WO2012176569A1 - Contactless power transmission system - Google Patents

Contactless power transmission system Download PDF

Info

Publication number
WO2012176569A1
WO2012176569A1 PCT/JP2012/063003 JP2012063003W WO2012176569A1 WO 2012176569 A1 WO2012176569 A1 WO 2012176569A1 JP 2012063003 W JP2012063003 W JP 2012063003W WO 2012176569 A1 WO2012176569 A1 WO 2012176569A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature detection
power transmission
detection unit
transmission system
coil
Prior art date
Application number
PCT/JP2012/063003
Other languages
French (fr)
Japanese (ja)
Inventor
北村 浩康
Original Assignee
パナソニック 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック 株式会社 filed Critical パナソニック 株式会社
Publication of WO2012176569A1 publication Critical patent/WO2012176569A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-contact power transmission system that performs non-contact power transmission between devices using electromagnetic induction.
  • a non-contact power transmission system in which a secondary battery (battery) for power supply built in an electronic device such as a digital camera or a personal computer is charged in a non-contact manner.
  • a primary coil and a secondary coil are provided in an electronic device and a dedicated charger corresponding to the electronic device, respectively.
  • alternating power is transmitted from the charger to the electronic device through electromagnetic induction between both coils, and the alternating power is converted into direct current power by the electronic device, whereby the secondary battery. Is charged.
  • temperature sensors are arranged at a plurality of measurement points set around the primary coil.
  • a metal foreign object is interposed between the primary coil and the secondary coil. Power transmission by the charger is stopped.
  • fever of a metal foreign material can be suppressed, the thermal deformation of a charger and an electronic device can be avoided exactly.
  • An object of the present invention is to provide a non-contact power transmission system capable of simplifying the configuration while making it possible to detect heat generation of a metal foreign object when performing power transmission in a non-contact manner.
  • the present invention provides a primary coil that generates an alternating magnetic flux by supplying alternating power, and a secondary coil that receives the alternating power in linkage with the alternating magnetic flux from the primary coil.
  • a non-contact power transmission system for supplying received power received by the secondary coil to a load, a temperature detection unit disposed between the primary coil and the secondary coil, And detecting the temperature of the temperature detection unit through the plurality of temperature detection elements, and detecting the temperature according to the detected temperature of the temperature detection unit
  • An abnormality detection unit that detects abnormal heating of a part, and a power transmission control unit that stops supply of alternating power to the primary coil when the abnormality detection unit detects abnormal heating of the temperature detection unit.
  • the temperature detection unit is formed in a sheet shape.
  • the plurality of temperature detection elements are arranged in a lattice pattern in the temperature detection unit.
  • the temperature detection unit links the alternating magnetic flux generated from the primary coil and receives the alternating power and the temperature using the alternating power of the receiving coil. It is preferable that the power supply which produces
  • the temperature detection unit is disposed on the primary coil.
  • the non-contact power transmission system includes a housing that covers the primary coil, and the temperature detection unit is disposed on the housing.
  • the temperature detection unit is disposed on the secondary coil.
  • the non-contact power transmission system includes a housing that covers the secondary coil, and the temperature detection unit is disposed on the housing.
  • the abnormality detection unit is connected to the power transmission control unit so as to be capable of wireless communication.
  • the temperature detection unit is magnetically coupled to the primary coil and has a first end and a second end, and a first of the magnetic coupling coils.
  • a switching element connected between the first end and the second end, and when the abnormality detection unit detects abnormal heating of the temperature detection unit, the abnormality detection unit detects the first of the magnetic coupling coil through the switching element.
  • the first and second ends are short-circuited to change the amplitude of the alternating power generated in the primary coil, and the power transmission control unit is configured to change the amplitude of the alternating power generated in the primary coil based on the change in the amplitude of the alternating power generated in the primary coil. It is preferable to detect abnormal heating of the temperature detector.
  • the non-contact power transmission system includes a device on which the secondary coil is mounted, and the device includes a wireless communication unit that performs wireless communication with the power transmission control unit, and the abnormality detection
  • the unit is communicably connected to the wireless communication unit, and wirelessly transmits a detection signal indicating whether or not abnormal heating of the temperature detection unit has been detected to the power transmission control unit via the wireless communication unit.
  • the abnormality detection unit is connected to the wireless communication unit so as to be capable of wireless communication.
  • the temperature detection unit is coupled to the secondary coil and has a first end and a second end, and a first of the magnetic coupling coil.
  • a switching element connected between the end and the second end, and when the abnormality detection unit detects abnormal heating of the temperature detection unit, the first of the magnetic coupling coil is detected through the switching element.
  • the second end is short-circuited to change the amplitude of the alternating power generated in the secondary coil, and the power transmission control unit is configured to change the temperature based on the change in the amplitude of the alternating power generated in the secondary coil. It is preferable to detect abnormal heating of the detection unit.
  • the non-contact power transmission system it is possible to simplify the configuration while making it possible to detect the heat generation of the metal foreign object when performing power transmission in a non-contact manner.
  • Sectional drawing which shows schematic structure of the non-contact electric power transmission system of 1st Embodiment.
  • the perspective view which shows the perspective structure of the temperature detection sheet
  • the circuit diagram which shows the system configuration
  • the graph which shows the relationship between the temperature of a linear thermistor, and the electric potential of the terminal provided in the sensor control part about the non-contact electric power transmission system of 1st Embodiment.
  • the flowchart which shows the procedure of the abnormality detection process by the non-contact electric power transmission system of 1st Embodiment.
  • Sectional drawing which shows the schematic structure about 2nd Embodiment of the non-contact electric power transmission system concerning this invention.
  • the circuit diagram which shows the system configuration
  • (A) is a time chart which shows the example of switching of ON / OFF of a switching element about the non-contact electric power transmission system of 2nd Embodiment.
  • (B) is a time chart showing a transition example of alternating power (voltage) induced in the secondary coil.
  • (C) is a time chart showing a transition example of alternating power (voltage) induced in the primary coil.
  • (D) is a time chart showing a transition example of a DC voltage that is rectified by the voltage induced in the primary coil and taken into the primary side control unit.
  • the perspective view which shows the perspective structure of the temperature detection sheet
  • the circuit diagram which shows the structure of the temperature detection sheet
  • Sectional drawing which shows schematic structure of the non-contact electric power transmission system of 5th Embodiment.
  • the perspective view which shows the perspective structure of the temperature detection sheet
  • the circuit diagram which shows the structure of the temperature detection sheet
  • (A) is a time chart which shows the transition example of the alternating power (voltage) induced by the secondary coil about the non-contact electric power transmission system of 5th Embodiment.
  • (B) is a time chart showing a transition example of alternating power (voltage) induced in the primary coil.
  • (C) is a time chart showing an example of switching on / off of the switching element.
  • the circuit diagram which shows the structure of the charger and portable apparatus which comprise the non-contact electric power transmission system of 5th Embodiment.
  • the perspective view which shows the perspective structure of the temperature detection sheet
  • this non-contact power transmission system includes a portable device 1 such as a digital camera or a notebook personal computer equipped with a secondary battery 10 that functions as a power source (load), and a secondary battery of the portable device 1. And a charger 2 that supplies electric power to 10 in a non-contact manner.
  • a portable device 1 such as a digital camera or a notebook personal computer equipped with a secondary battery 10 that functions as a power source (load), and a secondary battery of the portable device 1.
  • a charger 2 that supplies electric power to 10 in a non-contact manner.
  • the charger 2 includes a primary coil module 20 that transmits power to the mobile device 1. Further, the charger 2 protects various electronic components from the external environment by covering the outside of the various electronic components including the primary coil module 20 with the housing 21.
  • the upper surface 21a of the housing 21 is a portion where the portable device 1 is placed.
  • the primary coil module 20 includes a primary coil L1 that generates a magnetic flux when power is supplied and a magnetic body M1 that is formed of a ferrite-based member that suppresses leakage of magnetic flux from the primary coil L1.
  • Primary coil L1 includes a planar coil in which a conducting wire is wound in the planar direction. In the present embodiment, the number of turns of the primary coil L1 is set to 20 turns. Further, the outer diameter of the primary coil L1 is set to 40 [mm]. The total thickness of the primary coil L1 and the magnetic body M1 is about 1 [mm].
  • the temperature detection sheet 30 which detects the temperature of the periphery is affixed on the end surface on the opposite side to the end surface with which the magnetic body M1 of the primary coil L1 contact
  • the temperature detection sheet 30 is a sheet-like member formed of a polymer film such as a PET (polyethylene terephthalate) resin, for example, and includes a plurality of linear shapes inside the temperature detection sheet 30.
  • the thermistors SH1 to SH5 and SV1 to SV5 are formed in a lattice shape.
  • the plurality of linear thermistors SH1 to SH5 and SV1 to SV5 are temperature detection elements whose resistance value increases as the temperature of the linear thermistors SH1 to SH5 and SV1 to SV5 increases.
  • a plurality of linear thermistors SH1 to SH5 extending in the x-axis direction and a plurality of linear thermistors SV1 to SV5 extending in the y-axis direction in the figure are mutually connected by an insulating layer provided therebetween. Insulated. Lands LH11 to LH15, LH21 to LH25, LV11 to LV15, and LV21 to L25 are formed at both ends of each of the linear thermistors SH1 to SH5, SV1 to SV5.
  • Each of the linear thermistors SH1 to SH5, SV1 to SV5 is electrically connected to a processing circuit (not shown) built in the temperature detection sheet 30 via the two lands LH11 to LH15, LH21 to LH25, LV11 to LV15, and LV21 to L25. It is connected to the.
  • a thermistor (not shown) having resistance temperature characteristics according to the linear thermistors SH1 to SH5 and SV1 to SV5 functioning as a part for detecting the ambient temperature (room temperature) around the outer edge of the temperature detection sheet 30. Is provided.
  • the temperature detection sheet 30 formed in a sheet shape that functions as a temperature detection unit including the linear thermistors SH1 to SH5, SV1 to SV5, processing circuits thereof, and the like is used. Thereby, since the temperature detection sheet 30 can be easily affixed on the upper surface of the primary coil L1, attachment of the temperature detection sheet 30 is easy.
  • the portable device 1 includes a secondary coil module 11 that receives power transmitted from the charger 2. Moreover, the portable device 1 protects them from the external environment by covering the outer periphery of various electronic components including the secondary coil module 11 and the secondary battery 10 with the housing 12.
  • the secondary coil module 11 is formed of a secondary coil L2 that generates current by interlinking with the magnetic flux generated from the primary coil L1, and a ferrite-based member that suppresses leakage of magnetic flux from the secondary coil L2. And the magnetic body M2. Similar to the primary coil L1, the secondary coil L2 includes a planar coil. In the present embodiment, the number of turns of the secondary coil L2 is set to 15 turns. The outer diameter of the secondary coil L2 is set to 35 [mm]. The total thickness of the secondary coil L2 and the magnetic body M2 is set to about 0.5 [mm].
  • the charger 2 includes a series circuit including a primary side LC circuit 22 and a switching element FET1 connected in series, a DC power supply E1 having a power supply voltage of 5 [V], a capacitor C2, And a primary side control unit 23 including a microcomputer.
  • the switching element FET1 is an N-channel MOS transistor.
  • the primary side LC circuit 22 includes a primary coil L1 and a resonance capacitor C1 connected in parallel to each other. This series circuit is connected in parallel to, for example, a DC power supply E1 having a power supply voltage of 5 [V] and a capacitor C2.
  • the switching element FET1 is turned on / off when a control voltage (gate voltage) is applied from the primary side control unit 23.
  • the primary side control part 23 becomes a power transmission control unit which controls supply of the alternating power to the primary coil L1.
  • the oscillation frequency of the alternating power oscillated from the primary coil L1 through on / off of the switching element FET1 is about 100 kHz.
  • the portable device 1 includes a half-wave rectifier circuit including a secondary coil L2 and a diode D1 connected in series, and a secondary battery 10. That is, the alternating power received by the secondary coil L2 is converted into DC power by being half-wave rectified through the diode D1, and the converted DC power is supplied (charged) to the secondary battery 10 functioning as a load. Is done.
  • the temperature detection sheet 30 includes linear thermistors SH1 to SH5, SV1 to SV5, thermistors SA, resistors R1 to R11, and a sensor control unit 31.
  • the sensor control unit 31 includes a microcomputer.
  • a plurality of resistors R1 to R11 are connected in series to the plurality of linear thermistors SH1 to SH5, SV1 to SV5 and the thermistor SA, respectively.
  • a DC power supply E2 having a power supply voltage of 3.3 [V] is connected to each of the resistors R1 to R11. Note that the DC power supply E2 is supplied from the charger 2.
  • the power supply voltage of the DC power supply E2 is divided by the resistances of the linear thermistors SH1 to SH5, SV1 to SV5 and the resistances R1 to R10, and the respective potentials are supplied to the sensor control unit 31 via the terminals A1 to A10. Supplied. Further, the power supply voltage of the DC power supply E2 is divided by the thermistor SA and the resistor R11, and the potential is supplied to the sensor control unit 31 via the terminal A11.
  • the sensor control unit 31 is communicably connected to the primary control unit 23 via an appropriate wiring 40 that electrically connects the temperature detection sheet 30 and the charger 2. That is, the sensor control unit 31 and the primary side control unit 23 can exchange various signals via the wiring 40.
  • the sensor control unit 31 monitors the temperatures TH1 to TH5 and TV1 to TV5 of the linear thermistors SH1 to SH5 and SV1 to SV5 based on the potentials of the terminals A1 to A10, and also detects the temperature detection sheet based on the potential of the terminal A11. 30 ambient temperature TB is monitored.
  • the sensor control unit 31 has a nonvolatile memory 31a. As shown in FIG. 4, the memory 31a stores the relationship between the potentials of the terminals A1 to A10 and the temperatures of the linear thermistors SH1 to SH5, SV1 to SV5.
  • the sensor control unit 31 calculates the temperatures of the linear thermistors SH1 to SH5 and SV1 to SV5 from the potentials of the terminals A1 to A10 with reference to the map shown in FIG.
  • the non-volatile memory 31a of the sensor control unit 31 also stores a map (not shown) indicating the relationship between the potential of the terminal A11 and the environmental temperature TB.
  • the sensor control unit 31 performs map calculation of the environmental temperature TB from the potential of the terminal A11 using this map. Then, the sensor control unit 31 compares the temperature of each of the linear thermistors SH1 to SH5 and SV1 to SV5 with the environmental temperature TB to determine whether or not abnormal heating has occurred in the temperature detection sheet 30.
  • the sensor control unit 31 When detecting abnormal heating of the temperature detection sheet 30, the sensor control unit 31 transmits an abnormality detection signal indicating that to the primary control unit 23 via the wiring 40.
  • the sensor control unit 31 is an abnormality detection unit that detects abnormal heating of the temperature detection sheet 30.
  • the primary side control unit 23 stops the on / off switching of the switching element FET1, thereby supplying the alternating power to the primary coil L1. Stop.
  • the temperature of all linear thermistors SH1 to SH5, SV1 to SV5 is calculated from the potentials of the terminals A1 to A10 by map calculation using the map illustrated in FIG. TH1 to TH5 and TV1 to TV5 are respectively detected (step S1).
  • the ambient temperature TB is detected from the potential of the terminal A11 by map calculation (step S2).
  • temperature difference values ⁇ TH1 to ⁇ TH5, ⁇ TV1 to ⁇ TV5 obtained by subtracting the environmental temperature TB from the temperatures TH1 to TH5 and TV1 to TV5 of the respective linear thermistors SH1 to SH5, SV1 to SV5 are calculated (step S3).
  • step S4 it is determined whether any of the calculated temperature difference values ⁇ TH1 to ⁇ TH5, ⁇ TV1 to ⁇ TV5 is equal to or greater than a predetermined value Ta (step S4).
  • the predetermined value Ta is a value for detecting the abnormal heat generation of the metal foreign matter described above, and is obtained through a prior experiment or the like.
  • step S4 NO
  • the sensor control unit 31 once ends this series of processing.
  • step S4 YES
  • the primary side control part 23 step S5
  • the ambient temperature TB around the charger 2 is 25 [° C.].
  • the predetermined value Ta is set to 10 [° C.].
  • a metal foreign object is placed on the upper surface 21a of the housing 21 of the charger 2 above the primary coil L1. If it is, the metal foreign object generates heat and the temperature detection sheet 30 is heated.
  • the linear thermistors are arranged in a lattice pattern on the temperature detection sheet 30, a plurality of temperature sensors are arranged at a plurality of measurement points, respectively. In comparison, the number of temperature detection elements can be reduced while ensuring a wide temperature detection range. For this reason, the structure of the temperature detection sheet 30 can be simplified.
  • the temperature of the linear thermistor SV4 located in the part A is, for example, 25 [° C.] corresponding to the environmental temperature TB. To 40 [° C].
  • the sensor control unit 31 monitors the temperature of the linear thermistor SV4 and the environmental temperature TB based on the potentials of the terminals A7 and A11.
  • the sensor control unit 31 has a temperature difference value obtained by subtracting the environmental temperature TB (25 [° C.]) from the temperature higher than the predetermined value Ta. It detects that it is large and transmits an abnormality detection signal to the primary side control unit 23. Thereby, since supply of the alternating power to the primary coil L1 is stopped, abnormal heat generation of the metal foreign object is suppressed.
  • the temperature detection sheet 30 and the charger 2 are wired 40 as shown in FIG. Just connect via.
  • the communication structure between the temperature detection sheet 30 and the charger 2 can be extremely simplified, it is possible to simplify the configuration of the non-contact power transmission system while making it possible to detect the heat generation of the metal foreign object. it can.
  • the temperature detection sheet 30 is provided with a plurality of linear thermistors SH1 to SH5 and SV1 to SV5.
  • the temperature detection sheet 30 is provided with a sensor control unit 31 that detects abnormal heating of the temperature detection sheet 30 based on temperatures detected through the plurality of linear thermistors SH1 to SH5 and SV1 to SV5.
  • the sensor control unit 31 detects abnormal heating of the temperature detection sheet 30 and stops the supply of alternating power to the primary coil L1.
  • the temperature detection sheet 30 functions as a temperature detection unit including the linear thermistors SH1 to SH5, SV1 to SV5, the sensor control unit 31, and the like, and is formed in a sheet shape. Thereby, since the temperature detection sheet 30 can be easily affixed on the upper surface of the primary coil L1, attachment of the temperature detection sheet 30 becomes easy.
  • linear thermistors SH1 to SH5 and SV1 to SV5 are arranged in a grid pattern. Thereby, the temperature of the temperature detection sheet 30 can be detected more accurately.
  • the temperature detection sheet 30 was attached to the primary coil L1. Thereby, since electrical connection with the temperature detection sheet
  • FIGS. 1 a second embodiment of the non-contact power transmission system according to the present invention will be described with reference to FIGS.
  • the second embodiment differs from the first embodiment in that the temperature detection sheet 30 is provided in the portable device 1. Therefore, in this embodiment, differences from the first embodiment will be mainly described, and the same elements as those in the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted.
  • a schematic configuration of the non-contact power transmission system according to the present embodiment will be described with reference to FIG.
  • the temperature detection sheet 30 is affixed to the end surface of the secondary coil L2 opposite to the end surface in contact with the magnetic body M2 with an adhesive or the like.
  • circuit configuration of the non-contact power transmission system of the present embodiment will be described in detail with reference to FIG. Since the circuit configuration of the temperature detection sheet 30 is the same as the configuration illustrated in FIG. 3, the illustration is omitted here for convenience.
  • the primary-side control unit 23 applies a gate voltage to the switching element FET1 via the gate resistor R20, thereby performing on / off control of the switching element FET1.
  • the primary side control unit 23 includes a terminal B1 connected to a connection point N1 between the primary side LC circuit 22 and the switching element FET1 via a diode D2. That is, the power at the connection point N1 is half-wave rectified and input to the terminal B1.
  • the primary side control unit 23 can acquire the maximum voltage or the like from the voltage waveform of the alternating power generated by the oscillation of the primary coil L1 through the terminal B1.
  • the portable device 1 includes a switching element FET2 that switches between supply and non-supply of the DC power rectified via the diode D1 to the secondary battery 10.
  • the switching element FET2 is composed of a P-channel MOS transistor, and is turned on / off when a gate voltage is applied from the secondary side control unit 13 including a microcomputer via a gate resistor R21.
  • a resistor R22 is provided between the drain and source of the switching element FET2.
  • the portable device 1 includes a load adjustment circuit 14 connected in parallel to a series circuit constituted by the secondary coil L2 and the diode D1. In the load adjustment circuit 14, a resistor R23 and a switching element FET3 composed of an N-channel MOS transistor are connected in series.
  • the resistance value of the resistor R23 is set to about 47 [m ⁇ ].
  • the switching element FET3 is turned on / off when a gate voltage is applied from the secondary side control unit 13 via the gate resistor R24. In the present embodiment, the switching element FET3 is turned on / off while the switching element FET2 is turned off by the secondary side control unit 13, thereby causing the resistor R23 to be a load on the secondary coil L2. , It is switched to a state that does not become a load. As a result, the amplitude of the alternating power received by the secondary coil L2 is changed (modulated). That is, the power reception characteristic of the secondary coil L2 with respect to the power supplied by the primary coil is changed.
  • the change in the power reception characteristics of the secondary coil L2 not only changes the amplitude of the power waveform of the alternating power received by the secondary coil L2, but also the primary coil L1 magnetically coupled to the secondary coil L2.
  • the amplitude of the power waveform of the alternating power is also changed. That is, the amplitude of the power waveform (voltage waveform) of the alternating power induced in the primary coil L1 also changes in accordance with the change in the amplitude of the power waveform (voltage waveform) of the alternating power in the secondary coil L2. Thereby, a change occurs in the amplitude (maximum voltage value) of the voltage waveform of the alternating power generated at the connection point N1 of the charger 2.
  • a temperature detection sheet 30 is connected to the secondary side control unit 13 via an appropriate wiring 41. That is, the secondary side control unit 13 receives the abnormality detection signal transmitted from the temperature detection sheet 30 via the wiring 41. And the secondary side control part 13 supplies electric power to the secondary battery 10 by maintaining the switching element FET2 in the ON state during the period when the alternating power is transmitted from the charger 2.
  • the switching element FET3 is turned on / off while the switching element FET2 is turned off and the state is maintained.
  • the amplitude of the alternating power transmitted by the primary coil L1 is changed (modulated) in accordance with the abnormality detection signal by changing the amplitude of the alternating power received by the secondary coil L2.
  • the secondary side control unit 13, the switching element FET3, and the resistor R23 constitute a wireless communication unit for performing wireless communication with the charger 2.
  • the secondary control unit 13 performs on / off switching of the switching element FET3 based on the abnormality detection signal in the manner shown in FIG.
  • the amplitude of the alternating power received by the secondary coil L2 changes with the amplitude A1a, as shown in FIG. 8B.
  • the amplitude of the alternating power which the primary coil L1 transmits changes with amplitude A2a.
  • FIG. 8D the voltage value of the DC power induced in the primary coil L1 and half-wave rectified by the diode D2 becomes the voltage Va.
  • the information transmitted from the charger 2 is based on the judgment whether the voltage Va of terminal B1 exceeded the predetermined threshold value V0. It is determined whether the logic level is “H” or logic level “L”. That is, in the period T1, it is determined that the information transmitted from the secondary side control unit 13 to the primary side control unit 23 is the logic level “H”.
  • the threshold value V0 is set in advance through experiments or the like as a value that can determine a change in the amplitude of the alternating power induced in the primary coil L1.
  • the amplitude of the alternating power received by the secondary coil L2 decreases from the amplitude A1a to the amplitude A1b.
  • the amplitude of the alternating power which the primary coil L1 transmits falls to amplitude A2b lower than amplitude A2a.
  • the voltage value of the DC power induced in the primary coil L1 and half-wave rectified by the diode D2 also changes from the voltage Va to the voltage Vb. Since the voltage Vb is lower than the threshold value V0, the primary control unit 23 determines that the information transmitted from the secondary control unit 13 in the period T2 is the logic level “L”.
  • the primary side control part 23 demodulates the abnormality detection signal transmitted from the secondary side control part 13 based on such a method.
  • the abnormality detection signal is received, the supply of alternating power to the primary coil L1 is stopped by stopping the on / off switching of the switching element FET1.
  • the fact can be transmitted from the portable device 1 to the charger 2 to stop the power transmission of the charger 2.
  • the temperature detection sheet 30 can be provided in the mobile device 1, it is possible to suppress abnormal heat generation of the metal foreign matter interposed between the charger 2 and the mobile device 1.
  • the temperature detection sheet 30 can be provided in the portable device 1 in this way, even if it is difficult to provide the temperature detection sheet 30 in the charger 2 due to structural restrictions, for example, contactless power
  • the temperature detection sheet 30 can be mounted on the transmission system. For this reason, convenience comes to be improved.
  • the non-contact power transmission system according to the present embodiment also provides the same effects as the effects (1) to (3) of the previous first embodiment or an effect equivalent thereto.
  • the following effect can be obtained instead of the effect (4).
  • the temperature detection sheet 30 is provided in the portable device 1.
  • the fact is transmitted from the temperature detection sheet 30 to the charger 2 via the portable device 1.
  • the temperature detection sheet 30 of the present embodiment includes a power receiving coil L3 that is linked to an alternating magnetic flux generated from the primary coil L1.
  • the power receiving coil L3 is disposed in a region sandwiched between the linear thermistor SV1 and the linear thermistor SV3.
  • the power receiving coil L3 is provided in a layer different from the layer on which the plurality of linear thermistors SH1 to SH5 and SV1 to SV5 are patterned, and is insulated from the linear thermistors SH1 to SH5, SV1 to SV5.
  • the temperature detection sheet 30 of this embodiment uses the alternating power induced in the power receiving coil L3 as the power supply voltage when the alternating magnetic flux generated from the primary coil L1 is linked to the power receiving coil L3.
  • the alternating power induced in the power receiving coil L3 is rectified through a rectifier circuit 32 including a diode D3 and a capacitor C3 to be converted into DC power. Further, the DC power converted through the rectifier circuit 32 is stabilized to, for example, the power supply voltage 3.3 [V] through the regulator 33 and supplied to the sensor control unit 31 and the like.
  • the alternating magnetic flux generated from the primary coil L1 links the power receiving coil L3
  • the alternating power induced in the power receiving coil L3 is used as the power source of the temperature detection sheet 30.
  • the wiring structure of the temperature detection sheet 30 can be simplified.
  • the contactless power transmission system according to the present embodiment also provides the same effects as the effects (1) to (4) of the previous first embodiment or an effect equivalent thereto. In addition, the following effects can be obtained.
  • the temperature detection sheet 30 is provided with the power receiving coil L3 interlinked with the alternating magnetic flux generated from the primary coil L1. Then, the alternating power induced in the power receiving coil L ⁇ b> 3 by the linkage of the alternating magnetic flux is used as the power source for the temperature detection sheet 30. Thereby, since it is not necessary to provide power supply wiring in the temperature detection sheet 30, the wiring structure of the temperature detection sheet 30 can be simplified.
  • a fourth embodiment of the non-contact power transmission system according to the present invention will be described with reference to FIG. 11 and FIG.
  • this embodiment differs in the circuit structure of the temperature detection sheet
  • the circuit configuration of the temperature detection sheet 30 will be described with reference to FIG.
  • the temperature detection sheet 30 has a sufficiently high frequency (for example, 1 [MHz]) compared to the oscillation frequency (100 [kHz]) of the alternating power induced in the primary coil L1.
  • a Colpitts oscillation circuit 34 for oscillating radio waves is provided.
  • the temperature detection sheet 30 includes a switching element SW ⁇ b> 1 that interrupts the power feeding path of the Colpitts oscillation circuit 34.
  • the switching / switching of the switching element SW ⁇ b> 1 is controlled by the sensor control unit 31, so that driving / stopping of the Colpitts oscillation circuit 34 is switched.
  • the sensor control unit 31 normally stops the oscillation of the radio wave from the Colpitts oscillation circuit 34 by maintaining the switching element SW1 in the off state.
  • the sensor control unit 31 oscillates a radio wave from the Colpitts oscillation circuit 34 by performing a process of turning on the switching element SW1 instead of the process of transmitting the abnormality detection signal. That is, in this temperature detection sheet 30, when abnormal heating of the linear thermistors SH1 to SH5 and SV1 to SV5 is detected, radio waves are oscillated.
  • the charger 2 includes a resonance circuit 25 including a coil L4 and a resonance capacitor C4 that functions as a part that receives a radio wave oscillated from the Colpitts oscillation circuit 34.
  • the voltage generated in the resonance circuit 25 when receiving the radio wave is rectified and smoothed by the rectifier circuit 26 including the diode D4 and the capacitor C5, and is taken into the primary side control unit 23 via the terminal B2. . That is, when the radio wave oscillated from the Colpitts oscillation circuit 34 is received via the resonance circuit 25, the potential of the terminal B2 indicates a predetermined voltage value.
  • the primary side control part 23 determines whether the radio wave transmitted from the temperature detection sheet
  • the predetermined threshold value is a value for determining whether or not the radio wave oscillated from the Colpitts oscillation circuit 34 is received, and is set through a prior experiment or the like. And when it determines with having received the radio wave transmitted from the temperature detection sheet
  • the contactless power transmission system according to the present embodiment also has the same effects as the effects (1) to (4) and (6) described above in the first and third embodiments, or this effect.
  • the following effects can be obtained.
  • the sensor control unit 31 provided in the temperature detection sheet 30 and the primary side control unit 23 provided in the charger 2 are connected so as to be capable of wireless communication. Thereby, since it is not necessary to provide the wiring for communication between the temperature detection sheet
  • the temperature detection sheet 30 is attached to a portion of the upper surface 21a of the housing 21 of the charger 2 that is above the primary coil L1 with an adhesive or the like.
  • the temperature detection sheet 30 of this embodiment includes a magnetic coupling coil L5 that is magnetically coupled to the primary coil L1.
  • the magnetic coupling coil L5 is disposed along the outer edge of the temperature detection sheet 30.
  • the magnetic coupling coil L5 is provided in a layer different from the layer on which the linear thermistors SH1 to SH5 and SV1 to SV5 are patterned, and is insulated from the linear thermistors SH1 to SH5 and SV1 to SV5. .
  • one end of the magnetic coupling coil L5 is connected to the ground line, and the other end of the magnetic coupling coil L5 is connected to the ground line via the switching element SW2. Then, the switching of the switching element SW2 on / off is controlled by the sensor control unit 31, whereby the short circuit to the ground line of the magnetic coupling coil L5 and the cancellation of the short circuit are performed. Specifically, the sensor control unit 31 normally releases the short circuit of the magnetic coupling coil L5 by keeping the switching element SW2 off. The sensor control unit 31 short-circuits the magnetic coupling coil L5 to the ground line by performing a process of turning on the switching element SW2 instead of the process of transmitting the abnormality detection signal.
  • the magnetic coupling coil L5 becomes an obstacle and the magnetic coupling between the primary coil L1 and the secondary coil L2 is weakened, so the alternating power transmitted from the primary coil L1 to the secondary coil L2 is reduced.
  • the amplitude of the alternating power induced in the primary coil L1 and the secondary coil L2 changes as shown in FIG. 16, for example. That is, if switching of the switching element SW2 is performed as shown in FIG. 16C, the amplitude of the alternating power induced in the secondary coil L2 when the switching element SW2 is turned on is shown in FIG. As shown in FIG. 4, the amplitude decreases from the amplitude A3a to the amplitude A3b. On the other hand, the amplitude of the alternating power induced in the primary coil L1 increases from the amplitude A4a to the amplitude A4b as shown in FIG.
  • the primary side control unit 23 includes a terminal B3 to which a potential between the drain and ground of the switching element SW1 is applied.
  • the primary side control unit 23 monitors the amplitude of the alternating power induced in the primary coil L1 by monitoring the potential of the terminal B3.
  • the primary-side control unit 23 It is determined that abnormal heating is detected in the temperature detection sheet 30. In this case, the primary side control unit 23 stops the supply of alternating power to the primary coil L1 by stopping the on / off switching of the switching element FET1.
  • an abnormality can be notified from the temperature detection sheet 30 to the charger 2 without providing communication wiring between the temperature detection sheet 30 and the charger 2. For this reason, the structure of a non-contact electric power transmission system can be simplified.
  • the temperature detection sheet 30 is provided with a magnetic coupling coil L5 that includes both ends that can be short-circuited via the switching element SW2 and that is magnetically coupled to the primary coil L1. Moreover, in the sensor control part 31, when the abnormal heating of the temperature detection sheet
  • the temperature detection sheet 30 is pasted on the upper surface 21 a of the housing 21 of the charger 2. Thereby, it becomes easy to detect the heat generation of the metal foreign object, and thus abnormal heat generation of the metal foreign object can be more accurately suppressed.
  • each said embodiment can also be implemented with the following forms which changed this suitably.
  • the abnormality detection signal is wirelessly transmitted from the secondary control unit 13 to the primary control unit 23 by modulating the amplitude of the alternating power induced in the secondary coil L2.
  • the wireless communication device is used to An abnormality detection signal may be transmitted from the secondary control unit 13 to the primary control unit 23.
  • a wireless communication device is not mounted on the mobile device 1 and the charger 2, it may be newly mounted on the mobile device 1 and the charger 2.
  • the power receiving coil L3 is arranged in a region sandwiched between the linear thermistor SV1 and the linear thermistor SV3 of the temperature detection sheet 30, but the shape and arrangement of the power receiving coil L3. Can be appropriately changed.
  • the Colpitts oscillation circuit 34 is used to perform wireless communication between the temperature detection sheet 30 and the charger 2. However, for wireless communication between these, appropriate wireless communication is performed. The thing using an apparatus can be employ
  • the charger 2 is provided with the wireless communication unit that receives the radio wave transmitted from the temperature detection sheet 30, but the wireless communication unit may be provided in the portable device 1.
  • the wireless communication unit may be provided in the portable device 1.
  • Such a configuration is particularly effective when the temperature detection sheet 30 is attached to the surface of the portable device 1 in the second embodiment described with reference to FIGS. That is, by adopting such a configuration, the sensor control unit 31 of the temperature detection sheet 30 and the secondary side control unit 13 of the portable device 1 illustrated in FIG. There is no need to provide a wiring structure for communication between the temperature detection sheet 30 and the portable device 1. For this reason, the structure of a non-contact electric power transmission system can be simplified.
  • the temperature detection sheet 30 is attached to the surface of the housing 21 of the charger 2, but instead, it may be attached to the surface of the housing 12 of the portable device 1.
  • the secondary side control unit 13 is provided with a terminal B4 to which a voltage induced in the secondary coil L2 is applied.
  • the secondary side control part 13 monitors the amplitude of the alternating power induced by the secondary coil L2 by monitoring the electric potential of terminal B4. Further, when it is detected that the amplitude of the alternating power induced in the secondary coil L2 has changed to the amplitude A3b, it is determined that abnormal heating has occurred in the temperature detection sheet 30.
  • the secondary side control unit 13 detects abnormal heating in the temperature detection sheet 30 by changing the amplitude of the alternating power induced in the secondary coil L2 as needed through switching of the switching element FET3. This is notified to the primary side control unit 23.
  • the temperature detection sheet 30 can be attached to the surface of the housing 12 of the mobile device 1. For this reason, even if it is difficult to attach the temperature detection sheet 30 to the surface of the charger 2 due to structural restrictions, for example, the heat generation of the metal foreign matter is suppressed through the temperature detection sheet 30 provided in the portable device 1. be able to.
  • the linear thermistors SH1 to SH5 and SV1 to SV5 are arranged in a lattice pattern on the temperature detection sheet 30, but instead, for example, as shown in FIG. 18, the linear thermistors SH1 SH5 may be arranged side by side along only the y-axis direction in the figure. According to such a configuration, the number of temperature detection elements can be reduced as compared with the case where the linear thermistors are arranged in a grid pattern, so that the cost can be reduced.
  • the temperature detection unit including the linear thermistors SH1 to SH5, SV1 to SV5, the sensor control unit 31 and the like is formed in a sheet shape, but the temperature detection unit is formed in a box shape, for example.
  • the shape of the temperature detection unit may be changed as appropriate.
  • the power receiving circuit unit including the primary coil L1 is mounted on the charger, and the power transmission circuit unit including the secondary coil L2 is mounted on the portable device.
  • the mounting target of the power receiving circuit unit and the power transmitting circuit unit is not limited to these chargers and portable devices.
  • the present invention can be applied to any contactless power transmission system that receives the alternating power supplied to the primary coil via the secondary coil and supplies the received power to the load.

Abstract

This contactless power transmission system receives alternating power supplied to a primary coil (L1) through a secondary coil (L2), by having an alternating magnetic flux, which is generated by the primary coil (L1) as a result of having the alternating power supplied thereto, interlinked with the secondary coil (L2). This received power is supplied to a rechargeable battery (10). A temperature detection sheet (30) that has linear formed thermistors arranged in grid form is pasted onto the upper face of the primary coil (L1). In this temperature detection sheet (30), abnormal heating thereof is detected on the basis of temperatures detected through the linear formed thermistors. When abnormal heating of the temperature detection sheet (30) is detected, supplying of alternating power to the primary coil (L1) is stopped.

Description

非接触電力伝送システムNon-contact power transmission system
 本発明は、電磁誘導を利用して機器間の電力伝送を非接触にて行う非接触電力伝送システムに関する。 The present invention relates to a non-contact power transmission system that performs non-contact power transmission between devices using electromagnetic induction.
 従来、例えばデジタルカメラやパソコンなどの電子機器に内蔵されている電源用の2次電池(バッテリ)に非接触で充電を行う非接触電力伝送システムが知られている。このシステムでは、電子機器及び電子機器に対応する専用の充電器にそれぞれ1次コイルと2次コイルとを設けている。そして、例えば充電器に電子機器が置かれると、両コイルの間の電磁誘導を通じて充電器から電子機器に交番電力が伝送されて、電子機器で交番電力を直流電力に変換することにより2次電池の充電が行われる。 Conventionally, for example, a non-contact power transmission system is known in which a secondary battery (battery) for power supply built in an electronic device such as a digital camera or a personal computer is charged in a non-contact manner. In this system, a primary coil and a secondary coil are provided in an electronic device and a dedicated charger corresponding to the electronic device, respectively. For example, when an electronic device is placed on a charger, alternating power is transmitted from the charger to the electronic device through electromagnetic induction between both coils, and the alternating power is converted into direct current power by the electronic device, whereby the secondary battery. Is charged.
 一方、このような非接触電力伝送システムでは、1次コイルと2次コイルとの間に金属異物が介在している場合、1次コイルから発生する交番磁束が金属異物に付与されると、金属異物中に渦電流が誘起されてジュール熱が発生する。このため、金属異物の熱によって充電器や電子機器のハウジングが変形してしまうといった懸念がある。 On the other hand, in such a non-contact power transmission system, when a metal foreign object is interposed between the primary coil and the secondary coil, when an alternating magnetic flux generated from the primary coil is applied to the metal foreign object, An eddy current is induced in the foreign material to generate Joule heat. For this reason, there exists concern that the housing of a charger or an electronic device may deform | transform by the heat | fever of a metal foreign material.
 そこで、例えば特許文献1及び2では、1次コイルの周辺に設定された複数の測定点に温度センサをそれぞれ配置している。そして、複数の温度センサを通じて検出される複数の測定点の温度のうちのいずれかが所定温度以上を示している場合には、1次コイルと2次コイルとの間に金属異物が介在していると判断して、充電器による電力伝送を停止している。これにより、金属異物の発熱を抑制することができるため、充電器及び電子機器の熱変形を的確に回避することができる。 Therefore, for example, in Patent Documents 1 and 2, temperature sensors are arranged at a plurality of measurement points set around the primary coil. When any of the temperatures at the plurality of measurement points detected through the plurality of temperature sensors indicates a predetermined temperature or more, a metal foreign object is interposed between the primary coil and the secondary coil. Power transmission by the charger is stopped. Thereby, since heat_generation | fever of a metal foreign material can be suppressed, the thermal deformation of a charger and an electronic device can be avoided exactly.
特開2004-208383号公報JP 2004-208383 A 特開2010-288429号公報JP 2010-288429 A
 ところで、特許文献1及び2に記載の非接触電力伝送システムのように、1次コイルの周辺に設定された複数の測定点で温度を検出する場合、広い検出範囲を確保しようとすると、測定点の数が自ずと増加する。そして、測定点の増加に伴って温度センサの数も増加するため、温度センサを含む温度検出部全体の構造が複雑化するおそれがある。すなわち、非接触電力伝送システムには、構成を簡素化する改良の余地が残されている。 By the way, when the temperature is detected at a plurality of measurement points set around the primary coil as in the non-contact power transmission systems described in Patent Documents 1 and 2, if a wide detection range is to be secured, the measurement points Will naturally increase. And since the number of temperature sensors also increases with the increase in a measurement point, there exists a possibility that the structure of the whole temperature detection part containing a temperature sensor may become complicated. That is, the non-contact power transmission system still has room for improvement to simplify the configuration.
 本発明の目的は、非接触にて電力伝送を行うにあたり、金属異物の発熱を検知可能としつつも、構成の簡素化を図ることのできる非接触電力伝送システムを提供することにある。 An object of the present invention is to provide a non-contact power transmission system capable of simplifying the configuration while making it possible to detect heat generation of a metal foreign object when performing power transmission in a non-contact manner.
 上記課題を解決するために、本発明は、交番電力の供給により交番磁束を発生する1次コイルと、前記1次コイルからの交番磁束と鎖交して、交番電力を受電する2次コイルとを備え、前記2次コイルにより受電した受電電力を負荷に供給する非接触電力伝送システムであって、前記1次コイルと前記2次コイルとの間に配置された温度検出部であって、複数の線状に形成された温度検出素子を含む前記温度検出部と、前記複数の温度検出素子を通じて前記温度検出部の温度を検出し、検出された前記温度検出部の温度に応じて前記温度検出部の異常加熱を検知する異常検知ユニットと、同異常検知ユニットが前記温度検出部の異常加熱を検知した場合、前記1次コイルへの交番電力の供給を停止する送電制御ユニットとを備えることを要旨とする。 In order to solve the above problems, the present invention provides a primary coil that generates an alternating magnetic flux by supplying alternating power, and a secondary coil that receives the alternating power in linkage with the alternating magnetic flux from the primary coil. A non-contact power transmission system for supplying received power received by the secondary coil to a load, a temperature detection unit disposed between the primary coil and the secondary coil, And detecting the temperature of the temperature detection unit through the plurality of temperature detection elements, and detecting the temperature according to the detected temperature of the temperature detection unit An abnormality detection unit that detects abnormal heating of a part, and a power transmission control unit that stops supply of alternating power to the primary coil when the abnormality detection unit detects abnormal heating of the temperature detection unit. Essential To.
 この非接触電力伝送システムにおいては、前記温度検出部がシート状に形成されていることが好ましい。 In this non-contact power transmission system, it is preferable that the temperature detection unit is formed in a sheet shape.
 この非接触電力伝送システムにおいては、前記複数の温度検出素子は、前記温度検出部において格子状に配列されていることが好ましい。 In this non-contact power transmission system, it is preferable that the plurality of temperature detection elements are arranged in a lattice pattern in the temperature detection unit.
 この非接触電力伝送システムにおいては、前記温度検出部は、前記1次コイルから発生する交番磁束と鎖交して、交番電力を受電する受電コイルと、該受電コイルの交番電力を用いて前記温度検出部の動作電圧を生成する電源とを含むことが好ましい。 In this non-contact power transmission system, the temperature detection unit links the alternating magnetic flux generated from the primary coil and receives the alternating power and the temperature using the alternating power of the receiving coil. It is preferable that the power supply which produces | generates the operating voltage of a detection part is included.
 この非接触電力伝送システムにおいては、前記温度検出部が、前記1次コイル上に配置されていることが好ましい。 In this non-contact power transmission system, it is preferable that the temperature detection unit is disposed on the primary coil.
 この非接触電力伝送システムにおいては、前記非接触電力伝送システムは、前記1次コイルを覆うハウジングを備え、前記温度検出部が、前記ハウジング上に配置されることが好ましい。 In this non-contact power transmission system, it is preferable that the non-contact power transmission system includes a housing that covers the primary coil, and the temperature detection unit is disposed on the housing.
 この非接触電力伝送システムにおいては、前記温度検出部が、前記2次コイル上に配置されていることが好ましい。 In this non-contact power transmission system, it is preferable that the temperature detection unit is disposed on the secondary coil.
 この非接触電力伝送システムにおいては、前記非接触電力伝送システムは、前記2次コイルを覆うハウジングを備え、前記温度検出部が、前記ハウジング上に配置されていることが好ましい。 In this non-contact power transmission system, it is preferable that the non-contact power transmission system includes a housing that covers the secondary coil, and the temperature detection unit is disposed on the housing.
 この非接触電力伝送システムにおいては、前記異常検知ユニットは、前記送電制御ユニットと無線通信可能に接続されていることが好ましい。 In this non-contact power transmission system, it is preferable that the abnormality detection unit is connected to the power transmission control unit so as to be capable of wireless communication.
 この非接触電力伝送システムにおいては、前記温度検出部は、前記1次コイルと磁気結合し、且つ第1の端部および第2の端部を有する磁気結合コイルと、同磁気結合コイルの第1の端部と第2の端部との間に接続されたスイッチング素子とを含み、前記異常検知ユニットは、前記温度検出部の異常加熱を検知したとき、前記スイッチング素子を通じて前記磁気結合コイルの第1および第2の端部を短絡させて、前記1次コイルに発生する交番電力の振幅を変化させ、前記送電制御ユニットは、前記1次コイルに発生する交番電力の振幅の変化に基づいて前記温度検出部の異常加熱を検知することが好ましい。 In this non-contact power transmission system, the temperature detection unit is magnetically coupled to the primary coil and has a first end and a second end, and a first of the magnetic coupling coils. A switching element connected between the first end and the second end, and when the abnormality detection unit detects abnormal heating of the temperature detection unit, the abnormality detection unit detects the first of the magnetic coupling coil through the switching element. The first and second ends are short-circuited to change the amplitude of the alternating power generated in the primary coil, and the power transmission control unit is configured to change the amplitude of the alternating power generated in the primary coil based on the change in the amplitude of the alternating power generated in the primary coil. It is preferable to detect abnormal heating of the temperature detector.
 この非接触電力伝送システムにおいては、前記非接触電力伝送システムは、前記2次コイルを搭載した機器を備え、前記機器は、前記送電制御ユニットと無線通信を行う無線通信ユニットを含み、前記異常検知ユニットは、前記無線通信ユニットと通信可能に接続されて、前記温度検出部の異常加熱を検知したどうかを示す検知信号を前記無線通信ユニットを介して前記送電制御ユニットに無線で送信することが好ましい。 In this non-contact power transmission system, the non-contact power transmission system includes a device on which the secondary coil is mounted, and the device includes a wireless communication unit that performs wireless communication with the power transmission control unit, and the abnormality detection Preferably, the unit is communicably connected to the wireless communication unit, and wirelessly transmits a detection signal indicating whether or not abnormal heating of the temperature detection unit has been detected to the power transmission control unit via the wireless communication unit. .
 この非接触電力伝送システムにおいては、前記異常検知ユニットは、前記無線通信ユニットと無線通信可能に接続されていることが好ましい。 In this non-contact power transmission system, it is preferable that the abnormality detection unit is connected to the wireless communication unit so as to be capable of wireless communication.
 この非接触電力伝送システムにおいては、前記温度検出部は、前記2次コイルと結合し、且つ第1の端部および第2の端部を有する磁気結合コイルと、同磁気結合コイルの第1の端部と第2の端部との間に接続されたスイッチング素子とを含み、前記異常検知ユニットは、前記温度検出部の異常加熱を検知したとき、前記スイッチング素子を通じて前記磁気結合コイルの第1および第2の端部を短絡させて、前記2次コイルに発生する交番電力の振幅を変化させ、前記送電制御ユニットは、前記2次コイルに発生する交番電力の振幅の変化に基づいて前記温度検出部の異常加熱を検知することが好ましい。 In the non-contact power transmission system, the temperature detection unit is coupled to the secondary coil and has a first end and a second end, and a first of the magnetic coupling coil. A switching element connected between the end and the second end, and when the abnormality detection unit detects abnormal heating of the temperature detection unit, the first of the magnetic coupling coil is detected through the switching element. And the second end is short-circuited to change the amplitude of the alternating power generated in the secondary coil, and the power transmission control unit is configured to change the temperature based on the change in the amplitude of the alternating power generated in the secondary coil. It is preferable to detect abnormal heating of the detection unit.
 本発明にかかる非接触電力伝送システムによれば、非接触にて電力伝送を行うにあたり、金属異物の発熱を検知可能としつつも、構成の簡素化を図ることができるようになる。 According to the non-contact power transmission system according to the present invention, it is possible to simplify the configuration while making it possible to detect the heat generation of the metal foreign object when performing power transmission in a non-contact manner.
第1の実施形態の非接触電力伝送システムの概略構成を示す断面図。Sectional drawing which shows schematic structure of the non-contact electric power transmission system of 1st Embodiment. 第1の実施形態の非接触電力伝送システムを構成する温度検出シートの斜視構造を示す斜視図。The perspective view which shows the perspective structure of the temperature detection sheet | seat which comprises the non-contact electric power transmission system of 1st Embodiment. 第1の実施形態の非接触電力伝送システムについてそのシステム構成を示す回路図。The circuit diagram which shows the system configuration | structure about the non-contact electric power transmission system of 1st Embodiment. 第1の実施形態の非接触電力伝送システムについて線状サーミスタの温度とセンサ制御部に設けられた端子の電位との関係を示すグラフ。The graph which shows the relationship between the temperature of a linear thermistor, and the electric potential of the terminal provided in the sensor control part about the non-contact electric power transmission system of 1st Embodiment. 第1の実施形態の非接触電力伝送システムによる異常検知処理の手順を示すフローチャート。The flowchart which shows the procedure of the abnormality detection process by the non-contact electric power transmission system of 1st Embodiment. 本発明にかかる非接触電力伝送システムの第2の実施形態についてその概略構成を示す断面図。Sectional drawing which shows the schematic structure about 2nd Embodiment of the non-contact electric power transmission system concerning this invention. 第2の実施形態の非接触電力伝送システムのシステム構成を示す回路図。The circuit diagram which shows the system configuration | structure of the non-contact electric power transmission system of 2nd Embodiment. (a)は、第2の実施形態の非接触電力伝送システムについてスイッチング素子のオン/オフの切り替え例を示すタイムチャート。(b)は、2次コイルに誘起される交番電力(電圧)の推移例を示すタイムチャート。(c)は、1次コイルに誘起される交番電力(電圧)の推移例を示すタイムチャート。(d)は、1次コイルに誘起された電圧が整流されて1次側制御部に取り込まれる直流電圧の推移例を示すタイムチャート。(A) is a time chart which shows the example of switching of ON / OFF of a switching element about the non-contact electric power transmission system of 2nd Embodiment. (B) is a time chart showing a transition example of alternating power (voltage) induced in the secondary coil. (C) is a time chart showing a transition example of alternating power (voltage) induced in the primary coil. (D) is a time chart showing a transition example of a DC voltage that is rectified by the voltage induced in the primary coil and taken into the primary side control unit. 第3の実施形態の非接触電力伝送システムを構成する温度検出シートの斜視構造を示す斜視図。The perspective view which shows the perspective structure of the temperature detection sheet | seat which comprises the non-contact electric power transmission system of 3rd Embodiment. 第3の実施形態の非接触電力伝送システムを構成する温度検出シートの構成を示す回路図。The circuit diagram which shows the structure of the temperature detection sheet | seat which comprises the non-contact electric power transmission system of 3rd Embodiment. 第4の実施形態の非接触電力伝送システムを構成する温度検出シートの構成を示す回路図。The circuit diagram which shows the structure of the temperature detection sheet | seat which comprises the non-contact electric power transmission system of 4th Embodiment. 第4の実施形態の非接触電力伝送システムを構成する充電器及び携帯機器の構成を示す回路図。The circuit diagram which shows the structure of the charger and portable apparatus which comprise the non-contact electric power transmission system of 4th Embodiment. 第5の実施形態の非接触電力伝送システムの概略構成を示す断面図。Sectional drawing which shows schematic structure of the non-contact electric power transmission system of 5th Embodiment. 第5の実施形態の非接触電力伝送システムを構成する温度検出シートの斜視構造を示す斜視図。The perspective view which shows the perspective structure of the temperature detection sheet | seat which comprises the non-contact electric power transmission system of 5th Embodiment. 第5の実施形態の非接触電力伝送システムを構成する温度検出シートの構成を示す回路図。The circuit diagram which shows the structure of the temperature detection sheet | seat which comprises the non-contact electric power transmission system of 5th Embodiment. (a)は、第5の実施形態の非接触電力伝送システムについて2次コイルに誘起される交番電力(電圧)の推移例を示すタイムチャート。(b)は、1次コイルに誘起される交番電力(電圧)の推移例を示すタイムチャート。(c)は、スイッチング素子のオン/オフの切り替え例を示すタイムチャート。(A) is a time chart which shows the transition example of the alternating power (voltage) induced by the secondary coil about the non-contact electric power transmission system of 5th Embodiment. (B) is a time chart showing a transition example of alternating power (voltage) induced in the primary coil. (C) is a time chart showing an example of switching on / off of the switching element. 第5の実施形態の非接触電力伝送システムを構成する充電器及び携帯機器の構成を示す回路図。The circuit diagram which shows the structure of the charger and portable apparatus which comprise the non-contact electric power transmission system of 5th Embodiment. 別例の非接触電力伝送システムを構成する温度検出シートの斜視構造を示す斜視図。The perspective view which shows the perspective structure of the temperature detection sheet | seat which comprises the non-contact electric power transmission system of another example.
