WO2012176242A1 - Plasma processing device - Google Patents

Plasma processing device Download PDF

Info

Publication number
WO2012176242A1
WO2012176242A1 PCT/JP2011/003618 JP2011003618W WO2012176242A1 WO 2012176242 A1 WO2012176242 A1 WO 2012176242A1 JP 2011003618 W JP2011003618 W JP 2011003618W WO 2012176242 A1 WO2012176242 A1 WO 2012176242A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
plasma
substrate
longitudinal direction
processing apparatus
Prior art date
Application number
PCT/JP2011/003618
Other languages
French (fr)
Japanese (ja)
Inventor
角田 孝典
克夫 松原
靖典 安東
蔵行 辻
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to PCT/JP2011/003618 priority Critical patent/WO2012176242A1/en
Publication of WO2012176242A1 publication Critical patent/WO2012176242A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils

Definitions

  • the present invention relates to a plasma processing apparatus that performs processing such as film formation by plasma CVD, etching, ashing, sputtering, etc. on a substrate using plasma. More specifically, the present invention is generated by applying a high-frequency current to an antenna. The present invention relates to an inductively coupled plasma processing apparatus that generates plasma by an induced electric field and performs processing on a substrate using the plasma.
  • a capacitively coupled plasma processing apparatus that generates capacitively coupled plasma (abbreviated as CCP) and an inductively coupled type that generates inductively coupled plasma (abbreviated as ICP) Plasma processing apparatus.
  • CCP capacitively coupled plasma
  • ICP inductively coupled type that generates inductively coupled plasma
  • the capacitively coupled plasma processing apparatus applies a high-frequency voltage between two parallel electrodes and generates plasma using a high-frequency electric field generated between the two electrodes.
  • a high voltage is applied to the plasma to increase the plasma potential, and charged particles (for example, ions) in the plasma impinge on and collide with the substrate with high energy, so that they are formed on the substrate.
  • charged particles for example, ions
  • an inductively coupled plasma processing apparatus in simple terms, generates plasma by an induced electric field generated by flowing a high-frequency current through an antenna. There is an advantage that it can be lowered.
  • Patent Document 1 discloses that a flat antenna is attached to an opening of a vacuum vessel via an insulating frame, and a high-frequency power source is connected between one end and the other end of the antenna.
  • a plasma processing apparatus is described in which a high-frequency power is supplied to flow a high-frequency current, plasma is generated by an induced electric field generated thereby, and a substrate is processed using the plasma.
  • an inductively coupled plasma processing apparatus when an antenna is lengthened to cope with a large substrate, the impedance (particularly inductance) of the antenna increases, thereby generating a large potential difference between both ends of the antenna.
  • the present invention is an inductively coupled device that can reduce the effective inductance of the antenna to suppress the plasma potential, and can control the plasma density distribution in the longitudinal direction by the antenna.
  • the main purpose is to provide a device.
  • the plasma processing apparatus generates a plasma by generating an induction electric field in a vacuum vessel by flowing a high-frequency current through an antenna having a substantially straight planar shape, and processes the substrate using the plasma.
  • An inductively coupled plasma processing apparatus wherein the antenna is configured by a reciprocating conductor that is disposed close to each other in a direction along a vertical line standing on a surface of the substrate and in which the high-frequency currents flow in opposite directions. The width of at least one of the reciprocating conductors is varied in the longitudinal direction of the antenna.
  • the vertical direction the direction along the vertical line standing on the surface of the substrate
  • the direction intersecting the vertical line is referred to as the horizontal direction. Accordingly, the vertical direction is not necessarily the vertical direction.
  • the antenna is constituted by reciprocating conductors that are arranged close to each other in the vertical direction and in which high-frequency currents flow in opposite directions. Effective inductance is reduced. Therefore, the potential of the antenna can be kept low, and the plasma potential can be kept low.
  • the width of at least one of the reciprocating conductors in the longitudinal direction of the antenna is varied in the longitudinal direction of the antenna.
  • the width of the conductor on the side opposite to the plasma of the reciprocating conductor may be smaller than the width of the central portion in the longitudinal direction of the antenna.
  • the antenna is constituted by the reciprocating conductors that are arranged close to each other in the vertical direction and in which the high-frequency currents flow in opposite directions.
  • the effective inductance of the antenna is reduced. Therefore, the potential of the antenna can be kept low, and the plasma potential can be kept low. As a result, the energy of charged particles incident on the substrate from the plasma can be reduced. Thereby, for example, damage to the film formed on the substrate can be suppressed to a small level, and the film quality can be improved. Further, even when the antenna is lengthened, the plasma potential can be kept low by keeping the antenna potential low for the above reasons, so that it becomes easy to cope with the increase in size of the substrate by lengthening the antenna.
  • the width of at least one of the reciprocating conductors in the longitudinal direction of the antenna is varied in the longitudinal direction of the antenna.
  • the plasma density distribution in the longitudinal direction of the antenna is usually a mountain-shaped distribution in which the plasma density at both ends is smaller than that at the center.
  • the width of the conductor on the side opposite to the plasma of the reciprocating conductor is made smaller than the width of the central portion in the longitudinal direction of the antenna, thereby making the longitudinal direction of the antenna Since the mutual inductance at both ends can be made smaller than that at the center, the effective inductance at both ends is relatively greater than that at the center of the antenna.
  • the electromagnetic energy supplied to the plasma from the antenna can be made relatively large near both ends rather than near the center in the longitudinal direction of the antenna, as opposed to the chevron.
  • the distribution can be corrected to increase the uniformity of the plasma density distribution in the longitudinal direction of the antenna.
  • the uniformity of substrate processing in the longitudinal direction of the antenna can be improved.
  • the uniformity of the film thickness distribution in the longitudinal direction of the antenna can be improved.
  • the following further effects are obtained. That is, since the plurality of antennas arranged in parallel with each other and supplied with high-frequency power in parallel are provided, plasma having a larger area can be generated. In addition, the potential of each antenna can be kept low by the above action, and the plasma density distribution in the longitudinal direction of each antenna can be controlled. Furthermore, since a variable impedance is interposed in each antenna and the balance of the high-frequency current flowing through the plurality of antennas can be adjusted by the variable impedance, it is possible to control the plasma density distribution in the parallel direction of the plurality of antennas. it can. As a result, the plasma potential can be kept low, and it is possible to generate a plasma with a larger area and a better plasma density distribution.
  • FIG. 1A is a plan view
  • FIG. 1B is a side view
  • FIG. 1A shows the other example of the cross-sectional shape of the plate-shaped reciprocating conductor arrange
  • FIG. 1B shows the schematic example of the plasma density distribution in the longitudinal direction at the time of using a well-known simple planar antenna.
  • It is a schematic side view which shows the example of the antenna made into center feeding. It is a schematic plan view showing an example in which a plurality of antennas are arranged in parallel. It is a schematic side view which shows other embodiment of the plasma processing apparatus which concerns on this invention.
  • FIG. 1 An embodiment of the plasma processing apparatus according to the present invention is shown in FIG. 1, and the antenna 30 is extracted and shown in FIG.
  • the Z direction is a direction along (for example, parallel to) the perpendicular 3 standing on the surface of the substrate 2
  • the Y direction is a direction that intersects (for example, orthogonal to) the perpendicular 3, and these are expressed as described above.
  • they will be referred to as the vertical direction Z and the horizontal direction Y, respectively.
  • the X direction is a direction that intersects (for example, is orthogonal to) the perpendicular 3 and is a longitudinal direction of the antenna 30.
  • the X direction and the Y direction are horizontal directions, but are not limited thereto. The same applies to the other drawings.
  • This apparatus by generating an induced electric field in the vacuum vessel 4 to produce a plasma 50 by the induced electric field by the planar shape frequency current I R from the high frequency power source 42 in a substantially straight antenna 30, the plasma 50 is an inductively coupled plasma processing apparatus for processing the substrate 2 using 50.
  • substantially straight means not only literally straight, but also includes a state that is almost straight (almost straight).
  • the substrate 2 is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, a flexible substrate for a flexible display, a substrate for a semiconductor device such as a solar cell, or the like. is not.
  • FPD flat panel display
  • a flexible substrate for a flexible display a substrate for a semiconductor device such as a solar cell, or the like.
  • the planar shape of the substrate 2 is, for example, a circle or a rectangle, and is not limited to a specific shape.
  • the treatment applied to the substrate 2 is, for example, film formation by plasma CVD, etching, ashing, sputtering, or the like.
  • This plasma processing apparatus is also called a plasma CVD apparatus when a film is formed by plasma CVD, a plasma etching apparatus when etching is performed, a plasma ashing apparatus when ashing is performed, and a plasma sputtering apparatus when sputtering is performed.
  • This plasma processing apparatus includes, for example, a metal vacuum vessel 4 and the inside thereof is evacuated by a evacuation apparatus 8.
  • a gas 24 is introduced into the vacuum vessel 4 through a gas introduction pipe 22.
  • the gas 24 may be set according to the processing content applied to the substrate 2.
  • the gas 24 is a source gas or a gas obtained by diluting it with a diluent gas (for example, H 2 ). More specifically, an Si film is formed on the surface of the substrate 2 when the source gas is SiH 4, an SiN film is formed when SiH 4 + NH 3 is used, and an SiO 2 film is formed when SiH 4 + O 2 is used. be able to.
  • a holder 10 that holds the substrate 2 is provided in the vacuum vessel 4.
  • the holder 10 is supported by the shaft 16.
  • a bearing portion 18 having an electrical insulation function and a vacuum sealing function is provided at a portion where the shaft 16 penetrates the vacuum container 4.
