WO2013002174A1 - Illuminating device, display device and television receiver - Google Patents

Illuminating device, display device and television receiver Download PDF

Info

Publication number
WO2013002174A1
WO2013002174A1 PCT/JP2012/066139 JP2012066139W WO2013002174A1 WO 2013002174 A1 WO2013002174 A1 WO 2013002174A1 JP 2012066139 W JP2012066139 W JP 2012066139W WO 2013002174 A1 WO2013002174 A1 WO 2013002174A1
Authority
WO
WIPO (PCT)
Prior art keywords
chassis
light
guide plate
light guide
reflective coating
Prior art date
Application number
PCT/JP2012/066139
Other languages
French (fr)
Japanese (ja)
Inventor
耕作 飯田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013002174A1 publication Critical patent/WO2013002174A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C2059/027Grinding; Polishing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0085Means for removing heat created by the light source from the package
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133314Back frames
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/03Function characteristic scattering

Definitions

  • the present invention relates to a lighting device, a display device, and a television receiver.
  • liquid crystal panels have been widely used as display units for televisions, mobile phones, portable information terminals and the like. Since the liquid crystal panel cannot emit light by itself, the light of an illumination device (so-called backlight device) is used to display an image.
  • This illuminating device is arranged on the back side of the liquid crystal panel, and is configured to irradiate light spreading in a plane toward the back side of the liquid crystal panel.
  • the illuminating device one having a light guide plate and an LED (Light Emitting Diode) light source arranged so as to face the end face of the light guide plate is known.
  • a plurality of LED light sources are mounted in a state of being arranged on a strip-like (longitudinal) light source substrate.
  • the light source substrate is arranged along the end surface of the light guide plate such that each LED light source faces the end surface of the light guide plate at a predetermined interval.
  • the light guide plate and the LED light source are accommodated in a box-shaped chassis (accommodating member).
  • This type of lighting device is generally known as a side light type (or edge light type), and the end surface of the light guide plate is a light incident surface on which light emitted from an LED light source is incident.
  • the plate surface on the front side of the light guide plate is a light emitting surface that emits light toward the liquid crystal panel.
  • the plate surface on the back side of the light guide plate is covered with a reflective sheet laid on the bottom plate of the chassis.
  • the reflection sheet is a white plastic sheet or the like. Therefore, the light incident from the light incident surface is reflected by the reflection sheet on the back side of the light guide plate, rises, and is emitted from the light emission surface.
  • the reflection sheet since the reflection sheet is thin and easily bent, when the reflection sheet is mounted in the chassis, the reflection sheet may be bent to form creases or wrinkles in the reflection sheet. Further, the reflective sheet may expand and contract under the influence of temperature, humidity, etc., and wrinkles may occur. Thus, when wrinkles etc. were formed in the said reflective sheet, the reflective efficiency of the said reflective sheet fell and it was a problem.
  • Patent Document 1 discloses a technique for forming a reflective coating directly on the bottom plate of the chassis instead of using the reflective sheet.
  • the reflective coating is formed by applying a paint containing a resin and a titanium oxide pigment on a flat aluminum plate.
  • Patent Document 1 shows that the reflective coating film has a high diffuse reflectance.
  • An object of the present invention is to provide an illuminating device in which a reflective coating film having excellent diffuse reflectivity is formed on a chassis, a display device including the illuminating device, and a television receiver including the display device.
  • the illumination device is a chassis for assembling a light source and the light source, wherein a concave / convex pattern is formed on a surface of the chassis on a side where light from the light source is emitted, and the concave / convex pattern
  • a chassis comprising a reflective coating covering the substrate.
  • a light source may be assembled to the chassis so as to face the end face of the light guide plate.
  • the lighting device may include an interposition portion interposed between the chassis and the light guide plate so that a plate surface on the back side of the light guide plate does not come into contact with the reflective coating film.
  • the interposition part may be fixed to the chassis so as to come into contact with a peripheral part on a plate surface on the back side of the light guide plate.
  • the interposition part may be made of a heat dissipation material.
  • the chassis may be made of a metal material.
  • the uneven pattern may be formed by processing an uneven surface of the chassis.
  • the reflective coating film may have a concavo-convex shape along the concavo-convex pattern.
  • the display device includes the illumination device and a display panel that performs display using light from the illumination device.
  • the display panel may be a liquid crystal panel in which liquid crystal is sealed between a pair of substrates.
  • a television receiver according to the present invention includes the display device.
  • the illuminating device by which the reflective coating film excellent in diffuse reflectivity is formed in the chassis, the display apparatus provided with the said illuminating device, and the television receiver provided with the said display apparatus can be provided.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
  • Explanatory drawing which represented typically the process of forming an uneven pattern on the surface of a substrate by blasting
  • Enlarged cross-sectional view schematically showing an uneven pattern An enlarged cross-sectional view schematically showing a reflective coating film formed on an uneven pattern
  • FIG. The top view of the chassis with which the illuminating device which concerns on Embodiment 2 is provided.
  • FIG. Enlarged sectional view schematically showing a modification of the uneven pattern and the reflective coating
  • Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 6.
  • the lighting device 12, the liquid crystal display device 10 including the lighting device 12, and the television receiver TV including the liquid crystal display device 10 are illustrated.
  • an X axis, a Y axis, and a Z axis are shown.
  • the upper side shown in FIGS. 2 and 3 is the front side, and the lower side is the back side.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of the television receiver TV according to the first embodiment.
  • the television receiver TV of the present embodiment mainly includes a liquid crystal display device (display device) 10, front and back cabinets Ca and Cb that are stored so as to sandwich the liquid crystal display device 10, and a power source P. And a tuner T and a stand S.
  • the liquid crystal display device 10 is supported by the stand S so that its display surface is along the vertical direction (Y-axis direction).
  • FIG. 2 is an exploded perspective view showing a schematic configuration of the liquid crystal display device 10.
  • the liquid crystal display device 10 has a horizontally long rectangular shape when viewed from the front side, and includes a liquid crystal panel (display panel) 11 and a back surface 11 b side of the liquid crystal panel 11. And a frame-shaped bezel 13 that covers the front side (display surface 11a side) of the liquid crystal panel 11. These are integrally held by attaching the bezel 13 or the like to the lighting device 12.
  • the bezel 13 is made of a metal material or the like.
  • the liquid crystal panel 11 has a horizontally long rectangular shape when viewed from the front side.
  • the liquid crystal panel 11 mainly includes a pair of transparent glass substrates facing each other and a liquid crystal layer sealed between these substrates.
  • one glass substrate disposed on the back surface 11b side (back side) is a so-called thin film transistor (hereinafter, TFT) array substrate, and the other glass substrate disposed on the display surface 11a side (front side).
  • TFT thin film transistor
  • CF color filter
  • the TFT array substrate is mainly composed of a plurality of TFTs as switching elements and a plurality of transparent pixel electrodes connected to the drain electrodes of each TFT in a matrix (matrix) on a transparent glass plate. It consists of what is provided. Individual TFTs and pixel electrodes are provided for each pixel, and are partitioned by a plurality of gate wirings and a plurality of source wirings provided on the glass plate so as to cross each other. . Note that the gate electrode in each TFT is connected to the gate wiring, and the source electrodes thereof are connected to the source wiring.
  • the CF substrate is mainly formed on a transparent glass plate so that the CF composed of each color such as red (R), green (G), and blue (B) corresponds to each pixel of the TFT array substrate. It consists of what was provided in matrix form. Each CF is partitioned by a light-shielding black matrix (BM) provided in a lattice pattern on the glass plate. A transparent counter electrode or the like facing the pixel electrode of the TFT array substrate is provided on the CF and the BM.
  • BM light-shielding black matrix
  • the liquid crystal panel 11 is configured to supply image data and various control signals necessary for displaying an image from the drive circuit substrate to the above-described source wiring, gate wiring, counter electrode, and the like. Drives in a matrix system.
  • the liquid crystal panel 11 is provided with polarizing plates on the display surface 11a side and the back surface 11b side so as to sandwich the pair of glass substrates.
  • the illuminating device 12 is a so-called edge light type (side light type), and mainly includes a chassis (housing member) 14, an optical sheet 15, an LED light source (light source) 16, an LED substrate (light source substrate) 17, A light guide plate 19, a reflective coating film 20, and a frame 21 are provided.
  • the chassis 14 is formed of a shallow box having an upper opening, and is formed by pressing a plate material made of a metal material such as an aluminum material.
  • the chassis 14 has a bottom plate 14a that is horizontally long when viewed from the front side, a pair of walls 14c and 14d that are erected on the edge of the bottom side of the bottom plate 14a, and the bottom plate 14a. And a pair of walls 14e and 14f provided upright at the edge of the long side.
  • An uneven pattern 40 is formed on the bottom plate 14 a of the chassis 14.
  • the uneven pattern 40 is provided directly on the surface of the bottom plate 14a.
  • the concavo-convex pattern 40 is formed on the surface of the chassis 14 on the side where the light from the LED light source 16 is emitted as planar light through the light guide plate 19.
  • the concavo-convex pattern 40 is formed by known concavo-convex processing such as blasting, pressing, embossing, and cutting.
  • FIG. 4 is an explanatory view schematically showing a process of forming an uneven pattern on the surface of the substrate 114a by blasting (sand blasting).
  • FIG. 4 shows a substrate 114a formed of a bottom plate before the uneven pattern is formed.
  • the substrate 114a is made of aluminum, and its surface is flat.
  • a nozzle 50 for injecting the fine powdery injection material 51 toward the plate surface 214a of the substrate 114a is disposed.
  • the nozzle 50 is moved along the plate surface of the substrate 114a, and the spray material is sprayed from the nozzle 50 toward the plate surface 214a of the substrate 114a, whereby the plate surface 214a of the substrate 114a is sprayed by the spray material. It is cut into a pattern. Then, the concave / convex pattern 40 is formed on the plate surface 214a.
  • FIG. 5 is an enlarged cross-sectional view schematically showing the concavo-convex pattern 40.
  • the uneven pattern 40 is formed on the plate surface of the substrate 114a (bottom plate 14a).
  • the range of the uneven pattern 40 formed on the bottom plate 14a is set to be approximately the same as the size of the plate surface 19b on the back side of the light guide plate 19 described later.
  • the uneven pattern 40 is uniformly formed within the plate surface of the bottom plate 14a.
  • the reflective coating film 20 is formed on the plate surface of the bottom plate 14 a so as to cover the uneven pattern 40.
  • the reflective coating film 20 is obtained by applying a coating material obtained by dispersing a pigment such as titanium oxide in a resin solution containing a synthetic resin such as a polyester resin, an acrylic resin, a urethane resin, or an epoxy resin to the uneven pattern 40. Become. That is, the reflective coating film 20 itself is prepared from a known reflective paint.
  • FIG. 6 is an enlarged cross-sectional view schematically showing the reflective coating film 20 formed on the uneven pattern 40.
  • the reflective coating film 20 has a shape along the concavo-convex pattern 40 formed on the plate surface of the bottom plate 14 a. That is, the uneven pattern 40 is also formed on the surface of the reflective coating film 20. That is, the thickness of the reflective coating film 20 is adjusted as appropriate so that an uneven pattern is formed on the surface of the reflective coating film 20.
  • corrugated pattern 40 is improved.
  • the reflective coating film 20 of this embodiment is exhibiting white.
  • the LED light source (light source) 16 is composed of a plurality of LED chips as light emitting elements sealed in a housing with a resin material or the like (so-called LED package), and is configured to emit white light.
  • the LED light source 16 includes three types of LED chips having different main emission wavelengths. Specifically, each LED chip has red (R), green (G), and blue (B). It is configured to emit monochromatic light.
  • the LED light source 16 is not limited to such a configuration, and may have another configuration. Other configurations of the LED light source 16 include, for example, a built-in LED chip that emits blue (B) in a single color, a phosphor having an emission peak in the red (R) region, and an emission peak in the green (G) region.
  • the LED chip may be covered with a resin (for example, a silicon-based resin) mixed with a phosphor having the above. Further, as another configuration, a resin (for example, a silicon-based resin) in which an LED chip that emits blue (B) in a single color is incorporated and a phosphor that emits yellow light such as YAG (yttrium, aluminum, garnet) phosphor is mixed. ), The LED chip may be covered.
  • a resin for example, a silicon-based resin
  • a resin for example, a silicon-based resin in which an LED chip that emits blue (B) in a single color is incorporated and a phosphor that emits yellow light such as YAG (yttrium, aluminum, garnet) phosphor is mixed.
  • the LED substrate 17 has a long shape (band shape) extending in the long side direction (X-axis direction) of the chassis 14.
  • the LED light source 4 described above is surface-mounted on the front surface 17 a of the LED substrate 17.
  • a plurality of LED light sources 4 are mounted on the plate surface 17a, and are arranged on the plate surface 17a so as to be arranged in a line along the longitudinal direction of the LED substrate 17.