 <第1の実施形態>
 以下、本発明にかかる非接触電力伝送システムの第1の実施形態について図1~図5を参照して説明する。はじめに、図1を参照して、本実施形態にかかる非接触電力伝送システムの概略構成について説明する。
<First Embodiment>
Hereinafter, a first embodiment of a contactless power transmission system according to the present invention will be described with reference to FIGS. First, a schematic configuration of a contactless power transmission system according to the present embodiment will be described with reference to FIG.
  図1に示すように、この非接触電力伝送システムは、電源(負荷)として機能する2次電池10を備えたデジタルカメラ、ノート型パーソナルコンピュータ等の携帯機器1と、携帯機器1の2次電池10に非接触で電力を供給する充電器2とを備える。 As shown in FIG. 1, this non-contact power transmission system includes a portable device 1 such as a digital camera or a notebook personal computer equipped with a secondary battery 10 that functions as a power source (load), and a secondary battery of the portable device 1. And a charger 2 that supplies electric power to 10 in a non-contact manner.
 充電器2は、携帯機器1に電力を伝送する1次側コイルモジュール20を備えている。また、充電器2は、1次側コイルモジュール20を含む各種電子部品の外部をハウジング21により覆うことで、各種電子部品を外部環境から保護している。なお、ハウジング21の上面21aは、携帯機器1の置かれる部分となっている。 The charger 2 includes a primary coil module 20 that transmits power to the mobile device 1. Further, the charger 2 protects various electronic components from the external environment by covering the outside of the various electronic components including the primary coil module 20 with the housing 21. The upper surface 21a of the housing 21 is a portion where the portable device 1 is placed.
 1次側コイルモジュール20は、電力の供給により磁束が発生する1次コイルL1と、1次コイルL1からの磁束の漏れを抑制するフェライト系の部材から形成される磁性体M1とによって構成されている。1次コイルL1は、平面方向に導線が巻回された平面コイルを含む。なお、本実施形態では、1次コイルL1の巻数が20ターンに設定されている。また、1次コイルL1の外径が40[mm]に設定されている。また、1次コイルL1と磁性体M1とを合わせた厚みが1[mm]程度となっている。そして、1次コイルL1の磁性体M1が当接する端面と反対側の端面には、その周辺の温度を検出する温度検出シート30が接着剤などにより貼り付けられている。 The primary coil module 20 includes a primary coil L1 that generates a magnetic flux when power is supplied and a magnetic body M1 that is formed of a ferrite-based member that suppresses leakage of magnetic flux from the primary coil L1. Yes. Primary coil L1 includes a planar coil in which a conducting wire is wound in the planar direction. In the present embodiment, the number of turns of the primary coil L1 is set to 20 turns. Further, the outer diameter of the primary coil L1 is set to 40 [mm]. The total thickness of the primary coil L1 and the magnetic body M1 is about 1 [mm]. And the temperature detection sheet 30 which detects the temperature of the periphery is affixed on the end surface on the opposite side to the end surface with which the magnetic body M1 of the primary coil L1 contact | abuts with the adhesive agent.
 図2に示すように、温度検出シート30は、例えばPET(ポリエチレンテレフタレート)樹脂などの高分子フィルムから形成されるシート状の部材であって、温度検出シート30の内部に、複数の線状のサーミスタSH1~SH5,SV1~SV5が格子状に形成されている。複数の線状サーミスタSH1~SH5,SV1~SV5は、自身の温度が増加するほど抵抗値が増加する温度検出素子である。また、図中のx軸方向に向かって伸びる複数の線状サーミスタSH1~SH5とy軸方向に向かって伸びる複数の線状サーミスタSV1~SV5とは、それらの間に設けられた絶縁層によって互いに絶縁されている。そして、各線状サーミスタSH1~SH5,SV1~SV5の両端には、ランドLH11~LH15,LH21~LH25,LV11~LV15,LV21~L25が形成されている。各線状サーミスタSH1~SH5,SV1~SV5は、2つのランドLH11~LH15,LH21~LH25,LV11~LV15,LV21~L25を介して温度検出シート30に内蔵された処理回路(図示略)に電気的に接続されている。なお、温度検出シート30の外縁には、その周囲の環境温度(室温)を検出する部分として機能する、線状サーミスタSH1~SH5,SV1~SV5に準じた抵抗温度特性を有するサーミスタ(図示略)が設けられている。本実施形態では、このように、線状サーミスタSH1~SH5,SV1~SV5やその処理回路等を備える温度検出部として機能する、シート状に形成された温度検出シート30が用いられている。これにより、温度検出シート30を1次コイルL1の上面に容易に貼り付けることができるため、温度検出シート30の取り付けが容易となっている。 As shown in FIG. 2, the temperature detection sheet 30 is a sheet-like member formed of a polymer film such as a PET (polyethylene terephthalate) resin, for example, and includes a plurality of linear shapes inside the temperature detection sheet 30. The thermistors SH1 to SH5 and SV1 to SV5 are formed in a lattice shape. The plurality of linear thermistors SH1 to SH5 and SV1 to SV5 are temperature detection elements whose resistance value increases as the temperature of the linear thermistors SH1 to SH5 and SV1 to SV5 increases. In addition, a plurality of linear thermistors SH1 to SH5 extending in the x-axis direction and a plurality of linear thermistors SV1 to SV5 extending in the y-axis direction in the figure are mutually connected by an insulating layer provided therebetween. Insulated. Lands LH11 to LH15, LH21 to LH25, LV11 to LV15, and LV21 to L25 are formed at both ends of each of the linear thermistors SH1 to SH5, SV1 to SV5. Each of the linear thermistors SH1 to SH5, SV1 to SV5 is electrically connected to a processing circuit (not shown) built in the temperature detection sheet 30 via the two lands LH11 to LH15, LH21 to LH25, LV11 to LV15, and LV21 to L25. It is connected to the. A thermistor (not shown) having resistance temperature characteristics according to the linear thermistors SH1 to SH5 and SV1 to SV5 functioning as a part for detecting the ambient temperature (room temperature) around the outer edge of the temperature detection sheet 30. Is provided. In this embodiment, as described above, the temperature detection sheet 30 formed in a sheet shape that functions as a temperature detection unit including the linear thermistors SH1 to SH5, SV1 to SV5, processing circuits thereof, and the like is used. Thereby, since the temperature detection sheet 30 can be easily affixed on the upper surface of the primary coil L1, attachment of the temperature detection sheet 30 is easy.
 一方、図1に示すように、携帯機器1は、充電器2から伝送される電力を受ける2次側コイルモジュール11を備えている。また、携帯機器1は、2次側コイルモジュール11及び2次電池10を含む各種電子部品の外周をハウジング12により覆うことで、それらを外部環境から保護している。 On the other hand, as shown in FIG. 1, the portable device 1 includes a secondary coil module 11 that receives power transmitted from the charger 2. Moreover, the portable device 1 protects them from the external environment by covering the outer periphery of various electronic components including the secondary coil module 11 and the secondary battery 10 with the housing 12.
 2次側コイルモジュール11は、1次コイルL1から発生した磁束と鎖交することにより電流を発生する2次コイルL2と、2次コイルL2からの磁束の漏れを抑制するフェライト系の部材から形成される磁性体M2とによって構成されている。2次コイルL2は、1次コイルL1と同様に、平面コイルを含む。なお、本実施形態では、2次コイルL2の巻数が15ターンに設定されている。2次コイルL2の外径が35[mm]に設定されている。また、2次コイルL2と磁性体M2とを合わせた厚みが0.5[mm]程度に設定されている。 The secondary coil module 11 is formed of a secondary coil L2 that generates current by interlinking with the magnetic flux generated from the primary coil L1, and a ferrite-based member that suppresses leakage of magnetic flux from the secondary coil L2. And the magnetic body M2. Similar to the primary coil L1, the secondary coil L2 includes a planar coil. In the present embodiment, the number of turns of the secondary coil L2 is set to 15 turns. The outer diameter of the secondary coil L2 is set to 35 [mm]. The total thickness of the secondary coil L2 and the magnetic body M2 is set to about 0.5 [mm].
 次に、図3を参照して、本実施形態の非接触電力伝送システムの回路構成について詳述する。 Next, the circuit configuration of the non-contact power transmission system of this embodiment will be described in detail with reference to FIG.
 図3に示すように、充電器2は、直列に接続された1次側のLC回路22およびスイッチング素子FET1を含む直列回路と、電源電圧5[V]の直流電源E1と、コンデンサC2と、マイクロコンピュータを含む1次側制御部23とを備える。本実施形態では、スイッチング素子FET1は、NチャンネルMOSトランジスタである。1次側のLC回路22は、互いに並列に接続された1次コイルL1と共振用コンデンサC1とを含む。この直列回路が、例えば電源電圧5[V]の直流電源E1及びコンデンサC2に並列に接続されている。なお、スイッチング素子FET1は、1次側制御部23から制御電圧(ゲート電圧)が印加されることによりオン/オフされる。これにより、電源E1から常時供給されている直流電力によって1次コイルL1に交番電力が誘起される。すなわち、本実施形態では、1次側制御部23が、1次コイルL1への交番電力の供給を制御する送電制御ユニットとなっている。なお、スイッチング素子FET1のオン/オフを通じて1次コイルL1から発振される交番電力の発振周波数は100kHz程度となっている。 As shown in FIG. 3, the charger 2 includes a series circuit including a primary side LC circuit 22 and a switching element FET1 connected in series, a DC power supply E1 having a power supply voltage of 5 [V], a capacitor C2, And a primary side control unit 23 including a microcomputer. In the present embodiment, the switching element FET1 is an N-channel MOS transistor. The primary side LC circuit 22 includes a primary coil L1 and a resonance capacitor C1 connected in parallel to each other. This series circuit is connected in parallel to, for example, a DC power supply E1 having a power supply voltage of 5 [V] and a capacitor C2. The switching element FET1 is turned on / off when a control voltage (gate voltage) is applied from the primary side control unit 23. As a result, alternating power is induced in the primary coil L1 by the DC power constantly supplied from the power source E1. That is, in this embodiment, the primary side control part 23 becomes a power transmission control unit which controls supply of the alternating power to the primary coil L1. Note that the oscillation frequency of the alternating power oscillated from the primary coil L1 through on / off of the switching element FET1 is about 100 kHz.
 一方、携帯機器1は、直列に接続された2次コイルL2およびダイオードD1を含む半波整流回路と、2次電池10とを備えている。すなわち、2次コイルL2により受電された交番電力は、ダイオードD1を通じて半波整流されることにより直流電力に変換され、この変換された直流電力が負荷として機能する2次電池10に供給(充電)される。 On the other hand, the portable device 1 includes a half-wave rectifier circuit including a secondary coil L2 and a diode D1 connected in series, and a secondary battery 10. That is, the alternating power received by the secondary coil L2 is converted into DC power by being half-wave rectified through the diode D1, and the converted DC power is supplied (charged) to the secondary battery 10 functioning as a load. Is done.
 他方、温度検出シート30は、線状サーミスタSH1~SH5,SV1~SV5と、サーミスタSAと、抵抗R1~R11と、センサ制御部31とを含む。センサ制御部31は、マイクロコンピュータを含む。複数の線状サーミスタSH1~SH5,SV1~SV5及びサーミスタSAには、複数の抵抗R1~R11が直列にそれぞれ接続されている。各抵抗R1~R11には、例えば電源電圧3.3[V]の直流電源E2が接続されている。なお、直流電源E2は、充電器2から供給される。各線状サーミスタSH1~SH5,SV1~SV5の抵抗と各抵抗R1~R10とにより直流電源E2の電源電圧が分圧されて、それぞれの電位が、端子A1~A10を介して、センサ制御部31に供給される。また、サーミスタSAと抵抗R11とによって直流電源E2の電源電圧が分圧されて、その電位が端子A11を介してセンサ制御部31に供給される。なお、センサ制御部31は、温度検出シート30と充電器2とを電気的に接続する適宜の配線40を介して1次側制御部23と通信可能に接続されている。すなわち、センサ制御部31及び1次側制御部23は、配線40を介して各種信号を授受することができる。 On the other hand, the temperature detection sheet 30 includes linear thermistors SH1 to SH5, SV1 to SV5, thermistors SA, resistors R1 to R11, and a sensor control unit 31. The sensor control unit 31 includes a microcomputer. A plurality of resistors R1 to R11 are connected in series to the plurality of linear thermistors SH1 to SH5, SV1 to SV5 and the thermistor SA, respectively. For example, a DC power supply E2 having a power supply voltage of 3.3 [V] is connected to each of the resistors R1 to R11. Note that the DC power supply E2 is supplied from the charger 2. The power supply voltage of the DC power supply E2 is divided by the resistances of the linear thermistors SH1 to SH5, SV1 to SV5 and the resistances R1 to R10, and the respective potentials are supplied to the sensor control unit 31 via the terminals A1 to A10. Supplied. Further, the power supply voltage of the DC power supply E2 is divided by the thermistor SA and the resistor R11, and the potential is supplied to the sensor control unit 31 via the terminal A11. The sensor control unit 31 is communicably connected to the primary control unit 23 via an appropriate wiring 40 that electrically connects the temperature detection sheet 30 and the charger 2. That is, the sensor control unit 31 and the primary side control unit 23 can exchange various signals via the wiring 40.
 センサ制御部31は、各端子A1~A10の電位に基づいて各線状サーミスタSH1~SH5,SV1~SV5の温度TH1~TH5,TV1~TV5を監視するとともに、端子A11の電位に基づいて温度検出シート30の周囲の環境温度TBを監視する。なお、センサ制御部31は、不揮発性メモリ31aを有している。図4に示すように、メモリ31a内には、複数の端子A1~A10の電位と複数の線状サーミスタSH1~SH5,SV1~SV5の温度との関係が記憶されている。センサ制御部31は、図4に示すマップを参照して、各端子A1~A10の電位から各線状サーミスタSH1~SH5,SV1~SV5の温度をマップ演算する。また、センサ制御部31の不揮発性メモリ31aには、端子A11の電位と環境温度TBとの関係を示すマップ(図示略)も記憶されている。センサ制御部31は、このマップを用いて、端子A11の電位から環境温度TBをマップ演算する。そして、センサ制御部31は、各線状サーミスタSH1~SH5,SV1~SV5の温度と環境温度TBとを比較することで温度検出シート30に異常加熱が発生しているか否かを判断する。そして、温度検出シート30の異常加熱を検知した場合には、センサ制御部31は、その旨を示す異常検知信号を配線40を介して1次側制御部23に送信する。このように、本実施形態では、センサ制御部31が、温度検出シート30の異常加熱を検知する異常検知ユニットとなっている。一方、1次側制御部23は、センサ制御部31から異常検知信号が送信されると、スイッチング素子FET1のオン/オフの切り替えを停止することにより、1次コイルL1への交番電力の供給を停止する。 The sensor control unit 31 monitors the temperatures TH1 to TH5 and TV1 to TV5 of the linear thermistors SH1 to SH5 and SV1 to SV5 based on the potentials of the terminals A1 to A10, and also detects the temperature detection sheet based on the potential of the terminal A11. 30 ambient temperature TB is monitored. The sensor control unit 31 has a nonvolatile memory 31a. As shown in FIG. 4, the memory 31a stores the relationship between the potentials of the terminals A1 to A10 and the temperatures of the linear thermistors SH1 to SH5, SV1 to SV5. The sensor control unit 31 calculates the temperatures of the linear thermistors SH1 to SH5 and SV1 to SV5 from the potentials of the terminals A1 to A10 with reference to the map shown in FIG. The non-volatile memory 31a of the sensor control unit 31 also stores a map (not shown) indicating the relationship between the potential of the terminal A11 and the environmental temperature TB. The sensor control unit 31 performs map calculation of the environmental temperature TB from the potential of the terminal A11 using this map. Then, the sensor control unit 31 compares the temperature of each of the linear thermistors SH1 to SH5 and SV1 to SV5 with the environmental temperature TB to determine whether or not abnormal heating has occurred in the temperature detection sheet 30. When detecting abnormal heating of the temperature detection sheet 30, the sensor control unit 31 transmits an abnormality detection signal indicating that to the primary control unit 23 via the wiring 40. Thus, in this embodiment, the sensor control unit 31 is an abnormality detection unit that detects abnormal heating of the temperature detection sheet 30. On the other hand, when the abnormality detection signal is transmitted from the sensor control unit 31, the primary side control unit 23 stops the on / off switching of the switching element FET1, thereby supplying the alternating power to the primary coil L1. Stop.
 次に、図5を参照して、センサ制御部31を通じて実行される、温度検出シート30の異常加熱を検知する処理について詳述する。なお、図5に示す処理は、1次コイルL1への交番電力の供給が行われている期間に所定の演算周期をもって繰り返し実行される。 Next, with reference to FIG. 5, a process for detecting abnormal heating of the temperature detection sheet 30 executed through the sensor control unit 31 will be described in detail. Note that the process shown in FIG. 5 is repeatedly executed with a predetermined calculation cycle during a period in which the alternating power is supplied to the primary coil L1.
 図5に示すように、この処理では、まず、先の図4に例示したマップを用いたマップ演算により、各端子A1~A10の電位から全ての線状サーミスタSH1~SH5,SV1~SV5の温度TH1~TH5,TV1~TV5がそれぞれ検出される(ステップS1)。また、同じくマップ演算により、端子A11の電位から環境温度TBが検出される(ステップS2)。そして、各線状サーミスタSH1~SH5,SV1~SV5の温度TH1~TH5,TV1~TV5から環境温度TBを減算した温度差分値ΔTH1~ΔTH5,ΔTV1~ΔTV5がそれぞれ演算される(ステップS3)。また、演算された温度差分値ΔTH1~ΔTH5,ΔTV1~ΔTV5のいずれかが所定値Ta以上であるか否かが判断される(ステップS4)。なお、所定値Taは、上述した金属異物の異常発熱を検出するための値であり、予めの実験等を通じて求められている。ここで、温度差分値ΔTH1~ΔTH5,ΔTV1~ΔTV5の全てが所定値Taよりも小さい場合には(ステップS4:NO)、センサ制御部31はこの一連の処理を一旦終了する。 As shown in FIG. 5, in this process, first, the temperature of all linear thermistors SH1 to SH5, SV1 to SV5 is calculated from the potentials of the terminals A1 to A10 by map calculation using the map illustrated in FIG. TH1 to TH5 and TV1 to TV5 are respectively detected (step S1). Similarly, the ambient temperature TB is detected from the potential of the terminal A11 by map calculation (step S2). Then, temperature difference values ΔTH1 to ΔTH5, ΔTV1 to ΔTV5 obtained by subtracting the environmental temperature TB from the temperatures TH1 to TH5 and TV1 to TV5 of the respective linear thermistors SH1 to SH5, SV1 to SV5 are calculated (step S3). Further, it is determined whether any of the calculated temperature difference values ΔTH1 to ΔTH5, ΔTV1 to ΔTV5 is equal to or greater than a predetermined value Ta (step S4). The predetermined value Ta is a value for detecting the abnormal heat generation of the metal foreign matter described above, and is obtained through a prior experiment or the like. Here, when all of the temperature difference values ΔTH1 to ΔTH5 and ΔTV1 to ΔTV5 are smaller than the predetermined value Ta (step S4: NO), the sensor control unit 31 once ends this series of processing.
 一方、温度差分値ΔTH1~ΔTH5,ΔTV1~ΔTV5のいずれかが所定値Ta以上である場合には(ステップS4:YES)、温度検出シート30に異常加熱が発生していると判断されて、異常検知信号が1次側制御部23に送信される(ステップS5)。すなわちこの場合には、1次コイルL1への交番電力の供給が1次側制御部23によって停止される。 On the other hand, if any one of the temperature difference values ΔTH1 to ΔTH5 and ΔTV1 to ΔTV5 is equal to or greater than the predetermined value Ta (step S4: YES), it is determined that abnormal heating has occurred in the temperature detection sheet 30, and abnormal A detection signal is transmitted to the primary side control part 23 (step S5). That is, in this case, the supply of alternating power to the primary coil L1 is stopped by the primary side control unit 23.
 次に、先の図1~図3を参照して、本実施形態にかかる非接触電力伝送システムの動作例(作用)について説明する。なお本実施形態では、充電器2の周囲の環境温度TBが25[℃]である。また、上記所定値Taが10[℃]に設定されている。 Next, an operation example (action) of the non-contact power transmission system according to the present embodiment will be described with reference to FIGS. In the present embodiment, the ambient temperature TB around the charger 2 is 25 [° C.]. The predetermined value Ta is set to 10 [° C.].
 例えば先の図1に示した充電器2から携帯機器1への充電が開始されたときに、充電器2のハウジング21の上面21aのうち、1次コイルL1の上方にあたる部分に金属異物が置かれている場合、金属異物が発熱して、温度検出シート30が熱せられる。ここで、本実施形態では、先の図2に示すように、温度検出シート30に線状サーミスタが格子状に配列されているため、複数の測定点に複数の温度センサをそれぞれ配置する場合と比較すると、広い温度検出範囲を確保しつつ、温度検出素子の数を低減することができる。このため、温度検出シート30の構造を簡素化することができる。金属異物の発熱によって温度検出シート30の図中に2点鎖線で示す部位Aが強く熱せられたとすると、部位Aに位置する線状サーミスタSV4の温度が例えば環境温度TBに相当する25[℃]から40[℃]まで上昇する。 For example, when charging of the portable device 1 from the charger 2 shown in FIG. 1 is started, a metal foreign object is placed on the upper surface 21a of the housing 21 of the charger 2 above the primary coil L1. If it is, the metal foreign object generates heat and the temperature detection sheet 30 is heated. Here, in the present embodiment, as shown in FIG. 2, since the linear thermistors are arranged in a lattice pattern on the temperature detection sheet 30, a plurality of temperature sensors are arranged at a plurality of measurement points, respectively. In comparison, the number of temperature detection elements can be reduced while ensuring a wide temperature detection range. For this reason, the structure of the temperature detection sheet 30 can be simplified. If the part A indicated by the two-dot chain line in the figure of the temperature detection sheet 30 is strongly heated by the heat generation of the metal foreign matter, the temperature of the linear thermistor SV4 located in the part A is, for example, 25 [° C.] corresponding to the environmental temperature TB. To 40 [° C].
 一方、図3に示すように、センサ制御部31は、端子A7及び端子A11の電位に基づいて線状サーミスタSV4の温度及び環境温度TBを監視する。そして、線状サーミスタSV4の温度が40[℃]まで上昇したときに、センサ制御部31は、その温度から環境温度TB(25[℃])を減算した温度差分値が上記所定値Taよりも大きいことを検知して、1次側制御部23に異常検知信号を送信する。これにより、1次コイルL1への交番電力の供給が停止されるため、金属異物の異常発熱が抑制される。 On the other hand, as shown in FIG. 3, the sensor control unit 31 monitors the temperature of the linear thermistor SV4 and the environmental temperature TB based on the potentials of the terminals A7 and A11. When the temperature of the linear thermistor SV4 rises to 40 [° C.], the sensor control unit 31 has a temperature difference value obtained by subtracting the environmental temperature TB (25 [° C.]) from the temperature higher than the predetermined value Ta. It detects that it is large and transmits an abnormality detection signal to the primary side control unit 23. Thereby, since supply of the alternating power to the primary coil L1 is stopped, abnormal heat generation of the metal foreign object is suppressed.
 このような構成によれば、温度検出シート30から1次側制御部23に異常検知信号を送信するだけでよいため、図3に示すように、温度検出シート30と充電器2とを配線40を介して接続するだけでよい。これにより、温度検出シート30と充電器2との間の通信構造を極めて簡素化することができるため、金属異物の発熱を検知可能としつつ、非接触電力伝送システムの構成を簡素化することができる。 According to such a configuration, since it is only necessary to transmit an abnormality detection signal from the temperature detection sheet 30 to the primary side control unit 23, the temperature detection sheet 30 and the charger 2 are wired 40 as shown in FIG. Just connect via. Thereby, since the communication structure between the temperature detection sheet 30 and the charger 2 can be extremely simplified, it is possible to simplify the configuration of the non-contact power transmission system while making it possible to detect the heat generation of the metal foreign object. it can.
 以上説明したように、本実施形態にかかる非接触電力伝送システムによれば、以下のような効果が得られるようになる。 As described above, according to the contactless power transmission system according to the present embodiment, the following effects can be obtained.
 (1)温度検出シート30には、複数の線状サーミスタSH1~SH5,SV1~SV5を設けた。また、温度検出シート30には、複数の線状サーミスタSH1~SH5,SV1~SV5を通じて検出される温度に基づいて温度検出シート30の異常加熱を検知するセンサ制御部31を設けた。センサ制御部31は、温度検出シート30の異常加熱を検知して、1次コイルL1への交番電力の供給を停止させる。これにより、広い温度検出範囲を確保しつつも、温度検出素子の数を低減することができるとともに、温度検出シート30と充電器2との間の通信構造を極めて簡素化することもできる。したがって、金属異物の発熱を検知可能としつつ、非接触電力伝送システムの構成を簡素化することができる。 (1) The temperature detection sheet 30 is provided with a plurality of linear thermistors SH1 to SH5 and SV1 to SV5. In addition, the temperature detection sheet 30 is provided with a sensor control unit 31 that detects abnormal heating of the temperature detection sheet 30 based on temperatures detected through the plurality of linear thermistors SH1 to SH5 and SV1 to SV5. The sensor control unit 31 detects abnormal heating of the temperature detection sheet 30 and stops the supply of alternating power to the primary coil L1. Thereby, while ensuring the wide temperature detection range, while the number of temperature detection elements can be reduced, the communication structure between the temperature detection sheet | seat 30 and the charger 2 can also be simplified very much. Therefore, it is possible to simplify the configuration of the non-contact power transmission system while making it possible to detect the heat generation of the metal foreign object.
 (2)温度検出シート30は、線状サーミスタSH1~SH5,SV1~SV5やセンサ制御部31等を備える温度検出部として機能し、且つシート状に形成されている。これにより、温度検出シート30を1次コイルL1の上面に容易に貼り付けることができるため、温度検出シート30の取り付けが容易となる。 (2) The temperature detection sheet 30 functions as a temperature detection unit including the linear thermistors SH1 to SH5, SV1 to SV5, the sensor control unit 31, and the like, and is formed in a sheet shape. Thereby, since the temperature detection sheet 30 can be easily affixed on the upper surface of the primary coil L1, attachment of the temperature detection sheet 30 becomes easy.
 (3)温度検出シート30には、線状サーミスタSH1~SH5,SV1~SV5を格子状に配列した。これにより、温度検出シート30の温度をより的確に検出することができるようになる。 (3) On the temperature detection sheet 30, linear thermistors SH1 to SH5 and SV1 to SV5 are arranged in a grid pattern. Thereby, the temperature of the temperature detection sheet 30 can be detected more accurately.
 (4)温度検出シート30を1次コイルL1に貼り付けた。これにより、温度検出シート30と充電器2との電気的な接続を容易に行うことができるため、温度検出シート30の取り付けが容易となる。 (4) The temperature detection sheet 30 was attached to the primary coil L1. Thereby, since electrical connection with the temperature detection sheet | seat 30 and the charger 2 can be performed easily, attachment of the temperature detection sheet | seat 30 becomes easy.
 <第2の実施形態>
 次に、本発明にかかる非接触電力伝送システムの第2の実施形態について図6~図8を参照して説明する。なお、この第2の実施形態では、温度検出シート30を携帯機器1に設けた点で先の第1の実施形態と異なっている。そこで本実施形態では、第1の実施形態との相違点を中心に説明し、第1の実施形態と同様の要素については同一の符号を付すことにより重複する説明を割愛する。はじめに、図6を参照して、本実施形態にかかる非接触電力伝送システムの概略構成について説明する。
<Second Embodiment>
Next, a second embodiment of the non-contact power transmission system according to the present invention will be described with reference to FIGS. The second embodiment differs from the first embodiment in that the temperature detection sheet 30 is provided in the portable device 1. Therefore, in this embodiment, differences from the first embodiment will be mainly described, and the same elements as those in the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted. First, a schematic configuration of the non-contact power transmission system according to the present embodiment will be described with reference to FIG.
 図6に示すように、本実施形態では、2次コイルL2の磁性体M2と接触する端面と反対側の端面に温度検出シート30が接着剤などにより貼り付けられている。 As shown in FIG. 6, in this embodiment, the temperature detection sheet 30 is affixed to the end surface of the secondary coil L2 opposite to the end surface in contact with the magnetic body M2 with an adhesive or the like.
 次に、図7を参照して、本実施形態の非接触電力伝送システムの回路構成について詳述する。なお、温度検出シート30の回路構成については、先の図3に例示した構成と同様であるため、便宜上、ここでは図示を割愛する。 Next, the circuit configuration of the non-contact power transmission system of the present embodiment will be described in detail with reference to FIG. Since the circuit configuration of the temperature detection sheet 30 is the same as the configuration illustrated in FIG. 3, the illustration is omitted here for convenience.
 図7に示すように、充電器2では、1次側制御部23がゲート抵抗R20を介してスイッチング素子FET1にゲート電圧を印加することによって、スイッチング素子FET1のオン/オフ制御が行われる。また、1次側制御部23は、1次側のLC回路22とスイッチング素子FET1との間の接続点N1にダイオードD2を介して接続される端子B1を備えている。すなわち、接続点N1の電力が半波整流されて端子B1に入力される。1次側制御部23は、端子B1を通じて1次コイルL1の発振により生じる交番電力の電圧波形からその最大電圧などを取得することができる。 As shown in FIG. 7, in the charger 2, the primary-side control unit 23 applies a gate voltage to the switching element FET1 via the gate resistor R20, thereby performing on / off control of the switching element FET1. Further, the primary side control unit 23 includes a terminal B1 connected to a connection point N1 between the primary side LC circuit 22 and the switching element FET1 via a diode D2. That is, the power at the connection point N1 is half-wave rectified and input to the terminal B1. The primary side control unit 23 can acquire the maximum voltage or the like from the voltage waveform of the alternating power generated by the oscillation of the primary coil L1 through the terminal B1.
 一方、携帯機器1は、ダイオードD1を介して整流された直流電力の2次電池10への供給と非供給とを切り替えるスイッチング素子FET2を備えている。スイッチング素子FET2は、PチャンネルMOSトランジスタから構成されて、マイクロコンピュータを含む2次側制御部13からゲート抵抗R21を介してゲート電圧が印加されることによりオン/オフされる。なお、スイッチング素子FET2のドレイン・ソース間には抵抗R22が設けられている。また、携帯機器1は、2次コイルL2とダイオードD1とにより構成される直列回路に並列に接続される負荷調整回路14を備えている。負荷調整回路14は、抵抗R23とNチャンネルMOSトランジスタからなるスイッチング素子FET3とが直列に接続されている。なお、抵抗R23の抵抗値は47[mΩ]程度に設定されている。また、スイッチング素子FET3は、2次側制御部13からゲート抵抗R24を介してゲート電圧が印加されることによりオン/オフされる。そして、本実施形態では、2次側制御部13によりスイッチング素子FET2がオフされたまま、スイッチング素子FET3がオン/オフされることにより、2次コイルL2に対して抵抗R23が負荷となる状態と、負荷とならない状態とに切り替えられる。これにより、2次コイルL2の受電する交番電力の振幅が変化(変調)させられる。すなわち、1次コイルの供給する電力に対する2次コイルL2の受電特性が変更されるようになる。 On the other hand, the portable device 1 includes a switching element FET2 that switches between supply and non-supply of the DC power rectified via the diode D1 to the secondary battery 10. The switching element FET2 is composed of a P-channel MOS transistor, and is turned on / off when a gate voltage is applied from the secondary side control unit 13 including a microcomputer via a gate resistor R21. A resistor R22 is provided between the drain and source of the switching element FET2. In addition, the portable device 1 includes a load adjustment circuit 14 connected in parallel to a series circuit constituted by the secondary coil L2 and the diode D1. In the load adjustment circuit 14, a resistor R23 and a switching element FET3 composed of an N-channel MOS transistor are connected in series. The resistance value of the resistor R23 is set to about 47 [mΩ]. The switching element FET3 is turned on / off when a gate voltage is applied from the secondary side control unit 13 via the gate resistor R24. In the present embodiment, the switching element FET3 is turned on / off while the switching element FET2 is turned off by the secondary side control unit 13, thereby causing the resistor R23 to be a load on the secondary coil L2. , It is switched to a state that does not become a load. As a result, the amplitude of the alternating power received by the secondary coil L2 is changed (modulated). That is, the power reception characteristic of the secondary coil L2 with respect to the power supplied by the primary coil is changed.
 ところで、2次コイルL2の受電特性の変化は、2次コイルL2の受電する交番電力の電力波形の振幅を変化させるのみならず、2次コイルL2に磁気的に結合されている1次コイルL1の交番電力の電力波形の振幅をも変化させる。すなわち、2次コイルL2での交番電力の電力波形(電圧波形)の振幅の変化に応じて1次コイルL1に誘起される交番電力の電力波形(電圧波形)の振幅も変化する。これにより、充電器2の接続点N1に生じる交番電力の電圧波形の振幅(最大電圧値)に変化が生じる。 By the way, the change in the power reception characteristics of the secondary coil L2 not only changes the amplitude of the power waveform of the alternating power received by the secondary coil L2, but also the primary coil L1 magnetically coupled to the secondary coil L2. The amplitude of the power waveform of the alternating power is also changed. That is, the amplitude of the power waveform (voltage waveform) of the alternating power induced in the primary coil L1 also changes in accordance with the change in the amplitude of the power waveform (voltage waveform) of the alternating power in the secondary coil L2. Thereby, a change occurs in the amplitude (maximum voltage value) of the voltage waveform of the alternating power generated at the connection point N1 of the charger 2.
 一方、2次側制御部13には、適宜の配線41を介して温度検出シート30が接続されている。すなわち、2次側制御部13は、温度検出シート30から送信される異常検知信号を配線41を介して受信する。そして2次側制御部13は、充電器2から交番電力が伝送されている期間、スイッチング素子FET2をオン状態に維持することにより、2次電池10への給電を行う。また、この期間に異常検知信号を受信した場合には、スイッチング素子FET2をオフさせてその状態を維持したまま、スイッチング素子FET3をオン/オフさせる。これにより、2次コイルL2の受電する交番電力の振幅を変化させることで、1次コイルL1の伝送する交番電力の振幅を異常検知信号に応じて変化(変調)させる。このように、携帯機器1では、2次側制御部13、スイッチング素子FET3、及び抵抗R23によって、充電器2と無線通信を行うための無線通信ユニットが構成されている。 On the other hand, a temperature detection sheet 30 is connected to the secondary side control unit 13 via an appropriate wiring 41. That is, the secondary side control unit 13 receives the abnormality detection signal transmitted from the temperature detection sheet 30 via the wiring 41. And the secondary side control part 13 supplies electric power to the secondary battery 10 by maintaining the switching element FET2 in the ON state during the period when the alternating power is transmitted from the charger 2. When an abnormality detection signal is received during this period, the switching element FET3 is turned on / off while the switching element FET2 is turned off and the state is maintained. Thus, the amplitude of the alternating power transmitted by the primary coil L1 is changed (modulated) in accordance with the abnormality detection signal by changing the amplitude of the alternating power received by the secondary coil L2. Thus, in the portable device 1, the secondary side control unit 13, the switching element FET3, and the resistor R23 constitute a wireless communication unit for performing wireless communication with the charger 2.
 次に、2次側制御部13による、2次コイルL2の受電する交番電力の振幅の変調態様について図8を参照して説明する。 Next, the modulation mode of the amplitude of the alternating power received by the secondary coil L2 by the secondary side control unit 13 will be described with reference to FIG.
 例えば、2次側制御部13が異常検知信号に基づいてスイッチング素子FET3のオン/オフの切り替えを図8(a)に示す態様にて行う。このとき、スイッチング素子FET3がオフされている期間T1では、図8(b)に示すように、2次コイルL2の受電する交番電力の振幅は振幅A1aで推移する。また、図8(c)に示すように、1次コイルL1の伝送する交番電力の振幅は振幅A2aで推移する。これにより、図8(d)に示すように、1次コイルL1に誘起されて上記ダイオードD2により半波整流された直流電力の電圧値は電圧Vaとなる。そして、この直流電力が端子B1を介して取り込まれる1次側制御部23では、端子B1の電圧Vaが所定の閾値V0を超えたか否かの判断に基づき、充電器2から伝達された情報が論理レベル「H」あるいは論理レベル「L」のいずれであるかの判定が行われる。すなわち、期間T1においては、2次側制御部13から1次側制御部23に伝達された情報が論理レベル「H」であると判断される。なお、閾値V0は、1次コイルL1に誘起される交番電力の振幅の変化を判別することのできる値として予め実験などを通じて設定されている。 For example, the secondary control unit 13 performs on / off switching of the switching element FET3 based on the abnormality detection signal in the manner shown in FIG. At this time, in the period T1 in which the switching element FET3 is turned off, the amplitude of the alternating power received by the secondary coil L2 changes with the amplitude A1a, as shown in FIG. 8B. Moreover, as shown in FIG.8 (c), the amplitude of the alternating power which the primary coil L1 transmits changes with amplitude A2a. As a result, as shown in FIG. 8D, the voltage value of the DC power induced in the primary coil L1 and half-wave rectified by the diode D2 becomes the voltage Va. And in the primary side control part 23 by which this direct-current power is taken in via terminal B1, the information transmitted from the charger 2 is based on the judgment whether the voltage Va of terminal B1 exceeded the predetermined threshold value V0. It is determined whether the logic level is “H” or logic level “L”. That is, in the period T1, it is determined that the information transmitted from the secondary side control unit 13 to the primary side control unit 23 is the logic level “H”. Note that the threshold value V0 is set in advance through experiments or the like as a value that can determine a change in the amplitude of the alternating power induced in the primary coil L1.
 一方、スイッチング素子FET3がオンされている期間T2では、図8(b)に示すように、2次コイルL2の受電する交番電力の振幅は振幅A1aから振幅A1bへと低下する。また、図8(c)に示すように、1次コイルL1の伝送する交番電力の振幅は振幅A2aよりも低い振幅A2bへと低下する。これにより、図8(d)に示すように、1次コイルL1に誘起されて上記ダイオードD2により半波整流された直流電力の電圧値も電圧Vaから電圧Vbへと変化する。そして、この電圧Vbが上記閾値V0よりも低いことから、1次側制御部23では、期間T2において2次側制御部13から伝達された情報が論理レベル「L」であると判定される。 On the other hand, in the period T2 in which the switching element FET3 is turned on, as shown in FIG. 8B, the amplitude of the alternating power received by the secondary coil L2 decreases from the amplitude A1a to the amplitude A1b. Moreover, as shown in FIG.8 (c), the amplitude of the alternating power which the primary coil L1 transmits falls to amplitude A2b lower than amplitude A2a. As a result, as shown in FIG. 8D, the voltage value of the DC power induced in the primary coil L1 and half-wave rectified by the diode D2 also changes from the voltage Va to the voltage Vb. Since the voltage Vb is lower than the threshold value V0, the primary control unit 23 determines that the information transmitted from the secondary control unit 13 in the period T2 is the logic level “L”.
 そして、1次側制御部23は、こうした方法のもとに2次側制御部13から送信された異常検知信号を復調する。そして、異常検知信号を受信すると、スイッチング素子FET1のオン/オフの切り替えを停止することにより、1次コイルL1への交番電力の供給を停止する。 And the primary side control part 23 demodulates the abnormality detection signal transmitted from the secondary side control part 13 based on such a method. When the abnormality detection signal is received, the supply of alternating power to the primary coil L1 is stopped by stopping the on / off switching of the switching element FET1.
 このような構成によれば、温度検出シート30に異常加熱が発生したときに、その旨を携帯機器1から充電器2に伝達して、充電器2の電力伝送を停止させることができる。これにより、温度検出シート30を携帯機器1に設けた場合であれ、充電器2と携帯機器1との間に介在する金属異物の異常発熱を抑制することが可能となる。そしてこのように、温度検出シート30を携帯機器1に設けることが可能となれば、例えば構造上の制約により充電器2に温度検出シート30を設けることが難しい場合であっても、非接触電力伝送システムに温度検出シート30を搭載することができる。このため、利便性が向上するようになる。 According to such a configuration, when abnormal heating occurs in the temperature detection sheet 30, the fact can be transmitted from the portable device 1 to the charger 2 to stop the power transmission of the charger 2. Thereby, even when the temperature detection sheet 30 is provided in the mobile device 1, it is possible to suppress abnormal heat generation of the metal foreign matter interposed between the charger 2 and the mobile device 1. If the temperature detection sheet 30 can be provided in the portable device 1 in this way, even if it is difficult to provide the temperature detection sheet 30 in the charger 2 due to structural restrictions, for example, contactless power The temperature detection sheet 30 can be mounted on the transmission system. For this reason, convenience comes to be improved.
 以上説明したように、本実施形態にかかる非接触電力伝送システムによっても、先の第1の実施形態による上記(1)~(3)の効果と同等の効果、あるいはこれに準じた効果が得られるとともに、上記(4)の効果に代えて以下の効果が得られるようになる。 As described above, the non-contact power transmission system according to the present embodiment also provides the same effects as the effects (1) to (3) of the previous first embodiment or an effect equivalent thereto. In addition, the following effect can be obtained instead of the effect (4).
 (5)温度検出シート30を携帯機器1に設けることとした。また、温度検出シート30の異常加熱が検知されたとき、その旨を温度検出シート30から携帯機器1を介して充電器2に送信することとした。これにより、例えば構造上の制約により充電器2に温度検出シート30を設けることが難しい場合であっても、携帯機器1に設けられた温度検出シート30を通じて金属異物の異常発熱を抑制することができる。 (5) The temperature detection sheet 30 is provided in the portable device 1. When abnormal heating of the temperature detection sheet 30 is detected, the fact is transmitted from the temperature detection sheet 30 to the charger 2 via the portable device 1. Thereby, for example, even when it is difficult to provide the temperature detection sheet 30 in the charger 2 due to structural limitations, it is possible to suppress abnormal heat generation of the metal foreign matter through the temperature detection sheet 30 provided in the portable device 1. it can.
 <第3の実施形態>
 次に、本発明にかかる非接触電力伝送システムの第3の実施形態について図9及び図10を参照して説明する。なお、本実施形態は、温度検出シート30の構成が先の第1の実施形態と相違するが、それ以外の構成については第1の実施形態と同様である。そこで本実施形態では、第1の実施形態との相違点と中心に説明し、第1の実施形態と同様の要素については同一の符号を付すことにより重複する説明を割愛する。はじめに、図9を参照して、温度検出シート30の構成について説明する。
<Third Embodiment>
Next, a third embodiment of the non-contact power transmission system according to the present invention will be described with reference to FIG. 9 and FIG. In addition, although this embodiment differs in the structure of the temperature detection sheet | seat 30 from previous 1st Embodiment, about another structure, it is the same as that of 1st Embodiment. Therefore, in this embodiment, the differences from the first embodiment will be mainly described, and the same elements as those in the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted. First, the configuration of the temperature detection sheet 30 will be described with reference to FIG.
 図9に示すように、本実施形態の温度検出シート30は、1次コイルL1から発生する交番磁束と鎖交する受電コイルL3を備えている。この受電コイルL3は、線状サーミスタSV1と線状サーミスタSV3とにより挟まれる領域に配置されている。なお、受電コイルL3は、複数の線状サーミスタSH1~SH5,SV1~SV5がパターン形成された層とは別の層に設けられ、線状サーミスタSH1~SH5,SV1~SV5と絶縁されている。本実施形態の温度検出シート30は、1次コイルL1から発生する交番磁束が受電コイルL3に鎖交した際に受電コイルL3に誘起される交番電力を電源電圧として利用する。 As shown in FIG. 9, the temperature detection sheet 30 of the present embodiment includes a power receiving coil L3 that is linked to an alternating magnetic flux generated from the primary coil L1. The power receiving coil L3 is disposed in a region sandwiched between the linear thermistor SV1 and the linear thermistor SV3. The power receiving coil L3 is provided in a layer different from the layer on which the plurality of linear thermistors SH1 to SH5 and SV1 to SV5 are patterned, and is insulated from the linear thermistors SH1 to SH5, SV1 to SV5. The temperature detection sheet 30 of this embodiment uses the alternating power induced in the power receiving coil L3 as the power supply voltage when the alternating magnetic flux generated from the primary coil L1 is linked to the power receiving coil L3.
 次に、図10を参照して、温度検出シート30の回路構成について説明する。 Next, the circuit configuration of the temperature detection sheet 30 will be described with reference to FIG.
 図10に示すように、温度検出シート30では、受電コイルL3に誘起された交番電力がダイオードD3及びコンデンサC3からなる整流回路32を介して整流されることで直流電力に変換される。また、整流回路32を介して変換された直流電力は、レギュレータ33を通じて例えば電源電圧3.3[V]に安定化されて、センサ制御部31などに供給される。 As shown in FIG. 10, in the temperature detection sheet 30, the alternating power induced in the power receiving coil L3 is rectified through a rectifier circuit 32 including a diode D3 and a capacitor C3 to be converted into DC power. Further, the DC power converted through the rectifier circuit 32 is stabilized to, for example, the power supply voltage 3.3 [V] through the regulator 33 and supplied to the sensor control unit 31 and the like.
 このように、本実施形態では、1次コイルL1から発生する交番磁束が受電コイルL3を鎖交した際に受電コイルL3に誘起される交番電力を温度検出シート30の電源として利用しているため、温度検出シート30に電源配線を設ける必要がない。このため、温度検出シート30の配線構造を簡素化することができる。 Thus, in this embodiment, since the alternating magnetic flux generated from the primary coil L1 links the power receiving coil L3, the alternating power induced in the power receiving coil L3 is used as the power source of the temperature detection sheet 30. There is no need to provide power supply wiring on the temperature detection sheet 30. For this reason, the wiring structure of the temperature detection sheet 30 can be simplified.
 以上説明したように、本実施形態にかかる非接触電力伝送システムによっても、先の第1の実施形態による上記(1)~(4)の効果と同等の効果、あるいはこれに準じた効果が得られるとともに、以下のような効果が得られるようになる。 As described above, the contactless power transmission system according to the present embodiment also provides the same effects as the effects (1) to (4) of the previous first embodiment or an effect equivalent thereto. In addition, the following effects can be obtained.
 (6)温度検出シート30に、1次コイルL1から発生する交番磁束と鎖交する受電コイルL3を設けることとした。そして、交番磁束の鎖交により受電コイルL3に誘起される交番電力を温度検出シート30の電源として利用することとした。これにより、温度検出シート30に電源配線を設ける必要がないため、温度検出シート30の配線構造を簡素化することができる。 (6) The temperature detection sheet 30 is provided with the power receiving coil L3 interlinked with the alternating magnetic flux generated from the primary coil L1. Then, the alternating power induced in the power receiving coil L <b> 3 by the linkage of the alternating magnetic flux is used as the power source for the temperature detection sheet 30. Thereby, since it is not necessary to provide power supply wiring in the temperature detection sheet 30, the wiring structure of the temperature detection sheet 30 can be simplified.
 <第4の実施形態>
 次に、本発明にかかる非接触電力伝送システムの第4の実施形態について図11及び図12を参照して説明する。なお、本実施形態は、温度検出シート30及び充電器2の回路構成が先の第3の実施形態と相違するが、それ以外の構成については第3の実施形態と同様である。そこで本実施形態では、第3の実施形態との相違点を中心に説明し、第3の実施形態と同様の要素については同一の符号を付すことにより重複する説明を割愛する。はじめに、図11を参照して、温度検出シート30の回路構成について説明する。
<Fourth Embodiment>
Next, a fourth embodiment of the non-contact power transmission system according to the present invention will be described with reference to FIG. 11 and FIG. In addition, although this embodiment differs in the circuit structure of the temperature detection sheet | seat 30 and the charger 2 from previous 3rd Embodiment, about another structure, it is the same as that of 3rd Embodiment. Therefore, in the present embodiment, differences from the third embodiment will be mainly described, and the same elements as those in the third embodiment will be denoted by the same reference numerals, and redundant description will be omitted. First, the circuit configuration of the temperature detection sheet 30 will be described with reference to FIG.
 図11に示すように、温度検出シート30は、1次コイルL1に誘起される交番電力の発振周波数(100[kHz])と比較して十分に高い周波数(例えば1[MHz])を有する無線電波を発振するコルピッツ発振回路34を備えている。また、温度検出シート30は、コルピッツ発振回路34の給電経路を断続させるスイッチング素子SW1を備えている。そして、スイッチング素子SW1のオン/オフの切り替えがセンサ制御部31によって制御されることにより、コルピッツ発振回路34の駆動/停止が切り替えられる。具体的には、センサ制御部31は、通常はスイッチング素子SW1をオフ状態に維持することにより、コルピッツ発振回路34からの無線電波の発振を停止する。また、センサ制御部31は、上記異常検知信号を送信する処理に代えて、スイッチング素子SW1をオンさせる処理を行うことにより、コルピッツ発振回路34からの無線電波の発振を行う。すなわち、この温度検出シート30では、線状サーミスタSH1~SH5,SV1~SV5の異常加熱が検知されたとき、無線電波が発振される。 As shown in FIG. 11, the temperature detection sheet 30 has a sufficiently high frequency (for example, 1 [MHz]) compared to the oscillation frequency (100 [kHz]) of the alternating power induced in the primary coil L1. A Colpitts oscillation circuit 34 for oscillating radio waves is provided. Further, the temperature detection sheet 30 includes a switching element SW <b> 1 that interrupts the power feeding path of the Colpitts oscillation circuit 34. The switching / switching of the switching element SW <b> 1 is controlled by the sensor control unit 31, so that driving / stopping of the Colpitts oscillation circuit 34 is switched. Specifically, the sensor control unit 31 normally stops the oscillation of the radio wave from the Colpitts oscillation circuit 34 by maintaining the switching element SW1 in the off state. Further, the sensor control unit 31 oscillates a radio wave from the Colpitts oscillation circuit 34 by performing a process of turning on the switching element SW1 instead of the process of transmitting the abnormality detection signal. That is, in this temperature detection sheet 30, when abnormal heating of the linear thermistors SH1 to SH5 and SV1 to SV5 is detected, radio waves are oscillated.
 一方、図12に示すように、充電器2は、コルピッツ発振回路34から発振される無線電波を受信する部分として機能する、コイルL4及び共振用コンデンサC4からなる共振回路25を備えている。そして、無線電波を受信した際に共振回路25に発生する電圧は、ダイオードD4及びコンデンサC5からなる整流回路26によって整流、平滑化されて、端子B2を介して1次側制御部23に取り込まれる。すなわち、コルピッツ発振回路34から発振された電波が共振回路25を介して受信されると、端子B2の電位が所定の電圧値を示す。そして、1次側制御部23は、端子B2の電位が所定の閾値を超えているか否かの判断に基づき、温度検出シート30から送信された無線電波を受信したか否かを判定する。なお、所定の閾値は、コルピッツ発振回路34から発振される無線電波の受信の有無を判別するための値であり、予めの実験などを通じて設定されている。そして、温度検出シート30から送信された無線電波を受信したと判定した場合には、スイッチング素子FET1のオン/オフの切り替えを停止することにより、1次コイルL1への交番電力の供給を停止する。 On the other hand, as shown in FIG. 12, the charger 2 includes a resonance circuit 25 including a coil L4 and a resonance capacitor C4 that functions as a part that receives a radio wave oscillated from the Colpitts oscillation circuit 34. The voltage generated in the resonance circuit 25 when receiving the radio wave is rectified and smoothed by the rectifier circuit 26 including the diode D4 and the capacitor C5, and is taken into the primary side control unit 23 via the terminal B2. . That is, when the radio wave oscillated from the Colpitts oscillation circuit 34 is received via the resonance circuit 25, the potential of the terminal B2 indicates a predetermined voltage value. And the primary side control part 23 determines whether the radio wave transmitted from the temperature detection sheet | seat 30 was received based on the determination whether the electric potential of terminal B2 exceeded the predetermined threshold value. The predetermined threshold value is a value for determining whether or not the radio wave oscillated from the Colpitts oscillation circuit 34 is received, and is set through a prior experiment or the like. And when it determines with having received the radio wave transmitted from the temperature detection sheet | seat 30, supply of the alternating power to the primary coil L1 is stopped by stopping switching of ON / OFF of switching element FET1. .
 このように、本実施形態では、温度検出シート30から充電器2への異常通知を無線にて行うこととしているため、温度検出シート30と充電器2との間に通信用の配線を設ける必要がない。このため、非接触電力伝送システムの構造を簡素化することができる。 As described above, in this embodiment, since the abnormality notification from the temperature detection sheet 30 to the charger 2 is performed wirelessly, it is necessary to provide communication wiring between the temperature detection sheet 30 and the charger 2. There is no. For this reason, the structure of a non-contact electric power transmission system can be simplified.
 以上説明したように、本実施形態にかかる非接触電力伝送システムによっても、先の第1及び3の実施形態による上記(1)~(4)及び(6)の効果と同等の効果、あるいはこれに準じた効果が得られるとともに、以下のような効果が得られるようになる。 As described above, the contactless power transmission system according to the present embodiment also has the same effects as the effects (1) to (4) and (6) described above in the first and third embodiments, or this effect. The following effects can be obtained.
 (7)温度検出シート30に設けられたセンサ制御部31と充電器2に設けられた1次側制御部23とを無線通信可能に接続することとした。これにより、温度検出シート30と充電器2との間に通信用の配線を設ける必要がないため、非接触電力伝送システムの構造を簡素化することができる。 (7) The sensor control unit 31 provided in the temperature detection sheet 30 and the primary side control unit 23 provided in the charger 2 are connected so as to be capable of wireless communication. Thereby, since it is not necessary to provide the wiring for communication between the temperature detection sheet | seat 30 and the charger 2, the structure of a non-contact electric power transmission system can be simplified.
  <第5の実施形態>
 次に、本発明にかかる非接触電力伝送システムの第5の実施形態について図13~図17を参照して説明する。なお、本実施形態では、第3の実施形態との相違点を中心に説明し、第3の実施形態と同様の要素については同一の符号を付すことにより重複する説明を割愛する。はじめに、図13を参照して、非接触電力伝送システムの概略構成について説明する。
<Fifth Embodiment>
Next, a fifth embodiment of the non-contact power transmission system according to the present invention will be described with reference to FIGS. In the present embodiment, differences from the third embodiment will be mainly described, and the same elements as those in the third embodiment will be denoted by the same reference numerals, and redundant description will be omitted. First, the schematic configuration of the non-contact power transmission system will be described with reference to FIG.
 図13に示すように、本実施形態では、充電器2のハウジング21の上面21aのうち、1次コイルL1の上方にあたる部分に、温度検出シート30を接着剤などにより貼り付けている。 As shown in FIG. 13, in the present embodiment, the temperature detection sheet 30 is attached to a portion of the upper surface 21a of the housing 21 of the charger 2 that is above the primary coil L1 with an adhesive or the like.
 次に、図14を参照して、本実施形態の温度検出シート30の構成について説明する。 Next, the configuration of the temperature detection sheet 30 of the present embodiment will be described with reference to FIG.
 図14に示すように、本実施形態の温度検出シート30は、1次コイルL1と磁気結合する磁気結合コイルL5を備えている。この磁気結合コイルL5は、温度検出シート30の外縁に沿って配置されている。なお、磁気結合コイルL5は、線状サーミスタSH1~SH5,SV1~SV5がパターン形成された層とは別の層に設けられており、線状サーミスタSH1~SH5,SV1~SV5と絶縁されている。 As shown in FIG. 14, the temperature detection sheet 30 of this embodiment includes a magnetic coupling coil L5 that is magnetically coupled to the primary coil L1. The magnetic coupling coil L5 is disposed along the outer edge of the temperature detection sheet 30. The magnetic coupling coil L5 is provided in a layer different from the layer on which the linear thermistors SH1 to SH5 and SV1 to SV5 are patterned, and is insulated from the linear thermistors SH1 to SH5 and SV1 to SV5. .
 次に、図15を参照して、温度検出シート30の回路構成について説明する。 Next, the circuit configuration of the temperature detection sheet 30 will be described with reference to FIG.
 図15に示すように、磁気結合コイルL5の一方の端部が接地ラインに接続され、磁気結合コイルL5の他方の端部がスイッチング素子SW2を介して接地ラインに接続されている。そして、スイッチング素子SW2のオン/オフの切り替えがセンサ制御部31によって制御されることにより、磁気結合コイルL5の接地ラインへの短絡及び短絡の解除が行われる。具体的には、センサ制御部31は、通常はスイッチング素子SW2をオフに維持することにより、磁気結合コイルL5の短絡を解除している。また、センサ制御部31は、上記異常検知信号を送信する処理に代えて、スイッチング素子SW2をオンさせる処理を行うことにより、磁気結合コイルL5を接地ラインへ短絡させる。これにより、磁気結合コイルL5が障害物となって1次コイルL1と2次コイルL2との間の磁気結合が弱められるため、1次コイルL1から2次コイルL2に伝送される交番電力が目減りする。このとき、1次コイルL1及び2次コイルL2にそれぞれ誘起される交番電力の振幅は例えば図16に示すように変化する。すなわち、スイッチング素子SW2の切り替えが図16(c)に示すように行われたとすると、スイッチング素子SW2がオンされたとき、2次コイルL2に誘起される交番電力の振幅は、図16(a)に示すように、振幅A3aから振幅A3bに低下する。これに対し、1次コイルL1に誘起される交番電力の振幅は、図16(b)に示すように、振幅A4aから振幅A4bに増加する。 As shown in FIG. 15, one end of the magnetic coupling coil L5 is connected to the ground line, and the other end of the magnetic coupling coil L5 is connected to the ground line via the switching element SW2. Then, the switching of the switching element SW2 on / off is controlled by the sensor control unit 31, whereby the short circuit to the ground line of the magnetic coupling coil L5 and the cancellation of the short circuit are performed. Specifically, the sensor control unit 31 normally releases the short circuit of the magnetic coupling coil L5 by keeping the switching element SW2 off. The sensor control unit 31 short-circuits the magnetic coupling coil L5 to the ground line by performing a process of turning on the switching element SW2 instead of the process of transmitting the abnormality detection signal. As a result, the magnetic coupling coil L5 becomes an obstacle and the magnetic coupling between the primary coil L1 and the secondary coil L2 is weakened, so the alternating power transmitted from the primary coil L1 to the secondary coil L2 is reduced. To do. At this time, the amplitude of the alternating power induced in the primary coil L1 and the secondary coil L2 changes as shown in FIG. 16, for example. That is, if switching of the switching element SW2 is performed as shown in FIG. 16C, the amplitude of the alternating power induced in the secondary coil L2 when the switching element SW2 is turned on is shown in FIG. As shown in FIG. 4, the amplitude decreases from the amplitude A3a to the amplitude A3b. On the other hand, the amplitude of the alternating power induced in the primary coil L1 increases from the amplitude A4a to the amplitude A4b as shown in FIG.
 次に、図17を参照して、充電器2の回路構成について説明する。 Next, the circuit configuration of the charger 2 will be described with reference to FIG.
 図17に示すように、1次側制御部23は、スイッチング素子SW1のドレイン・グランド間の電位が印加される端子B3を備えている。1次側制御部23は、端子B3の電位を監視することで、1次コイルL1に誘起される交番電力の振幅を監視する。そして、1次コイルL1に誘起される交番電力の振幅が先の図16(b)に例示したように振幅A4aから振幅A4bに変化したことを検知した場合には、1次側制御部23は、温度検出シート30において異常加熱が検知されたと判定する。この場合、1次側制御部23は、スイッチング素子FET1のオン/オフの切り替えを停止することにより、1次コイルL1への交番電力の供給を停止する。 As shown in FIG. 17, the primary side control unit 23 includes a terminal B3 to which a potential between the drain and ground of the switching element SW1 is applied. The primary side control unit 23 monitors the amplitude of the alternating power induced in the primary coil L1 by monitoring the potential of the terminal B3. When it is detected that the amplitude of the alternating power induced in the primary coil L1 has changed from the amplitude A4a to the amplitude A4b as illustrated in FIG. 16B, the primary-side control unit 23 It is determined that abnormal heating is detected in the temperature detection sheet 30. In this case, the primary side control unit 23 stops the supply of alternating power to the primary coil L1 by stopping the on / off switching of the switching element FET1.
 このような構成によれば、温度検出シート30と充電器2との間に通信用の配線を設けることなく、温度検出シート30から充電器2に異常を通知することができる。このため、非接触電力伝送システムの構造を簡素化することができる。 According to such a configuration, an abnormality can be notified from the temperature detection sheet 30 to the charger 2 without providing communication wiring between the temperature detection sheet 30 and the charger 2. For this reason, the structure of a non-contact electric power transmission system can be simplified.
 一方、こうした非接触電力伝送システムでは、充電器2のハウジング21の上面21aに金属異物が置かれることが多い。このため、温度検出シート30を充電器2のハウジング21の上面21aに貼り付けることとすれば、ハウジング21の上面21aに置かれる金属異物の発熱を検出し易くなり、ひいては金属異物の異常発熱をより的確に抑制することができる。 On the other hand, in such a non-contact power transmission system, a metal foreign object is often placed on the upper surface 21a of the housing 21 of the charger 2. For this reason, if the temperature detection sheet 30 is affixed to the upper surface 21a of the housing 21 of the charger 2, it becomes easy to detect the heat generation of the metal foreign object placed on the upper surface 21a of the housing 21, and consequently the abnormal heat generation of the metal foreign object. It can be suppressed more accurately.
 以上説明したように、本実施形態にかかる非接触電力伝送システムによっても、先の第1及び第3の実施形態による上記(1)~(4)及び(6)の効果と同等の効果、あるいはこれに準じた効果が得られるとともに、以下のような効果が得られるようになる。 As described above, even with the non-contact power transmission system according to this embodiment, the same effects as the effects (1) to (4) and (6) according to the first and third embodiments described above, or In addition to the effects similar to this, the following effects can be obtained.
 (8)温度検出シート30には、スイッチング素子SW2を介して短絡可能とされた両端を含み、且つ1次コイルL1と磁気結合する磁気結合コイルL5を設けることとした。また、センサ制御部31では、温度検出シート30の異常加熱を検知したとき、スイッチング素子SW2をオンさせて磁気結合コイルL5を短絡させることにより、1次コイルL1に誘起される交番電力の振幅を変化させた。さらに、1次側制御部23では、1次コイルL1に誘起される交番電力の振幅の変化に基づいて温度検出シート30の異常加熱を検知することとした。これにより、温度検出シート30と充電器2との間に通信用の配線を設ける必要がないため、非接触電力伝送システムの構造を簡素化することができる。 (8) The temperature detection sheet 30 is provided with a magnetic coupling coil L5 that includes both ends that can be short-circuited via the switching element SW2 and that is magnetically coupled to the primary coil L1. Moreover, in the sensor control part 31, when the abnormal heating of the temperature detection sheet | seat 30 is detected, the switching element SW2 is turned on and the magnetic coupling coil L5 is short-circuited, thereby changing the amplitude of the alternating power induced in the primary coil L1. Changed. Furthermore, in the primary side control part 23, it decided to detect the abnormal heating of the temperature detection sheet | seat 30 based on the change of the amplitude of the alternating power induced by the primary coil L1. Thereby, since it is not necessary to provide the wiring for communication between the temperature detection sheet | seat 30 and the charger 2, the structure of a non-contact electric power transmission system can be simplified.
 (9)温度検出シート30を充電器2のハウジング21の上面21aに貼り付けることとした。これにより、金属異物の発熱を検出し易くなり、ひいては金属異物の異常発熱をより的確に抑制することができる。 (9) The temperature detection sheet 30 is pasted on the upper surface 21 a of the housing 21 of the charger 2. Thereby, it becomes easy to detect the heat generation of the metal foreign object, and thus abnormal heat generation of the metal foreign object can be more accurately suppressed.
 <他の実施形態>
 なお、上記各実施形態は、これを適宜変更した以下の形態にて実施することもできる。
<Other embodiments>
In addition, each said embodiment can also be implemented with the following forms which changed this suitably.
 ・上記第2の実施形態では、2次コイルL2に誘起される交番電力の振幅を変調することによって2次側制御部13から1次側制御部23に異常検知信号を無線送信することとした。これに代えて、例えば携帯機器1及び充電器2にそれらの間で無線通信を行うための無線通信装置(無線通信ユニット)が搭載されている場合には、同無線通信装置を利用して2次側制御部13から1次側制御部23に異常検知信号を送信してもよい。また、こうした無線通信装置が携帯機器1及び充電器2に搭載されていない場合には、これを携帯機器1及び充電器2に新たに搭載してもよい。 In the second embodiment, the abnormality detection signal is wirelessly transmitted from the secondary control unit 13 to the primary control unit 23 by modulating the amplitude of the alternating power induced in the secondary coil L2. . Instead, for example, when the mobile device 1 and the charger 2 are equipped with a wireless communication device (wireless communication unit) for performing wireless communication therebetween, the wireless communication device is used to An abnormality detection signal may be transmitted from the secondary control unit 13 to the primary control unit 23. In addition, when such a wireless communication device is not mounted on the mobile device 1 and the charger 2, it may be newly mounted on the mobile device 1 and the charger 2.
 ・上記第3の実施形態では、受電コイルL3を、温度検出シート30の線状サーミスタSV1と線状サーミスタSV3とより挟まれている領域に配置することとしたが、受電コイルL3の形状及び配置については適宜変更することが可能である。 In the third embodiment, the power receiving coil L3 is arranged in a region sandwiched between the linear thermistor SV1 and the linear thermistor SV3 of the temperature detection sheet 30, but the shape and arrangement of the power receiving coil L3. Can be appropriately changed.
 ・上記第4の実施形態では、コルピッツ発振回路34を利用して温度検出シート30と充電器2との間で無線通信を行うこととしたが、これらの間の無線通信については適宜の無線通信装置を利用したものを採用することができる。 In the fourth embodiment, the Colpitts oscillation circuit 34 is used to perform wireless communication between the temperature detection sheet 30 and the charger 2. However, for wireless communication between these, appropriate wireless communication is performed. The thing using an apparatus can be employ | adopted.
 ・上記第4の実施形態では、温度検出シート30から送信される無線電波を受信する無線通信ユニットを充電器2に設けることとしたが、同無線通信ユニットを携帯機器1に設けてもよい。このような構成は、先の図6~図8を参照して説明した第2の実施形態において、温度検出シート30を携帯機器1の表面に貼り付けるようにした場合に特に有効である。すなわち、このような構成を採用すれば、温度検出シート30のセンサ制御部31と、図7に例示した携帯機器1の2次側制御部13とを無線通信可能に接続することができるため、温度検出シート30と携帯機器1との間に通信用の配線構造を設ける必要がない。このため、非接触電力伝送システムの構造を簡素化することができる。 In the fourth embodiment, the charger 2 is provided with the wireless communication unit that receives the radio wave transmitted from the temperature detection sheet 30, but the wireless communication unit may be provided in the portable device 1. Such a configuration is particularly effective when the temperature detection sheet 30 is attached to the surface of the portable device 1 in the second embodiment described with reference to FIGS. That is, by adopting such a configuration, the sensor control unit 31 of the temperature detection sheet 30 and the secondary side control unit 13 of the portable device 1 illustrated in FIG. There is no need to provide a wiring structure for communication between the temperature detection sheet 30 and the portable device 1. For this reason, the structure of a non-contact electric power transmission system can be simplified.
 ・上記第5の実施形態では、温度検出シート30を充電器2のハウジング21の表面に貼り付けることとしたが、これに代えて、携帯機器1のハウジング12の表面に貼り付けてもよい。この場合、例えば図7に2点鎖線で示すように、2次側制御部13に、2次コイルL2に誘起される電圧が印加される端子B4を設ける。そして、2次側制御部13は、端子B4の電位を監視することで、2次コイルL2に誘起される交番電力の振幅を監視する。また、2次コイルL2に誘起される交番電力の振幅が振幅A3bに変化したことを検知した場合には、温度検出シート30において異常加熱が発生したと判定する。この場合、2次側制御部13は、スイッチング素子FET3のオン/オフの切り替えを通じて2次コイルL2に誘起される交番電力の振幅を所要に変化させることで、温度検出シート30において異常加熱が検知された旨を1次側制御部23に通知する。このような構成によれば、携帯機器1のハウジング12の表面に温度検出シート30を貼り付けることが可能となる。このため、例えば構造上の制約により充電器2の表面に温度検出シート30を貼り付けることが難しい場合であっても、携帯機器1に設けられた温度検出シート30を通じて金属異物の発熱を抑制することができる。 In the fifth embodiment, the temperature detection sheet 30 is attached to the surface of the housing 21 of the charger 2, but instead, it may be attached to the surface of the housing 12 of the portable device 1. In this case, for example, as shown by a two-dot chain line in FIG. 7, the secondary side control unit 13 is provided with a terminal B4 to which a voltage induced in the secondary coil L2 is applied. And the secondary side control part 13 monitors the amplitude of the alternating power induced by the secondary coil L2 by monitoring the electric potential of terminal B4. Further, when it is detected that the amplitude of the alternating power induced in the secondary coil L2 has changed to the amplitude A3b, it is determined that abnormal heating has occurred in the temperature detection sheet 30. In this case, the secondary side control unit 13 detects abnormal heating in the temperature detection sheet 30 by changing the amplitude of the alternating power induced in the secondary coil L2 as needed through switching of the switching element FET3. This is notified to the primary side control unit 23. According to such a configuration, the temperature detection sheet 30 can be attached to the surface of the housing 12 of the mobile device 1. For this reason, even if it is difficult to attach the temperature detection sheet 30 to the surface of the charger 2 due to structural restrictions, for example, the heat generation of the metal foreign matter is suppressed through the temperature detection sheet 30 provided in the portable device 1. be able to.
 ・上記各実施形態では、温度検出シート30に線状サーミスタSH1~SH5,SV1~SV5を格子状に配列することとしたが、これに代えて、例えば図18に示すように、線状サーミスタSH1~SH5を図中のy軸方向のみに沿って並べて配列してもよい。このような構成によれば、線状サーミスタを格子状に配列する場合と比較すると、温度検出素子の数を低減することができるため、コストを低減することができる。 In each of the above embodiments, the linear thermistors SH1 to SH5 and SV1 to SV5 are arranged in a lattice pattern on the temperature detection sheet 30, but instead, for example, as shown in FIG. 18, the linear thermistors SH1 SH5 may be arranged side by side along only the y-axis direction in the figure. According to such a configuration, the number of temperature detection elements can be reduced as compared with the case where the linear thermistors are arranged in a grid pattern, so that the cost can be reduced.
 ・上記各実施形態では、線状サーミスタSH1~SH5,SV1~SV5やセンサ制御部31等を備える温度検出部をシート状に形成することとしたが、同温度検出部を例えば箱状に形成するなど、温度検出部の形状を適宜変更してもよい。 In each of the above embodiments, the temperature detection unit including the linear thermistors SH1 to SH5, SV1 to SV5, the sensor control unit 31 and the like is formed in a sheet shape, but the temperature detection unit is formed in a box shape, for example. For example, the shape of the temperature detection unit may be changed as appropriate.
 ・上記各実施形態では、1次コイルL1を含んで構成される受電回路部を充電器に、また、2次コイルL2を含んで構成される送電回路部を携帯機器に搭載することとしたが、受電回路部及び送電回路部の搭載対象は、これら充電器や携帯機器に限られない。要は、1次コイルに供給した交番電力を2次コイルを介して受電するとともに、この受電した電力を負荷に供給する非接触電力伝送システムであれば、本発明の適用が可能である。 In each of the above embodiments, the power receiving circuit unit including the primary coil L1 is mounted on the charger, and the power transmission circuit unit including the secondary coil L2 is mounted on the portable device. The mounting target of the power receiving circuit unit and the power transmitting circuit unit is not limited to these chargers and portable devices. In short, the present invention can be applied to any contactless power transmission system that receives the alternating power supplied to the primary coil via the secondary coil and supplies the received power to the load.
 L1…1次コイル、L2…2次コイル、L3…受電コイル、L5…磁気結合コイル、SW2…スイッチング素子、SH1~SH5,SV1~SV5…線状サーミスタ(温度検出素子)、12,21…ハウジング、14…負荷調整回路(無線通信ユニット)、30…温度検出シート(温度検出部)、31…センサ制御部(異常検知ユニット)、23…1次側制御部(送電制御ユニット)。 L1 ... primary coil, L2 ... secondary coil, L3 ... power receiving coil, L5 ... magnetic coupling coil, SW2 ... switching element, SH1 to SH5, SV1 to SV5 ... linear thermistor (temperature detection element), 12, 21 ... housing , 14 ... Load adjustment circuit (wireless communication unit), 30 ... Temperature detection sheet (temperature detection unit), 31 ... Sensor control unit (abnormality detection unit), 23 ... Primary side control unit (power transmission control unit).

Claims (13)

  1.  非接触電力伝送システムであって、
     交番電力の供給により交番磁束を発生する1次コイルと、
     前記1次コイルからの交番磁束と鎖交して、交番電力を受電する2次コイルとを備え、前記2次コイルにより受電した受電電力を負荷に供給する非接触電力伝送システムであって、
     前記1次コイルと前記2次コイルとの間に配置された温度検出部であって、複数の線状に形成された温度検出素子を含む前記温度検出部と、
     前記複数の温度検出素子を通じて前記温度検出部の温度を検出し、検出された前記温度検出部の温度に応じて前記温度検出部の異常加熱を検知する異常検知ユニットと、
     同異常検知ユニットが前記温度検出部の異常加熱を検知した場合、前記1次コイルへの交番電力の供給を停止する送電制御ユニットと
     を備える、非接触電力伝送システム。
    A non-contact power transmission system,
    A primary coil that generates alternating magnetic flux by supplying alternating power;
    A non-contact power transmission system including a secondary coil that receives alternating power in linkage with the alternating magnetic flux from the primary coil, and that supplies the received power received by the secondary coil to a load;
    A temperature detection unit disposed between the primary coil and the secondary coil, the temperature detection unit including a plurality of linearly formed temperature detection elements;
    An abnormality detection unit that detects the temperature of the temperature detection unit through the plurality of temperature detection elements, and detects abnormal heating of the temperature detection unit according to the detected temperature of the temperature detection unit;
    A non-contact power transmission system comprising: a power transmission control unit that stops supply of alternating power to the primary coil when the abnormality detection unit detects abnormal heating of the temperature detection unit.
  2.  前記温度検出部がシート状に形成されている、請求項1に記載の非接触電力伝送システム。 The non-contact power transmission system according to claim 1, wherein the temperature detection unit is formed in a sheet shape.
  3.  前記複数の温度検出素子は、前記温度検出部において格子状に配列されている、請求項1又は2に記載の非接触電力伝送システム。 The contactless power transmission system according to claim 1 or 2, wherein the plurality of temperature detection elements are arranged in a lattice pattern in the temperature detection unit.
  4.  前記温度検出部は、前記1次コイルから発生する交番磁束と鎖交して、交番電力を受電する受電コイルと、該受電コイルの交番電力を用いて前記温度検出部の動作電圧を生成する電源とを含む、請求項1~3のいずれか一項に記載の非接触電力伝送システム。 The temperature detection unit is linked with an alternating magnetic flux generated from the primary coil, and receives a power receiving coil that receives the alternating power, and a power source that generates an operating voltage of the temperature detection unit using the alternating power of the power receiving coil. The non-contact power transmission system according to any one of claims 1 to 3, comprising:
  5.  前記温度検出部が、前記1次コイル上に配置されている、請求項1~4のいずれか一項に記載の非接触電力伝送システム。 The non-contact power transmission system according to any one of claims 1 to 4, wherein the temperature detection unit is disposed on the primary coil.
  6.  前記非接触電力伝送システムは、前記1次コイルを覆うハウジングを備え、
     前記温度検出部が、前記ハウジング上に配置される、請求項1~4のいずれか一項に記載の非接触電力伝送システム。
    The non-contact power transmission system includes a housing that covers the primary coil,
    The non-contact power transmission system according to any one of claims 1 to 4, wherein the temperature detection unit is disposed on the housing.
  7.  前記温度検出部が、前記2次コイル上に配置されている、請求項1~4のいずれか一項に記載の非接触電力伝送システム。 The non-contact power transmission system according to any one of claims 1 to 4, wherein the temperature detection unit is disposed on the secondary coil.
  8.  前記非接触電力伝送システムは、前記2次コイルを覆うハウジングを備え、
     前記温度検出部が、前記ハウジング上に配置されている、請求項1~4のいずれか一項に記載の非接触電力伝送システム。
    The non-contact power transmission system includes a housing that covers the secondary coil,
    The contactless power transmission system according to any one of claims 1 to 4, wherein the temperature detection unit is disposed on the housing.
  9.  前記異常検知ユニットは、前記送電制御ユニットと無線通信可能に接続されている、請求項1~8のいずれか一項に記載の非接触電力伝送システム。 The contactless power transmission system according to any one of claims 1 to 8, wherein the abnormality detection unit is connected to the power transmission control unit so as to be capable of wireless communication.
  10.  前記温度検出部は、
     前記1次コイルと磁気結合し、且つ第1の端部および第2の端部を有する磁気結合コイルと、
     同磁気結合コイルの第1の端部と第2の端部との間に接続されたスイッチング素子とを含み、
     前記異常検知ユニットは、前記温度検出部の異常加熱を検知したとき、前記スイッチング素子を通じて前記磁気結合コイルの第1および第2の端部を短絡させて、前記1次コイルに発生する交番電力の振幅を変化させ、
     前記送電制御ユニットは、前記1次コイルに発生する交番電力の振幅の変化に基づいて前記温度検出部の異常加熱を検知する、請求項1~8のいずれか一項に記載の非接触電力伝送システム。
    The temperature detector is
    A magnetic coupling coil magnetically coupled to the primary coil and having a first end and a second end;
    A switching element connected between the first end and the second end of the magnetic coupling coil,
    The abnormality detection unit short-circuits the first and second ends of the magnetic coupling coil through the switching element when detecting abnormal heating of the temperature detection unit, and generates alternating power generated in the primary coil. Change the amplitude,
    The contactless power transmission according to any one of claims 1 to 8, wherein the power transmission control unit detects abnormal heating of the temperature detection unit based on a change in amplitude of alternating power generated in the primary coil. system.
  11.  前記非接触電力伝送システムは、前記2次コイルを搭載した機器を備え、
     前記機器は、前記送電制御ユニットと無線通信を行う無線通信ユニットを含み、
     前記異常検知ユニットは、前記無線通信ユニットと通信可能に接続されて、前記温度検出部の異常加熱を検知したどうかを示す検知信号を前記無線通信ユニットを介して前記送電制御ユニットに無線で送信する、請求項7又は8に記載の非接触電力伝送システム。
    The non-contact power transmission system includes a device equipped with the secondary coil,
    The device includes a wireless communication unit that performs wireless communication with the power transmission control unit,
    The abnormality detection unit is communicably connected to the wireless communication unit and wirelessly transmits a detection signal indicating whether abnormal heating of the temperature detection unit has been detected to the power transmission control unit via the wireless communication unit. The contactless power transmission system according to claim 7 or 8.
  12.  前記異常検知ユニットは、前記無線通信ユニットと無線通信可能に接続されている、請求項11に記載の非接触電力伝送システム。 The non-contact power transmission system according to claim 11, wherein the abnormality detection unit is connected to the wireless communication unit so as to be capable of wireless communication.
  13.  前記温度検出部は、
     前記2次コイルと結合し、且つ第1の端部および第2の端部を有する磁気結合コイルと、
     同磁気結合コイルの第1の端部と第2の端部との間に接続されたスイッチング素子とを含み、
     前記異常検知ユニットは、前記温度検出部の異常加熱を検知したとき、前記スイッチング素子を通じて前記磁気結合コイルの第1および第2の端部を短絡させて、前記2次コイルに発生する交番電力の振幅を変化させ、
     前記送電制御ユニットは、前記2次コイルに発生する交番電力の振幅の変化に基づいて前記温度検出部の異常加熱を検知する、請求項11に記載の非接触電力伝送システム。
    The temperature detector is
    A magnetic coupling coil coupled to the secondary coil and having a first end and a second end;
    A switching element connected between the first end and the second end of the magnetic coupling coil,
    The abnormality detection unit short-circuits the first and second ends of the magnetic coupling coil through the switching element and detects the alternating power generated in the secondary coil when detecting abnormal heating of the temperature detection unit. Change the amplitude,
    The non-contact power transmission system according to claim 11, wherein the power transmission control unit detects abnormal heating of the temperature detection unit based on a change in amplitude of alternating power generated in the secondary coil.
PCT/JP2012/063003 2011-06-21 2012-05-22 Contactless power transmission system WO2012176569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011137358A JP5796203B2 (en) 2011-06-21 2011-06-21 Non-contact power transmission system
JP2011-137358 2011-06-21

Publications (1)

Publication Number Publication Date
WO2012176569A1 true WO2012176569A1 (en) 2012-12-27

Family

ID=47422413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063003 WO2012176569A1 (en) 2011-06-21 2012-05-22 Contactless power transmission system

Country Status (2)

Country Link
JP (1) JP5796203B2 (en)
WO (1) WO2012176569A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135796A (en) * 2013-01-08 2014-07-24 Ihi Corp Foreign matter detection device
CN105264742A (en) * 2013-05-14 2016-01-20 株式会社村田制作所 Power feeding device and power receiving device for contactless power transmission

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185094A1 (en) * 2013-05-14 2014-11-20 株式会社村田製作所 Power feeding device and power receiving device for contactless power transmission
CN105264347B (en) 2013-05-14 2018-01-09 株式会社村田制作所 Electric supply installation and current-collecting device for non-contact power transmission
JP6147112B2 (en) * 2013-06-25 2017-06-14 ローム株式会社 Wireless power transmission apparatus and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399248U (en) * 1986-12-17 1988-06-27
JP2006214644A (en) * 2005-01-07 2006-08-17 Matsushita Electric Ind Co Ltd Storage
JP2009273260A (en) * 2008-05-08 2009-11-19 Seiko Epson Corp Non-contact power transmission apparatus, power transmission apparatus and electronic apparatus using the same
JP2009273307A (en) * 2008-05-09 2009-11-19 Seiko Epson Corp Power receiving device, electronic apparatus, non-contact power transfer system and power transmission apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05143798A (en) * 1991-07-23 1993-06-11 Hitachi Maxell Ltd Non-contact type information medium and its reader/ writer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399248U (en) * 1986-12-17 1988-06-27
JP2006214644A (en) * 2005-01-07 2006-08-17 Matsushita Electric Ind Co Ltd Storage
JP2009273260A (en) * 2008-05-08 2009-11-19 Seiko Epson Corp Non-contact power transmission apparatus, power transmission apparatus and electronic apparatus using the same
JP2009273307A (en) * 2008-05-09 2009-11-19 Seiko Epson Corp Power receiving device, electronic apparatus, non-contact power transfer system and power transmission apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135796A (en) * 2013-01-08 2014-07-24 Ihi Corp Foreign matter detection device
US10018516B2 (en) 2013-01-08 2018-07-10 Ihi Corporation Foreign matter detection device
CN105264742A (en) * 2013-05-14 2016-01-20 株式会社村田制作所 Power feeding device and power receiving device for contactless power transmission
CN105264742B (en) * 2013-05-14 2018-04-10 株式会社村田制作所 Electric supply installation and current-collecting device for non-contact power transmission

Also Published As

Publication number Publication date
JP5796203B2 (en) 2015-10-21
JP2013005682A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP6920646B2 (en) Foreign object detectors, wireless power transfer devices, and wireless power transfer systems
WO2011132471A1 (en) Non-contact power supply device, non-contact power receiving device, and non-contact power charging system
WO2012176569A1 (en) Contactless power transmission system
US8810071B2 (en) Wireless power transmission system
US20190385788A1 (en) Power receiving device and power feeding system
CN101345437B (en) Power transmission device and electronic instrument
JP6122402B2 (en) Power transmission device and wireless power transmission system
US8378774B2 (en) Coil unit and electronic apparatus using the same
JP6057085B2 (en) Non-contact power transmission device
JP2007514400A (en) Contactless charging system
US11561262B2 (en) Signal transmission circuit, battery monitoring device, and battery monitoring method
JP2015008548A (en) Non-contact power transmission device
WO2017134838A1 (en) Non-contact charging equipment
WO2013061613A1 (en) Contactless charging device
WO2013061611A1 (en) Contactless power transmission device
US9887559B2 (en) Power feeding device and power receiving device for contactless power transmission
JP6617296B2 (en) Built-in battery equipment
US9871385B2 (en) Power feeding device and power receiving device for contactless power transmission
KR102212831B1 (en) Wireless Power Transfer System
EP3444914A1 (en) Wireless charging device for an inductive power transfer, wireless power receiving unit and method for wirelessly transferring power for wireless charging
JP7213930B2 (en) Transmitting circuit and receiving circuit
JP7263873B2 (en) Capacitor module, resonator, wireless power transmitter, wireless power receiver, wireless power transmission system, and module
JP6988643B2 (en) Wireless power receiving device and wireless power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803233

Country of ref document: EP

Kind code of ref document: A1