted so that the transmission signal is not reflected at the connection portion between the spiral pattern 70 and the wireless transmission integrated circuit 60. Alignment is made.
 以下、この点について詳しく説明する。
 まず、スパイラルパターン70は、シリコン基板上に絶縁膜(SiO)を成長させ、その上に金属層(Al)を形成することで、シリコン基板上に形成されており、その断面は、図6に示すようになる。
Hereinafter, this point will be described in detail.
First, the spiral pattern 70 is formed on the silicon substrate by growing an insulating film (SiO 2 ) on the silicon substrate and forming a metal layer (Al) thereon, and the cross section thereof is shown in FIG. As shown.
 そして、スパイラルパターン70のデザインパラメータによる等価回路は、図7に示すように記載することができる。
 すなわち、図7に示す等価回路において、Lsはスパイラルパターン70のインダクタンス成分であり、次式(1)のようになる。
An equivalent circuit based on the design parameters of the spiral pattern 70 can be described as shown in FIG.
That is, in the equivalent circuit shown in FIG. 7, Ls is an inductance component of the spiral pattern 70, and is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 なお、(1)式において、nは巻き数、μは透磁率で4π×10-7H/m、c1、c2、c3、c4はスパイラルパターンの形による係数である。
Figure JPOXMLDOC01-appb-M000001
In equation (1), n is the number of turns, μ is the magnetic permeability, and 4π × 10 −7 H / m, and c1, c2, c3, and c4 are coefficients depending on the shape of the spiral pattern.
 また、図7に示す等価回路において、Rsはスパイラルパターン70を形成する金属に起因する抵抗成分、Coxはシリコン基板と金属層の間に発生する寄生キャパシタンス成分、Csiはシリコン基板の静電容量成分、Rsiは基板から発生する抵抗損失成分である。 In the equivalent circuit shown in FIG. 7, Rs is a resistance component caused by the metal forming the spiral pattern 70, Cox is a parasitic capacitance component generated between the silicon substrate and the metal layer, and Csi is a capacitance component of the silicon substrate. , Rsi are resistance loss components generated from the substrate.
 また、こうしたスパイラルパターン70の寄生成分の値は以下の式(2)~(5)のようになる。 Also, the values of the parasitic components of the spiral pattern 70 are as shown in the following formulas (2) to (5).
Figure JPOXMLDOC01-appb-M000002
 ここで、wはスパイラルパターン70の幅、tはスパイラルパターン70の厚さ、lはスパイラルパターン70の長さ、δは使用される周波数からの表皮厚さ(Skin depth)、ρは金属の抵抗、εoxは酸化膜の誘電率、toxは絶縁膜の厚さ、Csub はシリコン基板のキャパシタンス、Gsub は単位面積当たりの導電率である。
Figure JPOXMLDOC01-appb-M000002
Here, w is the width of the spiral pattern 70, t is the thickness of the spiral pattern 70, l is the length of the spiral pattern 70, δ is the skin depth from the frequency used, and ρ is the resistance of the metal .Epsilon.ox is the dielectric constant of the oxide film, tox is the thickness of the insulating film, Csub is the capacitance of the silicon substrate, and Gsub is the conductivity per unit area.
 また、スパイラルパターン70の共振周波数は、等価回路から上記(1)~(5)式によって求められたインダクタンスとキャパシタンス成分によって、以下の(6)式のようになる。 The resonance frequency of the spiral pattern 70 is expressed by the following equation (6) depending on the inductance and capacitance components obtained from the equivalent circuit by the above equations (1) to (5).
Figure JPOXMLDOC01-appb-M000003
 (1)式から明らかなように、スパイラルパターン70のインダクタンスは、巻き数あるいは外周の直径Doutによって大きく変化することから、これら各パラメータを調整することによりアンテナ50の動作周波数を調整できる。
Figure JPOXMLDOC01-appb-M000003
As apparent from the equation (1), since the inductance of the spiral pattern 70 varies greatly depending on the number of turns or the outer diameter Dout, the operating frequency of the antenna 50 can be adjusted by adjusting these parameters.
 また、(2)~(5)式から明らかなように、スパイラルパターン70の巻き数と外周の直径Doutが固定され、スパイラルパターン70の幅あるいはパターンの間の間隔が変わった場合、インダクタンス成分の変化より寄生成分の変化が大きくなる。しかし、寄生キャパシタンスの値は小さいため共振周波数の変化は小さいが、寄生キャパシタンス・抵抗成分はスパイラルパターン70(換言すればアンテナ50)のインピーダンスを変化させる効果がある。 As is clear from the equations (2) to (5), when the number of turns of the spiral pattern 70 and the outer diameter Dout are fixed and the width of the spiral pattern 70 or the interval between the patterns changes, the inductance component The change of the parasitic component becomes larger than the change. However, since the value of the parasitic capacitance is small, the change in the resonance frequency is small, but the parasitic capacitance / resistance component has an effect of changing the impedance of the spiral pattern 70 (in other words, the antenna 50).
 従って、スパイラルパターン70の巻き数及び外周の直径Doutを調整することにより、スパイラルパターン70の共振周波数(換言すれば、アンテナ50の動作周波数)を設定でき、スパイラルパターン70の幅若しくは間隔を調整することで、無線送信集積回路60との間でインピーダンスを整合させることができる。 Therefore, by adjusting the number of turns of the spiral pattern 70 and the outer diameter Dout, the resonance frequency of the spiral pattern 70 (in other words, the operating frequency of the antenna 50) can be set, and the width or interval of the spiral pattern 70 is adjusted. Thus, the impedance can be matched with the wireless transmission integrated circuit 60.