  • the LED light sources 4 are electrically connected (series connected) to each other by a wiring pattern to be described later.
  • the LED board 17 is housed in the chassis 14 in a posture in which the front plate surface 17a is along the X-axis direction and the Z-axis direction, that is, in a posture orthogonal to the plate surface 19a of the light guide plate 19.
  • the LED board 17 is assembled along the long side wall 14c so that the LED light source 16 faces the inside of the chassis 14.
  • the LED substrate 17 is formed on a long (longitudinal) base material made of a metal material such as an aluminum material, an insulating layer made of a synthetic resin formed on the base material, and the insulating layer.
  • a wiring pattern made of a metal film such as copper foil and a reflective layer made of a white insulating film formed on the insulating layer so as to cover the wiring pattern are provided.
  • the base material, the insulating layer, the wiring pattern, and the reflective layer in the LED substrate 17 are shown integrally.
  • the light guide plate 19 is a horizontally long rectangular shape in a plan view and is made of a plate-like member having a predetermined thickness, like the liquid crystal panel 11 and the chassis 14.
  • the light guide plate 19 is manufactured from a synthetic resin material having a refractive index higher than air and substantially transparent (for example, an acrylic resin such as PMMA or polycarbonate).
  • the light guide plate 19 includes a front-side plate surface 19a, a back-side plate surface 19b, two end surfaces 19c and 19d on the long side, and two end surfaces 19e and 19f on the short side.
  • the light guide plate 19 is accommodated in the chassis 14 such that the back plate surface 19 b faces the reflective coating film 20.
  • the end surface 19 c of the light guide plate 19 faces the LED light source 16 with a predetermined interval.
  • the end surface 19c is a light incident surface 19c on which light emitted from the LED light source 16 is incident.
  • the front surface 19a of the light guide plate 19 is a light exit surface, and the light incident from the light incident surface 19c is directed toward the optical sheet 15 and the liquid crystal panel 11 disposed above the light guide plate 19. And exit.
  • a plate surface 19 b on the back side of the light guide plate 19 is covered with a reflective coating film 20.
  • the reflective coating 20 reflects light (diffuse reflection) incident on the inside of the light guide plate 19 from the light incident surface 19c and rises toward the front plate surface (light emitting surface) 19a.
  • the end surface 19d on the long side of the light guide plate 19 faces the wall 14d, and the end surfaces 19e and 19f on the short side of the light guide plate 19 face the walls 14e and 14f, respectively.
  • a plurality of locking pins are erected on the bottom plate 14a, and the locking pins are inserted into the light guide plate 19 from the back plate surface 19b, whereby the light guide plate 19 is moved to the chassis 14. Is positioned inside.
  • a reflection portion that reflects light in the light guide plate 19 or a scattering portion that scatters has a predetermined in-plane distribution. Patterning is performed so that light emitted from the plate surface (light emitting surface) 19a is adjusted to have a uniform distribution in the surface.
  • the optical sheet 15 has a horizontally long rectangular shape when viewed from the front side, like the liquid crystal panel 11 and the like.
  • the optical sheet 15 includes a laminate of a diffusion sheet 15a, a lens sheet 15b, and a reflective polarizing sheet 15c.
  • the optical sheet 15 is placed on the plate surface 19 a so as to cover the front plate surface (light emitting surface) 19 a of the light guide plate 19.
  • the size of the optical sheet 15 is set to be approximately the same as the size of the plate surface 19 a of the light guide plate 19.
  • the frame 21 is a frame-like (frame-like) member along the periphery of the liquid crystal panel 11 and the light guide plate 19 and is made of synthetic resin or the like.
  • the frame 21 is black and has a light shielding property.
  • the frame 21 presses the end of the light guide plate 19 from the front side over substantially the entire circumference.
  • the frame 21 is covered from the upper ends of the walls 14c, 14d, 14e, and 14f of the chassis 14 that houses the light guide plate 19 and the like.
  • the frame 21 is fixed to each wall 14c, 14d, 14e, 14f of the chassis 14 by fixing means (not shown) such as screws. Note that the periphery of the liquid crystal panel 11 is placed on the inner edge of the frame 21.
  • the liquid crystal panel 11 is attached to the chassis 14 with its peripheral edge sandwiched between the frame 21 and the above-described bezel 13 covered from the front side of the frame 21.
  • the bezel 13 is fixed to the walls 14c, 14d, 14e, and 14f of the chassis 14 together with the frame 21 and the like by fixing means (not shown) such as screws.
  • each LED light source 16 included in the illumination device 12 emits light (lights up).
  • each LED light source 16 emits light, light enters the light guide plate 19 from the light incident surface 19 c of the light guide plate 19.
  • the incident light is reflected (diffuse reflected) by the reflective coating film 20 disposed on the back side of the light guide plate 19, and is formed on the back surface (plate surface) 19b or the front surface (plate surface) 19a of the light guide plate 19.
  • the light is reflected by the reflecting portion or the like and travels through the light guide plate 19 and exits from the front plate surface (light emitting surface) 19a.
  • the light emitted from the plate surface 19a passes through the optical sheet 15 and spreads into a planar shape, and illuminates the liquid crystal panel 11 from the back surface 11b.
  • the liquid crystal panel 11 displays an image on the display surface 11a using the light from the illumination device 12.
  • the plate surface 19b on the back side of the light guide plate 19 is covered with a reflective coating film 20.
  • the reflective coating film 20 is formed so as to cover the uneven pattern 40 formed on the plate surface of the bottom plate 14a, and the surface of the reflective coating film 20 itself is also uneven. Therefore, the light irradiated to such a reflective coating film 20 is reflected (that is, diffusely reflected) in various directions by the uneven surface. Therefore, the reflective coating film 20 is excellent in diffuse reflectance.
  • the reflective coating film 20 is directly formed (adhered) on the plate surface of the bottom plate 14a. Therefore, when the light guide plate 19 is assembled in the chassis 14, even if the light guide plate 19 comes into contact with the reflective coating film 20, the position does not shift on the bottom plate 14 a. Moreover, the said reflective coating film 20 can be formed on the said baseplate 14a with a simple structure (and simple manufacturing method).
  • the reflective coating film 20 formed on the bottom plate 14a of the chassis 14 is excellent in diffuse reflectivity.
  • Embodiment 2 of the present invention will be described with reference to FIGS.
  • the same parts as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
  • FIG. 7 is a cross-sectional view of the liquid crystal display device 10A according to the second embodiment.
  • the part of the liquid crystal display device 10A shown in FIG. 7 corresponds to the part of the liquid crystal display 10 of the first embodiment shown in FIG.
  • the basic configuration of the liquid crystal display device 10A of the present embodiment is the same as that of the first embodiment.
  • the liquid crystal display device 10A of the present embodiment is different from that of the first embodiment in that an interposition part 22 is provided on the bottom plate 14a of the chassis 14 included in the liquid crystal display device 12A.
  • FIG. 8 is a plan view of the chassis 14 provided in the illumination device 12A according to the second embodiment.
  • a reflective coating film 20 is formed so as to cover a bottom plate 14a having a rectangular shape.
  • the interposition part 22 is provided in the four corners of the chassis 14, respectively. That is, in the case of this insulator form, the four interposition parts 22 are provided.
  • the interposition part 22 consists of the same material as the baseplate 14a, and consists of aluminum in the case of this embodiment.
  • the appearance of the interposition part 22 is a quadrangular prism.
  • the interposition part 22 is fixed on the bottom plate 14a so as to protrude from the plate surface of the bottom plate 14a.
  • the end of the light guide plate 19 is placed on the upper end surface 22a of each interposition part 22. As shown in FIG. 7, the upper end surface 22 a of the interposition portion 22 is in contact with the end portion (circumferential end portion) of the plate surface 19 b on the back side of the light guide plate 19. In FIG. 8, the place where the light guide plate 19 is placed is indicated by a one-dot chain line.
  • the interposition part 22 is interposed between the light guide plate 19 and the bottom plate 14 a to prevent the plate surface 19 b on the back side of the light guide plate 19 from coming into contact with the reflective coating film 20. If the plate surface 19b on the back side of the light guide plate 19 is in direct contact with the reflective coating film 20, the plate surface 19b may be damaged by the reflective coating film 20. For example, when the light guide plate 19 expands and contracts under the influence of temperature and humidity, or when the light guide plate 19 is assembled to the chassis 14, the light guide plate 19 and the reflective coating 20 are in direct contact with each other, and the plate surface 19 b is You will be hurt. However, as in the present embodiment, when a predetermined intervening portion 22 is provided between the light guide plate 19 and the bottom plate 14a, the plate surface 19b moves away from the reflective coating film 20, so that the plate surface 19b is Can protect.
  • the distance (distance) between the plate surface 19b of the light guide plate 19 and the reflective coating 20 is set by appropriately adjusting the height of the interposition part 22 (height from the bottom plate 14a).
  • interval (distance) of the said plate surface 19b and the reflective coating film 20 is too large, there exists a possibility that light may leak from the plate surface 19b of a light-guide plate. Therefore, it is preferable that the interval is set while taking into consideration prevention of light leakage from the plate surface 19b.
  • the reflective coating film 12 itself is also prevented from being damaged and peeled off by contact with the plate surface 19b of the light guide plate 19.
  • the installation location of the interposition part 22 it is preferable to set the upper end surface 22a of the interposition part 22 to be in contact with the peripheral end part of the light guide plate 19 as in the present embodiment.
  • the interposition part 22 is disposed in the chassis 14 so as to correspond to the peripheral end of the light guide plate 19, the interposition part 22 is disposed outside the display area of the liquid crystal panel 11. Therefore, even if a dark part (shadow) is generated by the interposition part 22, the dark part is suppressed from entering the display area.
  • the interposition part 22 of this embodiment consists of aluminum, and is excellent in heat dissipation.
  • a material (heat dissipating material) excellent in heat dissipation such as a metal material
  • heat from the light guide plate 19 or the like is transmitted to the bottom plate 14 a of the chassis 14 by the interposition part 22. It can be moved (released) smoothly.
  • FIG. 9 is a cross-sectional view of the liquid crystal display device 12B according to the third embodiment.
  • the liquid crystal display device 10B of this embodiment includes a so-called direct-type illumination device 12B.
  • a plurality of cold cathode fluorescent lamps (CCFLs) 16B as light sources are arranged on the back surface 11b side of the liquid crystal panel 11.
  • the cold cathode fluorescent tubes 16B are arranged in parallel at intervals from each other in the chassis 14B.
  • Each cold cathode fluorescent tube 16B is arranged on the bottom plate 14Ba of the chassis 14 by a holder (not shown). There is a gap between the cathode fluorescent tube 16 ⁇ / b> B and the bottom plate 14 ⁇ / b> Ba of the chassis 14.
  • An uneven pattern 40B is formed on the surface (inner surface) of the bottom plate 14Ba of the chassis 14 and the surfaces (inner surface) of the walls 14Bc, 14Bd and the like.
  • reflective coating 20B is formed so that this uneven
  • the reflective coating film 20B may be formed not only on the bottom plate 14Ba of the chassis 14, but also on each wall 14Bc and the like. Further, as in the present embodiment, the reflective coating film 20B may be formed on the chassis 14B even in the direct type illumination device 12B.
  • the uneven pattern 40 is formed on the plate surface of the bottom plate 14a by blasting.
  • the regular uneven pattern 40C may be formed on the plate surface of the bottom plate 14a by, for example, pressing.
  • FIG. 10 is an enlarged cross-sectional view schematically showing a modification of the uneven pattern 40C and the reflective coating film 20C.
  • FIG. 10 shows a convex portion 41 that swells from the plate surface of the bottom plate 14 a and a concave portion 42 that is formed between adjacent convex portions 41.
  • Each convex part 41 has comprised the shape extended mutually parallel on the board surface of the baseplate 14a. And the space
  • the reflective coating film 20C may be formed on the regular uneven pattern 40C.
  • the surface of 20 C of reflective coating films may make regular uneven
  • the reflective coating film 20 is formed on substantially the entire surface of the bottom plate 14a so as to cover the uneven pattern 40.
  • the reflective coating film 20 may be formed in a predetermined pattern.
  • it may be formed on the plate surface of the bottom plate 14a as a spot-like pattern having a predetermined in-plane distribution. In this case, you may set so that the size of a spot may become large, so that it distances from the LED light source 16.
  • FIG. 1 the reflective coating film 20 is formed on substantially the entire surface of the bottom plate 14a so as to cover the uneven pattern 40.
  • the reflective coating film 20 may be formed in a predetermined pattern. For example, it may be formed on the plate surface of the bottom plate 14a as a spot-like pattern having a predetermined in-plane distribution. In this case, you may set so that the size of a spot may become large, so that it distances from the LED light source 16. FIG.
  • corrugated pattern 40 and the reflective coating film 20 are formed only on the board surface of the bottom board 14a.
  • the uneven pattern 40 and the reflective coating film 20 may be formed on the inner surface of the wall 14d.
  • the interposition part 22 is formed of a heat dissipation material.
  • the interposition part 22 may be formed from resin materials, such as an acrylic resin.
  • the interposition part 22 has a quadrangular prism shape.
  • SYMBOLS 10 Liquid crystal display device (display device), 11 ... Liquid crystal panel (display panel), 12 ... Illumination device (backlight device), 13 ... Bezel, 14 ... Chassis (housing member) , 15 ... optical sheet, 19 ... light guide plate, 20 ... reflective coating, 21 ... frame, 40 ... reflective coating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

