WO2012176453A1 - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
WO2012176453A1
WO2012176453A1 PCT/JP2012/004028 JP2012004028W WO2012176453A1 WO 2012176453 A1 WO2012176453 A1 WO 2012176453A1 JP 2012004028 W JP2012004028 W JP 2012004028W WO 2012176453 A1 WO2012176453 A1 WO 2012176453A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring layer
transmission line
conductor region
differential transmission
region
Prior art date
Application number
PCT/JP2012/004028
Other languages
French (fr)
Japanese (ja)
Inventor
康裕 貝崎
中里 真弓
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012176453A1 publication Critical patent/WO2012176453A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0245Lay-out of balanced signal pairs, e.g. differential lines or twisted lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0253Impedance adaptations of transmission lines by special lay-out of power planes, e.g. providing openings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0224Patterned shielding planes, ground planes or power planes
    • H05K1/0225Single or multiple openings in a shielding, ground or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09727Varying width along a single conductor; Conductors or pads having different widths

Definitions

  • the present invention relates to a wiring board including a differential transmission line.
  • the common mode choke has a structure in which a normal phase signal line and a negative phase signal line are wound around a donut-shaped ferrite core.
  • the differential mode current is in the direction of canceling the magnetic flux, so the impedance of the common mode choke is low and the magnetic flux is strengthened against the common mode current. Therefore, the impedance of the common mode choke is high. Therefore, only common mode signals can be attenuated efficiently.
  • a common mode choke is formed by a multilayer structure for miniaturization (see Patent Documents 1, 2, and 3).
  • JP 2004-311829 A Japanese Patent No. 3545245 Japanese Patent No. 3863674 JP 2011-55122 A JP-A-6-85412 JP 2000-91807 A JP 2008-64780 A JP 2004-253746 A
  • the waveform in the differential mode may be destroyed due to attenuation of the high-frequency component.
  • the present invention has been made in view of these problems, and an object thereof is to provide a technique for reducing the influence of common mode in a wiring board having a differential transmission line pair.
  • a wiring board includes a first wiring layer including a differential transmission line pair, a second wiring layer including a conductor region, a first wiring layer, and a second wiring layer. And an insulating layer provided between the two.
  • the second wiring layer includes a non-conductor region having a plane-symmetric shape in the conductor region with respect to the symmetry plane of the differential transmission line pair in the first wiring layer.
  • the influence of the common mode can be reduced in the wiring board having the differential transmission line pair.
  • FIGS. 4A to 4D are diagrams for explaining the impedance in the differential mode and the common mode by the differential transmission line pair in FIG. It is a graph which shows the simulation result of the passage characteristic of the differential transmission line pair of FIG. It is a top view of the filter area
  • the differential transmission method is a transmission method that is not easily affected by electromagnetic noise, and is widely used in general.
  • the differential transmission method is a method of generating a two-phase signal of a normal phase signal and a reverse phase signal from one signal and transmitting it using two signal lines.
  • the phases of the normal phase signal and the negative phase signal are reversed (shifted by 180 degrees) in an ideal state, the magnetic fluxes generated are mutually canceled.
  • the influence of the inductor component of the line is reduced.
  • a mode in which a signal is transmitted in this ideal state a state in which the phase of the normal phase signal and the reverse phase signal is inverted
  • a differential mode a mode in which a signal is transmitted in this ideal state (a state in which the phase of the normal phase signal and the reverse phase signal is inverted) in the differential transmission method.
  • a mode in which a signal having the same phase is transmitted to two signal lines in the differential transmission method is referred to as a common mode. That is, in an actual circuit, a pair of differential transmission lines often transmits two types of signals, that is, a differential mode signal and a common mode signal.
  • a pair of differential transmission lines is described as a differential transmission line pair.
  • the common mode current generated in the differential transmission line is different from the differential transmission line, and forms a loop mainly through the ground conductor path.
  • electromagnetic noise is radiated, and electromagnetic noise entering from the outside enters this loop, so that electromagnetic noise is superimposed on the differential transmission line.
  • the amount of noise radiation is proportional to the magnitude of the common mode current and the loop area.
  • so-called common mode chokes have been used in the past to reduce common mode current and reduce noise emission.
  • Example 1 of this invention is related with the wiring board mounted in portable apparatuses, such as a mobile telephone.
  • the wiring board according to the present embodiment includes, for example, a differential transmission line pair that transmits a high frequency signal of 1 GHz or more.
  • the wiring board forms a common mode filter region so as to include a path in the middle of the differential transmission line pair in order to reduce the influence of the common mode on the differential transmission line pair.
  • the common mode filter region filters the common mode signal while suppressing the attenuation of the differential mode signal.
  • the common mode impedance is increased by resonating the differential transmission line pair and the ground pattern at a specific frequency.
  • the ground pattern is formed in a second wiring layer different from the first wiring layer in which the differential transmission line pair is disposed. More specifically, the second wiring layer includes a conductor region and a non-conductor region. Of these, the non-conductor region resonates with the differential transmission line pair. In order to effectively resonate, the non-conductive region has a plane-symmetric shape with respect to the plane of symmetry of the differential transmission line pair.
  • the present invention will be described based on preferred embodiments with reference to the drawings.
  • the same or equivalent components and members shown in the drawings are denoted by the same reference numerals, and repeated descriptions are appropriately omitted.
  • the dimensions of the members in each drawing are appropriately enlarged or reduced for easy understanding.
  • FIG. 1 is a perspective view schematically showing a configuration of a wiring board 100 and a module attached thereto according to Embodiment 1 of the present invention.
  • a first semiconductor module 102 and a second semiconductor module 104 are attached to the upper surface 100 a of the wiring board 100.
  • the side on which the first semiconductor module 102 and the second semiconductor module 104 are attached in the wiring board 100 will be described as the upper side.
  • the first semiconductor module 102 and the second semiconductor module 104 are, for example, modules in which a die on which an integrated circuit having a desired function is formed is packaged.
  • the wiring substrate 100 has a laminated structure in which the second wiring layer 8, the second insulating layer 6, the first wiring layer 4, and the first insulating layer 2 are laminated in this order from the lower side to the upper side.
  • This stacking direction is defined as stacking direction A1.
  • the stacking direction A ⁇ b> 1 is a direction perpendicular to the upper surface 100 a of the wiring substrate 100.
  • the first wiring layer 4 includes a differential transmission line pair 12.
  • the differential transmission line pair 12 transmits a high frequency signal of 1 GHz or more between the first semiconductor module 102 and the second semiconductor module 104.
  • the differential transmission line pair 12 traverses the filter region 10 (region surrounded by a two-dot chain line in FIG. 1) of the wiring substrate 100. In the filter region 10, the common mode signal is filtered from the high frequency signal transmitted through the differential transmission line pair 12.
  • the second wiring layer 8 is grounded.
  • the first insulating layer 2 and the second insulating layer 6 are formed of an insulating material such as epoxy resin or alumina.
  • the differential transmission line pair 12 is made of metal such as aluminum, gold, copper, silver platinum (AgPt), silver palladium (AgPd).
  • the thickness of the first insulating layer 2 is about 40 ⁇ m
  • the thickness of the first wiring layer 4 is about 18 ⁇ m
  • the thickness of the second insulating layer 6 is about 40 ⁇ m
  • the thickness of the second wiring layer 8 is about 18 ⁇ m.
  • FIG. 2 is a top view showing the configuration of the filter region 10. This is a plan view seen from the upper surface 100 a of the filter region 10.
  • the first insulating layer 2 and the second insulating layer 6 in FIG. 1 are omitted.
  • the AA line in FIG. 2 corresponds to the AA line in FIG.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. In FIG. 3, parts other than the filter region 10 are omitted.
  • the second wiring layer 8 includes a conductor region 18 and a non-conductor region 20.
  • the non-conductor region 20 includes a first non-conductor region 20a, a second non-conductor region 20b, a third non-conductor region 20c, a fourth non-conductor region 20d, a fifth non-conductor region 20e, a sixth non-conductor region 20f, and a seventh non-conductor region.
  • the conductor region 18 is made of a metal such as aluminum, gold, copper, silver platinum (AgPt), or silver palladium (AgPd).
  • the transmission lines in the differential transmission line pair 12 are arranged in parallel at a predetermined interval.
  • the symmetry plane 50 of the differential transmission line pair 12 is defined so as to include the center line between the transmission lines.
  • the symmetry plane 50 is a vertical plane of the first wiring layer 4.
  • the second wiring layer 8 includes a plurality of non-conductor regions 20 in the conductor region 18.
  • the conductor region 18 is made of metal and is grounded.
  • the non-conductor region 20 is filled with an insulator such as an epoxy resin, that is, a non-conductive material.
  • Each non-conductor region 20 (20a to 20l) in the second wiring layer 8 has a plane-symmetric shape with respect to the plane of symmetry 50 of the differential transmission line pair 12. Further, as shown in FIG. 2, each non-conductor region 20 (20a to 20l) has a straight slot shape, and is continuously formed in a strip shape so as to intersect the symmetry plane 50. Thus, each non-conductor region 20 is three-dimensionally crossed with the differential transmission line pair 12. Note that the length, width, and shape of each non-conductor region 20 are designed to be the same.
  • the differential transmission line pair 12 is disposed in the first wiring layer 4, and the first wiring layer 4 is formed as a layer different from the second wiring layer 8.
  • the first wiring layer 4 includes a differential transmission line pair 12 and an insulator 22 such as an epoxy resin.
  • An insulator 22 such as epoxy resin fills the gap between the differential transmission line pair 12.
  • FIGS. 4A to 4D are diagrams for explaining the impedance in the differential mode and the common mode by the differential transmission line pair 12.
  • 4A shows the differential mode
  • FIG. 4B shows the common mode.
  • the differential transmission line pair 12 is formed of a first transmission line 12a and a second transmission line 12b.
  • N-1 independent TEM wave modes exist with one of them as a ground.
  • the 1st transmission line 12a, the 2nd transmission line 12b, and the 2nd wiring layer 8 are arrange
  • the first transmission line 12a and the second transmission line 12b are just at the same potential as the reverse potential, they are called a differential mode and a common mode, respectively.
  • vdif, idif, and Zdif are a differential voltage, a differential current, and a differential impedance
  • vcom, icom, and Zcom are a common voltage, a common current, and a common impedance.
  • the differential impedance Zdif is a characteristic impedance between the first transmission line 12a and the second transmission line 12b
  • the common impedance Zcom is a characteristic impedance between the differential transmission line pair 12 and the second wiring layer 8. Therefore, the images shown in FIGS. 4C and 4D are obtained.
  • FIG. 4C corresponds to the differential mode
  • FIG. 4D corresponds to the common mode. In the differential mode of the differential line, it is hardly affected by the adjacent second wiring layer 8, but in the common mode, it is strongly influenced by the second wiring layer 8.
  • FIG. 5 is a graph showing a simulation result of the pass characteristics of the differential transmission line pair 12.
  • the horizontal axis indicates the frequency (GHz) of the signal transmitted through the differential transmission line pair 12, and the vertical axis indicates the degree to which the current component of each mode is attenuated in the filter region 10.
  • COM indicates how the common mode signal is attenuated
  • DIF indicates how the differential mode signal is attenuated.
  • the attenuation of the differential mode signal is negligible, and the common mode signal is attenuated over a relatively wide bandwidth.
  • the second wiring layer adjacent to the first wiring layer including the differential transmission line pair has a non-symmetrical shape with respect to the symmetry plane of the differential transmission line pair. Since the conductor region is included in the second wiring layer, the inductor / capacitance formed in the non-conductor region and the capacitance of the differential transmission line pair can be efficiently resonated. In addition, since the inductor / capacitance formed in the non-conductor region and the capacitance of the differential transmission line pair are efficiently resonated, the impedance in the common mode can be increased.
  • the common mode signal can be filtered over a wide bandwidth for a high frequency signal of 1 GHz or more. Further, although the impedance in the common mode is increased, the impedance in the differential mode is not increased, so that the differential mode signal can be maintained. Further, since the common mode signal is attenuated and the differential mode signal is maintained, the transmission quality can be improved.
  • the second embodiment also relates to a wiring board including a differential transmission line pair.
  • the second wiring layer includes a plurality of straight slot-shaped non-conductor regions.
  • the length, width, and shape of each non-conductor region are designed to be the same.
  • a plurality of types of lengths of each non-conductor region are defined. By defining a plurality of types of length of each non-conductor region, it becomes easy to set the inductor / capacitance of the non-conductor region to a desired value.
  • the wiring board 100 according to the second embodiment is the same type as that shown in FIG. 1, and the cross section of the filter region 10 is the same type as that shown in FIG.
  • FIG. 6 is a top view of the filter region 10 according to the second embodiment of the present invention.
  • the lengths of the first non-conductor region 20a, the second non-conductor region 20b, the eleventh non-conductor region 20k, and the twelfth non-conductor region 20l remain. This is longer than the length of the non-conductor region 20 (20a to 20l). That is, there are two types of lengths of the non-conductor region 20, and the longer non-conductor region 20 is disposed on the end side of the filter region 10.
  • the length of the non-conductor region 20 is not limited to two types, and may exist more than that.
  • the non-conductor region 20 may be arranged so as to become longer as it approaches the end side of the filter region 10. Further, the non-conductor region 20 may be arranged so as to be shorter as it is closer to the end side of the filter region 10.
  • the widths of the non-conductor regions 20 do not have to be the same, and a plurality of types may be defined.
  • the non-conductor region 20 may be arranged so as to become wider or narrower as it is closer to the end side of the filter region 10.
  • the length and width of each non-conductor region 20 may be freely set.
  • each non-conductor region 20 is required to have a plane-symmetric shape with respect to the symmetry plane. .
  • the frequency characteristics of the impedance in the common mode can be adjusted. Further, since the frequency characteristic of the impedance in the common mode is adjusted, the influence of the common mode on the frequency of the signal to be transmitted in the differential transmission line pair can be reduced. In addition, the design can be simplified because only the length and width of the straight slot-shaped non-conductor region are changed.
  • the third embodiment also relates to a wiring board provided with a differential transmission line pair.
  • the second wiring layer includes a plurality of straight slot-shaped non-conductor regions.
  • the wiring board 100 is the same type as that in FIG. 1, and the cross section of the filter region 10 is the same type as that in FIG. 3, but the difference from the first and second embodiments is a straight slot type.
  • non-conductor regions having different shapes are also arranged in the second wiring layer.
  • FIG. 7 is a top view of the filter region 10 according to the third embodiment of the present invention.
  • the first non-conductor region 20a, the second non-conductor region 20b, the fifth non-conductor region 20e, and the sixth non-conductor region 20f have a straight slot shape as in FIG.
  • the third non-conductor region 20c and the fourth non-conductor region 20d have a comb-tooth shape instead of a straight slot shape.
  • the third non-conductor region 20c and the fourth non-conductor region 20d do not have a plane-symmetric shape with respect to the symmetry plane. That is, the non-conductor region 20 having a shape symmetrical with respect to the symmetry plane and the non-conductor region 20 having no shape symmetrical with respect to the symmetry plane are combined.
  • a non-conductive region having a plane-symmetric shape with respect to a plane of symmetry and a non-conductive region having no plane-symmetric shape with respect to the plane of symmetry are combined.
  • the effect of the interaction between the non-conductor region that does not have a plane-symmetric shape and the differential transmission line pair can also be obtained.
  • the fourth embodiment also relates to a wiring board including a differential transmission line pair.
  • the second wiring layer includes a plurality of non-conductor regions.
  • the wiring board 100 according to the fourth embodiment is of the same type as that of FIG. 1, and the cross section of the filter region 10 is of the same type as that of FIG. The shape is different from the straight slot shape.
  • FIG. 8 is a top view of the filter region 10 according to the fourth embodiment of the present invention.
  • a first non-conductor region 20a a second non-conductor region 20b, a third non-conductor region 20c, a fourth non-conductor region 20d, and a fifth non-conductor region 20e are disposed.
  • the first non-conductor region 20a has an annular shape
  • the second non-conductor region 20b to the fifth non-conductor region 20e have a straight slot shape. That is, the first non-conductor region 20a has a shape that is plane-symmetric with respect to the symmetry plane, but has a shape different from the straight slot shape.
  • the shape of the non-conductor region 20 is not limited to an annular shape. For example, it may be a square or a triangle.
  • the degree of freedom in design can be improved.
  • the fifth embodiment also relates to a wiring board provided with a differential transmission line pair.
  • the second wiring layer includes a plurality of non-conductor regions.
  • the wiring substrate 100 is the same type as that in FIG. 1, and the cross section of the filter region 10 is the same type as that in FIG. 3, but a non-conductor region having a different shape is formed in the second wiring layer. The case where it is done is shown.
  • These non-conductor regions are plane symmetric with respect to the symmetry plane of the differential transmission line pair, and there are no non-conductor regions on the symmetry plane in the filter region. That is, the shape is separated in the vicinity of the symmetry plane.
  • FIG. 9 is a top view of the filter region 10 according to the fifth embodiment of the present invention.
  • the first non-conductor region 20a and the second non-conductor region 20b form one combination
  • the third non-conductor region 20c and the fourth non-conductor region 20d form another combination.
  • region 20 included in the combination is arrange
  • the third non-conductor region 20c and the fourth non-conductor region 20d are provided with three comb teeth. However, it is not necessary to be limited to three comb teeth, and a larger number of comb teeth may be provided. Further, in the third non-conductor region 20c and the fourth non-conductor region 20d, among the three comb teeth, the center comb tooth is thicker than the remaining comb teeth. However, the thickness of the comb teeth may be arbitrary.
  • the impedance in the common mode can be further increased.
  • the impedance in the common mode is further increased, the influence of the common mode can be further reduced.
  • the influence by the common mode is further reduced, the transmission characteristics in the differential transmission line pair can be further improved.
  • Example 6 Next, a sixth embodiment of the present invention will be described.
  • a plurality of straight slot-shaped non-conductor regions are arranged.
  • Each transmission line in the first embodiment has a uniform line width.
  • each transmission line in Example 6 has a non-uniform line width.
  • the wiring board 100 according to Example 6 is the same type as that in FIG. 1, and the cross section of the filter region 10 is the same type as that in FIG.
  • FIG. 10 is a top view of the filter region 10 according to the sixth embodiment of the present invention.
  • the arrangement of the conductor region 18 and the non-conductor region 20 in the second wiring layer 8 is the same as that in FIG.
  • Each of the differential transmission line pairs 12 has a non-uniform line width.
  • the line width on the center side is thicker than the line width on both ends of the filter region 10.
  • the differential transmission line pair 12 has such a line width
  • the differential transmission line pair 12 has a plane-symmetric shape with respect to the symmetry plane.
  • the shape of the differential transmission line pair 12 is not limited to FIG. According to the embodiment of the present invention, it is possible to improve the degree of design freedom regarding the shape of the differential transmission line pair.
  • Example 7 a seventh embodiment of the present invention will be described. Until now, only one pair of differential transmission line pairs has been arranged in the first wiring layer. On the other hand, two pairs of differential transmission line pairs are arranged in the first wiring layer of the seventh embodiment.
  • the wiring board 100 according to Example 6 is the same type as that in FIG. 1, and the cross section of the filter region 10 is the same type as that in FIG.
  • FIG. 11 is a top view of the filter region 10 according to the seventh embodiment of the present invention.
  • the arrangement of the conductor region 18 and the non-conductor region 20 in the second wiring layer 8 is the same as that in FIG.
  • Each of the first differential transmission line pair 60 and the second differential transmission line pair 62 has the same shape as the differential transmission line pair 12 of FIG. These are arranged in the first wiring layer 4 (not shown), and are arranged in plane symmetry with respect to the symmetry plane 64.
  • the non-conductor region 20 has a shape that is plane-symmetric with respect to the plane of symmetry 64.
  • the number of differential transmission line pairs is not limited to “2”, and may be more than that. According to this modification, the degree of freedom in design can be improved with respect to the number of differential transmission line pairs.
  • Example 8 describes a portable device provided with the wiring board of the present invention.
  • electronic devices such as a personal digital assistant (PDA), a digital video camera (DVC), a music player, a digital still camera (DSC), may be sufficient, for example. .
  • PDA personal digital assistant
  • DVC digital video camera
  • DSC digital still camera
  • FIG. 12 is a perspective view showing the configuration of the mobile phone 1111 according to the eighth embodiment of the present invention. This corresponds to the mobile phone 1111 provided with the wiring board 100 according to any one of the first to seventh embodiments.
  • a cellular phone 1111 has a structure in which a first housing 1112 and a second housing 1114 are connected by a movable portion 1120. The first housing 1112 and the second housing 1114 can be rotated around the movable portion 1120.
  • the first housing 1112 is provided with a display portion 1118 and a speaker portion 1124 for displaying information such as characters and images.
  • the second housing 1114 is provided with an operation portion 1122 such as operation buttons and a microphone portion 1126.
  • the wiring board 100 according to the first embodiment is mounted inside the mobile phone 1111. There is a backlight driving circuit as a light source of a liquid crystal panel employed in the display unit.
  • the wiring board 100 is particularly preferably used for a portable device that handles a high-frequency signal of 1 GHz or higher.
  • the wiring board can be applied to various devices.
  • a wiring board includes a first wiring layer including a differential transmission line pair, a second wiring layer including a conductor region, and an insulation provided between the first wiring layer and the second wiring layer. And a layer.
  • the second wiring layer includes a non-conductor region having a plane-symmetric shape in the conductor region with respect to the symmetry plane of the differential transmission line pair in the first wiring layer.
  • the second wiring layer adjacent to the first wiring layer includes the non-conductor region having a plane-symmetric shape with respect to the symmetry plane of the differential transmission line pair. It is possible to efficiently resonate the inductor / capacitance formed in the conductor region and the capacitance of the differential transmission line pair, thereby reducing the influence of the common mode.
  • the non-conductor region included in the second wiring layer may be continuously formed on the symmetry plane of the differential transmission line pair in the first wiring layer.
  • the differential transmission line pair included in the first wiring layer may have a shape that is plane-symmetric with respect to the plane of symmetry while having a non-uniform line width. In this case, the frequency characteristics of the impedance in the common mode can be adjusted because they have non-uniform line widths.
  • the wiring board includes a first wiring layer including a plurality of differential transmission line pairs, a second wiring layer including a conductor region, and an insulating layer provided between the first wiring layer and the second wiring layer.
  • the plurality of differential transmission line pairs in the first wiring layer are arranged in plane symmetry with respect to the symmetry plane, and the second wiring layer is in relation to the symmetry plane of the differential transmission line pair in the first wiring layer, A non-conductor region having a plane symmetrical shape is included in the conductor region.
  • the second wiring layer includes the non-conductive region having a plane-symmetric shape in the conductive region, the impedance can be further increased.
  • the influence of the common mode can be reduced in the wiring board having the differential transmission line pair.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

A first wiring layer includes a differential transmission line pair (12). A second wiring layer (8) includes a conductor region (18). A second insulating layer is provided between the wiring layer and the second wiring layer (8). The second wiring layer (8) contains, in a conductor region (18), a non-conductive region (20) having plane symmetry with respect to the plane of symmetry (50) of the differential transmission line pair in the wiring layer. Here, a plurality of non-conductive regions (20) are positioned on the second wiring layer (8), and these regions are formed contiguously on the plane of symmetry (50) of the differential transmission line pair (12).

Description

配線基板Wiring board
 本発明は、差動伝送線路を含む配線基板に関する。 The present invention relates to a wiring board including a differential transmission line.
 コモンモード電流を低減して雑音放射を減らすために、従来ではいわゆるコモンモードチョークが用いられていた。コモンモードチョークは例えば、ドーナツ状のフェライトのコアに正相信号線路と逆相信号線路とを巻き付けた構造をしている。コモンモードチョークの線路の巻き方では、ディファレンシャルモードの電流に対しては、磁束を打ち消す方向になるため、コモンモードチョークのインピーダンスは低く、コモンモード電流に対しては、磁束を強め合うことになるため、コモンモードチョークのインピーダンスは高い。したがって、効率的にコモンモードの信号だけを減衰させることができる。また、小型化のために多層構造によってコモンモードチョークを構成することも考えられている(特許文献1、2、3参照)。 Conventionally, so-called common mode chokes have been used to reduce common mode current and noise emission. For example, the common mode choke has a structure in which a normal phase signal line and a negative phase signal line are wound around a donut-shaped ferrite core. When winding the common mode choke, the differential mode current is in the direction of canceling the magnetic flux, so the impedance of the common mode choke is low and the magnetic flux is strengthened against the common mode current. Therefore, the impedance of the common mode choke is high. Therefore, only common mode signals can be attenuated efficiently. It is also considered that a common mode choke is formed by a multilayer structure for miniaturization (see Patent Documents 1, 2, and 3).
特開2004-311829号公報JP 2004-311829 A 特許第3545245号公報Japanese Patent No. 3545245 特許第3863674号公報Japanese Patent No. 3863674 特開2011-55122号公報JP 2011-55122 A 特開平6-85412号公報JP-A-6-85412 特開2000-91807号公報JP 2000-91807 A 特開2008-64780号公報JP 2008-64780 A 特開2004-253746号公報JP 2004-253746 A
 しかしながら、デジタル信号のように基本周波数の高次高調波を含む信号では、高周波成分の減衰によりディファレンシャルモードでの波形が崩れる可能性がある。 However, in a signal including high-order harmonics of the fundamental frequency such as a digital signal, the waveform in the differential mode may be destroyed due to attenuation of the high-frequency component.
 本発明はこうした課題に鑑みてなされたものであり、その目的は、差動伝送線路対を有する配線基板において、コモンモードの影響を低減する技術をすることである。 The present invention has been made in view of these problems, and an object thereof is to provide a technique for reducing the influence of common mode in a wiring board having a differential transmission line pair.
 上記課題を解決するために、本発明のある態様の配線基板は、差動伝送線路対を含む第1配線層と、導体領域を含む第2配線層と、第1配線層と第2配線層との間に設けられた絶縁層とを備える。第2配線層は、第1配線層における差動伝送線路対の対称面に対して、面対称の形状を有した非導体領域を導体領域中に含む。 In order to solve the above problems, a wiring board according to an aspect of the present invention includes a first wiring layer including a differential transmission line pair, a second wiring layer including a conductor region, a first wiring layer, and a second wiring layer. And an insulating layer provided between the two. The second wiring layer includes a non-conductor region having a plane-symmetric shape in the conductor region with respect to the symmetry plane of the differential transmission line pair in the first wiring layer.
 本発明によれば、差動伝送線路対を有する配線基板において、コモンモードの影響を低減できる。 According to the present invention, the influence of the common mode can be reduced in the wiring board having the differential transmission line pair.
本発明の実施例1に係る配線基板およびそれに取り付けられたモジュールの構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the wiring board which concerns on Example 1 of this invention, and the module attached to it. 図1のフィルタ領域の構成を示す上面図である。It is a top view which shows the structure of the filter area | region of FIG. 図1のフィルタ領域の構成を示す断面図である。It is sectional drawing which shows the structure of the filter area | region of FIG. 図4(a)-(d)は、図1の差動伝送線路対によるディファレンシャルモードとコモンモードにおけるインピーダンスを説明するための図である。FIGS. 4A to 4D are diagrams for explaining the impedance in the differential mode and the common mode by the differential transmission line pair in FIG. 図1の差動伝送線路対の通過特性のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the passage characteristic of the differential transmission line pair of FIG. 本発明の実施例2に係るフィルタ領域の上面図である。It is a top view of the filter area | region which concerns on Example 2 of this invention. 本発明の実施例3に係るフィルタ領域の上面図である。It is a top view of the filter area | region which concerns on Example 3 of this invention. 本発明の実施例4に係るフィルタ領域の上面図である。It is a top view of the filter area | region which concerns on Example 4 of this invention. 本発明の実施例5に係るフィルタ領域の上面図である。It is a top view of the filter area | region which concerns on Example 5 of this invention. 本発明の実施例6に係るフィルタ領域の上面図である。It is a top view of the filter area | region which concerns on Example 6 of this invention. 本発明の実施例7に係るフィルタ領域の上面図である。It is a top view of the filter area | region which concerns on Example 7 of this invention. 本発明の実施例8に係る携帯電話の構成を示す斜視図である。It is a perspective view which shows the structure of the mobile telephone based on Example 8 of this invention. 図11の携帯電話の部分断面図である。It is a fragmentary sectional view of the mobile phone of FIG.
 本発明の実施例を具体的に説明する前に、基礎となった知見を説明する。差動伝送方式は、電磁ノイズの影響を受けにくい伝送方法で、一般に広く用いられており、高周波への適用も広がっている。差動伝送方式とは、ひとつの信号から正相信号と逆相信号の2相の信号を発生し、2本の信号線を用いて伝送する方式である。この方式では、理想的な状態では正相信号と逆相信号の位相が反転している(180度ずれている)ので、互いに発生する磁束を打ち消す関係にある。その結果、線路のインダクタ成分による影響が小さくなる。以下、差動伝送方式においてこの理想的な状態(正相信号と逆相信号の位相が反転した状態)で信号が伝送されるモードをディファレンシャルモードとよぶ。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to specific description of embodiments of the present invention, the knowledge that is the basis will be described. The differential transmission method is a transmission method that is not easily affected by electromagnetic noise, and is widely used in general. The differential transmission method is a method of generating a two-phase signal of a normal phase signal and a reverse phase signal from one signal and transmitting it using two signal lines. In this method, since the phases of the normal phase signal and the negative phase signal are reversed (shifted by 180 degrees) in an ideal state, the magnetic fluxes generated are mutually canceled. As a result, the influence of the inductor component of the line is reduced. Hereinafter, a mode in which a signal is transmitted in this ideal state (a state in which the phase of the normal phase signal and the reverse phase signal is inverted) in the differential transmission method is referred to as a differential mode.
 しかしながら現実の回路では、正相信号が流れる正相信号線路の長さと逆相信号が流れる逆相信号線路の長さとを完全に等しくすることは難しい等の理由から、正相信号と逆相信号との間の平衡が幾分崩れる場合が多い。平衡が崩れると、正相信号線路と逆相信号線路とに同位相の信号が流れる。以下、差動伝送方式において2本の信号線に同位相の信号が伝送されるモードをコモンモードとよぶ。つまり、現実の回路では、一対の差動伝送線路は、ディファレンシャルモードの信号とコモンモードの信号の2種類の信号を伝送する場合が多い。以下、本明細書において、一対の差動伝送線路を差動伝送線路対と記載する。 However, in an actual circuit, it is difficult to completely equalize the length of the normal phase signal line through which the normal phase signal flows and the length of the negative phase signal line through which the negative phase signal flows. In many cases, the equilibrium between the two is broken. When the balance is lost, a signal having the same phase flows through the positive-phase signal line and the negative-phase signal line. Hereinafter, a mode in which a signal having the same phase is transmitted to two signal lines in the differential transmission method is referred to as a common mode. That is, in an actual circuit, a pair of differential transmission lines often transmits two types of signals, that is, a differential mode signal and a common mode signal. Hereinafter, in this specification, a pair of differential transmission lines is described as a differential transmission line pair.
 差動伝送線路で発生したコモンモード電流は、差動伝送線路とは異なる、主に接地側導体の経路を経たループを形成する。このループにコモンモード電流が流れることにより電磁雑音が放射され、また、外部から侵入した電磁雑音が、このループに侵入することにより、差動伝送線路に電磁雑音が重畳する。この雑音放射の放射量はコモンモード電流の大きさとループ面積に比例する。前述のごとく、コモンモード電流を低減して雑音放射を減らすために、従来ではいわゆるコモンモードチョークが用いられていた。 The common mode current generated in the differential transmission line is different from the differential transmission line, and forms a loop mainly through the ground conductor path. When the common mode current flows through this loop, electromagnetic noise is radiated, and electromagnetic noise entering from the outside enters this loop, so that electromagnetic noise is superimposed on the differential transmission line. The amount of noise radiation is proportional to the magnitude of the common mode current and the loop area. As described above, so-called common mode chokes have been used in the past to reduce common mode current and reduce noise emission.
 しかしながら、近年では電子機器で用いられる信号の高周波化が進んでいることもあり、フェライトのコアを有するコモンモードチョークでは対応できない場合も生じてきている。それは、フェライトでは高帯域の周波数で透磁率を維持することが難しいことに加え、高周波領域では、ディファレンシャルモードの信号のコモンモードチョークにおける損失が大きくなるからである。特にデジタル信号のように基本周波数の高次高調波を含む信号では、高周波成分の減衰によりディファレンシャルモードでの波形が崩れる可能性がある。 However, in recent years, the frequency of signals used in electronic devices has been increasing, and there are cases where a common mode choke having a ferrite core cannot be used. This is because, in ferrite, it is difficult to maintain the magnetic permeability at a high frequency, and in the high frequency region, the loss in the differential mode signal in the common mode choke increases. In particular, in a signal including high-order harmonics of the fundamental frequency, such as a digital signal, the waveform in the differential mode may be destroyed due to attenuation of high-frequency components.
(実施例1)
 本発明を具体的に説明する前に、概要を述べる。本発明の実施例1は、携帯電話などの携帯機器に搭載される配線基板に関する。本実施例に係る配線基板は、例えば、1GHz以上の高周波信号を伝送する差動伝送線路対を備える。当該配線基板は、差動伝送線路対に対するコモンモードの影響を低減するために、差動伝送線路対の途中の経路を含むようにコモンモードフィルタ領域を形成する。コモンモードフィルタ領域は、ディファレンシャルモードの信号の減衰を抑えつつコモンモードの信号をフィルタリングする。ここでは、コモンモードフィルタ領域において、差動伝送線路対とグランドパターンとを特定周波数において共振させることによって、コモンモードのインピーダンスを増加させる。
Example 1
Before describing the present invention in detail, an outline will be described. Example 1 of this invention is related with the wiring board mounted in portable apparatuses, such as a mobile telephone. The wiring board according to the present embodiment includes, for example, a differential transmission line pair that transmits a high frequency signal of 1 GHz or more. The wiring board forms a common mode filter region so as to include a path in the middle of the differential transmission line pair in order to reduce the influence of the common mode on the differential transmission line pair. The common mode filter region filters the common mode signal while suppressing the attenuation of the differential mode signal. Here, in the common mode filter region, the common mode impedance is increased by resonating the differential transmission line pair and the ground pattern at a specific frequency.
 グランドパターンは、差動伝送線路対が配置された第1配線層とは異なった第2配線層に形成されている。具体的に説明すると、第2配線層には、導体領域と非導体領域とが含まれている。そのうちの非導体領域が、差動伝送線路対と共振する。有効的に共振させるために、非導体領域は、差動伝送線路対の対称面に対して、面対称の形状を有する。以下、本発明を好適な実施例をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。 The ground pattern is formed in a second wiring layer different from the first wiring layer in which the differential transmission line pair is disposed. More specifically, the second wiring layer includes a conductor region and a non-conductor region. Of these, the non-conductor region resonates with the differential transmission line pair. In order to effectively resonate, the non-conductive region has a plane-symmetric shape with respect to the plane of symmetry of the differential transmission line pair. Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components and members shown in the drawings are denoted by the same reference numerals, and repeated descriptions are appropriately omitted. In addition, the dimensions of the members in each drawing are appropriately enlarged or reduced for easy understanding.
 図1は、本発明の実施例1に係る配線基板100およびそれに取り付けられたモジュールの構成を模式的に示す斜視図である。配線基板100の上面100aには第1半導体モジュール102、第2半導体モジュール104が取り付けられる。以下、配線基板100のうち第1半導体モジュール102、第2半導体モジュール104が取り付けられている側を上側として説明する。第1半導体モジュール102、第2半導体モジュール104は例えば、所望の機能を有する集積回路が形成されたダイをパッケージしたモジュールである。 FIG. 1 is a perspective view schematically showing a configuration of a wiring board 100 and a module attached thereto according to Embodiment 1 of the present invention. A first semiconductor module 102 and a second semiconductor module 104 are attached to the upper surface 100 a of the wiring board 100. Hereinafter, the side on which the first semiconductor module 102 and the second semiconductor module 104 are attached in the wiring board 100 will be described as the upper side. The first semiconductor module 102 and the second semiconductor module 104 are, for example, modules in which a die on which an integrated circuit having a desired function is formed is packaged.
 配線基板100は、第2配線層8、第2絶縁層6、第1配線層4、第1絶縁層2をこの順に下側から上側へ積層してなる積層構造を有する。この積層の方向を積層方向A1と定義する。図1において積層方向A1は、配線基板100の上面100aに垂直な方向である。第1配線層4は、差動伝送線路対12を含む。差動伝送線路対12は、第1半導体モジュール102と第2半導体モジュール104との間で1GHz以上の高周波信号を伝送する。差動伝送線路対12は、配線基板100のフィルタ領域10(図1で2点鎖線で囲まれた領域)を横切る。フィルタ領域10において、差動伝送線路対12を伝送される高周波信号からコモンモードの信号がフィルタリングされる。第2配線層8は接地されている。 The wiring substrate 100 has a laminated structure in which the second wiring layer 8, the second insulating layer 6, the first wiring layer 4, and the first insulating layer 2 are laminated in this order from the lower side to the upper side. This stacking direction is defined as stacking direction A1. In FIG. 1, the stacking direction A <b> 1 is a direction perpendicular to the upper surface 100 a of the wiring substrate 100. The first wiring layer 4 includes a differential transmission line pair 12. The differential transmission line pair 12 transmits a high frequency signal of 1 GHz or more between the first semiconductor module 102 and the second semiconductor module 104. The differential transmission line pair 12 traverses the filter region 10 (region surrounded by a two-dot chain line in FIG. 1) of the wiring substrate 100. In the filter region 10, the common mode signal is filtered from the high frequency signal transmitted through the differential transmission line pair 12. The second wiring layer 8 is grounded.
 第1絶縁層2および第2絶縁層6は、エポキシ樹脂やアルミナなどの絶縁材料で形成される。差動伝送線路対12は、アルミニウム、金、銅、銀白金(AgPt)、銀パラジウム(AgPd)などの金属によって形成される。第1絶縁層2の厚さは約40μm、第1配線層4の厚さは約18μm、第2絶縁層6の厚さは約40μm、第2配線層8の厚さは約18μmである。 The first insulating layer 2 and the second insulating layer 6 are formed of an insulating material such as epoxy resin or alumina. The differential transmission line pair 12 is made of metal such as aluminum, gold, copper, silver platinum (AgPt), silver palladium (AgPd). The thickness of the first insulating layer 2 is about 40 μm, the thickness of the first wiring layer 4 is about 18 μm, the thickness of the second insulating layer 6 is about 40 μm, and the thickness of the second wiring layer 8 is about 18 μm.
 図2は、フィルタ領域10の構成を示す上面図である。これは、フィルタ領域10の上面100aからみた平面図である。なお、図2では、図1の第1絶縁層2、第2絶縁層6を省略して示す。図2のA-A線は、図1のA-A線に対応する。一方、図3は、フィルタ領域10の構成を示し、図2のA-A線に沿った断面図である。図3では、フィルタ領域10以外が省略して示される。図2のごとく、第2配線層8は、導体領域18および非導体領域20を備える。非導体領域20は、第1非導体領域20a、第2非導体領域20b、第3非導体領域20c、第4非導体領域20d、第5非導体領域20e、第6非導体領域20f、第7非導体領域20g、第8非導体領域20h、第9非導体領域20i、第10非導体領域20j、第11非導体領域20kおよび第12非導体領域20lから構成されている。導体領域18は、アルミニウム、金、銅、銀白金(AgPt)、銀パラジウム(AgPd)などの金属からなる。 FIG. 2 is a top view showing the configuration of the filter region 10. This is a plan view seen from the upper surface 100 a of the filter region 10. In FIG. 2, the first insulating layer 2 and the second insulating layer 6 in FIG. 1 are omitted. The AA line in FIG. 2 corresponds to the AA line in FIG. On the other hand, FIG. 3 is a cross-sectional view taken along the line AA of FIG. In FIG. 3, parts other than the filter region 10 are omitted. As shown in FIG. 2, the second wiring layer 8 includes a conductor region 18 and a non-conductor region 20. The non-conductor region 20 includes a first non-conductor region 20a, a second non-conductor region 20b, a third non-conductor region 20c, a fourth non-conductor region 20d, a fifth non-conductor region 20e, a sixth non-conductor region 20f, and a seventh non-conductor region. The non-conductor region 20g, the eighth non-conductor region 20h, the ninth non-conductor region 20i, the tenth non-conductor region 20j, the eleventh non-conductor region 20k, and the twelfth non-conductor region 20l. The conductor region 18 is made of a metal such as aluminum, gold, copper, silver platinum (AgPt), or silver palladium (AgPd).
 図2のごとく、第1配線層4では、差動伝送線路対12における各伝送線路が、所定の間隔にて平行に配置されている。また、各伝送線路間の中心線が含まれるように、差動伝送線路対12の対称面50が規定される。ここで、対称面50は、第1配線層4の垂直面である。第2配線層8は、導体領域18中に複数の非導体領域20を含む。導体領域18は、金属によって形成されており、接地されている。一方、非導体領域20には、エポキシ樹脂などの絶縁体、つまり導電性を有さない材料で充填されている。 As shown in FIG. 2, in the first wiring layer 4, the transmission lines in the differential transmission line pair 12 are arranged in parallel at a predetermined interval. Further, the symmetry plane 50 of the differential transmission line pair 12 is defined so as to include the center line between the transmission lines. Here, the symmetry plane 50 is a vertical plane of the first wiring layer 4. The second wiring layer 8 includes a plurality of non-conductor regions 20 in the conductor region 18. The conductor region 18 is made of metal and is grounded. On the other hand, the non-conductor region 20 is filled with an insulator such as an epoxy resin, that is, a non-conductive material.
 第2配線層8における各非導体領域20(20a~20l)は、差動伝送線路対12の対称面50に対して、面対称の形状を有する。また、各非導体領域20(20a~20l)は、図2に示すように、直線スロット形をなしており、対称面50と交差するように帯状に連続して形成されている。このように各非導体領域20は、差動伝送線路対12と立体交差している。なお、各非導体領域20の長さ、幅および形状は、同じになるように設計されている。 Each non-conductor region 20 (20a to 20l) in the second wiring layer 8 has a plane-symmetric shape with respect to the plane of symmetry 50 of the differential transmission line pair 12. Further, as shown in FIG. 2, each non-conductor region 20 (20a to 20l) has a straight slot shape, and is continuously formed in a strip shape so as to intersect the symmetry plane 50. Thus, each non-conductor region 20 is three-dimensionally crossed with the differential transmission line pair 12. Note that the length, width, and shape of each non-conductor region 20 are designed to be the same.
 図3に示すように、差動伝送線路対12は第1配線層4に配置されており、第1配線層4は第2配線層8と異なった層として形成されている。第1配線層4は、差動伝送線路対12と、エポキシ樹脂などの絶縁体22を含む。エポキシ樹脂などの絶縁体22は、差動伝送線路対12の隙間を埋める。 As shown in FIG. 3, the differential transmission line pair 12 is disposed in the first wiring layer 4, and the first wiring layer 4 is formed as a layer different from the second wiring layer 8. The first wiring layer 4 includes a differential transmission line pair 12 and an insulator 22 such as an epoxy resin. An insulator 22 such as epoxy resin fills the gap between the differential transmission line pair 12.
 図4(a)-(d)は、差動伝送線路対12によるディファレンシャルモードとコモンモードにおけるインピーダンスを説明するための図である。図4(a)は、ディファレンシャルモードを示し、図4(b)は、コモンモードを示す。ここで、差動伝送線路対12は、第1伝送線路12aと第2伝送線路12bにて形成される。一般に伝送線路がN個の導体から形成される場合、このうちのひとつをグランドとして(N-1)通りの独立なTEM波のモードが存在する。ここでは、第1伝送線路12a、第2伝送線路12b、第2配線層8が配置されているので、ふたつのモードが存在する。特に、第1伝送線路12aと第2伝送線路12bが、ちょうど逆電位と同電位になる場合、それぞれはディファレンシャルモード、コモンモードとよばれる。 FIGS. 4A to 4D are diagrams for explaining the impedance in the differential mode and the common mode by the differential transmission line pair 12. 4A shows the differential mode, and FIG. 4B shows the common mode. Here, the differential transmission line pair 12 is formed of a first transmission line 12a and a second transmission line 12b. In general, when a transmission line is formed of N conductors, (N-1) independent TEM wave modes exist with one of them as a ground. Here, since the 1st transmission line 12a, the 2nd transmission line 12b, and the 2nd wiring layer 8 are arrange | positioned, two modes exist. In particular, when the first transmission line 12a and the second transmission line 12b are just at the same potential as the reverse potential, they are called a differential mode and a common mode, respectively.
 各モードの電圧・電流からインピーダンスは下記のように定義される。
 vdif=v1-v2(v1=-v2)
 idif=i1=-i2
 Zdif=vdif/idif=(v1-v2)/((i1-i2)/2)
 vcom=v1=v2
 icom=i1+i2(i1=i2)
 Zcom=vcom/icom=((v1+v2)/2)/(i1+i2)
 ここで、vdif、idif、Zdifは、差動電圧、差動電流、差動インピーダンスであり、vcom、icom、Zcomは、コモン電圧、コモン電流、コモンインピーダンスである。
The impedance is defined as follows from the voltage and current of each mode.
vdif = v1-v2 (v1 = -v2)
idif = i1 = −i2
Zdif = vdif / idif = (v1-v2) / ((i1-i2) / 2)
vcom = v1 = v2
icom = i1 + i2 (i1 = i2)
Zcom = vcom / icom = ((v1 + v2) / 2) / (i1 + i2)
Here, vdif, idif, and Zdif are a differential voltage, a differential current, and a differential impedance, and vcom, icom, and Zcom are a common voltage, a common current, and a common impedance.
 ここで、差動インピーダンスZdifは、第1伝送線路12aと第2伝送線路12b間の特性インピーダンス、コモンインピーダンスZcomは、差動伝送線路対12と第2配線層8間の特性インピーダンスと考えればいいので、図4(c)、図4(d)のようなイメージになる。図4(c)がディファレンシャルモードに相当し、図4(d)がコモンモードに相当する。差動線路のディファレンシャルモードでは、隣接する第2配線層8の影響をほとんど受けないが、コモンモードでは、第2配線層8の影響を強く受ける。 Here, the differential impedance Zdif is a characteristic impedance between the first transmission line 12a and the second transmission line 12b, and the common impedance Zcom is a characteristic impedance between the differential transmission line pair 12 and the second wiring layer 8. Therefore, the images shown in FIGS. 4C and 4D are obtained. FIG. 4C corresponds to the differential mode, and FIG. 4D corresponds to the common mode. In the differential mode of the differential line, it is hardly affected by the adjacent second wiring layer 8, but in the common mode, it is strongly influenced by the second wiring layer 8.
 図5は、差動伝送線路対12の通過特性のシミュレーション結果を示すグラフである。横軸は、差動伝送線路対12にて伝送される信号の周波数(GHz)を示し、縦軸はフィルタ領域10において各モードの電流成分が減衰される度合いを示す。COMは、コモンモードの信号の減衰の様子を示し、DIFは、ディファレンシャルモードの信号の減衰の様子を示す。図5から明らかなように、1GHz以上の高周波帯域において、ディファレンシャルモードの信号の減衰は無視できる程度であり、コモンモードの信号は比較的広い帯域幅にわたって減衰されている。 FIG. 5 is a graph showing a simulation result of the pass characteristics of the differential transmission line pair 12. The horizontal axis indicates the frequency (GHz) of the signal transmitted through the differential transmission line pair 12, and the vertical axis indicates the degree to which the current component of each mode is attenuated in the filter region 10. COM indicates how the common mode signal is attenuated, and DIF indicates how the differential mode signal is attenuated. As apparent from FIG. 5, in the high frequency band of 1 GHz or more, the attenuation of the differential mode signal is negligible, and the common mode signal is attenuated over a relatively wide bandwidth.
 本発明の実施例によれば、差動伝送線路対が含まれた第1配線層に隣接した第2配線層において、差動伝送線路対の対称面に対して面対称の形状を有した非導体領域を第2配線層中に有するので、非導体領域で形成されたインダクタ/容量と、差動伝送線路対の容量とを効率的に共振させることができる。また、非導体領域で形成されたインダクタ/容量と、差動伝送線路対の容量とを効率的に共振させるので、コモンモードにおけるインピーダンスを増大できる。 According to the embodiment of the present invention, the second wiring layer adjacent to the first wiring layer including the differential transmission line pair has a non-symmetrical shape with respect to the symmetry plane of the differential transmission line pair. Since the conductor region is included in the second wiring layer, the inductor / capacitance formed in the non-conductor region and the capacitance of the differential transmission line pair can be efficiently resonated. In addition, since the inductor / capacitance formed in the non-conductor region and the capacitance of the differential transmission line pair are efficiently resonated, the impedance in the common mode can be increased.
 また、コモンモードの影響が低減されるので、1GHz以上の高周波信号について、広い帯域幅にわたってコモンモードの信号をフィルタリングできる。また、コモンモードにおけるインピーダンスが増大されるが、ディファレンシャルモードにおけるインピーダンスを増大させないので、ディファレンシャルモードの信号を維持できる。また、コモンモードの信号を減衰させ、ディファレンシャルモードの信号を維持するので、伝送品質を向上できる。 Also, since the influence of the common mode is reduced, the common mode signal can be filtered over a wide bandwidth for a high frequency signal of 1 GHz or more. Further, although the impedance in the common mode is increased, the impedance in the differential mode is not increased, so that the differential mode signal can be maintained. Further, since the common mode signal is attenuated and the differential mode signal is maintained, the transmission quality can be improved.
(実施例2)
 次に、本発明の実施例2を説明する。実施例2も、実施例1と同様に、差動伝送線路対を備えた配線基板に関する。実施例2でも、差動伝送線路対に対するコモンモードの影響を低減するために、第2配線層は、直線スロット形の非導体領域を複数備える。実施例1では、各非導体領域の長さ、幅および形状が同じになるように設計されている。一方、実施例2では、各非導体領域の長さが複数種類規定される。各非導体領域の長さが複数種類規定されることによって、非導体領域のインダクタ/容量を所望の値に設定しやすくなる。その結果、伝送すべき信号の周波数帯に、コモンモードの信号を低減可能な周波数帯設定がしやすくなる。実施例2に係る配線基板100は、図1と同様のタイプであり、フィルタ領域10の断面は、図3と同様のタイプである。
(Example 2)
Next, a second embodiment of the present invention will be described. As in the first embodiment, the second embodiment also relates to a wiring board including a differential transmission line pair. Also in the second embodiment, in order to reduce the influence of the common mode on the differential transmission line pair, the second wiring layer includes a plurality of straight slot-shaped non-conductor regions. In Example 1, the length, width, and shape of each non-conductor region are designed to be the same. On the other hand, in Example 2, a plurality of types of lengths of each non-conductor region are defined. By defining a plurality of types of length of each non-conductor region, it becomes easy to set the inductor / capacitance of the non-conductor region to a desired value. As a result, it becomes easy to set the frequency band that can reduce the common mode signal in the frequency band of the signal to be transmitted. The wiring board 100 according to the second embodiment is the same type as that shown in FIG. 1, and the cross section of the filter region 10 is the same type as that shown in FIG.
 図6は、本発明の実施例2に係るフィルタ領域10の上面図である。ここでは、差動伝送線路対12の伝送方向に対する垂直方向において、第1非導体領域20a、第2非導体領域20b、第11非導体領域20k、第12非導体領域20lの長さが、残りの非導体領域20(20a~20l)の長さよりも長くなっている。つまり、非導体領域20の長さは、2種類存在し、フィルタ領域10の端側に、長い方の非導体領域20が配置される。 FIG. 6 is a top view of the filter region 10 according to the second embodiment of the present invention. Here, in the direction perpendicular to the transmission direction of the differential transmission line pair 12, the lengths of the first non-conductor region 20a, the second non-conductor region 20b, the eleventh non-conductor region 20k, and the twelfth non-conductor region 20l remain. This is longer than the length of the non-conductor region 20 (20a to 20l). That is, there are two types of lengths of the non-conductor region 20, and the longer non-conductor region 20 is disposed on the end side of the filter region 10.
 なお、非導体領域20の長さは2種類に限定されず、それよりも多く存在してもよい。例えば、フィルタ領域10の端側に近くなるほど、長くなるように非導体領域20が配置されてもよい。また、フィルタ領域10の端側に近くなるほど、短くなるように非導体領域20が配置されてもよい。さらに、差動伝送線路対12の伝送方向において、各非導体領域20の幅も同一である必要はなく、複数種類規定されてもよい。例えば、フィルタ領域10の端側に近くなるほど、広くなったり、または狭くなったりするように非導体領域20が配置されてもよい。これらのように、各非導体領域20の長さおよび幅が自由に設定されてもよいが、各非導体領域20には、対称面に対して面対称の形状を有することが必要とされる。 In addition, the length of the non-conductor region 20 is not limited to two types, and may exist more than that. For example, the non-conductor region 20 may be arranged so as to become longer as it approaches the end side of the filter region 10. Further, the non-conductor region 20 may be arranged so as to be shorter as it is closer to the end side of the filter region 10. Furthermore, in the transmission direction of the differential transmission line pair 12, the widths of the non-conductor regions 20 do not have to be the same, and a plurality of types may be defined. For example, the non-conductor region 20 may be arranged so as to become wider or narrower as it is closer to the end side of the filter region 10. As described above, the length and width of each non-conductor region 20 may be freely set. However, each non-conductor region 20 is required to have a plane-symmetric shape with respect to the symmetry plane. .
 本発明の実施例によれば、非導体領域として、さまざまな長さおよび幅の直線スロット形を使用するので、コモンモードにおけるインピーダンスの周波数特性を調節できる。また、コモンモードにおけるインピーダンスの周波数特性が調節されるので、差動伝送線路対において伝送すべき信号の周波数におけるコモンモードの影響を低減できる。また、直線スロット形の非導体領域に対する長さおよび幅を変更するだけなので、設計を簡易にできる。 According to the embodiment of the present invention, since the linear slot shape having various lengths and widths is used as the non-conductor region, the frequency characteristics of the impedance in the common mode can be adjusted. Further, since the frequency characteristic of the impedance in the common mode is adjusted, the influence of the common mode on the frequency of the signal to be transmitted in the differential transmission line pair can be reduced. In addition, the design can be simplified because only the length and width of the straight slot-shaped non-conductor region are changed.
(実施例3)
 次に、本発明の実施例3を説明する。実施例3も、実施例1と同様に、差動伝送線路対を備えた配線基板に関する。実施例3でも、差動伝送線路対に対するコモンモードの影響を低減するために、第2配線層は、直線スロット形の非導体領域を複数備える。実施例3では、配線基板100は、図1と同様のタイプであり、フィルタ領域10の断面は、図3と同様のタイプであるが、実施例1および2と異なる点は、直線スロット形の非導体領域に加えて、異なった形状の非導体領域も第2配線層に配置される点である。
(Example 3)
Next, a third embodiment of the present invention will be described. As in the first embodiment, the third embodiment also relates to a wiring board provided with a differential transmission line pair. Also in Example 3, in order to reduce the influence of the common mode on the differential transmission line pair, the second wiring layer includes a plurality of straight slot-shaped non-conductor regions. In the third embodiment, the wiring board 100 is the same type as that in FIG. 1, and the cross section of the filter region 10 is the same type as that in FIG. 3, but the difference from the first and second embodiments is a straight slot type. In addition to the non-conductor region, non-conductor regions having different shapes are also arranged in the second wiring layer.
 図7は、本発明の実施例3に係るフィルタ領域10の上面図である。第1非導体領域20a、第2非導体領域20b、第5非導体領域20e、第6非導体領域20fは、図2と同様に、直線スロット形の形状を有する。また、第3非導体領域20cと第4非導体領域20dは、直線スロット形の形状ではなく、くし歯状の形状を有する。そのため、第3非導体領域20cと第4非導体領域20dは、対称面に対して面対称の形状を有さない。つまり、対称面に対して面対称の形状を有した非導体領域20と、対称面に対して面対称の形状を有さない非導体領域20とが組み合わされている。 FIG. 7 is a top view of the filter region 10 according to the third embodiment of the present invention. The first non-conductor region 20a, the second non-conductor region 20b, the fifth non-conductor region 20e, and the sixth non-conductor region 20f have a straight slot shape as in FIG. Further, the third non-conductor region 20c and the fourth non-conductor region 20d have a comb-tooth shape instead of a straight slot shape. For this reason, the third non-conductor region 20c and the fourth non-conductor region 20d do not have a plane-symmetric shape with respect to the symmetry plane. That is, the non-conductor region 20 having a shape symmetrical with respect to the symmetry plane and the non-conductor region 20 having no shape symmetrical with respect to the symmetry plane are combined.
 本発明の実施例によれば、対称面に対して面対称の形状を有した非導体領域と、対称面に対して面対称の形状を有さない非導体領域とが組み合わさるので、対称面に対して面対称の形状を有さない非導体領域と差動伝送線路対との相互作用による効果もあわせて得ることができる。 According to the embodiment of the present invention, a non-conductive region having a plane-symmetric shape with respect to a plane of symmetry and a non-conductive region having no plane-symmetric shape with respect to the plane of symmetry are combined. On the other hand, the effect of the interaction between the non-conductor region that does not have a plane-symmetric shape and the differential transmission line pair can also be obtained.
(実施例4)
 次に、本発明の実施例4を説明する。実施例4も、実施例1と同様に、差動伝送線路対を備えた配線基板に関する。実施例4でも、差動伝送線路対に対するコモンモードの影響を低減するために、第2配線層は、非導体領域を複数備える。実施例4に係る配線基板100は、図1と同様のタイプであり、フィルタ領域10の断面は、図3と同様のタイプであるが、実施例1~3と異なる点は、非導体領域の形状が直線スロット形とは異なることである。
Example 4
Next, a fourth embodiment of the present invention will be described. As in the first embodiment, the fourth embodiment also relates to a wiring board including a differential transmission line pair. Also in Example 4, in order to reduce the influence of the common mode on the differential transmission line pair, the second wiring layer includes a plurality of non-conductor regions. The wiring board 100 according to the fourth embodiment is of the same type as that of FIG. 1, and the cross section of the filter region 10 is of the same type as that of FIG. The shape is different from the straight slot shape.
 図8は、本発明の実施例4に係るフィルタ領域10の上面図である。図示のごとく、第1非導体領域20a、第2非導体領域20b、第3非導体領域20c、第4非導体領域20d、第5非導体領域20eが配置される。ここで、第1非導体領域20aは、環状の形状を有し、第2非導体領域20bから第5非導体領域20eは、直線スロット形の形状を有する。つまり第1非導体領域20aは、対称面に対して面対称の形状を有するが、直線スロット形とは異なった形状である。なお、非導体領域20の形状は、環状に限定されない。例えば、四角形や三角形であってもよい。 FIG. 8 is a top view of the filter region 10 according to the fourth embodiment of the present invention. As illustrated, a first non-conductor region 20a, a second non-conductor region 20b, a third non-conductor region 20c, a fourth non-conductor region 20d, and a fifth non-conductor region 20e are disposed. Here, the first non-conductor region 20a has an annular shape, and the second non-conductor region 20b to the fifth non-conductor region 20e have a straight slot shape. That is, the first non-conductor region 20a has a shape that is plane-symmetric with respect to the symmetry plane, but has a shape different from the straight slot shape. Note that the shape of the non-conductor region 20 is not limited to an annular shape. For example, it may be a square or a triangle.
 本発明の実施例によれば、さまざまな形状の非導体領域を使用するので、設計の自由度を向上できる。また、差動伝送線路対において伝送すべき信号の周波数特性に応じた非導体領域の形状を設計する際の設計の自由度を向上できる。 According to the embodiment of the present invention, since non-conductor regions having various shapes are used, the degree of freedom in design can be improved. In addition, it is possible to improve the degree of design freedom when designing the shape of the non-conductor region according to the frequency characteristics of the signal to be transmitted in the differential transmission line pair.
(実施例5)
 次に、本発明の実施例5を説明する。実施例5も、実施例1と同様に、差動伝送線路対を備えた配線基板に関する。実施例5でも、差動伝送線路対に対するコモンモードの影響を低減するために、第2配線層は、非導体領域を複数備える。実施例5では、配線基板100は、図1と同様のタイプであり、フィルタ領域10の断面は、図3と同様のタイプであるが、異なる形状の非導体領域が、第2配線層に形成されている場合を示す。それらの非導体領域は、差動伝送線路対の対称面で面対称になっており、フィルタ領域において対称面に非導体領域は存在しない。つまり、対称面近傍において分離された形状である。
(Example 5)
Next, a fifth embodiment of the present invention will be described. As in the first embodiment, the fifth embodiment also relates to a wiring board provided with a differential transmission line pair. Also in Example 5, in order to reduce the influence of the common mode on the differential transmission line pair, the second wiring layer includes a plurality of non-conductor regions. In Example 5, the wiring substrate 100 is the same type as that in FIG. 1, and the cross section of the filter region 10 is the same type as that in FIG. 3, but a non-conductor region having a different shape is formed in the second wiring layer. The case where it is done is shown. These non-conductor regions are plane symmetric with respect to the symmetry plane of the differential transmission line pair, and there are no non-conductor regions on the symmetry plane in the filter region. That is, the shape is separated in the vicinity of the symmetry plane.
 図9は、本発明の実施例5に係るフィルタ領域10の上面図である。ここでは、第1非導体領域20aと第2非導体領域20bとが、ひとつの組合せを形成し、第3非導体領域20cと第4非導体領域20dとが、別の組合せを形成する。組合せに含まれた各非導体領域20は、対称面に対して面対称になるように配置されている。具体的に説明すると、第1非導体領域20aと第2非導体領域20bは、円弧の形状をなしており、第3非導体領域20cと第4非導体領域20dは、くし形の形状をなしている。 FIG. 9 is a top view of the filter region 10 according to the fifth embodiment of the present invention. Here, the first non-conductor region 20a and the second non-conductor region 20b form one combination, and the third non-conductor region 20c and the fourth non-conductor region 20d form another combination. Each non-conductor area | region 20 included in the combination is arrange | positioned so that it may become plane symmetry with respect to a symmetry plane. More specifically, the first non-conductor region 20a and the second non-conductor region 20b have an arc shape, and the third non-conductor region 20c and the fourth non-conductor region 20d have a comb shape. ing.
 また、円弧の形状の代わりに、四角形や三角形の辺の一部であってもよい。ここで、第3非導体領域20cと第4非導体領域20dには、3つのくし歯が備えられている。しかしながら、3つのくし歯に限定される必要はなく、それ以上の数のくし歯が備えられていてもよい。さらに、第3非導体領域20cと第4非導体領域20dでは、3つのくし歯のうち、中央のくし歯が残りのくし歯よりも太くなっている。しかしながら、くし歯の太さは任意であってもよい。 Also, instead of the arc shape, it may be a part of a square or triangle side. Here, the third non-conductor region 20c and the fourth non-conductor region 20d are provided with three comb teeth. However, it is not necessary to be limited to three comb teeth, and a larger number of comb teeth may be provided. Further, in the third non-conductor region 20c and the fourth non-conductor region 20d, among the three comb teeth, the center comb tooth is thicker than the remaining comb teeth. However, the thickness of the comb teeth may be arbitrary.
 本発明の実施例によれば、対称面での両面側にふたつの非導体領域を配置させるので、コモンモードにおけるインピーダンスをさらに増加できる。また、コモンモードにおけるインピーダンスがさらに増加されるので、コモンモードによる影響をさらに低減できる。また、コモンモードによる影響がさらに低減されるので、差動伝送線路対における伝送特性をさらに向上できる。 According to the embodiment of the present invention, since two non-conductor regions are arranged on both sides of the symmetry plane, the impedance in the common mode can be further increased. In addition, since the impedance in the common mode is further increased, the influence of the common mode can be further reduced. Moreover, since the influence by the common mode is further reduced, the transmission characteristics in the differential transmission line pair can be further improved.
(実施例6)
 次に、本発明の実施例6を説明する。実施例6では、実施例1と同様に、直線スロット形の非導体領域が複数配置される。実施例1における各伝送線路は、それぞれ均一な線路幅を有している。一方、実施例6における各伝送線路は、それぞれ不均一な線路幅を有する。実施例6に係る配線基板100は、図1と同様のタイプであり、フィルタ領域10の断面は、図3と同様のタイプである。
(Example 6)
Next, a sixth embodiment of the present invention will be described. In the sixth embodiment, as in the first embodiment, a plurality of straight slot-shaped non-conductor regions are arranged. Each transmission line in the first embodiment has a uniform line width. On the other hand, each transmission line in Example 6 has a non-uniform line width. The wiring board 100 according to Example 6 is the same type as that in FIG. 1, and the cross section of the filter region 10 is the same type as that in FIG.
 図10は、本発明の実施例6に係るフィルタ領域10の上面図である。図示のごとく、第2配線層8における導体領域18および非導体領域20の配置は、図2と同様であるので、ここでは説明を省略する。差動伝送線路対12は、それぞれ不均一な線路幅を有する。ここでは、フィルタ領域10の両端側での線路幅よりも、中央側での線路幅が太くなっている。差動伝送線路対12は、このような線路幅を有しながらも、対称面に対して面対称の形状を有している。なお、差動伝送線路対12の形状は、図10に限定されない。本発明の実施例によれば、差動伝送線路対の形状に関して、設計の自由度を向上できる。 FIG. 10 is a top view of the filter region 10 according to the sixth embodiment of the present invention. As shown in the drawing, the arrangement of the conductor region 18 and the non-conductor region 20 in the second wiring layer 8 is the same as that in FIG. Each of the differential transmission line pairs 12 has a non-uniform line width. Here, the line width on the center side is thicker than the line width on both ends of the filter region 10. Although the differential transmission line pair 12 has such a line width, the differential transmission line pair 12 has a plane-symmetric shape with respect to the symmetry plane. The shape of the differential transmission line pair 12 is not limited to FIG. According to the embodiment of the present invention, it is possible to improve the degree of design freedom regarding the shape of the differential transmission line pair.
(実施例7)
 次に、本発明の実施例7を説明する。これまでは、第1配線層には、差動伝送線路対が一対だけ配置されている。一方、実施例7の第1配線層には、差動伝送線路対が2対配置されている。実施例6に係る配線基板100は、図1と同様のタイプであり、フィルタ領域10の断面は、図3と同様のタイプである。
(Example 7)
Next, a seventh embodiment of the present invention will be described. Until now, only one pair of differential transmission line pairs has been arranged in the first wiring layer. On the other hand, two pairs of differential transmission line pairs are arranged in the first wiring layer of the seventh embodiment. The wiring board 100 according to Example 6 is the same type as that in FIG. 1, and the cross section of the filter region 10 is the same type as that in FIG.
 図11は、本発明の実施例7に係るフィルタ領域10の上面図である。図示のごとく、第2配線層8における導体領域18および非導体領域20の配置は、図2と同様であるので、ここでは説明を省略する。第1差動伝送線路対60および第2差動伝送線路対62のそれぞれは、図2の差動伝送線路対12と同様の形状である。これらは、図示しない第1配線層4に配置されており、対称面64に対して面対称に配置されている。非導体領域20は、対称面64に対して面対称の形状を有する。なお、差動伝送線路対の数は、「2」に限らず、それ以上であってもよい。本変形例によれば、差動伝送線路対の数に関して、設計の自由度を向上できる。 FIG. 11 is a top view of the filter region 10 according to the seventh embodiment of the present invention. As shown in the drawing, the arrangement of the conductor region 18 and the non-conductor region 20 in the second wiring layer 8 is the same as that in FIG. Each of the first differential transmission line pair 60 and the second differential transmission line pair 62 has the same shape as the differential transmission line pair 12 of FIG. These are arranged in the first wiring layer 4 (not shown), and are arranged in plane symmetry with respect to the symmetry plane 64. The non-conductor region 20 has a shape that is plane-symmetric with respect to the plane of symmetry 64. The number of differential transmission line pairs is not limited to “2”, and may be more than that. According to this modification, the degree of freedom in design can be improved with respect to the number of differential transmission line pairs.
(実施例8)
 次に、本発明の実施例8を説明する。実施例8は、本発明の配線基板を備えた携帯機器について説明する。なお、携帯機器として携帯電話に搭載する例を示すが、例えば、個人用携帯情報端末(PDA)、デジタルビデオカメラ(DVC)、音楽プレーヤ、デジタルスチルカメラ(DSC)といった電子機器であってもよい。
(Example 8)
Next, an eighth embodiment of the present invention will be described. Example 8 describes a portable device provided with the wiring board of the present invention. In addition, although the example mounted in a mobile telephone is shown as a portable apparatus, electronic devices, such as a personal digital assistant (PDA), a digital video camera (DVC), a music player, a digital still camera (DSC), may be sufficient, for example. .
 図12は、本発明の実施例8に係る携帯電話1111の構成を示す斜視図である。これは、実施例1から7のいずれかに係る配線基板100を備えた携帯電話1111に相当する。携帯電話1111は、第1の筐体1112と第2の筐体1114が可動部1120によって連結される構造になっている。第1の筐体1112と第2の筐体1114は可動部1120を軸として回動可能である。第1の筐体1112には文字や画像等の情報を表示する表示部1118やスピーカ部1124が設けられている。第2の筐体1114には操作用ボタンなどの操作部1122やマイク部1126が設けられている。第1の実施の形態に係る配線基板100が携帯電話1111の内部に搭載されている。の表示部に採用される液晶パネルの光源としてのバックライトの駆動回路などがある。 FIG. 12 is a perspective view showing the configuration of the mobile phone 1111 according to the eighth embodiment of the present invention. This corresponds to the mobile phone 1111 provided with the wiring board 100 according to any one of the first to seventh embodiments. A cellular phone 1111 has a structure in which a first housing 1112 and a second housing 1114 are connected by a movable portion 1120. The first housing 1112 and the second housing 1114 can be rotated around the movable portion 1120. The first housing 1112 is provided with a display portion 1118 and a speaker portion 1124 for displaying information such as characters and images. The second housing 1114 is provided with an operation portion 1122 such as operation buttons and a microphone portion 1126. The wiring board 100 according to the first embodiment is mounted inside the mobile phone 1111. There is a backlight driving circuit as a light source of a liquid crystal panel employed in the display unit.
 図13は、携帯電話1111の部分断面図である。これは、図12に示した携帯電話1111の部分断面図(第1の筐体1112の断面図)である。配線基板100には、送受信回路1128および信号処理回路1130が取り付けられている。配線基板100は、送受信回路1128と信号処理回路1130との間で1GHz以上の高周波信号をやりとりするための差動伝送線路対を含む。 FIG. 13 is a partial cross-sectional view of the mobile phone 1111. This is a partial cross-sectional view of the mobile phone 1111 shown in FIG. 12 (cross-sectional view of the first housing 1112). A transmission / reception circuit 1128 and a signal processing circuit 1130 are attached to the wiring board 100. The wiring board 100 includes a differential transmission line pair for exchanging a high frequency signal of 1 GHz or more between the transmission / reception circuit 1128 and the signal processing circuit 1130.
 実施例1から7のいずれかに係る配線基板100を搭載した携帯電話1111によると、携帯電話1111に含まれる回路モジュール間、例えば送受信回路1128と信号処理回路1130との間、での信号の伝送特性、特に1GHz以上の高周波領域での伝送特性を向上できる。したがって、実施例1から5のいずれかに係る配線基板100は、1GHz以上の高周波信号を取り扱う携帯機器に特に好適に用いられる。 According to the mobile phone 1111 equipped with the wiring substrate 100 according to any one of the first to seventh embodiments, signal transmission between circuit modules included in the mobile phone 1111, for example, between the transmission / reception circuit 1128 and the signal processing circuit 1130. Characteristics, particularly transmission characteristics in a high frequency region of 1 GHz or more can be improved. Therefore, the wiring board 100 according to any of the first to fifth embodiments is particularly preferably used for a portable device that handles a high-frequency signal of 1 GHz or higher.
 本発明の実施例によれば、配線基板をさまざまな機器に適用できる。 According to the embodiment of the present invention, the wiring board can be applied to various devices.
 以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to the combination of each component and each processing process, and such modifications are also within the scope of the present invention. .
 実施例1から8の任意の組合せも有効である。本変形例によれば、実施例1から6を任意に組み合わせた効果を得ることができる。 Any combination of Examples 1 to 8 is also effective. According to this modification, it is possible to obtain an effect obtained by arbitrarily combining the first to sixth embodiments.
 本発明の一態様の概要は、次の通りである。本発明のある態様の配線基板は、差動伝送線路対を含む第1配線層と、導体領域を含む第2配線層と、第1配線層と第2配線層との間に設けられた絶縁層とを備える。第2配線層は、第1配線層における差動伝送線路対の対称面に対して、面対称の形状を有した非導体領域を導体領域中に含む。 The outline of one embodiment of the present invention is as follows. A wiring board according to an aspect of the present invention includes a first wiring layer including a differential transmission line pair, a second wiring layer including a conductor region, and an insulation provided between the first wiring layer and the second wiring layer. And a layer. The second wiring layer includes a non-conductor region having a plane-symmetric shape in the conductor region with respect to the symmetry plane of the differential transmission line pair in the first wiring layer.
 この態様によると、第1配線層に隣接した第2配線層において、差動伝送線路対の対称面に対して面対称の形状を有した非導体領域を第2配線層中に有するので、非導体領域で形成されたインダクタ/容量と、差動伝送線路対の容量とを効率的に共振させ、コモンモードの影響を低減できる。 According to this aspect, in the second wiring layer adjacent to the first wiring layer, the second wiring layer includes the non-conductor region having a plane-symmetric shape with respect to the symmetry plane of the differential transmission line pair. It is possible to efficiently resonate the inductor / capacitance formed in the conductor region and the capacitance of the differential transmission line pair, thereby reducing the influence of the common mode.
 第2配線層に含まれた非導体領域は、第1配線層における差動伝送線路対の対称面において連続して形成されていてもよい。 The non-conductor region included in the second wiring layer may be continuously formed on the symmetry plane of the differential transmission line pair in the first wiring layer.
 第1配線層に含まれた差動伝送線路対は、それぞれ不均一な線路幅を有しながらも、対称面に対して面対称の形状を有してもよい。この場合、それぞれ不均一な線路幅を有するので、コモンモードにおけるインピーダンスの周波数特性を調整できる。 The differential transmission line pair included in the first wiring layer may have a shape that is plane-symmetric with respect to the plane of symmetry while having a non-uniform line width. In this case, the frequency characteristics of the impedance in the common mode can be adjusted because they have non-uniform line widths.
 本発明の別の態様もまた、配線基板である。この配線基板は、複数の差動伝送線路対を含む第1配線層と、導体領域を含む第2配線層と、第1配線層と第2配線層との間に設けられた絶縁層とを備える。第1配線層における複数の差動伝送線路対は、対称面に対して面対称に配置されており、第2配線層は、第1配線層における差動伝送線路対の対称面に対して、面対称の形状を有した非導体領域を導体領域中に含む。 Another embodiment of the present invention is also a wiring board. The wiring board includes a first wiring layer including a plurality of differential transmission line pairs, a second wiring layer including a conductor region, and an insulating layer provided between the first wiring layer and the second wiring layer. Prepare. The plurality of differential transmission line pairs in the first wiring layer are arranged in plane symmetry with respect to the symmetry plane, and the second wiring layer is in relation to the symmetry plane of the differential transmission line pair in the first wiring layer, A non-conductor region having a plane symmetrical shape is included in the conductor region.
 この態様によると、第2配線層が、面対称の形状を有した非導体領域を導体領域中に含むので、インピーダンスをさらに増加できる。 According to this aspect, since the second wiring layer includes the non-conductive region having a plane-symmetric shape in the conductive region, the impedance can be further increased.
 2 第1絶縁層、 4 第1配線層、 6 第2絶縁層、 8 第2配線層、 10 フィルタ領域、 12 差動伝送線路対、 18 導体領域、 20 非導体領域、 22 絶縁体、 100 配線基板、 100a 上面、 102 第1半導体モジュール、 104 第2半導体モジュール。 2 1st insulation layer, 4 1st wiring layer, 6 2nd insulation layer, 8 2nd wiring layer, 10 filter area, 12 differential transmission line pairs, 18 conductor area, 20 non-conductor area, 22 insulator, 100 wiring Substrate, upper surface of 100a, 102 first semiconductor module, 104 second semiconductor module.
 本発明によれば、差動伝送線路対を有する配線基板において、コモンモードの影響を低減できる。 According to the present invention, the influence of the common mode can be reduced in the wiring board having the differential transmission line pair.

Claims (4)

  1.  差動伝送線路対を含む第1配線層と、
     導体領域を含む第2配線層と、
     前記第1配線層と前記第2配線層との間に設けられた絶縁層とを備え、
     前記第2配線層は、前記第1配線層における差動伝送線路対の対称面に対して、面対称の形状を有した非導体領域を導体領域中に含むことを特徴とする配線基板。
    A first wiring layer including a differential transmission line pair;
    A second wiring layer including a conductor region;
    An insulating layer provided between the first wiring layer and the second wiring layer;
    The wiring substrate, wherein the second wiring layer includes a non-conductor region having a plane-symmetric shape with respect to a symmetry plane of the differential transmission line pair in the first wiring layer in the conductor region.
  2.  前記第2配線層に含まれた非導体領域は、前記第1配線層における差動伝送線路対の対称面において連続して形成されていることを特徴とする請求項1に記載の配線基板。 The wiring board according to claim 1, wherein the non-conductor region included in the second wiring layer is continuously formed on a plane of symmetry of the differential transmission line pair in the first wiring layer.
  3.  前記第1配線層に含まれた差動伝送線路対は、それぞれ不均一な線路幅を有しながらも、対称面に対して面対称の形状を有することを特徴とする請求項1または2に記載の配線基板。 3. The differential transmission line pair included in the first wiring layer has a plane-symmetric shape with respect to a plane of symmetry while having a non-uniform line width. The wiring board described.
  4.  複数の差動伝送線路対を含む第1配線層と、
     導体領域を含む第2配線層と、
     前記第1配線層と前記第2配線層との間に設けられた絶縁層とを備え、
     前記第1配線層における前記複数の差動伝送線路対は、対称面に対して面対称に配置されており、
     前記第2配線層は、前記第1配線層における前記差動伝送線路対の対称面に対して、面対称の形状を有した非導体領域を導体領域中に含むことを特徴とする配線基板。
    A first wiring layer including a plurality of differential transmission line pairs;
    A second wiring layer including a conductor region;
    An insulating layer provided between the first wiring layer and the second wiring layer;
    The plurality of differential transmission line pairs in the first wiring layer are arranged in plane symmetry with respect to a symmetry plane,
    The wiring board, wherein the second wiring layer includes a non-conductor region having a plane-symmetric shape with respect to a symmetry plane of the differential transmission line pair in the first wiring layer in the conductor region.
PCT/JP2012/004028 2011-06-23 2012-06-21 Wiring board WO2012176453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011139900A JP2014160690A (en) 2011-06-23 2011-06-23 Wiring board
JP2011-139900 2011-06-23

Publications (1)

Publication Number Publication Date
WO2012176453A1 true WO2012176453A1 (en) 2012-12-27

Family

ID=47422309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004028 WO2012176453A1 (en) 2011-06-23 2012-06-21 Wiring board

Country Status (2)

Country Link
JP (1) JP2014160690A (en)
WO (1) WO2012176453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172575A1 (en) * 2021-02-12 2022-08-18 株式会社村田製作所 Circuit board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10820410B2 (en) 2019-03-04 2020-10-27 Quanta Computer Inc. Loop shaped radiation reduction filter for high speed differential signal trace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340506A (en) * 2004-05-27 2005-12-08 Fuji Xerox Co Ltd Printed wiring board
JP2007123740A (en) * 2005-10-31 2007-05-17 Sony Corp Flexible board, optical transmission/reception module and optical transmission/reception device
JP2009038341A (en) * 2007-07-09 2009-02-19 Canon Inc Printed circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340506A (en) * 2004-05-27 2005-12-08 Fuji Xerox Co Ltd Printed wiring board
JP2007123740A (en) * 2005-10-31 2007-05-17 Sony Corp Flexible board, optical transmission/reception module and optical transmission/reception device
JP2009038341A (en) * 2007-07-09 2009-02-19 Canon Inc Printed circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172575A1 (en) * 2021-02-12 2022-08-18 株式会社村田製作所 Circuit board

Also Published As

Publication number Publication date
JP2014160690A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
US10636561B2 (en) Common mode noise filter
JP5356520B2 (en) Wiring board, filter device and portable device
US8786379B2 (en) Common mode noise filter
WO2016072078A1 (en) Common mode noise filter
JP2009290377A (en) On-vehicle noise filter
JP2013191660A (en) Common mode noise filter
JP5961813B2 (en) Common mode noise filter
JP2009182376A (en) Laminated low-pass filter
JP4835188B2 (en) Multilayer printed circuit board
WO2012176453A1 (en) Wiring board
WO2019111695A1 (en) Multiplexer
WO2016125536A1 (en) Antenna device and electronic device
JP2008167157A (en) High-pass filter
JP2015012169A (en) Printed circuit board
JP2002217031A (en) Noise filter and electronic equipment using this noise filter
US8576027B2 (en) Differential-common mode resonant filters
JP2018206952A (en) Coil component and method for changing frequency characteristic thereof
JP2015076571A (en) Noise filter for power supply, and usb connector
JP2008258464A (en) Circuit board and differential transmission apparatus
JP2003087074A (en) Laminated filter
JP2013153041A (en) Noise suppression structure
WO2017085936A1 (en) Dielectric filter unit and communication device
JP2015220476A (en) Common mode noise filter
JP4033852B2 (en) Common mode filter
JP7322973B2 (en) electronic circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP