WO2013002106A1 - Image processing device and method - Google Patents

Image processing device and method Download PDF

Info

Publication number
WO2013002106A1
WO2013002106A1 PCT/JP2012/065815 JP2012065815W WO2013002106A1 WO 2013002106 A1 WO2013002106 A1 WO 2013002106A1 JP 2012065815 W JP2012065815 W JP 2012065815W WO 2013002106 A1 WO2013002106 A1 WO 2013002106A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
pixel
image
intra prediction
prediction
Prior art date
Application number
PCT/JP2012/065815
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 数史
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2013002106A1 publication Critical patent/WO2013002106A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes

Definitions

  • the present disclosure relates to an image processing apparatus and method, and more particularly, to an image processing apparatus and method capable of improving encoding efficiency.
  • MPEG compressed by orthogonal transform such as discrete cosine transform and motion compensation
  • a device that conforms to a method such as Moving (Pictures Experts Group) has been widely used for both information distribution in broadcasting stations and information reception in general households.
  • MPEG2 International Organization for Standardization
  • IEC International Electrotechnical Commission
  • MPEG2 was mainly intended for high-quality encoding suitable for broadcasting, but did not support encoding methods with a lower code amount (bit rate) than MPEG1, that is, a higher compression rate.
  • bit rate code amount
  • MPEG4 encoding system has been standardized accordingly.
  • the standard was approved as an international standard in December 1998 as ISO / IEC 14496-2.
  • H.26L International Telecommunication Union Telecommunication Standardization Sector
  • Q6 / 16 VCEG Video Coding Expert Group
  • H.26L is known to achieve higher encoding efficiency than the conventional encoding schemes such as MPEG2 and MPEG4, although a large amount of calculation is required for encoding and decoding.
  • MPEG4 activities standardization to achieve higher coding efficiency based on this H.26L and incorporating functions not supported by H.26L has been carried out as Joint Model of Enhanced-Compression Video Coding. It was.
  • AVC Advanced Video Coding
  • RGB, 4: 2: 2, 4: 4: 4 encoding tools necessary for business use 8x8DCT (Discrete Cosine Transform) and quantization matrix specified by MPEG-2 are added.
  • FRExt Full State Image Codon Standardization was completed in February 2005. This makes it possible to use AVC to properly express film noise in movies. It has been used for a wide range of applications such as Blu-Ray Disc.
  • the conventional macroblock size of 16 pixels ⁇ 16 pixels is a large image frame such as UHD (Ultra High Definition: 4000 pixels ⁇ 2000 pixels), which is the target of the next generation encoding method. There was a fear that it was not optimal.
  • HEVC High Efficiency Video Video Coding
  • JCTVC Joint Collaboration Collaboration Team Video Coding
  • a coding unit (Coding Unit) is defined as a processing unit similar to a macroblock in AVC.
  • the CU is not fixed to a size of 16 ⁇ 16 pixels like the AVC macroblock, and is specified in the image compression information in each sequence.
  • a mode is provided that prohibits intra prediction (intra-screen prediction) from pixels reconstructed by inter prediction (inter-screen prediction) in inter pictures.
  • This mode is to prevent the error from affecting the intra prediction when an error is mixed in an image that is referred to in inter prediction or inter prediction.
  • the syntax in AVC specifies that decoding is performed in the above-described mode when the flag indicated by constrained_intra_pred_flag present in the picture parameter is 1.
  • Non-Patent Document 2 when interpolating an unusable (not available) surrounding pixel value using an available (available) surrounding pixel, Since the same value is used, there is a possibility that sufficient encoding efficiency cannot be realized.
  • the present disclosure has been made in view of such a situation, and allows pixels in an inter prediction block that cannot be used to be replaced with pixels with higher accuracy, thereby improving encoding efficiency.
  • the purpose is to be able to.
  • One aspect of the present disclosure is that in constrained intra prediction, adjacent pixels that are adjacent to the region that is the processing target of the constrained intra prediction and are used for prediction, and are sandwiched between two usable peripheral pixels For one or a plurality of consecutive peripheral pixels that cannot be used, an interpolation pixel generation unit that generates an interpolation pixel value corresponding to the position, and an interpolation pixel value generated by the interpolation pixel generation unit is used.
  • the image processing apparatus includes a predicted image generation unit that performs intra prediction and generates a predicted image.
  • the interpolation pixel generation unit can generate an interpolation pixel value having a value corresponding to a distance from the available surrounding pixels.
  • the interpolation pixel generation unit can generate the interpolation pixel value by linear interpolation using two neighboring pixels that can be used.
  • the interpolation pixel generation unit can perform division using an approximate value that is a power of 2 in the linear interpolation.
  • the interpolation pixel generation unit calculates a pixel value of the right adjacent pixel when the pixel adjacent to the right of the peripheral pixel is usable with respect to the unusable peripheral pixel at the upper left of the region.
  • the pixel value of the lower pixel is used as the interpolation pixel value of the peripheral pixel.
  • the flag determination unit further determines a value of flag information related to intra prediction
  • the interpolated pixel generation unit determines that the restricted intra prediction is specified by the flag information
  • a size determination unit that determines the size of the region is further included, and the interpolation pixel generation unit can generate the interpolation pixel value when the size determination unit determines that the region is small.
  • the size determination unit determines a size of the region using a threshold value, and the interpolation pixel generation unit determines the interpolation pixel value when the size determination unit determines that the region is equal to or less than the threshold value. Can be generated.
  • a transmission unit for transmitting the threshold value can be further provided.
  • a receiving unit that receives the threshold value to be transmitted is further provided, and the size determining unit can determine the size of the region using the threshold value received by the receiving unit.
  • the threshold value can be set according to the profile level.
  • One aspect of the present disclosure is also an image processing method of the image processing device, wherein the interpolation pixel generation unit is adjacent to the region that is the processing target of the restricted intra prediction in the restricted intra prediction, and the prediction is performed. For one or more consecutive peripheral pixels that are used peripheral pixels that are sandwiched between two peripheral pixels that can be used, an interpolated pixel value corresponding to the position is generated.
  • This is an image processing method in which a predicted image generation unit performs intra prediction using a generated interpolation pixel value to generate a predicted image.
  • an interpolated pixel value corresponding to the position is generated, and intra prediction is performed using the generated interpolated pixel value.
  • An image is generated.
  • an image can be processed.
  • encoding efficiency can be improved.
  • FIG. 26 is a block diagram illustrating a main configuration example of a personal computer. It is a block diagram which shows an example of a schematic structure of a television apparatus. It is a block diagram which shows an example of a schematic structure of a mobile telephone. It is a block diagram which shows an example of a schematic structure of a recording / reproducing apparatus. It is a block diagram which shows an example of a schematic structure of an imaging device.
  • FIG. 1 is a block diagram illustrating a main configuration example of an image encoding device that is an image processing device.
  • the image encoding device 100 shown in FIG. Like the H.264 and MPEG (Moving Picture Experts Group) 4 Part 10 (AVC (Advanced Video Coding)) coding system, the image data is encoded using a prediction process.
  • H.264 and MPEG Motion Picture Experts Group 4 Part 10 (AVC (Advanced Video Coding)
  • AVC Advanced Video Coding
  • the image encoding device 100 includes an A / D conversion unit 101, a screen rearrangement buffer 102, a calculation unit 103, an orthogonal transformation unit 104, a quantization unit 105, a lossless encoding unit 106, and a storage buffer. 107.
  • the image coding apparatus 100 also includes an inverse quantization unit 108, an inverse orthogonal transform unit 109, a calculation unit 110, a loop filter 111, a frame memory 112, a selection unit 113, an intra prediction unit 114, a motion prediction / compensation unit 115, and a prediction.
  • An image selection unit 116 and a rate control unit 117 are included.
  • the image encoding apparatus 100 further includes a restricted intra prediction unit 121.
  • the A / D conversion unit 101 performs A / D conversion on the input image data, and supplies the converted image data (digital data) to the screen rearrangement buffer 102 for storage.
  • the screen rearrangement buffer 102 rearranges the images of the frames in the stored display order in the order of frames for encoding in accordance with GOP (Group Of Picture), and the images in which the order of the frames is rearranged. This is supplied to the calculation unit 103.
  • the screen rearrangement buffer 102 also supplies the image in which the order of the frames is rearranged to the intra prediction unit 114 and the motion prediction / compensation unit 115.
  • the calculation unit 103 subtracts the prediction image supplied from the intra prediction unit 114 or the motion prediction / compensation unit 115 via the prediction image selection unit 116 from the image read from the screen rearrangement buffer 102, and the difference information Is output to the orthogonal transform unit 104.
  • the calculation unit 103 subtracts the prediction image supplied from the intra prediction unit 114 from the image read from the screen rearrangement buffer 102.
  • the arithmetic unit 103 subtracts the predicted image supplied from the motion prediction / compensation unit 115 from the image read from the screen rearrangement buffer 102.
  • the orthogonal transform unit 104 performs orthogonal transform such as discrete cosine transform and Karhunen-Loeve transform on the difference information supplied from the computation unit 103. Note that this orthogonal transformation method is arbitrary.
  • the orthogonal transform unit 104 supplies the transform coefficient to the quantization unit 105.
  • the quantization unit 105 quantizes the transform coefficient supplied from the orthogonal transform unit 104.
  • the quantization unit 105 sets a quantization parameter based on the information regarding the target value of the code amount supplied from the rate control unit 117, and performs the quantization. Note that this quantization method is arbitrary.
  • the quantization unit 105 supplies the quantized transform coefficient to the lossless encoding unit 106.
  • the lossless encoding unit 106 encodes the transform coefficient quantized by the quantization unit 105 using an arbitrary encoding method. Since the coefficient data is quantized under the control of the rate control unit 117, the code amount becomes a target value set by the rate control unit 117 (or approximates the target value).
  • the lossless encoding unit 106 acquires intra prediction information including information indicating an intra prediction mode from the intra prediction unit 114, and moves inter prediction information including information indicating an inter prediction mode, motion vector information, and the like. Obtained from the prediction / compensation unit 115. Further, the lossless encoding unit 106 acquires filter coefficients used in the loop filter 111 and the like.
  • the lossless encoding unit 106 encodes these various types of information using an arbitrary encoding method, and makes it a part of the header information of the encoded data (multiplexes).
  • the lossless encoding unit 106 supplies the encoded data obtained by encoding to the accumulation buffer 107 for accumulation.
  • Examples of the encoding method of the lossless encoding unit 106 include variable length encoding or arithmetic encoding.
  • Examples of variable length coding include H.264.
  • CAVLC Context-Adaptive Variable Length Coding
  • Examples of arithmetic coding include CABAC (Context-Adaptive Binary Arithmetic Coding).
  • the accumulation buffer 107 temporarily holds the encoded data supplied from the lossless encoding unit 106.
  • the accumulation buffer 107 outputs the stored encoded data as a bit stream at a predetermined timing, for example, to a recording device (recording medium) or a transmission path (not shown) in the subsequent stage. That is, various encoded information is supplied to the decoding side.
  • the transform coefficient quantized by the quantization unit 105 is also supplied to the inverse quantization unit 108.
  • the inverse quantization unit 108 inversely quantizes the quantized transform coefficient by a method corresponding to the quantization by the quantization unit 105.
  • the inverse quantization method may be any method as long as it is a method corresponding to the quantization processing by the quantization unit 105.
  • the inverse quantization unit 108 supplies the obtained transform coefficient to the inverse orthogonal transform unit 109.
  • the inverse orthogonal transform unit 109 performs inverse orthogonal transform on the transform coefficient supplied from the inverse quantization unit 108 by a method corresponding to the orthogonal transform process by the orthogonal transform unit 104.
  • the inverse orthogonal transform method may be any method as long as it corresponds to the orthogonal transform processing by the orthogonal transform unit 104.
  • the inversely orthogonally transformed output (difference information restored locally) is supplied to the calculation unit 110.
  • the calculation unit 110 converts the inverse orthogonal transform result supplied from the inverse orthogonal transform unit 109, that is, locally restored difference information, into the intra prediction unit 114 or the motion prediction / compensation unit 115 via the predicted image selection unit 116. Are added to the predicted image to obtain a locally reconstructed image (hereinafter referred to as a reconstructed image).
  • the reconstructed image is supplied to the loop filter 111 or the frame memory 112.
  • the loop filter 111 includes a deblock filter, an adaptive loop filter, and the like, and appropriately performs a filtering process on the decoded image supplied from the calculation unit 110.
  • the loop filter 111 removes block distortion of the decoded image by performing a deblocking filter process on the decoded image.
  • the loop filter 111 performs image quality improvement by performing loop filter processing using a Wiener filter on the deblock filter processing result (decoded image from which block distortion has been removed). Do.
  • the loop filter 111 may perform arbitrary filter processing on the decoded image. Further, the loop filter 111 can supply information such as filter coefficients used for the filter processing to the lossless encoding unit 106 and encode it as necessary.
  • the loop filter 111 supplies a filter processing result (hereinafter referred to as a decoded image) to the frame memory 112.
  • the frame memory 112 stores the reconstructed image supplied from the calculation unit 110 and the decoded image supplied from the loop filter 111, respectively.
  • the frame memory 112 supplies the stored reconstructed image to the intra prediction unit 114 via the selection unit 113 at a predetermined timing or based on a request from the outside such as the intra prediction unit 114.
  • the frame memory 112 also stores the decoded image stored at a predetermined timing or based on a request from the outside such as the motion prediction / compensation unit 115 via the selection unit 113. 115.
  • the selection unit 113 indicates a supply destination of an image output from the frame memory 112. For example, in the case of intra prediction, the selection unit 113 reads an image (reconstructed image) that has not been subjected to filter processing from the frame memory 112 and supplies it to the intra prediction unit 114 as peripheral pixels.
  • the selection unit 113 reads out an image (decoded image) that has been filtered from the frame memory 112, and supplies it as a reference image to the motion prediction / compensation unit 115.
  • the intra prediction unit 114 When the intra prediction unit 114 acquires an image (peripheral image) of a peripheral region located around the processing target region from the frame memory 112, the intra prediction unit 114 basically uses a pixel value of the peripheral image to perform a prediction unit (PU). Intra prediction (intra-screen prediction) for generating a predicted image with the processing unit as the processing unit. The intra prediction unit 114 performs this intra prediction in a plurality of modes (intra prediction modes) prepared in advance.
  • Intra prediction modes intra prediction modes
  • the intra prediction unit 114 generates predicted images in all candidate intra prediction modes, evaluates the cost function value of each predicted image using the input image supplied from the screen rearrangement buffer 102, and selects the optimum mode. select. When the intra prediction unit 114 selects the optimal intra prediction mode, the intra prediction unit 114 supplies the predicted image generated in the optimal mode to the predicted image selection unit 116.
  • the intra prediction unit 114 appropriately supplies intra prediction information including information related to intra prediction, such as an optimal intra prediction mode, to the lossless encoding unit 106 to be encoded.
  • the motion prediction / compensation unit 115 basically performs motion prediction (inter prediction) using the input image supplied from the screen rearrangement buffer 102 and the reference image supplied from the frame memory 112 as a processing unit. And a motion compensation process is performed according to the detected motion vector to generate a predicted image (inter predicted image information).
  • the motion prediction / compensation unit 115 performs such inter prediction in a plurality of modes (inter prediction modes) prepared in advance.
  • the motion prediction / compensation unit 115 generates prediction images in all candidate inter prediction modes, evaluates the cost function value of each prediction image, and selects an optimal mode. When the optimal inter prediction mode is selected, the motion prediction / compensation unit 115 supplies the predicted image generated in the optimal mode to the predicted image selection unit 116.
  • the motion prediction / compensation unit 115 supplies inter prediction information including information related to inter prediction, such as an optimal inter prediction mode, to the lossless encoding unit 106 to be encoded.
  • inter prediction when inter prediction is selected as the optimal prediction mode, the motion prediction / compensation unit 115 notifies the intra prediction unit 114 of information on the optimal inter prediction mode.
  • the predicted image selection unit 116 selects a supply source of a predicted image to be supplied to the calculation unit 103 or the calculation unit 110.
  • the prediction image selection unit 116 selects the intra prediction unit 114 as a supply source of the prediction image, and supplies the prediction image supplied from the intra prediction unit 114 to the calculation unit 103 and the calculation unit 110.
  • the predicted image selection unit 116 selects the motion prediction / compensation unit 115 as a supply source of the predicted image, and calculates the predicted image supplied from the motion prediction / compensation unit 115 as the calculation unit 103. To the arithmetic unit 110.
  • the rate control unit 117 controls the quantization operation rate of the quantization unit 105 based on the code amount of the encoded data stored in the storage buffer 107 so that overflow or underflow does not occur.
  • Coding Unit is also called Coding Block (CTB), and is a partial area of a picture unit image that plays the same role as a macroblock in AVC.
  • CTB Coding Block
  • the latter is fixed to a size of 16 ⁇ 16 pixels, whereas the size of the former is not fixed, and is specified in the image compression information in each sequence.
  • the CU having the largest size is called LCU (Largest Coding Unit), and the CU having the smallest size is called SCU (Smallest Coding Unit).
  • LCU Large Coding Unit
  • SCU Smallest Coding Unit
  • the sizes of these regions are specified, but each is limited to a square and a size represented by a power of 2.
  • Figure 2 shows an example of coding unit (Coding Unit) defined in HEVC.
  • the LCU size is 128 and the maximum hierarchical depth is 5.
  • split_flag is “1”
  • the 2N ⁇ 2N size CU is divided into N ⁇ N size CUs that are one level below.
  • the CU is divided into prediction units (Prediction Units (PU)) that are regions (partial regions of images in units of pictures) that are processing units of intra or inter prediction, and are regions that are processing units of orthogonal transformation It is divided into transform units (Transform Unit (TU)), which is (a partial area of an image in units of pictures).
  • Prediction Units PU
  • TU Transform Unit
  • area includes all areas (for example, AVC macroblocks and sub-macroblocks, LCU, CU, SCU, PU, TU, etc.), which may be any of them. .
  • areas for example, AVC macroblocks and sub-macroblocks, LCU, CU, SCU, PU, TU, etc.
  • units other than those described above may be included, and units that are impossible according to the content of the description are appropriately excluded.
  • HEVC intra prediction method Next, an intra prediction method defined in HEVC will be described.
  • the unit of PU for intra prediction is 4 ⁇ 4, 8 ⁇ 8, 16 ⁇ 16, 32 ⁇ 32, or 64 ⁇ 64.
  • intra prediction processing is performed based on a method called Angular Prediction described later.
  • intra prediction processing is performed based on a method called Arbitrary Directional Intra (ADI) described later.
  • ADI Arbitrary Directional Intra
  • the following describes the Angular Prediction intra prediction method defined in the HEVC encoding method.
  • FIG. 3 is a diagram for explaining the Angular Prediction intra prediction method.
  • ADI Arbitrary Directional Intra
  • Fig. 4 shows a diagram for explaining the Arbitrary Directional Intra (ADI) intra prediction method.
  • ADI Arbitrary Directional Intra
  • the adjacent pixel value located at the lower left is also used.
  • the prediction modes of Vertical, Horizontal, DC, DiagonalLeDown-Left, Diagonal Down-Right, Vertical-Right, Horizontal-Down, Vertical-Left, and Horizontal-Up are defined.
  • (dx, dy) is transmitted as encoded information in the image compression information.
  • a mode (constrained intra prediction) for prohibiting intra prediction from pixels reconstructed by inter prediction is prepared for inter pictures.
  • This mode is a mode for suppressing the influence of an error on intra prediction even when an error is mixed in an image of inter prediction or an image referred to in inter prediction.
  • constrained_intra_pred_flag 1 (constrained intra prediction)
  • constrained intra prediction there is a high possibility that many neighboring pixels cannot be referred to in the prediction.
  • the number of available prediction modes is greatly suppressed, and the coding efficiency may be reduced.
  • FIG. 5 illustrates an example of neighboring adjacent pixels necessary for intra prediction and the state of inter prediction / intra prediction in the surrounding CU including the neighboring pixels for the region CU # n. .
  • A, B, D, E, F, H, and I are inter-predicted CUs
  • C, G, J, and K are intra-predicted CUs.
  • inter-predicted pixels and intra-predicted pixels are mixed in the neighboring pixels in the processing target area CU # n.
  • the available intra prediction mode is only the DC (average value) prediction mode.
  • the peripheral pixel cannot be used in the existing standard, the pixel value is predicted at a fixed 128.
  • HEVC's Intra Angular Prediction aims to improve coding efficiency by setting the prediction direction of intra prediction to 33 directions and finer settings than conventional intra prediction in AVC, etc. This could lead to a significant drop.
  • Non-Patent Document 2 discloses this.
  • P T Peripheral pixel area composed of inter prediction
  • P RA Pixel composed of intra prediction adjacent to the right or top of PT
  • P LD Pixel composed of intra prediction adjacent to the left or bottom of PT .
  • the peripheral pixels composed of inter prediction pixels are changed from the pixels composed of intra prediction as shown in the following equation (1). Calculate and perform intra prediction with all surrounding pixels available.
  • a pixel composed of intra prediction pixels is used as a peripheral pixel composed of inter prediction pixels as in the following Expression (2). And intra prediction is performed with all surrounding pixels available.
  • the value to be replaced may be significantly different from the value before replacement.
  • the error is more likely to become more prominent.
  • the image encoding device 100 performs an interpolation process according to the position of the pixel.
  • this constrained_intra_pred_flag is included in the sequence parameter set and the picture parameter set, and transmitted to the decoding side as a bit stream.
  • FIG. 6 is a block diagram illustrating a main configuration example of a restricted intra prediction unit and the like.
  • the intra prediction unit 114 includes a candidate prediction image generation unit 131, a cost function value calculation unit 132, a prediction mode determination unit 133, a prediction image generation unit 134, and a mode buffer 135.
  • the restricted intra prediction unit 121 includes a flag determination unit 141, an availability determination unit 142, and an interpolation pixel generation unit 143.
  • the flag determination unit 141 determines the value of constrained_intra_pred_flag and performs constrained intra prediction on the region to be processed, or permits normal intra prediction (intra prediction from pixels reconstructed by inter prediction). Control mode instructing which intra prediction is to be performed is supplied to the candidate predicted image generation unit 131, the availability determination unit 142, and the interpolation pixel generation unit 143.
  • the candidate predicted image generation unit 131 acquires a peripheral pixel value that is a pixel value of a peripheral area located around the area from the frame memory 112.
  • the candidate prediction image generation unit 131 When normal intra prediction is designated by the control instruction supplied from the flag determination unit 141, the candidate prediction image generation unit 131 performs prediction in each intra prediction mode using the peripheral pixel values acquired from the frame memory 112. An image (candidate predicted image) is generated, and the pixel value (candidate predicted image pixel value) is supplied to the cost function value calculation unit 132.
  • the candidate prediction image generation unit 131 includes an interpolation pixel generation unit among the peripheral pixel values acquired from the frame memory 112.
  • the peripheral pixel value used for pixel interpolation is supplied to the interpolation pixel generation unit 143 by 143.
  • the candidate predicted image generation unit 131 acquires the pixel value (interpolation pixel value) of the interpolated pixel from the interpolation pixel generation unit 143.
  • the candidate predicted image generation unit 131 generates a predicted image (candidate predicted image) in each intra prediction mode using the peripheral pixel value acquired from the frame memory 112 and the interpolated pixel value, and the pixel value (candidate Predicted image pixel value) is supplied to the cost function value calculation unit 132.
  • the cost function value calculation unit 132 obtains the pixel value (input image pixel value) of the input image from the screen rearrangement buffer 102, and uses the input image pixel value and the candidate predicted image pixel value, such as AVC and HEVC. The cost function value of each mode is calculated by the same method as in the case. The cost function value calculation unit 132 supplies the calculated cost function value to the prediction mode determination unit 133.
  • the prediction mode determination unit 133 determines the optimal intra prediction mode based on the magnitude of the supplied cost function value, and notifies the prediction image generation unit 134 of the determination result (optimum intra mode).
  • the prediction image generation unit 134 generates a prediction image in the optimal intra prediction mode (optimum intra mode) notified from the prediction mode determination unit 133.
  • the predicted image generation unit 134 acquires the peripheral pixel value of the area from the frame memory 112, and generates a predicted image using the peripheral pixel value.
  • the predicted image generation unit 134 acquires peripheral pixel values of the region from the frame memory 112 and acquires an interpolation pixel value from the interpolation pixel generation unit 143 and uses them. A prediction image is generated.
  • the predicted image generation unit 134 supplies the pixel value (predicted image pixel value) of the generated predicted image to the predicted image selection unit 116.
  • the predicted image is supplied to the calculation unit 103 and the calculation unit 110, and is used to generate a difference image and a reconstructed image.
  • the predicted image generation unit 134 supplies intra mode information, which is information indicating the prediction mode (prediction mode of the predicted image) set to the optimal intra mode, to the lossless encoding unit 106 and transmits the information to the encoding side.
  • the predicted image generation unit 134 supplies the mode buffer 135 with a prediction mode (prediction mode of the predicted image) set to the optimal intra mode.
  • the mode buffer 135 stores information on the optimal prediction mode selected by the prediction image selection unit 116. That is, the mode buffer 135 acquires and stores information regarding the optimal intra prediction mode supplied from the predicted image generation unit 134 or information regarding the optimal inter prediction mode supplied from the motion prediction / compensation unit 115.
  • the mode buffer 135 supplies the stored prediction mode to the availability determination unit 142 as the peripheral region prediction mode at a predetermined timing or based on an external request. That is, the prediction mode of the region is used as the peripheral region prediction mode in constrained intra prediction for a region processed after the prediction mode of the region.
  • the availability determination unit 142 acquires the surrounding area prediction mode from the mode buffer 135 and determines whether the surrounding pixels are usable. That is, the availability determination unit 142 determines that the surrounding pixels generated by the inter prediction are unusable for each surrounding pixel of the area, and determines that the surrounding pixels generated by the intra prediction are usable. The availability determination unit 142 notifies the interpolation pixel generation unit 143 of the determination result.
  • the interpolation pixel generation unit 143 acquires the determination result supplied from the availability determination unit 142. Then, the interpolation pixel generation unit 143 performs an interpolation process on unusable pixels (that is, inter-predicted pixels). That is, the interpolation pixel generation unit 143 acquires the peripheral pixel value necessary for interpolation of the unusable pixel from the candidate predicted image generation unit 131, and performs an interpolation process using the peripheral pixel value.
  • the interpolation pixel generation unit 143 generates an interpolation pixel value corresponding to the position of the pixel to be interpolated.
  • the interpolation pixel generation unit 143 supplies the pixel value (interpolation pixel value) generated by the interpolation to the candidate prediction image generation unit 131 and the prediction image generation unit 134.
  • the interpolation pixel generation unit 143 performs an interpolation process according to the position of the pixel as shown in FIG.
  • pixel q and pixel r are peripheral pixels belonging to an available area generated by intra prediction.
  • the pixel p is set as a pixel to be interpolated. That is, the pixel p is a pixel to be generated by interpolation (that is, a peripheral pixel belonging to a not-available area generated by inter prediction).
  • the pixel value of the pixel q is referred to as a pixel value q.
  • the pixel value of the pixel r is referred to as a pixel value r.
  • the interpolation pixel value of the pixel p is referred to as an interpolation pixel value p.
  • a portion (pixel row) where unusable pixels including the pixel p are continuous is sandwiched between the pixel q and the pixel r. That is, the pixel q and the pixel r are adjacent to both the area of the available area adjacent to the not available area and the area that is not available (not available). Pixel.
  • the distance t1 is a distance between the pixel q and the pixel p.
  • the distance t2 is a distance between the pixel r and the pixel p. That is, the distance t1 and the distance t2 are distances between a pixel to be interpolated and a pixel belonging to an available area closest to the pixel to be interpolated on both sides of the pixel to be interpolated. .
  • the interpolation pixel generation unit 143 calculates an interpolation pixel value p having a value corresponding to the position of the pixel p using the following equation (3).
  • the interpolation pixel generation unit 143 performs the same interpolation in the vertical direction.
  • the interpolated pixel value is also calculated using Equation (3) for the peripheral pixels in the inter-predicted regions such as H and I in FIG.
  • the interpolated pixel generation unit 143 is a peripheral pixel that is used for prediction in constrained intra prediction, and is used in a horizontal direction or a vertical direction, and one or a plurality of consecutive non-uses that are sandwiched by the peripheral pixels that can be used. For possible peripheral pixels, an interpolation pixel value having a value corresponding to the position is generated.
  • the interpolation pixel generation unit 143 generates an interpolation pixel value having a value according to the distance from the available peripheral pixels, as shown in Expression (3).
  • the interpolation pixel generation unit 143 generates an interpolation pixel value corresponding to the position of the pixel to be interpolated. By doing so, the interpolation pixel generation unit 143 reproduces the change more correctly than in the case of the conventional interpolation method described above even when interpolating a pixel of a portion where the pixel value changes, such as gradation. can do.
  • the total size of inter-predicted peripheral regions that are continuous in the horizontal direction or the vertical direction may not be a power of 2. In this case, division may be required in the calculation of Equation (3), and the load may increase. There is.
  • an approximate power of 2 in the denominator of Equation (3) that is, a power of 2 closest to the value of t1 + t2 is used instead of t1 + t2.
  • the pixel to be interpolated has been described as being interpolated using one available pixel (two pixels in total) on both sides.
  • the present invention is not limited to this.
  • two or more pixels on both sides (four in total) Interpolation may be performed using a pixel or more).
  • the pixel value (interpolated pixel value) of the pixel group to be interpolated as shown in FIG. Or may be changed in an n-order curve using an n-order function different from the above-described equation (3).
  • the pixel used for the interpolation is described as the pixel adjacent to the region predicted intra and the region predicted inter between the intra predicted region, the present invention is not limited to this. However, it is desirable to use a pixel located as close as possible to the pixel to be interpolated.
  • the interpolation pixel generation unit 143 performs interpolation processing on the upper left pixel of the area as follows.
  • a pixel p is a peripheral pixel at the upper left of the area CU # n and is a peripheral pixel belonging to an unavailable area generated by inter prediction
  • the pixel p The pixel value (pixel value q) of the pixel q adjacent to the left or the pixel value (pixel value r) of the pixel r adjacent below the pixel p is set as the interpolation pixel value p.
  • the interpolation pixel generation unit 143 sets the pixel value (pixel value q) of the pixel q as the interpolation pixel value p. Also, when the pixel q is a peripheral pixel belonging to an unusable (not available) region generated by inter prediction, and the pixel r is a peripheral pixel belonging to an available region generated by intra prediction The interpolation pixel generation unit 143 sets the pixel value (pixel value q) of the pixel q as the interpolation pixel value p.
  • the interpolation pixel generation unit 143 when both the pixel q and the pixel r are peripheral pixels belonging to a not-available region generated by inter prediction, the interpolation pixel generation unit 143 generates the interpolation pixel value p (upper left of the region). (Interpolation processing of peripheral pixels p) is omitted.
  • the interpolation pixel generation unit 143 performs the interpolation process on the upper left peripheral pixel of the region using not only the horizontal direction but also the adjacent pixels in the vertical direction. That is, the interpolation pixel generation unit 143 performs the interpolation process of the upper left peripheral pixel of the area by a method different from that of the other peripheral pixels described above, and generates an interpolation pixel value corresponding to the position of the pixel to be interpolated.
  • the interpolation pixel generation unit 143 can interpolate the peripheral pixel at the upper left of the area by a pixel closer to the peripheral pixel. Therefore, the interpolation pixel generation unit 143 can obtain a more correct interpolation result than the conventional interpolation method described above.
  • the interpolation pixel generation unit 143 sets the interpolation pixel value p to a value other than the two pixels. You may make it produce
  • the intra prediction unit 114 can perform constrained intra prediction using a more correct interpolation result, so that the prediction accuracy of intra prediction can be improved. Therefore, the image encoding device 100 can improve encoding efficiency.
  • step S101 the A / D converter 101 performs A / D conversion on the input image.
  • step S102 the screen rearrangement buffer 102 stores the A / D converted image, and rearranges the picture from the display order to the encoding order.
  • step S103 the intra prediction unit 114 performs an intra prediction process.
  • step S104 the motion prediction / compensation unit 115 performs an inter motion prediction process.
  • step S105 the predicted image selection unit 116 selects one of a predicted image generated by intra prediction and a predicted image generated by inter prediction.
  • the selection result (information indicating the optimal prediction mode) is stored in the mode buffer 135.
  • step S106 the calculation unit 103 calculates a difference between the image rearranged by the process of step S103 and the predicted image selected by the process of step S105 (generates a difference image).
  • the generated difference image has a reduced data amount compared to the original image. Therefore, the data amount can be compressed as compared with the case where the image is encoded as it is.
  • step S107 the orthogonal transform unit 104 orthogonally transforms the difference image generated by the process in step S106. Specifically, orthogonal transformation such as discrete cosine transformation and Karhunen-Loeve transformation is performed, and orthogonal transformation coefficients are output.
  • step S108 the quantization unit 105 quantizes the orthogonal transform coefficient obtained by the process in step S107.
  • the difference image quantized by the process in step S108 is locally decoded as follows. That is, in step S109, the inverse quantization unit 108 inversely quantizes the quantized orthogonal transform coefficient (also referred to as a quantization coefficient) generated by the quantization process in step S108. In step S ⁇ b> 110, the inverse orthogonal transform unit 109 performs inverse orthogonal transform on the orthogonal transform coefficient obtained by the inverse quantization process in step S ⁇ b> 109 with characteristics corresponding to the characteristics of the orthogonal transform unit 104. Thereby, the difference image is restored.
  • the inverse quantization unit 108 inversely quantizes the quantized orthogonal transform coefficient (also referred to as a quantization coefficient) generated by the quantization process in step S108.
  • the inverse orthogonal transform unit 109 performs inverse orthogonal transform on the orthogonal transform coefficient obtained by the inverse quantization process in step S ⁇ b> 109 with characteristics corresponding to the characteristics of the orthogonal transform
  • step S111 the calculation unit 110 adds the predicted image selected in step S105 to the difference image generated in step S110, and generates a locally decoded image (reconstructed image).
  • step S112 the loop filter 111 appropriately performs a loop filter process including a deblocking filter process and an adaptive loop filter process on the reconstructed image obtained by the process of step S111 to generate a decoded image.
  • step S113 the frame memory 112 stores the decoded image generated by the process of step S112 or the reconstructed image generated by the process of step S111.
  • step S114 the lossless encoding unit 106 encodes the orthogonal transform coefficient quantized by the process in step S107. That is, lossless encoding such as variable length encoding or arithmetic encoding is performed on the difference image. Note that the lossless encoding unit 106 encodes information about prediction, information about quantization, information about filter processing, and the like, and adds the information to the bitstream.
  • step S115 the accumulation buffer 107 accumulates the bit stream obtained by the process in step S114.
  • the encoded data stored in the storage buffer 107 is appropriately read and transmitted to the decoding side via a transmission path or a recording medium.
  • step S116 the rate control unit 117 causes the quantization unit 105 to prevent overflow or underflow based on the code amount (generated code amount) of the encoded data accumulated in the accumulation buffer 107 by the process of step S115. Controls the rate of quantization operation.
  • step S116 When the process of step S116 is finished, the encoding process is finished.
  • step S132 the availability determination unit 142 acquires the surrounding area prediction mode from the mode buffer 135, and determines whether or not the pixel values of the surrounding pixels in the upper left of the area are usable based on the information. To do. When it determines with it being unusable, the availability determination part 142 advances a process to step S133.
  • step S133 the availability determination unit 142 determines, based on the surrounding area prediction mode acquired from the mode buffer 135, a pixel that replaces the surrounding pixel at the upper left of the area (for example, the right or left of the surrounding pixel at the upper left of the area) It is determined whether or not the pixel value of the lower pixel is usable. When it is determined that the substitute pixel can be used, the availability determination unit 142 proceeds with the process to step S134.
  • step S134 the interpolated pixel generation unit 143 interpolates the pixel value of the upper left pixel as candidates as well as the peripheral pixels in the horizontal direction as well as the peripheral pixels in the horizontal direction as described with reference to FIG.
  • the interpolation pixel generation unit 143 proceeds with the process to step S135.
  • step S133 If it is determined in step S133 that the substitute pixel cannot be used, the availability determination unit 142 omits the process of step S134 and proceeds to step S135.
  • step S132 If it is determined in step S132 that the pixel value of the upper left peripheral pixel of the area is usable, the availability determination unit 142 omits the processes in steps S133 and S134 and performs the process in step S135. Proceed.
  • step S135 the availability determination unit 142 determines whether there is a pixel whose pixel value cannot be used for peripheral pixels other than the upper left of the area based on the peripheral area prediction mode. When it is determined that there is a pixel whose pixel value cannot be used, the availability determination unit 142 proceeds with the process to step S136.
  • step S136 the interpolation pixel generation unit 143 generates an interpolation pixel value corresponding to the position of the unavailable pixel as described above with reference to FIG.
  • the interpolation pixel generation unit 143 proceeds with the process to step S137.
  • step S135 If it is determined in step S135 that there is no pixel whose pixel value cannot be used, the availability determination unit 142 omits the process in step S136 and advances the process to step S137.
  • step S131 when it is determined in step S131 that constrained intra prediction is not performed (normal intra prediction is performed), the flag determination unit 141 omits steps S132 to S136 and proceeds to step S137. .
  • step S137 the candidate predicted image generation unit 131 performs intra prediction of the area in each mode.
  • step S138 the cost function value calculation unit 132 calculates a cost function value for each mode.
  • step S139 the prediction mode determination unit 133 determines the optimal intra prediction mode.
  • step S140 the predicted image generation unit 134 generates a predicted image in the optimal intra prediction mode.
  • step S140 the predicted image generation unit 134 ends the intra prediction process and returns the process to FIG.
  • the image encoding device 100 can improve the encoding efficiency.
  • FIG. 11 is a block diagram illustrating a main configuration example of an image decoding apparatus that is an image processing apparatus corresponding to the image encoding apparatus 100 of FIG.
  • the image decoding apparatus 200 shown in FIG. 11 decodes the encoded data generated by the image encoding apparatus 100 using a decoding method corresponding to the encoding method.
  • the image decoding apparatus 200 includes a storage buffer 201, a lossless decoding unit 202, an inverse quantization unit 203, an inverse orthogonal transform unit 204, a calculation unit 205, a loop filter 206, a screen rearrangement buffer 207, and a D A / A converter 208 is included.
  • the image decoding apparatus 200 includes a frame memory 209, a selection unit 210, an intra prediction unit 211, a motion prediction / compensation unit 212, and a selection unit 213.
  • the image decoding apparatus 200 includes a restricted intra prediction unit 221.
  • the accumulation buffer 201 accumulates the transmitted encoded data, and supplies the encoded data to the lossless decoding unit 202 at a predetermined timing.
  • the lossless decoding unit 202 decodes the information supplied from the accumulation buffer 201 and encoded by the lossless encoding unit 106 in FIG. 1 by a method corresponding to the encoding method of the lossless encoding unit 106.
  • the lossless decoding unit 202 supplies the quantized coefficient data of the difference image obtained by decoding to the inverse quantization unit 203.
  • the lossless decoding unit 202 refers to information on the optimal prediction mode obtained by decoding the encoded data, and determines whether the intra prediction mode or the inter prediction mode is selected as the optimal prediction mode. . That is, the lossless decoding unit 202 determines whether the prediction mode employed in the transmitted encoded data is intra prediction or inter prediction.
  • the lossless decoding unit 202 supplies information on the prediction mode to the intra prediction unit 211 or the motion prediction / compensation unit 212 based on the determination result.
  • the lossless decoding unit 202 is intra prediction information, which is information about the selected intra prediction mode supplied from the encoding side. Is supplied to the intra prediction unit 211.
  • the lossless decoding unit 202 is an inter that is information about the selected inter prediction mode supplied from the encoding side. The prediction information is supplied to the motion prediction / compensation unit 212.
  • the inverse quantization unit 203 inversely quantizes the quantized coefficient data obtained by decoding by the lossless decoding unit 202. That is, the inverse quantization unit 203 performs inverse quantization by a method corresponding to the quantization method of the quantization unit 105 in FIG. The inverse quantization unit 203 supplies the coefficient data obtained by the inverse quantization to the inverse orthogonal transform unit 204.
  • the inverse orthogonal transform unit 204 performs inverse orthogonal transform on the coefficient data supplied from the inverse quantization unit 203 in a method corresponding to the orthogonal transform method of the orthogonal transform unit 104 in FIG.
  • the inverse orthogonal transform unit 204 obtains a difference image corresponding to the difference image before being orthogonally transformed in the image encoding device 100 by the inverse orthogonal transform process.
  • the difference image obtained by the inverse orthogonal transform is supplied to the calculation unit 205.
  • a prediction image is supplied to the calculation unit 205 from the intra prediction unit 211 or the motion prediction / compensation unit 212 via the selection unit 213.
  • the calculation unit 205 adds the difference image and the prediction image, and obtains a reconstructed image corresponding to the image before the prediction image is subtracted by the calculation unit 103 of the image encoding device 100.
  • the arithmetic unit 205 supplies the reconstructed image to the loop filter 206.
  • the loop filter 206 appropriately performs a loop filter process including a deblock filter process and an adaptive loop filter process on the supplied reconstructed image to generate a decoded image.
  • the loop filter 206 removes block distortion by performing a deblocking filter process on the reconstructed image.
  • the loop filter 206 performs image quality improvement by performing loop filter processing using a Wiener filter on the deblock filter processing result (reconstructed image from which block distortion has been removed). I do.
  • the type of filter processing performed by the loop filter 206 is arbitrary, and filter processing other than that described above may be performed. Further, the loop filter 206 may perform filter processing using the filter coefficient supplied from the image encoding device 100 of FIG.
  • the loop filter 206 supplies the decoded image as the filter processing result to the screen rearrangement buffer 207 and the frame memory 209. Note that the filter processing by the loop filter 206 can be omitted. That is, the output of the calculation unit 205 can be stored in the frame memory 209 without being subjected to filter processing.
  • the intra prediction unit 211 uses pixel values of pixels included in this image as pixel values of peripheral pixels.
  • the screen rearrangement buffer 207 rearranges the supplied decoded images. That is, the order of frames rearranged for the encoding order by the screen rearrangement buffer 102 in FIG. 1 is rearranged in the original display order.
  • the D / A conversion unit 208 D / A converts the decoded image supplied from the screen rearrangement buffer 207, and outputs and displays the decoded image on a display (not shown).
  • the frame memory 209 stores supplied reconstructed images and decoded images. Also, the frame memory 209 selects the stored reconstructed image or decoded image from the selection unit 210 at a predetermined timing or based on an external request such as the intra prediction unit 211 or the motion prediction / compensation unit 212. To the intra prediction unit 211 and the motion prediction / compensation unit 212.
  • the intra prediction unit 211 performs basically the same processing as the intra prediction unit 114 in FIG. However, the intra prediction unit 211 performs intra prediction only on a region where a prediction image is generated by intra prediction at the time of encoding.
  • the motion prediction / compensation unit 212 performs an inter motion prediction process based on the inter prediction information supplied from the lossless decoding unit 202, and generates a predicted image. Note that the motion prediction / compensation unit 212 performs the inter motion prediction process only on the region where the inter prediction is performed at the time of encoding, based on the inter prediction information supplied from the lossless decoding unit 202.
  • the intra prediction unit 211 or the motion prediction / compensation unit 212 supplies the generated predicted image to the calculation unit 205 via the selection unit 213 for each region of the prediction processing unit.
  • the selection unit 213 supplies the prediction image supplied from the intra prediction unit 211 or the prediction image supplied from the motion prediction / compensation unit 212 to the calculation unit 205.
  • FIG. 12 is a block diagram illustrating a main configuration example such as constrained intra prediction.
  • the intra prediction unit 211 includes a prediction mode information buffer 231, a predicted image generation unit 232, and a peripheral mode buffer 233.
  • the restricted intra prediction unit 221 includes a flag determination unit 241, an availability determination unit 242, and an interpolation pixel generation unit 243.
  • the prediction mode information buffer 231 acquires and stores intra mode information obtained by decoding the bitstream in the lossless decoding unit 202. When the region is in the intra prediction mode, the prediction mode information buffer 231 sends the stored prediction mode (intra prediction mode) of the region to the predicted image generation unit 232 at a predetermined timing or according to an external request. Supply.
  • the flag determination unit 241 performs the same process as the flag determination unit 141. That is, the flag determination unit 241 determines the value of constrained_intra_pred_flag transmitted from the encoding side, and performs constrained intra prediction on the region to be processed, or performs normal intra prediction (reconstructed by inter prediction). Whether to perform intra prediction from the selected pixel).
  • the constrained_intra_pred_flag is included in a sequence parameter set, a picture parameter set, and the like, and transmitted from the encoding side (image encoding apparatus 100). Then, the constrained_intra_pred_flag is extracted by, for example, the lossless decoding unit 202 and supplied to the flag determination unit 241.
  • the flag determination unit 241 supplies a control instruction that instructs which intra prediction is performed to the predicted image generation unit 232, the availability determination unit 242, and the interpolation pixel generation unit 243.
  • the predicted image generation unit 232 receives the peripheral pixel values in the intra prediction mode supplied from the prediction mode information buffer 231 from the frame memory 209. get.
  • the prediction image generation unit 232 generates a prediction image in the intra prediction mode supplied from the prediction mode information buffer 231 using the peripheral pixel value, and supplies the pixel value (prediction image pixel value) to the calculation unit 205. .
  • the prediction image generation unit 232 sets the neighboring pixel values in the intra prediction mode supplied from the prediction mode information buffer 231. , Obtained from the frame memory 209.
  • the flag determination unit 241 further supplies, to the interpolation pixel generation unit 243, the peripheral pixel value used for pixel interpolation by the interpolation pixel generation unit 243 among the peripheral pixel values acquired from the frame memory 209.
  • the predicted image generation unit 232 acquires the pixel value (interpolation pixel value) of the interpolated pixel from the interpolation pixel generation unit 243.
  • the prediction image generation unit 232 generates a prediction image (candidate prediction image) in the intra prediction mode supplied from the prediction mode information buffer 231 using the peripheral pixel value acquired from the frame memory 209 and the interpolation pixel value. Then, the pixel value (predicted image pixel value) is supplied to the calculation unit 205.
  • the peripheral mode buffer 233 stores the prediction mode information of the area. That is, the peripheral mode buffer 233 acquires and stores information related to the intra prediction mode supplied from the prediction mode information buffer 231 or information related to the optimal inter prediction mode supplied from the motion prediction / compensation unit 212.
  • the peripheral mode buffer 233 supplies the stored prediction mode to the availability determination unit 242 as the peripheral area prediction mode at a predetermined timing or based on an external request. That is, the prediction mode of the region is used as the peripheral region prediction mode in constrained intra prediction for a region processed after the prediction mode of the region.
  • the availability determination unit 242 acquires the peripheral region prediction mode from the peripheral mode buffer 233 as in the case of the availability determination unit 142, and the peripheral pixels Determine whether is available. The availability determination unit 242 notifies the interpolation pixel generation unit 243 of the determination result.
  • the interpolation pixel generation unit 243 is based on the determination result supplied from the availability determination unit 242 as in the case of the interpolation pixel generation unit 143. Interpolation processing is performed on unusable pixels (that is, inter-predicted pixels). In other words, the interpolation pixel generation unit 243 acquires the peripheral pixel value necessary for interpolation of the unusable pixel from the predicted image generation unit 232, and performs an interpolation process using the peripheral pixel value.
  • the interpolation pixel generation unit 243 generates an interpolation pixel value corresponding to the position of the pixel to be interpolated, as in the case of the interpolation pixel generation unit 143 (as described with reference to FIGS. 7 and 8). . Therefore, the interpolation pixel generation unit 243 can obtain the same interpolation result as the interpolation pixel generation unit 143, the intra prediction unit 211 can perform the same prediction as the intra prediction unit 114, and can obtain the same predicted image. Obtainable. Therefore, the image decoding apparatus 200 can correctly decode the encoded data generated in the image encoding apparatus 100, and can realize improvement in encoding efficiency.
  • step S201 the accumulation buffer 201 accumulates the transmitted bit stream.
  • step S202 the lossless decoding unit 202 decodes the bit stream (encoded difference image information) supplied from the accumulation buffer 201. At this time, various types of information other than the difference image information included in the bitstream, such as information on the prediction mode information, is also decoded.
  • step S203 the inverse quantization unit 203 inversely quantizes the quantized orthogonal transform coefficient obtained by the process in step S202.
  • step S204 the inverse orthogonal transform unit 204 performs inverse orthogonal transform on the orthogonal transform coefficient inversely quantized in step S203.
  • step S205 the intra prediction unit 211 or the motion prediction / compensation unit 212 performs a prediction process using the supplied information.
  • step S206 the calculation unit 205 adds the predicted image generated in step S205 to the difference image information obtained by the inverse orthogonal transform in step S204. Thereby, a reconstructed image is generated.
  • step S207 the loop filter 206 appropriately performs loop filter processing including deblock filter processing and adaptive loop filter processing on the reconstructed image obtained in step S206.
  • step S208 the screen rearrangement buffer 207 rearranges the decoded images generated by the filtering process in step S207. That is, the order of frames rearranged for encoding by the screen rearrangement buffer 102 of the image encoding device 100 is rearranged to the original display order.
  • step S209 the D / A converter 208 D / A converts the decoded image in which the frame order is rearranged.
  • the decoded image is output and displayed on a display (not shown).
  • step S210 the frame memory 209 stores the decoded image obtained by the filtering process in step S207. This decoded image is used as a reference image in the inter prediction process.
  • step S210 When the process of step S210 is completed, the decoding process is terminated.
  • the lossless decoding unit 202 determines in step S221 whether the region is a region where intra prediction (intra coding) has been performed. If it is determined that the region is a region where intra prediction has been performed, the lossless decoding unit 202 advances the processing to step S232.
  • the intra prediction unit 211 and the constrained intra prediction unit 221 perform an intra prediction process in step S222.
  • the intra prediction unit 211 ends the prediction process and returns the process to FIG.
  • step S221 If it is determined in step S221 that the region is a region where inter prediction has been performed, the lossless decoding unit 202 advances the processing to step S223.
  • step S223 the motion prediction / compensation unit 212 performs an inter motion prediction process. When the inter motion prediction process ends, the motion prediction / compensation unit 212 ends the prediction process and returns the process to FIG.
  • the processes in steps S241 to S246 are executed in the same manner as the processes in steps S131 to S136 in FIG. That is, the processing related to pixel interpolation for constrained intra prediction is performed basically in the same manner as in encoding.
  • step S247 the prediction mode information buffer 231 acquires intra mode information extracted from the bitstream.
  • step S248 the predicted image generation unit 232 uses the prediction mode specified in the intra mode information acquired in step S247, the peripheral pixel value acquired from the frame memory 209, and the interpolation pixel value generated by the interpolation pixel generation unit 243. Is used appropriately to generate a predicted image.
  • the predicted image generation unit 232 ends the intra prediction process.
  • the image decoding apparatus 200 can correctly decode the encoded data generated in the image encoding apparatus 100, and can realize improvement in encoding efficiency.
  • First Embodiment> [Another example of constrained intra prediction unit]
  • the conventional interpolation method described in Non-Patent Document 2 and the interpolation method of the present technology described above may be switched according to the size of the region. For example, when the region is smaller than a predetermined threshold, the interpolation method of the present technology is applied, and when the region is larger than the predetermined threshold, the conventional interpolation method described in Non-Patent Document 2 is applied.
  • Non-Patent Document 2 a larger area is easily selected for an image that does not include a texture.
  • an image in a large area is highly likely to be an image that does not contain a lot of high frequency components. Therefore, the deterioration by applying the conventional method described in Non-Patent Document 2 is small.
  • FIG. 16 is a block diagram illustrating a main configuration example of the restricted intra prediction unit in this case.
  • the intra prediction unit 114 has the same configuration as that described with reference to FIG.
  • the restricted intra prediction unit 121 has basically the same configuration as that described with reference to FIG. 6, but includes a flag / size threshold determination unit 341 instead of the flag determination unit 141.
  • the flag / size threshold determination unit 341 determines not only the value of constrained_intra_pred_flag but also the size determination of the area using a predetermined threshold. That is, the flag / size threshold value determination unit 341 stores in advance a predetermined threshold value for controlling whether or not to apply the present technology according to the size of the area. The flag / size threshold value determination unit 341 determines whether the size of the area is equal to or less than the threshold value. Based on the determination results, the flag / size threshold determination unit 341 determines whether or not to perform constrained intra prediction, and if so, whether or not to apply the interpolation method of the present technology. The candidate predicted image generation unit 131, the availability determination unit 142, and the interpolation pixel generation unit 143 are supplied.
  • threshold value may be included in an arbitrary position such as a sequence parameter set of a bit stream and transmitted to the decoding side. Further, the threshold value described above may be defined in accordance with the profile level such as the image frame size.
  • each process is basically performed as in the case of the first embodiment described with reference to the flowchart of FIG. That is, each process of step S301, step S303 thru
  • the flag / size threshold determination unit 341 determines whether or not constrained intra prediction is performed in step S301. If it is determined that the intra prediction with constraint is performed, the process proceeds to step S302. It is determined whether or not the size of the area is equal to or smaller than a threshold value.
  • the flag / size threshold value determination unit 341 advances the process to step S303. That is, in this case, similarly to the case of FIG. 10, constrained intra prediction to which the interpolation method of the present technology is applied is performed.
  • step S302 when it is determined in step S302 that the size of the area is larger than the threshold, the flag / size threshold determination unit 341 advances the process to step S308.
  • step S308 the availability determination unit 142 and the interpolation pixel generation unit 143 perform constrained intra prediction to which the conventional interpolation method described in Non-Patent Document 2 is applied.
  • the interpolation pixel generation unit 143 advances the process to step S309.
  • step S301 If it is determined in step S301 that constrained intra prediction is not performed, the flag / size threshold determination unit 341 advances the processing to step S309.
  • the interpolation method of the present technology can be applied only to a large region, and the image encoding device 100 can improve encoding efficiency while suppressing an increase in the load of interpolation processing. Can do.
  • FIG. 18 is a block diagram illustrating a main configuration example of the restricted intra prediction unit in this case.
  • the intra prediction unit 211 has the same configuration as that described with reference to FIG.
  • the restricted intra prediction unit 221 has basically the same configuration as that described with reference to FIG. 12, but includes a flag size threshold determination unit 441 instead of the flag determination unit 241.
  • the flag / size threshold value determination unit 441 is a processing unit similar to the flag / size threshold value determination unit 341, and not only determines the value of constrained_intra_pred_flag but also determines the size of the area using a predetermined threshold value.
  • the flag / size threshold value determination unit 441 supplies a control instruction to the predicted image generation unit 232, the availability determination unit 242, and the interpolation pixel generation unit 243 based on the determination results.
  • the predicted image generation unit 232, the availability determination unit 242, and the interpolation pixel generation unit 243 perform normal intra prediction or constrained intra prediction using a conventional interpolation method based on the control instruction, Alternatively, it is determined whether to perform constrained intra prediction using the interpolation method of the present technology, and each process is performed.
  • the interpolation method of the present technology can be applied only to a large region as in the encoding side, so that the image decoding device 200 suppresses an increase in the load of the interpolation processing, Encoding efficiency can be improved.
  • each process can be performed in the same manner as the encoding side, as in the case of the second embodiment. That is, the processes in steps S401 to S408 in FIG. 19 are performed in the same manner as the processes in steps S301 to S308 in FIG.
  • steps S409 and S410 are performed in the same manner as the processes in steps S247 and S248 in FIG. 15 (that is, in the same manner as in the second embodiment).
  • the interpolation method of the present technology can be applied only to a large region as in the encoding side, and the image decoding apparatus 200 performs code encoding while suppressing an increase in the load of interpolation processing. Efficiency can be improved.
  • the encoding / decoding scheme to which the present technology is applied is arbitrary, and any encoding / decoding scheme can be applied as long as it uses a constrained intra prediction process.
  • this technology is, for example, MPEG, H.264.
  • image information bitstream
  • orthogonal transform such as discrete cosine transform and motion compensation, such as 26x
  • network media such as satellite broadcasting, cable television, the Internet, or mobile phones.
  • the present invention can be applied to an image encoding device and an image decoding device used in the above.
  • the present technology can be applied to an image encoding device and an image decoding device that are used when processing is performed on a storage medium such as an optical disk, a magnetic disk, and a flash memory.
  • the present technology can also be applied to motion prediction / compensation devices included in such image encoding devices and image decoding devices.
  • a CPU (Central Processing Unit) 501 of the personal computer 500 performs various processes according to a program stored in a ROM (Read Only Memory) 502 or a program loaded from a storage unit 513 to a RAM (Random Access Memory) 503. Execute the process.
  • the RAM 503 also appropriately stores data necessary for the CPU 501 to execute various processes.
  • the CPU 501, the ROM 502, and the RAM 503 are connected to each other via a bus 504.
  • An input / output interface 510 is also connected to the bus 504.
  • the input / output interface 510 includes an input unit 511 including a keyboard and a mouse, a display including a CRT (Cathode Ray Tube) and an LCD (Liquid Crystal Display), an output unit 512 including a speaker, and a hard disk.
  • a communication unit 514 including a storage unit 513 and a modem is connected. The communication unit 514 performs communication processing via a network including the Internet.
  • a drive 515 is connected to the input / output interface 510 as necessary, and a removable medium 521 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is appropriately mounted, and a computer program read from them is It is installed in the storage unit 513 as necessary.
  • a removable medium 521 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is appropriately mounted, and a computer program read from them is It is installed in the storage unit 513 as necessary.
  • a program constituting the software is installed from a network or a recording medium.
  • the recording medium is distributed to distribute the program to the user separately from the apparatus main body, and includes a magnetic disk (including a flexible disk) on which the program is recorded, an optical disk ( It only consists of removable media 521 consisting of CD-ROM (compact disc -read only memory), DVD (including digital Versatile disc), magneto-optical disk (including MD (mini disc)), or semiconductor memory. Rather, it is composed of a ROM 502 on which a program is recorded and a hard disk included in the storage unit 513, which is distributed to the user in a state of being pre-installed in the apparatus main body.
  • a magnetic disk including a flexible disk
  • an optical disk It only consists of removable media 521 consisting of CD-ROM (compact disc -read only memory), DVD (including digital Versatile disc), magneto-optical disk (including MD (mini disc)), or semiconductor memory. Rather, it is composed of a ROM 502 on which a program is recorded and a hard disk included in the storage unit 513, which is
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the step of describing the program recorded on the recording medium is not limited to the processing performed in chronological order according to the described order, but may be performed in parallel or It also includes processes that are executed individually.
  • system represents the entire apparatus composed of a plurality of devices (apparatuses).
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit).
  • a configuration other than that described above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). . That is, the present technology is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present technology.
  • An image encoding device and an image decoding device include a transmitter or a receiver in optical broadcasting, satellite broadcasting, cable broadcasting such as cable TV, distribution on the Internet, and distribution to terminals by cellular communication, etc.
  • the present invention can be applied to various electronic devices such as a recording device that records an image on a medium such as a magnetic disk and a flash memory, or a playback device that reproduces an image from these storage media.
  • a recording device that records an image on a medium such as a magnetic disk and a flash memory
  • a playback device that reproduces an image from these storage media.
  • FIG. 21 illustrates an example of a schematic configuration of a television device to which the above-described embodiment is applied.
  • the television apparatus 900 includes an antenna 901, a tuner 902, a demultiplexer 903, a decoder 904, a video signal processing unit 905, a display unit 906, an audio signal processing unit 907, a speaker 908, an external interface 909, a control unit 910, a user interface 911, And a bus 912.
  • Tuner 902 extracts a signal of a desired channel from a broadcast signal received via antenna 901, and demodulates the extracted signal. Then, the tuner 902 outputs the encoded bit stream obtained by the demodulation to the demultiplexer 903. That is, the tuner 902 has a role as a transmission unit in the television device 900 that receives an encoded stream in which an image is encoded.
  • the demultiplexer 903 separates the video stream and audio stream of the viewing target program from the encoded bit stream, and outputs each separated stream to the decoder 904. Further, the demultiplexer 903 extracts auxiliary data such as EPG (Electronic Program Guide) from the encoded bit stream, and supplies the extracted data to the control unit 910. Note that the demultiplexer 903 may perform descrambling when the encoded bit stream is scrambled.
  • EPG Electronic Program Guide
  • the decoder 904 decodes the video stream and audio stream input from the demultiplexer 903. Then, the decoder 904 outputs the video data generated by the decoding process to the video signal processing unit 905. In addition, the decoder 904 outputs audio data generated by the decoding process to the audio signal processing unit 907.
  • the video signal processing unit 905 reproduces the video data input from the decoder 904 and causes the display unit 906 to display the video.
  • the video signal processing unit 905 may cause the display unit 906 to display an application screen supplied via a network.
  • the video signal processing unit 905 may perform additional processing such as noise removal on the video data according to the setting.
  • the video signal processing unit 905 may generate a GUI (Graphical User Interface) image such as a menu, a button, or a cursor, and superimpose the generated image on the output image.
  • GUI Graphic User Interface
  • the display unit 906 is driven by a drive signal supplied from the video signal processing unit 905, and displays an image on a video screen of a display device (for example, a liquid crystal display, a plasma display, or an OELD (Organic ElectroLuminescence Display) (organic EL display)). Or an image is displayed.
  • a display device for example, a liquid crystal display, a plasma display, or an OELD (Organic ElectroLuminescence Display) (organic EL display)). Or an image is displayed.
  • the audio signal processing unit 907 performs reproduction processing such as D / A conversion and amplification on the audio data input from the decoder 904, and outputs audio from the speaker 908.
  • the audio signal processing unit 907 may perform additional processing such as noise removal on the audio data.
  • the external interface 909 is an interface for connecting the television apparatus 900 to an external device or a network.
  • a video stream or an audio stream received via the external interface 909 may be decoded by the decoder 904. That is, the external interface 909 also has a role as a transmission unit in the television apparatus 900 that receives an encoded stream in which an image is encoded.
  • the control unit 910 includes a processor such as a CPU and memories such as a RAM and a ROM.
  • the memory stores a program executed by the CPU, program data, EPG data, data acquired via a network, and the like.
  • the program stored in the memory is read and executed by the CPU when the television apparatus 900 is activated.
  • the CPU executes the program to control the operation of the television device 900 according to an operation signal input from the user interface 911, for example.
  • the user interface 911 is connected to the control unit 910.
  • the user interface 911 includes, for example, buttons and switches for the user to operate the television device 900, a remote control signal receiving unit, and the like.
  • the user interface 911 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 910.
  • the bus 912 connects the tuner 902, the demultiplexer 903, the decoder 904, the video signal processing unit 905, the audio signal processing unit 907, the external interface 909, and the control unit 910 to each other.
  • the decoder 904 has the function of the image decoding apparatus according to the above-described embodiment. Thereby, it is possible to improve the encoding efficiency when the image is decoded by the television apparatus 900.
  • FIG. 22 shows an example of a schematic configuration of a mobile phone to which the above-described embodiment is applied.
  • a mobile phone 920 includes an antenna 921, a communication unit 922, an audio codec 923, a speaker 924, a microphone 925, a camera unit 926, an image processing unit 927, a demultiplexing unit 928, a recording / reproducing unit 929, a display unit 930, a control unit 931, an operation A portion 932 and a bus 933.
  • the antenna 921 is connected to the communication unit 922.
  • the speaker 924 and the microphone 925 are connected to the audio codec 923.
  • the operation unit 932 is connected to the control unit 931.
  • the bus 933 connects the communication unit 922, the audio codec 923, the camera unit 926, the image processing unit 927, the demultiplexing unit 928, the recording / reproducing unit 929, the display unit 930, and the control unit 931 to each other.
  • the mobile phone 920 has various operation modes including a voice call mode, a data communication mode, a shooting mode, and a videophone mode, and is used for sending and receiving voice signals, sending and receiving e-mail or image data, taking images, and recording data. Perform the action.
  • the analog voice signal generated by the microphone 925 is supplied to the voice codec 923.
  • the audio codec 923 converts an analog audio signal into audio data, A / D converts the compressed audio data, and compresses it. Then, the audio codec 923 outputs the compressed audio data to the communication unit 922.
  • the communication unit 922 encodes and modulates the audio data and generates a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921. In addition, the communication unit 922 amplifies a radio signal received via the antenna 921 and performs frequency conversion to acquire a received signal.
  • the communication unit 922 demodulates and decodes the received signal to generate audio data, and outputs the generated audio data to the audio codec 923.
  • the audio codec 923 decompresses the audio data and performs D / A conversion to generate an analog audio signal. Then, the audio codec 923 supplies the generated audio signal to the speaker 924 to output audio.
  • the control unit 931 generates character data constituting the e-mail in response to an operation by the user via the operation unit 932.
  • the control unit 931 causes the display unit 930 to display characters.
  • the control unit 931 generates e-mail data in response to a transmission instruction from the user via the operation unit 932, and outputs the generated e-mail data to the communication unit 922.
  • the communication unit 922 encodes and modulates email data and generates a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921.
  • the communication unit 922 amplifies a radio signal received via the antenna 921 and performs frequency conversion to acquire a received signal.
  • the communication unit 922 demodulates and decodes the received signal to restore the email data, and outputs the restored email data to the control unit 931.
  • the control unit 931 displays the content of the electronic mail on the display unit 930 and stores the electronic mail data in the storage medium of the recording / reproducing unit 929.
  • the recording / reproducing unit 929 has an arbitrary readable / writable storage medium.
  • the storage medium may be a built-in storage medium such as RAM or flash memory, and is externally mounted such as a hard disk, magnetic disk, magneto-optical disk, optical disk, USB (Unallocated Space Space Bitmap) memory, or memory card. It may be a storage medium.
  • the camera unit 926 images a subject to generate image data, and outputs the generated image data to the image processing unit 927.
  • the image processing unit 927 encodes the image data input from the camera unit 926 and stores the encoded stream in the storage medium of the storage / playback unit 929.
  • the demultiplexing unit 928 multiplexes the video stream encoded by the image processing unit 927 and the audio stream input from the audio codec 923, and the multiplexed stream is the communication unit 922. Output to.
  • the communication unit 922 encodes and modulates the stream and generates a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921.
  • the communication unit 922 amplifies a radio signal received via the antenna 921 and performs frequency conversion to acquire a received signal.
  • These transmission signal and reception signal may include an encoded bit stream.
  • the communication unit 922 demodulates and decodes the received signal to restore the stream, and outputs the restored stream to the demultiplexing unit 928.
  • the demultiplexing unit 928 separates the video stream and the audio stream from the input stream, and outputs the video stream to the image processing unit 927 and the audio stream to the audio codec 923.
  • the image processing unit 927 decodes the video stream and generates video data.
  • the video data is supplied to the display unit 930, and a series of images is displayed on the display unit 930.
  • the audio codec 923 decompresses the audio stream and performs D / A conversion to generate an analog audio signal. Then, the audio codec 923 supplies the generated audio signal to the speaker 924 to output audio.
  • the image processing unit 927 has the functions of the image encoding device and the image decoding device according to the above-described embodiment. Accordingly, encoding efficiency can be improved when encoding and decoding an image with the mobile phone 920.
  • FIG. 23 shows an example of a schematic configuration of a recording / reproducing apparatus to which the above-described embodiment is applied.
  • the recording / reproducing device 940 encodes audio data and video data of a received broadcast program and records the encoded data on a recording medium.
  • the recording / reproducing device 940 may encode audio data and video data acquired from another device and record them on a recording medium, for example.
  • the recording / reproducing device 940 reproduces data recorded on the recording medium on a monitor and a speaker, for example, in accordance with a user instruction. At this time, the recording / reproducing device 940 decodes the audio data and the video data.
  • the recording / reproducing apparatus 940 includes a tuner 941, an external interface 942, an encoder 943, an HDD (Hard Disk Drive) 944, a disk drive 945, a selector 946, a decoder 947, an OSD (On-Screen Display) 948, a control unit 949, and a user interface. 950.
  • Tuner 941 extracts a signal of a desired channel from a broadcast signal received via an antenna (not shown), and demodulates the extracted signal. Then, the tuner 941 outputs the encoded bit stream obtained by the demodulation to the selector 946. That is, the tuner 941 serves as a transmission unit in the recording / reproducing apparatus 940.
  • the external interface 942 is an interface for connecting the recording / reproducing apparatus 940 to an external device or a network.
  • the external interface 942 may be, for example, an IEEE1394 interface, a network interface, a USB interface, or a flash memory interface.
  • video data and audio data received via the external interface 942 are input to the encoder 943. That is, the external interface 942 serves as a transmission unit in the recording / reproducing device 940.
  • the encoder 943 encodes video data and audio data when the video data and audio data input from the external interface 942 are not encoded. Then, the encoder 943 outputs the encoded bit stream to the selector 946.
  • the HDD 944 records an encoded bit stream in which content data such as video and audio are compressed, various programs, and other data on an internal hard disk. Further, the HDD 944 reads out these data from the hard disk when reproducing video and audio.
  • the disk drive 945 performs recording and reading of data to and from the mounted recording medium.
  • the recording medium mounted on the disk drive 945 is, for example, a DVD disk (DVD-Video, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, etc.) or a Blu-ray (registered trademark) disk. It may be.
  • the selector 946 selects an encoded bit stream input from the tuner 941 or the encoder 943 when recording video and audio, and outputs the selected encoded bit stream to the HDD 944 or the disk drive 945. In addition, the selector 946 outputs the encoded bit stream input from the HDD 944 or the disk drive 945 to the decoder 947 during video and audio reproduction.
  • the decoder 947 decodes the encoded bit stream and generates video data and audio data. Then, the decoder 947 outputs the generated video data to the OSD 948. The decoder 904 outputs the generated audio data to an external speaker.
  • OSD 948 reproduces the video data input from the decoder 947 and displays the video. Further, the OSD 948 may superimpose a GUI image such as a menu, a button, or a cursor on the video to be displayed.
  • the control unit 949 includes a processor such as a CPU and memories such as a RAM and a ROM.
  • the memory stores a program executed by the CPU, program data, and the like.
  • the program stored in the memory is read and executed by the CPU when the recording / reproducing apparatus 940 is activated, for example.
  • the CPU controls the operation of the recording / reproducing apparatus 940 in accordance with an operation signal input from the user interface 950, for example, by executing the program.
  • the user interface 950 is connected to the control unit 949.
  • the user interface 950 includes, for example, buttons and switches for the user to operate the recording / reproducing device 940, a remote control signal receiving unit, and the like.
  • the user interface 950 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 949.
  • the encoder 943 has the function of the image encoding apparatus according to the above-described embodiment.
  • the decoder 947 has the function of the image decoding apparatus according to the above-described embodiment.
  • FIG. 24 illustrates an example of a schematic configuration of an imaging apparatus to which the above-described embodiment is applied.
  • the imaging device 960 images a subject to generate an image, encodes the image data, and records it on a recording medium.
  • the imaging device 960 includes an optical block 961, an imaging unit 962, a signal processing unit 963, an image processing unit 964, a display unit 965, an external interface 966, a memory 967, a media drive 968, an OSD 969, a control unit 970, a user interface 971, and a bus. 972.
  • the optical block 961 is connected to the imaging unit 962.
  • the imaging unit 962 is connected to the signal processing unit 963.
  • the display unit 965 is connected to the image processing unit 964.
  • the user interface 971 is connected to the control unit 970.
  • the bus 972 connects the image processing unit 964, the external interface 966, the memory 967, the media drive 968, the OSD 969, and the control unit 970 to each other.
  • the optical block 961 includes a focus lens and a diaphragm mechanism.
  • the optical block 961 forms an optical image of the subject on the imaging surface of the imaging unit 962.
  • the imaging unit 962 includes an image sensor such as a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor), and converts an optical image formed on the imaging surface into an image signal as an electrical signal by photoelectric conversion. Then, the imaging unit 962 outputs the image signal to the signal processing unit 963.
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the signal processing unit 963 performs various camera signal processing such as knee correction, gamma correction, and color correction on the image signal input from the imaging unit 962.
  • the signal processing unit 963 outputs the image data after the camera signal processing to the image processing unit 964.
  • the image processing unit 964 encodes the image data input from the signal processing unit 963 and generates encoded data. Then, the image processing unit 964 outputs the generated encoded data to the external interface 966 or the media drive 968. The image processing unit 964 also decodes encoded data input from the external interface 966 or the media drive 968 to generate image data. Then, the image processing unit 964 outputs the generated image data to the display unit 965. In addition, the image processing unit 964 may display the image by outputting the image data input from the signal processing unit 963 to the display unit 965. Further, the image processing unit 964 may superimpose display data acquired from the OSD 969 on an image output to the display unit 965.
  • the OSD 969 generates a GUI image such as a menu, a button, or a cursor, and outputs the generated image to the image processing unit 964.
  • the external interface 966 is configured as a USB input / output terminal, for example.
  • the external interface 966 connects the imaging device 960 and a printer, for example, when printing an image.
  • a drive is connected to the external interface 966 as necessary.
  • a removable medium such as a magnetic disk or an optical disk is attached to the drive, and a program read from the removable medium can be installed in the imaging device 960.
  • the external interface 966 may be configured as a network interface connected to a network such as a LAN or the Internet. That is, the external interface 966 has a role as a transmission unit in the imaging device 960.
  • the recording medium mounted on the media drive 968 may be any readable / writable removable medium such as a magnetic disk, a magneto-optical disk, an optical disk, or a semiconductor memory.
  • a recording medium may be fixedly mounted on the media drive 968, and a non-portable storage unit such as an internal hard disk drive or an SSD (Solid State Drive) may be configured.
  • the control unit 970 includes a processor such as a CPU and memories such as a RAM and a ROM.
  • the memory stores a program executed by the CPU, program data, and the like.
  • the program stored in the memory is read and executed by the CPU when the imaging device 960 is activated, for example.
  • the CPU controls the operation of the imaging device 960 according to an operation signal input from the user interface 971 by executing the program.
  • the user interface 971 is connected to the control unit 970.
  • the user interface 971 includes, for example, buttons and switches for the user to operate the imaging device 960.
  • the user interface 971 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 970.
  • the image processing unit 964 has the functions of the image encoding device and the image decoding device according to the above-described embodiment. Accordingly, encoding efficiency can be improved when encoding and decoding an image by the imaging device 960.
  • the method for transmitting such information is not limited to such an example.
  • these pieces of information may be transmitted or recorded as separate data associated with the encoded bitstream without being multiplexed into the encoded bitstream.
  • the term “associate” means that an image (which may be a part of an image such as a slice or a block) included in the bitstream and information corresponding to the image can be linked at the time of decoding. Means. That is, information may be transmitted on a transmission path different from that of the image (or bit stream).
  • Information may be recorded on a recording medium (or another recording area of the same recording medium) different from the image (or bit stream). Furthermore, the information and the image (or bit stream) may be associated with each other in an arbitrary unit such as a plurality of frames, one frame, or a part of the frame.
  • this technique can also take the following structures.
  • constrained intra prediction one or a continuous pixel that is adjacent to the region that is the processing target of the constrained intra prediction and that is used for prediction and is sandwiched between two usable peripheral pixels
  • An interpolation pixel generation unit that generates an interpolation pixel value of a value corresponding to the position of a plurality of peripheral pixels that cannot be used;
  • An image processing apparatus comprising: a prediction image generation unit that performs intra prediction using the interpolation pixel value generated by the interpolation pixel generation unit and generates a prediction image.
  • the interpolation pixel generation unit generates an interpolation pixel value having a value corresponding to a distance from the available surrounding pixels.
  • the pixel value of the pixel adjacent to the right of the peripheral pixel is the interpolation pixel value of the peripheral pixel
  • the pixel value of the lower pixel is set as the interpolated pixel value of the peripheral pixel.
  • the size determination unit determines a size of the region using a threshold, The image processing device according to (7), wherein the interpolation pixel generation unit generates the interpolation pixel value when the size determination unit determines that the region is equal to or less than a threshold value.
  • the threshold is set according to a profile level.
  • the interpolated pixel generation unit is a neighboring pixel that is adjacent to the region that is the processing target of the restricted intra prediction and is used for prediction in the restricted intra prediction, and is sandwiched between two usable neighboring pixels For one or a plurality of consecutive peripheral pixels that cannot be used, an interpolated pixel value corresponding to the position is generated, An image processing method in which a predicted image generation unit performs intra prediction using a generated interpolation pixel value to generate a predicted image.

Abstract

The present invention pertains to an image processing device and method which enable encoding efficiency to be improved. An interpolated pixel generation unit and a predicted image generation unit are provided for constrained intra prediction. The interpolated pixel generation unit generates interpolated pixel values for values corresponding to the position of one unavailable neighboring pixel that is sandwiched between two available neighboring pixels, or the positions of consecutive multiple unavailable neighboring pixels, said neighboring pixels being adjacent to an area that is to undergo constrained intra prediction processing, and to be used for prediction. The predicted image generation unit uses the interpolated pixels values generated by the interpolated pixel generation unit to carry out intra prediction, and to generate a predicted image. The present invention can be applied to image processing devices.

Description

画像処理装置および方法Image processing apparatus and method
 本開示は、画像処理装置および方法に関し、特に、符号化効率を向上させることができるようにした画像処理装置および方法に関する。 The present disclosure relates to an image processing apparatus and method, and more particularly, to an image processing apparatus and method capable of improving encoding efficiency.
 近年、画像情報をデジタルとして取り扱い、その際、効率の高い情報の伝送、蓄積を目的とし、画像情報特有の冗長性を利用して、離散コサイン変換等の直交変換と動き補償により圧縮するMPEG(Moving Picture Experts Group)などの方式に準拠した装置が、放送局などの情報配信、及び一般家庭における情報受信の双方において普及した。 In recent years, image information is handled as digital data, and MPEG (compressed by orthogonal transform such as discrete cosine transform and motion compensation is used for the purpose of efficient transmission and storage of information. A device that conforms to a method such as Moving (Pictures Experts Group) has been widely used for both information distribution in broadcasting stations and information reception in general households.
 特に、MPEG2(ISO(International Organization for Standardization)/IEC(International Electrotechnical Commission) 13818-2)は、汎用画像符号化方式として定義されており、飛び越し走査画像及び順次走査画像の双方、並びに標準解像度画像及び高精細画像を網羅する標準で、プロフェッショナル用途及びコンシューマ用途の広範なアプリケーションに現在広く用いられている。MPEG2圧縮方式を用いることにより、例えば720×480画素を持つ標準解像度の飛び越し走査画像であれば4~8Mbps、1920×1088画素を持つ高解像度の飛び越し走査画像であれば18~22Mbpsの符号量(ビットレート)を割り当てることで、高い圧縮率と良好な画質の実現が可能である。 In particular, MPEG2 (ISO (International Organization for Standardization) / IEC (International Electrotechnical Commission) 13818-2) is defined as a general-purpose image coding system, and includes both interlaced scanning images and sequential scanning images, as well as standard resolution images and This standard covers high-definition images and is currently widely used in a wide range of professional and consumer applications. By using the MPEG2 compression method, for example, a standard resolution interlaced scanning image having 720 × 480 pixels is 4 to 8 Mbps, and a high resolution interlaced scanning image having 1920 × 1088 pixels is 18 to 22 Mbps. (Bit rate) can be assigned to achieve a high compression rate and good image quality.
MPEG2は主として放送用に適合する高画質符号化を対象としていたが、MPEG1より低い符号量(ビットレート)、つまりより高い圧縮率の符号化方式には対応していなかった。携帯端末の普及により、今後そのような符号化方式のニーズは高まると思われ、これに対応してMPEG4符号化方式の標準化が行われた。画像符号化方式に関しては、1998年12月にISO/IEC 14496-2としてその規格が国際標準に承認された。 MPEG2 was mainly intended for high-quality encoding suitable for broadcasting, but did not support encoding methods with a lower code amount (bit rate) than MPEG1, that is, a higher compression rate. With the widespread use of mobile terminals, the need for such an encoding system is expected to increase in the future, and the MPEG4 encoding system has been standardized accordingly. Regarding the image coding system, the standard was approved as an international standard in December 1998 as ISO / IEC 14496-2.
 更に、近年、当初テレビ会議用の画像符号化を目的として、H.26L (ITU-T(International Telecommunication Union Telecommunication Standardization Sector) Q6/16 VCEG(Video Coding Expert Group))という標準の規格化が進んでいる。H.26LはMPEG2やMPEG4といった従来の符号化方式に比べ、その符号化、復号化により多くの演算量が要求されるものの、より高い符号化効率が実現されることが知られている。また、現在、MPEG4の活動の一環として、このH.26Lをベースに、H.26Lではサポートされない機能も取り入れ、より高い符号化効率を実現する標準化がJoint Model of Enhanced-Compression Video Codingとして行われた。 In recent years, the standardization of H.26L (ITU-T (International Telecommunication Union Telecommunication Standardization Sector) Q6 / 16 VCEG (Video Coding Expert Group)) has been progressing for the purpose of initial video coding for video conferences. Yes. H.26L is known to achieve higher encoding efficiency than the conventional encoding schemes such as MPEG2 and MPEG4, although a large amount of calculation is required for encoding and decoding. Also, as part of MPEG4 activities, standardization to achieve higher coding efficiency based on this H.26L and incorporating functions not supported by H.26L has been carried out as Joint Model of Enhanced-Compression Video Coding. It was.
 標準化のスケジュールとしては、2003年3月にはH.264及びMPEG-4 Part10 (Advanced Video Coding、以下AVCと記す)という名の元に国際標準となった。 The standardization schedule became an international standard in March 2003 under the names H.264 and MPEG-4 Part 10 (Advanced Video Coding, hereinafter referred to as AVC).
 更に、その拡張として、RGBや4:2:2、4:4:4といった、業務用に必要な符号化ツールや、MPEG-2で規定されていた8x8DCT(Discrete Cosine Transform)や量子化マトリクスをも含んだFRExt(Fidelity Range Extension)の標準化が2005年2月に完了し、これにより、AVCを用いて、映画に含まれるフィルムノイズをも良好に表現することが可能な符号化方式となって、Blu-Ray Disc等の幅広いアプリケーションに用いられる運びとなった。 Furthermore, as an extension, RGB, 4: 2: 2, 4: 4: 4 encoding tools necessary for business use, 8x8DCT (Discrete Cosine Transform) and quantization matrix specified by MPEG-2 are added. FRExt (Fidelity Range Extension) standardization was completed in February 2005. This makes it possible to use AVC to properly express film noise in movies. It has been used for a wide range of applications such as Blu-Ray Disc.
 しかしながら、昨今、ハイビジョン画像の4倍の、4000×2000画素程度の画像を圧縮したい、或いは、インターネットのような、限られた伝送容量の環境において、ハイビジョン画像を配信したいといった、更なる高圧縮率符号化に対するニーズが高まっている。このため、ITU-T傘下のVCEG(Video Coding Expert Group)において、符号化効率の改善に関する検討が継続され行なわれている。 However, in recent years, even higher compression ratios such as wanting to compress images of about 4000 x 2000 pixels, which is four times higher than high-definition images, or distributing high-definition images in a limited transmission capacity environment such as the Internet. There is a growing need for encoding. For this reason, in the VCEG (Video Coding Expert Group) under the ITU-T umbrella, studies on improving the coding efficiency are continuing.
 ところで、従来のように、マクロブロックサイズを16画素×16画素とするのは、次世代符号化方式の対象となるような、UHD(Ultra High Definition;4000画素×2000画素)といった大きな画枠に対しては、最適ではない恐れがあった。 By the way, the conventional macroblock size of 16 pixels × 16 pixels is a large image frame such as UHD (Ultra High Definition: 4000 pixels × 2000 pixels), which is the target of the next generation encoding method. There was a fear that it was not optimal.
 そこで、現在、AVCより更なる符号化効率の向上を目的として、ITU-Tと、ISO/IECの共同の標準化団体であるJCTVC(Joint Collaboration Team - Video Coding)により、HEVC(High Efficiency Video Coding)と呼ばれる符号化方式の標準化が進められている(例えば、非特許文献1参照)。 Therefore, HEVC (High Efficiency Video Video Coding) is now being developed by JCTVC (Joint Collaboration Collaboration Team Video Coding), a joint standardization organization of ITU-T and ISO / IEC, with the aim of further improving coding efficiency over AVC. Is being standardized (for example, see Non-Patent Document 1).
 このHEVC符号化方式においては、AVCにおけるマクロブロックと同様の処理単位としてコーディングユニット(CU(Coding Unit))が定義されている。このCUは、AVCのマクロブロックのようにサイズが16×16画素に固定されず、それぞれのシーケンスにおいて、画像圧縮情報中において指定される。 In this HEVC encoding system, a coding unit (CU (Coding Unit)) is defined as a processing unit similar to a macroblock in AVC. The CU is not fixed to a size of 16 × 16 pixels like the AVC macroblock, and is specified in the image compression information in each sequence.
 ところで、AVCには、インターピクチャにおいて、インター予測(画面間予測)により再構成された画素からのイントラ予測(画面内予測)を禁止するモードが用意されている。このモードはインター予測、もしくはインター予測で参照する画像にエラー混入していた際に、そのエラーがイントラ予測に影響することを防ぐためのものである。AVCにおけるシンタックスではピクチャパラメータ中に存在するconstrained_intra_pred_flagで示させるフラグが1の時に上述したモードで復号されることが規定されている。 By the way, in AVC, a mode is provided that prohibits intra prediction (intra-screen prediction) from pixels reconstructed by inter prediction (inter-screen prediction) in inter pictures. This mode is to prevent the error from affecting the intra prediction when an error is mixed in an image that is referred to in inter prediction or inter prediction. The syntax in AVC specifies that decoding is performed in the above-described mode when the flag indicated by constrained_intra_pred_flag present in the picture parameter is 1.
 しかしながら、HEVCの場合、LCU内にインター予測を行うCUとイントラ予測を行うCUとが混在することができる。このような場合に、constrained_intra_pred_flag=1であるとすると、イントラ予測において周辺画素の参照が不可能になることが頻発し、利用可能な予測モードの数が大幅に制限され、符号化効率が低減する恐れがあった。 However, in the case of HEVC, a CU performing inter prediction and a CU performing intra prediction can be mixed in the LCU. In such a case, if constrained_intra_pred_flag = 1, it often happens that reference to neighboring pixels becomes impossible in intra prediction, the number of available prediction modes is greatly limited, and coding efficiency is reduced. There was a fear.
 そこで、constrained_intra_pred_flag=1でのイントラ予測の場合、インター予測から構成されるブロック(単に、インター予測のブロックとも称する)の隣接画素を、そのブロックに隣接する、イントラ予測から構成されるブロック(単に、イントラ予測のブロックとも称する)の画素で置き換える方法が考えられた(例えば、非特許文献2参照)。 Therefore, in the case of intra prediction with constrained_intra_pred_flag = 1, adjacent blocks of a block composed of inter prediction (also simply referred to as inter prediction block) are adjacent to the block composed of intra prediction (simply, There has been considered a method of replacing the pixel (also referred to as an intra prediction block) (for example, see Non-Patent Document 2).
 しかしながら、非特許文献2に記載の方法の場合、利用不可能な(not availableな)周辺画素値を、利用可能な(availableな)周辺画素を用いて補間する際、画素の位置に寄らず、同一の値を用いるため、十分な符号化効率を実現できない恐れがあった。 However, in the case of the method described in Non-Patent Document 2, when interpolating an unusable (not available) surrounding pixel value using an available (available) surrounding pixel, Since the same value is used, there is a possibility that sufficient encoding efficiency cannot be realized.
 本開示は、このような状況に鑑みてなされたものであり、利用不可能なインター予測のブロックの画素を、より精度の高い画素を用いて置き換えることができるようにし、符号化効率を向上させることができるようにすることを目的とする。 The present disclosure has been made in view of such a situation, and allows pixels in an inter prediction block that cannot be used to be replaced with pixels with higher accuracy, thereby improving encoding efficiency. The purpose is to be able to.
 本開示の一側面は、制約付きイントラ予測において、前記制約付きイントラ予測の処理対象である当該領域に隣接し、予測に利用される周辺画素であって、利用可能な2つの周辺画素に挟まれる1つ若しくは連続する複数の利用不可能な周辺画素に対して、その位置に応じた値の補間画素値を生成する補間画素生成部と、前記補間画素生成部により生成された補間画素値を利用して、イントラ予測を行い、予測画像を生成する予測画像生成部とを備える画像処理装置である。 One aspect of the present disclosure is that in constrained intra prediction, adjacent pixels that are adjacent to the region that is the processing target of the constrained intra prediction and are used for prediction, and are sandwiched between two usable peripheral pixels For one or a plurality of consecutive peripheral pixels that cannot be used, an interpolation pixel generation unit that generates an interpolation pixel value corresponding to the position, and an interpolation pixel value generated by the interpolation pixel generation unit is used. The image processing apparatus includes a predicted image generation unit that performs intra prediction and generates a predicted image.
 前記補間画素生成部は、利用可能な前記周辺画素との距離に応じた値の補間画素値を生成することができる。 The interpolation pixel generation unit can generate an interpolation pixel value having a value corresponding to a distance from the available surrounding pixels.
 前記補間画素生成部は、利用可能な2つの前記周辺画素を用いた線形内挿により前記補間画素値を生成することができる。 The interpolation pixel generation unit can generate the interpolation pixel value by linear interpolation using two neighboring pixels that can be used.
 前記補間画素生成部は、前記線形内挿において、2のべき乗の近似値を用いて割り算を行うことができる。 The interpolation pixel generation unit can perform division using an approximate value that is a power of 2 in the linear interpolation.
 前記補間画素生成部は、当該領域の左上の、利用不可能な周辺画素に対して、前記周辺画素の右隣の画素が利用可能な場合、前記右隣の画素の画素値を前記周辺画素の補間画素値とし、前記周辺画素の右隣の画素が利用不可能であり、かつ、前記周辺画素の下の画素が利用可能である場合、前記下の画素の画素値を前記周辺画素の補間画素値とすることができる。 The interpolation pixel generation unit calculates a pixel value of the right adjacent pixel when the pixel adjacent to the right of the peripheral pixel is usable with respect to the unusable peripheral pixel at the upper left of the region. When the pixel adjacent to the right of the peripheral pixel is not usable and the pixel below the peripheral pixel is usable, the pixel value of the lower pixel is used as the interpolation pixel value of the peripheral pixel. Can be a value.
 イントラ予測に関するフラグ情報の値を判定するフラグ判定部をさらに備え、前記補間画素生成部は、前記フラグ判定部により、前記フラグ情報により前記制約付きイントラ予測が指定されていると判定された場合、前記補間画素値を生成することができる。 When the flag determination unit further determines a value of flag information related to intra prediction, and the interpolated pixel generation unit determines that the restricted intra prediction is specified by the flag information, The interpolated pixel value can be generated.
 当該領域の大きさを判定するサイズ判定部をさらに備え、前記補間画素生成部は、前記サイズ判定部により当該領域が小さいと判定された場合、前記補間画素値を生成することができる。 A size determination unit that determines the size of the region is further included, and the interpolation pixel generation unit can generate the interpolation pixel value when the size determination unit determines that the region is small.
 前記サイズ判定部は、閾値を用いて、当該領域の大きさを判定し、前記補間画素生成部は、前記サイズ判定部により当該領域が閾値以下であると判定された場合、前記補間画素値を生成することができる。 The size determination unit determines a size of the region using a threshold value, and the interpolation pixel generation unit determines the interpolation pixel value when the size determination unit determines that the region is equal to or less than the threshold value. Can be generated.
 前記閾値を伝送する伝送部をさらに備えることができる。 A transmission unit for transmitting the threshold value can be further provided.
 伝送される前記閾値を受け取る受け取り部をさらに備え、前記サイズ判定部は、前記受け取り部により受け取られた前記閾値を用いて当該領域の大きさを判定することができる。 A receiving unit that receives the threshold value to be transmitted is further provided, and the size determining unit can determine the size of the region using the threshold value received by the receiving unit.
 前記閾値はプロファイルレベルに応じて設定されるようにすることができる。 The threshold value can be set according to the profile level.
 本開示の一側面は、また、画像処理装置の画像処理方法であって、補間画素生成部が、制約付きイントラ予測において、前記制約付きイントラ予測の処理対象である当該領域に隣接し、予測に利用される周辺画素であって、利用可能な2つの周辺画素に挟まれる1つ若しくは連続する複数の利用不可能な周辺画素に対して、その位置に応じた値の補間画素値を生成し、予測画像生成部が、生成された補間画素値を利用して、イントラ予測を行い、予測画像を生成する画像処理方法である。 One aspect of the present disclosure is also an image processing method of the image processing device, wherein the interpolation pixel generation unit is adjacent to the region that is the processing target of the restricted intra prediction in the restricted intra prediction, and the prediction is performed. For one or more consecutive peripheral pixels that are used peripheral pixels that are sandwiched between two peripheral pixels that can be used, an interpolated pixel value corresponding to the position is generated. This is an image processing method in which a predicted image generation unit performs intra prediction using a generated interpolation pixel value to generate a predicted image.
 本開示の一側面においては、制約付きイントラ予測において、制約付きイントラ予測の処理対象である当該領域に隣接し、予測に利用される周辺画素であって、利用可能な2つの周辺画素に挟まれる1つ若しくは連続する複数の利用不可能な周辺画素に対して、その位置に応じた値の補間画素値が生成され、その生成された補間画素値を利用して、イントラ予測が行われ、予測画像が生成される。 In one aspect of the present disclosure, in constrained intra prediction, a neighboring pixel that is adjacent to the region that is the processing target of the constrained intra prediction and is used for prediction, and is sandwiched between two usable neighboring pixels For one or a plurality of consecutive unusable neighboring pixels, an interpolated pixel value corresponding to the position is generated, and intra prediction is performed using the generated interpolated pixel value. An image is generated.
 本開示によれば、画像を処理することができる。特に、符号化効率を向上させることができる。 According to the present disclosure, an image can be processed. In particular, encoding efficiency can be improved.
画像符号化装置の主な構成例を示すブロック図である。It is a block diagram which shows the main structural examples of an image coding apparatus. コーディングユニットの構成例を説明する図である。It is a figure explaining the structural example of a coding unit. Angular Prediction イントラ予測方式の例を説明する図である。It is a figure explaining the example of Angular | Prediction | intra prediction method. Arbitrary Directional Intra イントラ予測方式の例を説明する図である。It is a figure explaining the example of Arbitrary | Directional | Intra | intra prediction method. 周辺画素の置き換えの様子の例を説明する図である。It is a figure explaining the example of the mode of replacement of a surrounding pixel. 制約付きイントラ予測部等の主な構成例を示すブロック図である。It is a block diagram which shows the main structural examples, such as an intra estimation part with restrictions. 周辺画素の置き換えの様子の例を説明する図である。It is a figure explaining the example of the mode of replacement of a surrounding pixel. 周辺画素の置き換えの様子の例を説明する図である。It is a figure explaining the example of the mode of replacement of a surrounding pixel. 符号化処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of an encoding process. イントラ予測処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of an intra prediction process. 画像復号装置の主な構成例を示すブロック図である。It is a block diagram which shows the main structural examples of an image decoding apparatus. 制約付きイントラ予測部等の他の構成例を示すブロック図である。It is a block diagram which shows other structural examples, such as an intra estimation part with restrictions. 復号処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of a decoding process. 予測処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of a prediction process. イントラ予測処理の流れの、他の例を説明するフローチャートである。It is a flowchart explaining the other example of the flow of an intra prediction process. 制約付きイントラ予測部等の、さらに他の構成例を示すブロック図である。It is a block diagram which shows further another structural examples, such as an intra estimation part with restrictions. イントラ予測処理の流れの、さらに他の例を説明するフローチャートである。It is a flowchart explaining the further another example of the flow of an intra prediction process. 制約付きイントラ予測部等の、さらに他の構成例を示すブロック図である。It is a block diagram which shows further another structural examples, such as an intra estimation part with restrictions. イントラ予測処理の流れの、さらに他の例を説明するフローチャートである。It is a flowchart explaining the further another example of the flow of an intra prediction process. パーソナルコンピュータの主な構成例を示すブロック図である。FIG. 26 is a block diagram illustrating a main configuration example of a personal computer. テレビジョン装置の概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a television apparatus. 携帯電話機の概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a mobile telephone. 記録再生装置の概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a recording / reproducing apparatus. 撮像装置の概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of an imaging device.
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態(画像符号化装置)
 2.第2の実施の形態(画像復号装置)
 3.第3の実施の形態(制約付きイントラ予測部の他の例)
 4.第4の実施の形態(コンピュータ)
 5.第5の実施の形態(テレビジョン受像機)
 6.第6の実施の形態(携帯電話機)
 7.第7の実施の形態(記録再生装置)
 8.第8の実施の形態(撮像装置)
Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1. First Embodiment (Image Encoding Device)
2. Second embodiment (image decoding apparatus)
3. Third embodiment (another example of a constrained intra prediction unit)
4). Fourth embodiment (computer)
5. Fifth embodiment (television receiver)
6). Sixth embodiment (mobile phone)
7). Seventh embodiment (recording / reproducing apparatus)
8). Eighth embodiment (imaging device)
 <1.第1の実施の形態>
 [画像符号化装置]
 図1は、画像処理装置である画像符号化装置の主な構成例を示すブロック図である。
<1. First Embodiment>
[Image encoding device]
FIG. 1 is a block diagram illustrating a main configuration example of an image encoding device that is an image processing device.
 図1に示される画像符号化装置100は、例えばH.264及びMPEG(Moving Picture Experts Group)4 Part10(AVC(Advanced Video Coding))符号化方式のように、予測処理を用いて画像データを符号化する。 The image encoding device 100 shown in FIG. Like the H.264 and MPEG (Moving Picture Experts Group) 4 Part 10 (AVC (Advanced Video Coding)) coding system, the image data is encoded using a prediction process.
 図1に示されるように画像符号化装置100は、A/D変換部101、画面並べ替えバッファ102、演算部103、直交変換部104、量子化部105、可逆符号化部106、および蓄積バッファ107を有する。また、画像符号化装置100は、逆量子化部108、逆直交変換部109、演算部110、ループフィルタ111、フレームメモリ112、選択部113、イントラ予測部114、動き予測・補償部115、予測画像選択部116、およびレート制御部117を有する。 As shown in FIG. 1, the image encoding device 100 includes an A / D conversion unit 101, a screen rearrangement buffer 102, a calculation unit 103, an orthogonal transformation unit 104, a quantization unit 105, a lossless encoding unit 106, and a storage buffer. 107. The image coding apparatus 100 also includes an inverse quantization unit 108, an inverse orthogonal transform unit 109, a calculation unit 110, a loop filter 111, a frame memory 112, a selection unit 113, an intra prediction unit 114, a motion prediction / compensation unit 115, and a prediction. An image selection unit 116 and a rate control unit 117 are included.
 画像符号化装置100は、さらに、制約付きイントラ予測部121を有する。 The image encoding apparatus 100 further includes a restricted intra prediction unit 121.
 A/D変換部101は、入力された画像データをA/D変換し、変換後の画像データ(デジタルデータ)を、画面並べ替えバッファ102に供給し、記憶させる。画面並べ替えバッファ102は、記憶した表示の順番のフレームの画像を、GOP(Group Of Picture)に応じて、符号化のためのフレームの順番に並べ替え、フレームの順番を並び替えた画像を、演算部103に供給する。また、画面並べ替えバッファ102は、フレームの順番を並び替えた画像を、イントラ予測部114および動き予測・補償部115にも供給する。 The A / D conversion unit 101 performs A / D conversion on the input image data, and supplies the converted image data (digital data) to the screen rearrangement buffer 102 for storage. The screen rearrangement buffer 102 rearranges the images of the frames in the stored display order in the order of frames for encoding in accordance with GOP (Group Of Picture), and the images in which the order of the frames is rearranged. This is supplied to the calculation unit 103. The screen rearrangement buffer 102 also supplies the image in which the order of the frames is rearranged to the intra prediction unit 114 and the motion prediction / compensation unit 115.
 演算部103は、画面並べ替えバッファ102から読み出された画像から、予測画像選択部116を介してイントラ予測部114若しくは動き予測・補償部115から供給される予測画像を減算し、その差分情報を直交変換部104に出力する。 The calculation unit 103 subtracts the prediction image supplied from the intra prediction unit 114 or the motion prediction / compensation unit 115 via the prediction image selection unit 116 from the image read from the screen rearrangement buffer 102, and the difference information Is output to the orthogonal transform unit 104.
 例えば、イントラ符号化が行われる画像の場合、演算部103は、画面並べ替えバッファ102から読み出された画像から、イントラ予測部114から供給される予測画像を減算する。また、例えば、インター符号化が行われる画像の場合、演算部103は、画面並べ替えバッファ102から読み出された画像から、動き予測・補償部115から供給される予測画像を減算する。 For example, in the case of an image on which intra coding is performed, the calculation unit 103 subtracts the prediction image supplied from the intra prediction unit 114 from the image read from the screen rearrangement buffer 102. For example, in the case of an image on which inter coding is performed, the arithmetic unit 103 subtracts the predicted image supplied from the motion prediction / compensation unit 115 from the image read from the screen rearrangement buffer 102.
 直交変換部104は、演算部103から供給される差分情報に対して、離散コサイン変換やカルーネン・レーベ変換等の直交変換を施す。なお、この直交変換の方法は任意である。直交変換部104は、その変換係数を量子化部105に供給する。 The orthogonal transform unit 104 performs orthogonal transform such as discrete cosine transform and Karhunen-Loeve transform on the difference information supplied from the computation unit 103. Note that this orthogonal transformation method is arbitrary. The orthogonal transform unit 104 supplies the transform coefficient to the quantization unit 105.
 量子化部105は、直交変換部104から供給される変換係数を量子化する。量子化部105は、レート制御部117から供給される符号量の目標値に関する情報に基づいて量子化パラメータを設定し、その量子化を行う。なお、この量子化の方法は任意である。量子化部105は、量子化された変換係数を可逆符号化部106に供給する。 The quantization unit 105 quantizes the transform coefficient supplied from the orthogonal transform unit 104. The quantization unit 105 sets a quantization parameter based on the information regarding the target value of the code amount supplied from the rate control unit 117, and performs the quantization. Note that this quantization method is arbitrary. The quantization unit 105 supplies the quantized transform coefficient to the lossless encoding unit 106.
 可逆符号化部106は、量子化部105において量子化された変換係数を、任意の符号化方式で符号化する。係数データは、レート制御部117の制御の下で量子化されているので、この符号量は、レート制御部117が設定した目標値となる(若しくは目標値に近似する)。 The lossless encoding unit 106 encodes the transform coefficient quantized by the quantization unit 105 using an arbitrary encoding method. Since the coefficient data is quantized under the control of the rate control unit 117, the code amount becomes a target value set by the rate control unit 117 (or approximates the target value).
 また、可逆符号化部106は、イントラ予測のモードを示す情報等を含むイントラ予測情報をイントラ予測部114から取得し、インター予測のモードを示す情報や動きベクトル情報などを含むインター予測情報を動き予測・補償部115から取得する。さらに、可逆符号化部106は、ループフィルタ111において使用されたフィルタ係数等を取得する。 Further, the lossless encoding unit 106 acquires intra prediction information including information indicating an intra prediction mode from the intra prediction unit 114, and moves inter prediction information including information indicating an inter prediction mode, motion vector information, and the like. Obtained from the prediction / compensation unit 115. Further, the lossless encoding unit 106 acquires filter coefficients used in the loop filter 111 and the like.
 可逆符号化部106は、これらの各種情報を任意の符号化方式で符号化し、符号化データのヘッダ情報の一部とする(多重化する)。可逆符号化部106は、符号化して得られた符号化データを蓄積バッファ107に供給して蓄積させる。 The lossless encoding unit 106 encodes these various types of information using an arbitrary encoding method, and makes it a part of the header information of the encoded data (multiplexes). The lossless encoding unit 106 supplies the encoded data obtained by encoding to the accumulation buffer 107 for accumulation.
 可逆符号化部106の符号化方式としては、例えば、可変長符号化または算術符号化等が挙げられる。可変長符号化としては、例えば、H.264/AVC方式で定められているCAVLC(Context-Adaptive Variable Length Coding)などが挙げられる。算術符号化としては、例えば、CABAC(Context-Adaptive Binary Arithmetic Coding)などが挙げられる。 Examples of the encoding method of the lossless encoding unit 106 include variable length encoding or arithmetic encoding. Examples of variable length coding include H.264. CAVLC (Context-Adaptive Variable Length Coding) defined in the H.264 / AVC format. Examples of arithmetic coding include CABAC (Context-Adaptive Binary Arithmetic Coding).
 蓄積バッファ107は、可逆符号化部106から供給された符号化データを、一時的に保持する。蓄積バッファ107は、所定のタイミングにおいて、保持している符号化データを、ビットストリームとして、例えば、後段の図示せぬ記録装置(記録媒体)や伝送路などに出力する。つまり、符号化された各種情報が復号側に供給される。 The accumulation buffer 107 temporarily holds the encoded data supplied from the lossless encoding unit 106. The accumulation buffer 107 outputs the stored encoded data as a bit stream at a predetermined timing, for example, to a recording device (recording medium) or a transmission path (not shown) in the subsequent stage. That is, various encoded information is supplied to the decoding side.
 また、量子化部105において量子化された変換係数は、逆量子化部108にも供給される。逆量子化部108は、その量子化された変換係数を、量子化部105による量子化に対応する方法で逆量子化する。この逆量子化の方法は、量子化部105による量子化処理に対応する方法であればどのような方法であってもよい。逆量子化部108は、得られた変換係数を、逆直交変換部109に供給する。 Also, the transform coefficient quantized by the quantization unit 105 is also supplied to the inverse quantization unit 108. The inverse quantization unit 108 inversely quantizes the quantized transform coefficient by a method corresponding to the quantization by the quantization unit 105. The inverse quantization method may be any method as long as it is a method corresponding to the quantization processing by the quantization unit 105. The inverse quantization unit 108 supplies the obtained transform coefficient to the inverse orthogonal transform unit 109.
 逆直交変換部109は、逆量子化部108から供給された変換係数を、直交変換部104による直交変換処理に対応する方法で逆直交変換する。この逆直交変換の方法は、直交変換部104による直交変換処理に対応する方法であればどのようなものであってもよい。逆直交変換された出力(局所的に復元された差分情報)は、演算部110に供給される。 The inverse orthogonal transform unit 109 performs inverse orthogonal transform on the transform coefficient supplied from the inverse quantization unit 108 by a method corresponding to the orthogonal transform process by the orthogonal transform unit 104. The inverse orthogonal transform method may be any method as long as it corresponds to the orthogonal transform processing by the orthogonal transform unit 104. The inversely orthogonally transformed output (difference information restored locally) is supplied to the calculation unit 110.
 演算部110は、逆直交変換部109から供給された逆直交変換結果、すなわち、局所的に復元された差分情報に、予測画像選択部116を介してイントラ予測部114若しくは動き予測・補償部115から供給される予測画像を加算し、局所的に再構成された画像(以下、再構成画像と称する)を得る。その再構成画像は、ループフィルタ111またはフレームメモリ112に供給される。 The calculation unit 110 converts the inverse orthogonal transform result supplied from the inverse orthogonal transform unit 109, that is, locally restored difference information, into the intra prediction unit 114 or the motion prediction / compensation unit 115 via the predicted image selection unit 116. Are added to the predicted image to obtain a locally reconstructed image (hereinafter referred to as a reconstructed image). The reconstructed image is supplied to the loop filter 111 or the frame memory 112.
 ループフィルタ111は、デブロックフィルタや適応ループフィルタ等を含み、演算部110から供給される復号画像に対して適宜フィルタ処理を行う。例えば、ループフィルタ111は、復号画像に対してデブロックフィルタ処理を行うことにより復号画像のブロック歪を除去する。また、例えば、ループフィルタ111は、そのデブロックフィルタ処理結果(ブロック歪みの除去が行われた復号画像)に対して、ウィナーフィルタ(Wiener Filter)を用いてループフィルタ処理を行うことにより画質改善を行う。 The loop filter 111 includes a deblock filter, an adaptive loop filter, and the like, and appropriately performs a filtering process on the decoded image supplied from the calculation unit 110. For example, the loop filter 111 removes block distortion of the decoded image by performing a deblocking filter process on the decoded image. In addition, for example, the loop filter 111 performs image quality improvement by performing loop filter processing using a Wiener filter on the deblock filter processing result (decoded image from which block distortion has been removed). Do.
 なお、ループフィルタ111が、復号画像に対して任意のフィルタ処理を行うようにしてもよい。また、ループフィルタ111は、必要に応じて、フィルタ処理に用いたフィルタ係数等の情報を可逆符号化部106に供給し、それを符号化させるようにすることもできる。 Note that the loop filter 111 may perform arbitrary filter processing on the decoded image. Further, the loop filter 111 can supply information such as filter coefficients used for the filter processing to the lossless encoding unit 106 and encode it as necessary.
 ループフィルタ111は、フィルタ処理結果(以下、復号画像と称する)をフレームメモリ112に供給する。 The loop filter 111 supplies a filter processing result (hereinafter referred to as a decoded image) to the frame memory 112.
 フレームメモリ112は、演算部110から供給される再構成画像と、ループフィルタ111から供給される復号画像とをそれぞれ記憶する。フレームメモリ112は、所定のタイミングにおいて、若しくは、イントラ予測部114等の外部からの要求に基づいて、記憶している再構成画像を、選択部113を介して、イントラ予測部114に供給する。また、フレームメモリ112は、所定のタイミングにおいて、若しくは、動き予測・補償部115等の外部からの要求に基づいて、記憶している復号画像を、選択部113を介して、動き予測・補償部115に供給する。 The frame memory 112 stores the reconstructed image supplied from the calculation unit 110 and the decoded image supplied from the loop filter 111, respectively. The frame memory 112 supplies the stored reconstructed image to the intra prediction unit 114 via the selection unit 113 at a predetermined timing or based on a request from the outside such as the intra prediction unit 114. The frame memory 112 also stores the decoded image stored at a predetermined timing or based on a request from the outside such as the motion prediction / compensation unit 115 via the selection unit 113. 115.
選択部113は、フレームメモリ112から出力される画像の供給先を示す。例えば、イントラ予測の場合、選択部113は、フレームメモリ112からフィルタ処理されていない画像(再構成画像)を読み出し、周辺画素として、イントラ予測部114に供給する。 The selection unit 113 indicates a supply destination of an image output from the frame memory 112. For example, in the case of intra prediction, the selection unit 113 reads an image (reconstructed image) that has not been subjected to filter processing from the frame memory 112 and supplies it to the intra prediction unit 114 as peripheral pixels.
 また、例えば、インター予測の場合、選択部113は、フレームメモリ112からフィルタ処理された画像(復号画像)を読み出し、参照画像として、それを動き予測・補償部115に供給する。 Also, for example, in the case of inter prediction, the selection unit 113 reads out an image (decoded image) that has been filtered from the frame memory 112, and supplies it as a reference image to the motion prediction / compensation unit 115.
 イントラ予測部114は、フレームメモリ112から、処理対象領域の周辺に位置する周辺領域の画像(周辺画像)を取得すると、その周辺画像の画素値を用いて、基本的にプレディクションユニット(PU)を処理単位として予測画像を生成するイントラ予測(画面内予測)を行う。イントラ予測部114は、予め用意された複数のモード(イントラ予測モード)でこのイントラ予測を行う。 When the intra prediction unit 114 acquires an image (peripheral image) of a peripheral region located around the processing target region from the frame memory 112, the intra prediction unit 114 basically uses a pixel value of the peripheral image to perform a prediction unit (PU). Intra prediction (intra-screen prediction) for generating a predicted image with the processing unit as the processing unit. The intra prediction unit 114 performs this intra prediction in a plurality of modes (intra prediction modes) prepared in advance.
 イントラ予測部114は、候補となる全てのイントラ予測モードで予測画像を生成し、画面並べ替えバッファ102から供給される入力画像を用いて各予測画像のコスト関数値を評価し、最適なモードを選択する。イントラ予測部114は、最適なイントラ予測モードを選択すると、その最適なモードで生成された予測画像を、予測画像選択部116に供給する。 The intra prediction unit 114 generates predicted images in all candidate intra prediction modes, evaluates the cost function value of each predicted image using the input image supplied from the screen rearrangement buffer 102, and selects the optimum mode. select. When the intra prediction unit 114 selects the optimal intra prediction mode, the intra prediction unit 114 supplies the predicted image generated in the optimal mode to the predicted image selection unit 116.
 また、イントラ予測部114は、最適なイントラ予測モード等、イントラ予測に関する情報を含むイントラ予測情報を、適宜可逆符号化部106に供給し、符号化させる。 In addition, the intra prediction unit 114 appropriately supplies intra prediction information including information related to intra prediction, such as an optimal intra prediction mode, to the lossless encoding unit 106 to be encoded.
 動き予測・補償部115は、画面並べ替えバッファ102から供給される入力画像と、フレームメモリ112から供給される参照画像とを用いて、基本的にPUを処理単位として、動き予測(インター予測)を行い、検出された動きベクトルに応じて動き補償処理を行い、予測画像(インター予測画像情報)を生成する。動き予測・補償部115は、予め用意された複数のモード(インター予測モード)でこのようなインター予測を行う。 The motion prediction / compensation unit 115 basically performs motion prediction (inter prediction) using the input image supplied from the screen rearrangement buffer 102 and the reference image supplied from the frame memory 112 as a processing unit. And a motion compensation process is performed according to the detected motion vector to generate a predicted image (inter predicted image information). The motion prediction / compensation unit 115 performs such inter prediction in a plurality of modes (inter prediction modes) prepared in advance.
 動き予測・補償部115は、候補となる全てのインター予測モードで予測画像を生成し、各予測画像のコスト関数値を評価し、最適なモードを選択する。動き予測・補償部115は、最適なインター予測モードを選択すると、その最適なモードで生成された予測画像を、予測画像選択部116に供給する。 The motion prediction / compensation unit 115 generates prediction images in all candidate inter prediction modes, evaluates the cost function value of each prediction image, and selects an optimal mode. When the optimal inter prediction mode is selected, the motion prediction / compensation unit 115 supplies the predicted image generated in the optimal mode to the predicted image selection unit 116.
 また、動き予測・補償部115は、最適なインター予測モード等、インター予測に関する情報を含むインター予測情報を可逆符号化部106に供給し、符号化させる。また、動き予測・補償部115は、最適な予測モードとしてインター予測が選択されると、その最適なインター予測モードの情報をイントラ予測部114に通知する。 Also, the motion prediction / compensation unit 115 supplies inter prediction information including information related to inter prediction, such as an optimal inter prediction mode, to the lossless encoding unit 106 to be encoded. In addition, when inter prediction is selected as the optimal prediction mode, the motion prediction / compensation unit 115 notifies the intra prediction unit 114 of information on the optimal inter prediction mode.
 予測画像選択部116は、演算部103や演算部110に供給する予測画像の供給元を選択する。例えば、イントラ符号化の場合、予測画像選択部116は、予測画像の供給元としてイントラ予測部114を選択し、そのイントラ予測部114から供給される予測画像を演算部103や演算部110に供給する。また、例えば、インター符号化の場合、予測画像選択部116は、予測画像の供給元として動き予測・補償部115を選択し、その動き予測・補償部115から供給される予測画像を演算部103や演算部110に供給する。 The predicted image selection unit 116 selects a supply source of a predicted image to be supplied to the calculation unit 103 or the calculation unit 110. For example, in the case of intra coding, the prediction image selection unit 116 selects the intra prediction unit 114 as a supply source of the prediction image, and supplies the prediction image supplied from the intra prediction unit 114 to the calculation unit 103 and the calculation unit 110. To do. Also, for example, in the case of inter coding, the predicted image selection unit 116 selects the motion prediction / compensation unit 115 as a supply source of the predicted image, and calculates the predicted image supplied from the motion prediction / compensation unit 115 as the calculation unit 103. To the arithmetic unit 110.
 レート制御部117は、蓄積バッファ107に蓄積された符号化データの符号量に基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化部105の量子化動作のレートを制御する。 The rate control unit 117 controls the quantization operation rate of the quantization unit 105 based on the code amount of the encoded data stored in the storage buffer 107 so that overflow or underflow does not occur.
 制約付きイントラ予測部121は、constrained_intra_pred_flag=1の場合のイントラ予測(制約付きイントラ予測)のための周辺画素の補間に関する処理を行う。 The constrained intra prediction unit 121 performs processing related to interpolation of surrounding pixels for intra prediction (constrained intra prediction) when constrained_intra_pred_flag = 1.
 [コーディングユニット]
 ここで、HEVC符号化方式について説明する。まず、HEVC符号化方式において定められている、コーディングユニット(Coding Unit)について説明する。
[Coding unit]
Here, the HEVC encoding method will be described. First, a coding unit defined in the HEVC encoding method will be described.
 Coding Unit(CU)は、Coding Tree Block(CTB)とも呼ばれ、AVCにおけるマクロブロックと同様の役割を果たす、ピクチャ単位の画像の部分領域である。後者は、16×16画素の大きさに固定されているのに対し、前者の大きさは固定されておらず、それぞれのシーケンスにおいて、画像圧縮情報中において指定されることになる。 Coding Unit (CU) is also called Coding Block (CTB), and is a partial area of a picture unit image that plays the same role as a macroblock in AVC. The latter is fixed to a size of 16 × 16 pixels, whereas the size of the former is not fixed, and is specified in the image compression information in each sequence.
 特に、最大の大きさを持つCUを、LCU(Largest Coding Unit)と呼び、また、最小の大きさを持つCUをSCU(Smallest Coding Unit)と称する。例えば画像圧縮情報に含まれるシーケンスパラメータセットにおいて、これらの領域のサイズが指定されることになるが、それぞれ、正方形で、2の冪乗で表される大きさに限定される。 In particular, the CU having the largest size is called LCU (Largest Coding Unit), and the CU having the smallest size is called SCU (Smallest Coding Unit). For example, in the sequence parameter set included in the image compression information, the sizes of these regions are specified, but each is limited to a square and a size represented by a power of 2.
 図2に、HEVCで定義されているコーディングユニット(Coding Unit)の例を示す。図2の例では、LCUの大きさが128であり、最大階層深度が5となる。2N×2Nの大きさのCUは、split_flagの値が「1」である時、1つ下の階層となる、N×Nの大きさのCUに分割される。 Figure 2 shows an example of coding unit (Coding Unit) defined in HEVC. In the example of FIG. 2, the LCU size is 128 and the maximum hierarchical depth is 5. When the value of split_flag is “1”, the 2N × 2N size CU is divided into N × N size CUs that are one level below.
 更に、CUは、イントラ若しくはインター予測の処理単位となる領域(ピクチャ単位の画像の部分領域)であるプレディクションユニット(Prediction Unit(PU))に分割され、また、直交変換の処理単位となる領域(ピクチャ単位の画像の部分領域)である、トランスフォームユニット(Transform Unit(TU))に分割される。 Further, the CU is divided into prediction units (Prediction Units (PU)) that are regions (partial regions of images in units of pictures) that are processing units of intra or inter prediction, and are regions that are processing units of orthogonal transformation It is divided into transform units (Transform Unit (TU)), which is (a partial area of an image in units of pictures).
 なお、以下において、「領域」には、各種領域(例えば、AVCのマクロブロックやサブマクロブロック、LCU、CU、SCU、PU、およびTU等)を全て含む(それらのいずれであってもよい)。もちろん、上述した以外の単位が含まれてもよいし、説明の内容に応じて不可能な単位は、適宜、除外するものとする。 In the following, “area” includes all areas (for example, AVC macroblocks and sub-macroblocks, LCU, CU, SCU, PU, TU, etc.), which may be any of them. . Of course, units other than those described above may be included, and units that are impossible according to the content of the description are appropriately excluded.
 [HEVCイントラ予測方式]
 次に、HEVCにおいて定められているイントラ予測方式について説明する。
[HEVC intra prediction method]
Next, an intra prediction method defined in HEVC will be described.
 HEVCにおいては、イントラ予測のためのPUの単位は、4×4、8×8、16×16、32×32若しくは64×64である。 In HEVC, the unit of PU for intra prediction is 4 × 4, 8 × 8, 16 × 16, 32 × 32, or 64 × 64.
 4×4の大きさに関しては、AVCと同様のイントラ予測処理が行われる。 For 4 × 4 size, the same intra prediction process as AVC is performed.
 8×8の大きさに関しては、後述する、Angular Predictionと呼ばれる方式に基づいてイントラ予測処理が行われる。 For the size of 8 × 8, intra prediction processing is performed based on a method called Angular Prediction described later.
 16×16及び32×32及び64×64の大きさに関しては、後述するArbitrary Directional Intra(ADI)と呼ばれる方式に基づいて、イントラ予測処理が行われる。 For the sizes of 16 × 16, 32 × 32, and 64 × 64, intra prediction processing is performed based on a method called Arbitrary Directional Intra (ADI) described later.
 更に、イントラ予測を行うに先立ち、符号化効率を向上させる場合には、係数(1,2,1)によるローパスフィルタ処理が、周辺画素値に施される。施す・施さないに関する情報が、それぞれのPU毎に、画像圧縮情報中に伝送されることになる。 Furthermore, prior to performing intra prediction, in order to improve coding efficiency, low-pass filter processing with coefficients (1, 2, 1) is performed on the peripheral pixel values. Information on whether to apply or not is transmitted in the compressed image information for each PU.
 以下では、HEVC符号化方式において規定されている、Angular Predictionイントラ予測方式について述べる。 The following describes the Angular Prediction intra prediction method defined in the HEVC encoding method.
 [Angular Predictionイントラ予測方式]
 図3に、Angular Predictionイントラ予測方式を説明するための図を示す。
[Angular Prediction Intra Prediction Method]
FIG. 3 is a diagram for explaining the Angular Prediction intra prediction method.
 すなわち、Angular Predictionにおいては、図3のAに示されるような角度のイントラ予測処理を行うことが可能である。 That is, in Angular Prediction, it is possible to perform an intra prediction process of an angle as shown in A of FIG.
 また、図3のAのような角度のイントラ予測を行うためには、図3のBに示されるように、周辺画素の間の画素値を用いる必要が生じるが、このため、Angular Predictionにおいては、1/8画素精度の線形内挿処理を行うことが可能となっている。 Further, in order to perform the angle intra prediction as shown in FIG. 3A, it is necessary to use pixel values between neighboring pixels as shown in FIG. 3B. For this reason, in Angular Prediction, Therefore, it is possible to perform linear interpolation processing with 1/8 pixel accuracy.
[Arbitrary Directional Intra(ADI)イントラ予測方式]
 次に、HEVC符号化方式において規定されている、Arbitrary Directional Intra(ADI)イントラ予測方式について述べる。
[Arbitrary Directional Intra (ADI) Intra Prediction Method]
Next, an Arbitrary Directional Intra (ADI) intra prediction method defined in the HEVC encoding method will be described.
 図4に、Arbitrary Directional Intra(ADI)イントラ予測方式を説明するための図を示す。 Fig. 4 shows a diagram for explaining the Arbitrary Directional Intra (ADI) intra prediction method.
 Arbitrary Directional Intra(ADI)イントラ予測方式においては、図4のAに示されるように、左下に位置する隣接画素値も用いられる。 In the Arbitrary Directional Intra (ADI) intra prediction method, as shown in FIG. 4A, the adjacent pixel value located at the lower left is also used.
 AVC符号化方式の場合と同様に、Vertical,Horizontal,DC,Diagonal Down-Left,Diagonal Down-Right,Vertical-Right,Horizontal-Down,Vertical-Left、およびHorizontal-Upの各予測モードが定義されているが、その他のモードに関しては、図4のBに示されるように、(dx,dy)を符号化情報として画像圧縮情報中に伝送される。 As in the case of the AVC encoding method, the prediction modes of Vertical, Horizontal, DC, DiagonalLeDown-Left, Diagonal Down-Right, Vertical-Right, Horizontal-Down, Vertical-Left, and Horizontal-Up are defined. However, as for other modes, as shown in FIG. 4B, (dx, dy) is transmitted as encoded information in the image compression information.
 [制約付きイントラ予測]
 ところで、例えばAVCやHEVCにおいては、インターピクチャにおいて、インター予測により再構成された画素からのイントラ予測を禁止するモード(制約付きイントラ予測)が用意されている。このモードは、インター予測の画像、若しくは、インター予測で参照する画像にエラー混入していた場合においても、そのエラーのイントラ予測への影響を抑制するためのモードである。
[Constrained Intra Prediction]
By the way, for example, in AVC and HEVC, a mode (constrained intra prediction) for prohibiting intra prediction from pixels reconstructed by inter prediction is prepared for inter pictures. This mode is a mode for suppressing the influence of an error on intra prediction even when an error is mixed in an image of inter prediction or an image referred to in inter prediction.
 例えば、シンタックスのピクチャパラメータ中にconstrained_intra_pred_flagが設けられ、その値が、「1」の場合、上述したような制約付きイントラ予測が採用される。 For example, when constrained_intra_pred_flag is provided in a syntax picture parameter and the value is “1”, the above-described restricted intra prediction is adopted.
 ところが、HEVCの場合、1つのLCU内に、インター予測を行うCUとイントラ予測を行うCUを混在させることが可能である。 However, in the case of HEVC, it is possible to mix CU that performs inter prediction and CU that performs intra prediction in one LCU.
 このような場合、constrained_intra_pred_flag=1である(制約付きイントラ予測)とすると、予測において多くの周辺画素が参照できなくなる可能性が高い。その結果、利用できる予測モードの数が大幅に抑制され、符号化効率が低減する可能性がある。 In such a case, if constrained_intra_pred_flag = 1 (constrained intra prediction), there is a high possibility that many neighboring pixels cannot be referred to in the prediction. As a result, the number of available prediction modes is greatly suppressed, and the coding efficiency may be reduced.
 図5を参照して、具体的に説明する。図5に示されるように、イントラ予測の処理対象の当該領域CU(CU#n)が16×16画素であるとする。図5には、この当該領域CU#nについて、イントラ予測するために必要な周辺の隣接画素と、その隣接画素が含まれる周辺CUでのインター予測・イントラ予測の状態の例が図示してある。 Specific description will be given with reference to FIG. As shown in FIG. 5, it is assumed that the region CU (CU # n) to be processed for intra prediction is 16 × 16 pixels. FIG. 5 illustrates an example of neighboring adjacent pixels necessary for intra prediction and the state of inter prediction / intra prediction in the surrounding CU including the neighboring pixels for the region CU # n. .
 周辺CUの内、A、B、D、E、F、H、およびIがインター予測されたCUであり、C、G、J、およびKがイントラ予測されたCUである。 Among the peripheral CUs, A, B, D, E, F, H, and I are inter-predicted CUs, and C, G, J, and K are intra-predicted CUs.
 図5に示されるように、処理対象の当該領域CU#nの周辺隣接画素はインター予測された画素とイントラ予測された画素が混在している。このため、制約付きイントラ予測(constrained_intra_pred_flag=1)の場合、利用可能なイントラ予測モードがDC(平均値)予測モードのみになってしまう。しかも既存の規格では周辺画素が利用できないために画素値を固定の128で予測することになる。 As shown in FIG. 5, inter-predicted pixels and intra-predicted pixels are mixed in the neighboring pixels in the processing target area CU # n. For this reason, in the case of intra prediction with constraints (constrained_intra_pred_flag = 1), the available intra prediction mode is only the DC (average value) prediction mode. In addition, since the peripheral pixel cannot be used in the existing standard, the pixel value is predicted at a fixed 128.
 このようにHEVCのインターピクチャにおけるイントラ予測において、インター予測によって再構成された画素をイントラ予測で利用しないモード(constrained_intra_pred_flag=1)の場合、周辺のすべての画素が利用可能でないために、利用できるイントラ予測モードが大幅に制限されてしまう可能性があった。 In this way, in the intra prediction in HEVC inter-picture, in a mode in which pixels reconstructed by inter prediction are not used in intra prediction (constrained_intra_pred_flag = 1), since all the surrounding pixels are not available, the intra that can be used. The prediction mode could be significantly limited.
 特にHEVCのIntra Angular Predictionではイントラ予測の予測方向が33方向とAVC等における従来のイントラ予測に比べて細かく設定することにより符号化効率の向上を目指しているため、上述の制限は符号化効率の大幅な低下を招くことになる可能性があった。 In particular, HEVC's Intra Angular Prediction aims to improve coding efficiency by setting the prediction direction of intra prediction to 33 directions and finer settings than conventional intra prediction in AVC, etc. This could lead to a significant drop.
 これに対して、インターピクチャでの制約付きイントラ予測において、図5のような周辺画素の構成になっていた場合に、以下の式でインター予測から構成される周辺画素値を計算する方法が、非特許文献2に開示されている。 On the other hand, in the intra prediction with inter picture constrained, when the surrounding pixel configuration is as shown in FIG. 5, a method of calculating the surrounding pixel value constituted by the inter prediction by the following equation is as follows: Non-Patent Document 2 discloses this.
 例えば、
 PT:インター予測から構成される周辺画素領域
 PRA:PTの右もしくは上に隣接するイントラ予測から構成される画素
 PLD:PTの左もしくは下に隣接するイントラ予測から構成される画素
 とする。
For example,
P T : Peripheral pixel area composed of inter prediction P RA : Pixel composed of intra prediction adjacent to the right or top of PT P LD : Pixel composed of intra prediction adjacent to the left or bottom of PT .
 領域PTの左右もしくは上下両方に隣接するイントラ予測から構成される画素が存在する場合、以下の式(1)のように、インター予測画素から構成される周辺画素をイントラ予測から構成される画素から計算し、周辺画素をすべて利用可能な状態にしてイントラ予測を行う。 When there are pixels composed of intra predictions adjacent to both the left and right or the top and bottom of the region PT, the peripheral pixels composed of inter prediction pixels are changed from the pixels composed of intra prediction as shown in the following equation (1). Calculate and perform intra prediction with all surrounding pixels available.
 PT=(PRA+PLD+1) >> 1 ・・・(1) P T = (P RA + P LD +1) >> 1 (1)
 また、左右もしくは上下のうち一方に隣接するイントラ予測から構成される画素しか存在しない場合、以下の式(2)のように、インター予測画素から構成される周辺画素をイントラ予測から構成される画素から計算し、周辺画素をすべて利用可能な状態にしてイントラ予測を行う。 In addition, when there is only a pixel composed of intra prediction adjacent to one of right and left or top and bottom, a pixel composed of intra prediction pixels is used as a peripheral pixel composed of inter prediction pixels as in the following Expression (2). And intra prediction is performed with all surrounding pixels available.
 PT=PRA     若しくは PT=PLD ・・・(2) P T = P RA or P T = P LD (2)
 しかしながら、この方法の場合、画素の位置に寄らず、同一の値を用いるため、置き換えられる値が置き換える前の値と大きく異なってしまう可能性がある。特に、PTの領域が大きい場合、その誤差はより顕著になる可能性が高くなる。 However, in this method, since the same value is used regardless of the pixel position, the value to be replaced may be significantly different from the value before replacement. In particular, when the PT area is large, the error is more likely to become more prominent.
 このため、効率の良いイントラ予測処理が行えず、特に、グラデーションのようにブロック内において画素値の変化がある入力信号に対して、十分な符号化効率を達成できない恐れがあった。 For this reason, efficient intra prediction processing cannot be performed, and there is a possibility that sufficient encoding efficiency cannot be achieved especially for an input signal in which a pixel value changes in a block like gradation.
 そこで、画像符号化装置100は、画素の位置に応じた補間処理を行う。 Therefore, the image encoding device 100 performs an interpolation process according to the position of the pixel.
 なお、このconstrained_intra_pred_flagは、シーケンスパラメータセットやピクチャパラメータセットに含められて、ビットストリームとして復号側に伝送される。 Note that this constrained_intra_pred_flag is included in the sequence parameter set and the picture parameter set, and transmitted to the decoding side as a bit stream.
 [制約付きイントラ予測部等]
 図6は、制約付きイントラ予測部等の主な構成例を示すブロック図である。
[Constrained intra prediction unit, etc.]
FIG. 6 is a block diagram illustrating a main configuration example of a restricted intra prediction unit and the like.
 図6に示されるように、イントラ予測部114は、候補予測画像生成部131、コスト関数値算出部132、予測モード判定部133、予測画像生成部134、およびモードバッファ135を有する。 6, the intra prediction unit 114 includes a candidate prediction image generation unit 131, a cost function value calculation unit 132, a prediction mode determination unit 133, a prediction image generation unit 134, and a mode buffer 135.
 また、制約付きイントラ予測部121は、フラグ判定部141、利用可否判定部142、および補間画素生成部143を有する。 In addition, the restricted intra prediction unit 121 includes a flag determination unit 141, an availability determination unit 142, and an interpolation pixel generation unit 143.
 フラグ判定部141は、constrained_intra_pred_flagの値を判定し、処理対象である当該領域に対して、制約付きイントラ予測を行うか、通常のイントラ予測(インター予測により再構成された画素からのイントラ予測も許可するモード)を行うかを決定し、どちらのイントラ予測を行うかを指示する制御指示を、候補予測画像生成部131、利用可否判定部142、および補間画素生成部143に供給する。 The flag determination unit 141 determines the value of constrained_intra_pred_flag and performs constrained intra prediction on the region to be processed, or permits normal intra prediction (intra prediction from pixels reconstructed by inter prediction). Control mode instructing which intra prediction is to be performed is supplied to the candidate predicted image generation unit 131, the availability determination unit 142, and the interpolation pixel generation unit 143.
 候補予測画像生成部131は、当該領域の周辺に位置する周辺領域の画素値である周辺画素値をフレームメモリ112から取得する。 The candidate predicted image generation unit 131 acquires a peripheral pixel value that is a pixel value of a peripheral area located around the area from the frame memory 112.
 候補予測画像生成部131は、フラグ判定部141から供給された制御指示により通常のイントラ予測が指定される場合、そのフレームメモリ112から取得した周辺画素値を用いて、各イントラ予測モードで、予測画像(候補予測画像)を生成し、その画素値(候補予測画像画素値)をコスト関数値算出部132に供給する。 When normal intra prediction is designated by the control instruction supplied from the flag determination unit 141, the candidate prediction image generation unit 131 performs prediction in each intra prediction mode using the peripheral pixel values acquired from the frame memory 112. An image (candidate predicted image) is generated, and the pixel value (candidate predicted image pixel value) is supplied to the cost function value calculation unit 132.
 これに対して、フラグ判定部141から供給された制御指示により制約付きイントラ予測が指定される場合、候補予測画像生成部131は、フレームメモリ112から取得した周辺画素値の内、補間画素生成部143により画素の補間に使用される周辺画素値を、補間画素生成部143に供給する。 On the other hand, when constrained intra prediction is specified by the control instruction supplied from the flag determination unit 141, the candidate prediction image generation unit 131 includes an interpolation pixel generation unit among the peripheral pixel values acquired from the frame memory 112. The peripheral pixel value used for pixel interpolation is supplied to the interpolation pixel generation unit 143 by 143.
 そして、候補予測画像生成部131は、その補間された画素の画素値(補間画素値)を補間画素生成部143から取得する。候補予測画像生成部131は、フレームメモリ112から取得した周辺画素値と、その補間画素値とを用いて、各イントラ予測モードで、予測画像(候補予測画像)を生成し、その画素値(候補予測画像画素値)をコスト関数値算出部132に供給する。 Then, the candidate predicted image generation unit 131 acquires the pixel value (interpolation pixel value) of the interpolated pixel from the interpolation pixel generation unit 143. The candidate predicted image generation unit 131 generates a predicted image (candidate predicted image) in each intra prediction mode using the peripheral pixel value acquired from the frame memory 112 and the interpolated pixel value, and the pixel value (candidate Predicted image pixel value) is supplied to the cost function value calculation unit 132.
 コスト関数値算出部132は、画面並べ替えバッファ102から入力画像の画素値(入力画像画素値)を取得し、その入力画像画素値と候補予測画像画素値とを用いて、AVCやHEVC等の場合と同様の方法で各モードのコスト関数値を算出する。コスト関数値算出部132は、算出したコスト関数値を予測モード判定部133に供給する。 The cost function value calculation unit 132 obtains the pixel value (input image pixel value) of the input image from the screen rearrangement buffer 102, and uses the input image pixel value and the candidate predicted image pixel value, such as AVC and HEVC. The cost function value of each mode is calculated by the same method as in the case. The cost function value calculation unit 132 supplies the calculated cost function value to the prediction mode determination unit 133.
 予測モード判定部133は、供給されたコスト関数値の大きさに基づいて、最適なイントラ予測モードを判定し、その判定結果(最適イントラモード)を予測画像生成部134に通知する。 The prediction mode determination unit 133 determines the optimal intra prediction mode based on the magnitude of the supplied cost function value, and notifies the prediction image generation unit 134 of the determination result (optimum intra mode).
 予測画像生成部134は、予測モード判定部133から通知された最適なイントラ予測モード(最適イントラモード)で予測画像を生成する。 The prediction image generation unit 134 generates a prediction image in the optimal intra prediction mode (optimum intra mode) notified from the prediction mode determination unit 133.
 例えば、通常のイントラ予測の場合、予測画像生成部134は、フレームメモリ112から当該領域の周辺画素値を取得し、その周辺画素値を用いて予測画像を生成する。 For example, in the case of normal intra prediction, the predicted image generation unit 134 acquires the peripheral pixel value of the area from the frame memory 112, and generates a predicted image using the peripheral pixel value.
 また、例えば、制約付きイントラ予測の場合、予測画像生成部134は、フレームメモリ112から当該領域の周辺画素値を取得するとともに、補間画素生成部143から補間画素値を取得し、それらを用いて予測画像を生成する。 Further, for example, in the case of constrained intra prediction, the predicted image generation unit 134 acquires peripheral pixel values of the region from the frame memory 112 and acquires an interpolation pixel value from the interpolation pixel generation unit 143 and uses them. A prediction image is generated.
 また、予測画像生成部134は、生成した予測画像の画素値(予測画像画素値)を予測画像選択部116に供給する。予測画像選択部116において最適な予測モードとしてイントラ予測が選択された場合、その予測画像が演算部103や演算部110に供給され、差分画像や再構築画像の生成に用いられる。また、その場合、予測画像生成部134は、最適イントラモードとした予測モード(予測画像の予測モード)を示す情報であるイントラモード情報を可逆符号化部106に供給し、符号化側に伝送させる。さらに、その場合、予測画像生成部134は、最適イントラモードとした予測モード(予測画像の予測モード)をモードバッファ135に供給する。 Further, the predicted image generation unit 134 supplies the pixel value (predicted image pixel value) of the generated predicted image to the predicted image selection unit 116. When intra prediction is selected as the optimal prediction mode in the predicted image selection unit 116, the predicted image is supplied to the calculation unit 103 and the calculation unit 110, and is used to generate a difference image and a reconstructed image. In this case, the predicted image generation unit 134 supplies intra mode information, which is information indicating the prediction mode (prediction mode of the predicted image) set to the optimal intra mode, to the lossless encoding unit 106 and transmits the information to the encoding side. . Furthermore, in that case, the predicted image generation unit 134 supplies the mode buffer 135 with a prediction mode (prediction mode of the predicted image) set to the optimal intra mode.
 モードバッファ135は、予測画像選択部116において選択された最適な予測モードの情報を記憶する。つまり、モードバッファ135は、予測画像生成部134から供給される最適なイントラ予測モードに関する情報、若しくは、動き予測・補償部115から供給される最適なインター予測モードに関する情報を取得し、記憶する。 The mode buffer 135 stores information on the optimal prediction mode selected by the prediction image selection unit 116. That is, the mode buffer 135 acquires and stores information regarding the optimal intra prediction mode supplied from the predicted image generation unit 134 or information regarding the optimal inter prediction mode supplied from the motion prediction / compensation unit 115.
 モードバッファ135は、所定のタイミングにおいて、若しくは、外部からの要求に基づいて、記憶している予測モードを周辺領域予測モードとして利用可否判定部142に供給する。つまり、当該領域の予測モードが、その当該領域の予測モードより後に処理される領域に対する制約付きイントラ予測において、周辺領域予測モードとして利用される。 The mode buffer 135 supplies the stored prediction mode to the availability determination unit 142 as the peripheral region prediction mode at a predetermined timing or based on an external request. That is, the prediction mode of the region is used as the peripheral region prediction mode in constrained intra prediction for a region processed after the prediction mode of the region.
 フラグ判定部141により制約付きイントラ予測を行うと判定された場合、利用可否判定部142は、モードバッファ135から周辺領域予測モードを取得し、周辺画素が利用可能か否かを判定する。すなわち、利用可否判定部142は、当該領域の各周辺画素について、インター予測により生成された周辺画素を利用不可と判定し、イントラ予測により生成された周辺画素を利用可と判定する。利用可否判定部142は、その判定結果を補間画素生成部143に通知する。 When it is determined by the flag determination unit 141 that restricted intra prediction is to be performed, the availability determination unit 142 acquires the surrounding area prediction mode from the mode buffer 135 and determines whether the surrounding pixels are usable. That is, the availability determination unit 142 determines that the surrounding pixels generated by the inter prediction are unusable for each surrounding pixel of the area, and determines that the surrounding pixels generated by the intra prediction are usable. The availability determination unit 142 notifies the interpolation pixel generation unit 143 of the determination result.
 フラグ判定部141により制約付きイントラ予測を行うと判定された場合、補間画素生成部143は、利用可否判定部142から供給される判定結果を取得する。そして、補間画素生成部143は、利用不可の画素(すなわち、インター予測された画素)について、補間処理を行う。つまり、補間画素生成部143は、利用不可の画素の補間に必要な周辺画素値を、候補予測画像生成部131から取得し、その周辺画素値を用いて補間処理を行う。 When it is determined by the flag determination unit 141 that the restricted intra prediction is performed, the interpolation pixel generation unit 143 acquires the determination result supplied from the availability determination unit 142. Then, the interpolation pixel generation unit 143 performs an interpolation process on unusable pixels (that is, inter-predicted pixels). That is, the interpolation pixel generation unit 143 acquires the peripheral pixel value necessary for interpolation of the unusable pixel from the candidate predicted image generation unit 131, and performs an interpolation process using the peripheral pixel value.
 その際、補間画素生成部143は、補間する画素の位置に応じた補間画素値を生成する。補間画素生成部143は、補間により生成した画素値(補間画素値)を候補予測画像生成部131および予測画像生成部134に供給する。 At that time, the interpolation pixel generation unit 143 generates an interpolation pixel value corresponding to the position of the pixel to be interpolated. The interpolation pixel generation unit 143 supplies the pixel value (interpolation pixel value) generated by the interpolation to the candidate prediction image generation unit 131 and the prediction image generation unit 134.
 [補間処理]
 次に、補間画素生成部143による補間処理の詳細について説明する。
[Interpolation processing]
Next, details of the interpolation processing by the interpolation pixel generation unit 143 will be described.
 上述したように、従来の方法の場合、垂直方向若しくは水平方向に連続する利用不可の周辺画素群の各画素に対して同一の値による画素の補間が行われていた。このため、効率の良いイントラ予測処理が行えず、特に、グラデーションのようにブロック内において画素値の変化がある入力信号に対して、十分な符号化効率を達成することが困難であった。 As described above, in the case of the conventional method, interpolation of pixels with the same value is performed for each pixel in the peripheral pixel group that cannot be used continuously in the vertical direction or the horizontal direction. For this reason, efficient intra prediction processing cannot be performed, and in particular, it has been difficult to achieve sufficient encoding efficiency for an input signal having a change in pixel value in a block such as gradation.
 これに対して補間画素生成部143は、図7に示されるように、画素の位置に応じた補間処理を行う。図7において、画素qおよび画素rを、イントラ予測により生成された利用可能(available)な領域に属する周辺画素とする。また、画素pを補間対象の画素とする。つまり、画素pは、補間により生成されるべき画素(すなわち、インター予測により生成された利用不可能(not available)な領域に属する周辺画素)である。なお、以下において、画素qの画素値を画素値qと称する。また、画素rの画素値を画素値rと称する。さらに、画素pの補間画素値を補間画素値pと称する。 On the other hand, the interpolation pixel generation unit 143 performs an interpolation process according to the position of the pixel as shown in FIG. In FIG. 7, pixel q and pixel r are peripheral pixels belonging to an available area generated by intra prediction. Further, the pixel p is set as a pixel to be interpolated. That is, the pixel p is a pixel to be generated by interpolation (that is, a peripheral pixel belonging to a not-available area generated by inter prediction). Hereinafter, the pixel value of the pixel q is referred to as a pixel value q. Further, the pixel value of the pixel r is referred to as a pixel value r. Further, the interpolation pixel value of the pixel p is referred to as an interpolation pixel value p.
 図7に示されるように、画素pを含む利用不可能な画素が連続する部分(画素列)は、画素qと画素rに挟まれている。すなわち、画素qおよび画素rは、利用不可能(not available)な領域に隣接する利用可能(available)な領域の、当該領域と、その利用不可能(not available)な領域との両方に隣接する画素である。 As shown in FIG. 7, a portion (pixel row) where unusable pixels including the pixel p are continuous is sandwiched between the pixel q and the pixel r. That is, the pixel q and the pixel r are adjacent to both the area of the available area adjacent to the not available area and the area that is not available (not available). Pixel.
 また、図7に示されるように、距離t1は、画素qと画素pとの間の距離である。距離t2は、画素rと画素pとの間の距離である。つまり、距離t1および距離t2は、補間対象の画素と、その補間対象の画素の両側の、その補間対象の画素に最も近い、利用可能(available)な領域に属する画素との間の距離である。 Further, as shown in FIG. 7, the distance t1 is a distance between the pixel q and the pixel p. The distance t2 is a distance between the pixel r and the pixel p. That is, the distance t1 and the distance t2 are distances between a pixel to be interpolated and a pixel belonging to an available area closest to the pixel to be interpolated on both sides of the pixel to be interpolated. .
 補間画素生成部143は、以下の式(3)を用いて、画素pの位置に応じた値の補間画素値pを算出する。 The interpolation pixel generation unit 143 calculates an interpolation pixel value p having a value corresponding to the position of the pixel p using the following equation (3).
 p= (t2*q + t1*r) / (t1+t2) ・・・(3) P = (t2 * q + t1 * r) / (t1 + t2) (3)
 なお、図7においては、水平方向について示されているが、補間画素生成部143は、垂直方向の場合も同様に補間する。例えば、図5の、インター予測されたHやI等の領域の周辺画素についても、式(3)を用いて補間画素値を算出する。 In FIG. 7, although the horizontal direction is shown, the interpolation pixel generation unit 143 performs the same interpolation in the vertical direction. For example, the interpolated pixel value is also calculated using Equation (3) for the peripheral pixels in the inter-predicted regions such as H and I in FIG.
 つまり、補間画素生成部143は、制約付きイントラ予測において、予測に利用される周辺画素であって、水平方向若しくは垂直方向に、利用可能な周辺画素に挟まれる1つ若しくは連続する複数の利用不可能な周辺画素に対して、その位置に応じた値の補間画素値を生成する。 That is, the interpolated pixel generation unit 143 is a peripheral pixel that is used for prediction in constrained intra prediction, and is used in a horizontal direction or a vertical direction, and one or a plurality of consecutive non-uses that are sandwiched by the peripheral pixels that can be used. For possible peripheral pixels, an interpolation pixel value having a value corresponding to the position is generated.
 より具体的には、補間画素生成部143は、式(3)に示されるように、利用可能な周辺画素との距離に応じた値の補間画素値を生成する。 More specifically, the interpolation pixel generation unit 143 generates an interpolation pixel value having a value according to the distance from the available peripheral pixels, as shown in Expression (3).
 以上のように、補間画素生成部143は、補間する画素の位置に応じた補間画素値を生成する。このようにすることにより、補間画素生成部143は、例えばグラデーション等のような画素値が変化する部分の画素を補間する場合も、その変化を、上述した従来の補間方法の場合よりも正しく再現することができる。 As described above, the interpolation pixel generation unit 143 generates an interpolation pixel value corresponding to the position of the pixel to be interpolated. By doing so, the interpolation pixel generation unit 143 reproduces the change more correctly than in the case of the conventional interpolation method described above even when interpolating a pixel of a portion where the pixel value changes, such as gradation. can do.
 なお、式(3)の演算を除算ではなくシフト演算で実現することができるように、式(3)の分母(t1+t2)の代わりに、2のべき乗(2n)の近似値を用いるようにしてもよい。 Note that an approximate value of a power of 2 (2 n ) is used instead of the denominator (t1 + t2) of equation (3) so that the operation of equation (3) can be realized by shift operation instead of division. You may do it.
 水平方向若しくは垂直方向に連続するインター予測された周辺領域の合計サイズは、2のべき乗にならない場合があり、その場合、式(3)の演算において除算が必要になり、負荷が増大する可能性がある。 The total size of inter-predicted peripheral regions that are continuous in the horizontal direction or the vertical direction may not be a power of 2. In this case, division may be required in the calculation of Equation (3), and the load may increase. There is.
 そこで、式(3)の分母に2のべき乗の近似値、すなわち、t1+t2の値に最も近い2のべき乗の値を、t1+t2の代わりに用いるようにする。このようにすることにより、式(3)の割り算をシフト演算により実現することができるので、負荷の増大を抑制することができる。 Therefore, an approximate power of 2 in the denominator of Equation (3), that is, a power of 2 closest to the value of t1 + t2 is used instead of t1 + t2. By doing in this way, since division of Formula (3) can be realized by shift operation, an increase in load can be suppressed.
 さらに、以上においては、補間対象の画素をその両側の利用可能な1画素(合計2画素)を用いて補間するように説明したが、これに限らず、例えば、両側の2画素以上(合計4画素以上)を用いて補間するようにしてもよい。また、その際、図7に示されるような補間対象の画素群の画素値(補間画素値)を、上述した式(3)を用いた場合のように、その画素の位置に応じて直線的に変化させるようにしてもよいし、上述した式(3)とは異なるn次関数を用いてn次曲線的に変化させるようにしてもよい。 Furthermore, in the above description, the pixel to be interpolated has been described as being interpolated using one available pixel (two pixels in total) on both sides. However, the present invention is not limited to this. For example, two or more pixels on both sides (four in total) Interpolation may be performed using a pixel or more). At that time, the pixel value (interpolated pixel value) of the pixel group to be interpolated as shown in FIG. Or may be changed in an n-order curve using an n-order function different from the above-described equation (3).
 また、補間に用いる画素は、イントラ予測された領域の、当該領域とインター予測された領域に隣接する画素であるように説明したが、これに限らない。しかしながら、できるだけ補間対象の画素に近い位置の画素を用いる方が望ましい。 In addition, although the pixel used for the interpolation is described as the pixel adjacent to the region predicted intra and the region predicted inter between the intra predicted region, the present invention is not limited to this. However, it is desirable to use a pixel located as close as possible to the pixel to be interpolated.
 また、従来の方法の場合、片側のみの画素値が利用可(available)であるときは、式(2)を用いて補間されていた。しかしながら、当該領域の左上の画素について、このような補間処理を行うと、符号化効率を低減させる恐れがあった。 Also, in the case of the conventional method, when the pixel value on only one side is available, it is interpolated using equation (2). However, when such an interpolation process is performed on the upper left pixel of the area, there is a risk of reducing the encoding efficiency.
 そこで、補間画素生成部143は、当該領域の左上の画素について、以下のように補間処理を行う。 Therefore, the interpolation pixel generation unit 143 performs interpolation processing on the upper left pixel of the area as follows.
 図8において、例えば、画素pが、当該領域CU#nの左上の周辺画素であり、インター予測により生成された利用不可能(not available)な領域に属する周辺画素である場合、その画素pの左に隣接する画素qの画素値(画素値q)、若しくは、画素pの下に隣接する画素rの画素値(画素値r)を補間画素値pとする。 In FIG. 8, for example, when a pixel p is a peripheral pixel at the upper left of the area CU # n and is a peripheral pixel belonging to an unavailable area generated by inter prediction, the pixel p The pixel value (pixel value q) of the pixel q adjacent to the left or the pixel value (pixel value r) of the pixel r adjacent below the pixel p is set as the interpolation pixel value p.
 画素qがイントラ予測により生成された利用可能(available)な領域に属する周辺画素である場合、補間画素生成部143は、画素qの画素値(画素値q)を補間画素値pとする。また、画素qがインター予測により生成された利用不可能(not available)な領域に属する周辺画素であり、画素rがイントラ予測により生成された利用可能(available)な領域に属する周辺画素である場合、補間画素生成部143は、画素qの画素値(画素値q)を補間画素値pとする。さらに、画素qおよび画素rがともにインター予測により生成された利用不可能(not available)な領域に属する周辺画素である場合、補間画素生成部143は、補間画素値pの生成(当該領域の左上の周辺画素pの補間処理)を省略する。 When the pixel q is a peripheral pixel belonging to an available area generated by intra prediction, the interpolation pixel generation unit 143 sets the pixel value (pixel value q) of the pixel q as the interpolation pixel value p. Also, when the pixel q is a peripheral pixel belonging to an unusable (not available) region generated by inter prediction, and the pixel r is a peripheral pixel belonging to an available region generated by intra prediction The interpolation pixel generation unit 143 sets the pixel value (pixel value q) of the pixel q as the interpolation pixel value p. Further, when both the pixel q and the pixel r are peripheral pixels belonging to a not-available region generated by inter prediction, the interpolation pixel generation unit 143 generates the interpolation pixel value p (upper left of the region). (Interpolation processing of peripheral pixels p) is omitted.
 このように、補間画素生成部143は、当該領域の左上の周辺画素については、水平方向だけでなく、垂直方向の隣接画素も用いて補間処理を行う。つまり、補間画素生成部143は、当該領域の左上の周辺画素の補間処理を、上述した他の周辺画素とは異なる方法で行い、補間する画素の位置に応じた補間画素値を生成する。 As described above, the interpolation pixel generation unit 143 performs the interpolation process on the upper left peripheral pixel of the region using not only the horizontal direction but also the adjacent pixels in the vertical direction. That is, the interpolation pixel generation unit 143 performs the interpolation process of the upper left peripheral pixel of the area by a method different from that of the other peripheral pixels described above, and generates an interpolation pixel value corresponding to the position of the pixel to be interpolated.
 このようにすることにより、補間画素生成部143は、当該領域左上の周辺画素を、その周辺画素により近い画素によって補間することができる。したがって、補間画素生成部143は、上述した従来の補間方法の場合よりも正しい補間結果を得ることができる。 By doing in this way, the interpolation pixel generation unit 143 can interpolate the peripheral pixel at the upper left of the area by a pixel closer to the peripheral pixel. Therefore, the interpolation pixel generation unit 143 can obtain a more correct interpolation result than the conventional interpolation method described above.
 なお、画素qおよび画素rがともにインター予測により生成された利用不可能(not available)な領域に属する周辺画素である場合、補間画素生成部143は、補間画素値pを、その2画素以外の任意の画素を用いて生成するようにしてもよい。 Note that when both the pixel q and the pixel r are peripheral pixels belonging to an unusable (not available) region generated by inter prediction, the interpolation pixel generation unit 143 sets the interpolation pixel value p to a value other than the two pixels. You may make it produce | generate using arbitrary pixels.
 つまり、補間画素値の正しさに拘らず、当該領域の左上の周辺画素に、利用可能な画素値を用意することを優先させるようにしてもよい。このように、当該領域の左上の周辺画素を利用可能とすることにより、その他の画素の画素値を補間する際に、必ず、その両側の画素値を用いて補間を行うことができるようになる。したがって、例えばグラデーションのような画素値が変化する部分の画素を補間する場合、片側の画素を用いて補間を行う場合よりも正しい補間結果を得ることができる。なお、その場合も、できるだけ補間対象の画素に近い位置の画素を用いるようにするのが望ましい。 In other words, regardless of the correctness of the interpolated pixel value, priority may be given to preparing an available pixel value for the upper left peripheral pixel of the area. Thus, by making the peripheral pixel at the upper left of the area available, when interpolating the pixel values of other pixels, it is possible to always perform interpolation using the pixel values on both sides thereof. . Therefore, for example, when interpolating a pixel in a portion where the pixel value changes, such as gradation, a more correct interpolation result can be obtained than when interpolation is performed using a pixel on one side. In this case as well, it is desirable to use a pixel located as close as possible to the pixel to be interpolated.
 以上のように、制約付きイントラ予測を行うことにより、イントラ予測部114は、より正しい補間結果を用いて制約付きイントラ予測を行うことができるので、イントラ予測の予測精度を向上させることができる。したがって、画像符号化装置100は、符号化効率を向上させることができる。 As described above, by performing constrained intra prediction, the intra prediction unit 114 can perform constrained intra prediction using a more correct interpolation result, so that the prediction accuracy of intra prediction can be improved. Therefore, the image encoding device 100 can improve encoding efficiency.
 [符号化処理の流れ]
 次に、以上のような画像符号化装置100により実行される各処理の流れについて説明する。最初に、図9のフローチャートを参照して、符号化処理の流れの例を説明する。
[Flow of encoding process]
Next, the flow of each process executed by the image encoding device 100 as described above will be described. First, an example of the flow of encoding processing will be described with reference to the flowchart of FIG.
 ステップS101において、A/D変換部101は入力された画像をA/D変換する。ステップS102において、画面並べ替えバッファ102は、A/D変換された画像を記憶し、各ピクチャの表示する順番から符号化する順番への並べ替えを行う。 In step S101, the A / D converter 101 performs A / D conversion on the input image. In step S102, the screen rearrangement buffer 102 stores the A / D converted image, and rearranges the picture from the display order to the encoding order.
 ステップS103において、イントラ予測部114は、イントラ予測処理を行う。ステップS104において、動き予測・補償部115は、インター動き予測処理を行う。ステップS105において、予測画像選択部116は、イントラ予測により生成された予測画像、および、インター予測により生成された予測画像の内、いずれか一方を選択する。なお、この選択結果(最適予測モードを示す情報)は、モードバッファ135に記憶される。 In step S103, the intra prediction unit 114 performs an intra prediction process. In step S104, the motion prediction / compensation unit 115 performs an inter motion prediction process. In step S105, the predicted image selection unit 116 selects one of a predicted image generated by intra prediction and a predicted image generated by inter prediction. The selection result (information indicating the optimal prediction mode) is stored in the mode buffer 135.
 ステップS106において、演算部103は、ステップS103の処理により並び替えられた画像と、ステップS105の処理により選択された予測画像との差分を演算する(差分画像を生成する)。生成された差分画像は元の画像に較べてデータ量が低減される。したがって、画像をそのまま符号化する場合に比べて、データ量を圧縮することができる。 In step S106, the calculation unit 103 calculates a difference between the image rearranged by the process of step S103 and the predicted image selected by the process of step S105 (generates a difference image). The generated difference image has a reduced data amount compared to the original image. Therefore, the data amount can be compressed as compared with the case where the image is encoded as it is.
 ステップS107において、直交変換部104は、ステップS106の処理により生成された差分画像を直交変換する。具体的には、離散コサイン変換、カルーネン・レーベ変換等の直交変換が行われ、直交変換係数が出力される。ステップS108において、量子化部105は、ステップS107の処理により得られた直交変換係数を量子化する。 In step S107, the orthogonal transform unit 104 orthogonally transforms the difference image generated by the process in step S106. Specifically, orthogonal transformation such as discrete cosine transformation and Karhunen-Loeve transformation is performed, and orthogonal transformation coefficients are output. In step S108, the quantization unit 105 quantizes the orthogonal transform coefficient obtained by the process in step S107.
 ステップS108の処理により量子化された差分画像は、次のようにして局部的に復号される。すなわち、ステップS109において、逆量子化部108は、ステップS108の量子化処理により生成された量子化された直交変換係数(量子化係数とも称する)を逆量子化する。ステップS110において、逆直交変換部109は、ステップS109の逆量子化処理により得られた直交変換係数を、直交変換部104の特性に対応する特性で逆直交変換する。これにより差分画像が復元される。 The difference image quantized by the process in step S108 is locally decoded as follows. That is, in step S109, the inverse quantization unit 108 inversely quantizes the quantized orthogonal transform coefficient (also referred to as a quantization coefficient) generated by the quantization process in step S108. In step S <b> 110, the inverse orthogonal transform unit 109 performs inverse orthogonal transform on the orthogonal transform coefficient obtained by the inverse quantization process in step S <b> 109 with characteristics corresponding to the characteristics of the orthogonal transform unit 104. Thereby, the difference image is restored.
 ステップS111において、演算部110は、ステップS105において選択された予測画像を、ステップS110において生成された差分画像に加算し、局部的に復号された復号画像(再構成画像)を生成する。ステップS112において、ループフィルタ111は、ステップS111の処理により得られた再構成画像に対して、デブロックフィルタ処理や適応ループフィルタ処理等を含むループフィルタ処理を適宜行い、復号画像を生成する。 In step S111, the calculation unit 110 adds the predicted image selected in step S105 to the difference image generated in step S110, and generates a locally decoded image (reconstructed image). In step S112, the loop filter 111 appropriately performs a loop filter process including a deblocking filter process and an adaptive loop filter process on the reconstructed image obtained by the process of step S111 to generate a decoded image.
 ステップS113において、フレームメモリ112は、ステップS112の処理により生成された復号画像、若しくは、ステップS111の処理により生成された再構成画像を記憶する。 In step S113, the frame memory 112 stores the decoded image generated by the process of step S112 or the reconstructed image generated by the process of step S111.
 ステップS114において、可逆符号化部106は、ステップS107の処理により量子化された直交変換係数を符号化する。すなわち、差分画像に対して、可変長符号化や算術符号化等の可逆符号化が行われる。なお、可逆符号化部106は、予測に関する情報や、量子化に関する情報や、フィルタ処理に関する情報等を符号化し、ビットストリームに付加する。 In step S114, the lossless encoding unit 106 encodes the orthogonal transform coefficient quantized by the process in step S107. That is, lossless encoding such as variable length encoding or arithmetic encoding is performed on the difference image. Note that the lossless encoding unit 106 encodes information about prediction, information about quantization, information about filter processing, and the like, and adds the information to the bitstream.
 ステップS115において、蓄積バッファ107は、ステップS114の処理により得られたビットストリームを蓄積する。蓄積バッファ107に蓄積された符号化データは、適宜読み出され、伝送路や記録媒体を介して復号側に伝送される。 In step S115, the accumulation buffer 107 accumulates the bit stream obtained by the process in step S114. The encoded data stored in the storage buffer 107 is appropriately read and transmitted to the decoding side via a transmission path or a recording medium.
 ステップS116においてレート制御部117は、ステップS115の処理により蓄積バッファ107に蓄積された符号化データの符号量(発生符号量)に基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化部105の量子化動作のレートを制御する。 In step S116, the rate control unit 117 causes the quantization unit 105 to prevent overflow or underflow based on the code amount (generated code amount) of the encoded data accumulated in the accumulation buffer 107 by the process of step S115. Controls the rate of quantization operation.
 ステップS116の処理が終了すると、符号化処理が終了される。 When the process of step S116 is finished, the encoding process is finished.
 [イントラ予測処理の流れ]
 次に、図10のフローチャートを参照して、イントラ予測処理の流れの例を説明する。イントラ予測処理が開始されると、ステップS131において、フラグ判定部141は、制約付きイントラ予測を行うか否かを判定する。constrained_intra_pred_flag=1であり、制約付きイントラ予測を行うと判定された場合、フラグ判定部141は、処理をステップS132に進める。
[Flow of intra prediction processing]
Next, an example of the flow of intra prediction processing will be described with reference to the flowchart of FIG. When the intra prediction process is started, in step S131, the flag determination unit 141 determines whether to perform restricted intra prediction. If constrained_intra_pred_flag = 1 and it is determined that constrained intra prediction is performed, the flag determination unit 141 proceeds with the process to step S132.
 ステップS132において、利用可否判定部142は、周辺領域予測モードをモードバッファ135から取得し、その情報に基づいて、当該領域の左上の周辺画素の画素値は、利用可能であるか否かを判定する。利用可能でないと判定した場合、利用可否判定部142は、処理をステップS133に進める。 In step S132, the availability determination unit 142 acquires the surrounding area prediction mode from the mode buffer 135, and determines whether or not the pixel values of the surrounding pixels in the upper left of the area are usable based on the information. To do. When it determines with it being unusable, the availability determination part 142 advances a process to step S133.
 ステップS133において、利用可否判定部142は、モードバッファ135から取得した周辺領域予測モードに基づいて、当該領域の左上の周辺画素の代替えとなる画素(例えば、当該領域の左上の周辺画素の右若しくは下の画素)の画素値は利用可能であるか否かを判定する。代替えとなる画素が利用可能であると判定された場合、利用可否判定部142は、処理をステップS134に進める。 In step S133, the availability determination unit 142 determines, based on the surrounding area prediction mode acquired from the mode buffer 135, a pixel that replaces the surrounding pixel at the upper left of the area (for example, the right or left of the surrounding pixel at the upper left of the area) It is determined whether or not the pixel value of the lower pixel is usable. When it is determined that the substitute pixel can be used, the availability determination unit 142 proceeds with the process to step S134.
 ステップS134において、補間画素生成部143は、左上の画素の画素値を、図8を参照して説明したように、水平方向の周辺画素だけでなく垂直方向の周辺画素も候補として補間する。補間が終了すると、補間画素生成部143は、処理をステップS135に進める。 In step S134, the interpolated pixel generation unit 143 interpolates the pixel value of the upper left pixel as candidates as well as the peripheral pixels in the horizontal direction as well as the peripheral pixels in the horizontal direction as described with reference to FIG. When the interpolation is completed, the interpolation pixel generation unit 143 proceeds with the process to step S135.
 また、ステップS133において、代替えとなる画素が利用不可能であると判定された場合、利用可否判定部142は、ステップS134の処理を省略し、ステップS135に処理を進める。 If it is determined in step S133 that the substitute pixel cannot be used, the availability determination unit 142 omits the process of step S134 and proceeds to step S135.
 また、ステップS132において、当該領域の左上の周辺画素の画素値が利用可能であると判定された場合、利用可否判定部142は、ステップS133およびステップS134の処理を省略し、ステップS135に処理を進める。 If it is determined in step S132 that the pixel value of the upper left peripheral pixel of the area is usable, the availability determination unit 142 omits the processes in steps S133 and S134 and performs the process in step S135. Proceed.
 ステップS135において、利用可否判定部142は、周辺領域予測モードに基づいて、当該領域の左上以外の周辺画素について、画素値を利用不可能な画素が存在するか否かを判定する。画素値を利用不可能な画素が存在すると判定された場合、利用可否判定部142は、処理をステップS136に進める。 In step S135, the availability determination unit 142 determines whether there is a pixel whose pixel value cannot be used for peripheral pixels other than the upper left of the area based on the peripheral area prediction mode. When it is determined that there is a pixel whose pixel value cannot be used, the availability determination unit 142 proceeds with the process to step S136.
 ステップS136において、補間画素生成部143は、利用不可能な画素の、その位置に応じた補間画素値を、図7を参照して上述したように生成する。補間が終了すると、補間画素生成部143は、処理をステップS137に進める。 In step S136, the interpolation pixel generation unit 143 generates an interpolation pixel value corresponding to the position of the unavailable pixel as described above with reference to FIG. When the interpolation is completed, the interpolation pixel generation unit 143 proceeds with the process to step S137.
 また、ステップS135において、画素値を利用不可能な画素が存在しないと判定された場合、利用可否判定部142は、ステップS136の処理を省略し、ステップS137に処理を進める。 If it is determined in step S135 that there is no pixel whose pixel value cannot be used, the availability determination unit 142 omits the process in step S136 and advances the process to step S137.
 さらに、ステップS131において、制約付きイントラ予測を行わない(通常のイントラ予測を行う)と判定された場合、フラグ判定部141は、ステップS132乃至ステップS136の処理を省略し、ステップS137に処理を進める。 Furthermore, when it is determined in step S131 that constrained intra prediction is not performed (normal intra prediction is performed), the flag determination unit 141 omits steps S132 to S136 and proceeds to step S137. .
 ステップS137において、候補予測画像生成部131は、各モードで当該領域のイントラ予測を行う。ステップS138において、コスト関数値算出部132は、各モードのコスト関数値を算出する。ステップS139において、予測モード判定部133は、最適イントラ予測モードを決定する。ステップS140において、予測画像生成部134は、最適イントラ予測モードで予測画像を生成する。 In step S137, the candidate predicted image generation unit 131 performs intra prediction of the area in each mode. In step S138, the cost function value calculation unit 132 calculates a cost function value for each mode. In step S139, the prediction mode determination unit 133 determines the optimal intra prediction mode. In step S140, the predicted image generation unit 134 generates a predicted image in the optimal intra prediction mode.
 ステップS140の処理が終了すると、予測画像生成部134は、イントラ予測処理を終了し、処理を図9に戻す。 When the process of step S140 ends, the predicted image generation unit 134 ends the intra prediction process and returns the process to FIG.
 以上のように各処理を行うことにより、画像符号化装置100は、符号化効率を向上させることができる。 By performing each process as described above, the image encoding device 100 can improve the encoding efficiency.
 <2.第2の実施の形態>
 [画像復号装置]
 次に、以上のように符号化された符号化データの復号について説明する。図11は、図1の画像符号化装置100に対応する画像処理装置である画像復号装置の主な構成例を示すブロック図である。
<2. Second Embodiment>
[Image decoding device]
Next, decoding of the encoded data encoded as described above will be described. FIG. 11 is a block diagram illustrating a main configuration example of an image decoding apparatus that is an image processing apparatus corresponding to the image encoding apparatus 100 of FIG.
 図11に示される画像復号装置200は、画像符号化装置100が生成した符号化データを、その符号化方法に対応する復号方法で復号する。 The image decoding apparatus 200 shown in FIG. 11 decodes the encoded data generated by the image encoding apparatus 100 using a decoding method corresponding to the encoding method.
 図11に示されるように画像復号装置200は、蓄積バッファ201、可逆復号部202、逆量子化部203、逆直交変換部204、演算部205、ループフィルタ206、画面並べ替えバッファ207、およびD/A変換部208を有する。また、画像復号装置200は、フレームメモリ209、選択部210、イントラ予測部211、動き予測・補償部212、および選択部213を有する。 As shown in FIG. 11, the image decoding apparatus 200 includes a storage buffer 201, a lossless decoding unit 202, an inverse quantization unit 203, an inverse orthogonal transform unit 204, a calculation unit 205, a loop filter 206, a screen rearrangement buffer 207, and a D A / A converter 208 is included. The image decoding apparatus 200 includes a frame memory 209, a selection unit 210, an intra prediction unit 211, a motion prediction / compensation unit 212, and a selection unit 213.
 さらに、画像復号装置200は、制約付きイントラ予測部221を有する。 Furthermore, the image decoding apparatus 200 includes a restricted intra prediction unit 221.
 蓄積バッファ201は、伝送されてきた符号化データを蓄積し、所定のタイミングにおいてその符号化データを可逆復号部202に供給する。可逆復号部202は、蓄積バッファ201より供給された、図1の可逆符号化部106により符号化された情報を、可逆符号化部106の符号化方式に対応する方式で復号する。可逆復号部202は、復号して得られた差分画像の量子化された係数データを、逆量子化部203に供給する。 The accumulation buffer 201 accumulates the transmitted encoded data, and supplies the encoded data to the lossless decoding unit 202 at a predetermined timing. The lossless decoding unit 202 decodes the information supplied from the accumulation buffer 201 and encoded by the lossless encoding unit 106 in FIG. 1 by a method corresponding to the encoding method of the lossless encoding unit 106. The lossless decoding unit 202 supplies the quantized coefficient data of the difference image obtained by decoding to the inverse quantization unit 203.
 また、可逆復号部202は、符号化データを復号して得られた最適な予測モードに関する情報を参照し、最適な予測モードにイントラ予測モードが選択されたかインター予測モードが選択されたかを判定する。つまり、可逆復号部202は、伝送されてきた符号化データにおいて採用された予測モードが、イントラ予測であるか、インター予測であるかを判定する。 In addition, the lossless decoding unit 202 refers to information on the optimal prediction mode obtained by decoding the encoded data, and determines whether the intra prediction mode or the inter prediction mode is selected as the optimal prediction mode. . That is, the lossless decoding unit 202 determines whether the prediction mode employed in the transmitted encoded data is intra prediction or inter prediction.
 可逆復号部202は、その判定結果に基づいて、その予測モードに関する情報を、イントラ予測部211若しくは動き予測・補償部212に供給する。例えば、画像符号化装置100において最適な予測モードとしてイントラ予測モードが選択された場合、可逆復号部202は、符号化側から供給された、その選択されたイントラ予測モードに関する情報であるイントラ予測情報をイントラ予測部211に供給する。また、例えば、画像符号化装置100において最適な予測モードとしてインター予測モードが選択された場合、可逆復号部202は、符号化側から供給された、その選択されたインター予測モードに関する情報であるインター予測情報を動き予測・補償部212に供給する。 The lossless decoding unit 202 supplies information on the prediction mode to the intra prediction unit 211 or the motion prediction / compensation unit 212 based on the determination result. For example, when the intra prediction mode is selected as the optimal prediction mode in the image encoding device 100, the lossless decoding unit 202 is intra prediction information, which is information about the selected intra prediction mode supplied from the encoding side. Is supplied to the intra prediction unit 211. Further, for example, when the inter prediction mode is selected as the optimum prediction mode in the image encoding device 100, the lossless decoding unit 202 is an inter that is information about the selected inter prediction mode supplied from the encoding side. The prediction information is supplied to the motion prediction / compensation unit 212.
 逆量子化部203は、可逆復号部202により復号されて得られた量子化された係数データを逆量子化する。つまり、逆量子化部203は、図1の量子化部105の量子化方式に対応する方式で逆量子化を行う。逆量子化部203は、その逆量子化により得られた係数データを逆直交変換部204に供給する。 The inverse quantization unit 203 inversely quantizes the quantized coefficient data obtained by decoding by the lossless decoding unit 202. That is, the inverse quantization unit 203 performs inverse quantization by a method corresponding to the quantization method of the quantization unit 105 in FIG. The inverse quantization unit 203 supplies the coefficient data obtained by the inverse quantization to the inverse orthogonal transform unit 204.
 逆直交変換部204は、図1の直交変換部104の直交変換方式に対応する方式で逆量子化部203から供給される係数データを逆直交変換する。逆直交変換部204は、この逆直交変換処理により、画像符号化装置100において直交変換される前の差分画像に対応する差分画像を得る。 The inverse orthogonal transform unit 204 performs inverse orthogonal transform on the coefficient data supplied from the inverse quantization unit 203 in a method corresponding to the orthogonal transform method of the orthogonal transform unit 104 in FIG. The inverse orthogonal transform unit 204 obtains a difference image corresponding to the difference image before being orthogonally transformed in the image encoding device 100 by the inverse orthogonal transform process.
 逆直交変換されて得られた差分画像は、演算部205に供給される。また、演算部205には、選択部213を介して、イントラ予測部211若しくは動き予測・補償部212から予測画像が供給される。 The difference image obtained by the inverse orthogonal transform is supplied to the calculation unit 205. In addition, a prediction image is supplied to the calculation unit 205 from the intra prediction unit 211 or the motion prediction / compensation unit 212 via the selection unit 213.
 演算部205は、差分画像と予測画像とを加算し、画像符号化装置100の演算部103により予測画像が減算される前の画像に対応する再構成画像を得る。演算部205は、その再構成画像をループフィルタ206に供給する。 The calculation unit 205 adds the difference image and the prediction image, and obtains a reconstructed image corresponding to the image before the prediction image is subtracted by the calculation unit 103 of the image encoding device 100. The arithmetic unit 205 supplies the reconstructed image to the loop filter 206.
 ループフィルタ206は、供給された再構成画像に対して、デブロックフィルタ処理や適応ループフィルタ処理等を含むループフィルタ処理を適宜施して復号画像を生成する。例えば、ループフィルタ206は、再構成画像に対してデブロックフィルタ処理を行うことにより、ブロック歪を除去する。また、例えば、ループフィルタ206は、そのデブロックフィルタ処理結果(ブロック歪みの除去が行われた再構成画像)に対して、ウィナーフィルタ(Wiener Filter)を用いてループフィルタ処理を行うことにより画質改善を行う。 The loop filter 206 appropriately performs a loop filter process including a deblock filter process and an adaptive loop filter process on the supplied reconstructed image to generate a decoded image. For example, the loop filter 206 removes block distortion by performing a deblocking filter process on the reconstructed image. Further, for example, the loop filter 206 performs image quality improvement by performing loop filter processing using a Wiener filter on the deblock filter processing result (reconstructed image from which block distortion has been removed). I do.
 なお、ループフィルタ206が行うフィルタ処理の種類は任意であり、上述した以外のフィルタ処理を行ってもよい。また、ループフィルタ206が、図1の画像符号化装置100から供給されたフィルタ係数を用いてフィルタ処理を行うようにしてもよい。 Note that the type of filter processing performed by the loop filter 206 is arbitrary, and filter processing other than that described above may be performed. Further, the loop filter 206 may perform filter processing using the filter coefficient supplied from the image encoding device 100 of FIG.
 ループフィルタ206は、フィルタ処理結果である復号画像を画面並べ替えバッファ207およびフレームメモリ209に供給する。なお、このループフィルタ206によるフィルタ処理は省略することもできる。つまり、演算部205の出力が、フィルタ処理されずに、フレームメモリ209に格納されるようにすることもできる。例えば、イントラ予測部211は、この画像に含まれる画素の画素値を周辺画素の画素値として利用する。 The loop filter 206 supplies the decoded image as the filter processing result to the screen rearrangement buffer 207 and the frame memory 209. Note that the filter processing by the loop filter 206 can be omitted. That is, the output of the calculation unit 205 can be stored in the frame memory 209 without being subjected to filter processing. For example, the intra prediction unit 211 uses pixel values of pixels included in this image as pixel values of peripheral pixels.
 画面並べ替えバッファ207は、供給された復号画像の並べ替えを行う。すなわち、図1の画面並べ替えバッファ102により符号化の順番のために並べ替えられたフレームの順番が、元の表示の順番に並べ替えられる。D/A変換部208は、画面並べ替えバッファ207から供給された復号画像をD/A変換し、図示せぬディスプレイに出力し、表示させる。 The screen rearrangement buffer 207 rearranges the supplied decoded images. That is, the order of frames rearranged for the encoding order by the screen rearrangement buffer 102 in FIG. 1 is rearranged in the original display order. The D / A conversion unit 208 D / A converts the decoded image supplied from the screen rearrangement buffer 207, and outputs and displays the decoded image on a display (not shown).
 フレームメモリ209は、供給される再構成画像や復号画像を記憶する。また、フレームメモリ209は、所定のタイミングにおいて、若しくは、イントラ予測部211や動き予測・補償部212等の外部の要求に基づいて、記憶している再構成画像や復号画像を、選択部210を介してイントラ予測部211や動き予測・補償部212に供給する。 The frame memory 209 stores supplied reconstructed images and decoded images. Also, the frame memory 209 selects the stored reconstructed image or decoded image from the selection unit 210 at a predetermined timing or based on an external request such as the intra prediction unit 211 or the motion prediction / compensation unit 212. To the intra prediction unit 211 and the motion prediction / compensation unit 212.
 イントラ予測部211は、図1のイントラ予測部114と基本的に同様の処理を行う。ただし、イントラ予測部211は、符号化の際にイントラ予測により予測画像が生成された領域に対してのみ、イントラ予測を行う。 The intra prediction unit 211 performs basically the same processing as the intra prediction unit 114 in FIG. However, the intra prediction unit 211 performs intra prediction only on a region where a prediction image is generated by intra prediction at the time of encoding.
 動き予測・補償部212は、可逆復号部202から供給されるインター予測情報に基づいてインター動き予測処理を行い、予測画像を生成する。なお、動き予測・補償部212は、可逆復号部202から供給されるインター予測情報に基づいて、符号化の際にインター予測が行われた領域に対してのみ、インター動き予測処理を行う。 The motion prediction / compensation unit 212 performs an inter motion prediction process based on the inter prediction information supplied from the lossless decoding unit 202, and generates a predicted image. Note that the motion prediction / compensation unit 212 performs the inter motion prediction process only on the region where the inter prediction is performed at the time of encoding, based on the inter prediction information supplied from the lossless decoding unit 202.
 イントラ予測部211若しくは動き予測・補償部212は、予測処理単位の領域毎に、生成した予測画像を、選択部213を介して演算部205に供給する。 The intra prediction unit 211 or the motion prediction / compensation unit 212 supplies the generated predicted image to the calculation unit 205 via the selection unit 213 for each region of the prediction processing unit.
 選択部213は、イントラ予測部211から供給される予測画像、若しくは、動き予測・補償部212から供給される予測画像を演算部205に供給する。 The selection unit 213 supplies the prediction image supplied from the intra prediction unit 211 or the prediction image supplied from the motion prediction / compensation unit 212 to the calculation unit 205.
 制約付きイントラ予測部221は、制約付きイントラ予測部121と同様に、constrained_intra_pred_flag=1の場合のイントラ予測(制約付きイントラ予測)のための周辺画素の補間に関する処理を行う。 Like the constrained intra prediction unit 121, the constrained intra prediction unit 221 performs processing related to interpolation of surrounding pixels for intra prediction (constrained intra prediction) when constrained_intra_pred_flag = 1.
 [制約付きイントラ予測部221等]
 図12は、制約付きイントラ予測等の主な構成例を示すブロック図である。
[Restricted Intra Prediction Unit 221]
FIG. 12 is a block diagram illustrating a main configuration example such as constrained intra prediction.
 図12に示されるように、イントラ予測部211は、予測モード情報バッファ231、予測画像生成部232、および周辺モードバッファ233を有する。 12, the intra prediction unit 211 includes a prediction mode information buffer 231, a predicted image generation unit 232, and a peripheral mode buffer 233.
 また、制約付きイントラ予測部221は、フラグ判定部241、利用可否判定部242、および補間画素生成部243を有する。 Also, the restricted intra prediction unit 221 includes a flag determination unit 241, an availability determination unit 242, and an interpolation pixel generation unit 243.
 予測モード情報バッファ231は、可逆復号部202においてビットストリームが復号されて得られたイントラモード情報を取得し、記憶する。予測モード情報バッファ231は、当該領域がイントラ予測モードの場合、所定のタイミングにおいて、若しくは、外部からの要求に従って、記憶している当該領域の予測モード(イントラ予測モード)を予測画像生成部232に供給する。 The prediction mode information buffer 231 acquires and stores intra mode information obtained by decoding the bitstream in the lossless decoding unit 202. When the region is in the intra prediction mode, the prediction mode information buffer 231 sends the stored prediction mode (intra prediction mode) of the region to the predicted image generation unit 232 at a predetermined timing or according to an external request. Supply.
 フラグ判定部241は、フラグ判定部141と同様の処理を行う。すなわち、フラグ判定部241は、符号化側から伝送されたconstrained_intra_pred_flagの値を判定し、処理対象である当該領域に対して、制約付きイントラ予測を行うか、通常のイントラ予測(インター予測により再構成された画素からのイントラ予測も許可するモード)を行うかを決定する。なお、このconstrained_intra_pred_flagは、例えば、シーケンスパラメータセットやピクチャパラメータセット等に含められて符号化側(画像符号化装置100)から伝送される。そして、そのconstrained_intra_pred_flagは、例えば、可逆復号部202において抽出され、フラグ判定部241に供給される。フラグ判定部241は、どちらのイントラ予測を行うかを指示する制御指示を、予測画像生成部232、利用可否判定部242、および補間画素生成部243に供給する。 The flag determination unit 241 performs the same process as the flag determination unit 141. That is, the flag determination unit 241 determines the value of constrained_intra_pred_flag transmitted from the encoding side, and performs constrained intra prediction on the region to be processed, or performs normal intra prediction (reconstructed by inter prediction). Whether to perform intra prediction from the selected pixel). The constrained_intra_pred_flag is included in a sequence parameter set, a picture parameter set, and the like, and transmitted from the encoding side (image encoding apparatus 100). Then, the constrained_intra_pred_flag is extracted by, for example, the lossless decoding unit 202 and supplied to the flag determination unit 241. The flag determination unit 241 supplies a control instruction that instructs which intra prediction is performed to the predicted image generation unit 232, the availability determination unit 242, and the interpolation pixel generation unit 243.
 予測画像生成部232は、フラグ判定部141から供給された制御指示により通常のイントラ予測が指定される場合、予測モード情報バッファ231から供給されるイントラ予測モードにおける周辺画素値を、フレームメモリ209から取得する。予測画像生成部232は、その周辺画素値を用いて、予測モード情報バッファ231から供給されるイントラ予測モードで予測画像を生成し、その画素値(予測画像画素値)を演算部205に供給する。 When normal intra prediction is designated by the control instruction supplied from the flag determination unit 141, the predicted image generation unit 232 receives the peripheral pixel values in the intra prediction mode supplied from the prediction mode information buffer 231 from the frame memory 209. get. The prediction image generation unit 232 generates a prediction image in the intra prediction mode supplied from the prediction mode information buffer 231 using the peripheral pixel value, and supplies the pixel value (prediction image pixel value) to the calculation unit 205. .
 これに対して、フラグ判定部241から供給された制御指示により制約付きイントラ予測が指定される場合、予測画像生成部232は、予測モード情報バッファ231から供給されるイントラ予測モードにおける周辺画素値を、フレームメモリ209から取得する。フラグ判定部241は、さらに、そのフレームメモリ209から取得した周辺画素値の内、補間画素生成部243により画素の補間に使用される周辺画素値を、補間画素生成部243に供給する。 On the other hand, when constrained intra prediction is specified by the control instruction supplied from the flag determination unit 241, the prediction image generation unit 232 sets the neighboring pixel values in the intra prediction mode supplied from the prediction mode information buffer 231. , Obtained from the frame memory 209. The flag determination unit 241 further supplies, to the interpolation pixel generation unit 243, the peripheral pixel value used for pixel interpolation by the interpolation pixel generation unit 243 among the peripheral pixel values acquired from the frame memory 209.
 そして、予測画像生成部232は、その補間された画素の画素値(補間画素値)を補間画素生成部243から取得する。予測画像生成部232は、フレームメモリ209から取得した周辺画素値と、その補間画素値とを用いて、予測モード情報バッファ231から供給されるイントラ予測モードで、予測画像(候補予測画像)を生成し、その画素値(予測画像画素値)を演算部205に供給する。 Then, the predicted image generation unit 232 acquires the pixel value (interpolation pixel value) of the interpolated pixel from the interpolation pixel generation unit 243. The prediction image generation unit 232 generates a prediction image (candidate prediction image) in the intra prediction mode supplied from the prediction mode information buffer 231 using the peripheral pixel value acquired from the frame memory 209 and the interpolation pixel value. Then, the pixel value (predicted image pixel value) is supplied to the calculation unit 205.
 周辺モードバッファ233は、当該領域の予測モードの情報を記憶する。つまり、周辺モードバッファ233は、予測モード情報バッファ231から供給されるイントラ予測モードに関する情報、若しくは、動き予測・補償部212から供給される最適なインター予測モードに関する情報を取得し、記憶する。 The peripheral mode buffer 233 stores the prediction mode information of the area. That is, the peripheral mode buffer 233 acquires and stores information related to the intra prediction mode supplied from the prediction mode information buffer 231 or information related to the optimal inter prediction mode supplied from the motion prediction / compensation unit 212.
 周辺モードバッファ233は、所定のタイミングにおいて、若しくは、外部からの要求に基づいて、記憶している予測モードを周辺領域予測モードとして利用可否判定部242に供給する。つまり、当該領域の予測モードが、その当該領域の予測モードより後に処理される領域に対する制約付きイントラ予測において、周辺領域予測モードとして利用される。 The peripheral mode buffer 233 supplies the stored prediction mode to the availability determination unit 242 as the peripheral area prediction mode at a predetermined timing or based on an external request. That is, the prediction mode of the region is used as the peripheral region prediction mode in constrained intra prediction for a region processed after the prediction mode of the region.
 フラグ判定部141により制約付きイントラ予測を行うと判定された場合、利用可否判定部242は、利用可否判定部142の場合と同様に、周辺モードバッファ233から周辺領域予測モードを取得し、周辺画素が利用可能か否かを判定する。利用可否判定部242は、その判定結果を補間画素生成部243に通知する。 When it is determined by the flag determination unit 141 that restricted intra prediction is performed, the availability determination unit 242 acquires the peripheral region prediction mode from the peripheral mode buffer 233 as in the case of the availability determination unit 142, and the peripheral pixels Determine whether is available. The availability determination unit 242 notifies the interpolation pixel generation unit 243 of the determination result.
 フラグ判定部141により制約付きイントラ予測を行うと判定された場合、補間画素生成部243は、補間画素生成部143の場合と同様に、利用可否判定部242から供給される判定結果に基づいて、利用不可の画素(すなわち、インター予測された画素)について、補間処理を行う。つまり、補間画素生成部243は、利用不可の画素の補間に必要な周辺画素値を、予測画像生成部232から取得し、その周辺画素値を用いて補間処理を行う。 When it is determined by the flag determination unit 141 to perform restricted intra prediction, the interpolation pixel generation unit 243 is based on the determination result supplied from the availability determination unit 242 as in the case of the interpolation pixel generation unit 143. Interpolation processing is performed on unusable pixels (that is, inter-predicted pixels). In other words, the interpolation pixel generation unit 243 acquires the peripheral pixel value necessary for interpolation of the unusable pixel from the predicted image generation unit 232, and performs an interpolation process using the peripheral pixel value.
 その際、補間画素生成部243は、補間画素生成部143の場合と同様に(図7および図8を参照して説明したように)、補間する画素の位置に応じた補間画素値を生成する。したがって、補間画素生成部243は、補間画素生成部143と同様の補間結果を得ることができ、イントラ予測部211は、イントラ予測部114と同様の予測を行うことができ、同様の予測画像を得ることができる。したがって、画像復号装置200は、画像符号化装置100において生成された符号化データを正しく復号することができ、符号化効率の向上を実現させることができる。 At that time, the interpolation pixel generation unit 243 generates an interpolation pixel value corresponding to the position of the pixel to be interpolated, as in the case of the interpolation pixel generation unit 143 (as described with reference to FIGS. 7 and 8). . Therefore, the interpolation pixel generation unit 243 can obtain the same interpolation result as the interpolation pixel generation unit 143, the intra prediction unit 211 can perform the same prediction as the intra prediction unit 114, and can obtain the same predicted image. Obtainable. Therefore, the image decoding apparatus 200 can correctly decode the encoded data generated in the image encoding apparatus 100, and can realize improvement in encoding efficiency.
 [復号処理の流れ]
 次に、以上のような画像復号装置200により実行される各処理の流れについて説明する。最初に、図13のフローチャートを参照して、復号処理の流れの例を説明する。
[Decoding process flow]
Next, the flow of each process executed by the image decoding apparatus 200 as described above will be described. First, an example of the flow of decoding processing will be described with reference to the flowchart of FIG.
 復号処理が開始されると、ステップS201において、蓄積バッファ201は、伝送されてきたビットストリームを蓄積する。ステップS202において、可逆復号部202は、蓄積バッファ201から供給されるビットストリーム(符号化された差分画像情報)を復号する。このとき、予測モード情報に関する情報等、ビットストリームに含められた差分画像情報以外の各種情報も復号される。 When the decoding process is started, in step S201, the accumulation buffer 201 accumulates the transmitted bit stream. In step S202, the lossless decoding unit 202 decodes the bit stream (encoded difference image information) supplied from the accumulation buffer 201. At this time, various types of information other than the difference image information included in the bitstream, such as information on the prediction mode information, is also decoded.
 ステップS203において、逆量子化部203は、ステップS202の処理により得られた、量子化された直交変換係数を逆量子化する。ステップS204において逆直交変換部204は、ステップS203において逆量子化された直交変換係数を逆直交変換する。 In step S203, the inverse quantization unit 203 inversely quantizes the quantized orthogonal transform coefficient obtained by the process in step S202. In step S204, the inverse orthogonal transform unit 204 performs inverse orthogonal transform on the orthogonal transform coefficient inversely quantized in step S203.
 ステップS205において、イントラ予測部211若しくは動き予測・補償部212は、供給された情報を用いて予測処理を行う。ステップS206において、演算部205は、ステップS204において逆直交変換されて得られた差分画像情報に、ステップS205において生成された予測画像を加算する。これにより再構成画像が生成される。 In step S205, the intra prediction unit 211 or the motion prediction / compensation unit 212 performs a prediction process using the supplied information. In step S206, the calculation unit 205 adds the predicted image generated in step S205 to the difference image information obtained by the inverse orthogonal transform in step S204. Thereby, a reconstructed image is generated.
 ステップS207において、ループフィルタ206は、ステップS206において得られた再構成画像に対して、デブロックフィルタ処理や適応ループフィルタ処理等を含むループフィルタ処理を適宜行う。 In step S207, the loop filter 206 appropriately performs loop filter processing including deblock filter processing and adaptive loop filter processing on the reconstructed image obtained in step S206.
 ステップS208において、画面並べ替えバッファ207は、ステップS207においてフィルタ処理されて生成された復号画像の並べ替えを行う。すなわち画像符号化装置100の画面並べ替えバッファ102により符号化のために並べ替えられたフレームの順序が、元の表示の順序に並べ替えられる。 In step S208, the screen rearrangement buffer 207 rearranges the decoded images generated by the filtering process in step S207. That is, the order of frames rearranged for encoding by the screen rearrangement buffer 102 of the image encoding device 100 is rearranged to the original display order.
 ステップS209において、D/A変換部208は、フレームの順序が並べ替えられた復号画像をD/A変換する。この復号画像が図示せぬディスプレイに出力され、表示される。 In step S209, the D / A converter 208 D / A converts the decoded image in which the frame order is rearranged. The decoded image is output and displayed on a display (not shown).
 ステップS210において、フレームメモリ209は、ステップS207においてフィルタ処理されて得られた復号画像を記憶する。この復号画像は、インター予測処理において参照画像として利用される。 In step S210, the frame memory 209 stores the decoded image obtained by the filtering process in step S207. This decoded image is used as a reference image in the inter prediction process.
 ステップS210の処理が終了すると、復号処理が終了される。 When the process of step S210 is completed, the decoding process is terminated.
 [予測処理の流れ]
 次に、図14のフローチャートを参照して、図13のステップS205において実行される予測処理の流れの例を説明する。
[Prediction process flow]
Next, an example of the flow of the prediction process executed in step S205 in FIG. 13 will be described with reference to the flowchart in FIG.
 予測処理が開始されると、可逆復号部202は、ステップS221において、当該領域がイントラ予測(イントラ符号化)が行われた領域であるか否かを判定する。当該領域が、イントラ予測が行われた領域であると判定された場合、可逆復号部202は、処理をステップS232に進める。 When the prediction process is started, the lossless decoding unit 202 determines in step S221 whether the region is a region where intra prediction (intra coding) has been performed. If it is determined that the region is a region where intra prediction has been performed, the lossless decoding unit 202 advances the processing to step S232.
 この場合、イントラ予測部211および制約付きイントラ予測部221は、ステップS222において、イントラ予測処理を行う。予測画像が生成されると、イントラ予測部211は、予測処理を終了し、処理を図13に戻す。 In this case, the intra prediction unit 211 and the constrained intra prediction unit 221 perform an intra prediction process in step S222. When the predicted image is generated, the intra prediction unit 211 ends the prediction process and returns the process to FIG.
 また、ステップS221において、当該領域が、インター予測が行われた領域であると判定した場合、可逆復号部202は、処理をステップS223に進める。ステップS223において、動き予測・補償部212は、インター動き予測処理を行う。インター動き予測処理が終了すると、動き予測・補償部212は、予測処理を終了し、処理を図13に戻す。 If it is determined in step S221 that the region is a region where inter prediction has been performed, the lossless decoding unit 202 advances the processing to step S223. In step S223, the motion prediction / compensation unit 212 performs an inter motion prediction process. When the inter motion prediction process ends, the motion prediction / compensation unit 212 ends the prediction process and returns the process to FIG.
 [イントラ予測処理の流れ]
 図15のフローチャートを参照して、図14のステップS222において実行されるイントラ予測処理の流れの例を説明する。
[Flow of intra prediction processing]
An example of the flow of the intra prediction process executed in step S222 in FIG. 14 will be described with reference to the flowchart in FIG.
 イントラ予測処理が開始されると、ステップS241乃至ステップS246の各処理が、図10のステップS131乃至ステップS136の各処理と同様に実行される。つまり、制約付きイントラ予測の画素補間に関する処理は、符号化の際と基本的に同様に行われる。 When the intra prediction process is started, the processes in steps S241 to S246 are executed in the same manner as the processes in steps S131 to S136 in FIG. That is, the processing related to pixel interpolation for constrained intra prediction is performed basically in the same manner as in encoding.
 ステップS247において、予測モード情報バッファ231は、ビットストリームより抽出されたイントラモード情報を取得する。ステップS248において、予測画像生成部232は、ステップS247において取得されたイントラモード情報において指定される予測モードで、フレームメモリ209から取得した周辺画素値や補間画素生成部243により生成された補間画素値を適宜用いて、予測画像を生成する。 In step S247, the prediction mode information buffer 231 acquires intra mode information extracted from the bitstream. In step S248, the predicted image generation unit 232 uses the prediction mode specified in the intra mode information acquired in step S247, the peripheral pixel value acquired from the frame memory 209, and the interpolation pixel value generated by the interpolation pixel generation unit 243. Is used appropriately to generate a predicted image.
 予測画像が生成されると、予測画像生成部232は、イントラ予測処理を終了する。 When the predicted image is generated, the predicted image generation unit 232 ends the intra prediction process.
 以上のように各処理を行うことにより、画像復号装置200は、画像符号化装置100において生成された符号化データを正しく復号することができ、符号化効率の向上を実現させることができる。 By performing each process as described above, the image decoding apparatus 200 can correctly decode the encoded data generated in the image encoding apparatus 100, and can realize improvement in encoding efficiency.
 <3.第1の実施の形態>
 [制約付きイントラ予測部の他の例]
 上述した非特許文献2に記載の従来の補間方法と、上述した本技術の補間方法とを、当該領域の大きさに応じて切り替えるようにしも良い。例えば、当該領域が所定の閾値より小さい場合、本技術の補間方法を適用し、当該領域が所定の閾値より大きい場合、非特許文献2に記載の従来の補間方法を適用するようにする。
<3. First Embodiment>
[Another example of constrained intra prediction unit]
The conventional interpolation method described in Non-Patent Document 2 and the interpolation method of the present technology described above may be switched according to the size of the region. For example, when the region is smaller than a predetermined threshold, the interpolation method of the present technology is applied, and when the region is larger than the predetermined threshold, the conventional interpolation method described in Non-Patent Document 2 is applied.
 テクスチャを含む画像は、より小さな領域が選択されやすい。換言するに、小さな領域の画像は、高周波成分を多く含む細かな画像である可能性が高い。そのため、小さな領域に対して、非特許文献2に記載の従来の方法を適用すると、画像の劣化が大きい。 ∙ Smaller areas are easily selected for images containing textures. In other words, an image in a small area is highly likely to be a fine image containing a lot of high frequency components. For this reason, when the conventional method described in Non-Patent Document 2 is applied to a small area, the image is greatly deteriorated.
 これに対して、テクスチャを含まない画像は、より大きな領域が選択されやすい。換言するに、大きな領域の画像は、高周波成分を多く含まない画像である可能性が高い。したがって、非特許文献2に記載の従来の方法を適用することでの劣化は小さい。 On the other hand, a larger area is easily selected for an image that does not include a texture. In other words, an image in a large area is highly likely to be an image that does not contain a lot of high frequency components. Therefore, the deterioration by applying the conventional method described in Non-Patent Document 2 is small.
 したがって、小さな領域に対してのみ、本技術の補間方法を適用するようにしても符号化効率の向上を実現することができる。 Therefore, even if the interpolation method of the present technology is applied only to a small region, the encoding efficiency can be improved.
 [制約付きイントラ予測部等]
 図16は、この場合の制約付きイントラ予測部等の主な構成例を示すブロック図である。
[Constrained intra prediction unit, etc.]
FIG. 16 is a block diagram illustrating a main configuration example of the restricted intra prediction unit in this case.
 図16に示されるように、イントラ予測部114は、図6を参照して説明した場合と同様の構成を有する。また、制約付きイントラ予測部121は、図6を参照して説明した場合と基本的に同様の構成を有するが、フラグ判定部141の代わりに、フラグ・サイズ閾値判定部341を有する。 As shown in FIG. 16, the intra prediction unit 114 has the same configuration as that described with reference to FIG. The restricted intra prediction unit 121 has basically the same configuration as that described with reference to FIG. 6, but includes a flag / size threshold determination unit 341 instead of the flag determination unit 141.
フラグ・サイズ閾値判定部341は、constrained_intra_pred_flagの値を判定するだけでなく、所定の閾値を用いた当該領域のサイズ判定を行う。つまり、フラグ・サイズ閾値判定部341は、当該領域のサイズに応じて本技術を適用するか否かを制御する所定の閾値を予め記憶している。フラグ・サイズ閾値判定部341は、当該領域の大きさが、その閾値以下であるか否かを判定する。そして、フラグ・サイズ閾値判定部341は、それらの判定結果に基づいて、制約付きイントラ予測を行うか否か、行う場合、本技術の補間方法を適用するか否か等を指定する制御指示を、候補予測画像生成部131、利用可否判定部142、および補間画素生成部143に供給する。 The flag / size threshold determination unit 341 determines not only the value of constrained_intra_pred_flag but also the size determination of the area using a predetermined threshold. That is, the flag / size threshold value determination unit 341 stores in advance a predetermined threshold value for controlling whether or not to apply the present technology according to the size of the area. The flag / size threshold value determination unit 341 determines whether the size of the area is equal to or less than the threshold value. Based on the determination results, the flag / size threshold determination unit 341 determines whether or not to perform constrained intra prediction, and if so, whether or not to apply the interpolation method of the present technology. The candidate predicted image generation unit 131, the availability determination unit 142, and the interpolation pixel generation unit 143 are supplied.
 候補予測画像生成部131、利用可否判定部142、および補間画素生成部143は、その制御指示に基づいて、通常のイントラ予測を行うか、従来の補間方法を用いた制約付きイントラ予測を行うか、若しくは、本技術の補間方法を用いた制約付きイントラ予測を行うかを決定し、それぞれの処理を行う。 Can the candidate prediction image generation unit 131, the availability determination unit 142, and the interpolation pixel generation unit 143 perform normal intra prediction or constrained intra prediction using a conventional interpolation method based on the control instruction? Alternatively, it is determined whether to perform constrained intra prediction using the interpolation method of the present technology, and each process is performed.
 このようにすることにより、大きな領域に対してのみ本技術の補間方法を適用し、その演算量を増大させ、補間処理の負荷を増大させることを抑制しながら、符号化効率を向上させることができる。 By doing so, it is possible to improve the coding efficiency while applying the interpolation method of the present technology only to a large region, increasing the amount of calculation, and suppressing increasing the load of interpolation processing. it can.
 なお、上述した閾値は、ビットストリームのシーケンスパラメータセット等任意の位置に含めて復号側に伝送されるようにしても良い。また、上述した閾値は、例えば画枠サイズ等、プロファイル・レベルに応じて規定されるようにしても良い。 Note that the above-described threshold value may be included in an arbitrary position such as a sequence parameter set of a bit stream and transmitted to the decoding side. Further, the threshold value described above may be defined in accordance with the profile level such as the image frame size.
 [符号化側のイントラ予測処理の流れ]
 図17のフローチャートを参照して、この場合のイントラ予測部114および制約付きイントラ予測部121によるイントラ予測処理の流れの例を説明する。
[Intra prediction process on the encoding side]
With reference to the flowchart of FIG. 17, the example of the flow of the intra prediction process by the intra prediction part 114 and the intra prediction part 121 with restrictions in this case is demonstrated.
 この場合も、基本的に図10のフローチャートを参照して説明した第1の実施の形態の場合と同様に各処理が行われる。すなわち、ステップS301、ステップS303乃至ステップS307、並びに、ステップS309乃至ステップS312の各処理は、図10のステップS131乃至ステップS140の各処理と同様に行われる。 In this case as well, each process is basically performed as in the case of the first embodiment described with reference to the flowchart of FIG. That is, each process of step S301, step S303 thru | or step S307, and step S309 thru | or step S312 is performed similarly to each process of step S131 thru | or step S140 of FIG.
 ただし、図17の場合、フラグ・サイズ閾値判定部341は、ステップS301において制約付きイントラ予測が行われるか否かを判定し、行われると判定された場合、処理をステップS302に進め、さらに、当該領域のサイズが閾値以下であるか否かを判定する。 However, in the case of FIG. 17, the flag / size threshold determination unit 341 determines whether or not constrained intra prediction is performed in step S301. If it is determined that the intra prediction with constraint is performed, the process proceeds to step S302. It is determined whether or not the size of the area is equal to or smaller than a threshold value.
 当該領域のサイズが所定の閾値以下である場合、フラグ・サイズ閾値判定部341は、処理をステップS303に進める。すなわち、この場合、図10の場合と同様に、本技術の補間方法を適用した制約付きイントラ予測が行われる。 If the size of the area is equal to or smaller than the predetermined threshold value, the flag / size threshold value determination unit 341 advances the process to step S303. That is, in this case, similarly to the case of FIG. 10, constrained intra prediction to which the interpolation method of the present technology is applied is performed.
 これに対して、ステップS302において、当該領域のサイズが閾値より大きいと判定された場合、フラグ・サイズ閾値判定部341は、処理をステップS308に進める。ステップS308において、利用可否判定部142および補間画素生成部143は、非特許文献2に記載の従来の補間方法を適用した制約付きイントラ予測を行う。ステップS308の処理が終了すると、補間画素生成部143は、処理をステップS309に進める。 On the other hand, when it is determined in step S302 that the size of the area is larger than the threshold, the flag / size threshold determination unit 341 advances the process to step S308. In step S308, the availability determination unit 142 and the interpolation pixel generation unit 143 perform constrained intra prediction to which the conventional interpolation method described in Non-Patent Document 2 is applied. When the process of step S308 ends, the interpolation pixel generation unit 143 advances the process to step S309.
 なお、ステップS301において、制約付きイントラ予測を行わないと判定された場合、フラグ・サイズ閾値判定部341は、処理をステップS309に進める。 If it is determined in step S301 that constrained intra prediction is not performed, the flag / size threshold determination unit 341 advances the processing to step S309.
 このようにすることにより、大きな領域に対してのみ本技術の補間方法を適用することができ、画像符号化装置100は、補間処理の負荷の増大を抑制しながら、符号化効率を向上させることができる。 In this way, the interpolation method of the present technology can be applied only to a large region, and the image encoding device 100 can improve encoding efficiency while suppressing an increase in the load of interpolation processing. Can do.
 [制約付きイントラ予測部等]
 図18は、この場合の制約付きイントラ予測部等の主な構成例を示すブロック図である。
[Constrained intra prediction unit, etc.]
FIG. 18 is a block diagram illustrating a main configuration example of the restricted intra prediction unit in this case.
 図18に示されるように、イントラ予測部211は、図12を参照して説明した場合と同様の構成を有する。また、制約付きイントラ予測部221は、図12を参照して説明した場合と基本的に同様の構成を有するが、フラグ判定部241の代わりに、フラグ・サイズ閾値判定部441を有する。 18, the intra prediction unit 211 has the same configuration as that described with reference to FIG. The restricted intra prediction unit 221 has basically the same configuration as that described with reference to FIG. 12, but includes a flag size threshold determination unit 441 instead of the flag determination unit 241.
 フラグ・サイズ閾値判定部441は、フラグ・サイズ閾値判定部341と同様の処理部であり、constrained_intra_pred_flagの値を判定するだけでなく、所定の閾値を用いた当該領域のサイズ判定を行う。フラグ・サイズ閾値判定部441は、それらの判定結果に基づいて、制御指示を、予測画像生成部232、利用可否判定部242、および補間画素生成部243に供給する。 The flag / size threshold value determination unit 441 is a processing unit similar to the flag / size threshold value determination unit 341, and not only determines the value of constrained_intra_pred_flag but also determines the size of the area using a predetermined threshold value. The flag / size threshold value determination unit 441 supplies a control instruction to the predicted image generation unit 232, the availability determination unit 242, and the interpolation pixel generation unit 243 based on the determination results.
 予測画像生成部232、利用可否判定部242、および補間画素生成部243は、その制御指示に基づいて、通常のイントラ予測を行うか、従来の補間方法を用いた制約付きイントラ予測を行うか、若しくは、本技術の補間方法を用いた制約付きイントラ予測を行うかを決定し、それぞれの処理を行う。 Whether the predicted image generation unit 232, the availability determination unit 242, and the interpolation pixel generation unit 243 perform normal intra prediction or constrained intra prediction using a conventional interpolation method based on the control instruction, Alternatively, it is determined whether to perform constrained intra prediction using the interpolation method of the present technology, and each process is performed.
 このようにすることにより、符号化側と同様に、大きな領域に対してのみ本技術の補間方法を適用することができるので、画像復号装置200は、補間処理の負荷の増大を抑制しながら、符号化効率を向上させることができる。 By doing so, the interpolation method of the present technology can be applied only to a large region as in the encoding side, so that the image decoding device 200 suppresses an increase in the load of the interpolation processing, Encoding efficiency can be improved.
 [復号側のイントラ予測処理の流れ]
 図19のフローチャートを参照して、この場合のイントラ予測部211および制約付きイントラ予測部221によるイントラ予測処理の流れの例を説明する。
[Flow of intra prediction process on decoding side]
With reference to the flowchart of FIG. 19, the example of the flow of the intra prediction process by the intra estimation part 211 and the intra prediction part 221 with restrictions in this case is demonstrated.
 この場合も、第2の実施の形態の場合と同様に、符号化側と同様に各処理を行うことができる。すなわち、図19のステップS401乃至ステップS408の各処理は、図17のステップS301乃至ステップS308の各処理と同様に行われる。 Also in this case, each process can be performed in the same manner as the encoding side, as in the case of the second embodiment. That is, the processes in steps S401 to S408 in FIG. 19 are performed in the same manner as the processes in steps S301 to S308 in FIG.
 また、ステップS409およびステップS410の各処理は、図15のステップS247およびステップS248の各処理と同様に(すなわち、第2の実施の形態の場合と同様に)行われる。 Further, the processes in steps S409 and S410 are performed in the same manner as the processes in steps S247 and S248 in FIG. 15 (that is, in the same manner as in the second embodiment).
 このようにすることにより、符号化側と同様に、大きな領域に対してのみ本技術の補間方法を適用することができ、画像復号装置200は、補間処理の負荷の増大を抑制しながら、符号化効率を向上させることができる。 By doing in this way, the interpolation method of the present technology can be applied only to a large region as in the encoding side, and the image decoding apparatus 200 performs code encoding while suppressing an increase in the load of interpolation processing. Efficiency can be improved.
 なお、本技術を適用する符号化・復号方式は任意であり、制約付きイントラ予測処理を用いる方式であればどのような符号化・復号方式に適用することもできる。 Note that the encoding / decoding scheme to which the present technology is applied is arbitrary, and any encoding / decoding scheme can be applied as long as it uses a constrained intra prediction process.
 なお、本技術は、例えば、MPEG、H.26x等の様に、離散コサイン変換等の直交変換と動き補償によって圧縮された画像情報(ビットストリーム)を、衛星放送、ケーブルテレビジョン、インターネット、または携帯電話機などのネットワークメディアを介して受信する際に用いられる画像符号化装置および画像復号装置に適用することができる。また、本技術は、光、磁気ディスク、およびフラッシュメモリのような記憶メディア上で処理する際に用いられる画像符号化装置および画像復号装置に適用することができる。さらに、本技術は、それらの画像符号化装置および画像復号装置などに含まれる動き予測補償装置にも適用することができる。 Note that this technology is, for example, MPEG, H.264. When receiving image information (bitstream) compressed by orthogonal transform such as discrete cosine transform and motion compensation, such as 26x, via network media such as satellite broadcasting, cable television, the Internet, or mobile phones. The present invention can be applied to an image encoding device and an image decoding device used in the above. In addition, the present technology can be applied to an image encoding device and an image decoding device that are used when processing is performed on a storage medium such as an optical disk, a magnetic disk, and a flash memory. Furthermore, the present technology can also be applied to motion prediction / compensation devices included in such image encoding devices and image decoding devices.
 <4.第4の実施の形態>
 [コンピュータ]
 上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な汎用のパーソナルコンピュータなどが含まれる。
<4. Fourth Embodiment>
[Computer]
The series of processes described above can be executed by hardware or can be executed by software. When a series of processing is executed by software, a program constituting the software is installed in the computer. Here, the computer includes a computer incorporated in dedicated hardware, a general-purpose personal computer capable of executing various functions by installing various programs, and the like.
 図20において、パーソナルコンピュータ500のCPU(Central Processing Unit)501は、ROM(Read Only Memory)502に記憶されているプログラム、または記憶部513からRAM(Random Access Memory)503にロードされたプログラムに従って各種の処理を実行する。RAM503にはまた、CPU501が各種の処理を実行する上において必要なデータなども適宜記憶される。 In FIG. 20, a CPU (Central Processing Unit) 501 of the personal computer 500 performs various processes according to a program stored in a ROM (Read Only Memory) 502 or a program loaded from a storage unit 513 to a RAM (Random Access Memory) 503. Execute the process. The RAM 503 also appropriately stores data necessary for the CPU 501 to execute various processes.
 CPU501、ROM502、およびRAM503は、バス504を介して相互に接続されている。このバス504にはまた、入出力インタフェース510も接続されている。 The CPU 501, the ROM 502, and the RAM 503 are connected to each other via a bus 504. An input / output interface 510 is also connected to the bus 504.
 入出力インタフェース510には、キーボード、マウスなどよりなる入力部511、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)などよりなるディスプレイ、並びにスピーカなどよりなる出力部512、ハードディスクなどより構成される記憶部513、モデムなどより構成される通信部514が接続されている。通信部514は、インターネットを含むネットワークを介しての通信処理を行う。 The input / output interface 510 includes an input unit 511 including a keyboard and a mouse, a display including a CRT (Cathode Ray Tube) and an LCD (Liquid Crystal Display), an output unit 512 including a speaker, and a hard disk. A communication unit 514 including a storage unit 513 and a modem is connected. The communication unit 514 performs communication processing via a network including the Internet.
 入出力インタフェース510にはまた、必要に応じてドライブ515が接続され、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブルメディア521が適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて記憶部513にインストールされる。 A drive 515 is connected to the input / output interface 510 as necessary, and a removable medium 521 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is appropriately mounted, and a computer program read from them is It is installed in the storage unit 513 as necessary.
 上述した一連の処理をソフトウエアにより実行させる場合には、そのソフトウエアを構成するプログラムが、ネットワークや記録媒体からインストールされる。 When the above-described series of processing is executed by software, a program constituting the software is installed from a network or a recording medium.
 この記録媒体は、例えば、図20に示されるように、装置本体とは別に、ユーザにプログラムを配信するために配布される、プログラムが記録されている磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc - Read Only Memory),DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、若しくは半導体メモリなどよりなるリムーバブルメディア521により構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに配信される、プログラムが記録されているROM502や、記憶部513に含まれるハードディスクなどで構成される。  For example, as shown in FIG. 20, the recording medium is distributed to distribute the program to the user separately from the apparatus main body, and includes a magnetic disk (including a flexible disk) on which the program is recorded, an optical disk ( It only consists of removable media 521 consisting of CD-ROM (compact disc -read only memory), DVD (including digital Versatile disc), magneto-optical disk (including MD (mini disc)), or semiconductor memory. Rather, it is composed of a ROM 502 on which a program is recorded and a hard disk included in the storage unit 513, which is distributed to the user in a state of being pre-installed in the apparatus main body. *
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 The program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
 また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。 Further, in the present specification, the step of describing the program recorded on the recording medium is not limited to the processing performed in chronological order according to the described order, but may be performed in parallel or It also includes processes that are executed individually.
 また、本明細書において、システムとは、複数のデバイス(装置)により構成される装置全体を表すものである。 In addition, in this specification, the system represents the entire apparatus composed of a plurality of devices (apparatuses).
 また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。つまり、本技術は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Also, in the above, the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units). Conversely, the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit). Of course, a configuration other than that described above may be added to the configuration of each device (or each processing unit). Furthermore, if the configuration and operation of the entire system are substantially the same, a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). . That is, the present technology is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present technology.
 上述した実施形態に係る画像符号化装置及び画像復号装置は、衛星放送、ケーブルTVなどの有線放送、インターネット上での配信、及びセルラー通信による端末への配信などにおける送信機若しくは受信機、光ディスク、磁気ディスク及びフラッシュメモリなどの媒体に画像を記録する記録装置、又は、これら記憶媒体から画像を再生する再生装置などの様々な電子機器に応用され得る。以下、4つの応用例について説明する。 An image encoding device and an image decoding device according to the above-described embodiments include a transmitter or a receiver in optical broadcasting, satellite broadcasting, cable broadcasting such as cable TV, distribution on the Internet, and distribution to terminals by cellular communication, etc. The present invention can be applied to various electronic devices such as a recording device that records an image on a medium such as a magnetic disk and a flash memory, or a playback device that reproduces an image from these storage media. Hereinafter, four application examples will be described.
 <5.第5の実施の形態>
 [第1の応用例:テレビジョン受像機]
 図21は、上述した実施形態を適用したテレビジョン装置の概略的な構成の一例を示している。テレビジョン装置900は、アンテナ901、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、表示部906、音声信号処理部907、スピーカ908、外部インタフェース909、制御部910、ユーザインタフェース911、及びバス912を備える。
<5. Fifth embodiment>
[First application example: television receiver]
FIG. 21 illustrates an example of a schematic configuration of a television device to which the above-described embodiment is applied. The television apparatus 900 includes an antenna 901, a tuner 902, a demultiplexer 903, a decoder 904, a video signal processing unit 905, a display unit 906, an audio signal processing unit 907, a speaker 908, an external interface 909, a control unit 910, a user interface 911, And a bus 912.
 チューナ902は、アンテナ901を介して受信される放送信号から所望のチャンネルの信号を抽出し、抽出した信号を復調する。そして、チューナ902は、復調により得られた符号化ビットストリームをデマルチプレクサ903へ出力する。即ち、チューナ902は、画像が符号化されている符号化ストリームを受信する、テレビジョン装置900における伝送部としての役割を有する。 Tuner 902 extracts a signal of a desired channel from a broadcast signal received via antenna 901, and demodulates the extracted signal. Then, the tuner 902 outputs the encoded bit stream obtained by the demodulation to the demultiplexer 903. That is, the tuner 902 has a role as a transmission unit in the television device 900 that receives an encoded stream in which an image is encoded.
 デマルチプレクサ903は、符号化ビットストリームから視聴対象の番組の映像ストリーム及び音声ストリームを分離し、分離した各ストリームをデコーダ904へ出力する。また、デマルチプレクサ903は、符号化ビットストリームからEPG(Electronic Program Guide)などの補助的なデータを抽出し、抽出したデータを制御部910に供給する。なお、デマルチプレクサ903は、符号化ビットストリームがスクランブルされている場合には、デスクランブルを行ってもよい。 The demultiplexer 903 separates the video stream and audio stream of the viewing target program from the encoded bit stream, and outputs each separated stream to the decoder 904. Further, the demultiplexer 903 extracts auxiliary data such as EPG (Electronic Program Guide) from the encoded bit stream, and supplies the extracted data to the control unit 910. Note that the demultiplexer 903 may perform descrambling when the encoded bit stream is scrambled.
 デコーダ904は、デマルチプレクサ903から入力される映像ストリーム及び音声ストリームを復号する。そして、デコーダ904は、復号処理により生成される映像データを映像信号処理部905へ出力する。また、デコーダ904は、復号処理により生成される音声データを音声信号処理部907へ出力する。 The decoder 904 decodes the video stream and audio stream input from the demultiplexer 903. Then, the decoder 904 outputs the video data generated by the decoding process to the video signal processing unit 905. In addition, the decoder 904 outputs audio data generated by the decoding process to the audio signal processing unit 907.
 映像信号処理部905は、デコーダ904から入力される映像データを再生し、表示部906に映像を表示させる。また、映像信号処理部905は、ネットワークを介して供給されるアプリケーション画面を表示部906に表示させてもよい。また、映像信号処理部905は、映像データについて、設定に応じて、例えばノイズ除去などの追加的な処理を行ってもよい。さらに、映像信号処理部905は、例えばメニュー、ボタン又はカーソルなどのGUI(Graphical User Interface)の画像を生成し、生成した画像を出力画像に重畳してもよい。 The video signal processing unit 905 reproduces the video data input from the decoder 904 and causes the display unit 906 to display the video. In addition, the video signal processing unit 905 may cause the display unit 906 to display an application screen supplied via a network. Further, the video signal processing unit 905 may perform additional processing such as noise removal on the video data according to the setting. Furthermore, the video signal processing unit 905 may generate a GUI (Graphical User Interface) image such as a menu, a button, or a cursor, and superimpose the generated image on the output image.
 表示部906は、映像信号処理部905から供給される駆動信号により駆動され、表示デバイス(例えば、液晶ディスプレイ、プラズマディスプレイ又はOELD(Organic ElectroLuminescence Display)(有機ELディスプレイ)など)の映像面上に映像又は画像を表示する。 The display unit 906 is driven by a drive signal supplied from the video signal processing unit 905, and displays an image on a video screen of a display device (for example, a liquid crystal display, a plasma display, or an OELD (Organic ElectroLuminescence Display) (organic EL display)). Or an image is displayed.
 音声信号処理部907は、デコーダ904から入力される音声データについてD/A変換及び増幅などの再生処理を行い、スピーカ908から音声を出力させる。また、音声信号処理部907は、音声データについてノイズ除去などの追加的な処理を行ってもよい。 The audio signal processing unit 907 performs reproduction processing such as D / A conversion and amplification on the audio data input from the decoder 904, and outputs audio from the speaker 908. The audio signal processing unit 907 may perform additional processing such as noise removal on the audio data.
 外部インタフェース909は、テレビジョン装置900と外部機器又はネットワークとを接続するためのインタフェースである。例えば、外部インタフェース909を介して受信される映像ストリーム又は音声ストリームが、デコーダ904により復号されてもよい。即ち、外部インタフェース909もまた、画像が符号化されている符号化ストリームを受信する、テレビジョン装置900における伝送部としての役割を有する。 The external interface 909 is an interface for connecting the television apparatus 900 to an external device or a network. For example, a video stream or an audio stream received via the external interface 909 may be decoded by the decoder 904. That is, the external interface 909 also has a role as a transmission unit in the television apparatus 900 that receives an encoded stream in which an image is encoded.
 制御部910は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、プログラムデータ、EPGデータ、及びネットワークを介して取得されるデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、テレビジョン装置900の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース911から入力される操作信号に応じて、テレビジョン装置900の動作を制御する。 The control unit 910 includes a processor such as a CPU and memories such as a RAM and a ROM. The memory stores a program executed by the CPU, program data, EPG data, data acquired via a network, and the like. For example, the program stored in the memory is read and executed by the CPU when the television apparatus 900 is activated. The CPU executes the program to control the operation of the television device 900 according to an operation signal input from the user interface 911, for example.
 ユーザインタフェース911は、制御部910と接続される。ユーザインタフェース911は、例えば、ユーザがテレビジョン装置900を操作するためのボタン及びスイッチ、並びに遠隔制御信号の受信部などを有する。ユーザインタフェース911は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部910へ出力する。 The user interface 911 is connected to the control unit 910. The user interface 911 includes, for example, buttons and switches for the user to operate the television device 900, a remote control signal receiving unit, and the like. The user interface 911 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 910.
 バス912は、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、音声信号処理部907、外部インタフェース909及び制御部910を相互に接続する。 The bus 912 connects the tuner 902, the demultiplexer 903, the decoder 904, the video signal processing unit 905, the audio signal processing unit 907, the external interface 909, and the control unit 910 to each other.
 このように構成されたテレビジョン装置900において、デコーダ904は、上述した実施形態に係る画像復号装置の機能を有する。それにより、テレビジョン装置900での画像の復号に際して、符号化効率の向上を実現することができる。 In the thus configured television apparatus 900, the decoder 904 has the function of the image decoding apparatus according to the above-described embodiment. Thereby, it is possible to improve the encoding efficiency when the image is decoded by the television apparatus 900.
 <6.第6の実施の形態>
 [第2の応用例:携帯電話機]
 図22は、上述した実施形態を適用した携帯電話機の概略的な構成の一例を示している。携帯電話機920は、アンテナ921、通信部922、音声コーデック923、スピーカ924、マイクロホン925、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、制御部931、操作部932、及びバス933を備える。
<6. Sixth Embodiment>
[Second application example: mobile phone]
FIG. 22 shows an example of a schematic configuration of a mobile phone to which the above-described embodiment is applied. A mobile phone 920 includes an antenna 921, a communication unit 922, an audio codec 923, a speaker 924, a microphone 925, a camera unit 926, an image processing unit 927, a demultiplexing unit 928, a recording / reproducing unit 929, a display unit 930, a control unit 931, an operation A portion 932 and a bus 933.
 アンテナ921は、通信部922に接続される。スピーカ924及びマイクロホン925は、音声コーデック923に接続される。操作部932は、制御部931に接続される。バス933は、通信部922、音声コーデック923、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、及び制御部931を相互に接続する。 The antenna 921 is connected to the communication unit 922. The speaker 924 and the microphone 925 are connected to the audio codec 923. The operation unit 932 is connected to the control unit 931. The bus 933 connects the communication unit 922, the audio codec 923, the camera unit 926, the image processing unit 927, the demultiplexing unit 928, the recording / reproducing unit 929, the display unit 930, and the control unit 931 to each other.
 携帯電話機920は、音声通話モード、データ通信モード、撮影モード及びテレビ電話モードを含む様々な動作モードで、音声信号の送受信、電子メール又は画像データの送受信、画像の撮像、及びデータの記録などの動作を行う。 The mobile phone 920 has various operation modes including a voice call mode, a data communication mode, a shooting mode, and a videophone mode, and is used for sending and receiving voice signals, sending and receiving e-mail or image data, taking images, and recording data. Perform the action.
 音声通話モードにおいて、マイクロホン925により生成されるアナログ音声信号は、音声コーデック923に供給される。音声コーデック923は、アナログ音声信号を音声データへ変換し、変換された音声データをA/D変換し圧縮する。そして、音声コーデック923は、圧縮後の音声データを通信部922へ出力する。通信部922は、音声データを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号を、アンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。そして、通信部922は、受信信号を復調及び復号して音声データを生成し、生成した音声データを音声コーデック923へ出力する。音声コーデック923は、音声データを伸張し及びD/A変換し、アナログ音声信号を生成する。そして、音声コーデック923は、生成した音声信号をスピーカ924に供給して音声を出力させる。 In the voice call mode, the analog voice signal generated by the microphone 925 is supplied to the voice codec 923. The audio codec 923 converts an analog audio signal into audio data, A / D converts the compressed audio data, and compresses it. Then, the audio codec 923 outputs the compressed audio data to the communication unit 922. The communication unit 922 encodes and modulates the audio data and generates a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921. In addition, the communication unit 922 amplifies a radio signal received via the antenna 921 and performs frequency conversion to acquire a received signal. Then, the communication unit 922 demodulates and decodes the received signal to generate audio data, and outputs the generated audio data to the audio codec 923. The audio codec 923 decompresses the audio data and performs D / A conversion to generate an analog audio signal. Then, the audio codec 923 supplies the generated audio signal to the speaker 924 to output audio.
 また、データ通信モードにおいて、例えば、制御部931は、操作部932を介するユーザによる操作に応じて、電子メールを構成する文字データを生成する。また、制御部931は、文字を表示部930に表示させる。また、制御部931は、操作部932を介するユーザからの送信指示に応じて電子メールデータを生成し、生成した電子メールデータを通信部922へ出力する。通信部922は、電子メールデータを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号を、アンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。そして、通信部922は、受信信号を復調及び復号して電子メールデータを復元し、復元した電子メールデータを制御部931へ出力する。制御部931は、表示部930に電子メールの内容を表示させると共に、電子メールデータを記録再生部929の記憶媒体に記憶させる。 Further, in the data communication mode, for example, the control unit 931 generates character data constituting the e-mail in response to an operation by the user via the operation unit 932. In addition, the control unit 931 causes the display unit 930 to display characters. In addition, the control unit 931 generates e-mail data in response to a transmission instruction from the user via the operation unit 932, and outputs the generated e-mail data to the communication unit 922. The communication unit 922 encodes and modulates email data and generates a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921. In addition, the communication unit 922 amplifies a radio signal received via the antenna 921 and performs frequency conversion to acquire a received signal. Then, the communication unit 922 demodulates and decodes the received signal to restore the email data, and outputs the restored email data to the control unit 931. The control unit 931 displays the content of the electronic mail on the display unit 930 and stores the electronic mail data in the storage medium of the recording / reproducing unit 929.
 記録再生部929は、読み書き可能な任意の記憶媒体を有する。例えば、記憶媒体は、RAM又はフラッシュメモリなどの内蔵型の記憶媒体であってもよく、ハードディスク、磁気ディスク、光磁気ディスク、光ディスク、USB(Unallocated Space Bitmap)メモリ、又はメモリカードなどの外部装着型の記憶媒体であってもよい。 The recording / reproducing unit 929 has an arbitrary readable / writable storage medium. For example, the storage medium may be a built-in storage medium such as RAM or flash memory, and is externally mounted such as a hard disk, magnetic disk, magneto-optical disk, optical disk, USB (Unallocated Space Space Bitmap) memory, or memory card. It may be a storage medium.
 また、撮影モードにおいて、例えば、カメラ部926は、被写体を撮像して画像データを生成し、生成した画像データを画像処理部927へ出力する。画像処理部927は、カメラ部926から入力される画像データを符号化し、符号化ストリームを記憶再生部929の記憶媒体に記憶させる。 In the shooting mode, for example, the camera unit 926 images a subject to generate image data, and outputs the generated image data to the image processing unit 927. The image processing unit 927 encodes the image data input from the camera unit 926 and stores the encoded stream in the storage medium of the storage / playback unit 929.
 また、テレビ電話モードにおいて、例えば、多重分離部928は、画像処理部927により符号化された映像ストリームと、音声コーデック923から入力される音声ストリームとを多重化し、多重化したストリームを通信部922へ出力する。通信部922は、ストリームを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号を、アンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。これら送信信号及び受信信号には、符号化ビットストリームが含まれ得る。そして、通信部922は、受信信号を復調及び復号してストリームを復元し、復元したストリームを多重分離部928へ出力する。多重分離部928は、入力されるストリームから映像ストリーム及び音声ストリームを分離し、映像ストリームを画像処理部927、音声ストリームを音声コーデック923へ出力する。画像処理部927は、映像ストリームを復号し、映像データを生成する。映像データは、表示部930に供給され、表示部930により一連の画像が表示される。音声コーデック923は、音声ストリームを伸張し及びD/A変換し、アナログ音声信号を生成する。そして、音声コーデック923は、生成した音声信号をスピーカ924に供給して音声を出力させる。 Further, in the videophone mode, for example, the demultiplexing unit 928 multiplexes the video stream encoded by the image processing unit 927 and the audio stream input from the audio codec 923, and the multiplexed stream is the communication unit 922. Output to. The communication unit 922 encodes and modulates the stream and generates a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921. In addition, the communication unit 922 amplifies a radio signal received via the antenna 921 and performs frequency conversion to acquire a received signal. These transmission signal and reception signal may include an encoded bit stream. Then, the communication unit 922 demodulates and decodes the received signal to restore the stream, and outputs the restored stream to the demultiplexing unit 928. The demultiplexing unit 928 separates the video stream and the audio stream from the input stream, and outputs the video stream to the image processing unit 927 and the audio stream to the audio codec 923. The image processing unit 927 decodes the video stream and generates video data. The video data is supplied to the display unit 930, and a series of images is displayed on the display unit 930. The audio codec 923 decompresses the audio stream and performs D / A conversion to generate an analog audio signal. Then, the audio codec 923 supplies the generated audio signal to the speaker 924 to output audio.
 このように構成された携帯電話機920において、画像処理部927は、上述した実施形態に係る画像符号化装置及び画像復号装置の機能を有する。それにより、携帯電話機920での画像の符号化及び復号に際して、符号化効率を向上させることができる。 In the mobile phone 920 configured as described above, the image processing unit 927 has the functions of the image encoding device and the image decoding device according to the above-described embodiment. Accordingly, encoding efficiency can be improved when encoding and decoding an image with the mobile phone 920.
 <7.第7の実施の形態>
 [第3の応用例:記録再生装置]
 図23は、上述した実施形態を適用した記録再生装置の概略的な構成の一例を示している。記録再生装置940は、例えば、受信した放送番組の音声データ及び映像データを符号化して記録媒体に記録する。また、記録再生装置940は、例えば、他の装置から取得される音声データ及び映像データを符号化して記録媒体に記録してもよい。また、記録再生装置940は、例えば、ユーザの指示に応じて、記録媒体に記録されているデータをモニタ及びスピーカ上で再生する。このとき、記録再生装置940は、音声データ及び映像データを復号する。
<7. Seventh Embodiment>
[Third application example: recording / reproducing apparatus]
FIG. 23 shows an example of a schematic configuration of a recording / reproducing apparatus to which the above-described embodiment is applied. For example, the recording / reproducing device 940 encodes audio data and video data of a received broadcast program and records the encoded data on a recording medium. In addition, the recording / reproducing device 940 may encode audio data and video data acquired from another device and record them on a recording medium, for example. In addition, the recording / reproducing device 940 reproduces data recorded on the recording medium on a monitor and a speaker, for example, in accordance with a user instruction. At this time, the recording / reproducing device 940 decodes the audio data and the video data.
 記録再生装置940は、チューナ941、外部インタフェース942、エンコーダ943、HDD(Hard Disk Drive)944、ディスクドライブ945、セレクタ946、デコーダ947、OSD(On-Screen Display)948、制御部949、及びユーザインタフェース950を備える。 The recording / reproducing apparatus 940 includes a tuner 941, an external interface 942, an encoder 943, an HDD (Hard Disk Drive) 944, a disk drive 945, a selector 946, a decoder 947, an OSD (On-Screen Display) 948, a control unit 949, and a user interface. 950.
 チューナ941は、アンテナ(図示せず)を介して受信される放送信号から所望のチャンネルの信号を抽出し、抽出した信号を復調する。そして、チューナ941は、復調により得られた符号化ビットストリームをセレクタ946へ出力する。即ち、チューナ941は、記録再生装置940における伝送部としての役割を有する。 Tuner 941 extracts a signal of a desired channel from a broadcast signal received via an antenna (not shown), and demodulates the extracted signal. Then, the tuner 941 outputs the encoded bit stream obtained by the demodulation to the selector 946. That is, the tuner 941 serves as a transmission unit in the recording / reproducing apparatus 940.
 外部インタフェース942は、記録再生装置940と外部機器又はネットワークとを接続するためのインタフェースである。外部インタフェース942は、例えば、IEEE1394インタフェース、ネットワークインタフェース、USBインタフェース、又はフラッシュメモリインタフェースなどであってよい。例えば、外部インタフェース942を介して受信される映像データ及び音声データは、エンコーダ943へ入力される。即ち、外部インタフェース942は、記録再生装置940における伝送部としての役割を有する。 The external interface 942 is an interface for connecting the recording / reproducing apparatus 940 to an external device or a network. The external interface 942 may be, for example, an IEEE1394 interface, a network interface, a USB interface, or a flash memory interface. For example, video data and audio data received via the external interface 942 are input to the encoder 943. That is, the external interface 942 serves as a transmission unit in the recording / reproducing device 940.
 エンコーダ943は、外部インタフェース942から入力される映像データ及び音声データが符号化されていない場合に、映像データ及び音声データを符号化する。そして、エンコーダ943は、符号化ビットストリームをセレクタ946へ出力する。 The encoder 943 encodes video data and audio data when the video data and audio data input from the external interface 942 are not encoded. Then, the encoder 943 outputs the encoded bit stream to the selector 946.
 HDD944は、映像及び音声などのコンテンツデータが圧縮された符号化ビットストリーム、各種プログラム及びその他のデータを内部のハードディスクに記録する。また、HDD944は、映像及び音声の再生時に、これらデータをハードディスクから読み出す。 The HDD 944 records an encoded bit stream in which content data such as video and audio are compressed, various programs, and other data on an internal hard disk. Further, the HDD 944 reads out these data from the hard disk when reproducing video and audio.
 ディスクドライブ945は、装着されている記録媒体へのデータの記録及び読み出しを行う。ディスクドライブ945に装着される記録媒体は、例えばDVDディスク(DVD-Video、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等)又はBlu-ray(登録商標)ディスクなどであってよい。 The disk drive 945 performs recording and reading of data to and from the mounted recording medium. The recording medium mounted on the disk drive 945 is, for example, a DVD disk (DVD-Video, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, etc.) or a Blu-ray (registered trademark) disk. It may be.
 セレクタ946は、映像及び音声の記録時には、チューナ941又はエンコーダ943から入力される符号化ビットストリームを選択し、選択した符号化ビットストリームをHDD944又はディスクドライブ945へ出力する。また、セレクタ946は、映像及び音声の再生時には、HDD944又はディスクドライブ945から入力される符号化ビットストリームをデコーダ947へ出力する。 The selector 946 selects an encoded bit stream input from the tuner 941 or the encoder 943 when recording video and audio, and outputs the selected encoded bit stream to the HDD 944 or the disk drive 945. In addition, the selector 946 outputs the encoded bit stream input from the HDD 944 or the disk drive 945 to the decoder 947 during video and audio reproduction.
 デコーダ947は、符号化ビットストリームを復号し、映像データ及び音声データを生成する。そして、デコーダ947は、生成した映像データをOSD948へ出力する。また、デコーダ904は、生成した音声データを外部のスピーカへ出力する。 The decoder 947 decodes the encoded bit stream and generates video data and audio data. Then, the decoder 947 outputs the generated video data to the OSD 948. The decoder 904 outputs the generated audio data to an external speaker.
 OSD948は、デコーダ947から入力される映像データを再生し、映像を表示する。また、OSD948は、表示する映像に、例えばメニュー、ボタン又はカーソルなどのGUIの画像を重畳してもよい。 OSD 948 reproduces the video data input from the decoder 947 and displays the video. Further, the OSD 948 may superimpose a GUI image such as a menu, a button, or a cursor on the video to be displayed.
 制御部949は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、及びプログラムデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、記録再生装置940の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース950から入力される操作信号に応じて、記録再生装置940の動作を制御する。 The control unit 949 includes a processor such as a CPU and memories such as a RAM and a ROM. The memory stores a program executed by the CPU, program data, and the like. The program stored in the memory is read and executed by the CPU when the recording / reproducing apparatus 940 is activated, for example. The CPU controls the operation of the recording / reproducing apparatus 940 in accordance with an operation signal input from the user interface 950, for example, by executing the program.
 ユーザインタフェース950は、制御部949と接続される。ユーザインタフェース950は、例えば、ユーザが記録再生装置940を操作するためのボタン及びスイッチ、並びに遠隔制御信号の受信部などを有する。ユーザインタフェース950は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部949へ出力する。 The user interface 950 is connected to the control unit 949. The user interface 950 includes, for example, buttons and switches for the user to operate the recording / reproducing device 940, a remote control signal receiving unit, and the like. The user interface 950 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 949.
 このように構成された記録再生装置940において、エンコーダ943は、上述した実施形態に係る画像符号化装置の機能を有する。また、デコーダ947は、上述した実施形態に係る画像復号装置の機能を有する。それにより、記録再生装置940での画像の符号化及び復号に際して、符号化効率を向上させることができる。 In the thus configured recording / reproducing apparatus 940, the encoder 943 has the function of the image encoding apparatus according to the above-described embodiment. The decoder 947 has the function of the image decoding apparatus according to the above-described embodiment. Thereby, the encoding efficiency can be improved when encoding and decoding an image in the recording / reproducing apparatus 940.
 <8.第8の実施の形態>
 [第4の応用例:撮像装置]
 図24は、上述した実施形態を適用した撮像装置の概略的な構成の一例を示している。撮像装置960は、被写体を撮像して画像を生成し、画像データを符号化して記録媒体に記録する。
<8. Eighth Embodiment>
[Fourth Application Example: Imaging Device]
FIG. 24 illustrates an example of a schematic configuration of an imaging apparatus to which the above-described embodiment is applied. The imaging device 960 images a subject to generate an image, encodes the image data, and records it on a recording medium.
 撮像装置960は、光学ブロック961、撮像部962、信号処理部963、画像処理部964、表示部965、外部インタフェース966、メモリ967、メディアドライブ968、OSD969、制御部970、ユーザインタフェース971、及びバス972を備える。 The imaging device 960 includes an optical block 961, an imaging unit 962, a signal processing unit 963, an image processing unit 964, a display unit 965, an external interface 966, a memory 967, a media drive 968, an OSD 969, a control unit 970, a user interface 971, and a bus. 972.
 光学ブロック961は、撮像部962に接続される。撮像部962は、信号処理部963に接続される。表示部965は、画像処理部964に接続される。ユーザインタフェース971は、制御部970に接続される。バス972は、画像処理部964、外部インタフェース966、メモリ967、メディアドライブ968、OSD969、及び制御部970を相互に接続する。 The optical block 961 is connected to the imaging unit 962. The imaging unit 962 is connected to the signal processing unit 963. The display unit 965 is connected to the image processing unit 964. The user interface 971 is connected to the control unit 970. The bus 972 connects the image processing unit 964, the external interface 966, the memory 967, the media drive 968, the OSD 969, and the control unit 970 to each other.
 光学ブロック961は、フォーカスレンズ及び絞り機構などを有する。光学ブロック961は、被写体の光学像を撮像部962の撮像面に結像させる。撮像部962は、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などのイメージセンサを有し、撮像面に結像した光学像を光電変換によって電気信号としての画像信号に変換する。そして、撮像部962は、画像信号を信号処理部963へ出力する。 The optical block 961 includes a focus lens and a diaphragm mechanism. The optical block 961 forms an optical image of the subject on the imaging surface of the imaging unit 962. The imaging unit 962 includes an image sensor such as a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor), and converts an optical image formed on the imaging surface into an image signal as an electrical signal by photoelectric conversion. Then, the imaging unit 962 outputs the image signal to the signal processing unit 963.
 信号処理部963は、撮像部962から入力される画像信号に対してニー補正、ガンマ補正、色補正などの種々のカメラ信号処理を行う。信号処理部963は、カメラ信号処理後の画像データを画像処理部964へ出力する。 The signal processing unit 963 performs various camera signal processing such as knee correction, gamma correction, and color correction on the image signal input from the imaging unit 962. The signal processing unit 963 outputs the image data after the camera signal processing to the image processing unit 964.
 画像処理部964は、信号処理部963から入力される画像データを符号化し、符号化データを生成する。そして、画像処理部964は、生成した符号化データを外部インタフェース966又はメディアドライブ968へ出力する。また、画像処理部964は、外部インタフェース966又はメディアドライブ968から入力される符号化データを復号し、画像データを生成する。そして、画像処理部964は、生成した画像データを表示部965へ出力する。また、画像処理部964は、信号処理部963から入力される画像データを表示部965へ出力して画像を表示させてもよい。また、画像処理部964は、OSD969から取得される表示用データを、表示部965へ出力する画像に重畳してもよい。 The image processing unit 964 encodes the image data input from the signal processing unit 963 and generates encoded data. Then, the image processing unit 964 outputs the generated encoded data to the external interface 966 or the media drive 968. The image processing unit 964 also decodes encoded data input from the external interface 966 or the media drive 968 to generate image data. Then, the image processing unit 964 outputs the generated image data to the display unit 965. In addition, the image processing unit 964 may display the image by outputting the image data input from the signal processing unit 963 to the display unit 965. Further, the image processing unit 964 may superimpose display data acquired from the OSD 969 on an image output to the display unit 965.
 OSD969は、例えばメニュー、ボタン又はカーソルなどのGUIの画像を生成して、生成した画像を画像処理部964へ出力する。 The OSD 969 generates a GUI image such as a menu, a button, or a cursor, and outputs the generated image to the image processing unit 964.
 外部インタフェース966は、例えばUSB入出力端子として構成される。外部インタフェース966は、例えば、画像の印刷時に、撮像装置960とプリンタとを接続する。また、外部インタフェース966には、必要に応じてドライブが接続される。ドライブには、例えば、磁気ディスク又は光ディスクなどのリムーバブルメディアが装着され、リムーバブルメディアから読み出されるプログラムが、撮像装置960にインストールされ得る。さらに、外部インタフェース966は、LAN又はインターネットなどのネットワークに接続されるネットワークインタフェースとして構成されてもよい。即ち、外部インタフェース966は、撮像装置960における伝送部としての役割を有する。 The external interface 966 is configured as a USB input / output terminal, for example. The external interface 966 connects the imaging device 960 and a printer, for example, when printing an image. Further, a drive is connected to the external interface 966 as necessary. For example, a removable medium such as a magnetic disk or an optical disk is attached to the drive, and a program read from the removable medium can be installed in the imaging device 960. Further, the external interface 966 may be configured as a network interface connected to a network such as a LAN or the Internet. That is, the external interface 966 has a role as a transmission unit in the imaging device 960.
 メディアドライブ968に装着される記録媒体は、例えば、磁気ディスク、光磁気ディスク、光ディスク、又は半導体メモリなどの、読み書き可能な任意のリムーバブルメディアであってよい。また、メディアドライブ968に記録媒体が固定的に装着され、例えば、内蔵型ハードディスクドライブ又はSSD(Solid State Drive)のような非可搬性の記憶部が構成されてもよい。 The recording medium mounted on the media drive 968 may be any readable / writable removable medium such as a magnetic disk, a magneto-optical disk, an optical disk, or a semiconductor memory. In addition, a recording medium may be fixedly mounted on the media drive 968, and a non-portable storage unit such as an internal hard disk drive or an SSD (Solid State Drive) may be configured.
 制御部970は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、及びプログラムデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、撮像装置960の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース971から入力される操作信号に応じて、撮像装置960の動作を制御する。 The control unit 970 includes a processor such as a CPU and memories such as a RAM and a ROM. The memory stores a program executed by the CPU, program data, and the like. The program stored in the memory is read and executed by the CPU when the imaging device 960 is activated, for example. For example, the CPU controls the operation of the imaging device 960 according to an operation signal input from the user interface 971 by executing the program.
 ユーザインタフェース971は、制御部970と接続される。ユーザインタフェース971は、例えば、ユーザが撮像装置960を操作するためのボタン及びスイッチなどを有する。ユーザインタフェース971は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部970へ出力する。 The user interface 971 is connected to the control unit 970. The user interface 971 includes, for example, buttons and switches for the user to operate the imaging device 960. The user interface 971 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 970.
 このように構成された撮像装置960において、画像処理部964は、上述した実施形態に係る画像符号化装置及び画像復号装置の機能を有する。それにより、撮像装置960での画像の符号化及び復号に際して、符号化効率を向上させることができる。 In the imaging device 960 configured as described above, the image processing unit 964 has the functions of the image encoding device and the image decoding device according to the above-described embodiment. Accordingly, encoding efficiency can be improved when encoding and decoding an image by the imaging device 960.
 なお、本明細書では、閾値などの様々な情報が、符号化ストリームのヘッダに多重化されて、符号化側から復号側へ伝送される例について説明した。しかしながら、これら情報を伝送する手法はかかる例に限定されない。例えば、これら情報は、符号化ビットストリームに多重化されることなく、符号化ビットストリームと関連付けられた別個のデータとして伝送され又は記録されてもよい。ここで、「関連付ける」という用語は、ビットストリームに含まれる画像(スライス若しくはブロックなど、画像の一部であってもよい)と当該画像に対応する情報とを復号時にリンクさせ得るようにすることを意味する。即ち、情報は、画像(又はビットストリーム)とは別の伝送路上で伝送されてもよい。また、情報は、画像(又はビットストリーム)とは別の記録媒体(又は同一の記録媒体の別の記録エリア)に記録されてもよい。さらに、情報と画像(又はビットストリーム)とは、例えば、複数フレーム、1フレーム、又はフレーム内の一部分などの任意の単位で互いに関連付けられてよい。 In the present specification, an example in which various information such as a threshold value is multiplexed on the header of the encoded stream and transmitted from the encoding side to the decoding side has been described. However, the method for transmitting such information is not limited to such an example. For example, these pieces of information may be transmitted or recorded as separate data associated with the encoded bitstream without being multiplexed into the encoded bitstream. Here, the term “associate” means that an image (which may be a part of an image such as a slice or a block) included in the bitstream and information corresponding to the image can be linked at the time of decoding. Means. That is, information may be transmitted on a transmission path different from that of the image (or bit stream). Information may be recorded on a recording medium (or another recording area of the same recording medium) different from the image (or bit stream). Furthermore, the information and the image (or bit stream) may be associated with each other in an arbitrary unit such as a plurality of frames, one frame, or a part of the frame.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present disclosure belongs can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present disclosure.
 なお、本技術は以下のような構成も取ることができる。
 (1) 制約付きイントラ予測において、前記制約付きイントラ予測の処理対象である当該領域に隣接し、予測に利用される周辺画素であって、利用可能な2つの周辺画素に挟まれる1つ若しくは連続する複数の利用不可能な周辺画素に対して、その位置に応じた値の補間画素値を生成する補間画素生成部と、
 前記補間画素生成部により生成された補間画素値を利用して、イントラ予測を行い、予測画像を生成する予測画像生成部と
 を備える画像処理装置。
 (2) 前記補間画素生成部は、利用可能な前記周辺画素との距離に応じた値の補間画素値を生成する
 前記(1)に記載の画像処理装置。
 (3) 前記補間画素生成部は、利用可能な2つの前記周辺画素を用いた線形内挿により前記補間画素値を生成する
 前記(2)に記載の画像処理装置。
 (4) 前記補間画素生成部は、前記線形内挿において、2のべき乗の近似値を用いて割り算を行う
 前記(3)に記載の画像処理装置。
 (5) 前記補間画素生成部は、当該領域の左上の、利用不可能な周辺画素に対して、
  前記周辺画素の右隣の画素が利用可能な場合、前記右隣の画素の画素値を前記周辺画素の補間画素値とし、
  前記周辺画素の右隣の画素が利用不可能であり、かつ、前記周辺画素の下の画素が利用可能である場合、前記下の画素の画素値を前記周辺画素の補間画素値とする
 前記(1)乃至(4)のいずれかに記載の画像処理装置。
 (6) イントラ予測に関するフラグ情報の値を判定するフラグ判定部をさらに備え、
 前記補間画素生成部は、前記フラグ判定部により、前記フラグ情報により前記制約付きイントラ予測が指定されていると判定された場合、前記補間画素値を生成する
 前記(1)乃至(5)のいずれかに記載の画像処理装置。
 (7) 当該領域の大きさを判定するサイズ判定部をさらに備え、
 前記補間画素生成部は、前記サイズ判定部により当該領域が小さいと判定された場合、前記補間画素値を生成する
 前記(1)乃至(6)のいずれかに記載の画像処理装置。
 (8) 前記サイズ判定部は、閾値を用いて、当該領域の大きさを判定し、
 前記補間画素生成部は、前記サイズ判定部により当該領域が閾値以下であると判定された場合、前記補間画素値を生成する
 前記(7)に記載の画像処理装置。
 (9) 前記閾値を伝送する伝送部をさらに備える
 前記(8)に記載の画像処理装置。
 (10) 伝送される前記閾値を受け取る受け取り部をさらに備え、
 前記サイズ判定部は、前記受け取り部により受け取られた前記閾値を用いて当該領域の大きさを判定する
 前記(8)に記載の画像処理装置。
 (11) 前記閾値はプロファイルレベルに応じて設定される
 前記(8)に記載の画像処理装置。
 (12) 画像処理装置の画像処理方法であって、
 補間画素生成部が、制約付きイントラ予測において、前記制約付きイントラ予測の処理対象である当該領域に隣接し、予測に利用される周辺画素であって、利用可能な2つの周辺画素に挟まれる1つ若しくは連続する複数の利用不可能な周辺画素に対して、その位置に応じた値の補間画素値を生成し、
 予測画像生成部が、生成された補間画素値を利用して、イントラ予測を行い、予測画像を生成する
 画像処理方法。
In addition, this technique can also take the following structures.
(1) In constrained intra prediction, one or a continuous pixel that is adjacent to the region that is the processing target of the constrained intra prediction and that is used for prediction and is sandwiched between two usable peripheral pixels An interpolation pixel generation unit that generates an interpolation pixel value of a value corresponding to the position of a plurality of peripheral pixels that cannot be used;
An image processing apparatus comprising: a prediction image generation unit that performs intra prediction using the interpolation pixel value generated by the interpolation pixel generation unit and generates a prediction image.
(2) The image processing device according to (1), wherein the interpolation pixel generation unit generates an interpolation pixel value having a value corresponding to a distance from the available surrounding pixels.
(3) The image processing device according to (2), wherein the interpolation pixel generation unit generates the interpolation pixel value by linear interpolation using two available peripheral pixels.
(4) The image processing device according to (3), wherein the interpolation pixel generation unit performs division using an approximate value of a power of 2 in the linear interpolation.
(5) The interpolated pixel generation unit performs an operation on an unusable peripheral pixel at the upper left of the area.
When the pixel adjacent to the right of the peripheral pixel is available, the pixel value of the pixel adjacent to the right is the interpolation pixel value of the peripheral pixel,
When the pixel adjacent to the right of the peripheral pixel is not usable and the pixel below the peripheral pixel is usable, the pixel value of the lower pixel is set as the interpolated pixel value of the peripheral pixel. The image processing apparatus according to any one of 1) to (4).
(6) a flag determination unit that determines the value of flag information related to intra prediction;
The interpolation pixel generation unit generates the interpolation pixel value when the flag determination unit determines that the constrained intra prediction is specified by the flag information. Any of (1) to (5) An image processing apparatus according to claim 1.
(7) It further includes a size determination unit that determines the size of the region,
The image processing device according to any one of (1) to (6), wherein the interpolation pixel generation unit generates the interpolation pixel value when the size determination unit determines that the region is small.
(8) The size determination unit determines a size of the region using a threshold,
The image processing device according to (7), wherein the interpolation pixel generation unit generates the interpolation pixel value when the size determination unit determines that the region is equal to or less than a threshold value.
(9) The image processing apparatus according to (8), further including a transmission unit that transmits the threshold value.
(10) further comprising a receiving unit for receiving the threshold to be transmitted;
The image processing apparatus according to (8), wherein the size determination unit determines the size of the region using the threshold value received by the reception unit.
(11) The image processing apparatus according to (8), wherein the threshold is set according to a profile level.
(12) An image processing method for an image processing apparatus,
The interpolated pixel generation unit is a neighboring pixel that is adjacent to the region that is the processing target of the restricted intra prediction and is used for prediction in the restricted intra prediction, and is sandwiched between two usable neighboring pixels For one or a plurality of consecutive peripheral pixels that cannot be used, an interpolated pixel value corresponding to the position is generated,
An image processing method in which a predicted image generation unit performs intra prediction using a generated interpolation pixel value to generate a predicted image.
 100 画像符号化装置, 114 イントラ予測部, 121 制約付きイントラ予測部, 141 フラグ判定部, 142 利用可否判定部, 143 補間画素生成部, 200 画像復号装置, 211 イントラ予測部, 221 制約付きイントラ予測部, 241 フラグ判定部, 242 利用可否判定部, 243 補間画素生成部, 341 フラグ・サイズ閾値判定部, 441 フラグ・サイズ閾値判定部 100 image encoding device, 114 intra prediction unit, 121 constrained intra prediction unit, 141 flag determination unit, 142 availability determination unit, 143 interpolation pixel generation unit, 200 image decoding device, 211 intra prediction unit, 221 constrained intra prediction Part, 241 flag judgment part, 242 availability judgment part, 243 interpolation pixel generation part, 341 flag size threshold judgment part, 441 flag size threshold judgment part

Claims (12)

  1.  制約付きイントラ予測において、前記制約付きイントラ予測の処理対象である当該領域に隣接し、予測に利用される周辺画素であって、利用可能な2つの周辺画素に挟まれる1つ若しくは連続する複数の利用不可能な周辺画素に対して、その位置に応じた値の補間画素値を生成する補間画素生成部と、
     前記補間画素生成部により生成された補間画素値を利用して、イントラ予測を行い、予測画像を生成する予測画像生成部と
     を備える画像処理装置。
    In constrained intra prediction, adjacent pixels that are adjacent to the region that is the processing target of the constrained intra prediction and are used for prediction, and one or a plurality of continuous pixels sandwiched between two usable peripheral pixels An interpolation pixel generation unit that generates an interpolation pixel value having a value corresponding to the position of a peripheral pixel that cannot be used;
    An image processing apparatus comprising: a prediction image generation unit that performs intra prediction using the interpolation pixel value generated by the interpolation pixel generation unit and generates a prediction image.
  2.  前記補間画素生成部は、利用可能な前記周辺画素との距離に応じた値の補間画素値を生成する
     請求項1に記載の画像処理装置。
    The image processing device according to claim 1, wherein the interpolation pixel generation unit generates an interpolation pixel value having a value corresponding to a distance from the available surrounding pixels.
  3.  前記補間画素生成部は、利用可能な2つの前記周辺画素を用いた線形内挿により前記補間画素値を生成する
     請求項2に記載の画像処理装置。
    The image processing device according to claim 2, wherein the interpolation pixel generation unit generates the interpolation pixel value by linear interpolation using the two neighboring pixels that can be used.
  4.  前記補間画素生成部は、前記線形内挿において、2のべき乗の近似値を用いて割り算を行う
     請求項3に記載の画像処理装置。
    The image processing apparatus according to claim 3, wherein the interpolation pixel generation unit performs division using an approximate value that is a power of 2 in the linear interpolation.
  5.  前記補間画素生成部は、当該領域の左上の、利用不可能な周辺画素に対して、
      前記周辺画素の右隣の画素が利用可能な場合、前記右隣の画素の画素値を前記周辺画素の補間画素値とし、
      前記周辺画素の右隣の画素が利用不可能であり、かつ、前記周辺画素の下の画素が利用可能である場合、前記下の画素の画素値を前記周辺画素の補間画素値とする
     請求項1に記載の画像処理装置。
    The interpolation pixel generation unit, for the surrounding pixel at the upper left of the area that is not available,
    When the pixel adjacent to the right of the peripheral pixel is available, the pixel value of the pixel adjacent to the right is the interpolation pixel value of the peripheral pixel,
    The pixel value of the lower pixel is set as the interpolated pixel value of the peripheral pixel when the pixel on the right side of the peripheral pixel is not usable and the pixel below the peripheral pixel is usable. The image processing apparatus according to 1.
  6.  イントラ予測に関するフラグ情報の値を判定するフラグ判定部をさらに備え、
     前記補間画素生成部は、前記フラグ判定部により、前記フラグ情報により前記制約付きイントラ予測が指定されていると判定された場合、前記補間画素値を生成する
     請求項1に記載の画像処理装置。
    A flag determination unit that determines the value of flag information related to intra prediction;
    The image processing device according to claim 1, wherein the interpolation pixel generation unit generates the interpolation pixel value when the flag determination unit determines that the restricted intra prediction is specified by the flag information.
  7.  当該領域の大きさを判定するサイズ判定部をさらに備え、
     前記補間画素生成部は、前記サイズ判定部により当該領域が小さいと判定された場合、前記補間画素値を生成する
     請求項1に記載の画像処理装置。
    A size determination unit that determines the size of the area;
    The image processing device according to claim 1, wherein the interpolation pixel generation unit generates the interpolation pixel value when the size determination unit determines that the region is small.
  8.  前記サイズ判定部は、閾値を用いて、当該領域の大きさを判定し、
     前記補間画素生成部は、前記サイズ判定部により当該領域が閾値以下であると判定された場合、前記補間画素値を生成する
     請求項7に記載の画像処理装置。
    The size determination unit determines the size of the region using a threshold value,
    The image processing device according to claim 7, wherein the interpolation pixel generation unit generates the interpolation pixel value when the size determination unit determines that the region is equal to or less than a threshold value.
  9.  前記閾値を伝送する伝送部をさらに備える
     請求項8に記載の画像処理装置。
    The image processing apparatus according to claim 8, further comprising a transmission unit that transmits the threshold value.
  10.  伝送される前記閾値を受け取る受け取り部をさらに備え、
     前記サイズ判定部は、前記受け取り部により受け取られた前記閾値を用いて当該領域の大きさを判定する
     請求項8に記載の画像処理装置。
    A receiver for receiving the threshold to be transmitted;
    The image processing apparatus according to claim 8, wherein the size determination unit determines the size of the region using the threshold value received by the reception unit.
  11.  前記閾値はプロファイルレベルに応じて設定される
     請求項8に記載の画像処理装置。
    The image processing apparatus according to claim 8, wherein the threshold is set according to a profile level.
  12.  画像処理装置の画像処理方法であって、
     補間画素生成部が、制約付きイントラ予測において、前記制約付きイントラ予測の処理対象である当該領域に隣接し、予測に利用される周辺画素であって、利用可能な2つの周辺画素に挟まれる1つ若しくは連続する複数の利用不可能な周辺画素に対して、その位置に応じた値の補間画素値を生成し、
     予測画像生成部が、生成された補間画素値を利用して、イントラ予測を行い、予測画像を生成する
     画像処理方法。
    An image processing method of an image processing apparatus,
    The interpolated pixel generation unit is a neighboring pixel that is adjacent to the region that is the processing target of the restricted intra prediction and is used for prediction in the restricted intra prediction, and is sandwiched between two usable neighboring pixels For one or a plurality of consecutive peripheral pixels that cannot be used, an interpolated pixel value corresponding to the position is generated,
    An image processing method in which a predicted image generation unit performs intra prediction using a generated interpolation pixel value to generate a predicted image.
PCT/JP2012/065815 2011-06-28 2012-06-21 Image processing device and method WO2013002106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-143115 2011-06-28
JP2011143115A JP2013012840A (en) 2011-06-28 2011-06-28 Image processing device and method

Publications (1)

Publication Number Publication Date
WO2013002106A1 true WO2013002106A1 (en) 2013-01-03

Family

ID=47424003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065815 WO2013002106A1 (en) 2011-06-28 2012-06-21 Image processing device and method

Country Status (2)

Country Link
JP (1) JP2013012840A (en)
WO (1) WO2013002106A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160050438A1 (en) * 2013-04-11 2016-02-18 Lg Electronics Inc. Video signal processing method and device
JP2015082714A (en) * 2013-10-22 2015-04-27 ソニー株式会社 Image processing device and image processing method
KR102060871B1 (en) * 2015-04-08 2019-12-30 에이치에프아이 이노베이션 인크. Palette Mode Context Coding and Binarization in Video Coding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136376A (en) * 1996-10-31 1998-05-22 Victor Co Of Japan Ltd Inter-block prediction coding/decoding device and its method
WO2009051419A2 (en) * 2007-10-16 2009-04-23 Lg Electronics Inc. A method and an apparatus for processing a video signal
JP2010166133A (en) * 2009-01-13 2010-07-29 Hitachi Kokusai Electric Inc Moving picture coding apparatus
WO2012090501A1 (en) * 2010-12-28 2012-07-05 パナソニック株式会社 Motion-video decoding method, motion-video encoding method, motion-video decoding apparatus, motion-video encoding apparatus, and motion-video encoding/decoding apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136376A (en) * 1996-10-31 1998-05-22 Victor Co Of Japan Ltd Inter-block prediction coding/decoding device and its method
WO2009051419A2 (en) * 2007-10-16 2009-04-23 Lg Electronics Inc. A method and an apparatus for processing a video signal
JP2010166133A (en) * 2009-01-13 2010-07-29 Hitachi Kokusai Electric Inc Moving picture coding apparatus
WO2012090501A1 (en) * 2010-12-28 2012-07-05 パナソニック株式会社 Motion-video decoding method, motion-video encoding method, motion-video decoding apparatus, motion-video encoding apparatus, and motion-video encoding/decoding apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RICKARD SJOBERG ET AL.: "Constrained Intra source code implementation", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/ SC29/WG11, JCTVC-D386-RL, 4TH MEETING, January 2011 (2011-01-01), DAEGU, KR, pages 1 - 4 *
VIKTOR WAHADANIAH ET AL.: "Constrained Intra Prediction Scheme for Flexible-Sized Prediction Units in HEVC", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11, JCTVC-0094_RL, 4TH MEETING, January 2011 (2011-01-01), DAEGU, KR, pages 1 - 8 *

Also Published As

Publication number Publication date
JP2013012840A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP6419113B2 (en) Image processing apparatus and method, and program
US10419756B2 (en) Image processing device and method
WO2013002110A1 (en) Image processing device and method
JP2013150173A (en) Image processing apparatus and method
JP5982734B2 (en) Image processing apparatus and method
JP2013012845A (en) Image processing device and method
US10075705B2 (en) Image processing apparatus and method
WO2012157538A1 (en) Image processing device and method
WO2014050731A1 (en) Image processing device and method
WO2013108688A1 (en) Image processing device and method
WO2013154026A1 (en) Image processing apparatus and method
WO2014156708A1 (en) Image decoding device and method
WO2013065568A1 (en) Image processing device and method
WO2013002106A1 (en) Image processing device and method
WO2012173063A1 (en) Image processing device and method
WO2013051453A1 (en) Image processing device and method
WO2013065567A1 (en) Image processing device and method
JP5768491B2 (en) Image processing apparatus and method, program, and recording medium
JP6217997B2 (en) Image processing apparatus and method
JP2018029347A (en) Image processing apparatus and method
WO2013002111A1 (en) Image processing device and method
JP6768208B2 (en) Image processing equipment and methods
WO2012157539A1 (en) Image processing apparatus and method
JP2013150124A (en) Image processing apparatus and method
WO2014156707A1 (en) Image encoding device and method and image decoding device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805112

Country of ref document: EP

Kind code of ref document: A1