An illuminating device (12) of the present invention is provided with a light source (16), and a chassis (14) for assembling the light source (16), said chassis (14) having a recessed and projected pattern (40) formed on a chassis (14) surface on the side from which light emitted from the light source (16) is outputted, and being provided with a reflecting coated film (20) that covers the recessed and projected pattern (40). Consequently, the reflecting coated film (20) formed on the chassis (14) has excellent diffuse reflection characteristics.

Description

照明装置、表示装置及びテレビ受信装置Lighting device, display device, and television receiver
 本発明は、照明装置、表示装置及びテレビ受信装置に関する。 The present invention relates to a lighting device, a display device, and a television receiver.
 近年、テレビ、携帯電話、携帯情報端末等の表示部として、液晶パネルが汎用されている。液晶パネルは、それ自身で光を発光することができないため、画像を表示させるために、照明装置(所謂、バックライト装置)の光を利用している。この照明装置は、液晶パネルの背面側に配され、そして液晶パネルの背面に向けて面状に拡がった光を照射するように構成されている。 In recent years, liquid crystal panels have been widely used as display units for televisions, mobile phones, portable information terminals and the like. Since the liquid crystal panel cannot emit light by itself, the light of an illumination device (so-called backlight device) is used to display an image. This illuminating device is arranged on the back side of the liquid crystal panel, and is configured to irradiate light spreading in a plane toward the back side of the liquid crystal panel.
 前記照明装置としては、導光板と、この導光板の端面と対向するように配されるLED(Light Emitting Diode)光源とを備えるものが知られている。LED光源は、帯状(長手状)の光源基板上に複数個並んだ状態で実装されている。各LED光源が前記導光板の端面と所定間隔を置いて対向するように前記光源基板が前記導光板の端面に沿って配されている。なお、前記導光板及び前記LED光源等は、箱状のシャーシ(収容部材)内に収容されている。 As the illuminating device, one having a light guide plate and an LED (Light Emitting Diode) light source arranged so as to face the end face of the light guide plate is known. A plurality of LED light sources are mounted in a state of being arranged on a strip-like (longitudinal) light source substrate. The light source substrate is arranged along the end surface of the light guide plate such that each LED light source faces the end surface of the light guide plate at a predetermined interval. The light guide plate and the LED light source are accommodated in a box-shaped chassis (accommodating member).
 この種の照明装置は、一般的に、サイドライト型(又はエッジライト型)として知られており、導光板の端面が、LED光源から発せられた光が入射される光入射面となっており、導光板の表側における板面が、液晶パネルに向けて光を出射させる光出射面となっている。 This type of lighting device is generally known as a side light type (or edge light type), and the end surface of the light guide plate is a light incident surface on which light emitted from an LED light source is incident. The plate surface on the front side of the light guide plate is a light emitting surface that emits light toward the liquid crystal panel.
 なお、前記導光板の裏側の板面は、前記シャーシの底板上に敷かれている反射シートによって覆われている。前記反射シートは、白色のプラスチック製シート等からなる。したがって、前記光入射面から入射された光は、前記導光板の裏側にある前記反射シートによって反射されて立ち上がり、前記光出射面から出射される。 The plate surface on the back side of the light guide plate is covered with a reflective sheet laid on the bottom plate of the chassis. The reflection sheet is a white plastic sheet or the like. Therefore, the light incident from the light incident surface is reflected by the reflection sheet on the back side of the light guide plate, rises, and is emitted from the light emission surface.
 ところで、前記反射シートは薄くて撓みやすいため、前記反射シートを前記シャーシ内に取り付ける際に、前記反射シートが折れ曲がって、前記反射シートに折れ目やシワが形成されることがあった。また、反射シートが温度、湿度等の影響を受けて伸縮してシワ等が発生することもあった。このようにシワ等が前記反射シートに形成されると、前記反射シートの反射効率が低下してしまい、問題となっていた。 By the way, since the reflection sheet is thin and easily bent, when the reflection sheet is mounted in the chassis, the reflection sheet may be bent to form creases or wrinkles in the reflection sheet. Further, the reflective sheet may expand and contract under the influence of temperature, humidity, etc., and wrinkles may occur. Thus, when wrinkles etc. were formed in the said reflective sheet, the reflective efficiency of the said reflective sheet fell and it was a problem.
 特許文献1には、前記反射シートを利用する代わりに、前記シャーシの底板上に、直接、反射塗膜を形成する技術が示されている。前記反射塗膜は、平坦なアルミニウム板上に、樹脂及び酸化チタン顔料を含む塗料が塗布されて形成されている。特許文献1には、前記反射塗膜が高い拡散反射率を有すると示されている。 Patent Document 1 discloses a technique for forming a reflective coating directly on the bottom plate of the chassis instead of using the reflective sheet. The reflective coating is formed by applying a paint containing a resin and a titanium oxide pigment on a flat aluminum plate. Patent Document 1 shows that the reflective coating film has a high diffuse reflectance.
特開2002-172735号公報JP 2002-172735 A
(発明が解決しようとする課題)
 しかしながら、近年、表示装置の大型化等に伴って、前記反射塗膜に対して、更に高い拡散反射率を備えることが求められている。特許文献1等に示されている反射塗膜では、今日の要求を満たすことができず、問題となっている。
(Problems to be solved by the invention)
However, in recent years, with an increase in the size of a display device or the like, the reflective coating film is required to have a higher diffuse reflectance. The reflective coating described in Patent Document 1 and the like is problematic because it cannot satisfy today's requirements.
 本発明の目的は、拡散反射性に優れる反射塗膜がシャーシに形成されている照明装置、前記照明装置を備える表示装置、及び前記表示装置を備えるテレビ受信装置を提供することである。 An object of the present invention is to provide an illuminating device in which a reflective coating film having excellent diffuse reflectivity is formed on a chassis, a display device including the illuminating device, and a television receiver including the display device.
(課題を解決するための手段)
 本発明に係る照明装置は、光源と、前記光源を組み付けるためのシャーシであって、前記シャーシのうち前記光源からの光が出射する側の面に凹凸パターンが形成されてなると共に、前記凹凸パターンを覆う反射塗膜を備えてなるシャーシと、を備える。
(Means for solving the problem)
The illumination device according to the present invention is a chassis for assembling a light source and the light source, wherein a concave / convex pattern is formed on a surface of the chassis on a side where light from the light source is emitted, and the concave / convex pattern A chassis comprising a reflective coating covering the substrate.
 前記照明装置において、端面から入射された光を表側の板面から出射させる板状部材からなり、裏側の板面が前記反射塗膜と対向するように前記シャーシに組み付けられる導光板を備え、前記光源が、前記導光板の前記端面と対向するように前記シャーシに組み付けられてもよい。 In the lighting device, comprising a light guide plate that is composed of a plate-like member that emits light incident from the end surface from the front plate surface, and is assembled to the chassis so that the back plate surface faces the reflective coating film, A light source may be assembled to the chassis so as to face the end face of the light guide plate.
 前記照明装置において、前記導光板の裏側の板面が前記反射塗膜と接触しないように前記シャーシと前記導光板との間に介在される介在部を備えてもよい。 The lighting device may include an interposition portion interposed between the chassis and the light guide plate so that a plate surface on the back side of the light guide plate does not come into contact with the reflective coating film.
 前記照明装置において、前記介在部は、前記導光板の裏側の板面における周縁部と接触するように、前記シャーシに固定されていてもよい。 In the illuminating device, the interposition part may be fixed to the chassis so as to come into contact with a peripheral part on a plate surface on the back side of the light guide plate.
 前記照明装置において、前記介在部は、放熱材料からなってもよい。 In the lighting device, the interposition part may be made of a heat dissipation material.
 前記照明装置において、前記シャーシが、金属材料からなってもよい。 In the lighting device, the chassis may be made of a metal material.
 前記照明装置において、前記凹凸パターンは、前記シャーシの表面を凹凸加工することによって形成されてもよい。 In the illumination device, the uneven pattern may be formed by processing an uneven surface of the chassis.
 前記照明装置において、前記反射塗膜は、前記凹凸パターンに沿った凹凸状をなしていてもよい。 In the illumination device, the reflective coating film may have a concavo-convex shape along the concavo-convex pattern.
 本発明に係る表示装置は、前記照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える。 The display device according to the present invention includes the illumination device and a display panel that performs display using light from the illumination device.
 前記表示装置において、前記表示パネルは、一対の基板間に液晶を封入してなる液晶パネルからなってもよい。 In the display device, the display panel may be a liquid crystal panel in which liquid crystal is sealed between a pair of substrates.
 本発明に係るテレビ受信装置は、前記表示装置を備える。 A television receiver according to the present invention includes the display device.
(発明の効果)
 本発明によれば、拡散反射性に優れる反射塗膜がシャーシに形成されている照明装置、前記照明装置を備える表示装置、及び前記表示装置を備えるテレビ受信装置を提供できる。
(The invention's effect)
ADVANTAGE OF THE INVENTION According to this invention, the illuminating device by which the reflective coating film excellent in diffuse reflectivity is formed in the chassis, the display apparatus provided with the said illuminating device, and the television receiver provided with the said display apparatus can be provided.
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention. 液晶表示装置の概略構成を示す分解斜視図Exploded perspective view showing schematic configuration of liquid crystal display device 図2に示される液晶表示装置のA-A'断面図AA 'sectional view of the liquid crystal display device shown in FIG. 基板の表面上にブラスト加工によって凹凸パターンを形成する工程を模式的に表した説明図Explanatory drawing which represented typically the process of forming an uneven pattern on the surface of a substrate by blasting 凹凸パターンを模式的に表した拡大断面図Enlarged cross-sectional view schematically showing an uneven pattern 凹凸パターン上に形成された反射塗膜を模式的に表した拡大断面図An enlarged cross-sectional view schematically showing a reflective coating film formed on an uneven pattern 実施形態2に係る液晶表示装置の断面図Sectional drawing of the liquid crystal display device which concerns on Embodiment 2. FIG. 実施形態2に係る照明装置が備えるシャーシの平面図The top view of the chassis with which the illuminating device which concerns on Embodiment 2 is provided. 実施形態3に係る液晶表示装置の断面図Sectional drawing of the liquid crystal display device which concerns on Embodiment 3. FIG. 凹凸パターン及び反射塗膜の変形例を模式的に表した拡大断面図Enlarged sectional view schematically showing a modification of the uneven pattern and the reflective coating
 <実施形態1>
 本発明の実施形態1を、図1ないし図6を参照しつつ説明する。本実施形態では、照明装置12と、この照明装置12を備える液晶表示装置10と、この液晶表示装置10を備えるテレビ受信装置TVについて例示する。なお、各図には、X軸、Y軸及びZ軸が示されている。図2及び図3に示される上側を表側とし、同図下側を裏側とする。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 6. In the present embodiment, the lighting device 12, the liquid crystal display device 10 including the lighting device 12, and the television receiver TV including the liquid crystal display device 10 are illustrated. In each figure, an X axis, a Y axis, and a Z axis are shown. The upper side shown in FIGS. 2 and 3 is the front side, and the lower side is the back side.
 図1は、実施形態1に係るテレビ受信装置TVの概略構成を示す分解斜視図である。図1に示されるように、本実施形態のテレビ受信装置TVは、主として、液晶表示装置(表示装置)10と、この液晶表示装置10を挟むようにして収納する表裏両キャビネットCa,Cbと、電源Pと、チューナーTと、スタンドSとを備える。液晶表示装置10は、その表示面が鉛直方向(Y軸方向)に沿うように、スタンドSによって支持されている。 FIG. 1 is an exploded perspective view showing a schematic configuration of the television receiver TV according to the first embodiment. As shown in FIG. 1, the television receiver TV of the present embodiment mainly includes a liquid crystal display device (display device) 10, front and back cabinets Ca and Cb that are stored so as to sandwich the liquid crystal display device 10, and a power source P. And a tuner T and a stand S. The liquid crystal display device 10 is supported by the stand S so that its display surface is along the vertical direction (Y-axis direction).