  • a negative bias voltage may be applied to the holder 10 from the bias power source 20 via the shaft 16.
  • the bias voltage may be a negative pulse voltage. With such a bias voltage, for example, the energy when positive ions in the plasma 50 are incident on the substrate 2 can be controlled to control the crystallinity of the film formed on the surface of the substrate 2.
  • the antenna 30 is provided in the opening 7 of the ceiling surface 6 of the vacuum vessel 4 with an insulating frame 38 interposed therebetween. Between these elements, a packing 40 for vacuum sealing is provided.
  • the antenna 30 is composed of reciprocating conductors 31 and 32 arranged close to each other in the vertical direction Z. In this example, the planar shape of the antenna 30 (more specifically, the reciprocating conductors 31 and 32 constituting the antenna 30) is planar. The antenna 30 will be described in detail later.
  • the material of the antenna 30 is, for example, copper (more specifically, oxygen-free copper), aluminum, or the like, but is not limited thereto.
  • high-frequency power is supplied to the antenna 30 from the high-frequency power source 42 via the matching circuit 44 to the reciprocating conductors 31 and 32, whereby a high-frequency current I R flows through the antenna 30. That is, the reciprocating conductors 31 and 32 constituting the antenna 30 opposite the high-frequency current (return current) I R is passed through each other (because the high frequency, the direction of the high-frequency current I R is inverted by the time. Hereinafter the same) .
  • the high frequency current I R generates a high frequency magnetic field around the antenna 30, thereby generating an induction electric field in a direction opposite to the high frequency current I R.
  • the frequency of the high-frequency power output from the high-frequency power source 42 is, for example, a general 13.56 MHz, but is not limited thereto.
  • the total impedance Z T of the parallel reciprocating conductors 61 and 62 that are close to each other is expressed by the following equation as described in the book of electrical theory as a differential connection.
  • R 1 and L 1 are the resistance and self-inductance of one conductor 61, respectively
  • R 2 and L 2 are the resistance and self-inductance of the other conductor 62
  • M is between the two conductors 61 and 62, respectively.
  • the mutual inductance M between the reciprocating conductors 61 and 62 is increased, total impedance Z T and the effective inductance L T is reduced.
  • the electromagnetic energy G generated by flowing a high-frequency current I R from the high-frequency power source 42 to the reciprocating conductors 61 and 62 is expressed by the following equation. Therefore, when the mutual inductance M increases, the electromagnetic energy G decreases, The acting magnetic effect is reduced. In the case of plasma generation, the electromagnetic energy that can be supplied to the plasma decreases and the plasma density decreases. The reverse case is the opposite.
  • the mutual inductance M is not uniform in the longitudinal direction of the reciprocating conductors 61 and 62, that is, when the mutual inductance M is changed (in other words, changed), if each region is viewed, Depending on the mutual inductance M, the effective inductance and electromagnetic energy are determined.
  • the antenna 30 constituting the present invention applies the above principle. That is, by changing the width of at least one of the reciprocating conductors 31 and 32 constituting the antenna 30 in the longitudinal direction X of the antenna 30, the area where the reciprocating conductors 31 and 32 face each other is changed to the longitudinal direction of the antenna 30. X is changed. Accordingly, the mutual inductance M between the reciprocating conductors 31 and 32 is changed in the longitudinal direction X of the antenna 30.
  • the widths of the conductors 31 and 32 refer to the width in the left-right direction Y (that is, the direction orthogonal to the longitudinal direction X).
  • the antenna 30 includes reciprocating conductors 31 and 32 that are arranged close to each other in the vertical direction Z.
  • the lower surface of the conductor 31 on the lower side (that is, the plasma 50 side) is located in the vacuum atmosphere in the vacuum vessel 4, and the conductor 32 on the upper side (that is, the side opposite to the plasma 50) is located in the atmosphere.
  • One end of each of the conductors 31 and 32 is electrically open, and an insulator 36 is provided there in this example.
  • the other end portions are electrically connected to each other at the connection portion 33.
  • High-frequency power is supplied from one high-frequency power source 42 via a matching circuit 44 between one end portions of both the conductors 31 and 32.
  • Both conductors 31 and 32 are flat in this example.
  • the thickness of the lower conductor 31 may be increased as in the example shown in FIGS. 1 and 2C, or the thickness of both the conductors 31 and 32 as in the example shown in FIG.
  • the sizes may be similar to each other.
  • the lower conductor 31 has a rectangular planar shape, and its width is constant in the longitudinal direction X.
  • the reason why the width W of the upper conductor 32 is changed is that it is more advantageous for generating a plasma with a larger area if the width of the conductor 31 on the plasma side is not changed. Further, the disturbance of the magnetic field on the plasma side can be reduced.
  • the width W and the mutual inductance M of the conductor constituting the antenna 30 may be changed stepwise as in the above example in the longitudinal direction X of the antenna 30 or may be changed continuously. The same applies to other examples described below. Even if the width W or the like is changed stepwise, the plasma density can be smoothly changed because the plasma has a diffusing action.
  • the upper conductor 32 shown in FIG. 1 and FIG. 2 is formed into a gentle shape with a bulged central portion, and the width W and the mutual inductance M of the conductor constituting the antenna 30 are continuously changed in the longitudinal direction X of the antenna 30. It may be changed.
  • an antenna 30 having the structure shown in FIG. 6 may be provided.
  • the example shown in FIG. 6 is a modification of the example shown in FIGS. That is, instead of supplying high-frequency power from the end of the antenna 30 (end feeding) as in the examples shown in FIGS. 1 and 2, high-frequency power is supplied from the center of the antenna 30 as in the example shown in FIG. (Central feeding) may be used.
  • the width W of the upper conductor 32 in this example is changed in the same manner as shown in FIG.
  • the matching circuit is omitted for the sake of simplification.
  • the high-frequency power source 42 and the antenna 30 are not connected.
  • a matching circuit 44 is provided.
  • the antenna 30 is constituted by the reciprocating conductors 31 and 32 that are arranged close to each other in the vertical direction Z and in which the high-frequency currents I R flow in opposite directions.
  • the effective inductance of the antenna 30 is reduced by the mutual inductance between the reciprocating conductors 31 and 32. Since the impedance of the antenna 30 is mostly an inductance in the high frequency region, the effective inductance is reduced, so that the potential difference generated in the antenna 30 is reduced, the potential of the antenna 30 is reduced, and the potential of the plasma 50 is reduced. Can be suppressed.
  • the energy of charged particles (for example, ions) incident on the substrate 2 from the plasma 50 can be kept small.
  • damage to the film can be suppressed to be small, and the film quality can be improved.
  • the plasma potential can be kept low by keeping the potential of the antenna 30 low for the above reasons. Therefore, it is easy to cope with the increase in size of the substrate 2 by lengthening the antenna 30. Become.
  • the width of at least one of the reciprocating conductors 31 and 32 in the longitudinal direction X of the antenna is varied in the longitudinal direction X of the antenna 30.
  • the mutual inductance M between the reciprocating conductors 31 and 32 can be changed in the longitudinal direction X of the antenna 30, so that the electromagnetic energy supplied from the antenna 30 to the plasma 50 is changed in the longitudinal direction X of the antenna 30. be able to. Therefore, the plasma density distribution in the longitudinal direction X can be controlled by the antenna 30.
  • the processing state of the substrate in the longitudinal direction X of the antenna 30 can be controlled. For example, when a film is formed on the substrate 2 by the plasma 50, the film thickness distribution in the longitudinal direction X of the antenna 30 can be controlled.
  • the cross-sectional shape of the reciprocating conductors 31 and 32 constituting the antenna 30 is not limited to the illustrated example. Alternatively, a structure may be adopted in which the conductors 31 and 32 are made hollow and a coolant such as cooling water is passed therethrough to forcibly cool the conductors 31 and 32.
  • the plasma density distribution in the longitudinal direction X is smaller than the plasma density at the center part as shown in FIG. 4, for example. It becomes a mountain-shaped distribution. The reason for this will be briefly explained.
  • the plasma diffuses from the left and right sides in the central portion, whereas the plasma diffuses only from one side at both ends.
  • the width W of the conductor 32 on the upper side is set to the width of the central portion in the longitudinal direction X of the antenna 30 as in the examples shown in FIGS.
  • the mutual inductance at both ends can be made smaller than that at the center in the longitudinal direction X of the antenna 30.
  • the effective inductance of the part becomes relatively large.
  • the electromagnetic energy supplied from the antenna 30 to the plasma 50 is made relatively larger near both ends than near the center in the longitudinal direction X of the antenna 30, contrary to the mountain shape, and more than near the center.
  • the plasma 50 can be generated more strongly in the vicinity of both ends, the above-mentioned peak-shaped plasma density distribution can be corrected, and the uniformity of the plasma density distribution in the longitudinal direction X of the antenna 30 can be improved.
  • the uniformity of substrate processing in the longitudinal direction of the antenna 30 can be improved.
  • the uniformity of the film thickness distribution in the longitudinal direction X of the antenna 30 can be improved.
  • the shielding board 46 which shields the surface inside the vacuum vessel 4 of the antenna 30 from the plasma 50 like embodiment shown in FIG.
  • the shielding plate 46 is made of an insulating material.
  • the shielding plate 46 may be attached directly near the entrance of the opening 7 of the ceiling surface 6 of the vacuum vessel 4 or may be attached using a frame-like support plate 48 as in this embodiment. Even when the antenna 30 other than the example shown in FIG. 1 is used, such a shielding plate 46 may be provided.
  • the material of the shielding plate 46 is, for example, quartz, alumina, silicon carbide, silicon or the like. If it is difficult to reduce oxygen by hydrogen plasma and release oxygen from the shielding plate 46, a non-oxide material such as silicon or silicon carbide may be used. For example, it is easy to use a silicon plate.