 そして、例えば、シリコン基板に形成したスパイラルパターン70によって、ヒューマンモニタリング用のスマートセンサに使用される300MHz帯のアンテナ50を構成する場合、スパイラルパターン70の巻き数を11、外周の直径Doutを1.2mm、スパイラルパターン70の幅を20μm、スパイラルパターン70の間隔を20μmに設計すれば、インダクタンスは93.5nH、Coxは12.4pF、Csiは3.2pF、Rsは50.4Ω、Rsiは185kΩになって、アンテナ50の動作周波数は325MHz、入力インピーダンスは50.4Ω、と計算できる。 For example, when the 300 MHz band antenna 50 used for the smart sensor for human monitoring is configured by the spiral pattern 70 formed on the silicon substrate, the number of turns of the spiral pattern 70 is 11 and the outer diameter Dout is 1. If the design is 2 mm, the width of the spiral pattern 70 is 20 μm, and the distance between the spiral patterns 70 is 20 μm, the inductance is 93.5 nH, Cox is 12.4 pF, Csi is 3.2 pF, Rs is 50.4Ω, and Rsi is 185 kΩ. Thus, the operating frequency of the antenna 50 can be calculated as 325 MHz, and the input impedance as 50.4Ω.
 なお、この場合、回路の配線とシリコン基板の間の絶縁膜(SiO)は1.5μm、スパイラルパターン70が図に示す円形の場合の係数は、c1が1、c2が2.46、c3が0、c4が0.2である。 In this case, the coefficient when the insulating film (SiO 2 ) between the circuit wiring and the silicon substrate is 1.5 μm, and the spiral pattern 70 is circular as shown in the figure, c1 is 1, c2 is 2.46, c3 Is 0 and c4 is 0.2.
 以上説明したように、本実施形態の無線通信装置においては、デュアルパルスポジション変調装置10、オン・オフ制御発振装置30、及び、電力増幅装置40からなる無線送信集積回路60をシリコン基板に形成し、そのシリコン基板の表面にスパイラルパターン70を形成することで、アンテナ50を含む無線通信装置をシリコン基板に一体形成していることから、消費電力が少なく極めて小型の無線通信装置を実現できる。 As described above, in the wireless communication device of this embodiment, the wireless transmission integrated circuit 60 including the dual pulse position modulation device 10, the on / off control oscillation device 30, and the power amplification device 40 is formed on a silicon substrate. By forming the spiral pattern 70 on the surface of the silicon substrate, the wireless communication device including the antenna 50 is integrally formed on the silicon substrate, so that an extremely small wireless communication device with low power consumption can be realized.
 また特に、本実施形態では、スパイラルパターン70の巻き数、外周の直径Dout、スパイラルパターン70の幅、及びその間隔を調整することで、アンテナ50の動作周波数周波数及びインピーダンスを設定できることから、設計時にこれら各パラメータを決定することで、所望のアンテナ特性が得られるアンテナ50をシリコン基板上に形成することができる。 In particular, in the present embodiment, the operating frequency frequency and impedance of the antenna 50 can be set by adjusting the number of turns of the spiral pattern 70, the outer diameter Dout, the width of the spiral pattern 70, and the interval therebetween. By determining each of these parameters, the antenna 50 capable of obtaining desired antenna characteristics can be formed on the silicon substrate.
 また、このように、アンテナ50のインピーダンスは、スパイラルパターン70の幅やその間隔を調整することで、適宜設定できることから、アンテナ50を無線送信集積回路60に接続する際に、インピーダンス整合用のインダクタをワイヤボンディングによって設ける必要がなく、シリコン基板に形成した接続用パターンにて直接接続することができる。 Further, as described above, the impedance of the antenna 50 can be set as appropriate by adjusting the width of the spiral pattern 70 and the interval thereof. Therefore, when the antenna 50 is connected to the wireless transmission integrated circuit 60, the impedance matching inductor is used. Can be directly connected by a connection pattern formed on a silicon substrate.
 よって、本実施形態の無線送信装置によれば、アンテナ50を含む無線通信装置をシリコン基板に一体形成する際の工数を削減して、製造コストを低減することができる。
[実験例]
 次に、上述した第2実施形態の無線通信装置を、Cadence社製のCAD(Computer Aided Design)を利用するLSI設計環境で設計して、製作し、評価を行った。
Therefore, according to the wireless transmission device of the present embodiment, the manufacturing cost can be reduced by reducing the man-hour when the wireless communication device including the antenna 50 is integrally formed on the silicon substrate.
[Experimental example]
Next, the above-described wireless communication apparatus according to the second embodiment was designed, manufactured, and evaluated in an LSI design environment using CAD (Computer Aided Design) manufactured by Cadence.
 この評価結果について、第2実施形態の実験例として説明する。
 ここで、この無線通信装置の製作に当たっては、周知のCMOS製作工程にて、シリコン基板80(詳しくはn型Si(100))に無線送信集積回路60を形成すると同時に、スパイラルパターン70の形成領域にSiOから成る絶縁膜81を形成した。
This evaluation result will be described as an experimental example of the second embodiment.