 図2は、液晶表示装置10の概略構成を示す分解斜視図である。図2に示されるように、液晶表示装置10は、表側から平面視した際に、全体として横長の矩形状をなしており、液晶パネル(表示パネル)11と、この液晶パネル11の背面11b側に配される照明装置12と、液晶パネル11の表側(表示面11a側)から被せられる額縁状のベゼル13とを備える。これらは、前記ベゼル13等を照明装置12に取り付けることによって一体的に保持されている。なお、ベゼル13は、金属材料等からなる。 FIG. 2 is an exploded perspective view showing a schematic configuration of the liquid crystal display device 10. As shown in FIG. 2, the liquid crystal display device 10 has a horizontally long rectangular shape when viewed from the front side, and includes a liquid crystal panel (display panel) 11 and a back surface 11 b side of the liquid crystal panel 11. And a frame-shaped bezel 13 that covers the front side (display surface 11a side) of the liquid crystal panel 11. These are integrally held by attaching the bezel 13 or the like to the lighting device 12. The bezel 13 is made of a metal material or the like.
 液晶パネル11は、図2に示されるように、表側から平面視した際に、全体として横長の矩形状をなしている。この液晶パネル11は、主として、互いに向かい合う一対の透明なガラス基板と、これらの基板間に封入される液晶層とを備える。これらの基板のうち、背面11b側(裏側)に配される一方のガラス基板は、所謂、薄膜トランジスタ(以下、TFT)アレイ基板であり、表示面11a側(表側)に配される他方のガラス基板は、所謂、カラーフィルタ(以下、CF)基板である。 As shown in FIG. 2, the liquid crystal panel 11 has a horizontally long rectangular shape when viewed from the front side. The liquid crystal panel 11 mainly includes a pair of transparent glass substrates facing each other and a liquid crystal layer sealed between these substrates. Among these substrates, one glass substrate disposed on the back surface 11b side (back side) is a so-called thin film transistor (hereinafter, TFT) array substrate, and the other glass substrate disposed on the display surface 11a side (front side). Is a so-called color filter (hereinafter referred to as CF) substrate.
 TFTアレイ基板は、主として、透明なガラス製の板上に、スイッチング素子としての複数個のTFTと、各TFTのドレイン電極に接続する透明な複数個の画素電極とがマトリクス状(行列状)に設けられたものからなる。個々のTFT及び画素電極は、画素毎に設けられており、互いに交差するように前記ガラス製の板上に設けられている複数本のゲート配線と、複数本のソース配線とによって区画されている。なお、各TFTにおけるゲート電極は前記ゲート配線と接続し、それらのソース電極は前記ソース配線と接続している。 The TFT array substrate is mainly composed of a plurality of TFTs as switching elements and a plurality of transparent pixel electrodes connected to the drain electrodes of each TFT in a matrix (matrix) on a transparent glass plate. It consists of what is provided. Individual TFTs and pixel electrodes are provided for each pixel, and are partitioned by a plurality of gate wirings and a plurality of source wirings provided on the glass plate so as to cross each other. . Note that the gate electrode in each TFT is connected to the gate wiring, and the source electrodes thereof are connected to the source wiring.
 CF基板は、主として、透明なガラス製の板上に、赤色(R)、緑色(G)、青色(B)等の各色からなるCFが、前記TFTアレイ基板の各画素に対応するように、マトリクス状に設けられたものからなる。各CFは、前記ガラス製の板上に格子状に設けられている遮光性のブラックマトリクス(BM)によって区画されている。なお、前記CF及び前記BM上には、前記TFTアレイ基板の画素電極と向かい合う透明な対向電極等が設けられている。 The CF substrate is mainly formed on a transparent glass plate so that the CF composed of each color such as red (R), green (G), and blue (B) corresponds to each pixel of the TFT array substrate. It consists of what was provided in matrix form. Each CF is partitioned by a light-shielding black matrix (BM) provided in a lattice pattern on the glass plate. A transparent counter electrode or the like facing the pixel electrode of the TFT array substrate is provided on the CF and the BM.
 液晶パネル11は、上述したソース配線、ゲート配線及び対向電極等に、駆動回路基板から画像を表示するために必要な画像データや各種制御信号が供給されるように構成されており、所謂、アクティブマトリクス方式で駆動する。なお、液晶パネル11には、その表示面11a側と背面11b側に、前記一対のガラス基板を挟むようにそれぞれ偏光板が設けられている。 The liquid crystal panel 11 is configured to supply image data and various control signals necessary for displaying an image from the drive circuit substrate to the above-described source wiring, gate wiring, counter electrode, and the like. Drives in a matrix system. The liquid crystal panel 11 is provided with polarizing plates on the display surface 11a side and the back surface 11b side so as to sandwich the pair of glass substrates.
 照明装置12は、所謂、エッジライト型(サイドライト型)であり、主として、シャーシ(収容部材)14と、光学シート15と、LED光源(光源)16と、LED基板(光源基板)17と、導光板19と、反射塗膜20と、フレーム21とを備えている。 The illuminating device 12 is a so-called edge light type (side light type), and mainly includes a chassis (housing member) 14, an optical sheet 15, an LED light source (light source) 16, an LED substrate (light source substrate) 17, A light guide plate 19, a reflective coating film 20, and a frame 21 are provided.
 シャーシ14は、上側が開口した浅底状の箱からなり、アルミニウム系材料等の金属材料からなる板材をプレス加工等して形成される。このシャーシ14は、この表側から平面視した際に横長の矩形状をなす底板14aと、この底板14aの短辺方向の縁に立設されている一対の壁14c,14dと、前記底板14aの長辺側の縁に立設されている一対の壁14e,14fとを備える。 The chassis 14 is formed of a shallow box having an upper opening, and is formed by pressing a plate material made of a metal material such as an aluminum material. The chassis 14 has a bottom plate 14a that is horizontally long when viewed from the front side, a pair of walls 14c and 14d that are erected on the edge of the bottom side of the bottom plate 14a, and the bottom plate 14a. And a pair of walls 14e and 14f provided upright at the edge of the long side.
 シャーシ14の底板14a上には、凹凸パターン40が形成されている。凹凸パターン40は、前記底板14aの表面上に、直接設けられている。この凹凸パターン40は、LED光源16からの光が導光板19を介して面状の光となって出射する側におけるシャーシ14の面に形成されている。 An uneven pattern 40 is formed on the bottom plate 14 a of the chassis 14. The uneven pattern 40 is provided directly on the surface of the bottom plate 14a. The concavo-convex pattern 40 is formed on the surface of the chassis 14 on the side where the light from the LED light source 16 is emitted as planar light through the light guide plate 19.
 凹凸パターン40は、ブラスト加工、プレス加工、エンボス加工、切削加工等の公知の凹凸加工によって形成される。ここで、ブラスト加工を利用して底板14aの表面上に凹凸パターンを形成する方法を説明する。図4は、基板114aの表面上にブラスト(サンドブラスト)加工によって凹凸パターンを形成する工程を模式的に表した説明図である。図4には、凹凸パターンが形成される前の底板からなる基板114aが示されている。この基板114aはアルミニウム製であり、その表面は平坦である。基板114aの上方には、微粉末状の噴射材51を基板114aの板面214aに向けて噴射するノズル50が配されている。このノズル50を基板114aの板面に沿って移動させると共に、このノズル50から噴射材を基板114aの板面214a上に向けて噴射することによって、前記基板114aの板面214a上が噴射材によってパターン状に削られる。すると前記板面214a上に凹凸パターン40が形成される。 The concavo-convex pattern 40 is formed by known concavo-convex processing such as blasting, pressing, embossing, and cutting. Here, a method of forming a concavo-convex pattern on the surface of the bottom plate 14a using blasting will be described. FIG. 4 is an explanatory view schematically showing a process of forming an uneven pattern on the surface of the substrate 114a by blasting (sand blasting). FIG. 4 shows a substrate 114a formed of a bottom plate before the uneven pattern is formed. The substrate 114a is made of aluminum, and its surface is flat. Above the substrate 114a, a nozzle 50 for injecting the fine powdery injection material 51 toward the plate surface 214a of the substrate 114a is disposed. The nozzle 50 is moved along the plate surface of the substrate 114a, and the spray material is sprayed from the nozzle 50 toward the plate surface 214a of the substrate 114a, whereby the plate surface 214a of the substrate 114a is sprayed by the spray material. It is cut into a pattern. Then, the concave / convex pattern 40 is formed on the plate surface 214a.
 図5は、凹凸パターン40を模式的に表した拡大断面図である。図5に示されるように、基板114a(底板14a)の板面上に凹凸パターン40が形成される。本実施形態の場合、底板14a上に形成される凹凸パターン40の範囲は、後述する導光板19の裏側の板面19bの大きさと略同じに設定されている。凹凸パターン40は、底板14aの板面内において一様に形成されている。 FIG. 5 is an enlarged cross-sectional view schematically showing the concavo-convex pattern 40. As shown in FIG. 5, the uneven pattern 40 is formed on the plate surface of the substrate 114a (bottom plate 14a). In the case of this embodiment, the range of the uneven pattern 40 formed on the bottom plate 14a is set to be approximately the same as the size of the plate surface 19b on the back side of the light guide plate 19 described later. The uneven pattern 40 is uniformly formed within the plate surface of the bottom plate 14a.
 反射塗膜20は、前記凹凸パターン40を覆うように前記底板14aの板面上に形成されている。反射塗膜20は、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂等の合成樹脂を含む樹脂溶液に、酸化チタン等の顔料等を分散させてなる塗料を、前記凹凸パターン40に塗布したものからなる。つまり、反射塗膜20自身は、公知の反射塗料から調製される。 The reflective coating film 20 is formed on the plate surface of the bottom plate 14 a so as to cover the uneven pattern 40. The reflective coating film 20 is obtained by applying a coating material obtained by dispersing a pigment such as titanium oxide in a resin solution containing a synthetic resin such as a polyester resin, an acrylic resin, a urethane resin, or an epoxy resin to the uneven pattern 40. Become. That is, the reflective coating film 20 itself is prepared from a known reflective paint.
 図6は、凹凸パターン40上に形成された反射塗膜20を模式的に表した拡大断面図である。図6に示されるように、反射塗膜20は、底板14aの板面上に形成されている凹凸パターン40に沿った形状をなしている。つまり、反射塗膜20の表面も、凹凸パターン40が形成されている。つまり、反射塗膜20の厚みは、反射塗膜20の表面に凹凸パターンが形成されるように、適宜、調節される。このように反射塗膜20の表面に、凹凸パターン40が形成されることによって、反射塗膜20の拡散反射性が高められている。なお、本実施形態の反射塗膜20は、白色を呈している。 FIG. 6 is an enlarged cross-sectional view schematically showing the reflective coating film 20 formed on the uneven pattern 40. As shown in FIG. 6, the reflective coating film 20 has a shape along the concavo-convex pattern 40 formed on the plate surface of the bottom plate 14 a. That is, the uneven pattern 40 is also formed on the surface of the reflective coating film 20. That is, the thickness of the reflective coating film 20 is adjusted as appropriate so that an uneven pattern is formed on the surface of the reflective coating film 20. Thus, by forming the uneven | corrugated pattern 40 on the surface of the reflective coating film 20, the diffuse reflectance of the reflective coating film 20 is improved. In addition, the reflective coating film 20 of this embodiment is exhibiting white.
 LED光源(光源)16は、発光素子である複数個のLEDチップを樹脂材等でハウジング内に封止したもの(所謂、LEDパッケージ)からなり、白色発光するように構成されている。このLED光源16としては、例えば、主発光波長の異なる三種類のLEDチップを内蔵したものからなり、具体的には、各LEDチップが赤色(R)、緑色(G)、青色(B)を単色発光するように構成されている。なお、LED光源16としては、このような構成に限られず、他の構成であってもよい。LED光源16の他の構成としては、例えば、青色(B)を単色発光するLEDチップを内蔵し、赤色(R)の領域に発光ピークを持つ蛍光体と、緑色(G)の領域に発光ピークを持つ蛍光体とが混入された樹脂(例えば、シリコン系樹脂)で、そのLEDチップを覆った構成であってもよい。また、他の構成としては、青色(B)を単色発光するLEDチップを内蔵し、YAG(イットリウム・アルミニウム・ガーネット)蛍光体等の黄色発光する蛍光体が混入された樹脂(例えば、シリコン系樹脂)で、そのLEDチップを覆った構成であってもよい。 The LED light source (light source) 16 is composed of a plurality of LED chips as light emitting elements sealed in a housing with a resin material or the like (so-called LED package), and is configured to emit white light. For example, the LED light source 16 includes three types of LED chips having different main emission wavelengths. Specifically, each LED chip has red (R), green (G), and blue (B). It is configured to emit monochromatic light. The LED light source 16 is not limited to such a configuration, and may have another configuration. Other configurations of the LED light source 16 include, for example, a built-in LED chip that emits blue (B) in a single color, a phosphor having an emission peak in the red (R) region, and an emission peak in the green (G) region. The LED chip may be covered with a resin (for example, a silicon-based resin) mixed with a phosphor having the above. Further, as another configuration, a resin (for example, a silicon-based resin) in which an LED chip that emits blue (B) in a single color is incorporated and a phosphor that emits yellow light such as YAG (yttrium, aluminum, garnet) phosphor is mixed. ), The LED chip may be covered.
 LED基板17は、図2及び図3に示されるように、シャーシ14の長辺方向(X軸方向)に沿って細長く延びた長手状(帯状)をなしている。LED基板17の表側の板面17aには、上述したLED光源4が表面実装されている。LED光源4は、前記板面17a上に複数個実装されており、LED基板17の長手方向に沿って一列に並ぶように前記板面17a上に配されている。各LED光源4は、後述する配線パターンによって互いに電気的に接続(直列接続)されている。 2 and 3, the LED substrate 17 has a long shape (band shape) extending in the long side direction (X-axis direction) of the chassis 14. The LED light source 4 described above is surface-mounted on the front surface 17 a of the LED substrate 17. A plurality of LED light sources 4 are mounted on the plate surface 17a, and are arranged on the plate surface 17a so as to be arranged in a line along the longitudinal direction of the LED substrate 17. The LED light sources 4 are electrically connected (series connected) to each other by a wiring pattern to be described later.
 LED基板17は、その表側の板面17aがX軸方向及びZ軸方向に沿った姿勢、つまり、導光板19の板面19aと直交させた姿勢で、シャーシ14内に収容されている。LED基板17は、LED光源16がシャーシ14の内側を向くように、長辺側の壁14cに沿って組み付けられている。 The LED board 17 is housed in the chassis 14 in a posture in which the front plate surface 17a is along the X-axis direction and the Z-axis direction, that is, in a posture orthogonal to the plate surface 19a of the light guide plate 19. The LED board 17 is assembled along the long side wall 14c so that the LED light source 16 faces the inside of the chassis 14.
 LED基板17は、アルミニウム系材料等の金属材料からなる長尺状(長手状)の基材と、この基材上に形成される合成樹脂からなる絶縁層と、この絶縁層上に形成される銅箔等の金属膜からなる配線パターンと、この配線パターンを覆うように前記絶縁層上に形成される白色の絶縁膜からなる反射層とを備える。なお、説明の便宜上、図3等においては、LED基板17における前記基材、絶縁層、配線パターン及び前記反射層は、一体的に示されている。 The LED substrate 17 is formed on a long (longitudinal) base material made of a metal material such as an aluminum material, an insulating layer made of a synthetic resin formed on the base material, and the insulating layer. A wiring pattern made of a metal film such as copper foil and a reflective layer made of a white insulating film formed on the insulating layer so as to cover the wiring pattern are provided. For convenience of explanation, in FIG. 3 and the like, the base material, the insulating layer, the wiring pattern, and the reflective layer in the LED substrate 17 are shown integrally.
 導光板19は、図2に示されるように、液晶パネル11及びシャーシ14と同様に、平面に視て横長の矩形状であり、所定の厚みを有する板状部材からなる。導光板19は、屈折率が空気よりも高くかつ略透明な合成樹脂材料(例えば、PMMA等のアクリル樹脂やポリカーボネート等)から製造される。導光板19は、表側の板面19aと、裏側の板面19bと、長辺側における2つの端面19c,19dと、短辺側における2つの端面19e,19fとを備えている。導光板19は、裏側の板面19bが反射塗膜20と対向するように、シャーシ14内に収容される。 As shown in FIG. 2, the light guide plate 19 is a horizontally long rectangular shape in a plan view and is made of a plate-like member having a predetermined thickness, like the liquid crystal panel 11 and the chassis 14. The light guide plate 19 is manufactured from a synthetic resin material having a refractive index higher than air and substantially transparent (for example, an acrylic resin such as PMMA or polycarbonate). The light guide plate 19 includes a front-side plate surface 19a, a back-side plate surface 19b, two end surfaces 19c and 19d on the long side, and two end surfaces 19e and 19f on the short side. The light guide plate 19 is accommodated in the chassis 14 such that the back plate surface 19 b faces the reflective coating film 20.
 シャーシ14内において、導光板19の端面19cは、LED光源16に対して所定の間隔を置いた状態で対向している。この端面19cは、LED光源16から発せられた光が入射される光入射面19cとなっている。また、導光板19の表側の板面19aは光出射面となっており、光入射面19cから入射された光を、導光板19の上方に配されている光学シート15及び液晶パネル11に向けて出射する。導光板19の裏側の板面19bは、反射塗膜20で覆われている。この反射塗膜20が、光入射面19cから導光板19の内部に入射された光を反射(拡散反射)等して、表側の板面(光出射面)19aに向かって立ち上げている。 In the chassis 14, the end surface 19 c of the light guide plate 19 faces the LED light source 16 with a predetermined interval. The end surface 19c is a light incident surface 19c on which light emitted from the LED light source 16 is incident. The front surface 19a of the light guide plate 19 is a light exit surface, and the light incident from the light incident surface 19c is directed toward the optical sheet 15 and the liquid crystal panel 11 disposed above the light guide plate 19. And exit. A plate surface 19 b on the back side of the light guide plate 19 is covered with a reflective coating film 20. The reflective coating 20 reflects light (diffuse reflection) incident on the inside of the light guide plate 19 from the light incident surface 19c and rises toward the front plate surface (light emitting surface) 19a.
 なお、シャーシ14内において、導光板19の長辺側の端面19dは、壁14dと対向し、導光板19の短辺側の端面19e,19fはそれぞれ壁14e,14fと対向している。また、底板14a上には図示されない複数本の係止ピンが立設されており、この係止ピンが裏側の板面19bから導光板19内に挿入されることによって、導光板19がシャーシ14内において位置決めされている。 In the chassis 14, the end surface 19d on the long side of the light guide plate 19 faces the wall 14d, and the end surfaces 19e and 19f on the short side of the light guide plate 19 face the walls 14e and 14f, respectively. In addition, a plurality of locking pins (not shown) are erected on the bottom plate 14a, and the locking pins are inserted into the light guide plate 19 from the back plate surface 19b, whereby the light guide plate 19 is moved to the chassis 14. Is positioned inside.
 導光板19の表側の板面(光出射面)19a又は裏側の板面19bには、導光板19内の光を反射させる反射部又は散乱させる散乱部が、所定の面内分布を有するようにパターニングされており、それによって板面(光出射面)19aから出射された光が面内において均一な分布となるように調整されている。 On the front-side plate surface (light emitting surface) 19 a or the back-side plate surface 19 b of the light guide plate 19, a reflection portion that reflects light in the light guide plate 19 or a scattering portion that scatters has a predetermined in-plane distribution. Patterning is performed so that light emitted from the plate surface (light emitting surface) 19a is adjusted to have a uniform distribution in the surface.
 光学シート15は、図2に示されるように、液晶パネル11等と同様、表側から平面視した際に、横長の矩形状をなしている。光学シート15は、拡散シート15a、レンズシート15b、及び反射型偏光シート15cの積層物からなる。光学シート15は、導光板19の表側の板面(光出射面)19aを覆うように、前記板面19a上に載せられている。光学シート15の大きさは、導光板19の板面19aの大きさと、略同じに設定されている。 As shown in FIG. 2, the optical sheet 15 has a horizontally long rectangular shape when viewed from the front side, like the liquid crystal panel 11 and the like. The optical sheet 15 includes a laminate of a diffusion sheet 15a, a lens sheet 15b, and a reflective polarizing sheet 15c. The optical sheet 15 is placed on the plate surface 19 a so as to cover the front plate surface (light emitting surface) 19 a of the light guide plate 19. The size of the optical sheet 15 is set to be approximately the same as the size of the plate surface 19 a of the light guide plate 19.
 フレーム21は、液晶パネル11及び導光板19の周縁に沿った額縁状(枠状)の部材であり、合成樹脂等からなる。フレーム21は黒色であり、遮光性を有する。フレーム21は、導光板19の端部を、略全周に亘って表側から押さえる。フレーム21は、導光板19等を収容したシャーシ14の各壁14c,14d,14e,14fの上端側から被せられる。フレーム21は、シャーシ14の各壁14c,14d,14e,14fに、ネジ等の固定手段(不図示)によって固定される。なお、フレーム21の内縁上には、液晶パネル11の周縁が載せられている。 The frame 21 is a frame-like (frame-like) member along the periphery of the liquid crystal panel 11 and the light guide plate 19 and is made of synthetic resin or the like. The frame 21 is black and has a light shielding property. The frame 21 presses the end of the light guide plate 19 from the front side over substantially the entire circumference. The frame 21 is covered from the upper ends of the walls 14c, 14d, 14e, and 14f of the chassis 14 that houses the light guide plate 19 and the like. The frame 21 is fixed to each wall 14c, 14d, 14e, 14f of the chassis 14 by fixing means (not shown) such as screws. Note that the periphery of the liquid crystal panel 11 is placed on the inner edge of the frame 21.
 液晶パネル11は、その周縁が、フレーム21とこのフレーム21の表側から被せられる上述したベゼル13とによって挟まれた状態で、シャーシ14に取り付けられている。なお、ベゼル13は、フレーム21等と共にシャーシ14の各壁14c,14d,14e,14fに、ネジ等の固定手段(不図示)によって固定される。 The liquid crystal panel 11 is attached to the chassis 14 with its peripheral edge sandwiched between the frame 21 and the above-described bezel 13 covered from the front side of the frame 21. The bezel 13 is fixed to the walls 14c, 14d, 14e, and 14f of the chassis 14 together with the frame 21 and the like by fixing means (not shown) such as screws.
 液晶表示装置10は、液晶パネル11の表示面11aに画像を表示させる際、照明装置12が備える各LED光源16が発光(点灯)する。各LED光源16が発光すると、導光板19の光入射面19cから導光板19の内部に光が入射する。入射した光は、導光板19の裏側に配されている反射塗膜20によって反射(拡散反射)されると共に、導光板19の裏面(板面)19b又は表面(板面)19aに形成されている反射部等によって反射等されて、導光板19内を進みつつ、その表側の板面(光出射面)19aから出射する。板面19aから出射した光は、光学シート15を通過して面状に拡がった光となって、液晶パネル11をその背面11bから照らす。液晶パネル11は、この照明装置12からの光を利用して、表示面11aに画像を表示させている。 When the liquid crystal display device 10 displays an image on the display surface 11a of the liquid crystal panel 11, each LED light source 16 included in the illumination device 12 emits light (lights up). When each LED light source 16 emits light, light enters the light guide plate 19 from the light incident surface 19 c of the light guide plate 19. The incident light is reflected (diffuse reflected) by the reflective coating film 20 disposed on the back side of the light guide plate 19, and is formed on the back surface (plate surface) 19b or the front surface (plate surface) 19a of the light guide plate 19. The light is reflected by the reflecting portion or the like and travels through the light guide plate 19 and exits from the front plate surface (light emitting surface) 19a. The light emitted from the plate surface 19a passes through the optical sheet 15 and spreads into a planar shape, and illuminates the liquid crystal panel 11 from the back surface 11b. The liquid crystal panel 11 displays an image on the display surface 11a using the light from the illumination device 12.
 本実施形態の照明装置12において、導光板19の裏側の板面19bは、反射塗膜20によって覆われている。この反射塗膜20は、上述したように底板14aの板面上に形成されている凹凸パターン40を覆うように形成されており、反射塗膜20自身の表面も凹凸状になっている。そのため、このような反射塗膜20に照射された光は、前記凹凸状の表面によって様々な方向に反射(つまり、拡散反射)される。したがって、前記反射塗膜20は、拡散反射性に優れる。 In the illumination device 12 of the present embodiment, the plate surface 19b on the back side of the light guide plate 19 is covered with a reflective coating film 20. As described above, the reflective coating film 20 is formed so as to cover the uneven pattern 40 formed on the plate surface of the bottom plate 14a, and the surface of the reflective coating film 20 itself is also uneven. Therefore, the light irradiated to such a reflective coating film 20 is reflected (that is, diffusely reflected) in various directions by the uneven surface. Therefore, the reflective coating film 20 is excellent in diffuse reflectance.
 前記反射塗膜20は、底板14aの板面上に直接形成(接着)されている。そのため、導光板19をシャーシ14内に組み付ける際に、導光板19が反射塗膜20に接触しても、底板14a上で位置ずれすることがない。また、前記反射塗膜20は、簡便な構成(及び簡便な製法)によって、前記底板14a上に形成することができる。 The reflective coating film 20 is directly formed (adhered) on the plate surface of the bottom plate 14a. Therefore, when the light guide plate 19 is assembled in the chassis 14, even if the light guide plate 19 comes into contact with the reflective coating film 20, the position does not shift on the bottom plate 14 a. Moreover, the said reflective coating film 20 can be formed on the said baseplate 14a with a simple structure (and simple manufacturing method).
 以上の通り、本実施形態の照明装置12において、シャーシ14の底板14a上に形成されている反射塗膜20は、拡散反射性に優れる。なお、前記照明装置12を備える表示装置10、及び前記表示装置10を備えるテレビ受信装置TVについても、同様である。 As described above, in the lighting device 12 of the present embodiment, the reflective coating film 20 formed on the bottom plate 14a of the chassis 14 is excellent in diffuse reflectivity. The same applies to the display device 10 including the illumination device 12 and the television receiver TV including the display device 10.
 <実施形態2>
 次いで、本発明の実施形態2を、図7及び図8を参照しつつ説明する。なお、以降の各実施形態では、実施形態1と同じ部分については、実施形態1のものと同じ符号を付して、その詳細な説明は省略する。
<Embodiment 2>
Next, Embodiment 2 of the present invention will be described with reference to FIGS. In the following embodiments, the same parts as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
 図7は、実施形態2に係る液晶表示装置10Aの断面図である。図7に示される液晶表示装置10Aの部分は、図3に示される実施形態1の液晶表示10の部分に対応している。本実施形態の液晶表示装置10Aの基本的な構成は、実施形態1のものと同様である。ただし、本実施形態の液晶表示装置10Aは、液晶表示装置12Aが備えるシャーシ14の底板14a上に、介在部22が設けられている点が、実施形態1のものと異なっている。 FIG. 7 is a cross-sectional view of the liquid crystal display device 10A according to the second embodiment. The part of the liquid crystal display device 10A shown in FIG. 7 corresponds to the part of the liquid crystal display 10 of the first embodiment shown in FIG. The basic configuration of the liquid crystal display device 10A of the present embodiment is the same as that of the first embodiment. However, the liquid crystal display device 10A of the present embodiment is different from that of the first embodiment in that an interposition part 22 is provided on the bottom plate 14a of the chassis 14 included in the liquid crystal display device 12A.
 図8は、実施形態2に係る照明装置12Aが備えるシャーシ14の平面図である。図8に示されるように、矩形状をなす底板14aを覆うように、反射塗膜20が形成されている。そして、シャーシ14の四隅に、それぞれ介在部22が設けられている。つまり、本獅子形態の場合、4個の介在部22が設けられている。介在部22は、底板14aと同じ材質からなり、本実施形態の場合、アルミニウムからなる。介在部22の外観形状は、四角柱状である。介在部22は、底板14aの板面から突出した形で、底板14a上に固定されている。 FIG. 8 is a plan view of the chassis 14 provided in the illumination device 12A according to the second embodiment. As shown in FIG. 8, a reflective coating film 20 is formed so as to cover a bottom plate 14a having a rectangular shape. And the interposition part 22 is provided in the four corners of the chassis 14, respectively. That is, in the case of this insulator form, the four interposition parts 22 are provided. The interposition part 22 consists of the same material as the baseplate 14a, and consists of aluminum in the case of this embodiment. The appearance of the interposition part 22 is a quadrangular prism. The interposition part 22 is fixed on the bottom plate 14a so as to protrude from the plate surface of the bottom plate 14a.
 各介在部22の上端面22a上に、導光板19の端部が載せられる。図7に示されるように、介在部22の上端面22aは、導光板19の裏側の板面19bにおける端部(周端部)と接触している。なお、図8において、導光板19が載せられる個所が、一点鎖線で示されている。 The end of the light guide plate 19 is placed on the upper end surface 22a of each interposition part 22. As shown in FIG. 7, the upper end surface 22 a of the interposition portion 22 is in contact with the end portion (circumferential end portion) of the plate surface 19 b on the back side of the light guide plate 19. In FIG. 8, the place where the light guide plate 19 is placed is indicated by a one-dot chain line.
 介在部22は、導光板19と底板14aとの間に介在して、導光板19の裏側の板面19bが反射塗膜20と接触することを防止している。導光板19の裏側の板面19bが、直に反射塗膜20と接触すると、前記板面19bが反射塗膜20によって傷つけられてしまうことがある。例えば、導光板19が温度、湿度の影響を受けて伸縮する場合や、導光板19をシャーシ14に組み付ける場合等において、導光板19と反射塗膜20が直に接触して、板面19bが傷つけられてしまう。しかしながら、本実施形態のように、導光板19と底板14aとの間に所定の介在部22を設けると、前記板面19bが前記反射塗膜20から離れる(遠ざかる)ため、前記板面19bを保護できる。 The interposition part 22 is interposed between the light guide plate 19 and the bottom plate 14 a to prevent the plate surface 19 b on the back side of the light guide plate 19 from coming into contact with the reflective coating film 20. If the plate surface 19b on the back side of the light guide plate 19 is in direct contact with the reflective coating film 20, the plate surface 19b may be damaged by the reflective coating film 20. For example, when the light guide plate 19 expands and contracts under the influence of temperature and humidity, or when the light guide plate 19 is assembled to the chassis 14, the light guide plate 19 and the reflective coating 20 are in direct contact with each other, and the plate surface 19 b is You will be hurt. However, as in the present embodiment, when a predetermined intervening portion 22 is provided between the light guide plate 19 and the bottom plate 14a, the plate surface 19b moves away from the reflective coating film 20, so that the plate surface 19b is Can protect.
 前記導光板19の板面19bと反射塗膜20との間隔(距離)は、前記介在部22の高さ(底板14aからの高さ)を適宜、調節することによって、設定される。なお、前記板面19bと反射塗膜20との間隔(距離)が大きすぎると、導光板の板面19bから光が漏れる虞がある。そのため、前記板面19bからの光漏れ防止等も考慮しつつ、前記間隔が設定されることが好ましい。 The distance (distance) between the plate surface 19b of the light guide plate 19 and the reflective coating 20 is set by appropriately adjusting the height of the interposition part 22 (height from the bottom plate 14a). In addition, when the space | interval (distance) of the said plate surface 19b and the reflective coating film 20 is too large, there exists a possibility that light may leak from the plate surface 19b of a light-guide plate. Therefore, it is preferable that the interval is set while taking into consideration prevention of light leakage from the plate surface 19b.
 なお、上記のように介在部22を設けることによって、反射塗膜12自身も、導光板19の板面19bとの接触によって損傷し、剥離することが防止される。 In addition, by providing the interposition part 22 as described above, the reflective coating film 12 itself is also prevented from being damaged and peeled off by contact with the plate surface 19b of the light guide plate 19.
 介在部22の設置個所としては、本実施形態のように、前記介在部22の上端面22aが、導光板19の周端部と接触するように設定することが好ましい。このように導光板19の周端部に対応するように介在部22をシャーシ14内に配置すると、介在部22が液晶パネル11の表示領域外に配される。したがって、前記介在部22によって暗部(影)が生じても、その暗部が前記表示領域内に入り込むことが抑制される。 As the installation location of the interposition part 22, it is preferable to set the upper end surface 22a of the interposition part 22 to be in contact with the peripheral end part of the light guide plate 19 as in the present embodiment. Thus, when the interposition part 22 is disposed in the chassis 14 so as to correspond to the peripheral end of the light guide plate 19, the interposition part 22 is disposed outside the display area of the liquid crystal panel 11. Therefore, even if a dark part (shadow) is generated by the interposition part 22, the dark part is suppressed from entering the display area.
 また、本実施形態の介在部22は、アルミニウムからなり放熱性に優れる。このように、金属材料等の放熱性に優れる材料(放熱材料)を利用して、介在部22を製造すると、前記介在部22によって、導光板19等からの熱を、シャーシ14の底板14aへ円滑に移動させる(逃がす)ことができる。 Moreover, the interposition part 22 of this embodiment consists of aluminum, and is excellent in heat dissipation. Thus, when the interposition part 22 is manufactured using a material (heat dissipating material) excellent in heat dissipation such as a metal material, heat from the light guide plate 19 or the like is transmitted to the bottom plate 14 a of the chassis 14 by the interposition part 22. It can be moved (released) smoothly.
 <実施形態3>
 次いで、本発明の実施形態3を、図9を参照しつつ説明する。図9は、実施形態3に係る液晶表示装置12Bの断面図である。本実施形態の液晶表示装置10Bは、所謂、直下型の照明装置12Bを備えている。液晶パネル11の背面11b側に、光源としての冷陰極蛍光管(CCFL:Cold Cathode Fluorescent Lamp)16Bが複数本配されている。冷陰極蛍光管16Bは、シャーシ14B内において、互いに間隔を置いて平行に配されている。各冷陰極蛍光管16Bは、図示されないホルダによってシャーシ14の底板14Ba上に配されている。陰極蛍光管16Bと、シャーシ14の底板14Baとの間には隙間がある。
<Embodiment 3>
Next, Embodiment 3 of the present invention will be described with reference to FIG. FIG. 9 is a cross-sectional view of the liquid crystal display device 12B according to the third embodiment. The liquid crystal display device 10B of this embodiment includes a so-called direct-type illumination device 12B. A plurality of cold cathode fluorescent lamps (CCFLs) 16B as light sources are arranged on the back surface 11b side of the liquid crystal panel 11. The cold cathode fluorescent tubes 16B are arranged in parallel at intervals from each other in the chassis 14B. Each cold cathode fluorescent tube 16B is arranged on the bottom plate 14Ba of the chassis 14 by a holder (not shown). There is a gap between the cathode fluorescent tube 16 </ b> B and the bottom plate 14 </ b> Ba of the chassis 14.
 シャーシ14の底板14Baの表面(内面)と、壁14Bc,14Bd等の表面(内面)には、凹凸パターン40Bが形成されている。そして、この凹凸パターン30Bを覆うように、反射塗膜20Bが形成されている。このように、反射塗膜20Bを、シャーシ14の底板14Baのみならず、各壁14Bc等にも形成してもよい。また、本実施形態のように、直下型の照明装置12Bにおいても、シャーシ14Bに反射塗膜20Bを形成してもよい。 An uneven pattern 40B is formed on the surface (inner surface) of the bottom plate 14Ba of the chassis 14 and the surfaces (inner surface) of the walls 14Bc, 14Bd and the like. And reflective coating 20B is formed so that this uneven | corrugated pattern 30B may be covered. Thus, the reflective coating film 20B may be formed not only on the bottom plate 14Ba of the chassis 14, but also on each wall 14Bc and the like. Further, as in the present embodiment, the reflective coating film 20B may be formed on the chassis 14B even in the direct type illumination device 12B.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
 (1)上記実施形態1では、ブラスト加工によって、底板14aの板面上に、凹凸パターン40を形成していた。他の実施形態においては、例えば、プレス加工によって、底板14aの板面上に、規則的な凹凸パターン40Cを形成してもよい。図10は、凹凸パターン40C及び反射塗膜20Cの変形例を模式的に表した拡大断面図である。図10には、底板14aの板面から盛り上がった凸部41と、隣り合った凸部41の間に形成される凹部42とが示されている。各凸部41は、底板14aの板面上において互いに平行に延びた形をなしている。そして、凸部41同士の間隔は、略一定に保たれている。このように、規則的な凹凸パターン40C上に、反射塗膜20Cを形成してもよい。そして、反射塗膜20Cの表面が、規則的な凹凸状をなしてもよい。 (1) In the first embodiment, the uneven pattern 40 is formed on the plate surface of the bottom plate 14a by blasting. In another embodiment, the regular uneven pattern 40C may be formed on the plate surface of the bottom plate 14a by, for example, pressing. FIG. 10 is an enlarged cross-sectional view schematically showing a modification of the uneven pattern 40C and the reflective coating film 20C. FIG. 10 shows a convex portion 41 that swells from the plate surface of the bottom plate 14 a and a concave portion 42 that is formed between adjacent convex portions 41. Each convex part 41 has comprised the shape extended mutually parallel on the board surface of the baseplate 14a. And the space | interval of convex parts 41 is kept substantially constant. Thus, the reflective coating film 20C may be formed on the regular uneven pattern 40C. And the surface of 20 C of reflective coating films may make regular uneven | corrugated shape.
 (2)上記実施形態1では、反射塗膜20は、凹凸パターン40を覆うように、底板14aの板面上に、略一面に形成されている。他の実施形態においては、反射塗膜20を、所定のパターン状に形成してもよい。例えば、所定の面内分布を有する斑点状のパターンとして、底板14aの板面上に形成してもよい。この場合、LED光源16から遠ざかる程、斑点の大きさが大きくなるように設定してもよい。 (2) In Embodiment 1 described above, the reflective coating film 20 is formed on substantially the entire surface of the bottom plate 14a so as to cover the uneven pattern 40. In other embodiments, the reflective coating film 20 may be formed in a predetermined pattern. For example, it may be formed on the plate surface of the bottom plate 14a as a spot-like pattern having a predetermined in-plane distribution. In this case, you may set so that the size of a spot may become large, so that it distances from the LED light source 16. FIG.
 (3)上記実施形態1では、底板14aの板面上のみに、凹凸パターン40及び反射塗膜20が形成されている。他の実施形態においては、例えば、壁14dの内面上に、凹凸パターン40及び反射塗膜20が形成されてもよい。 (3) In the said Embodiment 1, the uneven | corrugated pattern 40 and the reflective coating film 20 are formed only on the board surface of the bottom board 14a. In other embodiments, for example, the uneven pattern 40 and the reflective coating film 20 may be formed on the inner surface of the wall 14d.
 (4)上記実施形態2では、介在部22が放熱材料から形成されている。他の実施形態においては、介在部22は、アクリル樹脂等の樹脂材料から形成されてもよい。 (4) In the second embodiment, the interposition part 22 is formed of a heat dissipation material. In other embodiments, the interposition part 22 may be formed from resin materials, such as an acrylic resin.
 (5)上記実施形態2では、介在部22が四角柱状である。他の実施形態においては、特に制限はなく、円柱状、三角柱等であってもよい。 (5) In the second embodiment, the interposition part 22 has a quadrangular prism shape. In another embodiment, there is no restriction | limiting in particular, A cylindrical shape, a triangular prism, etc. may be sufficient.
 10...液晶表示装置(表示装置)、11...液晶パネル(表示パネル)、12...照明装置(バックライト装置)、13...ベゼル、14...シャーシ(収容部材)、15...光学シート、19...導光板、20...反射塗膜、21...フレーム、40...反射塗膜 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display device (display device), 11 ... Liquid crystal panel (display panel), 12 ... Illumination device (backlight device), 13 ... Bezel, 14 ... Chassis (housing member) , 15 ... optical sheet, 19 ... light guide plate, 20 ... reflective coating, 21 ... frame, 40 ... reflective coating

