WO2012176308A1 - Vehicle, vehicle control method, and vehicle control apparatus - Google Patents

Vehicle, vehicle control method, and vehicle control apparatus Download PDF

Info

Publication number
WO2012176308A1
WO2012176308A1 PCT/JP2011/064436 JP2011064436W WO2012176308A1 WO 2012176308 A1 WO2012176308 A1 WO 2012176308A1 JP 2011064436 W JP2011064436 W JP 2011064436W WO 2012176308 A1 WO2012176308 A1 WO 2012176308A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinders
engine
electric motor
thermal energy
rotational speed
Prior art date
Application number
PCT/JP2011/064436
Other languages
French (fr)
Japanese (ja)
Inventor
大悟 川村
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/064436 priority Critical patent/WO2012176308A1/en
Publication of WO2012176308A1 publication Critical patent/WO2012176308A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/1843Overheating of driveline components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0633Inlet air flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/43Control of engines
    • B60Y2300/437Control of engine valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle, and a vehicle control method and control device, and more particularly to a technique for controlling an engine in a vehicle that is connected to an engine and includes an electric motor that changes its rotational speed in accordance with the rotational speed of the engine.
  • a hybrid vehicle equipped with an electric motor for traveling in addition to the engine is known.
  • the hybrid vehicle may be classified as an electric vehicle having a function of extending a travel distance.
  • hybrid vehicles equipped with electric motors that are mainly used as generators are also hybrid vehicles equipped with electric motors that are mainly used as generators.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-21622
  • the engine, the electric motor for traveling, and the electric motor for power generation are connected by a differential device configured by a planetary gear unit.
  • a power transmission system is provided by power circulation in which power that is not used for traveling circulates between the electric motor for traveling and the electric motor for power generation.
  • the transmission efficiency of the can be deteriorated.
  • a hybrid vehicle travels using only the torque from the engine, while one electric motor generates power and uses the generated power to torque the engine to the wheels.
  • the reaction force necessary to transmit the power is realized by one electric motor.
  • the electric power generated by one electric motor is supplied to the other electric motor via an inverter or the like, and the supplied electric power is returned as torque from the other electric motor via the differential device so that the power circulates.
  • energy is lost in an inverter or the like. As a result, transmission efficiency can deteriorate.
  • An object of the present invention is to improve transmission efficiency.
  • a vehicle connects an engine provided with a plurality of cylinders, an electric motor connected to the engine, an engine and the electric motor, and changes the rotational speed of the electric motor according to the rotational speed of the engine.
  • a control unit for controlling the engine and the electric motor. The control unit reduces the heat energy in some of the plurality of cylinders compared to the heat energy in the other cylinders, and increases the engine speed in order to reduce the speed of the electric motor.
  • the rotational speed of the engine is increased while the engine torque is reduced by reducing the thermal energy in some of the plurality of cylinders compared to the thermal energy in the other cylinders. Therefore, the engine speed can be increased while suppressing an increase in engine output power.
  • Increasing the engine speed decreases the speed of the electric motor. Therefore, the electric power required for the operation of the electric motor is reduced. Thereby, the energy loss resulting from the action
  • control unit sucks into some cylinders of the plurality of cylinders in order to reduce thermal energy in some of the cylinders compared to heat energy in the other cylinders.
  • the amount of air to be made is made smaller than the amount of air taken into the other cylinders.
  • the torque of the engine can be reduced by making the amount of air sucked into some of the plurality of cylinders smaller than the amount of air sucked into other cylinders.
  • control unit is configured to reduce the thermal energy in some cylinders of the plurality of cylinders compared to the thermal energy in other cylinders.
  • the lift amount of the intake valve is made smaller than the lift amount of the intake valve in the other cylinders.
  • the engine torque can be reduced by making the lift amount of the intake valve in some cylinders of the plurality of cylinders smaller than the lift amount of the intake valve in other cylinders.
  • control unit is configured to reduce the thermal energy in some cylinders of the plurality of cylinders compared to the thermal energy in other cylinders.
  • the operating angle of the intake valve is made smaller than the operating angle of the intake valve in the other cylinders.
  • the torque of the engine can be reduced by reducing the operating angle of the intake valve in some of the plurality of cylinders compared to the operating angle of the intake valve in the other cylinders.
  • control unit is configured to reduce the thermal energy in some cylinders of the plurality of cylinders compared to the thermal energy in other cylinders. Stop fuel injection.
  • the engine torque can be reduced by stopping fuel injection in some of the plurality of cylinders.
  • control unit is configured to reduce the thermal energy in some cylinders of the plurality of cylinders compared to the thermal energy in other cylinders. Stop ignition.
  • the engine torque can be reduced by stopping ignition in some of the plurality of cylinders.
  • the engine speed is increased while the engine torque is reduced by reducing the heat energy in some cylinders of the plurality of cylinders compared to the heat energy in the other cylinders. Therefore, the engine speed can be increased while suppressing an increase in engine output power.
  • Increasing the engine speed decreases the speed of the electric motor. Therefore, the electric power required for the operation of the electric motor is reduced. Thereby, the energy loss resulting from the action
  • a hybrid vehicle includes an engine 1000, a first motor generator 200, a power split mechanism 300 that combines or distributes torque between the engine 1000 and the first motor generator 200, and a second motor.
  • Generator 400 and transmission 500 are included.
  • Engine 1000 is a known internal combustion engine that burns fuel and outputs motive power, and is configured to be able to electrically control operating conditions such as throttle opening (intake amount), fuel supply amount, and ignition timing. Yes.
  • the engine 1000 is controlled by an ECU (Electronic Control Unit) 100 including a microcomputer and a memory 102, for example.
  • the ECU 100 may be divided into a plurality of ECUs.
  • the first motor generator 200 is a three-phase AC rotating electric machine as an example, and has a function as a motor and a function as a generator.
  • First motor generator 200 is connected to power storage device 700 such as a battery via inverter 210.
  • the inverter 210 By controlling the inverter 210, the output torque or regenerative torque of the first motor generator 200 is appropriately set.
  • the control is performed by the ECU 100.
  • the stator (not shown) of the first motor generator 200 is fixed and does not rotate.
  • the power split mechanism 300 includes a sun gear (S) 310 that is an external gear, a ring gear (R) 320 that is an internal gear arranged concentrically with the sun gear (S) 310, and the sun gear (S).
  • This is a known gear mechanism that generates a differential action by using a carrier (C) 330 that rotates and revolves a pinion gear meshing with 310 and a ring gear (R) 320 as three rotating elements.
  • the output shaft of the engine 1000 is connected to a carrier (C) 330 as a first rotating element via a damper.
  • the carrier (C) 330 is an input element.
  • the rotor (not shown) of the first motor generator 200 is connected to the sun gear (S) 310 which is the second rotating element. Therefore, the sun gear (S) 310 is a so-called reaction force element, and the ring gear (R) 320 that is the third rotation element is an output element.
  • the ring gear (R) 320 is connected to an output shaft 600 connected to drive wheels (not shown).
  • FIG. 2 shows an alignment chart of the power split mechanism 300.
  • the reaction torque generated by the first motor generator 200 is input to the sun gear (S) 310 with respect to the torque output from the engine 1000 input to the carrier (C) 330, these torques are added or subtracted.
  • the torque having the magnitude appears in the ring gear (R) 320 serving as an output element.
  • the rotor of the first motor generator 200 is rotated by the torque, and the first motor generator 200 functions as a generator.
  • the rotation speed (output rotation speed) of ring gear (R) 320 is constant, the rotation speed of engine 1000 is continuously (steplessly) changed by changing the rotation speed of first motor generator 200. ) Can be changed. That is, control for setting the rotation speed of engine 1000 to, for example, the rotation speed with the best fuel efficiency can be performed by controlling first motor generator 200. The control is performed by the ECU 100.
  • first motor generator 200 rotates in the reverse direction.
  • first motor generator 200 is caused to function as an electric motor from this state and torque is output in the forward rotation direction, torque in the direction of rotating the engine 1000 connected to the carrier (C) 330 acts.
  • the output shaft of engine 1000 can be rotated by first motor generator 200. That is, the engine 1000 can be motored or cranked by the first motor generator 200.
  • the second motor generator 400 is a three-phase AC rotating electric machine as an example, and has a function as a motor and a function as a generator.
  • Second motor generator 400 is connected to power storage device 700 such as a battery via inverter 310. By controlling the inverter 310, the power running and regeneration and the torque in each case are controlled.
  • the stator (not shown) of second motor generator 400 is fixed and does not rotate.
  • the transmission 500 is configured by a set of Ravigneaux planetary gear mechanisms.
  • Each pinion 531 and 532 is held by a carrier (C) 550 so as to rotate and revolve freely. Further, the second sun gear (S 2) 520 is meshed with the second pinion 532. Accordingly, the first sun gear (S1) 510 and the ring gear (R) 540 constitute a mechanism corresponding to the double pinion type planetary gear mechanism together with the pinions 531 and 532, and the second sun gear (S2) 520 and the ring gear (R). 540 and the second pinion 532 constitute a mechanism corresponding to a single pinion planetary gear mechanism.
  • the transmission 500 is provided with a B1 brake 561 that selectively fixes the first sun gear (S1) 510 and a B2 brake 562 that selectively fixes the ring gear (R) 540.
  • These brakes 561 and 562 are so-called friction engagement elements that generate an engagement force by a friction force, and a multi-plate type engagement device or a band type engagement device can be adopted. And these brakes 561 and 562 are comprised so that the torque capacity may change continuously according to the engaging force by oil_pressure
  • the second motor generator 400 described above is connected to the second sun gear (S2) 520.
  • Carrier (C) 550 is connected to output shaft 600.
  • the second sun gear (S2) 520 is a so-called input element
  • the carrier (C) 550 is an output element.
  • the transmission ratio is “ A high speed stage greater than 1 ′′ is set.
  • a low speed stage having a higher gear ratio than the high speed stage is set.
  • the shifting between the respective speeds is executed based on the traveling state such as the vehicle speed and the required driving force (or accelerator opening). More specifically, the shift speed region is determined in advance as a map (shift diagram), and control is performed so as to set one of the shift speeds according to the detected driving state.
  • FIG. 5 shows a collinear diagram of the transmission 500.
  • the ring gear (R) 540 is fixed by the B2 brake 562
  • the low speed stage L is set, and the torque output from the second motor generator 400 is amplified in accordance with the gear ratio and applied to the output shaft 600.
  • the first sun gear (S1) 510 is fixed by the B1 brake 561
  • the high speed stage H having a smaller gear ratio than the low speed stage L is set. Since the gear ratio at the high speed stage H is also larger than “1”, the torque output from the second motor generator 400 is increased according to the gear ratio and added to the output shaft 600.
  • the torque applied to the output shaft 600 is a torque obtained by increasing the output torque of the second motor generator 400 according to the gear ratio.
  • the torque is affected by the torque capacity at each brake 561 and 562, the inertia torque accompanying the change in the rotational speed, and the like.
  • the torque applied to the output shaft 600 is positive torque when the second motor generator 400 is driven, and is negative torque when the second motor generator 400 is driven.
  • the hybrid vehicle uses an EV mode that uses the driving force of only second motor generator 400 while engine 1000 is stopped, and uses the driving force of either or both of engine 1000 and second motor generator 400.
  • the travel mode is selected based on various parameters such as the vehicle speed, the accelerator opening, and the remaining capacity of the power storage device 700.
  • the hybrid vehicle travels using only the driving force of the engine 1000 during low-load traveling at a high vehicle speed.
  • the first motor generator 200 outputs torque in the direction indicated by the arrow in FIG. 6, thereby realizing the reaction force necessary for transmitting torque from the engine 1000 to the wheels by the first motor generator 200. .
  • the electric power for operating the first motor generator 200 is generated by the second motor generator 400.
  • the electric power generated by second motor generator 400 is supplied to first motor generator 200 via second inverter 212 and first inverter 210.
  • the electric power supplied to first motor generator 200 is returned as torque from first motor generator 200 to second motor generator 400 using carrier (C) 330, that is, engine 1000, as a fulcrum. Therefore, second motor generator 400 generates power using the torque supplied from first motor generator 200. In this manner, power that is not used for traveling of the hybrid vehicle circulates between the first motor generator 200 and the second motor generator 400.
  • FIG. 7 shows the theoretical transmission efficiency in the power transmission system of the hybrid vehicle.
  • the horizontal axis in FIG. 7 indicates the gear ratio of the power split mechanism 300.
  • the speed ratio of power split device 300 is calculated by dividing the rotational speed of engine 1000 by the rotational speed of ring gear (R) 320.
  • the vertical axis in FIG. 7 indicates transmission efficiency.
  • the amount of energy loss increases as the electric power used for the operation of first motor generator 200 increases.
  • the electric power used for the operation of first motor generator 200 increases as the rotational speed of first motor generator 200 increases. Therefore, the energy loss in the power circulation is reduced as the rotational speed of the first motor generator 200 is reduced and brought closer to zero. When the rotation speed of the first motor generator 200 is zero, energy loss is minimized. Therefore, transmission efficiency is maximized.
  • transmission is performed during low-load traveling at a high vehicle speed where the speed ratio is smaller than the speed ratio of power split mechanism 300 when the rotation speed of first motor generator 200 is zero.
  • the number of revolutions of engine 1000 is increased, and the number of revolutions of first motor generator 200 is reduced.
  • the engine 1000 will be further described with reference to FIG.
  • the engine 1000 is a V-type 8-cylinder engine in which “A” bank 1010 and “B” bank 1012 are each provided with a group of four cylinders.
  • An engine other than a V-type 8-cylinder engine may be used.
  • a 6-cylinder engine may be used.
  • the number of cylinders may be any number as long as it is plural.
  • an in-line engine may be used.
  • the engine 1000 receives air from an air cleaner 1020.
  • the intake air amount is adjusted by a throttle valve 1030.
  • the throttle valve 1030 is an electronic throttle valve that is driven by a motor.
  • the air is introduced into the cylinder 1040 through the intake passage 1032. Air is mixed with fuel in a cylinder 1040 (combustion chamber). Fuel is directly injected from the injector 1050 into the cylinder 1040. That is, the injection hole of the injector 1050 is provided in the cylinder 1040.
  • Fuel is injected during the intake stroke. Note that the timing of fuel injection is not limited to the intake stroke.
  • engine 1000 will be described as a direct injection engine in which an injection hole of injector 1050 is provided in cylinder 1040.
  • a port injection injector is provided. May be. Furthermore, only the injector for port injection may be provided.
  • the air-fuel mixture in the cylinder 1040 is ignited by the spark plug 1060 and burned.
  • the air-fuel mixture after combustion, that is, the exhaust gas is purified by the three-way catalyst 1070 and then discharged outside the vehicle.
  • the piston 1080 is pushed down by the combustion of the air-fuel mixture, and the crankshaft 1090 rotates.
  • An intake valve 1100 and an exhaust valve 1110 are provided at the top of the cylinder 1040.
  • An intake valve 1100 and an exhaust valve 1110 are provided in each of the cylinders 1040.
  • the intake valve 1100 is driven by an intake camshaft 1120.
  • the exhaust valve 1110 is driven by an exhaust camshaft 1130.
  • Intake camshaft 1120 and exhaust camshaft 1130 are connected by a chain, gear, or the like, and rotate at the same rotational speed.
  • the intake camshaft 1120 and the exhaust camshaft 1130 are connected to the crankshaft 1090 by a chain or a belt. Therefore, intake camshaft 1120 and exhaust camshaft 1130 rotate when crankshaft 1090 rotates. Therefore, the intake valve 1100 and the exhaust valve 1110 open and close as the crankshaft 1090 rotates. The intake valve 1100 and the exhaust valve 1110 open and close at different crank angles for each cylinder as the crankshaft 1090 rotates.
  • the lift amount of the intake valve 1100 is changed by a VVL (Variable Valve Lift) mechanism 2000.
  • the working angle may be controlled instead of or in addition to the lift amount.
  • the lift amount or working angle of the exhaust valve 1110 may be changed.
  • ECU 100 receives a signal representing the rotation speed and crank angle of crankshaft 1090 from crank angle sensor 5000. Further, ECU 100 receives from cam position sensor 5010 a signal (a signal indicating the phase of intake valve 1100 and exhaust valve 1110) indicating the phase of intake camshaft 1120 and exhaust camshaft 1130 (the position of the camshaft in the rotational direction). Is done. In addition, signals representing the rotational speeds of intake camshaft 1120 and exhaust camshaft 1130 are input from cam position sensor 5010.
  • ECU 100 receives a signal representing the water temperature (cooling water temperature) of engine 1000 from water temperature sensor 5020 and a signal representing the intake air amount of engine 1000 (the amount of air sucked into engine 1000) from air flow meter 5030. Is done.
  • the ECU 100 controls the throttle opening, ignition timing, fuel injection so that the engine 1000 enters a desired operating state. Control the timing, fuel injection amount, lift amount, etc.
  • the operating point of the engine 1000 that is, the engine speed NE and the output torque TE are determined by the intersection of the output power and the operating line.
  • the output power is indicated by an isopower line.
  • the operating line is predetermined by the developer based on the results of experiments and simulations.
  • the operating line is determined based on the energy efficiency of engine 1000. For example, a line connecting operating points determined by the developer that the efficiency of the engine 1000 is good is determined as an operation line.
  • the efficiency of the engine 1000 is obtained by dividing the actually output power by the power that should be obtained theoretically, which is calculated based on the fuel injection amount, the intake air amount, and the like, with the throttle opening being maximized. Is calculated by When the engine 100 is driven along the operation line, optimal fuel consumption is realized.
  • the operation line setting method is not limited to these.
  • ECU 100 may execute processing by software, may execute processing by hardware, or may execute processing by cooperation of software and hardware.
  • step (hereinafter, step is abbreviated as S) 100 it is determined whether or not the hybrid vehicle is traveling at a low load at a high vehicle speed. For example, when the vehicle speed is higher than a threshold value and the fluctuation amount of the vehicle speed is smaller than another threshold value, it is determined that the vehicle is traveling at a low load at a high vehicle speed. Low load traveling at high vehicle speed is not limited to the above traveling state.
  • the thermal energy in some of the cylinders is smaller than the thermal energy in the other cylinders. Is done. Specifically, some of the cylinders are deactivated. That is, fuel combustion is stopped only in some cylinders.
  • a well-known method is used as a method of stopping the cylinder.
  • the amount of air sucked into some of the plurality of cylinders is made smaller than the amount of air sucked into other cylinders.
  • the lift amount of the intake valve 1100 in a part of the plurality of cylinders is made smaller than the lift amount of the intake valve 1100 in other cylinders. More specifically, only the lift amount of the intake valve 1100 in some cylinders of the plurality of cylinders is made zero.
  • the operating angle of the intake valve 1100 in a part of the plurality of cylinders may be made smaller than the operating angle of the intake valve 1100 in other cylinders. More specifically, only the operating angle of the intake valve 1100 in some cylinders of the plurality of cylinders may be set to zero.
  • fuel injection is stopped only in some of the plurality of cylinders, or ignition is stopped only in some of the plurality of cylinders. Or you may.
  • the first motor In order to reduce the rotational speed of generator 200, the rotational speed of engine 1000 is increased.
  • the operating point of engine 1000 is moved in the direction in which the rotational speed of engine 1000 increases along the equal power line.
  • the rotation speed of the 1st motor generator 200 is made small. That is, the rotation speed of first motor generator 200 is brought close to zero. Therefore, energy loss due to the operation of first motor generator 200 is reduced. Therefore, the transmission efficiency can be improved, and the operating point of engine 1000 can be brought closer to the operating point at which the transmission efficiency of the power transmission system of the hybrid vehicle is maximized, as indicated by a triangular mark in FIG.
  • the rotational speed of engine 1000 is increased while the torque of engine 1000 is reduced by deactivating some cylinders. Therefore, the transmission efficiency of the power transmission system can be improved while suppressing an increase in the output of engine 1000.
  • the torque on the operating line where the efficiency of engine 1000 is optimal is reduced. That is, when some cylinders are deactivated, the efficiency of the engine 1000 can be improved in an operating state where the torque is lower than when the throttle opening is reduced. Therefore, by increasing the rotation speed of the engine 1000 while some cylinders are deactivated, the operating point of the engine 1000 is transferred to the power transmission system of the hybrid vehicle while reducing the degree of deterioration of the efficiency of the engine 1000 itself. The operating point can be brought close to the maximum efficiency.
  • the operating state in which some cylinders are deactivated and the engine speed is increased is not limited to low-load traveling at high vehicle speeds.
  • the rotational speed of the first motor generator 200 can be brought close to zero by increasing the engine rotational speed except during low-load traveling at a high vehicle speed, some cylinders are deactivated and the engine rotational speed is decreased. You may make it increase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

A hybrid vehicle is provided with: an engine including a plurality of cylinders; a motor generator connected to the engine; a motive force dividing mechanism connecting the engine and the motor generator and configured to vary the rotating speed of the motor generator in accordance with the rotating speed of the engine; and an ECU for controlling the engine and the motor generator. The ECU decreases the thermal energy in one or more of the plurality of cylinders compared with the thermal energy in the other cylinders, and increases the rotating speed of the engine so as to decrease the rotating speed of the motor generator.

Description

車両、ならびに、車両の制御方法および制御装置Vehicle, and vehicle control method and control device
 本発明は、車両、ならびに、車両の制御方法および制御装置に関し、特に、エンジンに連結され、エンジンの回転数に応じて回転数が変化する電動モータを搭載した車両においてエンジンを制御する技術に関する。 The present invention relates to a vehicle, and a vehicle control method and control device, and more particularly to a technique for controlling an engine in a vehicle that is connected to an engine and includes an electric motor that changes its rotational speed in accordance with the rotational speed of the engine.
 エンジンに加えて走行用の電動モータを搭載したハイブリッド車が知られている。ハイブリッド車は、走行距離の拡大機能を備えた電気自動車と分類される場合もある。走行用の電動モータに加え、主に発電機として用いられる電動モータを搭載したハイブリッド車もある。 A hybrid vehicle equipped with an electric motor for traveling in addition to the engine is known. The hybrid vehicle may be classified as an electric vehicle having a function of extending a travel distance. In addition to electric motors for traveling, there are also hybrid vehicles equipped with electric motors that are mainly used as generators.
 たとえば、特開2006-21622号公報(特許文献1)に記載のように、エンジン、走行用の電動モータ、および発電用の電動モータは、プラネタリギヤユニットにより構成された差動装置によって連結される。 For example, as described in Japanese Patent Application Laid-Open No. 2006-21622 (Patent Document 1), the engine, the electric motor for traveling, and the electric motor for power generation are connected by a differential device configured by a planetary gear unit.
特開2006-21622号公報JP 2006-21622 A
 差動装置によってエンジンと電動モータとが連結されたハイブリッド車には、走行には用いられない動力が走行用の電動モータと発電用の電動モータとの間で循環する動力循環によって、動力伝達系の伝達効率が悪化し得るという欠点がある。たとえば、高車速での低負荷走行中には、エンジンからのトルクのみを用いてハイブリッド車が走行する一方で、一方の電動モータが発電し、発電された電力を用いて、エンジンから車輪にトルクを伝達するのに必要な反力を一方の電動モータによって実現する。一方の電動モータが発電した電力は、インバータ等を介して他方の電動モータに供給され、供給された電力がトルクとして他方の電動モータから差動装置を介して戻されることにより、動力が循環する。しかしながら、動力循環においては、インバータ等においてエネルギが損失する。その結果、伝達効率が悪化し得る。 In a hybrid vehicle in which an engine and an electric motor are connected by a differential device, a power transmission system is provided by power circulation in which power that is not used for traveling circulates between the electric motor for traveling and the electric motor for power generation. There is a drawback that the transmission efficiency of the can be deteriorated. For example, during low-load traveling at high vehicle speeds, a hybrid vehicle travels using only the torque from the engine, while one electric motor generates power and uses the generated power to torque the engine to the wheels. The reaction force necessary to transmit the power is realized by one electric motor. The electric power generated by one electric motor is supplied to the other electric motor via an inverter or the like, and the supplied electric power is returned as torque from the other electric motor via the differential device so that the power circulates. . However, in power circulation, energy is lost in an inverter or the like. As a result, transmission efficiency can deteriorate.
 本発明の目的は、伝達効率を向上することである。 An object of the present invention is to improve transmission efficiency.
 ある実施例において、車両は、複数の気筒が設けられたエンジンと、エンジンに連結された電動モータと、エンジンと電動モータとを連結し、エンジンの回転数に応じて電動モータの回転数を変化させる連結装置と、エンジンおよび電動モータを制御する制御ユニットとを備える。制御ユニットは、複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするとともに、電動モータの回転数を小さくするためにエンジンの回転数を増大する。 In one embodiment, a vehicle connects an engine provided with a plurality of cylinders, an electric motor connected to the engine, an engine and the electric motor, and changes the rotational speed of the electric motor according to the rotational speed of the engine. And a control unit for controlling the engine and the electric motor. The control unit reduces the heat energy in some of the plurality of cylinders compared to the heat energy in the other cylinders, and increases the engine speed in order to reduce the speed of the electric motor.
 この構成によると、複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくすることによりエンジンのトルクを小さくしつつ、エンジンの回転数が増大される。したがって、エンジンの出力パワーの増大を抑えつつ、エンジンの回転数を増大できる。エンジンの回転数を増大することにより電動モータの回転数が小さくなる。そのため、電動モータの作動に必要な電力が低減される。これにより、電動モータの作動に起因するエネルギ損失が低減される。よって、エンジンの出力パワーの増大を抑えつつ、エネルギ損失が低減される。その結果、伝達効率を向上できる。 According to this configuration, the rotational speed of the engine is increased while the engine torque is reduced by reducing the thermal energy in some of the plurality of cylinders compared to the thermal energy in the other cylinders. Therefore, the engine speed can be increased while suppressing an increase in engine output power. Increasing the engine speed decreases the speed of the electric motor. Therefore, the electric power required for the operation of the electric motor is reduced. Thereby, the energy loss resulting from the action | operation of an electric motor is reduced. Therefore, energy loss is reduced while suppressing an increase in engine output power. As a result, transmission efficiency can be improved.
 別の実施例において、制御ユニットは、複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするために、複数の気筒のうちの一部の気筒に吸入される空気の量を、他の気筒に吸入される空気の量に比べて小さくする。 In another embodiment, the control unit sucks into some cylinders of the plurality of cylinders in order to reduce thermal energy in some of the cylinders compared to heat energy in the other cylinders. The amount of air to be made is made smaller than the amount of air taken into the other cylinders.
 この構成によると、複数の気筒のうちの一部の気筒に吸入される空気の量を、他の気筒に吸入される空気の量に比べて小さくすることにより、エンジンのトルクを低減できる。 According to this configuration, the torque of the engine can be reduced by making the amount of air sucked into some of the plurality of cylinders smaller than the amount of air sucked into other cylinders.
 さらに別の実施例において、制御ユニットは、複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするために、複数の気筒のうちの一部の気筒における吸気バルブのリフト量を、他の気筒における吸気バルブのリフト量に比べて小さくする。 In yet another embodiment, the control unit is configured to reduce the thermal energy in some cylinders of the plurality of cylinders compared to the thermal energy in other cylinders. The lift amount of the intake valve is made smaller than the lift amount of the intake valve in the other cylinders.
 この構成によると、複数の気筒のうちの一部の気筒における吸気バルブのリフト量を、他の気筒における吸気バルブのリフト量に比べて小さくすることにより、エンジンのトルクを低減できる。 According to this configuration, the engine torque can be reduced by making the lift amount of the intake valve in some cylinders of the plurality of cylinders smaller than the lift amount of the intake valve in other cylinders.
 さらに別の実施例において、制御ユニットは、複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするために、複数の気筒のうちの一部の気筒における吸気バルブの作用角を、他の気筒における吸気バルブの作用角に比べて小さくする。 In yet another embodiment, the control unit is configured to reduce the thermal energy in some cylinders of the plurality of cylinders compared to the thermal energy in other cylinders. The operating angle of the intake valve is made smaller than the operating angle of the intake valve in the other cylinders.
 この構成によると、複数の気筒のうちの一部の気筒における吸気バルブの作用角を、他の気筒における吸気バルブの作用角に比べて小さくすることにより、エンジンのトルクを低減できる。 According to this configuration, the torque of the engine can be reduced by reducing the operating angle of the intake valve in some of the plurality of cylinders compared to the operating angle of the intake valve in the other cylinders.
 さらに別の実施例において、制御ユニットは、複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするために、複数の気筒のうちの一部の気筒における燃料噴射を停止する。 In yet another embodiment, the control unit is configured to reduce the thermal energy in some cylinders of the plurality of cylinders compared to the thermal energy in other cylinders. Stop fuel injection.
 この構成によると、複数の気筒のうちの一部の気筒における燃料噴射を停止することにより、エンジンのトルクを低減できる。 According to this configuration, the engine torque can be reduced by stopping fuel injection in some of the plurality of cylinders.
 さらに別の実施例において、制御ユニットは、複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするために、複数の気筒のうちの一部の気筒における点火を停止する。 In yet another embodiment, the control unit is configured to reduce the thermal energy in some cylinders of the plurality of cylinders compared to the thermal energy in other cylinders. Stop ignition.
 この構成によると、複数の気筒のうちの一部の気筒における点火を停止することにより、エンジンのトルクを低減できる。 According to this configuration, the engine torque can be reduced by stopping ignition in some of the plurality of cylinders.
 複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくすることによりエンジンのトルクを小さくしつつ、エンジンの回転数が増大される。したがって、エンジンの出力パワーの増大を抑えつつ、エンジンの回転数を増大できる。エンジンの回転数を増大することにより電動モータの回転数が小さくなる。そのため、電動モータの作動に必要な電力が低減される。これにより、電動モータの作動に起因するエネルギ損失が低減される。よって、エンジンの出力パワーの増大を抑えつつ、エネルギ損失が低減される。その結果、伝達効率を向上できる。 The engine speed is increased while the engine torque is reduced by reducing the heat energy in some cylinders of the plurality of cylinders compared to the heat energy in the other cylinders. Therefore, the engine speed can be increased while suppressing an increase in engine output power. Increasing the engine speed decreases the speed of the electric motor. Therefore, the electric power required for the operation of the electric motor is reduced. Thereby, the energy loss resulting from the action | operation of an electric motor is reduced. Therefore, energy loss is reduced while suppressing an increase in engine output power. As a result, transmission efficiency can be improved.
ハイブリッド車のパワートレーンを示す概略構成図である。It is a schematic block diagram which shows the power train of a hybrid vehicle. 動力分割機構の共線図である。It is an alignment chart of a power split mechanism. エンジンを停止したときの共線図である。It is an alignment chart when an engine is stopped. エンジンをモータリングまたはクランキングしたときの共線図である。It is an alignment chart when an engine is motored or cranked. 変速機の共線図である。It is an alignment chart of a transmission. 高車速での動力分割機構の共線図である。It is an alignment chart of the power split mechanism at a high vehicle speed. ハイブリッド車の動力伝達系の伝達効率を示す図である。It is a figure which shows the transmission efficiency of the power transmission system of a hybrid vehicle. ハイブリッド車両のエンジンを示す概略構成図である。It is a schematic block diagram which shows the engine of a hybrid vehicle. エンジンの動作線と等パワー線とを示す図である。It is a figure which shows an engine operating line and an equal power line. ECUが実行する処理を示すフローチャートである。It is a flowchart which shows the process which ECU performs. 一部の気筒を休止したときのエンジンの運転点および動作線を示す図である。It is a figure which shows the operating point and operating line of an engine when some cylinders are deactivated. 一部の気筒を休止したときの動力分割機構の共線図である。It is an alignment chart of a power split mechanism when some cylinders are deactivated.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同一である。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 図1を参照して、ハイブリッド車は、エンジン1000と、第1モータジェネレータ200と、これらエンジン1000と第1モータジェネレータ200との間でトルクを合成もしくは分配する動力分割機構300と、第2モータジェネレータ400と、変速機500とを含む。 Referring to FIG. 1, a hybrid vehicle includes an engine 1000, a first motor generator 200, a power split mechanism 300 that combines or distributes torque between the engine 1000 and the first motor generator 200, and a second motor. Generator 400 and transmission 500 are included.
 エンジン1000は、燃料を燃焼させて動力を出力する公知の内燃機関であって、スロットル開度(吸気量)や燃料供給量、点火時期などの運転状態を電気的に制御できるように構成されている。エンジン1000は、例えば、マイクロコンピュータおよびメモリ102から構成されるECU(Electronic Control Unit)100により制御される。ECU100は複数のECUに分割するようにしてもよい。 Engine 1000 is a known internal combustion engine that burns fuel and outputs motive power, and is configured to be able to electrically control operating conditions such as throttle opening (intake amount), fuel supply amount, and ignition timing. Yes. The engine 1000 is controlled by an ECU (Electronic Control Unit) 100 including a microcomputer and a memory 102, for example. The ECU 100 may be divided into a plurality of ECUs.
 第1モータジェネレータ200は、一例として三相交流回転電機であって、モータとしての機能とジェネレータとしての機能とを有する。第1モータジェネレータ200は、インバータ210を介してバッテリなどの蓄電装置700に接続されている。インバータ210を制御することにより、第1モータジェネレータ200の出力トルクあるいは回生トルクを適宜に設定するようになっている。その制御は、ECU100によって行なわれる。なお、第1モータジェネレータ200のステータ(図示せず)は固定されており、回転しないようになっている。 The first motor generator 200 is a three-phase AC rotating electric machine as an example, and has a function as a motor and a function as a generator. First motor generator 200 is connected to power storage device 700 such as a battery via inverter 210. By controlling the inverter 210, the output torque or regenerative torque of the first motor generator 200 is appropriately set. The control is performed by the ECU 100. The stator (not shown) of the first motor generator 200 is fixed and does not rotate.
 動力分割機構300は、外歯歯車であるサンギヤ(S)310と、そのサンギヤ(S)310に対して同心円上に配置された内歯歯車であるリングギヤ(R)320と、これらサンギヤ(S)310とリングギヤ(R)320とに噛合しているピニオンギヤを自転かつ公転自在に保持しているキャリヤ(C)330とを三つの回転要素として差動作用を生じる公知の歯車機構である。エンジン1000の出力軸がダンパを介して第1の回転要素であるキャリヤ(C)330に連結されている。言い換えれば、キャリヤ(C)330が入力要素となっている。 The power split mechanism 300 includes a sun gear (S) 310 that is an external gear, a ring gear (R) 320 that is an internal gear arranged concentrically with the sun gear (S) 310, and the sun gear (S). This is a known gear mechanism that generates a differential action by using a carrier (C) 330 that rotates and revolves a pinion gear meshing with 310 and a ring gear (R) 320 as three rotating elements. The output shaft of the engine 1000 is connected to a carrier (C) 330 as a first rotating element via a damper. In other words, the carrier (C) 330 is an input element.
 これに対して第2の回転要素であるサンギヤ(S)310に第1モータジェネレータ200のロータ(図示せず)が連結されている。したがってサンギヤ(S)310がいわゆる反力要素となっており、また第3の回転要素であるリングギヤ(R)320が出力要素となっている。そして、そのリングギヤ(R)320が、駆動輪(図示せず)に連結された出力軸600に連結されている。 On the other hand, the rotor (not shown) of the first motor generator 200 is connected to the sun gear (S) 310 which is the second rotating element. Therefore, the sun gear (S) 310 is a so-called reaction force element, and the ring gear (R) 320 that is the third rotation element is an output element. The ring gear (R) 320 is connected to an output shaft 600 connected to drive wheels (not shown).
 図2に、動力分割機構300の共線図を示す。図2に示すように、キャリヤ(C)330に入力されるエンジン1000の出力するトルクに対して、第1モータジェネレータ200による反力トルクをサンギヤ(S)310に入力すると、これらのトルクを加減算した大きさのトルクが、出力要素となっているリングギヤ(R)320に現れる。その場合、第1モータジェネレータ200のロータがそのトルクによって回転し、第1モータジェネレータ200は発電機として機能する。また、リングギヤ(R)320の回転数(出力回転数)を一定とした場合、第1モータジェネレータ200の回転数を大小に変化させることにより、エンジン1000の回転数を連続的に(無段階に)変化させることができる。すなわち、エンジン1000の回転数を例えば燃費が最もよい回転数に設定する制御を、第1モータジェネレータ200を制御することによって行なうことができる。その制御は、ECU100によって行なわれる。 FIG. 2 shows an alignment chart of the power split mechanism 300. As shown in FIG. 2, when the reaction torque generated by the first motor generator 200 is input to the sun gear (S) 310 with respect to the torque output from the engine 1000 input to the carrier (C) 330, these torques are added or subtracted. The torque having the magnitude appears in the ring gear (R) 320 serving as an output element. In that case, the rotor of the first motor generator 200 is rotated by the torque, and the first motor generator 200 functions as a generator. Further, when the rotation speed (output rotation speed) of ring gear (R) 320 is constant, the rotation speed of engine 1000 is continuously (steplessly) changed by changing the rotation speed of first motor generator 200. ) Can be changed. That is, control for setting the rotation speed of engine 1000 to, for example, the rotation speed with the best fuel efficiency can be performed by controlling first motor generator 200. The control is performed by the ECU 100.
 図3に示すように、走行中にエンジン1000の出力軸、すなわちクランクシャフトを停止させていれば、第1モータジェネレータ200が逆回転する。この状態から第1モータジェネレータ200を電動機として機能させて正回転方向にトルクを出力させると、キャリヤ(C)330に連結されているエンジン1000にこれを正回転させる方向のトルクが作用する。その結果、図4に示すように、第1モータジェネレータ200によってエンジン1000の出力軸を回転することができる。すなわち、第1モータジェネレータ200によってエンジン1000をモータリングもしくはクランキングすることができる。 As shown in FIG. 3, if the output shaft of engine 1000, that is, the crankshaft is stopped during traveling, first motor generator 200 rotates in the reverse direction. When the first motor generator 200 is caused to function as an electric motor from this state and torque is output in the forward rotation direction, torque in the direction of rotating the engine 1000 connected to the carrier (C) 330 acts. As a result, as shown in FIG. 4, the output shaft of engine 1000 can be rotated by first motor generator 200. That is, the engine 1000 can be motored or cranked by the first motor generator 200.
 図1に戻って、第2モータジェネレータ400は、一例として三相交流回転電機であって、モータとしての機能とジェネレータとしての機能とを有する。第2モータジェネレータ400は、インバータ310を介してバッテリなどの蓄電装置700接続されている。インバータ310を制御することにより、力行および回生ならびにそれぞれの場合におけるトルクを制御するように構成されている。なお、第2モータジェネレータ400のステータ(図示せず)は固定されており、回転しないようになっている。 Referring back to FIG. 1, the second motor generator 400 is a three-phase AC rotating electric machine as an example, and has a function as a motor and a function as a generator. Second motor generator 400 is connected to power storage device 700 such as a battery via inverter 310. By controlling the inverter 310, the power running and regeneration and the torque in each case are controlled. The stator (not shown) of second motor generator 400 is fixed and does not rotate.
 変速機500は、一組のラビニョ型遊星歯車機構によって構成されている。それぞれ外歯歯車である第1サンギヤ(S1)510と第2サンギヤ(S2)520とが設けられており、その第1サンギヤ(S1)510に第1のピニオン531が噛合するとともに、その第1のピニオン531が第2のピニオン532に噛合し、その第2のピニオン532が各サンギヤ510,520と同心円上に配置されたリングギヤ(R)540に噛合している。 The transmission 500 is configured by a set of Ravigneaux planetary gear mechanisms. A first sun gear (S1) 510 and a second sun gear (S2) 520, which are external gears, are provided, and the first pinion 531 meshes with the first sun gear (S1) 510, and the first The pinion 531 meshes with the second pinion 532, and the second pinion 532 meshes with the ring gear (R) 540 arranged concentrically with the sun gears 510 and 520.
 なお、各ピニオン531,532は、キャリヤ(C)550によって自転かつ公転自在に保持されている。また、第2サンギヤ(S2)520が第2のピニオン532に噛合している。したがって第1サンギヤ(S1)510とリングギヤ(R)540とは、各ピニオン531,532と共にダブルピニオン型遊星歯車機構に相当する機構を構成し、また第2サンギヤ(S2)520とリングギヤ(R)540とは、第2のピニオン532と共にシングルピニオン型遊星歯車機構に相当する機構を構成している。 Each pinion 531 and 532 is held by a carrier (C) 550 so as to rotate and revolve freely. Further, the second sun gear (S 2) 520 is meshed with the second pinion 532. Accordingly, the first sun gear (S1) 510 and the ring gear (R) 540 constitute a mechanism corresponding to the double pinion type planetary gear mechanism together with the pinions 531 and 532, and the second sun gear (S2) 520 and the ring gear (R). 540 and the second pinion 532 constitute a mechanism corresponding to a single pinion planetary gear mechanism.
 さらに、変速機500には、第1サンギヤ(S1)510を選択的に固定するB1ブレーキ561と、リングギヤ(R)540を選択的に固定するB2ブレーキ562とが設けられている。これらのブレーキ561,562は摩擦力によって係合力を生じるいわゆる摩擦係合要素であり、多板形式の係合装置あるいはバンド形式の係合装置を採用することができる。そして、これらのブレーキ561,562は、油圧による係合力に応じてそのトルク容量が連続的に変化するように構成されている。さらに、第2サンギヤ(S2)520に前述した第2モータジェネレータ400が連結される。キャリヤ(C)550が出力軸600に連結される。 Furthermore, the transmission 500 is provided with a B1 brake 561 that selectively fixes the first sun gear (S1) 510 and a B2 brake 562 that selectively fixes the ring gear (R) 540. These brakes 561 and 562 are so-called friction engagement elements that generate an engagement force by a friction force, and a multi-plate type engagement device or a band type engagement device can be adopted. And these brakes 561 and 562 are comprised so that the torque capacity may change continuously according to the engaging force by oil_pressure | hydraulic. Further, the second motor generator 400 described above is connected to the second sun gear (S2) 520. Carrier (C) 550 is connected to output shaft 600.
 したがって、上記の変速機500は、第2サンギヤ(S2)520がいわゆる入力要素であり、またキャリヤ(C)550が出力要素となっており、B1ブレーキ561を係合させることにより変速比が“1”より大きい高速段が設定される。B1ブレーキ561に替えてB2ブレーキ562を係合させることにより、高速段より変速比の大きい低速段が設定される。 Therefore, in the above-described transmission 500, the second sun gear (S2) 520 is a so-called input element, and the carrier (C) 550 is an output element. By engaging the B1 brake 561, the transmission ratio is “ A high speed stage greater than 1 ″ is set. By engaging the B2 brake 562 instead of the B1 brake 561, a low speed stage having a higher gear ratio than the high speed stage is set.
 この各変速段の間での変速は、車速や要求駆動力(もしくはアクセル開度)などの走行状態に基づいて実行される。より具体的には、変速段領域を予めマップ(変速線図)として定めておき、検出された運転状態に応じていずれかの変速段を設定するように制御される。 The shifting between the respective speeds is executed based on the traveling state such as the vehicle speed and the required driving force (or accelerator opening). More specifically, the shift speed region is determined in advance as a map (shift diagram), and control is performed so as to set one of the shift speeds according to the detected driving state.
 図5に、変速機500の共線図を示す。図5に示すように、B2ブレーキ562によってリングギヤ(R)540を固定すれば、低速段Lが設定され、第2モータジェネレータ400の出力したトルクが変速比に応じて増幅されて出力軸600に付加される。これに対してB1ブレーキ561によって第1サンギヤ(S1)510を固定すれば、低速段Lより変速比の小さい高速段Hが設定される。この高速段Hにおける変速比も“1”より大きいので、第2モータジェネレータ400の出力したトルクがその変速比に応じて増大させられて出力軸600に付加される。 FIG. 5 shows a collinear diagram of the transmission 500. As shown in FIG. 5, if the ring gear (R) 540 is fixed by the B2 brake 562, the low speed stage L is set, and the torque output from the second motor generator 400 is amplified in accordance with the gear ratio and applied to the output shaft 600. Added. On the other hand, if the first sun gear (S1) 510 is fixed by the B1 brake 561, the high speed stage H having a smaller gear ratio than the low speed stage L is set. Since the gear ratio at the high speed stage H is also larger than “1”, the torque output from the second motor generator 400 is increased according to the gear ratio and added to the output shaft 600.
 なお、各変速段L,Hが定常的に設定されている状態では、出力軸600に付加されるトルクは、第2モータジェネレータ400の出力トルクを変速比に応じて増大させたトルクとなるが、変速過渡状態では各ブレーキ561,562でのトルク容量や回転数変化に伴う慣性トルクなどの影響を受けたトルクとなる。また、出力軸600に付加されるトルクは、第2モータジェネレータ400の駆動状態では、正トルクとなり、被駆動状態では負トルクとなる。 It should be noted that, in a state where the respective gear stages L and H are constantly set, the torque applied to the output shaft 600 is a torque obtained by increasing the output torque of the second motor generator 400 according to the gear ratio. In the shift transition state, the torque is affected by the torque capacity at each brake 561 and 562, the inertia torque accompanying the change in the rotational speed, and the like. The torque applied to the output shaft 600 is positive torque when the second motor generator 400 is driven, and is negative torque when the second motor generator 400 is driven.
 本実施の形態において、ハイブリッド車は、エンジン1000が停止した状態で第2モータジェネレータ400のみの駆動力を用いるEVモード、エンジン1000および第2モータジェネレータ400の両方もしくはいずれか一方の駆動力を用いるHVモードのうちのいずれかのモードで走行する。車速、アクセル開度、蓄電装置700の残存容量などの種々のパラメータに基づいて、走行モードが選択される。 In the present embodiment, the hybrid vehicle uses an EV mode that uses the driving force of only second motor generator 400 while engine 1000 is stopped, and uses the driving force of either or both of engine 1000 and second motor generator 400. Drive in any of the HV modes. The travel mode is selected based on various parameters such as the vehicle speed, the accelerator opening, and the remaining capacity of the power storage device 700.
 一例として、高車速での低負荷走行中においては、エンジン1000の駆動力のみを用いてハイブリッド車が走行する。この走行状態では、図6において矢印で示す方向に第1モータジェネレータ200がトルクを出力することによって、エンジン1000から車輪にトルクを伝達するのに必要な反力を第1モータジェネレータ200によって実現する。 As an example, the hybrid vehicle travels using only the driving force of the engine 1000 during low-load traveling at a high vehicle speed. In this traveling state, the first motor generator 200 outputs torque in the direction indicated by the arrow in FIG. 6, thereby realizing the reaction force necessary for transmitting torque from the engine 1000 to the wheels by the first motor generator 200. .
 第1モータジェネレータ200を作動させるための電力は、第2モータジェネレータ400が発電する。第2モータジェネレータ400が発電した電力は、第2インバータ212および第1インバータ210を介して第1モータジェネレータ200に供給される。第1モータジェネレータ200に供給された電力は、キャリヤ(C)330、すなわちエンジン1000を支点として用いて、第1モータジェネレータ200から第2モータジェネレータ400にトルクとして戻される。したがって、第2モータジェネレータ400は、第1モータジェネレータ200から供給されたトルクによって発電する。このようにして、第1モータジェネレータ200と第2モータジェネレータ400との間で、ハイブリッド車の走行には用いられない動力が循環する。 The electric power for operating the first motor generator 200 is generated by the second motor generator 400. The electric power generated by second motor generator 400 is supplied to first motor generator 200 via second inverter 212 and first inverter 210. The electric power supplied to first motor generator 200 is returned as torque from first motor generator 200 to second motor generator 400 using carrier (C) 330, that is, engine 1000, as a fulcrum. Therefore, second motor generator 400 generates power using the torque supplied from first motor generator 200. In this manner, power that is not used for traveling of the hybrid vehicle circulates between the first motor generator 200 and the second motor generator 400.
 ただし、動力循環においては、第2インバータ212および第1インバータ210においてエネルギが損失する。そのため、伝達効率が悪化し得る。図7に、ハイブリッド車の動力伝達系における理論伝達効率を示す。図7の横軸は、動力分割機構300の変速比を示す。動力分割機構300の変速比は、エンジン1000の回転数をリングギヤ(R)320の回転数で除算することにより算出される。図7の縦軸は、伝達効率を示す。
 エネルギの損失量は、第1モータジェネレータ200の作動に用いられる電力が大きいほど大きくなる。第1モータジェネレータ200の作動に用いられる電力は、第1モータジェネレータ200の回転数が高いほど大きくなる。したがって、第1モータジェネレータ200の回転数を小さくし、ゼロに近づけるほど、動力循環におけるエネルギ損失が低減される。第1モータジェネレータ200の回転数がゼロである場合、エネルギ損失が最小になる。したがって、伝達効率が最大になる。
However, in the power circulation, energy is lost in the second inverter 212 and the first inverter 210. Therefore, the transmission efficiency can be deteriorated. FIG. 7 shows the theoretical transmission efficiency in the power transmission system of the hybrid vehicle. The horizontal axis in FIG. 7 indicates the gear ratio of the power split mechanism 300. The speed ratio of power split device 300 is calculated by dividing the rotational speed of engine 1000 by the rotational speed of ring gear (R) 320. The vertical axis in FIG. 7 indicates transmission efficiency.
The amount of energy loss increases as the electric power used for the operation of first motor generator 200 increases. The electric power used for the operation of first motor generator 200 increases as the rotational speed of first motor generator 200 increases. Therefore, the energy loss in the power circulation is reduced as the rotational speed of the first motor generator 200 is reduced and brought closer to zero. When the rotation speed of the first motor generator 200 is zero, energy loss is minimized. Therefore, transmission efficiency is maximized.
 後述するように、本実施の形態においては、第1モータジェネレータ200の回転数がゼロであるときの動力分割機構300の変速比よりも変速比が小さい高車速での低負荷走行中において、伝達効率を向上すべく、エンジン1000の回転数が増大され、第1モータジェネレータ200の回転数が低減される。 As will be described later, in the present embodiment, transmission is performed during low-load traveling at a high vehicle speed where the speed ratio is smaller than the speed ratio of power split mechanism 300 when the rotation speed of first motor generator 200 is zero. In order to improve efficiency, the number of revolutions of engine 1000 is increased, and the number of revolutions of first motor generator 200 is reduced.
 図8を参照して、エンジン1000についてさらに説明する。
 エンジン1000は、「A」バンク1010と「B」バンク1012とに、それぞれ4つの気筒(シリンダ)からなる気筒群が設けられたV型8気筒エンジンである。なお、V型8気筒以外の形式のエンジンを用いるようにしてもよい。たとえば、6気筒エンジンを用いるようにしてもよい、気筒の数は複数であればいくつでもよい。V型エンジンの他、直列エンジンを用いるようにしてもよい。
The engine 1000 will be further described with reference to FIG.
The engine 1000 is a V-type 8-cylinder engine in which “A” bank 1010 and “B” bank 1012 are each provided with a group of four cylinders. An engine other than a V-type 8-cylinder engine may be used. For example, a 6-cylinder engine may be used. The number of cylinders may be any number as long as it is plural. In addition to the V-type engine, an in-line engine may be used.
 エンジン1000には、エアクリーナ1020から空気が吸入される。吸入空気量は、スロットルバルブ1030により調整される。スロットルバルブ1030はモータにより駆動される電子スロットルバルブである。 The engine 1000 receives air from an air cleaner 1020. The intake air amount is adjusted by a throttle valve 1030. The throttle valve 1030 is an electronic throttle valve that is driven by a motor.
 空気は、吸気通路1032を通ってシリンダ1040に導入される。空気は、シリンダ1040(燃焼室)において燃料と混合される。シリンダ1040には、インジェクタ1050から燃料が直接噴射される。すなわち、インジェクタ1050の噴射孔はシリンダ1040内に設けられている。 The air is introduced into the cylinder 1040 through the intake passage 1032. Air is mixed with fuel in a cylinder 1040 (combustion chamber). Fuel is directly injected from the injector 1050 into the cylinder 1040. That is, the injection hole of the injector 1050 is provided in the cylinder 1040.
 燃料は吸気行程において噴射される。なお、燃料が噴射される時期は、吸気行程に限らない。また、本実施の形態においては、インジェクタ1050の噴射孔がシリンダ1040内に設けられた直噴エンジンとしてエンジン1000を説明するが、直噴用のインジェクタ1050に加えて、ポート噴射用のインジェクタを設けてもよい。さらに、ポート噴射用のインジェクタのみを設けるようにしてもよい。 Fuel is injected during the intake stroke. Note that the timing of fuel injection is not limited to the intake stroke. In this embodiment, engine 1000 will be described as a direct injection engine in which an injection hole of injector 1050 is provided in cylinder 1040. In addition to direct injection injector 1050, a port injection injector is provided. May be. Furthermore, only the injector for port injection may be provided.
 シリンダ1040内の混合気は、点火プラグ1060により着火され、燃焼する。燃焼後の混合気、すなわち排気ガスは、三元触媒1070により浄化された後、車外に排出される。混合気の燃焼によりピストン1080が押し下げられ、クランクシャフト1090が回転する。 The air-fuel mixture in the cylinder 1040 is ignited by the spark plug 1060 and burned. The air-fuel mixture after combustion, that is, the exhaust gas is purified by the three-way catalyst 1070 and then discharged outside the vehicle. The piston 1080 is pushed down by the combustion of the air-fuel mixture, and the crankshaft 1090 rotates.
 シリンダ1040の頭頂部には、吸気バルブ1100および排気バルブ1110が設けられる。吸気バルブ1100および排気バルブ1110は、夫々、シリンダ1040の各々に設けられる。 An intake valve 1100 and an exhaust valve 1110 are provided at the top of the cylinder 1040. An intake valve 1100 and an exhaust valve 1110 are provided in each of the cylinders 1040.
 吸気バルブ1100はインテークカムシャフト1120により駆動される。排気バルブ1110はエキゾーストカムシャフト1130により駆動される。インテークカムシャフト1120とエキゾーストカムシャフト1130とは、チェーンやギヤ等により連結され、同じ回転数で回転する。 The intake valve 1100 is driven by an intake camshaft 1120. The exhaust valve 1110 is driven by an exhaust camshaft 1130. Intake camshaft 1120 and exhaust camshaft 1130 are connected by a chain, gear, or the like, and rotate at the same rotational speed.
 インテークカムシャフト1120およびエキゾーストカムシャフト1130は、チェーンもしくはベルトなどによりクランクシャフト1090と連結される。したがって、インテークカムシャフト1120およびエキゾーストカムシャフト1130は、クランクシャフト1090が回転すると回転する。したがって、吸気バルブ1100および排気バルブ1110は、クランクシャフト1090が回転することにより開閉する。吸気バルブ1100および排気バルブ1110は、クランクシャフト1090が回転することにより、シリンダ毎に異なるクランク角において開閉する。 The intake camshaft 1120 and the exhaust camshaft 1130 are connected to the crankshaft 1090 by a chain or a belt. Therefore, intake camshaft 1120 and exhaust camshaft 1130 rotate when crankshaft 1090 rotates. Therefore, the intake valve 1100 and the exhaust valve 1110 open and close as the crankshaft 1090 rotates. The intake valve 1100 and the exhaust valve 1110 open and close at different crank angles for each cylinder as the crankshaft 1090 rotates.
 吸気バルブ1100は、VVL(Variable Valve Lift)機構2000により、リフト量が変更される。リフト量の代わりにもしくは加えて作用角を制御するようにしてもよい。吸気バルブ1100のリフト量または作用角に加えて、排気バルブ1110のリフト量または作用角を変更するようにしてもよい。 The lift amount of the intake valve 1100 is changed by a VVL (Variable Valve Lift) mechanism 2000. The working angle may be controlled instead of or in addition to the lift amount. In addition to the lift amount or working angle of the intake valve 1100, the lift amount or working angle of the exhaust valve 1110 may be changed.
 ECU100には、クランク角センサ5000からクランクシャフト1090の回転数およびクランク角を表す信号が入力される。また、ECU100には、カムポジションセンサ5010からインテークカムシャフト1120およびエキゾーストカムシャフト1130の位相(回転方向におけるカムシャフトの位置)を表す信号(吸気バルブ1100および排気バルブ1110の位相を表わす信号)が入力される。また、カムポジションセンサ5010からは、インテークカムシャフト1120およびエキゾーストカムシャフト1130の回転数を表す信号が入力される。 ECU 100 receives a signal representing the rotation speed and crank angle of crankshaft 1090 from crank angle sensor 5000. Further, ECU 100 receives from cam position sensor 5010 a signal (a signal indicating the phase of intake valve 1100 and exhaust valve 1110) indicating the phase of intake camshaft 1120 and exhaust camshaft 1130 (the position of the camshaft in the rotational direction). Is done. In addition, signals representing the rotational speeds of intake camshaft 1120 and exhaust camshaft 1130 are input from cam position sensor 5010.
 さらに、ECU100には、水温センサ5020からエンジン1000の水温(冷却水の温度)を表す信号が、エアフローメータ5030からエンジン1000の吸入空気量(エンジン1000に吸入される空気量)を表す信号が入力される。 Further, ECU 100 receives a signal representing the water temperature (cooling water temperature) of engine 1000 from water temperature sensor 5020 and a signal representing the intake air amount of engine 1000 (the amount of air sucked into engine 1000) from air flow meter 5030. Is done.
 ECU100は、これらのセンサから入力された信号、メモリ(図示せず)に記憶されたマップおよびプログラムに基づいて、エンジン1000が所望の運転状態になるように、スロットル開度、点火時期、燃料噴射時期、燃料噴射量、リフト量などを制御する。 Based on signals input from these sensors, a map and a program stored in a memory (not shown), the ECU 100 controls the throttle opening, ignition timing, fuel injection so that the engine 1000 enters a desired operating state. Control the timing, fuel injection amount, lift amount, etc.
 図9に示すように、エンジン1000の動作点、すなわちエンジン回転数NEおよび出力トルクTEは、出力パワーと動作線との交点により定まる。 As shown in FIG. 9, the operating point of the engine 1000, that is, the engine speed NE and the output torque TE are determined by the intersection of the output power and the operating line.
 出力パワーは、等パワー線によって示される。動作線は、実験およびシミュレーションの結果に基づいて、開発者により予め定められる。動作線は、エンジン1000のエネルギ効率に基づいて定められる。たとえば、エンジン1000の効率が良いと開発者により判断された運転点を結ぶ線が、動作線として定められる。エンジン1000の効率は、たとえば、スロットル開度を最大にした状態において、実際に出力されたパワーを、燃料噴射量および吸入空気量などに基づいて算出される、理論上得られるべきパワーで除算することにより算出される。動作線に沿ってエンジン100が駆動することにより、最適な燃費が実現される。なお、動作線の設定方法はこれらに限らない。 The output power is indicated by an isopower line. The operating line is predetermined by the developer based on the results of experiments and simulations. The operating line is determined based on the energy efficiency of engine 1000. For example, a line connecting operating points determined by the developer that the efficiency of the engine 1000 is good is determined as an operation line. For example, the efficiency of the engine 1000 is obtained by dividing the actually output power by the power that should be obtained theoretically, which is calculated based on the fuel injection amount, the intake air amount, and the like, with the throttle opening being maximized. Is calculated by When the engine 100 is driven along the operation line, optimal fuel consumption is realized. The operation line setting method is not limited to these.
 図10を参照して、本実施の形態においてECU100が実行する処理について説明する。ECU100は、ソフトウェアにより処理を実行してもよく、ハードウェアにより処理を実行してもよく、ソフトウェアとハードウェアとの協働により処理を実行してもよい。 With reference to FIG. 10, processing executed by ECU 100 in the present embodiment will be described. ECU 100 may execute processing by software, may execute processing by hardware, or may execute processing by cooperation of software and hardware.
 ステップ(以下、ステップをSと略す)100にて、ハイブリッド車が、高車速での低負荷走行中であるか否かが判断される。たとえば、車速がしきい値より高く、車速の変動量が別のしきい値よりも小さいと、高車速での低負荷走行中であると判断される。高車速での低負荷走行は、上記の走行状態に限定されない。 In step (hereinafter, step is abbreviated as S) 100, it is determined whether or not the hybrid vehicle is traveling at a low load at a high vehicle speed. For example, when the vehicle speed is higher than a threshold value and the fluctuation amount of the vehicle speed is smaller than another threshold value, it is determined that the vehicle is traveling at a low load at a high vehicle speed. Low load traveling at high vehicle speed is not limited to the above traveling state.
 ハイブリッド車が、高車速での低負荷走行中であると(S100にてYES)、S102にて、複数の気筒のうちの一部の気筒における熱エネルギが他の気筒における熱エネルギに比べて小さくされる。具体的には、複数の気筒のうちの一部の気筒が休止される。すなわち、一部の気筒のみにおいて燃料の燃焼が停止される。 When the hybrid vehicle is traveling at a low load at a high vehicle speed (YES in S100), in S102, the thermal energy in some of the cylinders is smaller than the thermal energy in the other cylinders. Is done. Specifically, some of the cylinders are deactivated. That is, fuel combustion is stopped only in some cylinders.
 気筒を休止する方法には、周知の方法が用いられる。たとえば、複数の気筒のうちの一部の気筒に吸入される空気の量が、他の気筒に吸入される空気の量に比べて小さくされる。一例として、複数の気筒のうちの一部の気筒における吸気バルブ1100のリフト量が、他の気筒における吸気バルブ1100のリフト量に比べて小さくされる。より具体的には、複数の気筒のうちの一部の気筒における吸気バルブ1100のリフト量のみがゼロにされる。複数の気筒のうちの一部の気筒における吸気バルブ1100の作用角を、他の気筒における吸気バルブ1100の作用角に比べて小さくするようにしてもよい。より具体的には、複数の気筒のうちの一部の気筒における吸気バルブ1100の作用角のみをゼロにしてもよい。 A well-known method is used as a method of stopping the cylinder. For example, the amount of air sucked into some of the plurality of cylinders is made smaller than the amount of air sucked into other cylinders. As an example, the lift amount of the intake valve 1100 in a part of the plurality of cylinders is made smaller than the lift amount of the intake valve 1100 in other cylinders. More specifically, only the lift amount of the intake valve 1100 in some cylinders of the plurality of cylinders is made zero. The operating angle of the intake valve 1100 in a part of the plurality of cylinders may be made smaller than the operating angle of the intake valve 1100 in other cylinders. More specifically, only the operating angle of the intake valve 1100 in some cylinders of the plurality of cylinders may be set to zero.
 リフト量または作用角を小さくする代わりに、もしくは加えて、複数の気筒のうちの一部の気筒のみにおいて燃料噴射を停止したり、複数の気筒のうちの一部の気筒のみにおいて点火を停止したりしてもよい。 Instead of or in addition to reducing the lift amount or operating angle, fuel injection is stopped only in some of the plurality of cylinders, or ignition is stopped only in some of the plurality of cylinders. Or you may.
 複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするのと同時に、すなわち、一部の気筒のみを休止するのと同時に、S104にて、第1モータジェネレータ200の回転数を小さくするためにエンジン1000の回転数が増大される。 At the same time when the thermal energy in some cylinders of the plurality of cylinders is made smaller than the thermal energy in other cylinders, that is, only some cylinders are deactivated, at S104, the first motor In order to reduce the rotational speed of generator 200, the rotational speed of engine 1000 is increased.
 具体的には、図11に示すように、等パワー線に沿ってエンジン1000の回転数が増大する方向にエンジン1000の運転点が移動される。これにより、図12に示すように、第1モータジェネレータ200の回転数が小さくされる。すなわち、第1モータジェネレータ200の回転数がゼロに近づけられる。よって、第1モータジェネレータ200の作動にに起因するエネルギ損失が低減される。そのため、伝達効率を向上し、エンジン1000の運転点を、図11において三角の印で示す、ハイブリッド車の動力伝達系の伝達効率が最大となる運転点に近づけることができる。 Specifically, as shown in FIG. 11, the operating point of engine 1000 is moved in the direction in which the rotational speed of engine 1000 increases along the equal power line. Thereby, as shown in FIG. 12, the rotation speed of the 1st motor generator 200 is made small. That is, the rotation speed of first motor generator 200 is brought close to zero. Therefore, energy loss due to the operation of first motor generator 200 is reduced. Therefore, the transmission efficiency can be improved, and the operating point of engine 1000 can be brought closer to the operating point at which the transmission efficiency of the power transmission system of the hybrid vehicle is maximized, as indicated by a triangular mark in FIG.
 上述したように、本実施の形態においては、一部の気筒を休止することによりエンジン1000のトルクを小さくしつつ、エンジン1000の回転数が増大される。したがって、エンジン1000の出力の増大を抑えつつ、動力伝達系の伝達効率を向上できる。 As described above, in the present embodiment, the rotational speed of engine 1000 is increased while the torque of engine 1000 is reduced by deactivating some cylinders. Therefore, the transmission efficiency of the power transmission system can be improved while suppressing an increase in the output of engine 1000.
 さらに、一部の気筒を休止することによって、エンジン1000のトルクのみが低減される。そのため、図11に示すように、エンジン1000の効率が最適となる動作線でのトルクが低減される。すなわち、一部の気筒を休止した場合、スロットル開度を低減するよりも、トルクが低い運転状態において、エンジン1000の効率を良くすることができる。よって、一部の気筒を休止しつつエンジン1000の回転数を増大することによって、エンジン1000自体の効率の悪化の程度を小さくしながら、エンジン1000の運転点を、ハイブリッド車の動力伝達系の伝達効率が最大となる運転点に近づけることができる。 Furthermore, by stopping some cylinders, only the torque of the engine 1000 is reduced. Therefore, as shown in FIG. 11, the torque on the operating line where the efficiency of engine 1000 is optimal is reduced. That is, when some cylinders are deactivated, the efficiency of the engine 1000 can be improved in an operating state where the torque is lower than when the throttle opening is reduced. Therefore, by increasing the rotation speed of the engine 1000 while some cylinders are deactivated, the operating point of the engine 1000 is transferred to the power transmission system of the hybrid vehicle while reducing the degree of deterioration of the efficiency of the engine 1000 itself. The operating point can be brought close to the maximum efficiency.
 なお、一部の気筒を休止するとともにエンジン回転数を増大する運転状態は、高車速での低負荷走行に限定されない。高車速での低負荷走行中以外の、エンジン回転数を増大することによって第1モータジェネレータ200の回転数をゼロに近づけることができる運転状態において、一部の気筒を休止するとともにエンジン回転数を増大するようにしてもよい。 Note that the operating state in which some cylinders are deactivated and the engine speed is increased is not limited to low-load traveling at high vehicle speeds. In an operating state in which the rotational speed of the first motor generator 200 can be brought close to zero by increasing the engine rotational speed except during low-load traveling at a high vehicle speed, some cylinders are deactivated and the engine rotational speed is decreased. You may make it increase.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 100 ECU、102 メモリ、200 第1モータジェネレータ、210 第1インバータ、212 第2インバータ、300 動力分割機構、310 サンギヤ、320 リングギヤ、330 キャリア、400 第2モータジェネレータ、500 変速機、600 出力軸、700 蓄電装置、1000 エンジン、1010 Aバンク、1012 Bバンク、1040 シリンダ、1050 インジェクタ、1060 点火プラグ、1080 ピストン、1090 クランクシャフト、1100 吸気バルブ、1110 排気バルブ、1120 インテークカムシャフト、1130 エキゾーストカムシャフト、2000 VVL機構。 100 ECU, 102 memory, 200 first motor generator, 210 first inverter, 212 second inverter, 300 power split mechanism, 310 sun gear, 320 ring gear, 330 carrier, 400 second motor generator, 500 transmission, 600 output shaft, 700 power storage device, 1000 engine, 1010 A bank, 1012 B bank, 1040 cylinder, 1050 injector, 1060 spark plug, 1080 piston, 1090 crankshaft, 1100 intake valve, 1110 exhaust valve, 1120 intake camshaft, 1130 exhaust camshaft, 2000 VVL mechanism.

Claims (8)

  1.  複数の気筒が設けられたエンジンと、
     前記エンジンに連結された電動モータと、
     前記エンジンと前記電動モータとを連結し、前記エンジンの回転数に応じて前記電動モータの回転数を変化させる連結装置と、
     前記エンジンおよび前記電動モータを制御する制御ユニットとを備え、
     前記制御ユニットは、前記複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするとともに、前記電動モータの回転数を小さくするために前記エンジンの回転数を増大する、車両。
    An engine provided with a plurality of cylinders;
    An electric motor coupled to the engine;
    A connecting device that connects the engine and the electric motor, and changes a rotational speed of the electric motor according to a rotational speed of the engine;
    A control unit for controlling the engine and the electric motor,
    The control unit reduces the heat energy of a part of the plurality of cylinders compared to the heat energy of the other cylinders, and reduces the rotational speed of the engine to reduce the rotational speed of the electric motor. Increasing vehicle.
  2.  前記制御ユニットは、前記複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするために、前記複数の気筒のうちの一部の気筒に吸入される空気の量を、他の気筒に吸入される空気の量に比べて小さくする、請求項1に記載の車両。 The control unit is configured to reduce the heat energy in some cylinders of the plurality of cylinders compared to the heat energy in other cylinders, so that the air sucked into some of the cylinders The vehicle according to claim 1, wherein the amount of air is made smaller than the amount of air sucked into other cylinders.
  3.  前記制御ユニットは、前記複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするために、前記複数の気筒のうちの一部の気筒における吸気バルブのリフト量を、他の気筒における吸気バルブのリフト量に比べて小さくする、請求項1に記載の車両。 The control unit is configured to lift an intake valve in a part of the plurality of cylinders in order to reduce thermal energy in a part of the plurality of cylinders compared to heat energy in the other cylinders. The vehicle according to claim 1, wherein the amount is made smaller than a lift amount of an intake valve in another cylinder.
  4.  前記制御ユニットは、前記複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするために、前記複数の気筒のうちの一部の気筒における吸気バルブの作用角を、他の気筒における吸気バルブの作用角に比べて小さくする、請求項1に記載の車両。 The control unit operates an intake valve in a part of the plurality of cylinders in order to reduce the heat energy in a part of the plurality of cylinders compared to the heat energy in the other cylinders. The vehicle according to claim 1, wherein the angle is made smaller than a working angle of an intake valve in another cylinder.
  5.  前記制御ユニットは、前記複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするために、前記複数の気筒のうちの一部の気筒における燃料噴射を停止する、請求項1に記載の車両。 The control unit stops fuel injection in some cylinders of the plurality of cylinders in order to reduce thermal energy in some cylinders of the plurality of cylinders compared to thermal energy in other cylinders. The vehicle according to claim 1.
  6.  前記制御ユニットは、前記複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするために、前記複数の気筒のうちの一部の気筒における点火を停止する、請求項1に記載の車両。 The control unit stops ignition in some cylinders of the plurality of cylinders in order to make thermal energy in some cylinders of the plurality of cylinders smaller than thermal energy in other cylinders. The vehicle according to claim 1.
  7.  複数の気筒が設けられたエンジンと、前記エンジンに連結された電動モータと、前記エンジンと前記電動モータとを連結し、前記エンジンの回転数に応じて前記電動モータの回転数を変化させる連結装置とを搭載した車両の制御方法であって、
     前記複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするステップと、
     前記複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするのと同時に、前記電動モータの回転数を小さくするために前記エンジンの回転数を増大するステップとを備える、車両の制御方法。
    An engine provided with a plurality of cylinders, an electric motor connected to the engine, a connecting device that connects the engine and the electric motor, and changes the rotational speed of the electric motor according to the rotational speed of the engine A method of controlling a vehicle equipped with
    Reducing thermal energy in some of the plurality of cylinders compared to thermal energy in other cylinders;
    A step of increasing the rotational speed of the engine in order to reduce the rotational speed of the electric motor at the same time as reducing the thermal energy in a part of the plurality of cylinders compared to the thermal energy in the other cylinders. A vehicle control method comprising:
  8.  複数の気筒が設けられたエンジンと、前記エンジンに連結された電動モータと、前記エンジンと前記電動モータとを連結し、前記エンジンの回転数に応じて前記電動モータの回転数を変化させる連結装置とを搭載した車両の制御装置であって、
     前記複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするための手段と、
     前記複数の気筒のうちの一部の気筒における熱エネルギを他の気筒における熱エネルギに比べて小さくするのと同時に、前記電動モータの回転数を小さくするために前記エンジンの回転数を増大するための手段とを備える、車両の制御装置。
    An engine provided with a plurality of cylinders, an electric motor connected to the engine, a connecting device that connects the engine and the electric motor, and changes the rotational speed of the electric motor according to the rotational speed of the engine And a vehicle control device equipped with
    Means for reducing thermal energy in some of the plurality of cylinders compared to thermal energy in other cylinders;
    In order to increase the rotational speed of the engine in order to reduce the rotational speed of the electric motor at the same time as making the thermal energy in some of the plurality of cylinders smaller than the thermal energy in the other cylinders And a vehicle control device.
PCT/JP2011/064436 2011-06-23 2011-06-23 Vehicle, vehicle control method, and vehicle control apparatus WO2012176308A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064436 WO2012176308A1 (en) 2011-06-23 2011-06-23 Vehicle, vehicle control method, and vehicle control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064436 WO2012176308A1 (en) 2011-06-23 2011-06-23 Vehicle, vehicle control method, and vehicle control apparatus

Publications (1)

Publication Number Publication Date
WO2012176308A1 true WO2012176308A1 (en) 2012-12-27

Family

ID=47422185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064436 WO2012176308A1 (en) 2011-06-23 2011-06-23 Vehicle, vehicle control method, and vehicle control apparatus

Country Status (1)

Country Link
WO (1) WO2012176308A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077644A (en) * 2004-09-08 2006-03-23 Toyota Motor Corp Control device for internal combustion engine
JP2010247604A (en) * 2009-04-14 2010-11-04 Toyota Motor Corp Vehicle drive control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077644A (en) * 2004-09-08 2006-03-23 Toyota Motor Corp Control device for internal combustion engine
JP2010247604A (en) * 2009-04-14 2010-11-04 Toyota Motor Corp Vehicle drive control system

Similar Documents

Publication Publication Date Title
JP4241676B2 (en) POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP4306762B2 (en) Control device for variable valve timing mechanism
JP2012219622A (en) Control device for internal combustion engine
JP4779800B2 (en) Vehicle and control method thereof
JP2008121498A (en) Internal combustion engine device, power output device having the internal combustion engine device, vehicle on which the internal combustion engine device is mounted, and method of controlling the internal combustion engine device
JP2008261244A (en) Control unit and control method for variable valve timing mechanism, program for implementing its control method and recording medium on which its program is recorded
JP2009234359A (en) Control device for hybrid driving device
JP4876953B2 (en) Vehicle and control method thereof
JP2009274671A (en) Hybrid vehicle and its control method
JP2008128205A (en) Control device and control method for internal combustion engine, program for implementing the method, and recording medium recording the program
JP5395041B2 (en) Vehicle, internal combustion engine abnormality determination method, and internal combustion engine abnormality determination device
JP4919848B2 (en) Vehicle and control method thereof
JP2008201181A (en) Vehicle and its control method
JP2009234364A (en) Hybrid vehicle and control method thereof
JP4924733B2 (en) Abnormality diagnosis device for internal combustion engine
JP2008126904A (en) Power output apparatus and vehicle with the same loaded thereon, and power output apparatus control method
JP5310958B2 (en) VEHICLE AND CONTROL METHOD AND CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2012246860A (en) Vehicle control device
JP4582108B2 (en) Control device for internal combustion engine, control method, program for realizing the method, and recording medium recording the program
WO2012176308A1 (en) Vehicle, vehicle control method, and vehicle control apparatus
JP2009274628A (en) Hybrid vehicle and its control method
JP2014181643A (en) Control device of internal combustion engine
JP4311414B2 (en) Vehicle and control method thereof
JP2012153250A (en) Vehicle control device
JP6020281B2 (en) vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 11868228

Country of ref document: EP

Kind code of ref document: A1