  • the shielding plate 46 is provided, the surface of the antenna 30 or the like is sputtered by charged particles (mainly ions) in the plasma 50, and metal contamination (metal contamination) occurs in the plasma 50 and the substrate 2. Occurrence can be prevented.
  • the shielding plate 46 is provided, the shielding plate is made of an insulating material and cannot prevent the potential of the antenna 30 from reaching the plasma 50. Therefore, as described above, the effective inductance of the antenna 30 is reduced to reduce the antenna 30. It is effective to keep the potential of
  • a plurality of antennas 30 having the above-described configuration are arranged in parallel with each other in the Y direction, and the plurality of antennas 30 are connected to each antenna 30 via variable impedances 52 connected in series.
  • high frequency power may be supplied in parallel from a common high frequency power source 42.
  • Each antenna 30 may have any of the configurations described above with reference to FIGS.
  • the variable impedance 52 may be a variable inductance as shown in FIG. 7, a variable capacitor (variable capacitance), or a mixture of both.
  • a variable capacitor variable capacitance
  • By inserting the variable inductance it is possible to increase the impedance of the power feeding circuit, and thus it is possible to suppress the current of the antenna 30 through which a high-frequency current flows excessively.
  • By inserting a variable capacitor when the inductive reactance is large, the capacitive reactance can be increased and the impedance of the power feeding circuit can be decreased. Therefore, the current of the antenna 30 in which high-frequency current hardly flows can be increased. .
  • each antenna 30 since a plurality of antennas 30 are arranged in parallel with each other and high-frequency power is supplied in parallel, a plasma with a larger area can be generated.
  • the potential of each antenna 30 can be kept low by the above action, and the plasma density distribution in the longitudinal direction X of each antenna 30 can be controlled.
  • the variable impedance 52 is interposed in each antenna 30 and the balance of the high-frequency current flowing through the plurality of antennas 30 can be adjusted by the variable impedance 52, the plasma density distribution in the parallel direction Y of the plurality of antennas 30 can be adjusted. Can also be controlled. As a result, the plasma potential can be kept low, and it is possible to generate a plasma with a larger area and a better plasma density distribution.
  • each of the above examples is an example in the case where the substrate 2 is fixed without moving in the vacuum vessel 4 and the process is performed.
  • the substrate 2 is being conveyed by the substrate conveying device 54 in a direction crossing (for example, orthogonal to) the longitudinal direction X of the antenna 30, that is, in a direction along the Y direction, as indicated by an arrow F (or the opposite direction).
  • the substrate 2 may be processed.
  • the uniformity of the plasma 50 in the X direction can be enhanced by the above-described configuration of the antenna 30, and the uniformity of the plasma 50 in the Y direction does not become a significant problem due to the substrate transport. Can be processed with good uniformity.
  • the antenna 30 in this case may have any configuration described above with reference to FIGS. Further, the idea of conveying the substrate 2 and the idea of arranging the plurality of antennas 30 shown in FIG. 7 may be used in combination.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

Provided is an inductively coupled plasma processing device in which the effective inductance of an antenna can be reduced, the plasma potential can be kept low, and the plasma density distribution in the longitudinal direction of the antenna can be controlled by the antenna. In the plasma processing device, an antenna (30) having a straight, planar shape is configured from reciprocating conductors (31, 32) arranged in proximity to each other in a vertical direction (Z), which is a perpendicular (3) erected to the surface of a substrate (2). High-frequency currents (IR) flow in mutually opposite directions through the conductors. The width (W) of the conductor (32) on the side opposite from that where a plasma (50) is located is varied in the longitudinal (X) direction of the antenna (30).

Description

プラズマ処理装置Plasma processing equipment
 この発明は、プラズマを用いて基板に、例えばプラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等の処理を施すプラズマ処理装置に関し、より具体的には、アンテナに高周波電流を流すことによって発生する誘導電界によってプラズマを生成し、当該プラズマを用いて基板に処理を施す誘導結合型のプラズマ処理装置に関する。 The present invention relates to a plasma processing apparatus that performs processing such as film formation by plasma CVD, etching, ashing, sputtering, etc. on a substrate using plasma. More specifically, the present invention is generated by applying a high-frequency current to an antenna. The present invention relates to an inductively coupled plasma processing apparatus that generates plasma by an induced electric field and performs processing on a substrate using the plasma.
 高周波を用いてプラズマを生成するプラズマ処理装置に属するものとして、容量結合型プラズマ(略称CCP)を生成する容量結合型のプラズマ処理装置と、誘導結合型プラズマ(略称ICP)を生成する誘導結合型のプラズマ処理装置とがある。 As belonging to a plasma processing apparatus that generates high-frequency plasma, a capacitively coupled plasma processing apparatus that generates capacitively coupled plasma (abbreviated as CCP) and an inductively coupled type that generates inductively coupled plasma (abbreviated as ICP) Plasma processing apparatus.
 容量結合型のプラズマ処理装置は、簡単に言えば、2枚の平行電極間に高周波電圧を印加して、両電極間に発生する高周波電界を用いてプラズマを生成するものである。 In brief, the capacitively coupled plasma processing apparatus applies a high-frequency voltage between two parallel electrodes and generates plasma using a high-frequency electric field generated between the two electrodes.
 この容量結合型のプラズマ処理装置においては、プラズマに高い電圧が印加されてプラズマ電位が高くなり、プラズマ中の荷電粒子(例えばイオン)が高いエネルギーで基板に入射衝突するので、基板上に形成する膜に与えるダメージが大きくなり、膜質が低下する等の課題がある。 In this capacitively coupled plasma processing apparatus, a high voltage is applied to the plasma to increase the plasma potential, and charged particles (for example, ions) in the plasma impinge on and collide with the substrate with high energy, so that they are formed on the substrate. There are problems such as increased damage to the film and deterioration of the film quality.
 一方、誘導結合型のプラズマ処理装置は、簡単に言えば、アンテナに高周波電流を流すことによって発生する誘導電界によってプラズマを生成するものであり、基本的に、容量結合型に比べてプラズマ電位を低くすることができる等の利点がある。 On the other hand, an inductively coupled plasma processing apparatus, in simple terms, generates plasma by an induced electric field generated by flowing a high-frequency current through an antenna. There is an advantage that it can be lowered.
 このような誘導結合型のプラズマ処理装置の一例として、特許文献1には、平板状のアンテナを真空容器の開口部に絶縁枠を介して取り付け、当該アンテナの一端と他端間に高周波電源から高周波電力を供給して高周波電流を流し、それによって発生する誘導電界によってプラズマを生成し、当該プラズマを用いて基板に処理を施すプラズマ処理装置が記載されている。 As an example of such an inductively coupled plasma processing apparatus, Patent Document 1 discloses that a flat antenna is attached to an opening of a vacuum vessel via an insulating frame, and a high-frequency power source is connected between one end and the other end of the antenna. A plasma processing apparatus is described in which a high-frequency power is supplied to flow a high-frequency current, plasma is generated by an induced electric field generated thereby, and a substrate is processed using the plasma.
国際公開第WO 2009/142016号パンフレット(段落0024-0026、図1)International Publication No. WO 2009/142016 (paragraphs 0024-0026, FIG. 1)
 誘導結合型のプラズマ処理装置においても、大型の基板に対応する等のためにアンテナを長くすると、当該アンテナのインピーダンス(特にインダクタンス)が大きくなり、それによってアンテナの両端間に大きな電位差が発生する。 Also in an inductively coupled plasma processing apparatus, when an antenna is lengthened to cope with a large substrate, the impedance (particularly inductance) of the antenna increases, thereby generating a large potential difference between both ends of the antenna.
 このアンテナの電位は、プラズマとの間の静電容量を介してプラズマ電位に反映されるので、アンテナの電位が高いとプラズマ電位も高くなる。その結果、プラズマ中の荷電粒子(例えばイオン)が高いエネルギーで基板に入射衝突するので、基板上に形成する膜に与えるダメージが大きくなり、膜質が低下する等の課題が生じる。 Since the potential of this antenna is reflected in the plasma potential via the capacitance between the antenna and the plasma, the plasma potential increases as the antenna potential increases. As a result, charged particles (for example, ions) in the plasma impinge and collide with the substrate with high energy, so that damage to the film formed on the substrate is increased and the film quality is deteriorated.
 そこでこの発明は、誘導結合型の装置であって、アンテナの実効インダクタンスを小さくしてプラズマ電位を低く抑えることができ、しかも当該アンテナによってその長手方向におけるプラズマ密度分布を制御することができるプラズマ処理装置を提供することを主たる目的としている。 Therefore, the present invention is an inductively coupled device that can reduce the effective inductance of the antenna to suppress the plasma potential, and can control the plasma density distribution in the longitudinal direction by the antenna. The main purpose is to provide a device.
 この発明に係るプラズマ処理装置は、平面形状が実質的にまっすぐなアンテナに高周波電流を流すことによって真空容器内に誘導電界を発生させてプラズマを生成し、当該プラズマを用いて基板に処理を施す誘導結合型のプラズマ処理装置であって、前記アンテナを、前記基板の表面に立てた垂線に沿う方向に互いに接近して配置されていて、前記高周波電流が互いに逆向きに流される往復導体によって構成し、かつ前記往復導体の少なくとも一方の導体の幅を、前記アンテナの長手方向において変化させていることを特徴としている。 The plasma processing apparatus according to the present invention generates a plasma by generating an induction electric field in a vacuum vessel by flowing a high-frequency current through an antenna having a substantially straight planar shape, and processes the substrate using the plasma. An inductively coupled plasma processing apparatus, wherein the antenna is configured by a reciprocating conductor that is disposed close to each other in a direction along a vertical line standing on a surface of the substrate and in which the high-frequency currents flow in opposite directions. The width of at least one of the reciprocating conductors is varied in the longitudinal direction of the antenna.
 以下においては、表現を簡略化するために、基板の表面に立てた垂線に沿う方向を上下方向と呼び、当該垂線に交差する方向を左右方向と呼ぶ。従って、上下方向は必ずしも垂直方向とは限らない。 In the following, in order to simplify the expression, the direction along the vertical line standing on the surface of the substrate is referred to as the vertical direction, and the direction intersecting the vertical line is referred to as the horizontal direction. Accordingly, the vertical direction is not necessarily the vertical direction.
 このプラズマ処理装置においては、アンテナを、上下方向に互いに接近して配置されていて高周波電流が互いに逆向きに流される往復導体によって構成しているので、往復導体間の相互インダクタンスのぶん、アンテナの実効インダクタンスが小さくなる。従って、アンテナの電位を低く抑えて、プラズマ電位を低く抑えることができる。 In this plasma processing apparatus, the antenna is constituted by reciprocating conductors that are arranged close to each other in the vertical direction and in which high-frequency currents flow in opposite directions. Effective inductance is reduced. Therefore, the potential of the antenna can be kept low, and the plasma potential can be kept low.
 しかも、往復導体の少なくとも一方の導体の幅をアンテナの長手方向において変化させることによって、往復導体が相対向する面積をアンテナの長手方向において変化させている。それによって、往復導体間の相互インダクタンスをアンテナの長手方向において変化させることができるので、アンテナからプラズマに供給する電磁エネルギーを、アンテナの長手方向において変化させることができる。従って、このアンテナによって、その長手方向におけるプラズマ密度分布を制御することができる。 Moreover, by changing the width of at least one of the reciprocating conductors in the longitudinal direction of the antenna, the area where the reciprocating conductors face each other is varied in the longitudinal direction of the antenna. Thereby, since the mutual inductance between the reciprocating conductors can be changed in the longitudinal direction of the antenna, the electromagnetic energy supplied from the antenna to the plasma can be changed in the longitudinal direction of the antenna. Therefore, the plasma density distribution in the longitudinal direction can be controlled by this antenna.
 往復導体のプラズマとは反対側の導体の幅を、アンテナの長手方向における中央部の幅よりも両端部の幅を小さくしておいても良い。 The width of the conductor on the side opposite to the plasma of the reciprocating conductor may be smaller than the width of the central portion in the longitudinal direction of the antenna.
 請求項1に記載の発明によれば、アンテナを、上下方向に互いに接近して配置されていて高周波電流が互いに逆向きに流される往復導体によって構成しているので、往復導体間の相互インダクタンスのぶん、アンテナの実効インダクタンスが小さくなる。従って、アンテナの電位を低く抑えて、プラズマ電位を低く抑えることができる。その結果、プラズマから基板に入射する荷電粒子のエネルギーを小さく抑えることができる。それによって例えば、基板上に形成する膜に与えるダメージを小さく抑えて、膜質向上を図ることができる。また、アンテナを長くする場合でも、上記理由によって、アンテナの電位を低く抑えてプラズマ電位を低く抑えることができるので、アンテナを長くして基板の大型化に対応することが容易になる。 According to the first aspect of the present invention, the antenna is constituted by the reciprocating conductors that are arranged close to each other in the vertical direction and in which the high-frequency currents flow in opposite directions. Perhaps the effective inductance of the antenna is reduced. Therefore, the potential of the antenna can be kept low, and the plasma potential can be kept low. As a result, the energy of charged particles incident on the substrate from the plasma can be reduced. Thereby, for example, damage to the film formed on the substrate can be suppressed to a small level, and the film quality can be improved. Further, even when the antenna is lengthened, the plasma potential can be kept low by keeping the antenna potential low for the above reasons, so that it becomes easy to cope with the increase in size of the substrate by lengthening the antenna.
 しかも、往復導体の少なくとも一方の導体の幅をアンテナの長手方向において変化させることによって、往復導体が相対向する面積をアンテナの長手方向において変化させている。それによって、往復導体間の相互インダクタンスをアンテナの長手方向において変化させることができるので、アンテナからプラズマに供給する電磁エネルギーを、アンテナの長手方向において変化させることができる。従って、このアンテナによって、その長手方向におけるプラズマ密度分布を制御することができる。その結果、アンテナの長手方向における基板の処理状態を制御することができる。例えば、アンテナの長手方向における膜厚分布を制御することができる。 Moreover, by changing the width of at least one of the reciprocating conductors in the longitudinal direction of the antenna, the area where the reciprocating conductors face each other is varied in the longitudinal direction of the antenna. Thereby, since the mutual inductance between the reciprocating conductors can be changed in the longitudinal direction of the antenna, the electromagnetic energy supplied from the antenna to the plasma can be changed in the longitudinal direction of the antenna. Therefore, the plasma density distribution in the longitudinal direction can be controlled by this antenna. As a result, the processing state of the substrate in the longitudinal direction of the antenna can be controlled. For example, the film thickness distribution in the longitudinal direction of the antenna can be controlled.
 請求項2に記載の発明によれば次の更なる効果を奏する。即ち、アンテナの長手方向におけるプラズマ密度分布は、通常は、中央部よりも両端部のプラズマ密度が小さい山型の分布になる。これに対して、この発明のように、往復導体のプラズマとは反対側の導体の幅を、アンテナの長手方向における中央部の幅よりも両端部の幅を小さくすることによって、アンテナの長手方向において、中央部よりも両端部の相互インダクタンスを小さくすることができるので、アンテナの中央部よりも両端部の実効インダクタンスが相対的に大きくなる。その結果、アンテナからプラズマに供給する電磁エネルギーを、山型とは反対に、アンテナの長手方向における中央部付近よりも両端部付近において相対的に大きくすることができるので、上記山型のプラズマ密度分布を補正して、アンテナの長手方向におけるプラズマ密度分布の均一性を高めることができる。その結果、アンテナの長手方向における基板処理の均一性を高めることができる。例えば、アンテナの長手方向における膜厚分布の均一性を高めることができる。 The invention according to claim 2 has the following further effects. That is, the plasma density distribution in the longitudinal direction of the antenna is usually a mountain-shaped distribution in which the plasma density at both ends is smaller than that at the center. On the other hand, as in the present invention, the width of the conductor on the side opposite to the plasma of the reciprocating conductor is made smaller than the width of the central portion in the longitudinal direction of the antenna, thereby making the longitudinal direction of the antenna Since the mutual inductance at both ends can be made smaller than that at the center, the effective inductance at both ends is relatively greater than that at the center of the antenna. As a result, the electromagnetic energy supplied to the plasma from the antenna can be made relatively large near both ends rather than near the center in the longitudinal direction of the antenna, as opposed to the chevron. The distribution can be corrected to increase the uniformity of the plasma density distribution in the longitudinal direction of the antenna. As a result, the uniformity of substrate processing in the longitudinal direction of the antenna can be improved. For example, the uniformity of the film thickness distribution in the longitudinal direction of the antenna can be improved.
 請求項3に記載の発明によれば次の更なる効果を奏する。即ち、互いに並列に配置され、かつ並列に高周波電力が供給される複数の前記アンテナを備えているので、より大面積のプラズマを生成することができる。しかも、前記作用によって、各アンテナの電位を低く抑えることができると共に、各アンテナの長手方向におけるプラズマ密度分布を制御することができる。更に、各アンテナに可変インピーダンスを介在させていて、当該可変インピーダンスによって複数のアンテナに流れる高周波電流のバランスを調整することができるので、複数のアンテナの並列方向におけるプラズマ密度分布をも制御することができる。その結果、プラズマの電位を低く抑えることができ、しかもより大面積でかつプラズマ密度分布の均一性の良いプラズマを生成することが可能になる。 According to the invention described in claim 3, the following further effects are obtained. That is, since the plurality of antennas arranged in parallel with each other and supplied with high-frequency power in parallel are provided, plasma having a larger area can be generated. In addition, the potential of each antenna can be kept low by the above action, and the plasma density distribution in the longitudinal direction of each antenna can be controlled. Furthermore, since a variable impedance is interposed in each antenna and the balance of the high-frequency current flowing through the plurality of antennas can be adjusted by the variable impedance, it is possible to control the plasma density distribution in the parallel direction of the plurality of antennas. it can. As a result, the plasma potential can be kept low, and it is possible to generate a plasma with a larger area and a better plasma density distribution.
この発明に係るプラズマ処理装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the plasma processing apparatus which concerns on this invention. 図1中のアンテナを示す図であり、(A)は平面図、(B)は側面図、(C)はC-C断面図である。2A and 2B are diagrams illustrating an antenna in FIG. 1, in which FIG. 1A is a plan view, FIG. 1B is a side view, and FIG. 上下方向に配置された板状の往復導体の断面形状の他の例を示す図である。It is a figure which shows the other example of the cross-sectional shape of the plate-shaped reciprocating conductor arrange | positioned at an up-down direction. 公知の単純な平面アンテナを用いた場合のその長手方向におけるプラズマ密度分布の概略例を示す図である。It is a figure which shows the schematic example of the plasma density distribution in the longitudinal direction at the time of using a well-known simple planar antenna. 互いに接近している往復導体のインピーダンス等を説明するための図である。It is a figure for demonstrating the impedance etc. of the reciprocating conductor which has mutually approached. 中央給電にしたアンテナの例を示す概略側面図である。It is a schematic side view which shows the example of the antenna made into center feeding. 複数のアンテナを並列配置した例を示す概略平面図である。It is a schematic plan view showing an example in which a plurality of antennas are arranged in parallel. この発明に係るプラズマ処理装置の他の実施形態を示す概略側面図である。It is a schematic side view which shows other embodiment of the plasma processing apparatus which concerns on this invention.
