WO2012176777A1 - Fiber guide - Google Patents

Fiber guide Download PDF

Info

Publication number
WO2012176777A1
WO2012176777A1 PCT/JP2012/065645 JP2012065645W WO2012176777A1 WO 2012176777 A1 WO2012176777 A1 WO 2012176777A1 JP 2012065645 W JP2012065645 W JP 2012065645W WO 2012176777 A1 WO2012176777 A1 WO 2012176777A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
yarn
mass
less
fiber guide
Prior art date
Application number
PCT/JP2012/065645
Other languages
French (fr)
Japanese (ja)
Inventor
三垣 俊二
祐大 遠矢
和幸 平田
実 中須賀
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2012545415A priority Critical patent/JP5269257B2/en
Publication of WO2012176777A1 publication Critical patent/WO2012176777A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H57/00Guides for filamentary materials; Supports therefor
    • B65H57/24Guides for filamentary materials; Supports therefor with wear-resistant surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/04Kinds or types
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D11/00Other features of manufacture
    • D01D11/04Fixed guides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/04Guides for slivers, rovings, or yarns; Smoothing dies

Definitions

  • the present invention relates to a fiber guide.
  • various types of fiber guides such as an oiling nozzle, a roller guide, a rod guide, and a traverse guide are attached to a textile machine and used in order to guide a fiber traveling at high speed.
  • Patent Document 1 is made of a ceramic containing 90% by weight or more of Al 2 O 3 as a main component, the average crystal grain size of Al 2 O 3 is 10 to 40 ⁇ m, and is on the surface.
  • a fiber guide is disclosed in which each Al 2 O 3 crystal present has a central flat portion and a peripheral roundness.
  • each Al 2 O 3 crystal existing on the surface has a flat portion at the center and a roundness around the center, and therefore guides fibers containing irregularly shaped fibers or hard particles.
  • the Al 2 O 3 crystal is worn out and tends to decrease, causing a problem of damaging the fiber.
  • the present invention provides a fiber guide that can reduce the influence of abrasion and suppress damage to the fiber.
  • the fiber guide of the present invention is characterized in that at least the contact portion with which the yarn contacts is made of a ceramic sintered body, and the skewness (Rsk) determined from the roughness curve of the surface of the contact portion is from ⁇ 2.0 to 3.0. It is what.
  • the contact portion where the yarn contacts is made of a ceramic sintered body, and the skewness (Rsk) obtained from the surface roughness curve of the contact portion is ⁇ 2.0 or more and 3.0 or less. Therefore, since the area in contact with the yarn in the yarn contact portion can be relatively reduced, the influence of abrasion on the yarn contact portion is small, and damage to the fiber can be suppressed.
  • the oiling nozzle which is an example of embodiment of the fiber guide of this embodiment form is shown, (a) is a perspective view, (b) is a sectional view in an AA 'line in (a), (c ) Is a schematic view showing in cross section an oiling nozzle in a state where oil is guided by guiding fibers.
  • Other examples of the embodiment of the fiber guide of the present embodiment are respectively shown, (a) is a perspective view of a roller guide, (b) is a perspective view of a rod guide, and (c) is a perspective view of a traverse guide.
  • FIG. 1A and 1B show an oiling nozzle as an example of an embodiment of a fiber guide according to the present embodiment
  • FIG. 1A is a perspective view
  • FIG. 1B is a cross-sectional view taken along line AA ′ in FIG. (C) is a schematic view showing the oiling nozzle in a cross-section in a state in which the fiber 100 is guided and oil is adhered thereto.
  • the oiling nozzle 10 of the example shown in FIG. 1 has an oil supply hole that opens on the inlet side of the yarn contact portion 11 with a groove-shaped guide surface formed in the oiling nozzle 10 for guiding the fiber 100 as the yarn contact portion 11. 12 and an oil sump 13 provided in the yarn contact portion 11.
  • the fiber guide is composed of a ceramic sintered body (hereinafter sometimes referred to simply as a sintered body), and frictional heat is generated as compared with the case where the fiber guide is made of metal or resin. Since it is difficult, damage to the fiber can be reduced.
  • a ceramic sintered body for example, alumina, zirconia, titania, silicon carbide, silicon nitride, or a composite thereof is preferably used.
  • the material of the fiber guide can be identified using an XRD (X-ray diffraction) method or an XRF (fluorescence X-ray analysis) method.
  • the entrance side of the yarn connection part 11 is the side into which the fiber 100 enters the yarn connection part 11, and in FIG.1 (c), it is the right side of a figure.
  • the fiber 100 enters the yarn contact portion 11 from the right inlet side and exits in the direction indicated by the white arrow.
  • the fiber 100 is fed at a high speed in the direction of the white arrow while sliding on the yarn contact portion 11, and at the same time, the oil is ejected from the oil supply hole 12 to the fiber 100. Oil is attached.
  • the ejected oil moves together with the fiber 100 and accumulates in the oil reservoir 13, and the accumulated oil adheres to the entire surface of the fiber 100.
  • Such an oiling nozzle 10 is required not only to allow the oil to adhere well to the fiber 100 but also to use the fiber 100 without damaging it for a long time.
  • FIG. 2 shows another example of the embodiment of the fiber guide of this embodiment, (a) is a perspective view of a roller guide, (b) is a perspective view of a rod guide, and (c) is a traverse guide.
  • FIG. 2 shows another example of the embodiment of the fiber guide of this embodiment, (a) is a perspective view of a roller guide, (b) is a perspective view of a rod guide, and (c) is a traverse guide.
  • a roller guide 20 which is another example of the embodiment of the fiber guide of the present embodiment shown in FIG. 2A is used in many textile machines, and this roller guide 20 rotates in a V-groove shape.
  • the fiber 100 is guided by using the guide surface as the yarn contact portion 11.
  • the rod guide 30 shown in FIG. 2B is used for converging and separating the fibers at various places of the textile machine, and the outer peripheral surface of the rod guide 30 has the fibers 100 as the yarn contact portions 11. It is a guide.
  • the traverse guide 40 shown in FIG. 2 (c) reciprocates in parallel with the cylindrical axis near the outer periphery of the package that rotates around the cylindrical axis when the fiber 100 is wound around the outer periphery of the cylindrical package.
  • the fiber 100 that has passed through the groove-shaped yarn-contacting portion 11 is used for guiding the fiber 100 to the package and winding it with a uniform thickness.
  • the region that becomes the valley can be widened in the region that becomes the peak and the region that becomes the valley indicated by the roughness curve in the yarn contact portion 11.
  • the area where the fiber comes into contact with the yarn contact portion can be reduced. Thereby, even if the yarn contact portion 11 is worn, damage to the fiber 100 can be suppressed.
  • a more preferable range of skewness (Rsk) is a range of 0.5 to 2.5. Within this range, it is possible to further increase the valley region indicated by the roughness curve, and further reduce the region where the fiber 100 is in contact with the yarn-attached portion. Also, damage to the fiber 100 can be further suppressed.
  • the kurtosis (Rku) obtained from the roughness curve of the surface of the yarn contact portion 11 is 1.5 or more and 4.5 or less.
  • the fiber guide yarn contact portion 11 By setting the fiber guide yarn contact portion 11 to such a configuration, the radius of curvature of the top of the mountain indicated by the roughness curve can be made relatively small. As a result, the fiber 100 can easily slide on the surface of the yarn-attached portion 11, and the load on the fiber 100 due to friction with the yarn-attached portion 11 can be reduced, whereby damage to the fiber can be suppressed.
  • a more preferable range of kurtosis (Rku) is 2.8 or more and 4.5 or less. Within this range, the radius of curvature of the peak of the peak indicated by the roughness curve can be further reduced, so that a state close to point contact with the fiber 100 can be obtained. Thereby, the region where the fiber 100 is in contact with the yarn contact portion can be further reduced, and the burden on the fiber 100 due to friction with the yarn contact portion 11 can be further reduced, whereby damage to the fiber can be further suppressed.
  • the skewness (Rsk) and kurtosis (Rku) on the surface of the yarn contact portion 11 can be measured based on JIS B 0601-2001, and can be measured using a commercially available contact or non-contact type surface roughness meter. it can.
  • the fiber guide of the present embodiment it is preferable that 15 or more and 60 or less crystal particles having an equivalent circle diameter of 10 ⁇ m or more exist in the range of 10030 ⁇ m 2 on the surface of the yarn contact portion 11.
  • the thermal conductivity is improved. As a result, heat generated when the fiber 100 slides on the yarn contact portion 11 is less likely to accumulate in the yarn contact portion and can be dissipated, so that damage to the fiber due to frictional heat can be reduced.
  • the number of crystal grains of 10 ⁇ m or more can be counted using a scanning electron microscope with a magnification of 1000x, taking a photograph of the surface of the yarn contact portion 11 with a reflected electron image, and using image analysis software for the 85 ⁇ m ⁇ 118 ⁇ m observation image.
  • the crystal grain size of the equivalent circle diameter of each crystal particle is obtained, the crystal particles of 10 ⁇ m or more are counted, the same operation is performed at another location, a total of 5 locations are measured, and the average value is calculated. be able to.
  • the ceramic sintered body has Al as 92.0% by mass or more and 97.0% by mass or less in terms of Al 2 O 3 , Ca as 0.7% by mass or more and 4.0% by mass or less in terms of CaO, and Ti as TiO 2. 2.2 wt% to 0.5 wt% in 2 equivalent or less, it is preferable that the Zr containing 1.0 wt% to 3.0 wt% in terms of ZrO 2.
  • the ceramic sintered body Since Al is contained in an amount of 92.0% by mass or more and 97.0% by mass or less in terms of Al 2 O 3 , the ceramic sintered body has high hardness and excellent wear resistance, so that the life as a fiber guide tends to be long.
  • Al 2 O 3 having a high thermal conductivity is contained in a large amount of 92.0% by mass or more and 97.0% by mass or less, heat generated when the fiber 100 slides on the yarn-attached portion 11 is difficult to accumulate in the yarn-attached portion. Since the heat can be dissipated, the fiber damage due to frictional heat can be reduced.
  • CaO calcium aluminate
  • Ti from that it contains less 2.2 wt% to 0.5 wt% in terms of TiO 2, TiO 2 (titania), together with acts as a sintering aid, part of which dispersed in solid solution in the crystal grains of alumina
  • TiO 2 titanium
  • acts as a sintering aid part of which dispersed in solid solution in the crystal grains of alumina
  • the Zr from that contained 1.0 wt% to 3.0 wt% in terms of ZrO 2, without ZrO 2 (zirconia) is the solid solution with the alumina present in the grain boundaries of alumina and alumina, crystalline alumina A portion of the grain growth is constrained by zirconia, and alumina crystals grow three-dimensionally. Therefore, alumina crystals are formed to protrude, and contact with the fiber 100 is reduced while maintaining high wear resistance. Therefore, damage to the fiber 100 can be suppressed.
  • zirconia crystals In order for the zirconia crystals to exist at the grain boundary between alumina and alumina and to bring about the above-mentioned effects, it is preferable that zirconia crystals smaller than the average crystal grain size of alumina exist in a dispersed state. It is preferable that zirconia crystals exist at the triple point of each crystal of alumina.
  • the average crystal grain size of alumina is preferably 3 ⁇ m or more and 15 ⁇ m or less, and the average crystal grain size of zirconia is preferably 0.4 ⁇ m or more and less than 1.5 ⁇ m.
  • the average crystal grain size of alumina and zirconia was mirror-finished with a scanning electron microscope at a magnification of 750 to 5000 times, and thermal etching was performed in the range of 50 to 100 ° C lower than the firing temperature. After that, take a photograph with a backscattered electron image, draw three straight lines at an arbitrary place in the photograph, and measure the number of crystals of alumina and zirconia crossed by the straight line and the total length of each of the crystals. , By dividing the total length of each crystal by the number of each crystal.
  • the content of alumina, calcia, titania and zirconia contained in the sintered body constituting the yarn contact portion 11 of the oiling nozzle 10 showing an example of the embodiment of the fiber guide of this embodiment is ICP (Inductively Coupled Plasma ) Quantitative analysis using emission spectroscopy, and all the values obtained can be measured in terms of oxides.
  • the fiber guide of the present embodiment 0.50 wt% to 0.10 wt% of ceramic sintered body of Si in terms of SiO 2 or less, it is preferable to contain less 0.14 wt% 0.02 wt% in terms of MgO to Mg .
  • silica and magnesia can be measured quantitatively using ICP (Inductively-Coupled-Plasma) emission spectroscopy and all the obtained values can be measured in terms of oxides.
  • the root mean square roughness (Rq) of the yarn contact portion 11 is 0.5 ⁇ m or more and 1.3 ⁇ m or less.
  • the root mean square roughness (Rq) of the yarn-attached part 11 is 0.5 ⁇ m or more and 1.3 ⁇ m or less, the protrusions formed by protruding alumina crystal particles are highly dispersed and pass through the yarn-attached part 11.
  • the fibers 100 to be made are likely to be in point contact with the projections of the alumina crystal particles, and the fibers 100 are hardly damaged.
  • the yarn contact portion 11 preferably has an arithmetic average roughness (Ra) of 1.0 ⁇ m or less.
  • the fiber guide of the present embodiment is preferably a ceramic sintered body containing chromium oxide (Cr 2 O 3).
  • the fiber guide can be colored pink and the fibers 100 can be easily identified. More specifically, the lightness index L * in the CIE 1976 L * a * b * color space is 30 or more and 79 or less, and the chromaticness index a by containing 0.01 to 2.0% by mass with respect to the alumina content. * And b * can be 8 or more and 40 or less and -3 or more and 5 or less, respectively, and visibility can be improved. Therefore, when the fiber 100 is damaged, the camera monitor recognizes it quickly, and the fiber guide can be replaced at an appropriate time. The color of the fiber guide may be selected according to the color of the fiber 100 in accordance with the recognizability of the camera monitor.
  • iron oxide is used instead of chromium oxide
  • a brown fiber guide can be obtained if manganese dioxide is used. it can.
  • the content of iron oxide and manganese dioxide is preferably 0.01% by mass or more and 10.0% by mass or less with respect to the content of alumina.
  • chromium oxide, iron oxide and manganese dioxide can be quantitatively analyzed using ICP (Inductively-Coupled-Plasma) emission spectrometry, and all the obtained values can be measured in terms of oxides.
  • ICP Inductively-Coupled-Plasma
  • the fiber guide of the present embodiment has been described using the oiling nozzle 10 shown in FIG. 1.
  • the present invention is not limited to this, and the roller guide 20, the rod guide 30, and the traverse guide 40 as shown in FIG. Also included are fiber guides such as ring guides, eyelets and snail guides which are not shown.
  • the fiber guide is described using an example of a ceramic sintered body.
  • at least the yarn contact portion 11 only needs to be formed of a ceramic sintered body. Therefore, for example, the yarn contact portion 11 may be made of a ceramic sintered body, and the other part may be made of, for example, a metal or a resin.
  • alumina, zirconia, titania, silicon carbide, silicon nitride, or a composite thereof and a sintering aid are mixed in a predetermined ratio, and the raw material, solvent, and ball are put into a ball mill and pulverized to a predetermined particle size. To prepare a slurry.
  • Al and Al 2 O 3 97.0 wt% 92.0 wt% or more in terms of less, Ca and 0.7 mass% or less than 4.0 wt% in terms of CaO, Ti less 2.2 wt% to 0.5 wt% in terms of TiO 2, a Zr
  • the content of alumina, calcia, titania and yttria having a purity of 99.5% by mass or more and an average particle size of 0.3 to 1 ⁇ m 2 mol% of zirconia is mixed at a predetermined ratio, and this raw material, solvent and balls are put into a ball mill and pulverized to a predetermined particle size to produce a slurry.
  • calcium titanate (CaTiO 3 ) may be added, and calcia and titania may be added as a deficiency.
  • silica, magnesium hydroxide and chromium oxide are added, for example, each powder having a purity of 99.5% by mass or more and an average particle size of 0.1 to 1 ⁇ m is weighed and mixed to a predetermined amount. The raw material, solvent and balls are put in a ball mill and pulverized to a predetermined particle size to produce a slurry.
  • a spray dryer is used to produce granules by spray drying.
  • this granule is put into a mechanical press, and pressure is applied to produce a molded body having a predetermined shape.
  • the molded body is subjected to cutting or the like to obtain an oiling nozzle shape.
  • the obtained oiling nozzle shaped molded body is, for example, when alumina is the main component, the maximum temperature is 1450 to 1750 ° C. in the atmospheric air, and the holding time at this maximum temperature is 1 to 8 hours. What is necessary is just to bake.
  • calcia when calcia is added, the higher the calcination temperature and the longer the calcination time, the greater the amount of solid solution of calcia in alumina, so the value of kurtosis (Rku) decreases.
  • titania, silica and magnesium hydroxide the maximum temperature during firing can be set low and the holding time can be shortened, so that it is easy to suppress the abnormal growth of the crystal grain size of alumina.
  • firing conditions such as maximum temperature and holding time vary depending on the shape and size of the product or the type of firing furnace, and may be adjusted as necessary.
  • the oiling nozzle 10 of the present embodiment can be obtained by finishing the entire surface of the obtained oiling nozzle-shaped sintered body with a barrel polishing machine. Further, blasting or the like may be combined as preprocessing.
  • finishing with a barrel polishing machine is performed by using a known barrel apparatus, and adding an appropriate amount of abrasive grains with a ratio of water, media, and product being about 1: 0.8: 0.5.
  • the medium to be used can have a size of 6 to 10 mm, and the shape may be selected from spherical, triangular prism, rhombus, cylindrical, and oblique cylindrical, but it is preferable to use a spherical shape.
  • a spherical material it is easy to make point contact with the product, and it becomes easy to control skewness.
  • the abrasive grain to be used may be a GC grain, and may be an abrasive grain in which the first abrasive grain having a coarse count and the fine second abrasive grain are mixed.
  • the first abrasive grain and the second abrasive grain may be used.
  • the mixing ratio with the grains to 8: 2
  • the skewness can be adjusted by the second abrasive grains while the surface is smoothed by the first abrasive grains.
  • the cultosis can be controlled by performing the rotation speed and the processing time of 50 to 130 rpm ⁇ 10 to 50 hours, respectively, with a barrel grinder. By processing within these ranges, it is possible to control the respective skewness and kurtosis obtained from the surface roughness curve of the yarn-attached portion 11 to be -2.0 to 3.0 and 1.5 to 4.5, respectively.
  • the crystal grain size can be appropriately adjusted depending on the firing temperature, and the crystal grain size can be increased if the temperature is high, and the crystal grain size can be decreased if the temperature is low.
  • the oiling nozzle 10 obtained in this way can have a skewness (Rsk) obtained from a roughness curve of the surface of the yarn contact portion 11 of ⁇ 2.0 or more and 3.0 or less.
  • Rsk skewness
  • the region that becomes the valley can be widened, and the region in which the fiber contacts the yarn contact portion can be reduced.
  • the area in contact with the fiber can be reduced, so that even if the surface of the yarn contact portion 11 is worn, the fiber is Opportunities for contact can be reduced, and damage to the fibers can be suppressed.
  • the fiber guide manufacturing method of this embodiment has been described by taking the manufacturing method of the oiling nozzle 10 as an example, for example, a roller guide 20 shown in FIG. 2A or a traverse guide 40 shown in FIG.
  • a manufacturing method similar to that for the oiling nozzle 10 may be used.
  • a binder is added to the mixed raw material to prepare a clay, and this clay is formed into a rod shape by an extrusion molding method and cut to an appropriate length, and then fired and sintered in the same manner as the oiling nozzle 10.
  • a body is obtained, and the necessary grinding or barrel polishing may be appropriately selected and processed.
  • an oiling nozzle 10 which is an example of a fiber guide.
  • a molded body was produced by a mechanical press and then cut to obtain an oiling nozzle-shaped molded body.
  • the obtained oiling nozzle-shaped compact was fired in an air atmosphere at a maximum temperature of 1670 ° C. and a holding time at the maximum temperature of 1 hour to obtain an oiling nozzle-shaped sintered body.
  • the entire surface of the oiling nozzle-shaped sintered body was finished with a barrel grinder.
  • the barrel processing conditions were as follows: the amount of water, product, and media charged was 1: 0.8: 0.5 using a centrifugal barrel polishing machine, and an appropriate amount of GC abrasive was added.
  • the media has a spherical shape with the size shown in Table 1 and is made of alumina, and the abrasive is a mixture of two types of counts of GC abrasives shown in Table 1. Processing was carried out at 90 rpm with the barrel time shown in Table 1.
  • each sample was obtained by changing the kurtosis (Rku) and skewness (Rsk) to the values shown in Table 1 by combining the barrel time, the number of abrasive grains, and the average particle diameter of the media.
  • the oiling nozzle 10 was produced.
  • the average surface roughness (Ra), kurtosis (Rku), and skewness (Rsk) on the surface are based on JISB 0601-2001, with a cutoff value of 0.8 mm, a measurement length of 0.8 mm, and a measurement speed of 0.8 mm / sec. .
  • the measuring instrument used was measured using a surface roughness meter SE-3300 manufactured by Kosaka Laboratory.
  • the fiber 100 used in the test contained 1.2% by mass of titanium oxide having an average crystal grain size of 1.2 ⁇ m, 75 denier, 36 filaments, and polyester having a square cross section of the fiber 100. Oiling was carried out with an oil agent application amount of 2 to 4% by mass based on the mass of the fiber 100, and a water emulsion oil agent was used. The feeding speed of the fiber 100 was set to 5000 m / min.
  • All samples had an average surface roughness (Ra) of 0.8 ⁇ m or less.
  • the sample No. in which the kurtosis (Rku) obtained from the surface roughness curve of the yarn contact portion is 1.5 or more and 4.5 or less.
  • Samples Nos. 8 to 10 have a lifetime of at least 445 hours and are out of this range. Compared to 7 and 11, it was found that the improvement was more than 10 hours.
  • the skewness (Rsk) obtained from the roughness curve of the surface of the yarn-attached portion is -2.0 or more and 3.0 or less, so that the yarn-attached portion 11 is compared with the flat surface as compared with the case where the yarn-attached portion 11 is a flat surface. Since the area in contact with the fiber 100 in the portion 11 can be reduced, the chance that the fiber 100 contacts the contact portion 11 even if the surface of the contact portion 11 is worn can be reduced, and the life of the fiber guide can be reduced. It can be seen that the damage to the fiber 100 can be reduced. Among them, sample No. Nos. 3 and 4 have a skewness (Rsk) of 0.5 or more and 2.5 or less, indicating that the life of the fiber guide is as long as 420 hours or more and damage to the fiber 100 can be reduced.
  • the kurtosis (Rku) obtained from the surface roughness curve of the yarn-attached portion is 1.5 or more and 4.5 or less, the radius of curvature of the tip of the protrusion can be relatively reduced in the yarn-attached portion, It can be seen that since the load on the fiber due to friction can be further reduced, the damage to the fiber can be further reduced, leading to prevention of scratches, tears and fluff. Among them, sample No. In Nos. 9 and 10, the kurtosis (Rku) is not less than 2.8 and not more than 4.5, which indicates that the life of the fiber guide is as long as 450 hours or more and damage to the fiber 100 can be reduced.
  • Example 2 The same method as in Example 1 was performed until the molded body was produced.
  • each sample was fired at the firing temperature shown in Table 2 for 1 hour.
  • the resulting sintered body has a media particle size of 6 to 10 mm, first abrasive grain counts of # 150 to # 320, second abrasive grain counts of # 1200 to # 6000, and barrel polishing.
  • the processing time by the machine is 10 to 50 hours.
  • the skewness (Rsk) obtained from the surface roughness curve of the yarn-attached part is -2.0 to 3.0
  • the kurtosis (Rku) is 1.5 to 4.5
  • the thickness (Ra) was adjusted to 0.8 ⁇ m or less.
  • Sample No. 13 shows the sample No. of Example 1. It was produced by the same method as 9.
  • the surface of the sintered body was photographed with a reflected electron image at a magnification of 1000 using a scanning electron microscope, and an observation image having a range of 85 ⁇ m ⁇ 118 ⁇ m (observation area: 10030 ⁇ m 2 ).
  • the image particle size of each crystal particle at the equivalent circle diameter was determined using image analysis software, and the crystal particles having an equivalent circle diameter of 10 ⁇ m or more were counted. In addition, it calculated
  • the surface of the yarn contact portion, the circle equivalent diameter 10 ⁇ m or more crystal grains, in the range of 10030Myuemu 2 the sample exists 15 or more 60 or less No.
  • Samples Nos. 13 to 16 have a lifetime of at least 445 hours, and are out of this range. Compared to 12 and 17, it was found that the improvement was more than 15 hours.
  • the ratio (content) when the sintered body is alumina having a purity of 99.9% by mass, calcia, titania, and zirconia having a yttria content ratio of 2 mol% is the ratio shown in Table 3.
  • a solvent and balls were added to this raw material, and the mixture was pulverized to a predetermined particle size with a ball mill to prepare a slurry. Then, after adding a binder to this slurry, this slurry was spray-dried using the spray dryer, and the granule was produced.
  • this granule was put into a mechanical press and molded by applying pressure so as to obtain the shape of the oiling nozzle 10 shown in FIG.
  • the obtained molded body was fired in an air atmosphere with a maximum temperature of 1550 ° C. and a holding time at the maximum temperature of 1 hour.
  • the media particle size is 6-10 mm
  • the first abrasive count is # 150- # 320
  • the second abrasive count is # 1200- # 6000
  • barrel The processing time by the polishing machine is 10 to 50 hours.
  • the skewness (Rsk) obtained from the surface roughness curve of the yarn-attached part is ⁇ 2.0 to 3.0
  • the kurtosis (Rku) is 1.5 to 4.5
  • the sample was adjusted so that the roughness (Ra) was 0.8 ⁇ m or less. 18 to 43 oiling nozzles 10 were obtained.
  • the oiling nozzle 10 shown in FIG. 1 was prepared by adding 99.0% by mass of alumina powder having a purity of 99.5%, a particle size of 0.6 ⁇ m, and a specific surface area of 8 m 2 / g, containing calcia in the balance, and putting it in a mechanical press.
  • the shape was molded by applying pressure, fired at 1650 ° C., mirror-finished with a barrel, and refired at 1700 ° C. to produce.
  • the proportions of alumina, calcia, titania and zirconia contained in this oiling nozzle 10 are quantitatively analyzed for the sintered body using ICP (Inductively Coupled Plasma) emission spectroscopy, and all the values obtained are converted to oxides. And measured.
  • ICP Inductively Coupled Plasma
  • the ceramic sintered body shows that Al is 92.0% by mass or more and 97.0% by mass or less in terms of Al 2 O 3 , Ca is 0.7% by mass or more and 4.0% by mass or less in terms of CaO, and Ti is in terms of TiO 2 .
  • Samples Nos. 19 to 22, 25 to 28, 31 to 34, and 37 to 40 have a lifetime of at least 520 hours and are outside this range. Compared with 18, 23, 24, 29, 30, 35, 36, 41 to 44, it was found that the improvement was over 40 hours.
  • At least the ceramic sintered body constituting the yarn contact section, Al and Al 2 O 3 97.0 wt% 92.0 wt% or more in terms of less, Ca and 0.7 mass% or less than 4.0 wt% in terms of CaO, Ti 2.2 wt% to 0.5 wt% in terms of TiO 2 or less, by containing more than 3.0 mass% to 1.0 mass% in terms of ZrO 2 and Zr, while maintaining high wear resistance, with less damage to the fibers 100 It turns out that deterioration of a thread quality can be suppressed.
  • the ratio (content) of the sintered body of alumina, calcia, titania, zirconia with a yttria content ratio of 2 mol%, and further with silica and magnesia is the ratio shown in Table 2.
  • the subsequent steps were the same as in Example 1 and the sample No. 45 to 56 oiling nozzles 10 were produced.
  • the ratio of alumina, calcia, titania, zirconia, silica and magnesia contained in the oiling nozzle 10 was determined by analyzing the sintered body using ICP emission spectroscopic analysis as in Example 3.
  • the ceramic sintered body contains sample No. 1 containing Si in the range of 0.10 to 0.50% by mass in terms of SiO 2 and Mg in the range of 0.02 to 0.14% by mass in terms of MgO.
  • Samples 46-49 and 52-55 are sample Nos. It was found that the wear resistance was improved compared to 45, 50, 51 and 56, and damage to the fiber 100 could be suppressed.
  • the ceramic sintered body constituting at least the yarn contact portion contains Si in an amount of 0.10 to 0.50% by mass in terms of SiO 2 and Mg in an amount of 0.02 to 0.14% by mass in terms of MgO, thereby providing high wear resistance. It can be seen that the damage to the fiber 100 can be reduced and the deterioration of the yarn quality can be suppressed while maintaining.
  • Oiling nozzle 11 Yarn contact part 12: Oil supply hole 13: Oil reservoir 20: Roller guide 30: Rod guide 40: Traverse guide 100: Fiber

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Guides For Winding Or Rewinding, Or Guides For Filamentary Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

[Problem] To provide a high-hardness fiber guide with which fibers can be inhibited from suffering damage such as scratches, fraying, or fluffing and which has high wear resistance. [Solution] This fiber guide includes a yarn contact part (11) with which a yarn comes into contact, wherein at least the yarn contact part (11) is constituted of a sintered ceramic and the surface of the yarn contact part (11) has a skewness (Rsk) as determined from a roughness curve of -2.0 to 3.0. The region of the yarn contact part (11) which comes into contact with fibers (100) can hence be rendered relatively small. Consequently, wear of the yarn contact part (11) exerts a limited influence, and the fibers (100) can be inhibited from suffering damage.

Description

繊維ガイドFiber guide
 本発明は、繊維ガイドに関する。 The present invention relates to a fiber guide.
 繊維の製造工程において、高速で走行する繊維を案内するために、オイリングノズル,ローラガイド,ロッドガイドおよびトラバースガイドなどの様々なタイプの繊維ガイドが繊維機械に取り付けられて使用されている。 In the fiber manufacturing process, various types of fiber guides such as an oiling nozzle, a roller guide, a rod guide, and a traverse guide are attached to a textile machine and used in order to guide a fiber traveling at high speed.
 そして、近年になって生産される繊維は、断面が異形状のものが多くなってきている。また、生産効率を上げるために、繊維の送り速度が3000~8000m/分と極めて速くなっている。さらに、遠赤外線を放射する機能や光の透過を低減する機能を持たせるために、チタニア,マグネシアおよびカルシアなどの硬質粒子を繊維に含有させたものも作られている。そのため、繊維に傷,解れおよび毛羽などのダメージが生じず、さらに耐摩耗性の高い高硬度の繊維ガイドが求められていた。 In recent years, more and more fibers are produced with irregular cross sections. In addition, in order to increase production efficiency, the fiber feed rate is extremely high, 3000 to 8000 m / min. Furthermore, in order to have a function of emitting far infrared rays and a function of reducing light transmission, fibers containing hard particles such as titania, magnesia, and calcia are also made. Therefore, there has been a demand for a high-hardness fiber guide that does not cause damage such as scratches, tears, and fluff, and has high wear resistance.
 このような繊維ガイドとして、例えば、特許文献1には、主成分としてAlを90重量%以上含有するセラミックスからなり、Alの平均結晶粒径が10~40μmで、表面に存在する各Al結晶が、中央の平坦部と周囲の丸みを有することを特徴とする繊維ガイドが開示されている。 As such a fiber guide, for example, Patent Document 1 is made of a ceramic containing 90% by weight or more of Al 2 O 3 as a main component, the average crystal grain size of Al 2 O 3 is 10 to 40 μm, and is on the surface. A fiber guide is disclosed in which each Al 2 O 3 crystal present has a central flat portion and a peripheral roundness.
特開平8-67420号公報JP-A-8-67420
 しかしながら、特許文献1に記載の繊維ガイドは、表面に存在する各Al結晶が、中央の平坦部と周囲の丸みを有するため、異形状の繊維や硬質粒子を含有させた繊維を案内するのに長期間用いると、Al結晶が磨耗し減少しやすく繊維にダメージを与えてしまうという課題があった。 However, in the fiber guide described in Patent Document 1, each Al 2 O 3 crystal existing on the surface has a flat portion at the center and a roundness around the center, and therefore guides fibers containing irregularly shaped fibers or hard particles. When used for a long period of time, the Al 2 O 3 crystal is worn out and tends to decrease, causing a problem of damaging the fiber.
 本発明は、この様な課題に鑑み、摩耗による影響を少なくでき、繊維へのダメージを抑制することが可能な繊維ガイドを提供するものである。 In view of such a problem, the present invention provides a fiber guide that can reduce the influence of abrasion and suppress damage to the fiber.
 本発明の繊維ガイドは、少なくとも糸が接する接糸部がセラミックス焼結体からなり、接糸部の表面の粗さ曲線から求められるスキューネス(Rsk)が、-2.0以上3.0以下であることを特徴とするものである。 The fiber guide of the present invention is characterized in that at least the contact portion with which the yarn contacts is made of a ceramic sintered body, and the skewness (Rsk) determined from the roughness curve of the surface of the contact portion is from −2.0 to 3.0. It is what.
 本発明の繊維ガイドによれば、少なくとも糸が接する接糸部がセラミックス焼結体からなり、接糸部の表面の粗さ曲線から求められるスキューネス(Rsk)が、-2.0以上3.0以下であることから、接糸部において糸と接触する領域を比較的少なくすることができるので、接糸部における磨耗による影響が少なく繊維へのダメージを抑制することができる。 According to the fiber guide of the present invention, at least the contact portion where the yarn contacts is made of a ceramic sintered body, and the skewness (Rsk) obtained from the surface roughness curve of the contact portion is −2.0 or more and 3.0 or less. Therefore, since the area in contact with the yarn in the yarn contact portion can be relatively reduced, the influence of abrasion on the yarn contact portion is small, and damage to the fiber can be suppressed.
本実施形の繊維ガイドの実施の形態の一例であるオイリングノズルを示す、(a)は斜視図であり、(b)は(a)におけるA-A’線での断面図であり、(c)は繊維を案内してオイルを付着させる状態のオイリングノズルを断面で示した模式図である。The oiling nozzle which is an example of embodiment of the fiber guide of this embodiment form is shown, (a) is a perspective view, (b) is a sectional view in an AA 'line in (a), (c ) Is a schematic view showing in cross section an oiling nozzle in a state where oil is guided by guiding fibers. 本実施形の繊維ガイドの実施の形態の他の例をそれぞれ示す、(a)はローラガイドの斜視図、(b)はロッドガイドの斜視図、(c)はトラバースガイドの斜視図である。Other examples of the embodiment of the fiber guide of the present embodiment are respectively shown, (a) is a perspective view of a roller guide, (b) is a perspective view of a rod guide, and (c) is a perspective view of a traverse guide.
 以下、本実施形の繊維ガイドの実施の形態の例について説明する。 Hereinafter, an example of an embodiment of the fiber guide of this embodiment will be described.
 図1は、本実施形態の繊維ガイドの実施の形態の一例であるオイリングノズルを示す、(a)は斜視図であり、(b)は(a)におけるA-A’線での断面図であり、(c)は繊維100を案内してオイルを付着させる状態のオイリングノズルを断面で示した模式図である。 1A and 1B show an oiling nozzle as an example of an embodiment of a fiber guide according to the present embodiment, FIG. 1A is a perspective view, and FIG. 1B is a cross-sectional view taken along line AA ′ in FIG. (C) is a schematic view showing the oiling nozzle in a cross-section in a state in which the fiber 100 is guided and oil is adhered thereto.
 図1に示す例のオイリングノズル10は、繊維100を案内するためにオイリングノズル10に形成した溝状の案内面を接糸部11として、この接糸部11の入口側に開口するオイル供給孔12と、接糸部11に備えられたオイル溜まり13とを有している。 The oiling nozzle 10 of the example shown in FIG. 1 has an oil supply hole that opens on the inlet side of the yarn contact portion 11 with a groove-shaped guide surface formed in the oiling nozzle 10 for guiding the fiber 100 as the yarn contact portion 11. 12 and an oil sump 13 provided in the yarn contact portion 11.
 本実施形態において、繊維ガイドはセラミック焼結体(以下、単に焼結体という場合がある。)から構成されており、繊維ガイドの材質が金属や樹脂の場合と比較して摩擦熱が発生しにくいことから、繊維に対するダメージを減少することができる。セラミックスとしては、例えば、アルミナ、ジルコニア、チタニア、炭化珪素、窒化珪素、またはこれらの複合物を用いることが好ましい。 In this embodiment, the fiber guide is composed of a ceramic sintered body (hereinafter sometimes referred to simply as a sintered body), and frictional heat is generated as compared with the case where the fiber guide is made of metal or resin. Since it is difficult, damage to the fiber can be reduced. As the ceramic, for example, alumina, zirconia, titania, silicon carbide, silicon nitride, or a composite thereof is preferably used.
 なお、繊維ガイドの材質は、XRD(X線回折)法やXRF(蛍光X線分析)法を用いて同定することができる。 In addition, the material of the fiber guide can be identified using an XRD (X-ray diffraction) method or an XRF (fluorescence X-ray analysis) method.
 なお、ここで言う接糸部11の入口側とは、繊維100が接糸部11に入って行く側であり、図1(c)においては図の右側である。図1(c)に示す例では、繊維100は右側の入口側から接糸部11に入り、白抜き矢印で示す方向に出ていく構成としてある。 In addition, the entrance side of the yarn connection part 11 said here is the side into which the fiber 100 enters the yarn connection part 11, and in FIG.1 (c), it is the right side of a figure. In the example shown in FIG. 1 (c), the fiber 100 enters the yarn contact portion 11 from the right inlet side and exits in the direction indicated by the white arrow.
 そして、図1(c)に示すように、繊維100を接糸部11に摺動させながら白抜き矢印の方向に高速で送り、同時にオイル供給孔12からオイルを噴出することによって、繊維100にオイルを付着させるようになっている。 Then, as shown in FIG. 1 (c), the fiber 100 is fed at a high speed in the direction of the white arrow while sliding on the yarn contact portion 11, and at the same time, the oil is ejected from the oil supply hole 12 to the fiber 100. Oil is attached.
 このとき、噴出したオイルは繊維100とともに移動してオイル溜まり13に溜まり、溜まったオイルが繊維100の全面に付着するようになっている。 At this time, the ejected oil moves together with the fiber 100 and accumulates in the oil reservoir 13, and the accumulated oil adheres to the entire surface of the fiber 100.
 このようなオイリングノズル10においては、繊維100に良好にオイルを付着させることができることだけではなく、繊維100に傷を付けることがなく、長期間摩耗せずに使用できることが求められる。 Such an oiling nozzle 10 is required not only to allow the oil to adhere well to the fiber 100 but also to use the fiber 100 without damaging it for a long time.
 また、図2は、本実施形態の繊維ガイドの実施の形態の他の例をそれぞれ示す、(a)はローラガイドの斜視図、(b)はロッドガイドの斜視図、(c)はトラバースガイドの斜視図である。 FIG. 2 shows another example of the embodiment of the fiber guide of this embodiment, (a) is a perspective view of a roller guide, (b) is a perspective view of a rod guide, and (c) is a traverse guide. FIG.
 図2(a)に示す本実施形態の繊維ガイドの実施の形態の他の例であるローラガイド20は、多くの繊維機械で使用されており、このローラガイド20は、回転しながらV溝状の案内面を接糸部11として繊維100を案内するものである。また、図2(b)に示すロッドガイド30は、繊維機械の様々な場所で繊維を収束したり分離したりするために使用され、ロッドガイド30の外周面が接糸部11として繊維100を案内するものである。また、図2(c)に示すトラバースガイド40は、繊維100を円筒状のパッケージの外周に巻き取るとき、円筒軸を中心に回転するパッケージの外周の近くで円筒軸と平行に往復運動しながら溝状の接糸部11を通過した繊維100をパッケージに案内し、均等な厚みで巻き付けるために使用されるものである。 A roller guide 20 which is another example of the embodiment of the fiber guide of the present embodiment shown in FIG. 2A is used in many textile machines, and this roller guide 20 rotates in a V-groove shape. The fiber 100 is guided by using the guide surface as the yarn contact portion 11. Further, the rod guide 30 shown in FIG. 2B is used for converging and separating the fibers at various places of the textile machine, and the outer peripheral surface of the rod guide 30 has the fibers 100 as the yarn contact portions 11. It is a guide. The traverse guide 40 shown in FIG. 2 (c) reciprocates in parallel with the cylindrical axis near the outer periphery of the package that rotates around the cylindrical axis when the fiber 100 is wound around the outer periphery of the cylindrical package. The fiber 100 that has passed through the groove-shaped yarn-contacting portion 11 is used for guiding the fiber 100 to the package and winding it with a uniform thickness.
 そして、これらの繊維ガイドは、いずれも接糸部11が繊維100と摺動することから、特に繊維の断面が異形状の繊維や硬質粒子を含有させた繊維を高速で案内するような過酷な条件下では、接糸部11が摩耗しても繊維100へのダメージが少ないことが要求される。したがって、本実施形態の繊維ガイドは、接糸部11の表面の粗さ曲線から求められるスキューネス(Rsk)が、-2.0以上3.0以下であることが重要である。 And since these fiber guides all have the yarn contact portion 11 slide with the fiber 100, the fiber cross section is particularly harsh to guide the fiber containing the irregularly shaped fiber or the hard particle-containing fiber at a high speed. Under the conditions, it is required that the fiber 100 is less damaged even if the yarn contact portion 11 is worn. Therefore, in the fiber guide of this embodiment, it is important that the skewness (Rsk) obtained from the surface roughness curve of the yarn contact portion 11 is −2.0 or more and 3.0 or less.
 繊維ガイドの接糸部11をこのような構成とすることで、接糸部11において粗さ曲線で示される山となる領域と谷となる領域とにおいて、谷となる領域を広くすることができ、繊維が接糸部と接触する領域を少なくすることができる。それにより、接糸部11が磨耗しても繊維100に対するダメージを抑制することができる。 By adopting such a configuration of the yarn contact portion 11 of the fiber guide, the region that becomes the valley can be widened in the region that becomes the peak and the region that becomes the valley indicated by the roughness curve in the yarn contact portion 11. The area where the fiber comes into contact with the yarn contact portion can be reduced. Thereby, even if the yarn contact portion 11 is worn, damage to the fiber 100 can be suppressed.
 なお、スキューネス(Rsk)のより好ましい範囲は、0.5以上2.5以下の範囲である。この範囲であれば、粗さ曲線で示される谷となる領域をより増やすことができ、繊維100が接糸部と接触する領域をさらに少なくすることができることから、接糸部11が磨耗しても繊維100に対するダメージをより抑制することができる。 A more preferable range of skewness (Rsk) is a range of 0.5 to 2.5. Within this range, it is possible to further increase the valley region indicated by the roughness curve, and further reduce the region where the fiber 100 is in contact with the yarn-attached portion. Also, damage to the fiber 100 can be further suppressed.
 また、本実施形態の繊維ガイドは、接糸部11の表面の粗さ曲線から求められるクルトシス(Rku)が、1.5以上4.5以下であることが好適である。 Further, in the fiber guide of this embodiment, it is preferable that the kurtosis (Rku) obtained from the roughness curve of the surface of the yarn contact portion 11 is 1.5 or more and 4.5 or less.
 繊維ガイドの接糸部11をこの様な構成とすることで、粗さ曲線で示される山の先端の曲率半径を比較的小さくすることができる。それにより、接糸部11の表面において、繊維100が摺動しやすくなり接糸部11との摩擦による繊維100への負担を減少できることによって、繊維に対するダメージを抑制することができる。 By setting the fiber guide yarn contact portion 11 to such a configuration, the radius of curvature of the top of the mountain indicated by the roughness curve can be made relatively small. As a result, the fiber 100 can easily slide on the surface of the yarn-attached portion 11, and the load on the fiber 100 due to friction with the yarn-attached portion 11 can be reduced, whereby damage to the fiber can be suppressed.
 なお、クルトシス(Rku)のより好ましい範囲は、2.8以上4.5以下である。この範囲であれば、粗さ曲線で示される山の先端の曲率半径をさらに小さくすることができることから、繊維100と点接触に近い状態とすることができる。それにより、繊維100が接糸部と接触する領域をさらに少なくでき、接糸部11との摩擦による繊維100への負担をさらに減少できることによって、繊維に対するダメージをより抑制することができる。 A more preferable range of kurtosis (Rku) is 2.8 or more and 4.5 or less. Within this range, the radius of curvature of the peak of the peak indicated by the roughness curve can be further reduced, so that a state close to point contact with the fiber 100 can be obtained. Thereby, the region where the fiber 100 is in contact with the yarn contact portion can be further reduced, and the burden on the fiber 100 due to friction with the yarn contact portion 11 can be further reduced, whereby damage to the fiber can be further suppressed.
 なお、接糸部11の表面におけるスキューネス(Rsk)およびクルトシス(Rku)はJIS B 0601-2001に基づいて測定でき、市販の接触式または非接触式の表面粗さ計を用いて測定することができる。 Note that the skewness (Rsk) and kurtosis (Rku) on the surface of the yarn contact portion 11 can be measured based on JIS B 0601-2001, and can be measured using a commercially available contact or non-contact type surface roughness meter. it can.
 また、本実施形態の繊維ガイドは、接糸部11の表面において、円相当径で10μm以上の結晶粒子が、10030μmの範囲内に15個以上60個以下存在することが好適である。 Further, in the fiber guide of the present embodiment, it is preferable that 15 or more and 60 or less crystal particles having an equivalent circle diameter of 10 μm or more exist in the range of 10030 μm 2 on the surface of the yarn contact portion 11.
 接糸部11の表面をこの様な構成とすれば、結晶粒径の大きい結晶粒子が接糸部11の表面において多く存在していることから、熱伝導性が良くなる。それにより、繊維100が接糸部11を摺動するときに発する熱を接糸部に蓄積しにくくなり放熱することができるので、摩擦熱による繊維へのダメージを減らすことができる。 When the surface of the yarn-attached portion 11 has such a structure, since many crystal particles having a large crystal grain size are present on the surface of the yarn-attached portion 11, the thermal conductivity is improved. As a result, heat generated when the fiber 100 slides on the yarn contact portion 11 is less likely to accumulate in the yarn contact portion and can be dissipated, so that damage to the fiber due to frictional heat can be reduced.
 なお、10μm以上の結晶粒子の数え方は、走査電子顕微鏡を用いて倍率を1000倍として接糸部11の表面を反射電子像で写真撮影し、85μm×118μmの観察画像について画像解析ソフトを用いて各結晶粒子の円相当径の結晶粒径を求めて、10μm以上の結晶粒子を数え、別な箇所でも同様の作業を行い、合計5箇所を測定し、平均値を算出することによって、求めることができる。 The number of crystal grains of 10μm or more can be counted using a scanning electron microscope with a magnification of 1000x, taking a photograph of the surface of the yarn contact portion 11 with a reflected electron image, and using image analysis software for the 85μm × 118μm observation image. The crystal grain size of the equivalent circle diameter of each crystal particle is obtained, the crystal particles of 10 μm or more are counted, the same operation is performed at another location, a total of 5 locations are measured, and the average value is calculated. be able to.
 また、本実施形態の繊維ガイドは、セラミック焼結体が、AlをAl換算で92.0質量%以上97.0質量%以下、CaをCaO換算で0.7質量%以上4.0質量%以下、TiをTiO換算で0.5質量%以上2.2質量%以下、ZrをZrO換算で1.0質量%以上3.0質量%以下含有することが好適である。 Further, in the fiber guide of the present embodiment, the ceramic sintered body has Al as 92.0% by mass or more and 97.0% by mass or less in terms of Al 2 O 3 , Ca as 0.7% by mass or more and 4.0% by mass or less in terms of CaO, and Ti as TiO 2. 2.2 wt% to 0.5 wt% in 2 equivalent or less, it is preferable that the Zr containing 1.0 wt% to 3.0 wt% in terms of ZrO 2.
 AlをAl換算で92.0質量%以上97.0質量%以下含有することから、セラミック焼結体の硬度が高く耐摩耗性に優れるので、繊維ガイドとしての寿命が長くなりやすい傾向にある。また、熱伝導性の高いAlを92.0質量%以上97.0質量%以下と多く含有することから、繊維100が接糸部11を摺動するときに発する熱を接糸部に蓄積しにくくなり放熱することができるので、摩擦熱による繊維のダメージを減らすことができる。 Since Al is contained in an amount of 92.0% by mass or more and 97.0% by mass or less in terms of Al 2 O 3 , the ceramic sintered body has high hardness and excellent wear resistance, so that the life as a fiber guide tends to be long. In addition, since Al 2 O 3 having a high thermal conductivity is contained in a large amount of 92.0% by mass or more and 97.0% by mass or less, heat generated when the fiber 100 slides on the yarn-attached portion 11 is difficult to accumulate in the yarn-attached portion. Since the heat can be dissipated, the fiber damage due to frictional heat can be reduced.
 また、CaをCaO換算で0.7質量%以上4.0質量%以下含有することから、CaO(カルシア)がAl(アルミナ)に固溶することによって、焼結の段階で結晶表面の表面張力を大きくでき、またアルミン酸カルシウム(CaAl)が生じることで、結果として結晶を丸めることができる。なお、CaO(カルシア)の代わりに、酸化バリウム(BaO)または酸化ストロンチウム(SrO)を用いても同様の効果を得ることができる。 In addition, since Ca is contained in an amount of 0.7% by mass or more and 4.0% by mass or less in terms of CaO, CaO (calcia) is dissolved in Al 2 O 3 (alumina), so that the surface tension of the crystal surface is reduced at the stage of sintering. Crystals can be rounded as a result of the increase in size and the formation of calcium aluminate (CaAl 2 O 4 ). Note that the same effect can be obtained by using barium oxide (BaO) or strontium oxide (SrO) instead of CaO (calcia).
 また、TiをTiO換算で0.5質量%以上2.2質量%以下含有することから、TiO(チタニア)が焼結助剤として作用するとともに、一部がアルミナの結晶粒子に固溶して分散することによって、焼結体の強度が向上し、接糸部11と繊維100が含有する硬質粒子との衝突により結晶粒界や結晶粒子に生じるクラックを抑制できるため、耐摩耗性を改善することができる。 Further, Ti, from that it contains less 2.2 wt% to 0.5 wt% in terms of TiO 2, TiO 2 (titania), together with acts as a sintering aid, part of which dispersed in solid solution in the crystal grains of alumina As a result, the strength of the sintered body is improved, and cracks generated in the crystal grain boundaries and the crystal particles due to the collision between the yarn contact portion 11 and the hard particles contained in the fiber 100 can be suppressed, so that the wear resistance can be improved. it can.
 さらに、ZrをZrO換算で1.0質量%以上3.0質量%以下含有することから、ZrO(ジルコニア)はアルミナと固溶することなく、アルミナとアルミナとの結晶粒界に存在し、アルミナの結晶の粒成長の一部分がジルコニアによって拘束され、アルミナの結晶が立体的に粒成長する。それゆえ、アルミナの結晶が突出して形成され、高い耐摩耗性を維持したまま、繊維100との接触が減少することから、繊維100に対するダメージを抑制することができる。また、ジルコニアの結晶がアルミナとアルミナとの結晶粒界に存在し上記のような効果をもたらすためには、アルミナの平均結晶粒径より小さいジルコニアの結晶が分散して存在することが好ましく、特にアルミナの各結晶の三重点にジルコニアの結晶が存在することが好ましい。 Further, the Zr from that contained 1.0 wt% to 3.0 wt% in terms of ZrO 2, without ZrO 2 (zirconia) is the solid solution with the alumina present in the grain boundaries of alumina and alumina, crystalline alumina A portion of the grain growth is constrained by zirconia, and alumina crystals grow three-dimensionally. Therefore, alumina crystals are formed to protrude, and contact with the fiber 100 is reduced while maintaining high wear resistance. Therefore, damage to the fiber 100 can be suppressed. In order for the zirconia crystals to exist at the grain boundary between alumina and alumina and to bring about the above-mentioned effects, it is preferable that zirconia crystals smaller than the average crystal grain size of alumina exist in a dispersed state. It is preferable that zirconia crystals exist at the triple point of each crystal of alumina.
 また、各々の平均結晶粒径は、アルミナの平均結晶粒径が3μm以上15μm以下、ジルコニアの平均結晶粒径が0.4μm以上1.5μm未満であることが好ましい。 The average crystal grain size of alumina is preferably 3 μm or more and 15 μm or less, and the average crystal grain size of zirconia is preferably 0.4 μm or more and less than 1.5 μm.
 また、ジルコニアの代わりに、ハフニア(HfO)またはセリア(CeO)を用いても同様の効果を得ることができる。 The same effect can be obtained by using hafnia (HfO 2 ) or ceria (CeO 2 ) instead of zirconia.
 なお、アルミナおよびジルコニアの平均結晶粒径は、走査電子顕微鏡を用いて倍率を750~5000倍として焼結体の表面を鏡面加工し、焼成温度から50~100℃低い温度の範囲でサーマルエッチングをした後、反射電子像で写真撮影し、写真の任意の場所に3本の直線を引き、直線が横切ったアルミナとジルコニアとの結晶の数とその各々の結晶の合計の長さを測定して、各々の結晶の数で各々の結晶の合計長さを除することで求めることができる。 The average crystal grain size of alumina and zirconia was mirror-finished with a scanning electron microscope at a magnification of 750 to 5000 times, and thermal etching was performed in the range of 50 to 100 ° C lower than the firing temperature. After that, take a photograph with a backscattered electron image, draw three straight lines at an arbitrary place in the photograph, and measure the number of crystals of alumina and zirconia crossed by the straight line and the total length of each of the crystals. , By dividing the total length of each crystal by the number of each crystal.
 なお、本実施形態の繊維ガイドの実施の形態の一例を示すオイリングノズル10の接糸部11を構成する焼結体に含まれるアルミナ,カルシア,チタニアおよびジルコニアの含有量は、ICP(Inductively Coupled Plasma)発光分光分析法を用いて定量分析し、得られた値を全て酸化物換算して測定することができる。 The content of alumina, calcia, titania and zirconia contained in the sintered body constituting the yarn contact portion 11 of the oiling nozzle 10 showing an example of the embodiment of the fiber guide of this embodiment is ICP (Inductively Coupled Plasma ) Quantitative analysis using emission spectroscopy, and all the values obtained can be measured in terms of oxides.
 また、本実施形態の繊維ガイドは、セラミック焼結体がSiをSiO換算で0.10質量%以上0.50質量%以下、MgをMgO換算で0.02質量%以上0.14質量%以下含有することが好適である。 The fiber guide of the present embodiment, 0.50 wt% to 0.10 wt% of ceramic sintered body of Si in terms of SiO 2 or less, it is preferable to contain less 0.14 wt% 0.02 wt% in terms of MgO to Mg .
 SiをSiO(シリカ)換算で0.10質量%以上0.50質量%以下含有することから、アルミナおよびジルコニアの結晶粒界にガラス相が形成されて焼結が促進され、低温でしかも短時間で焼成することができることから、アルミナの結晶が異常粒成長することを抑制しやすくなる。また、MgをMgO(マグネシア)換算で0.02質量%以上0.14質量%以下含有することから、マグネシアは粒成長抑制剤としてアルミナの結晶粒子の異常粒成長を抑制する効果を有し、均一な結晶組織を有する焼結体とすることが可能となる。それにより、一定の間隔で接糸部11のアルミナの結晶と繊維100とが安定して接触することから、接糸部11の磨耗が少なく、繊維100へのダメージを抑制しやすくなる。 Since Si is contained in an amount of 0.10 mass% or more and 0.50 mass% or less in terms of SiO 2 (silica), a glass phase is formed at the grain boundaries of alumina and zirconia to promote sintering, and firing is performed at a low temperature in a short time. Therefore, it becomes easy to suppress abnormal grain growth of alumina crystals. Further, since Mg is contained in an amount of 0.02% by mass or more and 0.14% by mass or less in terms of MgO (magnesia), magnesia has an effect of suppressing abnormal grain growth of alumina crystal grains as a grain growth inhibitor, and has a uniform crystal structure It becomes possible to set it as the sintered compact which has. As a result, the alumina crystal of the yarn-contacting portion 11 and the fiber 100 stably come into contact with each other at a constant interval, so that the yarn-contacting portion 11 is less worn and damage to the fiber 100 is easily suppressed.
 なお、シリカおよびマグネシアの含有量は、ICP(Inductively Coupled Plasma)発光分光分析法を用いて定量分析し、得られた値を全て酸化物換算して測定することができる。 Note that the contents of silica and magnesia can be measured quantitatively using ICP (Inductively-Coupled-Plasma) emission spectroscopy and all the obtained values can be measured in terms of oxides.
 また、本実施形態の繊維ガイドは、接糸部11の二乗平均平方根粗さ(Rq)が0.5μm以上1.3μm以下であることが好適である。 Further, in the fiber guide of this embodiment, it is preferable that the root mean square roughness (Rq) of the yarn contact portion 11 is 0.5 μm or more and 1.3 μm or less.
 接糸部11の二乗平均平方根粗さ(Rq)が0.5μm以上1.3μm以下であることから、アルミナの結晶粒子が突出してできた突起が高くさらに分散しているので、接糸部11を通過する繊維100がアルミナの結晶粒子の突起と点接触となりやすく、繊維100に損傷を与えにくくなる。また、接糸部11は、繊維100との接触による磨耗をさらに抑制するためには、算術平均粗さ(Ra)が1.0μm以下であることが好ましい。 Since the root mean square roughness (Rq) of the yarn-attached part 11 is 0.5 μm or more and 1.3 μm or less, the protrusions formed by protruding alumina crystal particles are highly dispersed and pass through the yarn-attached part 11. The fibers 100 to be made are likely to be in point contact with the projections of the alumina crystal particles, and the fibers 100 are hardly damaged. In order to further suppress wear due to contact with the fiber 100, the yarn contact portion 11 preferably has an arithmetic average roughness (Ra) of 1.0 μm or less.
 また、本実施形態の繊維ガイドは、セラミック焼結体が酸化クロム(Cr)を含有していることが好ましい。 The fiber guide of the present embodiment is preferably a ceramic sintered body containing chromium oxide (Cr 2 O 3).
 セラミック焼結体が酸化クロムを含有すれば、繊維ガイドをピンク色に着色させることができ、繊維100の識別を容易にすることができる。より具体的には、アルミナの含有量に対して、0.01質量%以上2.0質量%以下で含有することによってCIE1976L*a*b*色空間における明度指数L*が30以上79以下、クロマティクネス指数a*,b*がそれぞれ8以上40以下,-3以上5以下とすることができ、視認性を良くすることができる。そのため、繊維100に損傷を受けた場合、カメラモニタでの認識が早くなり、繊維ガイドの交換を適切な時期に行なうことができる。また、繊維ガイドの色は、カメラモニタの認識性にあわせて繊維100の色によって選べばよく、酸化クロムの変わりに酸化鉄を用いれば茶色、二酸化マンガンを用いれば黒色の繊維ガイドを得ることができる。なお酸化鉄および二酸化マンガンの含有量は、アルミナの含有量に対して0.01質量%以上10.0質量%以下であることが好ましい。 If the ceramic sintered body contains chromium oxide, the fiber guide can be colored pink and the fibers 100 can be easily identified. More specifically, the lightness index L * in the CIE 1976 L * a * b * color space is 30 or more and 79 or less, and the chromaticness index a by containing 0.01 to 2.0% by mass with respect to the alumina content. * And b * can be 8 or more and 40 or less and -3 or more and 5 or less, respectively, and visibility can be improved. Therefore, when the fiber 100 is damaged, the camera monitor recognizes it quickly, and the fiber guide can be replaced at an appropriate time. The color of the fiber guide may be selected according to the color of the fiber 100 in accordance with the recognizability of the camera monitor. If iron oxide is used instead of chromium oxide, a brown fiber guide can be obtained if manganese dioxide is used. it can. The content of iron oxide and manganese dioxide is preferably 0.01% by mass or more and 10.0% by mass or less with respect to the content of alumina.
 なお、酸化クロム,酸化鉄および二酸化マンガンの含有量は、ICP(Inductively Coupled Plasma)発光分光分析法を用いて定量分析し、得られた値を全て酸化物換算して測定することができる。 The contents of chromium oxide, iron oxide and manganese dioxide can be quantitatively analyzed using ICP (Inductively-Coupled-Plasma) emission spectrometry, and all the obtained values can be measured in terms of oxides.
 また、本実施形態の繊維ガイドは、以上の例では図1に示すオイリングノズル10を用いて説明したが、これに限らず、図2に示すようなローラガイド20,ロッドガイド30およびトラバースガイド40、図示していない、リングガイド,アイレットおよびスネールガイドなどの繊維ガイドとして用いられるものをも含むものである。 Further, in the above example, the fiber guide of the present embodiment has been described using the oiling nozzle 10 shown in FIG. 1. However, the present invention is not limited to this, and the roller guide 20, the rod guide 30, and the traverse guide 40 as shown in FIG. Also included are fiber guides such as ring guides, eyelets and snail guides which are not shown.
 なお、上記の例においては、繊維ガイドがセラミック焼結体からなる例を用いて説明したが、本実施形態においては少なくとも接糸部11がセラミック焼結体から構成されていればよい。それゆえ、例えば接糸部11をセラミック焼結体から構成し、他の部位を例えば金属や樹脂から構成してもよい。 In the above example, the fiber guide is described using an example of a ceramic sintered body. However, in the present embodiment, at least the yarn contact portion 11 only needs to be formed of a ceramic sintered body. Therefore, for example, the yarn contact portion 11 may be made of a ceramic sintered body, and the other part may be made of, for example, a metal or a resin.
 次に、本実施形態のセラミック焼結体からなる繊維ガイドの製造方法を、オイリングノズル10を例に説明する。 Next, a method for manufacturing a fiber guide made of a ceramic sintered body according to the present embodiment will be described using the oiling nozzle 10 as an example.
 例えば、アルミナ、ジルコニア、チタニア、炭化珪素、窒化珪素、またはこれらの複合物と焼結助剤を所定の割合に混合し、この原料と溶媒およびボールとをボールミルに入れて、所定の粒度まで粉砕してスラリーを作製する。 For example, alumina, zirconia, titania, silicon carbide, silicon nitride, or a composite thereof and a sintering aid are mixed in a predetermined ratio, and the raw material, solvent, and ball are put into a ball mill and pulverized to a predetermined particle size. To prepare a slurry.
 また、AlをAl換算で92.0質量%以上97.0質量%以下、CaをCaO換算で0.7質量%以上4.0質量%以下、TiをTiO換算で0.5質量%以上2.2質量%以下、ZrをZrO換算で1.0質量%以上3.0質量%以下含有する焼結体とするためには、純度が99.5質量%以上であり、平均粒径が0.3~1μmのアルミナ、カルシア、チタニアおよびイットリアの含有割合が2mol%のジルコニアを所定の割合で混合し、この原料と溶媒およびボールとをボールミルに入れて、所定の粒度まで粉砕してスラリーを作製する。また、カルシアおよびチタニアを加える代わりに、チタン酸カルシウム(CaTiO)を加え、不足分としてカルシアおよびチタニアを加えても良い。また、シリカ,水酸化マグネシウムおよび酸化クロムを添加する場合には、例えば、純度が99.5質量%以上であり、平均粒径が0.1~1μmの各粉末を用いて所定量に秤量・混合し、この原料と溶媒およびボールとをボールミルに入れて所定の粒度まで粉砕して、スラリーを作製する。 Further, Al and Al 2 O 3 97.0 wt% 92.0 wt% or more in terms of less, Ca and 0.7 mass% or less than 4.0 wt% in terms of CaO, Ti less 2.2 wt% to 0.5 wt% in terms of TiO 2, a Zr In order to obtain a sintered body containing 1.0% by mass or more and 3.0% by mass or less in terms of ZrO 2 , the content of alumina, calcia, titania and yttria having a purity of 99.5% by mass or more and an average particle size of 0.3 to 1 μm 2 mol% of zirconia is mixed at a predetermined ratio, and this raw material, solvent and balls are put into a ball mill and pulverized to a predetermined particle size to produce a slurry. Further, instead of adding calcia and titania, calcium titanate (CaTiO 3 ) may be added, and calcia and titania may be added as a deficiency. When silica, magnesium hydroxide and chromium oxide are added, for example, each powder having a purity of 99.5% by mass or more and an average particle size of 0.1 to 1 μm is weighed and mixed to a predetermined amount. The raw material, solvent and balls are put in a ball mill and pulverized to a predetermined particle size to produce a slurry.
 次に、得られたスラリーにバインダーを添加した後、スプレードライヤーを用いて、噴霧乾燥して顆粒を作製する。 Next, after adding a binder to the obtained slurry, a spray dryer is used to produce granules by spray drying.
 次に、この顆粒をメカプレスに投入して、圧力を加えて所定の形状の成形体を作製する。この成形体に切削加工等を加えて、オイリングノズルの形状とする。なお、インジェクション成形法で成形体を作製しても構わない。 Next, this granule is put into a mechanical press, and pressure is applied to produce a molded body having a predetermined shape. The molded body is subjected to cutting or the like to obtain an oiling nozzle shape. In addition, you may produce a molded object by the injection molding method.
 そして、得られたオイリングノズル形状の成形体を、例えば、アルミナが主成分の場合には、大気雰囲気中で最高温度を1450~1750℃とし、この最高温度での保持時間を1~8時間として焼成すればよい。ここで、カルシアを添加した場合には、焼成温度が高く、焼成時間が長いほど、カルシアのアルミナに対する固溶量が多くなるので、クルトシス(Rku)の数値が小さくなる。また、チタニア,シリカおよび水酸化マグネシウム添加することにより、焼成での最高温度を低く設定でき、保持時間も短くできるため、アルミナの結晶粒径が異常粒成長することを抑制しやすくなる。なお、最高温度や保持時間等の焼成条件は、製品の形状や大きさあるいは焼成炉の種類により変化するため、必要に応じて調整すればよい。 The obtained oiling nozzle shaped molded body is, for example, when alumina is the main component, the maximum temperature is 1450 to 1750 ° C. in the atmospheric air, and the holding time at this maximum temperature is 1 to 8 hours. What is necessary is just to bake. Here, when calcia is added, the higher the calcination temperature and the longer the calcination time, the greater the amount of solid solution of calcia in alumina, so the value of kurtosis (Rku) decreases. Further, by adding titania, silica and magnesium hydroxide, the maximum temperature during firing can be set low and the holding time can be shortened, so that it is easy to suppress the abnormal growth of the crystal grain size of alumina. Note that firing conditions such as maximum temperature and holding time vary depending on the shape and size of the product or the type of firing furnace, and may be adjusted as necessary.
 次に、得られたオイリングノズル形状の焼結体の表面全体をバレル研磨機で仕上げ処理することにより本実施形態のオイリングノズル10を得ることができる。また、前処理として、ブラスト処理等を組み合わせてもよい。 Next, the oiling nozzle 10 of the present embodiment can be obtained by finishing the entire surface of the obtained oiling nozzle-shaped sintered body with a barrel polishing machine. Further, blasting or the like may be combined as preprocessing.
 なお、バレル研磨機による仕上げは、公知のバレル装置を用い、水、メディアおよび製品の投入比を1:0.8:0.5程度として、適量の砥粒を添加する。使用するメディアは6~10mmの大きさを用いることができ、形状は、球状、三角柱状、菱形状、円柱状および斜円柱状などから選択すれば良いが、球状を用いることが好ましい。球状のものを用いることで、製品に対し点接触となりやすく、スキューネスを制御しやすくなる。また、使用する砥粒はGC粒を用い、番手が粗い第1の砥粒と細かい第2の砥粒とを混合した砥粒を用いれば良く、例えば、第1の砥粒と第2の砥粒との混合比率を8:2とすることによって、第1の砥粒によって表面を平滑化しつつ、第2の砥粒によってスキューネスを調整することができる。特に、第1の砥粒は#150~#320のものを、また第2の砥粒は#1200~#6000のものを用いることがよい。そして、バレル研磨機で回転数および処理時間をそれぞれ50~130rpm・10~50時間を行なうことによってクルトシスを制御することができる。これらの範囲で加工すれば、接糸部11の表面粗さ曲線から求められるそれぞれのスキューネスとクルトシスをそれぞれ-2.0以上3.0以下、1.5以上4.5以下に制御することが可能である。 In addition, finishing with a barrel polishing machine is performed by using a known barrel apparatus, and adding an appropriate amount of abrasive grains with a ratio of water, media, and product being about 1: 0.8: 0.5. The medium to be used can have a size of 6 to 10 mm, and the shape may be selected from spherical, triangular prism, rhombus, cylindrical, and oblique cylindrical, but it is preferable to use a spherical shape. By using a spherical material, it is easy to make point contact with the product, and it becomes easy to control skewness. Moreover, the abrasive grain to be used may be a GC grain, and may be an abrasive grain in which the first abrasive grain having a coarse count and the fine second abrasive grain are mixed. For example, the first abrasive grain and the second abrasive grain may be used. By setting the mixing ratio with the grains to 8: 2, the skewness can be adjusted by the second abrasive grains while the surface is smoothed by the first abrasive grains. In particular, it is preferable to use first abrasive grains of # 150 to # 320 and second abrasive grains of # 1200 to # 6000. The cultosis can be controlled by performing the rotation speed and the processing time of 50 to 130 rpm · 10 to 50 hours, respectively, with a barrel grinder. By processing within these ranges, it is possible to control the respective skewness and kurtosis obtained from the surface roughness curve of the yarn-attached portion 11 to be -2.0 to 3.0 and 1.5 to 4.5, respectively.
 なお、仕上げ処理においてバレル処理時間を長くすると、クルトシスが小さくなる傾向がある。また、メディアの大きさや第2の砥粒の番手を細かくすると、スキューネスが大きくなる傾向がある。なお、焼成温度によって結晶粒径を適宜調整することができ、温度が高ければ結晶粒径を大きく、温度が低ければ結晶粒径を小さくすることができる。 In addition, when the barrel processing time is lengthened in the finishing process, kurtosis tends to decrease. Further, when the size of the medium and the count of the second abrasive grain are made fine, the skewness tends to increase. Note that the crystal grain size can be appropriately adjusted depending on the firing temperature, and the crystal grain size can be increased if the temperature is high, and the crystal grain size can be decreased if the temperature is low.
 このようにして得られたオイリングノズル10は、接糸部11の表面の粗さ曲線から求められるスキューネス(Rsk)を-2.0以上3.0以下とすることができ、接糸部11において粗さ曲線で示される山となる領域と谷となる領域とにおいて、谷となる領域を広くすることができ、繊維が接糸部と接触する領域を少なくすることができる。それにより、接糸部11が平らな面である場合と比較して、繊維と接触する領域を少なくすることができるので、接糸部11の表面が摩耗しても繊維が接糸部11と接触する機会を少なくすることができ、繊維へのダメージを抑制することができる。 The oiling nozzle 10 obtained in this way can have a skewness (Rsk) obtained from a roughness curve of the surface of the yarn contact portion 11 of −2.0 or more and 3.0 or less. In the region that becomes the peak and the region that becomes the valley, the region that becomes the valley can be widened, and the region in which the fiber contacts the yarn contact portion can be reduced. Thereby, compared with the case where the yarn contact portion 11 is a flat surface, the area in contact with the fiber can be reduced, so that even if the surface of the yarn contact portion 11 is worn, the fiber is Opportunities for contact can be reduced, and damage to the fibers can be suppressed.
 なお、本実施形態の繊維ガイドの製造方法をオイリングノズル10の製造方法を一例に説明したが、例えば図2(a)に示すローラガイド20や図2(c)に示すトラバースガイド40のような繊維ガイドを作製する場合も、オイリングノズル10と同様の製造方法を用いればよく、例えば、図2(b)に示す棒状のロッドガイド30のような繊維ガイドの場合には、平均粒径を調整して混合した原料にバインダーを添加して坏土を作製し、この坏土を押し出し成形法により棒状に成形して適度な長さに切断した後、オイリングノズル10と同様に焼成して焼結体を得て、必要とする研削加工やバレル研磨などを適宜選択して加工すればよい。 Although the fiber guide manufacturing method of this embodiment has been described by taking the manufacturing method of the oiling nozzle 10 as an example, for example, a roller guide 20 shown in FIG. 2A or a traverse guide 40 shown in FIG. In the case of producing a fiber guide, a manufacturing method similar to that for the oiling nozzle 10 may be used. For example, in the case of a fiber guide such as the rod-shaped rod guide 30 shown in FIG. Then, a binder is added to the mixed raw material to prepare a clay, and this clay is formed into a rod shape by an extrusion molding method and cut to an appropriate length, and then fired and sintered in the same manner as the oiling nozzle 10. A body is obtained, and the necessary grinding or barrel polishing may be appropriately selected and processed.
 以下、本発明の実施例を、繊維ガイドの一例であるオイリングノズル10を用いて説明する。 Hereinafter, an embodiment of the present invention will be described using an oiling nozzle 10 which is an example of a fiber guide.
 まず、純度が99.5質量%のアルミナを99.0質量%と、カルシアを0.5質量%と、シリカを0.5質量%の割合となるように秤量して混合し、この原料に溶媒とボールとを加えてボールミルで所定の粒径になるまで粉砕して、スラリーを作製した。その後、このスラリーにバインダーを添加した後、スプレードライヤーを用いてこのスラリーを噴霧乾燥して、顆粒を作製した。 First, 99.0% by mass of alumina with a purity of 99.5% by mass, 0.5% by mass of calcia, and 0.5% by mass of silica are weighed and mixed, and a solvent and balls are added to this raw material to add a ball mill. The slurry was pulverized until a predetermined particle size was obtained. Then, after adding a binder to this slurry, this slurry was spray-dried using the spray dryer, and the granule was produced.
 この顆粒を用いて、メカプレスにて成形体を作製した後、切削加工してオイリングノズル形状の成形体を得た。 Using this granule, a molded body was produced by a mechanical press and then cut to obtain an oiling nozzle-shaped molded body.
 そして、得られたオイリングノズル形状の成形体を、大気雰囲気中で最高温度を1670℃とし、最高温度での保持時間を1時間として焼成してオイリングノズル形状の焼結体を得た。 The obtained oiling nozzle-shaped compact was fired in an air atmosphere at a maximum temperature of 1670 ° C. and a holding time at the maximum temperature of 1 hour to obtain an oiling nozzle-shaped sintered body.
 次に、オイリングノズル形状の焼結体の表面全体をバレル研磨機により仕上げ処理を行なった。バレル加工条件は前述したように、遠心バレル研磨機により、水、製品およびメディアの投入量を1:0.8:0.5とし、更に適量のGC砥粒を添加した。メディアは表1に示した大きさの形状が球状であり材質がアルミナのメディアを、砥粒は表1に示した2種類の番手のGC砥粒を8:2に混ぜ合わせて用い、回転数90rpmで表1に示したバレル時間で処理した。バレル研磨機の処理において、バレル時間、砥粒の番手、メディアの平均粒径を組みあせることによって、クルトシス(Rku)およびスキューネス(Rsk)を表1に示す値となるように変化させて各試料のオイリングノズル10を作製した。 Next, the entire surface of the oiling nozzle-shaped sintered body was finished with a barrel grinder. As described above, the barrel processing conditions were as follows: the amount of water, product, and media charged was 1: 0.8: 0.5 using a centrifugal barrel polishing machine, and an appropriate amount of GC abrasive was added. The media has a spherical shape with the size shown in Table 1 and is made of alumina, and the abrasive is a mixture of two types of counts of GC abrasives shown in Table 1. Processing was carried out at 90 rpm with the barrel time shown in Table 1. In the barrel polishing machine, each sample was obtained by changing the kurtosis (Rku) and skewness (Rsk) to the values shown in Table 1 by combining the barrel time, the number of abrasive grains, and the average particle diameter of the media. The oiling nozzle 10 was produced.
 そして、表面における平均表面粗さ(Ra)、クルトシス(Rku)およびスキューネス(Rsk)は、JISB 0601-2001に基づき、カットオフ値は0.8mm、測定長0.8mm、測定スピード0.8mm/secとした。なお、使用した測定器は小坂研究所製の表面粗さ計SE-3300を用いて測定した。 The average surface roughness (Ra), kurtosis (Rku), and skewness (Rsk) on the surface are based on JISB 0601-2001, with a cutoff value of 0.8 mm, a measurement length of 0.8 mm, and a measurement speed of 0.8 mm / sec. . The measuring instrument used was measured using a surface roughness meter SE-3300 manufactured by Kosaka Laboratory.
 なお、テストに用いた繊維100は、平均結晶粒径が1.2μmの酸化チタンを1.2質量%含有し、75デニール,36フィラメントとして、繊維100の断面が四角状のポリエステルを用いた。オイリングは繊維100の質量に対して2~4質量%となる油剤付与量とし、水エマルジョン油剤を使用した。また、繊維100の送り速度は5000m/分とした。 The fiber 100 used in the test contained 1.2% by mass of titanium oxide having an average crystal grain size of 1.2 μm, 75 denier, 36 filaments, and polyester having a square cross section of the fiber 100. Oiling was carried out with an oil agent application amount of 2 to 4% by mass based on the mass of the fiber 100, and a water emulsion oil agent was used. The feeding speed of the fiber 100 was set to 5000 m / min.
 そして、各試料共に1個について、繊維100に傷が少しでも発生しているのが確認された場合を、オイリングノズル10の交換時期と判定し、オイリングノズル10の交換が必要となるまでの寿命(時間)を比較した。 For each sample, if it is confirmed that any damage to the fiber 100 has occurred, it is determined that the oiling nozzle 10 needs to be replaced, and the life until the oiling nozzle 10 needs to be replaced is determined. (Time) was compared.
 なお、いずれのサンプルも平均表面粗さ(Ra)は0.8μm以下であった。 All samples had an average surface roughness (Ra) of 0.8 μm or less.
 得られた結果を表1に示す。 The results obtained are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、接糸部の表面の粗さ曲線から求められるスキューネス(Rsk)が-2.0以上3.0以下である試料No.2~5は、寿命が最低でも400時間であり、この範囲外である試料No.1,6と比較して、15時間以上改善されたことがわかった。特に、試料No.3,4はスキューネス(Rsk)が0.5以上2.5以下であり、寿命が420時間以上であることがわかった。 From the results shown in Table 1, a sample No. having a skewness (Rsk) of −2.0 or more and 3.0 or less determined from the surface roughness curve of the yarn-attached portion. Samples Nos. 2 to 5 have a lifetime of at least 400 hours and are out of this range. Compared with 1 and 6, it was found that the improvement was 15 hours or more. In particular, sample no. 3 and 4 were found to have a skewness (Rsk) of 0.5 to 2.5 and a lifetime of 420 hours or more.
 また、接糸部の表面の粗さ曲線から求められるクルトシス(Rku)が、1.5以上4.5以下である試料No.8~10は、寿命が最低でも445時間であり、この範囲外である試料No.7,11と比較して、10時間以上改善されたことがわかった。 In addition, the sample No. in which the kurtosis (Rku) obtained from the surface roughness curve of the yarn contact portion is 1.5 or more and 4.5 or less. Samples Nos. 8 to 10 have a lifetime of at least 445 hours and are out of this range. Compared to 7 and 11, it was found that the improvement was more than 10 hours.
 以上のことから、接糸部の表面の粗さ曲線から求められるスキューネス(Rsk)が-2.0以上3.0以下であることにより、接糸部11が平らな面である場合と比較して、接糸部11において繊維100と接触する領域を少なくすることができるので、接糸部11の表面が摩耗しても繊維100が接糸部11と接触する機会を少なくすることができ、繊維ガイドの寿命が延び繊維100へのダメージを減少できることが分かる。中でも試料No.3,4は、スキューネス(Rsk)が0.5以上2.5以下であることから繊維ガイドの寿命が420時間以上と長く繊維100へのダメージを減少できていることがわかる。 From the above, the skewness (Rsk) obtained from the roughness curve of the surface of the yarn-attached portion is -2.0 or more and 3.0 or less, so that the yarn-attached portion 11 is compared with the flat surface as compared with the case where the yarn-attached portion 11 is a flat surface. Since the area in contact with the fiber 100 in the portion 11 can be reduced, the chance that the fiber 100 contacts the contact portion 11 even if the surface of the contact portion 11 is worn can be reduced, and the life of the fiber guide can be reduced. It can be seen that the damage to the fiber 100 can be reduced. Among them, sample No. Nos. 3 and 4 have a skewness (Rsk) of 0.5 or more and 2.5 or less, indicating that the life of the fiber guide is as long as 420 hours or more and damage to the fiber 100 can be reduced.
 また、接糸部の表面の粗さ曲線から求められるクルトシス(Rku)が1.5以上4.5以下であることにより、接糸部において突起の先端の曲率半径を比較的小さくすることができることから、表面における摩擦による繊維への負担をさらに減少できるので、繊維に対するダメージをさらに減少でき、傷,解れおよび毛羽の防止にもつながることが分かる。中でも試料No.9,10は、クルトシス(Rku)が、2.8以上4.5以下であることから繊維ガイドの寿命が450時間以上と長く繊維100へのダメージを減少できていることがわかる。 In addition, since the kurtosis (Rku) obtained from the surface roughness curve of the yarn-attached portion is 1.5 or more and 4.5 or less, the radius of curvature of the tip of the protrusion can be relatively reduced in the yarn-attached portion, It can be seen that since the load on the fiber due to friction can be further reduced, the damage to the fiber can be further reduced, leading to prevention of scratches, tears and fluff. Among them, sample No. In Nos. 9 and 10, the kurtosis (Rku) is not less than 2.8 and not more than 4.5, which indicates that the life of the fiber guide is as long as 450 hours or more and damage to the fiber 100 can be reduced.
 次に、繊維ガイドの一例であるオイリングノズル10の接糸部11において、結晶粒子の個数がオイリングノズル10の寿命に及ぼす影響に関するテストを行なった。 Next, a test was conducted on the influence of the number of crystal particles on the life of the oiling nozzle 10 at the yarn contact portion 11 of the oiling nozzle 10 as an example of the fiber guide.
 成形体を作製するまでは、実施例1と同じ方法で行なった。 The same method as in Example 1 was performed until the molded body was produced.
 また、焼成については、各試料において表2に示した焼成温度で1時間焼成した。 Moreover, regarding the firing, each sample was fired at the firing temperature shown in Table 2 for 1 hour.
 そして、得られた焼結体に対し、メディアの粒径を6~10mm、第1の砥粒の番手を#150~#320、第2の砥粒の番手を#1200~#6000、バレル研磨機による処理時間を10~50時間とし、この範囲で接糸部の表面の粗さ曲線から求められるスキューネス(Rsk)が-2.0以上3.0以下、クルトシス(Rku)が1.5以上4.5以下、算術平均粗さ(Ra)が0.8μm以下となるように調整した。なお、試料No.13は実施例1の試料No.9と同じ方法で作製した。 The resulting sintered body has a media particle size of 6 to 10 mm, first abrasive grain counts of # 150 to # 320, second abrasive grain counts of # 1200 to # 6000, and barrel polishing. The processing time by the machine is 10 to 50 hours. Within this range, the skewness (Rsk) obtained from the surface roughness curve of the yarn-attached part is -2.0 to 3.0, the kurtosis (Rku) is 1.5 to 4.5, and the arithmetic average roughness The thickness (Ra) was adjusted to 0.8 μm or less. Sample No. 13 shows the sample No. of Example 1. It was produced by the same method as 9.
 そして、接糸部11の表面において、走査電子顕微鏡を用いて倍率を1000倍として焼結体の表面を反射電子像で写真撮影し、範囲が85μm×118μm(観察面積:10030μm)の観察画像について画像解析ソフトを用いて各結晶粒子の円相当径における結晶粒径を求めて、円相当径で10μm以上の結晶粒子を数えた。なお、同様の方法で合計5箇所で作業を行ない、その平均値を算出することによって求めた。 Then, on the surface of the yarn contact portion 11, the surface of the sintered body was photographed with a reflected electron image at a magnification of 1000 using a scanning electron microscope, and an observation image having a range of 85 μm × 118 μm (observation area: 10030 μm 2 ). The image particle size of each crystal particle at the equivalent circle diameter was determined using image analysis software, and the crystal particles having an equivalent circle diameter of 10 μm or more were counted. In addition, it calculated | required by performing the operation | work in a total of 5 places with the same method, and calculating the average value.
 また、実施例1と同じテスト条件で結晶粒子の個数がオイリングノズル10の寿命におよぼす影響に関してテストをした。 In addition, the influence of the number of crystal grains on the life of the oiling nozzle 10 was tested under the same test conditions as in Example 1.
 得られた結果を表2に示す。 Table 2 shows the results obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、接糸部の表面において、円相当径で10μm以上の結晶粒子が、10030μmの範囲内に、15個以上60個以下存在する試料No.13~16は、寿命が最低でも445時間であり、この範囲外である試料No.12,17と比較して、15時間以上改善されたことがわかった。 From the results shown in Table 2, the surface of the yarn contact portion, the circle equivalent diameter 10μm or more crystal grains, in the range of 10030Myuemu 2, the sample exists 15 or more 60 or less No. Samples Nos. 13 to 16 have a lifetime of at least 445 hours, and are out of this range. Compared to 12 and 17, it was found that the improvement was more than 15 hours.
 次に、繊維ガイドの一例であるオイリングノズル10の接糸部11において、アルミナ,カルシア,チタニアおよびジルコニアの含有量がオイリングノズル10の寿命に及ぼす影響に関してテストを行なった。 Next, a test was performed on the influence of the contents of alumina, calcia, titania and zirconia on the life of the oiling nozzle 10 in the yarn contact portion 11 of the oiling nozzle 10 as an example of the fiber guide.
 まず、純度が99.9質量%のアルミナと、カルシアと、チタニアと、イットリアの含有割合が2mol%のジルコニアとを、焼結体としたときの比率(含有量)が表3に示す割合となるように秤量して混合し、この原料に溶媒とボールとを加えてボールミルで所定の粒径になるまで粉砕して、スラリーを作製した。その後、このスラリーにバインダーを添加した後、スプレードライヤーを用いてこのスラリーを噴霧乾燥して、顆粒を作製した。 First, the ratio (content) when the sintered body is alumina having a purity of 99.9% by mass, calcia, titania, and zirconia having a yttria content ratio of 2 mol% is the ratio shown in Table 3. A solvent and balls were added to this raw material, and the mixture was pulverized to a predetermined particle size with a ball mill to prepare a slurry. Then, after adding a binder to this slurry, this slurry was spray-dried using the spray dryer, and the granule was produced.
 次に、この顆粒をメカプレスに投入して図1に示すオイリングノズル10の形状となるように圧力を加えて成形し、この成形体に切削加工等を加えて、オイリングノズル10の形状とした。 Next, this granule was put into a mechanical press and molded by applying pressure so as to obtain the shape of the oiling nozzle 10 shown in FIG.
 そして、得られた成形体を、大気雰囲気中で最高温度を1550℃とし、最高温度での保持時間を1時間として焼成した。 The obtained molded body was fired in an air atmosphere with a maximum temperature of 1550 ° C. and a holding time at the maximum temperature of 1 hour.
 この後、得られた焼結体に対し、メディアの粒径を6~10mm、第1の砥粒の番手を#150~#320、第2の砥粒の番手を#1200~#6000、バレル研磨機による処理時間を10~50時間とし、この範囲で接糸部の表面の粗さ曲線から求められるスキューネス(Rsk)が-2.0以上3.0以下、クルトシス(Rku)が1.5以上4.5以下、算術平均粗さ(Ra)が0.8μm以下となるように調整し、試料No.18~43のオイリングノズル10を得た。 After this, for the obtained sintered body, the media particle size is 6-10 mm, the first abrasive count is # 150- # 320, the second abrasive count is # 1200- # 6000, barrel The processing time by the polishing machine is 10 to 50 hours. Within this range, the skewness (Rsk) obtained from the surface roughness curve of the yarn-attached part is −2.0 to 3.0, the kurtosis (Rku) is 1.5 to 4.5, and the arithmetic average The sample was adjusted so that the roughness (Ra) was 0.8 μm or less. 18 to 43 oiling nozzles 10 were obtained.
 また、試料No.44として、純度が99.5%で、粒度が0.6μm、比表面積8m/gのアルミナ粉末が99.0質量%、残部にカルシアを含有させ、調合し、メカプレスに投入して図1に示すオイリングノズル10の形状に圧力を加え成形し、1650℃にて焼成後、バレルにて鏡面加工後、1700℃にて再焼成し作製した。 Sample No. The oiling nozzle 10 shown in FIG. 1 was prepared by adding 99.0% by mass of alumina powder having a purity of 99.5%, a particle size of 0.6 μm, and a specific surface area of 8 m 2 / g, containing calcia in the balance, and putting it in a mechanical press. The shape was molded by applying pressure, fired at 1650 ° C., mirror-finished with a barrel, and refired at 1700 ° C. to produce.
 このオイリングノズル10に含まれるアルミナ,カルシア,チタニアおよびジルコニアのそれぞれの割合は、焼結体をICP(Inductively Coupled Plasma)発光分光分析法を用いて定量分析し、得られた値を全て酸化物換算して測定した。 The proportions of alumina, calcia, titania and zirconia contained in this oiling nozzle 10 are quantitatively analyzed for the sintered body using ICP (Inductively Coupled Plasma) emission spectroscopy, and all the values obtained are converted to oxides. And measured.
 そして、実施例1および2と同じ条件で、アルミナ,カルシア,チタニアおよびジルコニアの含有量がオイリングノズルの寿命に及ぼす影響に関してテストを行なった。 Then, under the same conditions as in Examples 1 and 2, a test was conducted regarding the influence of the contents of alumina, calcia, titania and zirconia on the life of the oiling nozzle.
 得られた結果を表3に示す。 Table 3 shows the obtained results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、セラミック焼結体が、AlをAl換算で92.0質量%以上97.0質量%以下、CaをCaO換算で0.7質量%以上4.0質量%以下、TiをTiO換算で0.5質量%以上2.2質量%以下、ZrをZrO換算で1.0質量%以上3.0質量%以下を含有する試料No.19~22,25~28,31~34および37~40は、寿命が最低でも520時間あり、この範囲外である試料No.18,23,24,29,30,35,36,41~44と比較して、40時間以上改善されたことが分かった。 From the results shown in Table 3, the ceramic sintered body shows that Al is 92.0% by mass or more and 97.0% by mass or less in terms of Al 2 O 3 , Ca is 0.7% by mass or more and 4.0% by mass or less in terms of CaO, and Ti is in terms of TiO 2 . Sample No. 0.5 to 2.2% by mass, Zr containing 1.0 to 3.0% by mass in terms of ZrO 2 . Samples Nos. 19 to 22, 25 to 28, 31 to 34, and 37 to 40 have a lifetime of at least 520 hours and are outside this range. Compared with 18, 23, 24, 29, 30, 35, 36, 41 to 44, it was found that the improvement was over 40 hours.
 以上のことから、少なくとも接糸部を構成するセラミック焼結体が、AlをAl換算で92.0質量%以上97.0質量%以下、CaをCaO換算で0.7質量%以上4.0質量%以下、TiをTiO換算で0.5質量%以上2.2質量%以下、ZrをZrO換算で1.0質量%以上3.0質量%以下を含有することにより、高い耐摩耗性を維持したまま、繊維100に対するダメージを少なくし糸質の劣化を抑制できることが分かる。 From the above, at least the ceramic sintered body constituting the yarn contact section, Al and Al 2 O 3 97.0 wt% 92.0 wt% or more in terms of less, Ca and 0.7 mass% or less than 4.0 wt% in terms of CaO, Ti 2.2 wt% to 0.5 wt% in terms of TiO 2 or less, by containing more than 3.0 mass% to 1.0 mass% in terms of ZrO 2 and Zr, while maintaining high wear resistance, with less damage to the fibers 100 It turns out that deterioration of a thread quality can be suppressed.
 次に、アルミナと、カルシアと、チタニアと、イットリアの含有割合が2mol%のジルコニアとに、さらに、シリカと、マグネシアとを焼結体での比率(含有量)が表2に示す割合となるように秤量して混合し、その後の工程は実施例1と同一として試料No.45~56のオイリングノズル10を作製した。 Next, the ratio (content) of the sintered body of alumina, calcia, titania, zirconia with a yttria content ratio of 2 mol%, and further with silica and magnesia is the ratio shown in Table 2. The subsequent steps were the same as in Example 1 and the sample No. 45 to 56 oiling nozzles 10 were produced.
 その後、実施例1~3と同じテスト条件でシリカと、マグネシアとがオイリングノズル10の寿命におよぼす影響に関してテストをした。 Thereafter, the test was conducted on the influence of silica and magnesia on the life of the oiling nozzle 10 under the same test conditions as in Examples 1 to 3.
 また、オイリングノズル10に含まれるアルミナ,カルシア,チタニア,ジルコニア,シリカおよびマグネシアとの割合は、実施例3と同様にICP発光分光分析法を用いて焼結体を分析し求めた。 Further, the ratio of alumina, calcia, titania, zirconia, silica and magnesia contained in the oiling nozzle 10 was determined by analyzing the sintered body using ICP emission spectroscopic analysis as in Example 3.
 得られた結果を表4に示す。 Table 4 shows the obtained results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から、セラミック焼結体が、SiをSiO換算で0.10質量%以上0.50質量%以下、MgをMgO換算で0.02質量%以上0.14質量%以下の範囲で含有する試料No.46~49および52~55は、試料No.45,50,51および56に比べ耐摩耗性が向上し、繊維100に対してダメージを抑制できることが分かった。 From the results shown in Table 4, the ceramic sintered body contains sample No. 1 containing Si in the range of 0.10 to 0.50% by mass in terms of SiO 2 and Mg in the range of 0.02 to 0.14% by mass in terms of MgO. Samples 46-49 and 52-55 are sample Nos. It was found that the wear resistance was improved compared to 45, 50, 51 and 56, and damage to the fiber 100 could be suppressed.
 以上のことから、少なくとも接糸部を構成するセラミック焼結体が、SiをSiO換算で0.10~0.50質量%およびMgをMgO換算で0.02~0.14質量%含有することにより、高い耐摩耗性を維持したまま、繊維100に対するダメージを少なくし糸質の劣化を抑制できることが分かる。 From the above, the ceramic sintered body constituting at least the yarn contact portion contains Si in an amount of 0.10 to 0.50% by mass in terms of SiO 2 and Mg in an amount of 0.02 to 0.14% by mass in terms of MgO, thereby providing high wear resistance. It can be seen that the damage to the fiber 100 can be reduced and the deterioration of the yarn quality can be suppressed while maintaining.
 10:オイリングノズル
 11:接糸部
 12:オイル供給孔
 13:オイル溜まり
 20:ローラガイド
 30:ロッドガイド
 40:トラバースガイド
 100:繊維
10: Oiling nozzle 11: Yarn contact part 12: Oil supply hole 13: Oil reservoir 20: Roller guide 30: Rod guide 40: Traverse guide 100: Fiber

Claims (7)

  1.  少なくとも糸が接する接糸部がセラミックス焼結体からなり、前記接糸部の表面の粗さ曲線から求められるスキューネス(Rsk)が、-2.0以上3.0以下であることを特徴とする繊維ガイド。 At least the yarn contact portion in contact with the yarn is made of a ceramic sintered body, and the skewness (Rsk) obtained from the roughness curve of the surface of the yarn contact portion is from −2.0 to 3.0. Fiber guide.
  2.  前記接糸部の表面の粗さ曲線から求められるスキューネス(Rsk)が、0.5以上2.5以下であることを特徴とする請求項1に記載の繊維ガイド。 The fiber guide according to claim 1, wherein a skewness (Rsk) obtained from a surface roughness curve of the yarn-attached portion is 0.5 or more and 2.5 or less.
  3.  前記接糸部の表面の粗さ曲線から求められるクルトシス(Rku)が、1.5以上4.5以下であることを特徴とする請求項1または請求項2に記載の繊維ガイド。 The fiber guide according to claim 1 or 2, wherein a kurtosis (Rku) obtained from a surface roughness curve of the yarn-attached portion is 1.5 or more and 4.5 or less.
  4.  前記接糸部の表面の粗さ曲線から求められるクルトシス(Rku)が、2.8以上4.5以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の繊維ガイド。 The fiber guide according to any one of claims 1 to 3, wherein a kurtosis (Rku) obtained from a surface roughness curve of the yarn-attached portion is 2.8 or more and 4.5 or less.
  5.  前記接糸部の表面において、円相当径で10μm以上の結晶粒子が、10030μmの範囲内に15個以上60個以下存在することを特徴とする請求項1乃至請求項4のいずれかに記載の繊維ガイド。 5. The crystal grain having an equivalent circle diameter of 10 μm or more exists in the range of 1530 to 60 in a range of 10030 μm 2 on the surface of the yarn-attached portion. Fiber guide.
  6.  前記セラミックス焼結体がAlをAl換算で92.0質量%以上97.0質量%以下、CaをCaO換算で0.7質量%以上4.0質量%以下、TiをTiO換算で0.5質量%以上2.2質量%以下、ZrをZrO換算で1.0質量%以上3.0質量%以下含有することを特徴とする請求項1乃至請求項5のいずれかに記載の繊維ガイド。 In the ceramic sintered body, Al is 92.0% by mass or more and 97.0% by mass or less in terms of Al 2 O 3 , Ca is 0.7% by mass or more and 4.0% by mass or less in terms of CaO, and Ti is converted in terms of TiO 2. 5 to 2.2% by mass, and Zr is contained in an amount of 1.0% by mass to 3.0% by mass in terms of ZrO 2. The described fiber guide.
  7.  前記セラミックス焼結体がSiをSiO換算で0.10質量%以上0.50質量%以下、MgをMgO換算で0.02質量%以上0.14質量%以下含有することを特徴とする請求項1乃至請求項6のいずれかに記載の繊維ガイド。 Claims, characterized in that the ceramic sintered body of Si to SiO 2 0.50 wt% to 0.10 wt% in terms of less, Mg and containing less 0.14 wt% 0.02 wt% in terms of MgO The fiber guide according to any one of claims 1 to 6.
PCT/JP2012/065645 2011-06-20 2012-06-19 Fiber guide WO2012176777A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012545415A JP5269257B2 (en) 2011-06-20 2012-06-19 Fiber guide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011136587 2011-06-20
JP2011-136587 2011-06-20

Publications (1)

Publication Number Publication Date
WO2012176777A1 true WO2012176777A1 (en) 2012-12-27

Family

ID=47367146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065645 WO2012176777A1 (en) 2011-06-20 2012-06-19 Fiber guide

Country Status (3)

Country Link
JP (1) JP5269257B2 (en)
CN (2) CN202809036U (en)
WO (1) WO2012176777A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038699A1 (en) * 2015-08-28 2017-03-09 京セラ株式会社 Fiber guide
WO2017057469A1 (en) * 2015-09-28 2017-04-06 京セラ株式会社 Fiber guide
EP3085652A4 (en) * 2013-12-17 2017-08-16 Kyocera Corporation Fiber guide
EP3248925A4 (en) * 2015-02-25 2018-03-07 Kyocera Corporation Fiber guide
WO2018181148A1 (en) * 2017-03-29 2018-10-04 京セラ株式会社 Fiber guide

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5269257B2 (en) * 2011-06-20 2013-08-21 京セラ株式会社 Fiber guide
CN103305946B (en) * 2013-07-04 2016-02-17 苏州祺尚纺织有限公司 A kind of spinning electrostatic monitoring deflector roll
CN103966678A (en) * 2014-05-09 2014-08-06 上海铁美机械有限公司 Oil feeding nozzle for chemical fiber spinning
CN105040200B (en) * 2015-06-30 2017-09-29 南通醋酸纤维有限公司 Oil silk collecting roller
CN105256391A (en) * 2015-11-10 2016-01-20 太仓市世博纺织配件有限公司 Preparing method of yarn guide
JP6708736B2 (en) * 2016-06-28 2020-06-10 京セラ株式会社 Fiber guide
WO2018101332A1 (en) * 2016-11-29 2018-06-07 京セラ株式会社 Timepiece case
CN110325034B (en) * 2017-02-27 2021-12-07 京瓷株式会社 Fishing line guide member and fishing rod provided with same
JP2019057141A (en) * 2017-09-21 2019-04-11 シャープ株式会社 Pen input surface material, polarizing plate and display device
JP6995130B2 (en) * 2017-09-28 2022-01-14 京セラ株式会社 Oiling nozzle
CN114921878A (en) * 2022-06-10 2022-08-19 浙江金元亚麻有限公司 Flax drawing frame director wear resistant device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07184518A (en) * 1993-12-27 1995-07-25 Nippon Cement Co Ltd Thread-guide member and its production
JP2006256955A (en) * 2006-03-16 2006-09-28 Toshiba Corp Instrument having wear-resistant member
JP2010229570A (en) * 2009-03-26 2010-10-14 Kyocera Corp Fiber guide

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875773U (en) * 1981-11-18 1983-05-21 株式会社クラレ Metering oiling nozzle
JP3274974B2 (en) * 1996-08-30 2002-04-15 京セラ株式会社 Oiling nozzle
JP2000073225A (en) * 1998-08-21 2000-03-07 Toray Ind Inc Tool for regulating yarn path and production of synthetic fiber
CN1347853A (en) * 2001-11-23 2002-05-08 王国梁 Transparent wire guide of allumina ceramic and its manufacture
DE10331503A1 (en) * 2003-07-10 2005-02-10 Maschinenfabrik Rieter Ag Thread guiding element for guiding threads
JP4453624B2 (en) * 2005-07-21 2010-04-21 株式会社ジェイテクト Cam follower
JP2007255277A (en) * 2006-03-23 2007-10-04 Jtekt Corp Cam follower
JP5269257B2 (en) * 2011-06-20 2013-08-21 京セラ株式会社 Fiber guide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07184518A (en) * 1993-12-27 1995-07-25 Nippon Cement Co Ltd Thread-guide member and its production
JP2006256955A (en) * 2006-03-16 2006-09-28 Toshiba Corp Instrument having wear-resistant member
JP2010229570A (en) * 2009-03-26 2010-10-14 Kyocera Corp Fiber guide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085652A4 (en) * 2013-12-17 2017-08-16 Kyocera Corporation Fiber guide
EP3248925A4 (en) * 2015-02-25 2018-03-07 Kyocera Corporation Fiber guide
WO2017038699A1 (en) * 2015-08-28 2017-03-09 京セラ株式会社 Fiber guide
JPWO2017038699A1 (en) * 2015-08-28 2017-08-31 京セラ株式会社 Fiber guide
WO2017057469A1 (en) * 2015-09-28 2017-04-06 京セラ株式会社 Fiber guide
JPWO2017057469A1 (en) * 2015-09-28 2018-06-28 京セラ株式会社 Fiber guide
WO2018181148A1 (en) * 2017-03-29 2018-10-04 京セラ株式会社 Fiber guide
JPWO2018181148A1 (en) * 2017-03-29 2020-02-27 京セラ株式会社 Fiber guide

Also Published As

Publication number Publication date
JPWO2012176777A1 (en) 2015-02-23
CN202809036U (en) 2013-03-20
CN102839438B (en) 2016-05-25
JP5269257B2 (en) 2013-08-21
CN102839438A (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5269257B2 (en) Fiber guide
WO2014119522A1 (en) Fishing-line guide member, and fishing-line guide and fishing rod provided with said fishing-line guide member
JP6290927B2 (en) Fiber guide
JP2010229570A (en) Fiber guide
EP3248925B1 (en) Fiber guide
JP6190086B2 (en) Fiber guide
JP6632287B2 (en) Zirconia micro media
JP6680879B2 (en) Oiling nozzle
JP6789379B2 (en) Fiber guide
JPH10262510A (en) Guide member for fishing line and its production
JP2001158658A (en) Guide member for fiber
JP6208436B2 (en) Ring member, fishing line ring member, fishing line guide and fishing rod, and textile machine ring member
JP2761746B2 (en) Thread road
JPH05301765A (en) Alumina ceramic for sliding member
JP2019025506A (en) Capstan roll
JP4753805B2 (en) Oil supply roller and spinning take-up device using the same
JPH09110517A (en) Sliding member
JP2019172569A (en) Ceramics ball and evaluation method of density variations of ceramics ball cross section

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012545415

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803127

Country of ref document: EP

Kind code of ref document: A1