Here, in manufacturing the wireless communication device, the wireless transmission integrated circuit 60 is formed on the silicon substrate 80 (specifically, n-type Si (100)) in the well-known CMOS manufacturing process. Then, an insulating film 81 made of SiO 2 was formed.
 そして、図8に示すように、無線送信集積回路60の形成領域に、配線のためのコンタクトホール90を形成した後、無線送信集積回路60の配線およびスパイラルパターン70の形成工程に入り、以下の手順で無線送信集積回路60の配線及びスパイラルパターン70を形成した。 Then, as shown in FIG. 8, after forming contact holes 90 for wiring in the formation region of the wireless transmission integrated circuit 60, the process of forming the wiring of the wireless transmission integrated circuit 60 and the spiral pattern 70 is entered. By the procedure, the wiring of the wireless transmission integrated circuit 60 and the spiral pattern 70 were formed.
 すなわち、まず、図9に示すように、無線送信集積回路60の配線及びスパイラルパターン70を形成するために、Alスパッタリング装置を用いてアルミニウム層(Al層)92を堆積する。 That is, as shown in FIG. 9, first, an aluminum layer (Al layer) 92 is deposited using an Al sputtering apparatus in order to form the wiring of the wireless transmission integrated circuit 60 and the spiral pattern 70.
 次に、図10に示すように、Al層92の上に、無線送信集積回路60の配線及びスパイラルパターン70を形成するためのレジスト94を形成し、RIE(Reactive Ion Etching)装置を用いてAl層92をエッチングする。 Next, as shown in FIG. 10, a resist 94 for forming the wiring and spiral pattern 70 of the wireless transmission integrated circuit 60 is formed on the Al layer 92, and Al using a RIE (Reactive Ion Etching) apparatus. Layer 92 is etched.
 そして、Al層92のエッチング後、基板表面に残ったレジスト94を除去する。
 この結果、図11に示すように、無線送信集積回路60の配線95及びスパイラルパターン70が、CMOS製作工程の配線形成工程を利用して形成されることになる。
Then, after etching the Al layer 92, the resist 94 remaining on the substrate surface is removed.
As a result, as shown in FIG. 11, the wiring 95 and the spiral pattern 70 of the wireless transmission integrated circuit 60 are formed by using the wiring forming process of the CMOS manufacturing process.
 なお、図8~図11において、符号82はp-well領域、符号83はn-MOSのチャネルストッパ、符号84はp-MOSのチャネルストッパ、符号85はn-MOSのソース・ドレイン領域、符号86はp-MOSのソース・ドレイン領域、符号87はチャネルストッパ(n+)、符号88はチャネルストッパ(p+)、符号89はPoly-Si膜、をそれぞれ表している。 8 to 11, reference numeral 82 denotes a p-well region, reference numeral 83 denotes an n-MOS channel stopper, reference numeral 84 denotes a p-MOS channel stopper, reference numeral 85 denotes an n-MOS source / drain region, reference numeral Reference numeral 86 denotes a p-MOS source / drain region, reference numeral 87 denotes a channel stopper (n +), reference numeral 88 denotes a channel stopper (p +), and reference numeral 89 denotes a poly-Si film.
 次に、上記手順でシリコン基板80に形成された無線送信集積回路60を、5Vの電源電圧にて駆動し、無線送信集積回路60各部の動作波形、及び、スパイラルパターン70からなるアンテナ50の放射特性を測定した。
(無線送信集積回路60の動作特性)
 図12は、デュアルパルスポジション変調装置10への入力信号(情報信号)Sin、鋸波発生装置12から出力される基準信号Sst、比較器14からの出力(パルス幅変調信号)S11、及び、デュアルパルスポジション変調装置10からの出力(DPPMにより生成される2つのパルス信号からなるパルス変調信号)S1の測定結果を表している。
Next, the radio transmission integrated circuit 60 formed on the silicon substrate 80 in the above procedure is driven with a power supply voltage of 5 V, and the operation waveforms of the respective parts of the radio transmission integrated circuit 60 and the radiation of the antenna 50 including the spiral pattern 70 are emitted. Characteristics were measured.
(Operating characteristics of the wireless transmission integrated circuit 60)
FIG. 12 shows an input signal (information signal) Sin to the dual pulse position modulator 10, a reference signal Sst output from the sawtooth generator 12, an output (pulse width modulation signal) S11 from the comparator 14, and a dual The measurement result of the output (pulse modulation signal consisting of two pulse signals generated by DPPM) S1 from the pulse position modulation device 10 is shown.
 そして、この測定結果から、デュアルパルスポジション変調装置10において、入力信号Sinが鋸波(基準信号)Sstより高くなるとき(換言すればパルス幅変調信号S11の立ち上がりタイミング)に生成されるパルス信号P1のパルス幅は1μsになり(図13参照)、入力信号Sinが鋸波(基準信号)Sstより低くなるとき(換言すればパルス幅変調信号S11の立ち下がりタイミング)に生成されるパルス信号P2のパルス幅は2μsになり(図14参照)、これら2つのパルス信号P1,P2のパルス幅が異なることを確認できた。 From this measurement result, in the dual pulse position modulation device 10, the pulse signal P1 generated when the input signal Sin becomes higher than the sawtooth wave (reference signal) Sst (in other words, the rising timing of the pulse width modulation signal S11). Of the pulse signal P2 generated when the input signal Sin becomes lower than the sawtooth wave (reference signal) Sst (in other words, the falling timing of the pulse width modulation signal S11). The pulse width was 2 μs (see FIG. 14), and it was confirmed that the pulse widths of these two pulse signals P1 and P2 were different.
 また、図15は、デュアルパルスポジション変調装置10から出力されるパルス変調信号S1によってオン・オフ制御発振装置30が発振動作を開始したときに、オン・オフ制御発振装置30から出力される発振信号(搬送波)S2を測定した測定結果を表している。 FIG. 15 shows an oscillation signal output from the on / off control oscillation device 30 when the on / off control oscillation device 30 starts an oscillation operation by the pulse modulation signal S1 output from the dual pulse position modulation device 10. The measurement result of measuring (carrier wave) S2 is shown.
 そして、このようにオン・オフ制御発振装置30の動作状態が切り換えられることによって変化する無線送信集積回路60での消費電力を測定したところ、オン・オフ制御発振装置30が発振停止状態であるとき、オン・オフ制御発振装置30と電力増幅装置40とで消費される消費電力は2.45mWであった(表1参照)。 Then, when the power consumption in the wireless transmission integrated circuit 60 that changes as the operating state of the on / off control oscillation device 30 is switched as described above is measured, the on / off control oscillation device 30 is in the oscillation stop state. The power consumption consumed by the on / off control oscillation device 30 and the power amplification device 40 was 2.45 mW (see Table 1).
 また、オン・オフ制御発振装置30が発振状態であるとき、オン・オフ制御発振装置30と電力増幅装置40とで消費される消費電力は10.45mWであり、デュアルパルスポジション変調装置10の消費電力は4mWであった(表1参照)。 When the on / off control oscillator 30 is in the oscillation state, the power consumption consumed by the on / off control oscillator 30 and the power amplifier 40 is 10.45 mW. The power was 4 mW (see Table 1).
Figure JPOXMLDOC01-appb-T000004
 また、図23に示すように、デュアルパルスポジション変調装置10とオン・オフ制御発振装置30とで消費される消費電力の平均は、7.0mWであり、入力信号が0.8Vから2.5Vに変化しても略一定であった。
Figure JPOXMLDOC01-appb-T000004
Further, as shown in FIG. 23, the average power consumption consumed by the dual pulse position modulation device 10 and the on / off control oscillation device 30 is 7.0 mW, and the input signal is 0.8V to 2.5V. It was almost constant even when changed.
 これに対し、デュアルパルスポジション変調装置10とオン・オフ制御できない従来の発振装置とで構成される、パルス幅変調方式の変調装置で消費される消費電力は、入力信号に比例して変化し、入力信号が0.8Vから2.5Vに変化した際、最大で14.5mW以上であった。 On the other hand, the power consumption consumed by the pulse width modulation type modulation device composed of the dual pulse position modulation device 10 and a conventional oscillation device that cannot be controlled on / off changes in proportion to the input signal, When the input signal changed from 0.8 V to 2.5 V, the maximum was 14.5 mW or more.
 この結果、本実施形態の無線送信装置によれば、デュアルパルスポジション変調装置10と従来の発振装置とを組み合わせた場合に比べ、消費電力を、最大で50%以上低減できることが確認できた。 As a result, according to the wireless transmission device of the present embodiment, it has been confirmed that the power consumption can be reduced by 50% or more in comparison with the case where the dual pulse position modulation device 10 and the conventional oscillation device are combined.
 一方、入力信号からパルス変調信号を生成する変調装置として、鋸波発生装置12と比較器14とで構成されるパルス幅変調方式(PWM)のものを利用し、この変調装置とオン・オフ制御発振装置30とを用いて無線送信集積回路を構成した場合、その消費電力は8.4~14.5mWの範囲内で変化し、本実施形態の無線送信装置に比べ消費電力が大きくなることがわかった。 On the other hand, as a modulation device for generating a pulse modulation signal from an input signal, a pulse width modulation (PWM) device composed of a sawtooth wave generator 12 and a comparator 14 is used. When the wireless transmission integrated circuit is configured using the oscillation device 30, the power consumption changes within a range of 8.4 to 14.5 mW, and the power consumption may be larger than that of the wireless transmission device of the present embodiment. all right.
 なお、このように消費電力が変化するのは、入力信号(情報信号)によってパルス変調信号のデューティ比が変化するためであるが、この測定結果から、パルス間隔変調方式やパルス周波数変調方式でも同様に消費電力が変化するのを予想できる。 Note that the power consumption changes in this way because the duty ratio of the pulse modulation signal changes depending on the input signal (information signal). From this measurement result, the same applies to the pulse interval modulation method and the pulse frequency modulation method. It can be expected that the power consumption will change.
 これに対し、本実施形態の無線送信装置では、デュアルパルスポジション変調方式を採用することで、一定の時間フレーム毎に短い2つのパルス信号を発生させ、そのパルス信号によってオン・オフ制御発振装置30を駆動することから、消費電力を略一定にすることができる。
(アンテナ50の特性)
 次に、上記のようにスパイラルパターン70にて構成した本実施形態のアンテナ50は、図16に示すように動作周波数が300MHz、リターンロスが-24dBであった。また、図17に示すように、バンド幅は、VSWR(Voltage Standing Wave Ratio)<2の条件下で、270~360MHzであった。
On the other hand, in the wireless transmission device of the present embodiment, by adopting the dual pulse position modulation method, two short pulse signals are generated for every fixed time frame, and the on / off control oscillation device 30 is generated by the pulse signals. Since the power is driven, the power consumption can be made substantially constant.
(Characteristics of antenna 50)
Next, the antenna 50 of this embodiment configured with the spiral pattern 70 as described above had an operating frequency of 300 MHz and a return loss of −24 dB as shown in FIG. Further, as shown in FIG. 17, the bandwidth was 270 to 360 MHz under the condition of VSWR (Voltage Standing Wave Ratio) <2.
 また、入力インピーダンスは、図18に示すように51Ωで、放射パターンは、図19、図20に示すようになり、略無指向性を有することがわかった。なお、最大ゲインは、-40dBiである。 Further, the input impedance is 51Ω as shown in FIG. 18, and the radiation pattern is as shown in FIGS. 19 and 20, and it was found that the input impedance is substantially omnidirectional. The maximum gain is −40 dBi.
 ここで、アンテナ特性の計算値と実施形態の測定値との間の誤差は、スパイラルパターン70のインダクタンス及び寄生成分を求める式が持っている誤差と、製作工程で生じる誤差とによって発生するものである。 Here, the error between the calculated value of the antenna characteristic and the measured value of the embodiment is caused by the error of the expression for obtaining the inductance and parasitic component of the spiral pattern 70 and the error generated in the manufacturing process. is there.
 そして、本実施形態では、アンテナ50を、スパイラルパターン70にて形成して、その寄生成分を用いて動作周波数の調整およびインピーダンスマッチングを行うため、特許文献2に記載のように波長に当たる長さのラインパターンを用いたアンテナ、或いは、上述した技術文献に記載のようにオンチップアンテナとインピーダンスマッチング用インダクタを用いたアンテナに比べて、小型化が可能である。 In this embodiment, since the antenna 50 is formed by the spiral pattern 70 and the operating frequency is adjusted and impedance matching is performed using the parasitic component, the length corresponding to the wavelength as described in Patent Document 2 is used. As compared with an antenna using a line pattern or an antenna using an on-chip antenna and an impedance matching inductor as described in the technical literature described above, the size can be reduced.
 また、アンテナ50は、無線送信集積回路60の製作工程の際に、配線形成工程を利用して製作できることから、アンテナ50専用の製作工程を不要にすることができる。
 次に、上記のように作製した無線送信装置からの送信信号を確認するため、標準ダイポールアンテナ510とローノイズアンプ(LNA)520とオシロスコープ530とで構成された図21に示す受信システムを利用し、無線送信装置からの送信信号を測定した。尚、図21において、参照符号540は、スマートセンサを示し、参照符号550は、電源供給装置を示す。
In addition, since the antenna 50 can be manufactured by using a wiring formation process during the manufacturing process of the wireless transmission integrated circuit 60, a manufacturing process dedicated to the antenna 50 can be eliminated.
Next, in order to confirm a transmission signal from the wireless transmission device manufactured as described above, a reception system shown in FIG. 21 including a standard dipole antenna 510, a low noise amplifier (LNA) 520, and an oscilloscope 530 is used. The transmission signal from the wireless transmission device was measured. In FIG. 21, reference numeral 540 indicates a smart sensor, and reference numeral 550 indicates a power supply device.
 図22は、その測定結果を表しているが、この測定結果から、本実施形態の無線送信装置によれば、デュアルパルスポジション変調方式で生成したパルス変調信号を、スパイラルパターン70にて形成したアンテナ50を使って正常に送信でき、受信側では、受信信号から、一定の時間フレーム毎に生成される2つのパルス信号を識別して、そのパルス間隔から入力信号の信号レベルを検知できることがわかった。 FIG. 22 shows the measurement result. From this measurement result, according to the wireless transmission device of this embodiment, an antenna in which the pulse modulation signal generated by the dual pulse position modulation method is formed by the spiral pattern 70 is shown. 50 can be transmitted normally, and it has been found that the receiving side can identify two pulse signals generated every certain time frame from the received signal and detect the signal level of the input signal from the pulse interval. .
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内にて種々の態様をとることができる。
 例えば、上記実施形態では、シリコン基板上に形成するスパイラルパターン70は、円形であるものとして説明したが、例えば、四角形や六角形等、多角形であってもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various aspect can be taken in the range which does not deviate from the summary of this invention.
For example, in the above-described embodiment, the spiral pattern 70 formed on the silicon substrate has been described as having a circular shape. However, the spiral pattern 70 may have a polygonal shape such as a square or a hexagon.
 また、上記実施形態では、無線送信装置は、スマートセンサに組み込み、使用されるものとして説明したが、本発明の無線送信装置は、パルス変調信号を無線送信するものであれば、どのようなものでも使用することができる。 In the above embodiment, the wireless transmission device is described as being incorporated and used in a smart sensor. However, the wireless transmission device of the present invention may be any device that wirelessly transmits a pulse modulation signal. But it can be used.
 そして、本発明の無線送信装置によれば、従来のものに比べて、低消費電力化することができ、また、第2実施形態に記載のように、半導体集積回路としてIC化(換言すれば小型化)することもできるので、低消費電力化或いは小型化が必要な装置に適用すれば、その効果を有効に発揮することができる。 In addition, according to the wireless transmission device of the present invention, it is possible to reduce power consumption compared to the conventional one, and as described in the second embodiment, an IC is formed as a semiconductor integrated circuit (in other words, Therefore, when applied to an apparatus that requires low power consumption or miniaturization, the effect can be effectively exhibited.
 また、上述したように、本発明(特に第2実施形態)の無線送信装置によれば、低消費電力化及び小型化を図ることができるので、被験者の生体情報を検出する生体情報検知装置に適用すると、その効果を有効に発揮することができる。 Further, as described above, according to the wireless transmission device of the present invention (particularly, the second embodiment), it is possible to reduce the power consumption and the size of the device. When applied, the effect can be exhibited effectively.
 図24は、この場合の生体情報検知装置100と、生体情報検知装置100からの送信電波を受信し、生体情報を復元する受信装置200及び情報端末300とからなる、生体情報検知システムの構成を表している。 FIG. 24 shows a configuration of a biological information detection system including the biological information detection device 100 in this case, the reception device 200 that receives a transmission radio wave from the biological information detection device 100, and restores the biological information, and the information terminal 300. Represents.
 図24に示すように、生体情報検知装置100は、第2実施形態に記載のものと同様に構成された無線送信装置120と、生体情報として体温を検出するための温度センサ100とを、一つの電子部品として一体化することにより構成されている。 As shown in FIG. 24, the biological information detection device 100 includes a wireless transmission device 120 configured in the same manner as that described in the second embodiment, and a temperature sensor 100 for detecting body temperature as biological information. It is configured by integrating as one electronic component.
 一方、受信装置200には、生体情報検知装置100からの送信電波を受信するアンテナ210と、アンテナ210からの受信信号の内、生体情報検知装置100からの送信信号(搬送波)の周波数に対応した信号成分を選択的に通過させるバンドパスフィルタ(BPF)220とが設けられている。 On the other hand, the receiving device 200 corresponds to the frequency of the transmission signal (carrier wave) from the biological information detection device 100 among the antenna 210 that receives the transmission radio wave from the biological information detection device 100 and the reception signal from the antenna 210. A band-pass filter (BPF) 220 that selectively passes signal components is provided.
 そして、このBPF220を通過した受信信号は、ローノイズアンプ230にて増幅された後、検波器240にて包絡線検波され、比較器250に入力される。
 比較器250は、検波器240から入力される受信信号(検波信号)と予め設定された閾値とを比較することで、受信信号が閾値よりも大きいときにハイレベルとなるパルス信号を生成する。なお、このパルス信号は、生体情報検知装置内のデュアルパルスポジション変調装置(DPPM変調装置)10にて生成されたパルス信号に対応する。
The received signal that has passed through the BPF 220 is amplified by the low noise amplifier 230, envelope-detected by the detector 240, and input to the comparator 250.
The comparator 250 compares the received signal (detected signal) input from the detector 240 with a preset threshold value, thereby generating a pulse signal that becomes a high level when the received signal is larger than the threshold value. This pulse signal corresponds to the pulse signal generated by the dual pulse position modulation device (DPPM modulation device) 10 in the biological information detection device.
 そして、そのパルス信号は、パルス信号のパルス幅から、ペアとなる前後2つのパルス信号を識別して、そのパルス間隔(時間幅)を検出するよう構成された、デュアルパルスポジション復調装置(DPPM復調装置)260に入力される。 The pulse signal is a dual pulse position demodulator (DPPM demodulator) configured to identify the two pulse signals before and after the pair from the pulse width of the pulse signal and detect the pulse interval (time width). Device) 260.
 また、DPPM復調装置260によるパルス間隔(時間幅)の検出結果は、所定のインターフェース270を介して、情報端末300に出力される。
 一方、情報端末300は、パーソナルコンピュータ、若しくは、生体情報処理用の専用コンピュータにて構成されており、インターフェース270を介して受信装置200から入力されるパルス間隔(時間幅)に基づき、生体情報(換言すれば、温度センサ110により検出された温度情報)を復元し、その復元結果を記録する。
In addition, the detection result of the pulse interval (time width) by the DPPM demodulator 260 is output to the information terminal 300 via the predetermined interface 270.
On the other hand, the information terminal 300 is configured by a personal computer or a dedicated computer for biological information processing, and based on the pulse interval (time width) input from the receiving device 200 via the interface 270, the biological information ( In other words, the temperature information detected by the temperature sensor 110 is restored, and the restoration result is recorded.
 このように、本発明の無線送信装置は、生体情報検知装置に適用すれば、被験者の所定の部位の生体情報を計測して、受信装置200に自動で無線送信することができるようになり、被験者の状態を良好に監視することができる。 Thus, when the wireless transmission device of the present invention is applied to a biological information detection device, it can measure biological information of a predetermined part of a subject and automatically wirelessly transmit it to the reception device 200. The condition of the subject can be monitored well.
 そして、本発明の無線送信装置は、従来のものに比べて小型化することができるので、生体情報検知装置100の小型化・長寿命化を図り、被験者に加わる負担を軽減することができる。 Since the wireless transmission device of the present invention can be reduced in size as compared with the conventional one, the biological information detection device 100 can be reduced in size and extended in life, and the burden on the subject can be reduced.
 また次に、上記実施形態では、本発明のパルス変調器を、デュアルパルスポジション変調装置として、無線送信装置に設ける場合について説明したが、本発明のパルス変調器は、入力信号をデュアルパルスポジション変調し、その変調信号を送信するものであれば、上記実施形態と同様に適用することができる。 Next, in the above embodiment, the case where the pulse modulator of the present invention is provided in a wireless transmission device as a dual pulse position modulation device has been described. However, the pulse modulator of the present invention uses dual pulse position modulation to modulate an input signal. If the modulated signal is transmitted, the present invention can be applied similarly to the above embodiment.
 従って、本発明のパルス変調器は、送信信号を、伝送線を介して送信する、有線方式の送信装置であっても、上記実施形態と同様に適用して、同様の効果を得ることができる。 Therefore, the pulse modulator of the present invention can be applied in the same manner as in the above embodiment to obtain the same effect even in a wired transmission device that transmits a transmission signal via a transmission line. .

Claims (9)

  1.  一定の時間フレーム毎に信号レベルが鋸波状に変化する基準信号を発生する基準信号発生手段と、
     入力信号と前記基準信号発生手段が発生した基準信号とを比較することで、前記入力信号の信号レベルに対応したパルス幅を有するパルス幅変調信号を生成する比較手段と、
     該比較手段にて生成されたパルス幅変調信号の立ち上がりタイミング及び立ち下がりタイミングに、それぞれ、前記パルス信号を発生するパルス信号発生手段と、
     を備えたことを特徴とする請求項1に記載のパルス変調器。
    A reference signal generating means for generating a reference signal in which the signal level changes in a sawtooth shape every fixed time frame;
    Comparing means for generating a pulse width modulation signal having a pulse width corresponding to the signal level of the input signal by comparing the input signal and the reference signal generated by the reference signal generating means;
    Pulse signal generating means for generating the pulse signal at the rising timing and the falling timing of the pulse width modulation signal generated by the comparing means;
    The pulse modulator according to claim 1, further comprising:
  2.  請求項1に記載のパルス変調器によって構成され、前記一定の時間フレーム毎に、入力信号の信号レベルに対応した間隔を有する2つのパルス信号を生成するパルス変調手段と、
     制御信号により、搬送波を生成する発振状態又は発振停止状態に切換可能な発振手段と、
     を備え、前記パルス変調手段にて生成されたパルス信号を前記制御信号として前記発振手段に入力することで、前記発振手段の発振動作を前記パルス信号の発生時に制限するよう構成されたことを特徴とする送信装置。
    A pulse modulator configured by the pulse modulator according to claim 1 to generate two pulse signals having an interval corresponding to a signal level of an input signal for each predetermined time frame;
    Oscillating means capable of switching to an oscillation state for generating a carrier wave or an oscillation stop state by a control signal;
    And the pulse signal generated by the pulse modulation means is input to the oscillating means as the control signal, so that the oscillation operation of the oscillating means is limited when the pulse signal is generated. A transmitting device.
  3.  請求項1に記載のパルス変調器を含む送信装置が、無線送信用の集積回路として形成された半導体基板と、
     前記半導体基板の表面に形成され、前記送信装置にて生成された送信信号を放射するためのアンテナを構成する金属パターンと、
     を備えたことを特徴とする無線送信装置。
    A transmission device comprising the pulse modulator according to claim 1, a semiconductor substrate formed as an integrated circuit for wireless transmission;
    A metal pattern formed on the surface of the semiconductor substrate and constituting an antenna for radiating a transmission signal generated by the transmitter; and
    A wireless transmission device comprising:
  4.  請求項2に記載の送信装置が、無線送信用の集積回路として形成された半導体基板と、
     前記半導体基板の表面に形成され、前記送信装置にて生成された搬送波を放射するためのアンテナを構成する金属パターンと、
     を備えたことを特徴とする無線送信装置。
    A transmission device according to claim 2, wherein a semiconductor substrate formed as an integrated circuit for wireless transmission;
    A metal pattern formed on the surface of the semiconductor substrate and constituting an antenna for radiating a carrier wave generated by the transmitter;
    A wireless transmission device comprising:
  5.  前記半導体基板は、シリコン半導体基板であることを特徴とする請求項3又は請求項4に記載の無線送信装置。 The wireless transmission device according to claim 3 or 4, wherein the semiconductor substrate is a silicon semiconductor substrate.
  6.  前記金属パターンは、スパイラル型であることを特徴とする請求項3~請求項5の何れか1項に記載の無線送信装置。 The wireless transmission device according to any one of claims 3 to 5, wherein the metal pattern is a spiral type.
  7.  前記金属パターンは、スパイラル型であり、前記半導体基板上の配線パターンを介して前記無線送信用の集積回路と直接接続されており、
     前記スパイラル型金属パターンと前記配線パターンとの接続部から見た前記スパイラル金属パターンのインピーダンスは、当該スパイラル金属パターンの幅及び間隔を調整することにより前記無線送信用の集積回路とインピーダンス整合されていることを特徴とする請求項3~請求項5の何れか1項に記載の無線送信装置。
    The metal pattern is a spiral type and is directly connected to the wireless transmission integrated circuit via a wiring pattern on the semiconductor substrate,
    The impedance of the spiral metal pattern viewed from the connection portion between the spiral metal pattern and the wiring pattern is impedance-matched with the integrated circuit for wireless transmission by adjusting the width and interval of the spiral metal pattern. 6. The wireless transmission device according to claim 3, wherein the wireless transmission device is a wireless transmission device.
  8.  前記無線送信装置は、センサ素子を備えたスマートセンサに、前記センサ素子からの検出信号を無線送信する無線送信装置として設けられることを特徴とする請求項3~請求項7の何れか1項に記載の無線送信装置。 The wireless transmission device according to any one of claims 3 to 7, wherein the wireless transmission device is provided as a wireless transmission device that wirelessly transmits a detection signal from the sensor element to a smart sensor including the sensor element. The wireless transmission device described.
  9.  生体情報を検出するセンサ素子と、
     請求項3~請求項7の何れか1項に記載の無線送信装置と、
     を備え、前記無線送信装置が、前記センサ素子からの検出信号を無線送信することを特徴とする生体情報検知装置。
    A sensor element for detecting biological information;
    A wireless transmission device according to any one of claims 3 to 7,
    And the wireless transmission device wirelessly transmits a detection signal from the sensor element.
PCT/JP2012/066389 2011-06-27 2012-06-27 Pulse modulator, transmission device, wireless transmission device, and biometric information detection device WO2013002259A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011142041A JP2014168108A (en) 2011-06-27 2011-06-27 Wireless transmitter
JP2011-142041 2011-06-27

Publications (1)

Publication Number Publication Date
WO2013002259A1 true WO2013002259A1 (en) 2013-01-03

Family

ID=47424150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066389 WO2013002259A1 (en) 2011-06-27 2012-06-27 Pulse modulator, transmission device, wireless transmission device, and biometric information detection device

Country Status (2)

Country Link
JP (1) JP2014168108A (en)
WO (1) WO2013002259A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736989A1 (en) * 2019-05-08 2020-11-11 BAE SYSTEMS plc System and method for encoding and decoding communication signals
US10944538B2 (en) 2019-05-08 2021-03-09 Bae Systems Plc System and method for encoding and decoding communication signals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089069A4 (en) * 2020-02-28 2023-07-19 Osaka Gas Chemicals Co., Ltd. Resin composiiton and fluidity improvement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181408A (en) * 1992-10-13 1994-06-28 Japan Radio Co Ltd Spiral antenna and its using and handling method
JP2003521848A (en) * 1999-06-29 2003-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Spiral antenna
JP2009290173A (en) * 2008-06-02 2009-12-10 Seiko Epson Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181408A (en) * 1992-10-13 1994-06-28 Japan Radio Co Ltd Spiral antenna and its using and handling method
JP2003521848A (en) * 1999-06-29 2003-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Spiral antenna
JP2009290173A (en) * 2008-06-02 2009-12-10 Seiko Epson Corp Semiconductor device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BON JU GU ET AL.: "RF transmitter using the dual- pulse position modulation method for low-power smart micro-sensing chip", IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, vol. 7, no. 3, 6 April 2012 (2012-04-06), pages 337 - 341 *
BON JU GU ET AL.: "Wireless smart sensor with small spiral antenna on Si-substrate", MICROELECTRONICS JOURNAL, vol. 42, no. 9, 20 July 2011 (2011-07-20), pages 1066 - 1073 *
BON-JU GU ET AL.: "Fabrication of hybrid wireless smart temperature sensor", SAS 2011 IEEE SENSORS APPLICATIONS SYMPOSIUM, 24 February 2011 (2011-02-24), pages 214 - 216 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736989A1 (en) * 2019-05-08 2020-11-11 BAE SYSTEMS plc System and method for encoding and decoding communication signals
US10944538B2 (en) 2019-05-08 2021-03-09 Bae Systems Plc System and method for encoding and decoding communication signals

Also Published As

Publication number Publication date
JP2014168108A (en) 2014-09-11

Similar Documents

Publication Publication Date Title
US10419255B2 (en) Temperature-stable FBAR transmitter
US9722667B2 (en) Proximity sensing using EHF signals
US8879407B2 (en) Two-way ranging messaging scheme
JP6270825B2 (en) Intermodulation sensor platform based on mechanical resonator
EP2915268B1 (en) Standing wave ratio meter for integrated antenna tuner
US20110292819A1 (en) Two-way ranging messaging scheme
EP2783493B1 (en) Automatic fsk tuning circuit for a hearing aid and method
US20210278901A1 (en) Wireless power and data transmission system for wearable and implantable devices
TW201531950A (en) Non-contact communication device and antenna resonance frequency control method
Simons et al. RF telemetry system for an implantable bio-MEMS sensor
WO2005086069A3 (en) Method for recognizing identification media
CN102204134A (en) Wideband communication for body-coupled communication systems
EP3592209B1 (en) Measuring a property in a body
WO2013002259A1 (en) Pulse modulator, transmission device, wireless transmission device, and biometric information detection device
JP2003344462A (en) Rf power sensor for measuring rf signal power using capacitance
US20180164433A1 (en) Ultrasonic sensor
JP2011028424A (en) Rfid tag with sensor function, and rfid system using the same
US8909145B2 (en) Wireless telemetry auto for torque measurement system
JP5641951B2 (en) Wireless communication system, wireless communication method, wireless device, and data transmitter
Suster et al. A wireless strain sensing microsystem with external RF power source and two-channel data telemetry capability
WO2003025598A3 (en) Intergrated circuit having a voltage sensor
JP2005115919A (en) Radio temperature sensor
JP4178637B2 (en) Ultrasonic sensor transmission / reception circuit
Thai et al. A novel front-end radio frequency pressure transducer based on a dual-band resonator for wireless sensing
WO2002060215A2 (en) Wireless battery-less microphone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP