WO2013001117A1 - Procedimiento de inactivación de microorganismos mediante la combinación de fluidos supercríticos y ultrasonidos - Google Patents

Procedimiento de inactivación de microorganismos mediante la combinación de fluidos supercríticos y ultrasonidos Download PDF

Info

Publication number
WO2013001117A1
WO2013001117A1 PCT/ES2012/070165 ES2012070165W WO2013001117A1 WO 2013001117 A1 WO2013001117 A1 WO 2013001117A1 ES 2012070165 W ES2012070165 W ES 2012070165W WO 2013001117 A1 WO2013001117 A1 WO 2013001117A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment tank
product
supercritical
tank
treatment
Prior art date
Application number
PCT/ES2012/070165
Other languages
English (en)
French (fr)
Inventor
José Javier BENEDICTO FORT
María Teresa MARTÍNEZ PASTOR
Antonio Mulet Pons
Carmen ORTUÑO CASES
Ramón PEÑA CERVERO
Original Assignee
Universidad Politécnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica De Valencia filed Critical Universidad Politécnica De Valencia
Publication of WO2013001117A1 publication Critical patent/WO2013001117A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/015Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation
    • A23L3/0155Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation using sub- or super-atmospheric pressures, or pressure variations transmitted by a liquid or gas
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • A23L3/30Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating by treatment with ultrasonic waves
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/358Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/10Preserving against microbes

Definitions

  • the present invention relates to the field of the food industry and more specifically to a process for the inactivation of microorganisms by combining supercritical fluids and ultrasound.
  • Heat treatments have been widely used to eliminate microorganisms from food, and thus be able to extend their shelf life.
  • the main drawback of these is that they have associated a loss of taste, color, smell and nutrients of food.
  • Inactivation by CO2-SC occurs, among other factors, due to the penetration of CO2-SC into the cells, from which it extracts essential components causing its inactivation (Lin, HM, et al., 2009, Biotechnol. Prog., 1992, 8 (5), 458-461).
  • one way to improve this technology is to facilitate the penetration of CO2-SC into the cells so that inactivation is faster.
  • Power ultrasound can be used to improve mass and heat transfer processes in agri-food processes as well as for the inactivation of microorganisms, in combination with heat (Raviyan, P., et al., 2005, Journal of Food Englneerlng, 70, 189 -196).
  • Patent document ES2199683 describes a system where the techniques of supercritical CO2 fluids and the generation of ultrasound from a piezoelectric transducer are combined. This system is used for the extraction of natural products of diverse nature, although it does not disclose its use for the inactivation of microorganisms, nor the use of a system of isolation of piezoelectric ceramics that allows working in media with a high proportion of liquids drivers.
  • the document US2006292274 discloses a treatment of elimination of microorganisms (for example of food) from a CO 2 under supercritical conditions and an ultrasonic generator.
  • the role of ultrasound is limited to the separation of microorganisms from the surface of solid products. It does not contemplate the application to liquid products with the necessary use of an electrical insulation system. Additionally, this procedure does not include the introduction of the acoustic field generation system (ultrasound transducer) inside the treatment tank.
  • US2010080790 describes a sterilization procedure and apparatus from the inactivation of microorganisms present in medical instruments from supercritical CO 2 . Additionally, the presence of an ultrasonic generator in the system that converts electrical energy into mechanical or acoustic energy via a piezoelectric transducer is disclosed. However, it does not disclose the need for a ceramic insulation system, nor its application to solid or liquid foods, the latter with a high concentration of water and solutes, which makes them highly conductive of electricity.
  • US2009269480 describes a device for inactivating microorganisms present in medical instruments from an ultrasonic bath and under a supercritical CO 2 fluid. In the process, the deposition of a layer of bioactive material and / or polymeric material on the porous surface of the instruments is achieved.
  • Document US5164094 discloses a process of flocculation, precipitation, agglomeration or coagulation of substances or microorganisms present in a liquid, colloid, or emulsion and equipment to carry it out.
  • the liquid is exposed to ultrasonic radiation from a piezoceramic ultrasonic transducer.
  • the apparatus may have a polyvinyl fluoride transducer (PVDF).
  • PVDF polyvinyl fluoride transducer
  • the use of supercritical fluids is not disclosed.
  • the object of the present invention is a method of inactivation of microorganisms of a liquid product, preferably but not exclusively for food, by combining supercritical fluids and ultrasound. This procedure is characterized by comprising:
  • This device may consist of a tank in which the treatment tank is located, or a heating / cooling jacket surrounding said treatment tank;
  • treatment times are significantly reduced. Specifically, reductions have been achieved in the treatment time greater than 95%.
  • the effect on the quality of the product to be treated is minimized.
  • the described procedure can be carried out both continuously and discontinuously.
  • the continuous process can preferably be used for the treatment of liquids.
  • the inactivation procedure it is possible to extract samples from the bottom of the tank comprising the product to be treated at different process times, which allows to determine the kinetics of inactivation.
  • the object of this invention is also a system for carrying out the microorganism inactivation process described above.
  • This inactivation system is characterized by comprising:
  • At least one treatment tank designed to contain the product to be treated.
  • This tank also comprises at least one device to keep the temperature constant.
  • the treatment tank can be located inside a tank designed to maintain a constant treatment temperature by using, for example, a thermostatic bath or by a heating / cooling jacket;
  • an ultrasound system that may consist of a system commonly used in the art.
  • This ultrasound system may comprise a high intensity ultrasonic transducer (> lW / cm 2 ) located inside the treatment tank, where said ultrasound transducer is connected to an ultrasonic generator located outside the treatment tank .
  • the transducer consists of piezoelectric ceramics connected to a sonotrode that allows the concentration of the ultrasonic signal and the separation of the ceramics from the product to be treated.
  • an insulation system consisting of a polypropylene joint With a Teflon coating located around the sonotrode, it is possible to electrically isolate the piezoelectric ceramics. This isolation system protects the transducer from possible electrical short circuits that could be caused as a result of the highly conductive medium in which the system is to work;
  • Said drive system may consist of at least one two-piston pump or other mechanism of action capable of working continuously at pressures between 80 and 550 bar.
  • the supercritical CO 2 input is preferably carried out between the insulation joint and the bottom of the tank.
  • the ultrasound system may comprise two or more ceramics that may consist of commercial ceramics of 35 mm external diameter, 12.5 mm internal diameter, 5 mm thick and 30 kHz resonance frequency. These ceramics are preferably placed in a sandwich-type sonotrode, which is powered by a sine wave continuous ultrasonic generator, preferably 30 kHz in frequency. Said sonotrode allows to concentrate the acoustic energy, which is what favors the process of inactivation of microorganisms.
  • the system can also comprise at least one additional supercritical CO 2 reserve tank, which makes it possible to expedite and facilitate the supercritical CO 2 loading process to the treatment tank.
  • said reserve tank consists of a pressurized tank.
  • the system can also have a series of valves, temperature sensors and safety systems to allow proper operation.
  • Figure 1 shows an inactivation plant using Supercritical Fluids.
  • Figure 2 shows kinetics of inactivation of Escherichia coli in enriched medium (LB), commercial apple juice, natural apple juice and natural orange juice, by means of supercritical fluids (350 bar, 35 ° C) with (US) and without ultrasound (SUS).
  • Figure 3 shows kinetics of inactivation of Saccharomyces cerevisiae in enriched medium (YPD), commercial apple juice, natural apple juice and natural orange juice, by means of supercritical fluids (350 bar, 35 ° C) with (US) and without ultrasound (SUS).
  • the microorganism inactivation system is characterized in that it comprises a treatment tank or reactor (6) where the product to be treated is introduced.
  • Said treatment reactor (6) is located inside a tank with a thermostatic bath (5) that allows to maintain a constant treatment temperature.
  • a valve is located through which samples can be extracted at different process times, which allows to determine the kinetics of inactivation.
  • the system also includes a CO2 tank (1), where liquid CO2 is stored. Said tank is connected to the treatment reactor (6) through a two-piston pump (4) capable of working continuously. To facilitate and speed up the supercritical CO2 charging process, a lung reservoir or CO2 reserve tank (3) pressurized by nitrogen is available. This 2 is stored in a tank of 2 connected to the CO2 reserve tank (3) and to the pump (4) through connection valves.
  • the system also has a series of valves, temperature sensors and safety systems that allow its correct operation.
  • the system comprises an ultrasound system comprising a high intensity ultrasonic transducer (7) located inside the treatment reactor (6). It also includes two commercial ceramics (8) of 35 mm external diameter, 12.5 mm internal diameter, 5 mm thick and 30 kHz resonance frequency. These ceramics in sandwich arrangement are part of the ultrasonic transducer (7), together with a sonotrode designed and constructed to concentrate the energy of the transducer and separate the ceramics from the product to be treated.
  • the geometry of the mentioned sonotrode allows to concentrate the acoustic energy that will be the one that favors the process of inactivation of the microorganisms.
  • the sonotrode is powered by a sine wave and 30 kHz frequency ultrasonic generator (9).
  • Microorganisms inactivation experiences have been carried out on two strains: the Gram-negative bacteria Escherichia coli DH1 (E. coli) and a wine yeast: Saccharomyces cerevisiae Lalvin T73 (5. cerevisiae).
  • Escherichia coli Figure 2 shows the kinetics of inactivation of E. coli, in different media, with and without ultrasound. It is observed that when applying US to the treatment of CO 2 -SC (350 bar, 35 ° C), the process time to achieve a reduction of approximately 6 logarithmic cycles is reduced from 20 to 2 min and from 35 to less than 1 min , for LB and for commercial apple juice respectively. Using natural apple and orange juice prepared in the laboratory, a reduction of 6 logarithmic cycles is achieved in 1 min of CO 2 -SC treatment (350 bar, 35 ° C) with US.
  • Saccharomyces cerevisiae Figure 3 shows the kinetics of inactivation of S. cerevisiae, in different media, with and without ultrasound.
  • US to the treatment of CO 2 -SC (350 bar, 35 ° C)
  • the process time to achieve a reduction of 7 logarithmic cycles is reduced from 60 to 1 min, both for YPD and for commercial apple juice.
  • Using natural apple or orange juice, a reduction of 7 logarithmic cycles is achieved in 1 min of CO 2 -SC treatment (350 bar, 35 ° C) with US.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

La presente invención se refiere a un procedimiento para la inactivación de microorganismos de un producto liquido mediante la combinación de fluidos supercriticos y ultrasonidos, caracterizado por que comprende: (a) introducir el producto a tratar en al menos un depósito de tratamiento dotado de un dispositivo para mantener la temperatura constante; (b) alimentar C02 en estado supercritico al depósito de tratamiento; (c) generar un campo acústico de frecuencia comprendida entre 20 y 100 kHz en el depósito de tratamiento; (d) mantener el producto en las condiciones de presión y temperatura del C02 supercritico y a una frecuencia del campo acústico entre 20 y 100 kHz durante el tiempo de tratamiento; y (e) extraer el producto del depósito de tratamiento mediante despresurización. Es asimismo objeto de esta invención un sistema para llevar a cabo dicho procedimiento y el uso de dicho sistema para la inactivación de microorganismos de productos alimenticios.

Description

Procedimiento de inactivación de microorganismos mediante la combinación de fluidos supercriticos y ultrasonidos
Campo técnico de la invención
La presente invención se refiere al campo de la industria alimentaria y más concretamente a un procedimiento para la inactivación de microorganismos mediante la combinación de fluidos supercriticos y ultrasonidos .
Antecedentes de la invención
Los tratamientos térmicos han sido ampliamente utilizados para eliminar los microorganismos de los alimentos, y poder asi alargar su tiempo de vida útil. El principal inconveniente de éstos es que llevan asociado una pérdida del sabor, color, olor y nutrientes de los alimentos .
Numerosas investigaciones han trabajado en el desarrollo de nuevas tecnologías de conservación que permitan obtener un producto capaz de conservar sus propiedades nutricionales y organolépticas. En este sentido se ha investigado en el uso de altas presiones (Dogan, C. y Erkmen, O., 2004, Journal of Food Engineering, 62, 47-52); pulsos eléctricos ( Pothakamury, U. R., et al., 1995, Revista Española de Ciencia y Tecnología de Alimentos, 35(1), 101-107); filtración mediante membranas (Carneiro, L., et al., 2002, Desalination , 93-98); microondas y radiofrecuencia (Kozempel, M. F., et al., 1998, Journal of Food Protection, 61 (5) , 582-585) o fluidos supercriticos (Erkmen, O. y Karaman, H., 2001, Journal of Food Engineering, 50, 25-28) . En concreto, respecto al uso de altas presiones, existen numerosos productos en el mercado en los que se ha aplicado dicha tecnología como técnica de conservación. El principal inconveniente de esta técnica es el elevado coste de las instalaciones.
Como tecnología novedosa, el uso de fluidos supercriticos (CO2-SC) para inactivar enzimas y microorganismos, es de gran interés. Numerosas investigaciones han demostrado la capacidad de inactivación del CO2-SC a bajas temperaturas (Parton, T., et al., 2007, Journal of Food Englneerlng, 79, 1410-1417), evitando el deterioro de las propiedades nutricionales y organolépticas de los alimentos. En la industria alimentaria, para que los procesos ofrezcan una rentabilidad aceptable, es necesario poder procesar elevadas cantidades de producto. En este sentido, el CO2-SC necesita tiempos de procesado largos, siendo éste su principal inconveniente.
La inactivación mediante CO2-SC se produce, entre otros factores, debido a la penetración del CO2-SC en las células, de las que extrae componentes esenciales provocando su inactivación (Lin, H. M., et al., 2009, Biotechnol. Prog., 1992, 8 (5), 458-461). Asi pues, una forma de mejorar esta tecnología es facilitando la penetración del CO2-SC en las células para que la inactivación sea más rápida.
Los ultrasonidos de potencia pueden emplearse para mejorar procesos de transferencia de masa y calor en procesos agroalimentarios así como para la inactivación de microorganismos, en combinación con calor (Raviyan, P., et al., 2005, Journal of Food Englneerlng, 70, 189-196) .
La combinación de fluidos supercríticos y ultrasonidos está descrita en la literatura para la mejora de los procesos de extracción (Gaoa, Y., et al., 2009, J. of Supercritical Flulds 49, 345-350) y la aceleración de reacciones químicas (Trofimov, T.I., et al., 2001, J. Chem. Technol . Biotechnol., 76, 1223-1226).
El documento de patente ES2199683 describe un sistema donde se combinan las técnicas de fluidos supercríticos de CO2 y la generación de ultrasonidos a partir de un transductor piezoeléctrico . Este sistema es empleado para la extracción de productos naturales de diversa naturaleza, si bien no divulga su empleo para la inactivación de microorganismos, ni tampoco la utilización de un sistema de aislamiento de las cerámicas piezoeléctricas que permita trabajar en medios con una alta proporción de líquidos conductores . El documento US2006292274 divulga un tratamiento de eliminación de microorganismos (por ejemplo de alimentos) a partir de un CO2 en condiciones supercriticas y un generador de ultrasonidos. Sin embargo, el papel de los ultrasonidos queda limitado a la separación de microorganismos de la superficie de productos sólidos. No contempla la aplicación a productos líquidos con el necesario uso de un sistema de aislamiento eléctrico. Adicionalmente, este procedimiento no contempla la introducción del sistema de generación del campo acústico (transductor de ultrasonidos) en el interior del depósito de tratamiento.
El documento US2010080790 describe un procedimiento y aparato de esterilización a partir de la inactivación de microorganismos presentes en instrumental médico a partir de CO2 supercrítico . Adicionalmente, se divulga la presencia de un generador ultrasónico en el sistema que convierte la energía eléctrica en mecánica o acústica vía un transductor piezoeléctrico . Sin embargo, no divulga la necesidad de un sistema de aislamiento de las cerámicas, ni su aplicación a alimentos sólidos ni líquidos, estos últimos con una elevada concentración de agua y solutos, lo que los hace altamente conductores de la electricidad.
El documento US2009269480 describe un equipo de inactivación de microorganismos presentes en el instrumental médico a partir de un baño de ultrasonidos y bajo un fluido supercrítico de CO2. En el proceso se consigue la deposición de una capa de material bioactivo y/o material polimérico en la superficie porosa del instrumental.
El documento US5164094 divulga un proceso de floculación, precipitación, aglomeración o coagulación de sustancias o microorganismos presentes en un líquido, coloide, o emulsión y un equipo para llevarlo a cabo. El líquido es expuesto a radiación ultrasónica desde un transductor ultrasónico piezocerámico . Para poder llevar a cabo este procedimiento a altas frecuencias, el aparato puede presentar un transductor de fluoruro de polivinileno (PVDF) . Sin embargo, no se divulga el empleo de fluidos supercriticos .
Descripción de la invención
El objeto de la presente invención consiste en un procedimiento de inactivación de microorganismos de un producto liquido, preferentemente pero no de forma exclusiva de carácter alimenticio, mediante la combinación de fluidos supercriticos y ultrasonidos. Este procedimiento se caracteriza por que comprende:
(a) introducir el producto a tratar en al menos un depósito de tratamiento dotado de un dispositivo para mantener la temperatura constante. Este dispositivo puede consistir en un tanque en cuyo interior se encuentre ubicado el depósito de tratamiento, o bien en una camisa de calentamiento/enfriamiento que rodee a dicho depósito de tratamiento;
(b) alimentar CO2 en estado supercritico (de 80 a 550 bar y de 31°C a 50°C) al depósito de tratamiento, preferentemente a través de un sistema de impulsión que puede consistir en al menos una bomba de dos pistones capaz de trabajar en continuo u otro sistema de impulsión capaz de trabajar a las presiones indicadas;
(c) generar un campo acústico de frecuencia comprendida entre 20 y 100 kHz en el depósito de tratamiento mediante un sonotrodo que concentra toda la potencia del transductor en el punto de aplicación del campo;
(d) mantener el producto en las condiciones de presión y temperatura del CO2 supercritico (de 80 a 550 bar y de 31°C a 50°C) y a una frecuencia del campo acústico entre 20 y 100 kHz durante el tiempo de tratamiento. Dicho tiempo de tratamiento puede variar preferentemente entre 1 s y 4 min; y
(e) extraer el producto del depósito de tratamiento mediante despresurización .
Mediante la generación de un campo acústico en el depósito de tratamiento se reducen notablemente los tiempos de tratamiento. En concreto, se han conseguido reducciones en el tiempo de tratamiento superiores al 95%. Además, al tratarse de una tecnología no-térmica, el efecto sobre la calidad del producto a tratar se ve minimizado.
El procedimiento descrito puede llevarse a cabo tanto en continuo como en discontinuo. De manera particular, el procedimiento en continuo puede emplearse preferentemente para el tratamiento de líquidos. En este caso, a medida que se lleva a cabo el procedimiento de inactivación, es posible extraer muestras por la parte inferior del depósito que comprende el producto a tratar a diferentes tiempos de proceso, lo que permite determinar las cinéticas de inactivación .
Es asimismo objeto de esta invención un sistema para llevar a cabo el procedimiento de inactivación de microorganismos anteriormente descrito. Este sistema de inactivación se caracteriza por que comprende:
(a) al menos un depósito de tratamiento diseñado para contener el producto a tratar. Este depósito comprende además al menos un dispositivo para mantener la temperatura constante. De este modo, el depósito de tratamiento puede estar ubicado en el interior de un tanque diseñado para mantener una temperatura constante de tratamiento mediante el empleo, por ejemplo, de un baño termostático o bien mediante una camisa de calentamiento/refrigeración;
(b) un sistema de ultrasonidos que puede consistir en un sistema de los habitualmente empleados en la técnica. Este sistema de ultrasonidos puede comprender un transductor de ultrasonidos de alta intensidad (>lW/cm2) situado en el interior del depósito de tratamiento, donde dicho transductor de ultrasonidos se encuentra conectado a un generador de ultrasonidos situado en el exterior del depósito de tratamiento. El transductor consta de unas cerámicas piezoeléctricas conectadas a un sonotrodo que permite la concentración de la señal ultrasónica y la separación de las cerámicas del producto a tratar. Mediante un sistema de aislamiento, consistente en una junta de polipropileno con un recubrimiento de teflón situada alrededor del sonotrodo, se consigue aislar eléctricamente las cerámicas piezoeléctricas . Este sistema de aislamiento protege el transductor de posibles cortocircuitos eléctricos que pudieran ocasionarse como consecuencia del medio altamente conductor en el que el sistema ha de trabajar;
(c) al menos un tanque de almacenamiento de CO2 supercritico conectado al depósito de tratamiento a través de un sistema de impulsión. Dicho sistema de impulsión puede consistir en al menos una bomba de dos pistones u otro mecanismo de acción capaz de trabajar en continuo a presiones entre 80 y 550 bar. La entrada de CO2 supercritico se realiza preferentemente entre la junta de aislamiento y el fondo del depósito.
De manera preferida, el sistema de ultrasonidos puede comprender dos o más cerámicas que pueden consistir en cerámicas comerciales de 35 mm de diámetro externo, 12.5 mm de diámetro interno, 5 mm de espesor y 30 kHz de frecuencia de resonancia. Estas cerámicas se encuentran preferentemente colocadas en un sonotrodo tipo sándwich, el cual está alimentado por un generador de ultrasonidos de onda continua sinusoidal, preferentemente de 30 kHz de frecuencia. Dicho sonotrodo permite concentrar la energía acústica, que es la que favorece el proceso de inactivación de los microorganismos.
En una realización particular adicional de la invención, el sistema puede asimismo comprender al menos un tanque adicional de reserva de CO2 supercritico, el cual permite agilizar y facilitar el proceso de carga del CO2 supercritico al depósito de tratamiento. De manera preferente, dicho tanque de reserva consiste en un tanque presuri zado .
El sistema también puede disponer de una serie de válvulas, sensores de temperatura y sistemas de seguridad para permitir su correcto funcionamiento.
Finalmente, es objeto de esta invención, el uso del sistema descrito para el tratamiento de productos líquidos, etc. De manera particular, es especialmente preferido el uso de dicho sistema para el tratamiento de alimentos como zumos, leche, sopas, etc. Breve descripción de las figuras
La figura 1 muestra una planta de inactivación mediante Fluidos Supercriticos .
La figura 2 muestra cinéticas de inactivación de Escherichia coli en medio enriquecido (LB) , zumo de manzana comercial, zumo de manzana natural y zumo de naranja natural, mediante fluidos supercriticos (350 bar, 35°C) con (US) y sin ultrasonidos (SUS) .
La figura 3 muestra cinéticas de inactivación de Saccharomyces cerevisiae en medio enriquecido (YPD) , zumo de manzana comercial, zumo de manzana natural y zumo de naranja natural, mediante fluidos supercriticos (350 bar, 35°C) con (US) y sin ultrasonidos (SUS) .
Listado de referencias
1 Tanque de CO2 8 Cerámicas
2 Tanque de 2 9 Generador de US
3 Tanque de reserva de CO2 10 Sistema de aislamiento
4 Bomba V Válvula
5 Baño termostático P Manómetro
6 Reactor de tratamiento T Sensor de Temperatura
7 Transductor de US
Descripción detallada de la invención
A continuación se describe, a modo de ilustración y con carácter no limitante, un ejemplo particular de la presente invención. De este modo, según se muestra en la Figura 1, el sistema de inactivación de microorganismos se caracteriza por que comprende un depósito o reactor de tratamiento (6) donde se introduce el producto a tratar. Dicho reactor de tratamiento (6) se encuentra ubicado en el interior un tanque con un baño termostático (5) que permite mantener una temperatura constante de tratamiento. Además, en la parte inferior del tanque se localiza una válvula por la que pueden extraerse muestras a diferentes tiempos de proceso, lo que permite determinar las cinéticas de inactivación .
El sistema comprende asimismo un tanque de CO2 (1), donde se almacena el CO2 liquido. Dicho tanque se encuentra conectado al reactor de tratamiento (6) a través de una bomba (4) de dos pistones capaz de trabajar en continuo. Para facilitar y agilizar el proceso de carga del CO2 supercritico se dispone de un depósito pulmón o tanque de reserva de CO2 (3) presurizado mediante nitrógeno. Este 2 se encuentra almacenado en un tanque de 2 conectado al tanque de reserva de CO2 (3) y a la bomba (4) a través de válvulas de conexión.
El sistema también dispone de una serie de válvulas, sensores de temperatura y sistemas de seguridad que permiten su correcto funcionamiento.
Adicionalmente, el sistema comprende un sistema de ultrasonidos que comprende un transductor de ultrasonidos (7) de alta intensidad situado en el interior del reactor de tratamiento (6) . Asimismo, comprende dos cerámicas (8) comerciales de 35 mm de diámetro externo, 12.5 mm de diámetro interno, 5 mm de espesor y 30 kHz de frecuencia de resonancia. Estas cerámicas en disposición tipo sándwich forman parte del transductor de ultrasonidos (7), junto a un sonotrodo diseñado y construido para concentrar la energía del transductor y separar las cerámicas del producto a tratar. La geometría del citado sonotrodo permite concentrar la energía acústica que será la que favorezca el proceso de inactivación de los microorganismos. El sonotrodo está alimentado por un generador de ultrasonidos (9) de onda continua sinusoidal y 30 kHz de frecuencia.
Respecto al equipamiento de ultrasonidos empleado, hay que destacar el sistema de aislamiento (10), el cual permite trabajar en un ambiente altamente conductor sin que se produzcan problemas de cortocircuitos eléctricos. Resultados
Microorganismos : las experiencias de inactivación se han llevado a cabo sobre dos cepas: la bacteria Gram- negativa Escherichia coli DH1 (E . coli) y una levadura vínica: Saccharomyces cerevisiae Lalvin T73 (5. cerevisiae) .
Medios : ambas cepas han sido probadas en zumo de manzana comercial, zumo de manzana natural; zumo de naranja natural y un medio enriquecido específico para cada cepa, YPD o LB, para S. cerevisiae y E. coli, respectivamente.
Cinéticas de inactivación:
Escherichia coli la Figura 2 muestra las cinéticas de inactivación de E. coli, en diferentes medios, con y sin ultrasonidos. Se observa como al aplicar US al tratamiento de CO2-SC (350 bar, 35°C) , el tiempo de proceso para alcanzar una reducción de aproximadamente 6 ciclos logarítmicos se reduce de 20 a 2 min y de 35 a menos de 1 min, para LB y para zumo de manzana comercial respectivamente. Empleando zumo natural de manzana y de naranja preparado en el laboratorio, se consigue una reducción de 6 ciclos logarítmicos en 1 min de tratamiento de CO2-SC (350 bar, 35°C) con US.
Saccharomyces cerevisiae la Figura 3 muestra las cinéticas de inactivación de S. cerevisiae, en diferentes medios, con y sin ultrasonidos. Al aplicar US al tratamiento de CO2-SC (350 bar, 35°C) , el tiempo de proceso para alcanzar una reducción de 7 ciclos logarítmicos se reduce de 60 a 1 min, tanto para YPD como para zumo de manzana comercial. Empleando zumo natural de manzana o de naranja, se consigue una reducción de 7 ciclos logarítmicos en 1 min de tratamiento de CO2-SC (350 bar, 35°C) con US.

Claims

Reivindicaciones
1. Procedimiento para la inactivación de microorganismos de un producto liquido mediante la combinación de fluidos supercriticos y ultrasonidos, caracterizado por que comprende :
(a) introducir el producto a tratar en al menos un depósito de tratamiento dotado de un dispositivo para mantener la temperatura constante;
(b) alimentar CO2 en estado supercritico al depósito de tratamiento ;
(c) generar un campo acústico de frecuencia comprendida entre 20 y 100 kHz en el depósito de tratamiento;
(d) mantener el producto en las condiciones de presión y temperatura del CO2 supercritico y a una frecuencia del campo acústico entre 20 y 100 kHz durante el tiempo de tratamiento; y
(e) extraer el producto del depósito de tratamiento mediante despresurización .
2. Procedimiento, de acuerdo a la reivindicación 1, donde la introducción del producto a tratar en el depósito de tratamiento se lleva a cabo a una presión de al menos 80 bar .
3. Procedimiento, de acuerdo a la reivindicación 1 o 2, caracterizado por que se lleva a cabo a una temperatura comprendida entre 31°C y 50°C.
4. Procedimiento, de acuerdo a una cualquiera de las reivindicaciones 1 a 3, caracterizado por que se lleva a cabo durante un tiempo comprendido entre 1 segundo y 4 minutos .
5. Sistema para llevar a cabo un procedimiento de acuerdo a una cualquiera de las reivindicaciones anteriores, caracterizado por que comprende: (a) al menos un depósito de tratamiento diseñado para contener el producto a tratar;
(b) un sistema de ultrasonidos que comprende un transductor de ultrasonidos de alta intensidad situado en el interior del depósito de tratamiento, donde dicho transductor de ultrasonidos se encuentra conectado a un generador de ultrasonidos situado en la parte exterior del depósito de tratamiento y donde a su vez dicho transductor de ultrasonidos comprende cerámicas piezoeléctricas conectadas a un sonotrodo, asi como un sistema de aislamiento para proteger dicho transductor de ultrasonidos;
(c) al menos un tanque de almacenamiento de CO2 supercritico conectado al depósito de tratamiento a través de un sistema de impulsión.
6. Sistema, de acuerdo a la reivindicación 5, donde dicho depósito de tratamiento comprende al menos un dispositivo para mantener una temperatura constante, donde dicho dispositivo consiste en un tanque con un baño termostático en cuyo interior se encuentra ubicado el depósito de tratamiento, o bien en una camisa de calentamiento y/o enfriamiento que rodea a dicho depósito de tratamiento.
7. Sistema, de acuerdo a la reivindicación 5 o 6, donde dicho sistema de aislamiento comprende una junta de polipropileno con un recubrimiento de teflón situada alrededor del sonotrodo, aislando eléctricamente las cerámicas piezoeléctricas.
8. Sistema, de acuerdo a una cualquiera de las reivindicaciones 5 a 7, donde dicho sistema de impulsión consiste en una bomba de dos pistones.
9. Sistema, de acuerdo a una cualquiera de las reivindicaciones 5 a 8, donde las cerámicas consisten en cerámicas de 35 mm de diámetro externo, 12.5 mm de diámetro interno, 5 mm de espesor y 30 kHz de frecuencia de resonancia .
10. Sistema, de acuerdo a una cualquiera de las reivindicaciones 5 a 9, donde dicho generador de ultrasonidos es un generador de ultrasonidos de onda continua sinusoidal de 30 kHz de frecuencia.
11. Sistema, de acuerdo a una cualquiera de las reivindicaciones 5 a 10, caracterizado por que comprende al menos un tanque adicional de reserva de CO2 liquido.
12. Uso de un sistema de acuerdo a una cualquiera de las reivindicaciones 5 a 11, para la inactivación de microorganismos de productos alimenticios.
PCT/ES2012/070165 2011-06-29 2012-03-14 Procedimiento de inactivación de microorganismos mediante la combinación de fluidos supercríticos y ultrasonidos WO2013001117A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201131099A ES2395819B1 (es) 2011-06-29 2011-06-29 Procedimiento de inactivación de microorganismos mediante la combinación de fluidos supercríticos y ultrasonidos
ESP201131099 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013001117A1 true WO2013001117A1 (es) 2013-01-03

Family

ID=47423458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070165 WO2013001117A1 (es) 2011-06-29 2012-03-14 Procedimiento de inactivación de microorganismos mediante la combinación de fluidos supercríticos y ultrasonidos

Country Status (2)

Country Link
ES (1) ES2395819B1 (es)
WO (1) WO2013001117A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052506A1 (en) * 2013-10-09 2015-04-16 The University Of Birmingham Inhibition of microbial and cellular growth in substances
CN105054137A (zh) * 2015-08-12 2015-11-18 孟令启 一种海藻破壁装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084581A1 (en) * 2003-10-17 2005-04-21 Yoshiyuki Sato Apparatus for liquid food sterilization or enzyme deactivation with supercritical carbon dioxide, and method of liquid food sterilization or enzyme deactivation, and liquid food obtained by the use of the apparatus and the method
EP1547679A1 (en) * 2002-08-01 2005-06-29 Consejo Superior De Investigaciones Cientificas Separation or extraction method using supercritical fluids assisted by high-intensity ultrasound
WO2007008618A2 (en) * 2005-07-13 2007-01-18 University Of South Carolina Sterilization using high-pressure carbon dioxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1547679A1 (en) * 2002-08-01 2005-06-29 Consejo Superior De Investigaciones Cientificas Separation or extraction method using supercritical fluids assisted by high-intensity ultrasound
US20050084581A1 (en) * 2003-10-17 2005-04-21 Yoshiyuki Sato Apparatus for liquid food sterilization or enzyme deactivation with supercritical carbon dioxide, and method of liquid food sterilization or enzyme deactivation, and liquid food obtained by the use of the apparatus and the method
WO2007008618A2 (en) * 2005-07-13 2007-01-18 University Of South Carolina Sterilization using high-pressure carbon dioxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052506A1 (en) * 2013-10-09 2015-04-16 The University Of Birmingham Inhibition of microbial and cellular growth in substances
CN105054137A (zh) * 2015-08-12 2015-11-18 孟令启 一种海藻破壁装置
CN105054137B (zh) * 2015-08-12 2018-08-03 徐晟伟 一种海藻破壁装置

Also Published As

Publication number Publication date
ES2395819B1 (es) 2014-06-06
ES2395819A1 (es) 2013-02-15

Similar Documents

Publication Publication Date Title
Barba et al. Innovative technologies for food preservation
Misra et al. Landmarks in the historical development of twenty first century food processing technologies
Gallo et al. Application of ultrasound in food science and technology: A perspective
Majid et al. Ultrasonication and food technology: A review
Charoux et al. Applications of airborne ultrasonic technology in the food industry
Rastogi Opportunities and challenges in application of ultrasound in food processing
Tiwari et al. Ultrasound processing of fluid foods
Tiwari et al. Ascorbic acid degradation kinetics of sonicated orange juice during storage and comparison with thermally pasteurised juice
Milani et al. Ultrasound assisted thermal pasteurization of beers with different alcohol levels: Inactivation of Saccharomyces cerevisiae ascospores
Roohinejad et al. Mechanisms of microbial inactivation by emerging technologies
ZA200906672B (en) Sterilisation of liquids in hermetically closed vessels
Ortuño et al. An ultrasound-enhanced system for microbial inactivation using supercritical carbon dioxide
Leadley et al. Pulsed electric field processing, power ultrasound and other emerging technologies
Ünver Applications of ultrasound in food processing
Khadhraoui et al. Ultrasound technology for food processing, preservation, and extraction
Jambrak et al. Application of ultrasonics in food preservation and processing
Neoκleous et al. Non-thermal processing technologies for dairy products: Their effect on safety and quality characteristics
WO2013001117A1 (es) Procedimiento de inactivación de microorganismos mediante la combinación de fluidos supercríticos y ultrasonidos
EP2136654A1 (fr) Procede et dispositif pour la sterilisation d'un liquide
Beitia et al. Microbial decontamination assisted by ultrasound‐based processing technologies in food and model systems: A review
Kuldiloke et al. Application of non-thermal processing for preservation of orange juice
Rascon Escajeda et al. Discussion between alternative processing and preservation technologies and their application in beverages: A review
Khan et al. Ultrasound for beverage processing
Sulaiman et al. Principles of sonication and its equipment in the food industry
Feng et al. Ultrasonic Processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804824

Country of ref document: EP

Kind code of ref document: A1