Claims (11)

  1.  光源と、
     前記光源を組み付けるためのシャーシであって、前記シャーシのうち前記光源からの光が出射する側の面に凹凸パターンが形成されてなると共に、前記凹凸パターンを覆う反射塗膜を備えてなるシャーシと、を備える照明装置。
    A light source;
    A chassis for assembling the light source, wherein the chassis has a concavo-convex pattern formed on a surface of the chassis on the side from which light from the light source is emitted, and a chassis having a reflective coating film covering the concavo-convex pattern; A lighting device comprising:
  2.  端面から入射された光を表側の板面から出射させる板状部材からなり、裏側の板面が前記反射塗膜と対向するように前記シャーシに組み付けられる導光板を備え、
     前記光源が、前記導光板の前記端面と対向するように前記シャーシに組み付けられる請求項1に記載の照明装置。
    It is composed of a plate-like member that emits light incident from the end surface from the front plate surface, and includes a light guide plate that is assembled to the chassis so that the back plate surface faces the reflective coating film,
    The lighting device according to claim 1, wherein the light source is assembled to the chassis so as to face the end face of the light guide plate.
  3.  前記導光板の裏側の板面が前記反射塗膜と接触しないように前記シャーシと前記導光板との間に介在される介在部を備える照明装置。 An illuminating device including an interposition portion interposed between the chassis and the light guide plate so that a plate surface on the back side of the light guide plate does not come into contact with the reflective coating film.
  4.  前記介在部は、前記導光板の裏側の板面における周縁部と接触するように、前記シャーシに固定されている請求項3に記載の照明装置。 The illuminating device according to claim 3, wherein the interposition part is fixed to the chassis so as to come into contact with a peripheral part on a plate surface on the back side of the light guide plate.
  5.  前記介在部は、放熱材料からなる請求項3又は請求項4に記載の照明装置。 The lighting device according to claim 3 or 4, wherein the interposition part is made of a heat dissipation material.
  6.  前記シャーシが、金属材料からなる請求項1ないし請求項5のいずれか一項に記載の照明装置。 The lighting device according to any one of claims 1 to 5, wherein the chassis is made of a metal material.
  7.  前記凹凸パターンは、前記シャーシの表面を凹凸加工することによって形成される請求項1ないし請求項6のいずれか一項に記載の照明装置。 The illumination device according to any one of claims 1 to 6, wherein the uneven pattern is formed by performing uneven processing on a surface of the chassis.
  8.  前記反射塗膜は、前記凹凸パターンに沿った凹凸状をなしている請求項1ないし請求項7のいずれか一項に記載の照明装置。 The illuminating device according to any one of claims 1 to 7, wherein the reflective coating film has an uneven shape along the uneven pattern.
  9.  請求項1ないし請求項8のいずれか一項に記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える表示装置。 A display device comprising: the illumination device according to any one of claims 1 to 8; and a display panel that performs display using light from the illumination device.
  10.  前記表示パネルは、一対の基板間に液晶を封入してなる液晶パネルからなる請求項9に記載の表示装置。 The display device according to claim 9, wherein the display panel is a liquid crystal panel in which liquid crystal is sealed between a pair of substrates.
  11.  請求項9又は請求項10に記載された表示装置を備えるテレビ受信装置。 A television receiver comprising the display device according to claim 9 or 10.
PCT/JP2012/066139 2011-06-28 2012-06-25 Illuminating device, display device and television receiver WO2013002174A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-143146 2011-06-28
JP2011143146 2011-06-28

Publications (1)

Publication Number Publication Date
WO2013002174A1 true WO2013002174A1 (en) 2013-01-03

Family

ID=47424067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066139 WO2013002174A1 (en) 2011-06-28 2012-06-25 Illuminating device, display device and television receiver

Country Status (1)

Country Link
WO (1) WO2013002174A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445664A (en) * 2018-03-30 2018-08-24 京东方科技集团股份有限公司 A kind of backboard and preparation method thereof, backlight module and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107542A (en) * 1991-10-18 1993-04-30 Fujitsu Ltd Backlight unit for display device
JPH05241150A (en) * 1992-02-28 1993-09-21 Nissha Printing Co Ltd Surface light emitting device
JP2003066238A (en) * 2001-08-27 2003-03-05 Yuka Denshi Co Ltd Light transmission body, surface light source device and front light device and liquid crystal display device employing the light transmission body
JP2006047339A (en) * 2004-07-30 2006-02-16 Optrex Corp Backlight device for liquid crystal panel and liquid crystal display element
JP2007087916A (en) * 2005-08-24 2007-04-05 Idemitsu Kosan Co Ltd Housing structure for lighting device and its manufacturing method as well as backlight device using above structure
JP2010147012A (en) * 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd Planar light source, and display lighting fixture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107542A (en) * 1991-10-18 1993-04-30 Fujitsu Ltd Backlight unit for display device
JPH05241150A (en) * 1992-02-28 1993-09-21 Nissha Printing Co Ltd Surface light emitting device
JP2003066238A (en) * 2001-08-27 2003-03-05 Yuka Denshi Co Ltd Light transmission body, surface light source device and front light device and liquid crystal display device employing the light transmission body
JP2006047339A (en) * 2004-07-30 2006-02-16 Optrex Corp Backlight device for liquid crystal panel and liquid crystal display element
JP2007087916A (en) * 2005-08-24 2007-04-05 Idemitsu Kosan Co Ltd Housing structure for lighting device and its manufacturing method as well as backlight device using above structure
JP2010147012A (en) * 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd Planar light source, and display lighting fixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445664A (en) * 2018-03-30 2018-08-24 京东方科技集团股份有限公司 A kind of backboard and preparation method thereof, backlight module and display device

Similar Documents

Publication Publication Date Title
US8789959B2 (en) Lighting device, display device and television device
WO2013035601A1 (en) Illumination device, display device and television receiving device
US8985799B2 (en) Lighting device, display device and television device
US20150362652A1 (en) Lighting device, display device, and television receiving device
WO2013051473A1 (en) Illumination device, display device, and television receiving device
WO2011077866A1 (en) Lighting device, display device, and television receiver device
WO2012169441A1 (en) Lighting device, display device and television receiver
WO2013115084A1 (en) Display device, and television receiver device
WO2014021304A1 (en) Illumination device, display device, and television reception device
US9298028B2 (en) Display device and television device
WO2014017346A1 (en) Display device, and television receiver
WO2014021303A1 (en) Illumination device, display device, and television reception device
WO2013129244A1 (en) Display device, and television receiver
WO2012128193A1 (en) Lighting device and display device
JP2013218055A (en) Display device and television receiver
WO2014196235A1 (en) Illumination device, display device, and tv receiver
US20180143496A1 (en) Lighting device, display device, and television device
WO2013047367A1 (en) Display device and television receiving device
WO2012165318A1 (en) Illuminating apparatus, display apparatus, and television receiver
WO2012077562A1 (en) Illumination device, display device and television receiving device
WO2012169440A1 (en) Lighting device, display device and television receiver
WO2013002174A1 (en) Illuminating device, display device and television receiver
US11360255B2 (en) Display device
WO2014046032A1 (en) Display device and television receiver
JP2014041761A (en) Lighting device, display device and television receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP