WO2013000409A1 - 一种led驱动装置 - Google Patents

一种led驱动装置 Download PDF

Info

Publication number
WO2013000409A1
WO2013000409A1 PCT/CN2012/077626 CN2012077626W WO2013000409A1 WO 2013000409 A1 WO2013000409 A1 WO 2013000409A1 CN 2012077626 W CN2012077626 W CN 2012077626W WO 2013000409 A1 WO2013000409 A1 WO 2013000409A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
light
resistor
output
circuit
Prior art date
Application number
PCT/CN2012/077626
Other languages
English (en)
French (fr)
Inventor
华桂潮
Original Assignee
英飞特电子(杭州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英飞特电子(杭州)股份有限公司 filed Critical 英飞特电子(杭州)股份有限公司
Publication of WO2013000409A1 publication Critical patent/WO2013000409A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light

Definitions

  • the present invention relates to the field of LED device technology, and more particularly to an LED driving device. Background technique
  • LED Light Emitting Diode
  • the LED source is powered by a constant current source as a driver.
  • the LED light source is driven by a constant current source, the luminous flux output from the LED light source decreases with time due to the aging effect of the chip and the phosphor, that is, the luminous flux of the LED light source is gradually attenuated.
  • the present invention provides an LED driving device that outputs a current that gradually increases with the attenuation of the LED light source, and drives the LED light source to ensure that the luminous flux output by the LED light source can always satisfy the illumination of the illuminated area as the cumulative illumination time increases. Requirements, thereby saving resources.
  • the technical solution is as follows:
  • the invention provides a light emitting diode LED driving device, which has at least one light decay adjusting line reserved; And connected to the light attenuation adjustment line, configured to detect a level value on the light attenuation adjustment line, determine a preset rate, generate and output a power that monotonously changes at the preset rate as the cumulative illumination time of the LED light source increases.
  • Signal light attenuation adjustment circuit ;
  • the LED driver Connected between the power supply and the LED light source, and connected to the output of the light decay adjustment circuit, for generating a pulse signal according to the electrical signal, controlling the on/off of the switch tube in the self, and thereby controlling the output current along with the LED
  • the LED driver that increases the cumulative illumination time of the light source.
  • the light attenuation adjustment line is externally connected to a voltage signal or an external resistor;
  • the level value on the light attenuation adjustment line is equal to the amplitude of the external voltage signal
  • the external resistor When an external resistor is connected, the external resistor is connected between the reference source and the voltage dividing resistor of the light decay adjusting circuit, and the level of the light decay adjusting line is the external resistor and the voltage dividing resistor pair.
  • the partial pressure value of the reference source When an external resistor is connected, the external resistor is connected between the reference source and the voltage dividing resistor of the light decay adjusting circuit, and the level of the light decay adjusting line is the external resistor and the voltage dividing resistor pair.
  • the light fade adjustment circuit comprises: a detection unit, a timing output unit, and a timing unit connected between the detection unit and the timing output unit; wherein:
  • the detecting unit is configured to detect a level value on the light attenuation adjustment line, determine a preset rate according to a correspondence between the level value and the preset rate a, and trigger the timing unit;
  • the timing unit is configured to cycle timing, and triggers the timing output unit every time the timing time T expires;
  • the timing output unit is configured to output a monotonously changing electrical signal at the preset rate as the cumulative illumination time of the LED light source increases, and the electrical signal currently output by the timing output unit is changed relative to the last output electrical signal. Let the product of the rate a and the timing time T be set.
  • the LED driver comprises: An LED driving circuit connected between the power supply and the LED light source to output current to the LED light source;
  • the current loop unit includes: the non-inverting input terminal is connected to the output end of the optical fading adjusting circuit after passing through the first resistor, and the inverting input terminal is used to sample the output current of the LED driving circuit through the second resistor, and output a first operational amplifier connected to the inverting input through the compensation network, the output of the first operational amplifier being connected to the driving control unit;
  • a reference signal at a connection point of the non-inverting input terminal and the first resistor is connected through a third resistor.
  • the light attenuation adjustment line is externally connected to the fourth resistor
  • the light attenuation adjustment circuit comprises a fifth resistor
  • one end of the fourth resistor is connected to the reference source Vcc disposed inside the light attenuation adjustment circuit
  • the other end is connected to the fifth
  • One end of the resistor and the other end of the fifth resistor are connected to a reference ground disposed inside the light decay adjusting circuit
  • the level on the light decay adjusting line is a voltage dividing value of the fourth resistor and the fifth resistor to the reference source Vcc.
  • the light attenuation adjustment line is externally connected with a fifth resistor
  • the light attenuation adjustment circuit comprises a fourth resistor, one end of the fourth resistor is connected to the reference source Vcc disposed inside the light attenuation adjustment circuit, and the other end is connected to the fifth One end of the resistor and the other end of the fifth resistor are connected to a reference ground disposed inside the light decay adjusting circuit, and the level on the light decay adjusting line is a voltage dividing value of the fourth resistor and the fifth resistor to the reference source Vcc.
  • the light attenuation adjustment circuit is independently packaged.
  • the LED driver and the light decay adjustment circuit are packaged together.
  • the LED driver is provided with a dimming light, and the LED driver is connected to an output end of the light decay adjusting circuit through the dimming light.
  • the LED driver can control the current output of the LED to increase as the cumulative illumination time of the LED light source increases, thereby increasing the luminous flux output by the LED light source as the cumulative illumination time increases, thereby realizing the light attenuation compensation, thereby ensuring the LED light source.
  • the output luminous flux can always meet the illumination requirements of the illuminated area as the cumulative illumination time increases.
  • the same LED driving device can realize the requirement of light attenuation compensation when driving LED light sources with different light decay rates, thereby improving the versatility of the device.
  • FIG. 1 is a schematic structural diagram of an LED driving device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a correspondence between a level value and a preset rate
  • FIG. 3 is a schematic diagram of another structure of an LED driving device according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an LED driving device according to an embodiment of the present invention
  • FIG. A further structural diagram The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. . All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a schematic structural diagram of an LED driving device according to an embodiment of the present invention.
  • At least one optical attenuation adjusting line 1 is reserved, including: an LED driver 2 and a light attenuation adjusting circuit 3. among them:
  • At least one light attenuation adjustment line 1 reserved for use after the LED light source is determined, according to the selected
  • the light source's light decay rate is externally connected to a certain size of resistance or voltage signal.
  • the light decay adjustment circuit 2 is connected to the light attenuation adjustment line 1 for detecting the level value on the light attenuation adjustment line 1, determining the preset rate according to the level value, generating and outputting the cumulative illumination time with the LED light source. An electrical signal that monotonically changes at the preset rate.
  • the LED driver 2 is connected between the power supply and the LED light source, and is connected to the output of the light decay adjustment circuit 3.
  • the LED driver 2 is configured to generate a pulse signal according to the electrical signal, control the on/off of the switch tube in the self, and thereby control the output current to increase as the cumulative illumination time of the LED light source increases, so as to ensure the output of the LED light source with the cumulative illumination.
  • the increase of time increases, so as to ensure that the luminous flux output by the LED light source can always meet the illumination requirements of the illuminated area as the cumulative illumination time increases.
  • the light fade adjustment circuit 3 detects the level value on the light decay adjustment line 1, it is found that the light fade adjustment line 2 is left floating, that is, when no resistance or voltage signal is externally connected, the preset rate is a specific rate preset internally therein. .
  • the size of the preset rate is determined as follows: According to the correspondence between the level value and the preset rate, as shown in FIG. 2, the relationship between the level value and the preset rate is determined. Example.
  • the determined preset rate is al; if the light fade adjustment circuit 3 detects the light fade adjustment line 2 The level value Vn is Vn2 Vn Vm2, and the determined preset rate is a2; if the light fade adjustment circuit 3 detects that the level value Vn on the light attenuation adjustment line 2 is Vnx Vn Vmx, the preset rate is ax. , assuming ax > a2 > al.
  • the light fade adjustment line 1 can select a larger level value to obtain a larger preset rate, which is the light decay compensation rate.
  • the light decay rates are bl and b2, respectively, and bl ⁇ b2, and the preset rate is determined according to the embodiment shown in FIG.
  • the light fade adjustment circuit 3 can determine the preset rate according to this level is al; for the LED light source with the light decay rate of b2, select a size range of [Vn2, Vm2] Within the level, the light fade adjustment circuit 3 can determine the preset rate as a2 based on this level, where a2 > al.
  • the light attenuation adjusting line 1 is connected to a level within the size range of [Vn2, Vm2], and the light decay adjusting circuit 3 is detected according to The light fades the level on line 1 and determines the preset rate as a2. Since the preset rate a2 is greater than the preset rate a1, when the LED light source for a large light decay rate can achieve the light attenuation compensation, the LED light source with a smaller light decay rate can of course achieve the light attenuation compensation.
  • the preset rate ie, the light decay compensation rate
  • the LED driving device can play the role of light attenuation compensation for LED light sources with different light decay rates.
  • the light decay rate is used to indicate the degree of light attenuation of the LED light source in a certain period of time
  • the preset rate that is, the light decay compensation rate
  • the light decay compensation rate is the growth rate of the LED driver output current to compensate the light decay rate of the selected LED light source, so that the LED light source can meet the user's optical parameters such as luminous flux and illumination at any illumination time.
  • the real-time compensation means that the output current of the LED driving device is continuously changed; the timing compensation is a sudden change in the output current of the LED driving device after a predetermined time.
  • the current flowing through the LED is Io.
  • the LED light source is light-decayed, and the current Io is insufficient for the brightness of the LED to satisfy the illuminance.
  • the light decay adjusting circuit 3 employs a timing compensation method including: a detecting unit 31, a timing unit 32, and a timing output unit 33. among them:
  • the detecting unit 31 is configured to detect a level value on the light attenuation adjustment line 1, determine a preset rate according to the correspondence between the level value and the preset rate a, and trigger the timing unit 32.
  • the detecting unit 31 detects that the level Vn value on the light attenuation adjusting line 1 is Vnl Vn Vml, according to the relationship between the level value and the preset rate shown in FIG. 2, the preset rate determined by the detecting unit 31 is If the detecting unit 31 detects the level Vn value Vn2 Vn Vm2 on the light attenuation adjusting line 1, the determined preset rate is a2; if the detecting unit 31 detects the level value Vn on the light decay adjusting line 1.
  • the light decay adjustment line 1 is directly connected to a level corresponding to the light decay rate of the LED light source, and the detecting unit 31 can determine the light decay rate corresponding to the light source.
  • Preset rate When the LED driving device controls the LED load composed of a plurality of LED light sources with different light decay rates, the light decay adjusting line 1 connects the required level of the LED light source having the highest light decay rate among the LED light sources, and the detecting unit 31 can determine the maximum pre-determination. By setting the rate, the LED light source with different light decay rates can play the role of light attenuation compensation.
  • the timing unit 32 is for cycle timing and triggers the timing output unit 33 every time the timing time T expires.
  • the timing output unit 33 is configured to output an electrical signal that monotonically changes at the preset rate as the cumulative illumination time of the LED light source increases.
  • the value of the current signal outputted by the timing output unit 33 relative to the last output of the electrical signal is the product of the preset rate a and the timing time T.
  • the change value can be increased or decreased a*T.
  • the LED driver 2 generates a pulse signal according to the electrical signal generated by the light attenuation adjusting circuit 3, controls the switching of the switching tube in itself, and further controls the output current to increase as the cumulative illumination time of the LED light source increases. For example, when the electrical signal generated by the light decay adjustment circuit 3 monotonically increases with the cumulative illumination time, the pulse signal generated by the LED driver 2 decreases the disconnection of the switch tube in itself as the electrical signal increases. The current output increases as the cumulative illumination time of the LED source increases. If the electrical signal generated by the light attenuation adjusting circuit 3 monotonically decreases as the cumulative illumination time increases, the pulse signal generated by the LED driver 2 decreases the opening of the switching tube in itself as the electrical signal decreases. The LED light source increases the current output by increasing the illumination time.
  • the electrical signal outputted by the light attenuation adjusting circuit 3 acts on the control loop of the switching power supply in the LED driver 2, thereby controlling the switching power supply to adjust the output current of the LED driver 2.
  • the control loop may be a current loop, and the current loop is used to control the magnitude of the current output by the switching power supply to the LED load, and therefore, when the light attenuation is adjusted
  • the electrical signal output by the circuit 3 acts on the current loop of the switching power supply, the output current of the switching power supply can be adjusted.
  • the control loop may be a primary side loop or a secondary side loop.
  • the electrical signal outputted by the optical attenuation adjustment circuit 3 adjusts the primary electrical signal of the isolated switching power supply by acting on the primary loop, and then affects the secondary electrical signal through the isolation transformer.
  • the loop for controlling the switching power supply in the LED driver in the LED driver shown in Figure 3 is a current loop.
  • the LED driver 2 includes: an LED drive circuit 21, a current loop unit 22, and a drive control unit 23. among them:
  • the LED drive circuit 21 is connected between the power supply and the LED light source to output current to the LED light source.
  • the LED drive circuit 21 can be a switching power supply main circuit.
  • the current loop unit 22 is configured to sample the electrical signal outputted by the LED drive circuit 1 and compare it with the electrical signal outputted by the light fade adjustment circuit 3, and output a comparison adjustment result.
  • the drive control unit 23 is connected to the current loop unit 22 for generating a pulse signal according to the comparison adjustment result, and controlling the LED drive circuit 1 to increase the current output. Specifically, the drive control unit 23 controls the on/off of the switch tube in the LED drive circuit 1, and the control output current increases as the LED light source accumulates the illumination time boosting port.
  • the current loop unit 22 includes: a first resistor 211, a second resistor 212, a compensation network 213, a first operational amplifier 214, a third resistor 215, and a reference signal 216. See FIG. 4 for details. FIG. 4 is based on FIG. The circuit diagram of the current loop unit 22 is refined. among them:
  • the non-inverting input terminal of the first operational amplifier 214 is connected to the timing output unit 33 in the light decay adjusting circuit 3 through the first resistor 211, and the inverting input terminal is connected to the output end of the LED driving circuit 21 through the second resistor 212, and the sampling LED is driven.
  • the output current signal of the circuit is connected to the inverting input through the compensation network 213.
  • the output of the first operational amplifier 214 is connected to the drive control unit 23.
  • Reference The test signal 216 is connected to the connection point of the non-inverting input terminal and the first resistor through the third resistor 215, ensuring that when the LED driver 2 is not connected to the light attenuation adjustment circuit 3, the LED driving device can still drive the LED light source, but there is no Light fade compensation function.
  • the light fade adjustment circuit 3 increases the output electrical signal by a*T from the last electrical signal every time the timing T is reached, and the current output from the LED driver 2 is also synchronously increased by the closed loop control of the current loop unit 22.
  • the current loop unit 22 samples the LED driver 2 to output a current signal by connecting a resistor R between the output of the LED driver 2 and the cathode of the LED light source, and the resistor R and the LED driver. 2 The end connected to the output terminal is set as a reference ground, and the other end of the resistor R is connected to the second resistor 222.
  • the current loop unit 22 samples the current signal output by the LED driver 2 as a current signal flowing through the resistor R.
  • the light decay adjustment circuit 3 increases a*T every time the electrical signal is increased, the current output from the LED driver 2 is increased by (a*T) /R.
  • the light attenuation adjustment circuit when the light attenuation adjustment line 1 is used to externally connect the fourth resistor 4, the light attenuation adjustment circuit further includes a fifth resistor 5, and the fifth resistor 5 and the fourth resistor 4 are connected in series
  • the branch is connected between the reference source Vcc and the reference ground.
  • the level on the light decay adjustment line 1 detected by the light fade adjustment circuit 3 is the divided value of the fourth resistor 4 and the fifth resistor 5 to the reference source Vcc.
  • the specific connection relationship is that one end of the fourth resistor 4 is connected to the reference source Vcc, the other end is connected to one end of the fifth resistor 5, and the other end of the fifth resistor 5 is connected to the reference ground.
  • the light attenuation adjustment line 1 in the LED driving device shown in FIG. 5 is also used for an external resistor.
  • the difference from FIG. 4 is that the light attenuation adjustment line 1 is externally connected to the fifth resistor 5, and the fourth resistor 4 is placed in the light attenuation adjustment circuit 3. , their connection relationship is unchanged.
  • the optical fading adjustment circuit 3 described above may be packaged separately, or the LED driver 2 and the optical fading adjustment circuit 3 may be packaged or packaged together.
  • the compensation network 423 can be a series connection of a resistor and a capacitor, and can also be a series capacitor and a resistor, and then connect the capacitor and resistor in series with another capacitor. It should be noted that the connection line between the light attenuation adjustment circuit 3 and the LED driver 2 may be dimming. Specifically, when the LED driver 2 is provided with dimming light, the power supply current output to the LED light source is adjusted. When the signal on the light changes, the output of the light attenuation adjusting circuit 3 is connected to the dimming light.
  • the LED driver 2 can control the current outputted by the LED light source to increase as the cumulative illumination time of the LED light source increases, thereby increasing the luminous flux output by the LED light source as the cumulative illumination time increases, thereby realizing the light attenuation compensation, thereby ensuring The luminous flux output by the LED light source can always meet the illumination requirements of the illuminated area as the cumulative illumination time increases.
  • the LED driving device when driving the LED light source, there is no need to reserve current, thereby saving resources.
  • the same LED driving device can realize the light attenuation compensation requirement when driving the LED light sources with different light decay rates, thereby improving the device versatility.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明公开一种LED驱动装置,预留有至少一条光衰调节线;包括用于检测光衰调节线上的电平值,确定预设速率,产生并输出随着LED光源累计照明时间增加以预设速率单调变化的电信号的光衰调节电路;用于依据电信号,生成脉冲信号,控制自身中开关管的通断,进而控制输出电流随着LED光源累计照明时间增加而增大的LED驱动器。应用上述技术方案,LED驱动器能够控制自身输出的电流随着LED光源累计照明时间增加而增大,进而实现随累计照明时间的增加而增加LED光源输出的光通量。与现有技术相比,不需要预留电流,节约资源。同时,通过改变光衰调节线上的电平值,使得同一个LED驱动装置在驱动不同光衰速率的LED光源时都能实现光衰补偿,提高装置通用性。

Description

一种 LED驱动装置 本申请要求于 2011年 6月 27日提交中国专利局、 申请号为 201120221271.1、 发明名称为 "一种 LED驱动装置" 的中国专利申请的优先权, 其全部内容引用 在本申请中。
技术领域
本发明涉及 LED设备技术领域, 更具体地说, 涉及一种 LED驱动装置。 背景技术
目前, LED ( Light Emitting Diode, 发光二极管)光源以不含有毒物质、 环保、寿命长、光电效率高等优势,在照明领域得到了越来越广泛的应用。 LED 光源由一个恒流源作为驱动器提供直流电。 虽然 LED光源由恒流源驱动, 但 是由于芯片和荧光粉的老化作用, LED光源输出的光通量会随着时间而下降, 即 LED光源的光通量会逐渐衰减。 发明内容
有鉴于此, 本发明提供一种 LED驱动装置, 输出随着 LED光源的衰减而 逐渐增加的电流, 驱动 LED光源, 以保证 LED光源输出的光通量能够随累计 照明时间的增加始终满足被照射区域照度的要求,从而节约资源。技术方案如 下:
本发明提供一种发光二极管 LED驱动装置,预留有至少一条光衰调节线; 包括: 与所述光衰调节线相连, 用于检测所述光衰调节线上的电平值,确定预设 速率, 产生并输出随着 LED光源累计照明时间增加以所述预设速率单调变化 的电信号的光衰调节电路;
连接在供电电源和 LED光源之间, 且与所述光衰调节电路输出端相连, 用于依据所述电信号, 生成脉沖信号, 控制自身中开关管的通断, 进而控制输 出电流随着 LED光源累计照明时间增加而增大的 LED驱动器。
优选地, 所述的光衰调节线外接电压信号或外接电阻;
当外接电压信号时,所述光衰调节线上的电平值等于所述外接电压信号的 幅值;
当外接电阻时,所述外接电阻连接在所述光衰调节电路的基准源和分压电 阻之间,所述光衰调节线上的电平值为所述外接电阻和所述分压电阻对所述基 准源的分压值。
优选地, 所述光衰调节电路包括: 检测单元、 定时输出单元和连接在所述 检测单元和所述定时输出单元之间的定时单元; 其中:
所述检测单元, 用于检测所述光衰调节线上的电平值,依据电平值和预设 速率 a的对应关系, 确定预设速率, 并触发所述定时单元;
所述定时单元,用于循环定时,且在每次定时时间 T到时触发所述定时输 出单元;
所述定时输出单元, 用于输出随着 LED光源累计照明时间增加以所述预 设速率单调变化电信号,所述定时输出单元当前输出的电信号相对于上一次输 出的电信号变化数值为预设速率 a与定时时间 T的乘积。
优选地, 所述 LED驱动器包括: 连接在所述供电电源与所述 LED光源之间,输出电流至 LED光源的 LED 驱动电路;
用于接收所述光衰调节电路输出的电信号和采样所述 LED驱动电路输出 的电信号, 比较调节所述光衰调节电路输出的电信号和所述 LED驱动电路输 出的电信号, 并输出比较调节结果的电流环单元;
与所述电流环单元相连, 用于依据比较调节结果, 生成脉沖信号, 控制所 述 LED驱动电路中开关管的通断进而控制所述 LED驱动电路输出的电流随着 LED光源累计照明时间增加而增大的驱动控制单元。
优选地, 所述电流环单元包括: 同相输入端通过第一电阻后与所述光衰调 节电路的输出端相连, 反相输入端通过第二电阻后采样所述 LED驱动电路输 出端电流,输出端通过补偿网络与反相输入端相连的第一运算放大器, 所述第 一运算放大器的输出端连接所述驱动控制单元;
通过第三电阻连接在所述同相输入端和所述第一电阻的连接点的参考信 号。
优选地,所述光衰调节线外接第四电阻,所述光衰调节电路包括第五电阻, 第四电阻的一端连接置于所述光衰调节电路内部的基准源 Vcc,另一端连接第 五电阻的一端, 第五电阻的另一端连接置于所述光衰调节电路内部的参考地, 光衰调节线上的电平为第四电阻和第五电阻对基准源 Vcc的分压值。
优选地,所述光衰调节线外接第五电阻,所述光衰调节电路包括第四电阻, 第四电阻的一端连接置于所述光衰调节电路内部的基准源 Vcc,另一端连接第 五电阻的一端, 第五电阻的另一端连接置于所述光衰调节电路内部的参考地, 光衰调节线上的电平为第四电阻和第五电阻对基准源 Vcc的分压值。 优选地, 所述光衰调节电路独立封装。
优选地, 所述 LED驱动器和所述光衰调节电路封装在一起。
优选地, 所述 LED驱动器设有调光线, 所述 LED驱动器通过所述调光线 与所述光衰调节电路的输出端连接。
应用上述技术方案, LED驱动器能够控制自身输出的电流随着 LED光源 累计照明时间增加而增大, 进而实现随累计照明时间的增加而增加 LED光源 输出的光通量, 实现光衰补偿, 从而保证 LED光源输出的光通量能够随累计 照明时间的增加始终满足被照射区域照度的要求。 与现有技术相比, 在驱动 LED 光源时, 不需要预留电流, 进而节约资源。 同时, 通过改变所述光衰调 节线上的电平值,使得同一个 LED驱动装置在驱动不同光衰速率的 LED光源 时都能实现光衰补偿的要求, 提高了装置的通用性。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的 LED驱动装置的一种结构示意图;
图 2为电平值与预设速率对应关系的示意图;
图 3为本发明实施例提供的 LED驱动装置的另一种结构示意图; 图 4为本发明实施例提供的 LED驱动装置的再一种结构示意图; 图 5为本发明实施例提供的 LED驱动装置的再一种结构示意图。 具体实施方式 下面结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明的保护范围。
请参阅图 1 , 图 1为本发明实施例提供的 LED驱动装置的一种结构示意 图, 预留有至少一条光衰调节线 1、 包括: LED驱动器 2和光衰调节电路 3。 其中:
预留的至少一条光衰调节线 1用于待 LED光源确定之后, 根据所选定的
LED 光源的光衰速率的大小, 外接一定大小的电阻或电压信号。 光衰调节电 路 2与光衰调节线 1相连, 用于检测光衰调节线 1上的电平值,根据所述电平 值, 确定预设速率, 产生并输出随着 LED光源累计照明时间增加以所述预设 速率单调变化的电信号。
LED驱动器 2连接在供电电源和 LED光源之间, 且与光衰调节电路 3输 出端相连。 LED驱动器 2用于依据所述电信号, 生成脉沖信号, 控制自身中 开关管的通断, 进而控制输出电流随着 LED光源累计照明时间增加而增大, 以保证 LED光源光通量的输出随累计照明时间的增加而增加, 从而保证 LED 光源输出的光通量能够随累计照明时间的增加始终满足被照射区域照度的要 求。
当光衰调节电路 3检测到光衰调节线 1 上的电平值, 发现光衰调节线 2 悬空, 即不外接电阻或电压信号时, 所述预设速率为其内部预先设定的特定速 率。
当光衰调节电路 3检测到光衰调节线 1上电平值,发现光衰调节线 2有外 接电阻或电压信号时,确定预设速率的大小具体为: 依据电平值与预设速率的 对应关系确定,如图 2所示的是一种关于电平值与预设速率的对应关系的实施 例。 当光衰调节电路 3检测到光衰调节线 1上的电平值 Vn大小为 Vnl Vn < Vml , 则确定的预设速率为 al; 若光衰调节电路 3检测到光衰调节线 2上 的电平值 Vn大小为 Vn2 Vn Vm2,则确定的预设速率为 a2;若光衰调节电 路 3检测到光衰调节线 2上的电平值 Vn大小为 Vnx Vn Vmx,则预设速率 为 ax , 假设 ax > a2 > al。
对于不同光衰速率的 LED光源, 可以选择不同大小的电平值来确定不同 的预设速率。 比如, 对于光衰速率较大的 LED光源, 光衰调节线 1可以选择 较大的电平值来获得一个较大的预设速率, 此预设速率就是光衰补偿速率。 比 如, 有两种 LED光源, 光衰速率分别为 bl和 b2, 且 bl < b2, 依据图 2所示 实施例来确定所述预设速率大小: 对于光衰速率为 bl的 LED光源, 选择一个 属于 [Vnl,Vml]大小范围内电平, 光衰调节电路 3即可根据此电平确定预设速 率为 al; 对于光衰速率为 b2的 LED光源, 选择一个属于 [Vn2,Vm2]大小范 围内的电平, 光衰调节电路 3即可根据此电平确定预设速率为 a2, 其中 a2 > al。
当 LED驱动装置同时控制上述两种不同光衰速率的 LED光源组成的 LED 负载时, 光衰调节线 1 连接一个属于 [Vn2,Vm2]大小范围内的电平, 光衰调 节电路 3依据检测到得光衰调节线 1上的电平, 确定预设速率为 a2。 因为预 设速率 a2大于预设速率 al ,当对于较大光衰速率的 LED光源都能实现光衰补 偿时, 较小光衰速率的 LED光源当然也能实现光衰补偿。 因此, 当 LED负载 包含两种或两种以上的不同光衰速率的 LED光源时, 预设速率(即为光衰补 偿速率)应当根据最大的光衰速率来确定。 所以, LED驱动装置对于不同光 衰速率的 LED光源都能起到光衰补偿的作用。 需要说明的是: 光衰速率用于表示 LED光源在一定时间内光衰程度的大 小, 预设速率即光衰补偿速率用于表示 LED驱动装置在一定时间内光衰补偿 程度的大小。 光衰补偿速率为 LED驱动装置输出电流的增长速率能够补偿所 选 LED光源的光衰速率,使得 LED光源在任何照明时刻都能满足用户在光通 量、照度等光学参数上的需求。光衰补偿速率表示为固定时间内电流的增长量, 用公式表示为 β = Δ /Δί。 其中, a为光衰补偿速率, Δ Ι为 LED驱动装置输出 电流的增长量, A t为固定时间。
实现光衰补偿有两种方式, 一种是实时补偿, 另一种是定时补偿。 所述实 时补偿是指 LED驱动装置的输出电流是连续变化的; 所述定时补偿是指定时 预设时间后, LED驱动装置的输出电流发生突变。
如 LED光源初始照明时的流过 LED的电流为 Io, 经 tl的照明时间后, LED光源发生光衰, 电流 Io不足以使 LED的亮度满足照度, 此时需增大流过 LED的电流至 II来满足照度需求, 有以下两种方式: 一是以 " = ( 1—川 ^的 速率连续增大电流, 此为实时补偿。 二是当 LED照明时间为 tl时, 流过 LED 的电流直接从 Io跳变至 II , 此为定时补偿。
图 3所示的 LED驱动装置中光衰调节电路 3采用定时补偿方式,其包括: 检测单元 31、 定时单元 32和定时输出单元 33。 其中:
检测单元 31 , 用于检测光衰调节线 1上的电平值, 依据电平值和预设速 率 a的对应关系, 确定预设速率, 并触发定时单元 32。 当检测单元 31检测到 光衰调节线 1上的电平 Vn值大小为 Vnl Vn Vml ,则依据图 2所示的电平 值与预设速率对应关系示意图, 检测单元 31确定的预设速率为 al; 若检测单 元 31检测到光衰调节线 1上的电平 Vn值大小 Vn2 Vn Vm2, 则确定的预 设速率为 a2; 若检测单元 31检测到光衰调节线 1上的电平值 Vn大小 Vnx Vn < Vmx , 则预设速率为 ax , 4叚设 ax > a2 > aL 当 LED驱动装置控制一种光衰速率的 LED光源时,光衰调节线 1上直接 连接与该 LED光源的光衰速率相对应的电平,进而检测单元 31可以确定与光 衰速率相对应的预设速率。 当 LED驱动装置控制多个不同光衰速率的 LED光 源组成的 LED负载时, 光衰调节线 1连接 LED光源中光衰速率最大的 LED 光源所需电平, 进而检测单元 31能够确定最大的预设速率, 实现对不同光衰 速率的 LED光源都能起到光衰补偿的作用。
定时单元 32, 用于循环定时, 且在每次定时时间 T到时触发定时输出单 元 33。
定时输出单元 33 , 用于输出随着 LED光源累计照明时间增加以所述预设 速率单调变化电信号。 定时输出单元 33当前输出的电信号相对于上一次输出 的电信号变化数值为预设速率 a与定时时间 T的乘积。该变化数值可以是增加 或者减少 a*T。
上述 LED驱动器 2依据光衰调节电路 3产生的电信号生成脉沖信号, 控 制自身中开关管的通断, 进而控制输出电流随着 LED光源累计照明时间增加 而增大。如: 当光衰调节电路 3产生的电信号随着累计照明时间的增加而单调 递增时, LED驱动器 2生成的脉沖信号随着所述电信号的递增而减少自身中 开关管的断开, 增加随着 LED光源累计照明时间增加而增大的电流输出。 若 光衰调节电路 3 产生的电信号随着累计照明时间的增加而单调递减时, LED 驱动器 2生成的脉沖信号随着所述电信号的递减而减少自身中开关管的断开, 增加随着 LED光源累计照明时间增加而增大的电流输出。
当 LED驱动器 2是采用开关电源来驱动 LED负载时,光衰调节电路 3输 出的电信号作用于 LED驱动器 2中开关电源的控制环路上, 进而控制开关电 源来调节 LED驱动器 2的输出电流。 所述控制环路可以是电流环路, 所述电 流环用于控制所述开关电源输出给 LED负载的电流大小, 因此, 当光衰调节 电路 3 输出的电信号作用于所述开关电源的电流环路时就能调节所述开关电 源的输出电流大小。 当所述开关电源具有隔离变压器时, 所述控制环路可以是 原边环路也可以是副边环路。 当所述控制环路为原边环路时, 光衰调节电路 3 输出的电信号通过作用于原边环路来调节隔离型开关电源的原边电信号进而 通过隔离变压器影响副边电信号即所述 LED驱动器 2的输出信号, 比如所述 LED驱动器 2的输出电流。
图 3所示的 LED驱动装置中 LED驱动器 中用于控制开关电源的环路为 电流环路。 LED驱动器 2包括: LED驱动电路 21、 电流环单元 22和驱动控 制单元 23。 其中:
LED驱动电路 21连接在供电电源和 LED光源之间, 输出电流至 LED光 源。 LED驱动电路 21可以为开关电源主电路。
电流环单元 22用于采样 LED驱动电路 1输出的电信号,与光衰调节电路 3输出的电信号比较调节后, 并输出比较调节结果。
驱动控制单元 23与电流环单元 22相连, 用于依据比较调节结果, 生成脉 沖信号, 控制 LED驱动电路 1增加电流输出。 具体为: 驱动控制单元 23控制 LED驱动电路 1中开关管的通断, 控制输出电流随着 LED光源累计照明时间 增力口而增大。
电流环单元 22包括: 第一电阻 211、 第二电阻 212、 补偿网络 213、 第一 运算放大器 214、 第三电阻 215和参考信号 216, 具体请参阅图 4, 图 4是以 图 3为基础, 细化了电流环单元 22的电路图。 其中:
第一运算放大器 214的同相输入端通过第一电阻 211与光衰调节电路 3中 的定时输出单元 33连接, 反相输入端通过第二电阻 212与 LED驱动电路 21 的输出端连接,采样 LED驱动电路的输出电流信号,输出端通过补偿网络 213 与反相输入端相连。 第一运算放大器 214的输出端连接驱动控制单元 23。 参 考信号 216通过第三电阻 215连接在所述同相输入端和所述第一电阻的连接 点, 确保了当 LED驱动器 2不接光衰调节电路 3时, LED驱动装置仍能驱动 LED光源只是没有光衰补偿功能。
光衰调节电路 3在每次定时时间 T到时,输出电信号较上一次电信号增加 a*T, 通过电流环单元 22的闭环控制, 则 LED驱动器 2输出的电流也同步增 加。
假如图 4所示的 LED驱动装置中, 电流环单元 22采样 LED驱动器 2输 出电流信号的方式为,在 LED驱动器 2输出端和 LED光源的阴极之间连接有 电阻 R, 将电阻 R与 LED驱动器 2输出端相连的一端设为参考地, 电阻 R的 另一端连接第二电阻 222, 电流环单元 22采样 LED驱动器 2输出的电流信号 为流过电阻 R的电流信号。当光衰调节电路 3在每次电信号增加 a*T时, LED 驱动器 2输出的电流约增加(a*T ) /R。
图 4所示的 LED驱动装置中光衰调节线 1用于外接第四电阻 4时, 光衰 调节电路还包括第五电阻 5 , 所述第五电阻 5和所述第四电阻 4的串接支路连 接在基准源 Vcc和参考地之间。光衰调节电路 3所检测到的光衰调节线 1上的 电平即为第四电阻 4和第五电阻 5对基准源 Vcc的分压值。具体的连接关系为, 第四电阻 4的一端连接基准源 Vcc, 另一端连接第五电阻 5的一端, 第五电阻 5的另一端连接参考地。
图 5所示的 LED驱动装置中光衰调节线 1也用于外接电阻, 与图 4的区 别在于光衰调节线 1外接第五电阻 5, 而第四电阻 4置于光衰调节电路 3中, 它们的连接关系不变。
上述光衰调节电路 3可以独立封装, 也可以将 LED驱动器 2和光衰调节 电路 3组合封装即封装在一起。 补偿网络 423可以为电阻和电容的串联连接, 还可以为串联的电容和电阻, 再将串联后的电容和电阻与另一个电容并联。 需要说明的是, 光衰调节电路 3和 LED驱动器 2之间的连接线可以为调 光线, 具体的说, 当所述 LED驱动器 2带有调光线使得自身输出给 LED光源 的供电电流随着调光线上的信号的变化而变化,则光衰调节电路 3的输出端连 至调光线。
应用上述技术方案, LED驱动器 2能够控制自身输出的电流随着 LED光 源累计照明时间的增加而增大, 进而实现随累计照明时间的增加而增加 LED 光源输出的光通量, 实现光衰补偿, 从而保证 LED光源输出的光通量能够随 累计照明时间的增加始终满足被照射区域照度的要求。 与现有技术相比,在驱 动 LED光源时, 不需要预留电流, 进而节约资源。 同时, 通过改变所述光衰 调节线上的电平值,使得同一个 LED驱动装置在驱动不同光衰速率的 LED光 源时都能实现光衰补偿的要求, 提高了装置通用性。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它 实施例中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而是要 符合与本文所公开的原理和新颖特点相一致的最宽范围。

Claims

权 利 要 求
1、 一种发光二极管 LED驱动装置, 其特征在于, 预留有至少一条光衰调 节线; 包括:
与所述光衰调节线相连, 用于检测所述光衰调节线上的电平值,确定预设 速率, 产生并输出随着 LED光源累计照明时间增加以所述预设速率单调变化 的电信号的光衰调节电路;
连接在供电电源和 LED光源之间, 且与所述光衰调节电路输出端相连, 用于依据所述电信号, 生成脉沖信号, 控制自身中开关管的通断, 进而控制输 出电流随着 LED光源累计照明时间增加而增大的 LED驱动器。
2、 根据权利要求 1所述的 LED驱动装置, 其特征在于, 所述的光衰调节 线外接电压信号或外接电阻;
当外接电压信号时,所述光衰调节线上的电平值等于所述外接电压信号的 幅值;
当外接电阻时,所述外接电阻连接在所述光衰调节电路的基准源和分压电 阻之间,所述光衰调节线上的电平值等于所述外接电阻和所述分压电阻对所述 基准源的分压值。
3、 根据权利要求 1所述的 LED驱动装置, 其特征在于, 所述光衰调节电 路包括: 检测单元、定时输出单元和连接在所述检测单元和所述定时输出单元 之间的定时单元; 其中:
所述检测单元, 用于检测所述光衰调节线上的电平值,依据电平值和预设 速率 a的对应关系, 确定预设速率, 并触发所述定时单元;
所述定时单元,用于循环定时,且在每次定时时间 T到时触发所述定时输 出单元;
所述定时输出单元, 用于输出随着 LED光源累计照明时间增加以所述预 设速率单调变化电信号,所述定时输出单元当前输出的电信号相对于上一次输 出的电信号变化数值为预设速率 a与定时时间 T的乘积。
4、 根据权利要求 1所述的 LED驱动装置, 其特征在于, 所述 LED驱动 器包括:
连接在所述供电电源与所述 LED光源之间,输出电流至 LED光源的 LED 驱动电路;
用于接收所述光衰调节电路输出的电信号和采样所述 LED驱动电路输出 的电信号, 比较调节所述光衰调节电路输出的电信号和所述 LED驱动电路输 出的电信号, 并输出比较调节结果的电流环单元;
与所述电流环单元相连, 用于依据比较调节结果, 生成脉沖信号, 控制所 述 LED驱动电路中开关管的通断进而控制所述 LED驱动电路输出的电流随着
LED光源累计照明时间增加而增大的驱动控制单元。
5、 根据权利要求 4所述的 LED驱动装置, 其特征在于, 所述电流环单元 包括: 同相输入端通过第一电阻与所述光衰调节电路的输出端相连 , 反相输 入端通过第二电阻后采样所述 LED驱动电路输出端电流, 输出端通过补偿网 络与反相输入端相连的第一运算放大器,所述第一运算放大器的输出端连接所 述驱动控制单元;
通过第三电阻连接在所述同相输入端和所述第一电阻的连接点的参考信 号。
6、 根据权利要求 1至 5任意一项所述的 LED驱动装置, 其特征在于, 所 述光衰调节线外接第四电阻, 所述光衰调节电路包括第五电阻, 第四电阻的一 端连接置于所述光衰调节电路内部的基准源 Vcc, 另一端连接第五电阻的一 端, 第五电阻的另一端连接置于所述光衰调节电路内部的参考地, 光衰调节线 上的电平为第四电阻和第五电阻对基准源 Vcc的分压值。
7、 根据权利要求 1至 5任意一项所述的 LED驱动装置, 其特征在于, 所 述光衰调节线外接第五电阻, 所述光衰调节电路包括第四电阻, 第四电阻的一 端连接置于所述光衰调节电路内部的基准源 Vcc, 另一端连接第五电阻的一 端, 第五电阻的另一端连接置于所述光衰调节电路内部的参考地, 光衰调节线 上的电平为第四电阻和第五电阻对基准源 Vcc的分压值。
8、 根据权利要求 1至 5任意一项所述的 LED驱动装置, 其特征在于, 所 述光衰调节电路独立封装。
9、 根据权利要求 1至 5任意一项所述的 LED驱动装置, 其特征在于, 所 述 LED驱动器和所述光衰调节电路封装在一起。
10、 根据权利要求 1至 5任意一项所述的 LED驱动装置, 其特征在于, 所述 LED驱动器设有调光线,所述 LED驱动器通过所述调光线与所述光衰调 节电路的输出端连接。
+
PCT/CN2012/077626 2011-06-27 2012-06-27 一种led驱动装置 WO2013000409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201120221271.1 2011-06-27
CN201120221271U CN202135365U (zh) 2011-06-27 2011-06-27 一种led驱动装置

Publications (1)

Publication Number Publication Date
WO2013000409A1 true WO2013000409A1 (zh) 2013-01-03

Family

ID=45524114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077626 WO2013000409A1 (zh) 2011-06-27 2012-06-27 一种led驱动装置

Country Status (2)

Country Link
CN (1) CN202135365U (zh)
WO (1) WO2013000409A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202135365U (zh) * 2011-06-27 2012-02-01 英飞特电子(杭州)有限公司 一种led驱动装置
CN105810119A (zh) * 2014-12-29 2016-07-27 深圳市奥拓光电科技有限公司 一种led灯箱的光衰补偿方法及具有光衰补偿功能的led灯箱
CN209296892U (zh) * 2018-11-01 2019-08-23 深圳市崧盛电子股份有限公司 一种用于led驱动电源调光性能测试的电阻调光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392875A (zh) * 2008-10-22 2009-03-25 北京巨数数字技术开发有限公司 一种led背光系统
CN101414435A (zh) * 2007-10-18 2009-04-22 奇景光电股份有限公司 补偿一发光二极管驱动电流的方法及其装置
CN101765272A (zh) * 2010-01-13 2010-06-30 惠州雷士光电科技有限公司 Led光衰补偿方法及其实现电路
CN202135365U (zh) * 2011-06-27 2012-02-01 英飞特电子(杭州)有限公司 一种led驱动装置
CN202135364U (zh) * 2011-06-27 2012-02-01 英飞特电子(杭州)有限公司 一种led驱动装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414435A (zh) * 2007-10-18 2009-04-22 奇景光电股份有限公司 补偿一发光二极管驱动电流的方法及其装置
CN101392875A (zh) * 2008-10-22 2009-03-25 北京巨数数字技术开发有限公司 一种led背光系统
CN101765272A (zh) * 2010-01-13 2010-06-30 惠州雷士光电科技有限公司 Led光衰补偿方法及其实现电路
CN202135365U (zh) * 2011-06-27 2012-02-01 英飞特电子(杭州)有限公司 一种led驱动装置
CN202135364U (zh) * 2011-06-27 2012-02-01 英飞特电子(杭州)有限公司 一种led驱动装置

Also Published As

Publication number Publication date
CN202135365U (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
JP5853170B2 (ja) 点灯装置および照明器具
US8643301B2 (en) LED driver circuit and LED lighting device using the same
TWI420960B (zh) Led驅動電路、調光裝置、led照明器具、led照明裝置、及led照明系統
US20110291585A1 (en) Stepped dimming device for led lamp
US9307604B2 (en) Dimmable LED lamp and dimming method
MXPA01010039A (es) Ensamble de abastecimiento para un modulo de iluminacion led.
CN102474945B (zh) 照明装置和照明系统
EP2654376B1 (en) Illumination device with adjustable luminance and luminance adjustment method thereof
TW200614129A (en) Light emitting element drive device and display system
CN102118903A (zh) 发光二极管灯具的驱动电路
CN101990337B (zh) 可动态维持定电流驱动的光源驱动装置及其相关方法
KR20120008004A (ko) Led 조명용 통합 전원 집적 회로
US20150042236A1 (en) Method and apparatus for controlling brightness of light emitting diodes
TWI504310B (zh) Dimming light emitting diode lighting system and its driving device and driving method
WO2013000410A1 (zh) 一种led驱动装置
WO2013000409A1 (zh) 一种led驱动装置
TWI392399B (zh) 用於一發光二極體之調光裝置及其相關調光方法與發光裝置
WO2014121660A1 (zh) 可调光的发光二极管照明系统及其驱动装置与驱动方法
JP2013225511A (ja) 調光回路
TW201103357A (en) Light emitting device with compensation capability
CN102355782A (zh) 自适应led调光器
TW201143518A (en) Power-supply-detectable lamp
KR20120114421A (ko) 디밍 조절 엘이디 조명장치 및 방법
CN203340368U (zh) 一种led调光台灯
CN110996460A (zh) 可调光调色温的led照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05-06-2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12804048

Country of ref document: EP

Kind code of ref document: A1