 この発明に係るプラズマ処理装置の一実施形態を図1に示し、そのアンテナ30を抜き出して図2に示す。アンテナ30等の向きを表すために、一点で互いに直交するX方向、Y方向およびZ方向を図中に記載している。Z方向は基板2の表面に立てた垂線3に沿う(例えば平行な)方向であり、Y方向は当該垂線3に交差する(例えば直交する)方向であり、これらは、前述したように表現を簡略化するために、それぞれ、上下方向Z、左右方向Yと呼ぶことにする。X方向は、垂線3に交差する(例えば直交する)方向であり、かつアンテナ30の長手方向である。例えば、X方向およびY方向は水平方向であるが、これに限られるものではない。以上のことは、他の図においても同様である。 An embodiment of the plasma processing apparatus according to the present invention is shown in FIG. 1, and the antenna 30 is extracted and shown in FIG. In order to indicate the orientation of the antenna 30 and the like, the X direction, the Y direction, and the Z direction that are orthogonal to each other at one point are shown in the drawing. The Z direction is a direction along (for example, parallel to) the perpendicular 3 standing on the surface of the substrate 2, and the Y direction is a direction that intersects (for example, orthogonal to) the perpendicular 3, and these are expressed as described above. For simplification, they will be referred to as the vertical direction Z and the horizontal direction Y, respectively. The X direction is a direction that intersects (for example, is orthogonal to) the perpendicular 3 and is a longitudinal direction of the antenna 30. For example, the X direction and the Y direction are horizontal directions, but are not limited thereto. The same applies to the other drawings.
 この装置は、平面形状が実質的にまっすぐなアンテナ30に高周波電源42から高周波電流Iを流すことによって真空容器4内に誘導電界を発生させて当該誘導電界によってプラズマ50を生成し、このプラズマ50を用いて基板2に処理を施す誘導結合型のプラズマ処理装置である。 This apparatus, by generating an induced electric field in the vacuum vessel 4 to produce a plasma 50 by the induced electric field by the planar shape frequency current I R from the high frequency power source 42 in a substantially straight antenna 30, the plasma 50 is an inductively coupled plasma processing apparatus for processing the substrate 2 using 50.
 「実質的にまっすぐ」というのは、文字どおりまっすぐな状態だけでなく、まっすぐに近い状態(ほぼまっすぐな状態)をも含む意味である。 “Substantially straight” means not only literally straight, but also includes a state that is almost straight (almost straight).
 基板2は、例えば、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板、太陽電池等の半導体デバイス用の基板等であるが、これに限られるものではない。 The substrate 2 is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, a flexible substrate for a flexible display, a substrate for a semiconductor device such as a solar cell, or the like. is not.
 基板2の平面形状は、例えば円形、四角形等であり、特定の形状に限定されない。 The planar shape of the substrate 2 is, for example, a circle or a rectangle, and is not limited to a specific shape.
 基板2に施す処理は、例えば、プラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等である。 The treatment applied to the substrate 2 is, for example, film formation by plasma CVD, etching, ashing, sputtering, or the like.
 このプラズマ処理装置は、プラズマCVD法によって膜形成を行う場合はプラズマCVD装置、エッチングを行う場合はプラズマエッチング装置、アッシングを行う場合はプラズマアッシング装置、スパッタリングを行う場合はプラズマスパッタリング装置とも呼ばれる。 This plasma processing apparatus is also called a plasma CVD apparatus when a film is formed by plasma CVD, a plasma etching apparatus when etching is performed, a plasma ashing apparatus when ashing is performed, and a plasma sputtering apparatus when sputtering is performed.
 このプラズマ処理装置は、例えば金属製の真空容器4を備えており、その内部は真空排気装置8によって真空排気される。 This plasma processing apparatus includes, for example, a metal vacuum vessel 4 and the inside thereof is evacuated by a evacuation apparatus 8.
 真空容器4内には、ガス導入管22を通してガス24が導入される。ガス24は、基板2に施す処理内容に応じたものにすれば良い。例えば、プラズマCVD法によって基板2に膜形成を行う場合は、ガス24は、原料ガスまたはそれを希釈ガス(例えばH)で希釈したガスである。より具体例を挙げると、原料ガスがSiHの場合はSi 膜を、SiH+NHの場合はSiN膜を、SiH+Oの場合はSiO膜を、それぞれ基板2の表面に形成することができる。 A gas 24 is introduced into the vacuum vessel 4 through a gas introduction pipe 22. The gas 24 may be set according to the processing content applied to the substrate 2. For example, when forming a film on the substrate 2 by the plasma CVD method, the gas 24 is a source gas or a gas obtained by diluting it with a diluent gas (for example, H 2 ). More specifically, an Si film is formed on the surface of the substrate 2 when the source gas is SiH 4, an SiN film is formed when SiH 4 + NH 3 is used, and an SiO 2 film is formed when SiH 4 + O 2 is used. be able to.
 真空容器4内には、基板2を保持するホルダ10が設けられている。この例では、ホルダ10は軸16に支持されている。軸16が真空容器4を貫通する部分には、電気絶縁機能および真空シール機能を有する軸受部18が設けられている。この例のように、ホルダ10にバイアス電源20から軸16を経由して負のバイアス電圧を印加するようにしても良い。バイアス電圧は負のパルス状電圧でも良い。このようなバイアス電圧によって、例えば、プラズマ50中の正イオンが基板2に入射するときのエネルギーを制御して、基板2の表面に形成される膜の結晶化度を制御することができる。 In the vacuum vessel 4, a holder 10 that holds the substrate 2 is provided. In this example, the holder 10 is supported by the shaft 16. A bearing portion 18 having an electrical insulation function and a vacuum sealing function is provided at a portion where the shaft 16 penetrates the vacuum container 4. As in this example, a negative bias voltage may be applied to the holder 10 from the bias power source 20 via the shaft 16. The bias voltage may be a negative pulse voltage. With such a bias voltage, for example, the energy when positive ions in the plasma 50 are incident on the substrate 2 can be controlled to control the crystallinity of the film formed on the surface of the substrate 2.
 真空容器4の天井面6の開口部7に、絶縁枠38を介在させて、アンテナ30が設けられている。これらの要素の間には、真空シール用のパッキン40がそれぞれ設けられている。このアンテナ30は、上下方向Zに互いに接近して配置されている往復導体31、32によって構成されている。アンテナ30(より具体的にはそれを構成している往復導体31、32)は、この例では、その平面形状が面状をしている。このアンテナ30については、後で詳述する。 The antenna 30 is provided in the opening 7 of the ceiling surface 6 of the vacuum vessel 4 with an insulating frame 38 interposed therebetween. Between these elements, a packing 40 for vacuum sealing is provided. The antenna 30 is composed of reciprocating conductors 31 and 32 arranged close to each other in the vertical direction Z. In this example, the planar shape of the antenna 30 (more specifically, the reciprocating conductors 31 and 32 constituting the antenna 30) is planar. The antenna 30 will be described in detail later.
 アンテナ30の材質は、例えば、銅(より具体的には無酸素銅)、アルミニウム等であるが、これに限られるものではない。 The material of the antenna 30 is, for example, copper (more specifically, oxygen-free copper), aluminum, or the like, but is not limited thereto.
 アンテナ30には、より具体的にはその往復導体31、32には、高周波電源42から整合回路44を経由して、高周波電力が供給され、それによってアンテナ30に高周波電流Iが流される。即ち、アンテナ30を構成する往復導体31、32には、互いに逆向きの高周波電流(往復電流)Iが流される(高周波だから、この高周波電流Iの向きは時間によって反転する。以下同様)。この高周波電流Iによって、アンテナ30の周囲に高周波磁界が発生し、それによって高周波電流Iと逆方向に誘導電界が発生する。この誘導電界によって、真空容器4内において、電子が加速されてアンテナ30の近傍のガス24を電離させてアンテナ30の近傍にプラズマ50が発生する。このプラズマ50は基板2の近傍まで拡散し、このプラズマ50によって基板2に前述した処理を施すことができる。 More specifically, high-frequency power is supplied to the antenna 30 from the high-frequency power source 42 via the matching circuit 44 to the reciprocating conductors 31 and 32, whereby a high-frequency current I R flows through the antenna 30. That is, the reciprocating conductors 31 and 32 constituting the antenna 30 opposite the high-frequency current (return current) I R is passed through each other (because the high frequency, the direction of the high-frequency current I R is inverted by the time. Hereinafter the same) . The high frequency current I R generates a high frequency magnetic field around the antenna 30, thereby generating an induction electric field in a direction opposite to the high frequency current I R. Due to this induced electric field, electrons are accelerated in the vacuum vessel 4 to ionize the gas 24 in the vicinity of the antenna 30 and generate plasma 50 in the vicinity of the antenna 30. The plasma 50 diffuses to the vicinity of the substrate 2, and the above-described processing can be performed on the substrate 2 by the plasma 50.
 高周波電源42から出力する高周波電力の周波数は、例えば、一般的な13.56MHzであるが、これに限られるものではない。 The frequency of the high-frequency power output from the high-frequency power source 42 is, for example, a general 13.56 MHz, but is not limited thereto.
 上記アンテナ30について詳述する。図5に示すような、互いに接近している平行な往復導体61、62の総合インピーダンスZは、差動接続として電気理論の書籍等にも記載されているように、次式で表される。ここで、R、Lは、それぞれ、一方の導体61の抵抗、自己インダクタンス、R、Lは、それぞれ、他方の導体62の抵抗、自己インダクタンス、Mは両導体61、62間の相互インダクタンスである。 The antenna 30 will be described in detail. As shown in FIG. 5, the total impedance Z T of the parallel reciprocating conductors 61 and 62 that are close to each other is expressed by the following equation as described in the book of electrical theory as a differential connection. . Here, R 1 and L 1 are the resistance and self-inductance of one conductor 61, respectively, R 2 and L 2 are the resistance and self-inductance of the other conductor 62, and M is between the two conductors 61 and 62, respectively. Mutual inductance.
 [数1]
  Z=(R+R)+j(L+L-2M)
[Equation 1]
Z T = (R 1 + R 2 ) + j (L 1 + L 2 −2M)
 ここで、説明を簡略化するために、R=R=R、L=L=Lとすると、総合インピーダンスZは数2で表され、その内のインダクタンスLは数3で表される。このインダクタンスLのように、自己インダクタンスと相互インダクタンスとを合成したものを、この明細書では実効インダクタンスと呼ぶことにする。 Here, to simplify the description, R 1 = R 2 = R , When L 1 = L 2 = L, total impedance Z T is represented by the number 2, in the inductance L T is the number 3 of which expressed. As in the inductance L T, a material obtained by combining the self and mutual inductances, in this specification will be referred to as effective inductance.
 [数2]
  Z=2R+j2(L-M)
[Equation 2]
Z T = 2R + j2 (LM)
 [数3]
  L=2(L-M)
[Equation 3]
L T = 2 (LM)
 上記式からも分るように、往復導体61、62間の相互インダクタンスMが大きくなると、総合インピーダンスZおよび実効インダクタンスLは小さくなる。この往復導体61、62に高周波電源42から高周波電流Iを流すことによって発生する電磁エネルギーGは次式で表されるので、相互インダクタンスMが大きくなると、この電磁エネルギーGは小さくなり、外部に作用する磁気的な効果が減少する。プラズマ生成の場合は、プラズマへ供給できる電磁エネルギーが減少し、プラズマ密度が下がる。逆の場合は逆になる。 As can be seen from the above equation, the mutual inductance M between the reciprocating conductors 61 and 62 is increased, total impedance Z T and the effective inductance L T is reduced. The electromagnetic energy G generated by flowing a high-frequency current I R from the high-frequency power source 42 to the reciprocating conductors 61 and 62 is expressed by the following equation. Therefore, when the mutual inductance M increases, the electromagnetic energy G decreases, The acting magnetic effect is reduced. In the case of plasma generation, the electromagnetic energy that can be supplied to the plasma decreases and the plasma density decreases. The reverse case is the opposite.
 [数4]
  G=(1/2)LTR
   =(L-M)IR
[Equation 4]
G = (1/2) L T I R 2
= (LM) I R 2
 往復導体61、62の長手方向において相互インダクタンスMが一様でない場合、即ち相互インダクタンスMを変化させている(換言すれば、変化を付けている)場合は、各領域について見れば、当該領域の相互インダクタンスMに応じて、上記実効インダクタンスおよび電磁エネルギーが決まる。 When the mutual inductance M is not uniform in the longitudinal direction of the reciprocating conductors 61 and 62, that is, when the mutual inductance M is changed (in other words, changed), if each region is viewed, Depending on the mutual inductance M, the effective inductance and electromagnetic energy are determined.
 この発明を構成しているアンテナ30は、上記原理を応用したものである。即ち、アンテナ30を構成する往復導体31、32の少なくとも一方の導体の幅を、アンテナ30の長手方向Xにおいて変化させることによって、往復導体31、32が相対向する面積を、アンテナ30の長手方向Xにおいて変化させている。それによって、往復導体31、32間の相互インダクタンスMを、アンテナ30の長手方向Xにおいて変化させている。この明細書において導体31、32の幅とは、左右方向Y(即ち長手方向Xに直交する方向)における幅を言う。 The antenna 30 constituting the present invention applies the above principle. That is, by changing the width of at least one of the reciprocating conductors 31 and 32 constituting the antenna 30 in the longitudinal direction X of the antenna 30, the area where the reciprocating conductors 31 and 32 face each other is changed to the longitudinal direction of the antenna 30. X is changed. Accordingly, the mutual inductance M between the reciprocating conductors 31 and 32 is changed in the longitudinal direction X of the antenna 30. In this specification, the widths of the conductors 31 and 32 refer to the width in the left-right direction Y (that is, the direction orthogonal to the longitudinal direction X).
 これを具体化した例が図1、図2に示すアンテナ30である。このアンテナ30について詳述すると、アンテナ30は、上下方向Zに互いに接近して配置されている往復導体31、32を有している。下側(即ちプラズマ50側)の導体31の下面は真空容器4内の真空雰囲気中に位置しており、上側(即ちプラズマ50とは反対側)の導体32は大気中に位置している。両導体31、32の一端部は電気的に開いていて、そこにこの例では絶縁物36が設けられている。他端部は接続部33で互いに電気的に接続されている。両導体31、32の一端部間に、高周波電源42から整合回路44を経由して高周波電力が供給される。 An example embodying this is the antenna 30 shown in FIGS. The antenna 30 will be described in detail. The antenna 30 includes reciprocating conductors 31 and 32 that are arranged close to each other in the vertical direction Z. The lower surface of the conductor 31 on the lower side (that is, the plasma 50 side) is located in the vacuum atmosphere in the vacuum vessel 4, and the conductor 32 on the upper side (that is, the side opposite to the plasma 50) is located in the atmosphere. One end of each of the conductors 31 and 32 is electrically open, and an insulator 36 is provided there in this example. The other end portions are electrically connected to each other at the connection portion 33. High-frequency power is supplied from one high-frequency power source 42 via a matching circuit 44 between one end portions of both the conductors 31 and 32.
 両導体31、32は、この例では平板状である。この場合、例えば、図1、図2(C)に示す例のように下側の導体31の厚さを大きくしても良いし、図3に示す例のように両導体31、32の厚さを互いに同程度にしても良い。 Both conductors 31 and 32 are flat in this example. In this case, for example, the thickness of the lower conductor 31 may be increased as in the example shown in FIGS. 1 and 2C, or the thickness of both the conductors 31 and 32 as in the example shown in FIG. The sizes may be similar to each other.
 下側の導体31は、この例では、平面形状が長方形であり、その幅は長手方向Xにおいて一定である。 In this example, the lower conductor 31 has a rectangular planar shape, and its width is constant in the longitudinal direction X.
 上側の導体32は、この例では、その長手方向Xにおける中央部の領域Aの幅Wよりも両端部の領域A、Aの幅W、Wを段階的に小さくしている。より具体的には、W=W<Wにしている。上側の導体32の幅Wを変化させているのは、プラズマ側の導体31の幅を変化させずに広くしておく方が、広い面積のプラズマ生成に有利だからである。また、プラズマ側における磁界の乱れも少なくて済む。 In this example, the upper conductor 32 is formed by gradually reducing the widths W 1 and W 3 of the regions A 1 and A 3 at both ends from the width W 2 of the central region A 2 in the longitudinal direction X. Yes. More specifically, W 1 = W 3 <W 2 . The reason why the width W of the upper conductor 32 is changed is that it is more advantageous for generating a plasma with a larger area if the width of the conductor 31 on the plasma side is not changed. Further, the disturbance of the magnetic field on the plasma side can be reduced.
 導体32の幅Wを上記のように変化させると、往復導体31、32が相対向する面積S~Sが各領域A~Aにおいて変る。即ち、S=S<Sになる。その結果、各領域A~Aの相互インダクタンスM~MはM=M<Mとなる。従って、上記数3を参照すれば分るように、領域Aよりも領域A、Aの実効インダクタンスが大きくなる。磁束密度B~BはB=B>Bとなる。その結果、アンテナ30からプラズマに供給する電磁エネルギーを、中央部の領域Aよりも両端部の領域A、Aにおいて相対的に大きくすることができる。 When the width W of the conductor 32 is changed as described above, the areas S 1 to S 3 where the reciprocating conductors 31 and 32 face each other change in each of the regions A 1 to A 3 . That is, S 1 = S 3 <S 2 . As a result, mutual inductance M 1 ~ M 3 of the areas A 1 ~ A 3 is a M 1 = M 3 <M 2 . Therefore, as can be seen by referring to Equation 3 , the effective inductances of the regions A 1 and A 3 are larger than those of the region A 2 . The magnetic flux densities B 1 to B 3 are B 1 = B 3 > B 2 . As a result, the electromagnetic energy supplied from the antenna 30 to the plasma can be made relatively larger in the regions A 1 and A 3 at both ends than in the region A 2 at the center.
 アンテナ30を構成する導体の幅Wおよび相互インダクタンスMは、アンテナ30の長手方向Xにおいて、上記例のように段階的に変化させても良いし、連続的に変化させても良い。以下に述べる他の例においても同様である。上記幅W等を段階的に変化させても、プラズマには拡散作用があるので、プラズマ密度を滑らかに変化させることができる。例えば、図1、図2に示す上側の導体32を、中央部が膨らんだなだらかな形状にして、アンテナ30を構成する導体の幅Wおよび相互インダクタンスMを、アンテナ30の長手方向Xにおいて連続的に変化させても良い。 The width W and the mutual inductance M of the conductor constituting the antenna 30 may be changed stepwise as in the above example in the longitudinal direction X of the antenna 30 or may be changed continuously. The same applies to other examples described below. Even if the width W or the like is changed stepwise, the plasma density can be smoothly changed because the plasma has a diffusing action. For example, the upper conductor 32 shown in FIG. 1 and FIG. 2 is formed into a gentle shape with a bulged central portion, and the width W and the mutual inductance M of the conductor constituting the antenna 30 are continuously changed in the longitudinal direction X of the antenna 30. It may be changed.
 図1、図2に示すアンテナ30の代わりに、図6に示す構造のアンテナ30を設けても良い。 Instead of the antenna 30 shown in FIGS. 1 and 2, an antenna 30 having the structure shown in FIG. 6 may be provided.
 図6に示す例は、図1、図2に示す例を変形したものである。即ち、図1、図2に示す例のようにアンテナ30の端部から高周波電力を供給(端部給電)する代わりに、図6に示す例のようにアンテナ30の中央部から高周波電力を供給(中央給電)するようにしても良い。この例における上側の導体32の幅Wは、例えば、図2(A)に示したものと同様に変化させている。 The example shown in FIG. 6 is a modification of the example shown in FIGS. That is, instead of supplying high-frequency power from the end of the antenna 30 (end feeding) as in the examples shown in FIGS. 1 and 2, high-frequency power is supplied from the center of the antenna 30 as in the example shown in FIG. (Central feeding) may be used. The width W of the upper conductor 32 in this example is changed in the same manner as shown in FIG.
 なお、図6、図8に示す例では、説明を簡略化するために整合回路を省略しているが、通常は、図1に示す例と同様に、高周波電源42とアンテナ30との間には整合回路44が設けられる。 In the examples shown in FIGS. 6 and 8, the matching circuit is omitted for the sake of simplification. Usually, like the example shown in FIG. 1, the high-frequency power source 42 and the antenna 30 are not connected. A matching circuit 44 is provided.
 この発明に係るプラズマ処理装置においては、アンテナ30を、上下方向Zに互いに接近して配置されていて高周波電流Iが互いに逆向きに流される往復導体31、32によって構成しているので、上記数3を参照すれば分るように、往復導体31、32間の相互インダクタンスのぶん、アンテナ30の実効インダクタンスが小さくなる。高周波領域においては、アンテナ30のインピーダンスは殆どがインダクタンスであるので、実効インダクタンスが小さくなることによって、アンテナ30に発生する電位差を小さく抑えて、アンテナ30の電位を低く抑え、プラズマ50の電位を低く抑えることができる。 In the plasma processing apparatus according to the present invention, the antenna 30 is constituted by the reciprocating conductors 31 and 32 that are arranged close to each other in the vertical direction Z and in which the high-frequency currents I R flow in opposite directions. As can be seen from Equation 3, the effective inductance of the antenna 30 is reduced by the mutual inductance between the reciprocating conductors 31 and 32. Since the impedance of the antenna 30 is mostly an inductance in the high frequency region, the effective inductance is reduced, so that the potential difference generated in the antenna 30 is reduced, the potential of the antenna 30 is reduced, and the potential of the plasma 50 is reduced. Can be suppressed.
 その結果、プラズマ50から基板2に入射する荷電粒子(例えばイオン)のエネルギーを小さく抑えることができる。それによって例えば、プラズマ50によって基板2上に膜を形成する場合、当該膜に与えるダメージを小さく抑えて、膜質向上を図ることができる。また、アンテナ30を長くする場合でも、上記理由によって、アンテナ30の電位を低く抑えてプラズマ電位を低く抑えることができるので、アンテナ30を長くして基板2の大型化に対応することが容易になる。 As a result, the energy of charged particles (for example, ions) incident on the substrate 2 from the plasma 50 can be kept small. Thereby, for example, when a film is formed on the substrate 2 by the plasma 50, damage to the film can be suppressed to be small, and the film quality can be improved. Further, even when the antenna 30 is lengthened, the plasma potential can be kept low by keeping the potential of the antenna 30 low for the above reasons. Therefore, it is easy to cope with the increase in size of the substrate 2 by lengthening the antenna 30. Become.
 しかも、往復導体31、32の少なくとも一方の導体の幅をアンテナの長手方向Xにおいて変化させることによって、往復導体31、32が相対向する面積Sをアンテナ30の長手方向Xにおいて変化させている。それによって、往復導体31、32間の相互インダクタンスMを、アンテナ30の長手方向Xにおいて変化させることができるので、アンテナ30からプラズマ50に供給する電磁エネルギーを、アンテナ30の長手方向Xにおいて変化させることができる。従って、このアンテナ30によって、その長手方向Xにおけるプラズマ密度分布を制御することができる。その結果、アンテナ30の長手方向Xにおける基板の処理状態を制御することができる。例えば、プラズマ50によって基板2上に膜を形成する場合、アンテナ30の長手方向Xにおける膜厚分布を制御することができる。 In addition, by changing the width of at least one of the reciprocating conductors 31 and 32 in the longitudinal direction X of the antenna, the area S where the reciprocating conductors 31 and 32 face each other is varied in the longitudinal direction X of the antenna 30. Thereby, the mutual inductance M between the reciprocating conductors 31 and 32 can be changed in the longitudinal direction X of the antenna 30, so that the electromagnetic energy supplied from the antenna 30 to the plasma 50 is changed in the longitudinal direction X of the antenna 30. be able to. Therefore, the plasma density distribution in the longitudinal direction X can be controlled by the antenna 30. As a result, the processing state of the substrate in the longitudinal direction X of the antenna 30 can be controlled. For example, when a film is formed on the substrate 2 by the plasma 50, the film thickness distribution in the longitudinal direction X of the antenna 30 can be controlled.
 アンテナ30を構成する往復導体31、32の断面形状は、図示例のものに限られるものではない。また、各導体31、32を中空にして、そこに冷却水等の冷媒を流して、各導体31、32を強制的に冷却する構造を採用しても良い。 The cross-sectional shape of the reciprocating conductors 31 and 32 constituting the antenna 30 is not limited to the illustrated example. Alternatively, a structure may be adopted in which the conductors 31 and 32 are made hollow and a coolant such as cooling water is passed therethrough to forcibly cool the conductors 31 and 32.
 ところで、通常は、即ち公知の単純な平面アンテナを用いた場合は、その長手方向Xにおけるプラズマ密度分布は、例えば図4に示すように、中央部のプラズマ密度よりも両端部のプラズマ密度が小さい山型の分布になる。その理由を簡単に説明すると、中央部には左右両側からプラズマが拡散して来るのに対して、両端部は片側からしかプラズマが拡散して来ないからである。 By the way, normally, that is, when a known simple planar antenna is used, the plasma density distribution in the longitudinal direction X is smaller than the plasma density at the center part as shown in FIG. 4, for example. It becomes a mountain-shaped distribution. The reason for this will be briefly explained. The plasma diffuses from the left and right sides in the central portion, whereas the plasma diffuses only from one side at both ends.
 これに対して、図1、図2、図6に示した例のように、上側(即ちプラズマ50とは反対側)の導体32の幅Wを、アンテナ30の長手方向Xにおける中央部の幅よりも両端部の幅を小さくすることによって、アンテナ30の長手方向Xにおいて、中央部よりも両端部の相互インダクタンスを小さくすることができるので、前述したように、アンテナ30の中央部よりも両端部の実効インダクタンスが相対的に大きくなる。その結果、アンテナ30からプラズマ50に供給する電磁エネルギーを、山型とは反対に、アンテナ30の長手方向Xにおける中央部付近よりも両端部付近において相対的に大きくして、中央部付近よりも両端部付近においてより強力にプラズマ50を生成することができるので、上記山型のプラズマ密度分布を補正して、アンテナ30の長手方向Xにおけるプラズマ密度分布の均一性を高めることができる。その結果、アンテナ30の長手方向における基板処理の均一性を高めることができる。例えば、プラズマ50によって基板2上に膜を形成する場合、アンテナ30の長手方向Xにおける膜厚分布の均一性を高めることができる。 On the other hand, the width W of the conductor 32 on the upper side (that is, the side opposite to the plasma 50) is set to the width of the central portion in the longitudinal direction X of the antenna 30 as in the examples shown in FIGS. By reducing the width at both ends, the mutual inductance at both ends can be made smaller than that at the center in the longitudinal direction X of the antenna 30. The effective inductance of the part becomes relatively large. As a result, the electromagnetic energy supplied from the antenna 30 to the plasma 50 is made relatively larger near both ends than near the center in the longitudinal direction X of the antenna 30, contrary to the mountain shape, and more than near the center. Since the plasma 50 can be generated more strongly in the vicinity of both ends, the above-mentioned peak-shaped plasma density distribution can be corrected, and the uniformity of the plasma density distribution in the longitudinal direction X of the antenna 30 can be improved. As a result, the uniformity of substrate processing in the longitudinal direction of the antenna 30 can be improved. For example, when a film is formed on the substrate 2 by the plasma 50, the uniformity of the film thickness distribution in the longitudinal direction X of the antenna 30 can be improved.
 なお、図1に示す実施形態のように、アンテナ30の真空容器4内側の面をプラズマ50から遮蔽する遮蔽板46を備えていても良い。遮蔽板46は絶縁物から成る。遮蔽板46は、真空容器4の天井面6の開口部7の入口部付近に直接取り付けても良いし、この実施形態のように枠状の支持板48を用いて取り付けても良い。図1に示す例以外のアンテナ30を用いる場合も、このような遮蔽板46を備えていても良い。 In addition, you may provide the shielding board 46 which shields the surface inside the vacuum vessel 4 of the antenna 30 from the plasma 50 like embodiment shown in FIG. The shielding plate 46 is made of an insulating material. The shielding plate 46 may be attached directly near the entrance of the opening 7 of the ceiling surface 6 of the vacuum vessel 4 or may be attached using a frame-like support plate 48 as in this embodiment. Even when the antenna 30 other than the example shown in FIG. 1 is used, such a shielding plate 46 may be provided.
 遮蔽板46の材質は、例えば、石英、アルミナ、炭化ケイ素、シリコン等である。水素系プラズマで還元されて遮蔽板46から酸素が放出されると困る場合は、シリコン、炭化ケイ素等の非酸化物系の材質を用いれば良い。例えばシリコン板を用いるのが簡単で良い。 The material of the shielding plate 46 is, for example, quartz, alumina, silicon carbide, silicon or the like. If it is difficult to reduce oxygen by hydrogen plasma and release oxygen from the shielding plate 46, a non-oxide material such as silicon or silicon carbide may be used. For example, it is easy to use a silicon plate.
 遮蔽板46を設けておくと、アンテナ30等の表面がプラズマ50中の荷電粒子(主としてイオン)によってスパッタされてプラズマ50および基板2に対して金属汚染(メタルコンタミネーション)が生じること等の不都合発生を防止することができる。 If the shielding plate 46 is provided, the surface of the antenna 30 or the like is sputtered by charged particles (mainly ions) in the plasma 50, and metal contamination (metal contamination) occurs in the plasma 50 and the substrate 2. Occurrence can be prevented.
 遮蔽板46を設けていても、遮蔽板は絶縁物から成りアンテナ30の電位がプラズマ50に及ぶことを防止することはできないので、前述したようにアンテナ30の実効インダクタンスを小さくして、アンテナ30の電位を低く抑えることは有効である。 Even if the shielding plate 46 is provided, the shielding plate is made of an insulating material and cannot prevent the potential of the antenna 30 from reaching the plasma 50. Therefore, as described above, the effective inductance of the antenna 30 is reduced to reduce the antenna 30. It is effective to keep the potential of
 図7に示す例のように、前記構成のアンテナ30を、複数、互いにY方向に並列に配置し、各アンテナ30にそれぞれ直列に接続された可変インピーダンス52を介して、当該複数のアンテナ30に、共通の高周波電源42から高周波電力を並列に供給するようにしても良い。 As shown in the example of FIG. 7, a plurality of antennas 30 having the above-described configuration are arranged in parallel with each other in the Y direction, and the plurality of antennas 30 are connected to each antenna 30 via variable impedances 52 connected in series. Alternatively, high frequency power may be supplied in parallel from a common high frequency power source 42.
 各アンテナ30は、図1、図2、図6を参照して上述したいずれの構成でも良い。 Each antenna 30 may have any of the configurations described above with reference to FIGS.
 可変インピーダンス52は、図7に示すような可変インダクタンスでも良いし、可変コンデンサ(可変キャパシタンス)でも良いし、両者を混在させても良い。可変インダクタンスを挿入することによって、給電回路のインピーダンスを増大させることができるので、高周波電流が流れ過ぎるアンテナ30の電流を抑えることができる。可変コンデンサを挿入することによって、誘導性リアクタンスが大きい場合に容量性リアクタンスを増大させて、給電回路のインピーダンスを低下させることができるので、高周波電流が流れにくいアンテナ30の電流を増加させることができる。 The variable impedance 52 may be a variable inductance as shown in FIG. 7, a variable capacitor (variable capacitance), or a mixture of both. By inserting the variable inductance, it is possible to increase the impedance of the power feeding circuit, and thus it is possible to suppress the current of the antenna 30 through which a high-frequency current flows excessively. By inserting a variable capacitor, when the inductive reactance is large, the capacitive reactance can be increased and the impedance of the power feeding circuit can be decreased. Therefore, the current of the antenna 30 in which high-frequency current hardly flows can be increased. .
 図7に示す例の場合は、互いに並列に配置され、かつ並列に高周波電力が供給される複数のアンテナ30を備えているので、より大面積のプラズマを生成することができる。しかも、前記作用によって、各アンテナ30の電位を低く抑えることができると共に、各アンテナ30の長手方向Xにおけるプラズマ密度分布を制御することができる。更に、各アンテナ30に可変インピーダンス52を介在させていて、当該可変インピーダンス52によって複数のアンテナ30に流れる高周波電流のバランスを調整することができるので、複数のアンテナ30の並列方向Yにおけるプラズマ密度分布をも制御することができる。その結果、プラズマの電位を低く抑えることができ、しかもより大面積でかつプラズマ密度分布の均一性の良いプラズマを生成することが可能になる。 In the case of the example shown in FIG. 7, since a plurality of antennas 30 are arranged in parallel with each other and high-frequency power is supplied in parallel, a plasma with a larger area can be generated. In addition, the potential of each antenna 30 can be kept low by the above action, and the plasma density distribution in the longitudinal direction X of each antenna 30 can be controlled. Furthermore, since the variable impedance 52 is interposed in each antenna 30 and the balance of the high-frequency current flowing through the plurality of antennas 30 can be adjusted by the variable impedance 52, the plasma density distribution in the parallel direction Y of the plurality of antennas 30 can be adjusted. Can also be controlled. As a result, the plasma potential can be kept low, and it is possible to generate a plasma with a larger area and a better plasma density distribution.
 上記例は、いずれも、真空容器4内において基板2を移動させずに固定しておいて処理を施す場合の例であるが、図8に示す例のように、真空容器(図示省略)内において基板2を、基板搬送装置54によって、矢印F(またはその逆方向)に示すように、アンテナ30の長手方向Xと交差(例えば直交)する方向に、即ちY方向に沿う方向に搬送しながら、基板2に処理を施すようにしても良い。そのようにすると、プラズマ50のX方向における均一性はアンテナ30の上記構成によって高めることができ、かつ基板搬送によってプラズマ50のY方向における均一性はあまり問題にならなくなるので、大面積の基板2に均一性良く処理を施すことが可能になる。また、複数枚の基板2を連続的に処理することも可能になる。この場合のアンテナ30は、図1、図2、図6を参照して上述したいずれの構成でも良い。また、この基板2を搬送する思想と、図7に示した複数のアンテナ30を並列配置する思想とを併用しても良い。 Each of the above examples is an example in the case where the substrate 2 is fixed without moving in the vacuum vessel 4 and the process is performed. However, as in the example shown in FIG. , While the substrate 2 is being conveyed by the substrate conveying device 54 in a direction crossing (for example, orthogonal to) the longitudinal direction X of the antenna 30, that is, in a direction along the Y direction, as indicated by an arrow F (or the opposite direction). The substrate 2 may be processed. By doing so, the uniformity of the plasma 50 in the X direction can be enhanced by the above-described configuration of the antenna 30, and the uniformity of the plasma 50 in the Y direction does not become a significant problem due to the substrate transport. Can be processed with good uniformity. It is also possible to process a plurality of substrates 2 continuously. The antenna 30 in this case may have any configuration described above with reference to FIGS. Further, the idea of conveying the substrate 2 and the idea of arranging the plurality of antennas 30 shown in FIG. 7 may be used in combination.
 2 基板
 4 真空容器
 24 ガス
 30 アンテナ
 31、32 往復導体
 42 高周波電源
 50 プラズマ
 52 可変インピーダンス
2 Substrate 4 Vacuum container 24 Gas 30 Antenna 31 and 32 Reciprocating conductor 42 High frequency power supply 50 Plasma 52 Variable impedance

Claims (3)

  1.  平面形状が実質的にまっすぐなアンテナに高周波電流を流すことによって真空容器内に誘導電界を発生させてプラズマを生成し、当該プラズマを用いて基板に処理を施す誘導結合型のプラズマ処理装置であって、
     前記アンテナを、前記基板の表面に立てた垂線に沿う方向に互いに接近して配置されていて、前記高周波電流が互いに逆向きに流される往復導体によって構成し、
     かつ前記往復導体の少なくとも一方の導体の幅を、前記アンテナの長手方向において変化させていることを特徴とするプラズマ処理装置。
    This is an inductively coupled plasma processing apparatus for generating a plasma by generating an induction electric field in a vacuum vessel by flowing a high-frequency current through an antenna having a substantially straight planar shape, and processing the substrate using the plasma. And
    The antenna is arranged close to each other in a direction along a vertical line standing on the surface of the substrate, and is constituted by a reciprocating conductor in which the high-frequency currents flow in opposite directions,
    The plasma processing apparatus is characterized in that the width of at least one of the reciprocating conductors is changed in the longitudinal direction of the antenna.
  2.  前記往復導体の前記プラズマとは反対側の導体の幅を、前記アンテナの長手方向における中央部の幅よりも両端部の幅を小さくしている請求項1記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the width of the conductor on the side opposite to the plasma of the reciprocating conductor is smaller than the width of the central portion in the longitudinal direction of the antenna.
  3.  前記アンテナを複数備えていてこれらは互いに並列に配置されており、
     当該各アンテナにそれぞれ直列に接続された可変インピーダンスを介して、当該複数のアンテナに、共通の高周波電源から高周波電力を並列に供給するように構成している請求項1または2記載のプラズマ処理装置。
    A plurality of the antennas, which are arranged in parallel with each other;
    3. The plasma processing apparatus according to claim 1, wherein high-frequency power is supplied in parallel from a common high-frequency power source to the plurality of antennas via a variable impedance connected in series to each of the antennas. .
PCT/JP2011/003618 2011-06-24 2011-06-24 Plasma processing device WO2012176242A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/003618 WO2012176242A1 (en) 2011-06-24 2011-06-24 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/003618 WO2012176242A1 (en) 2011-06-24 2011-06-24 Plasma processing device

Publications (1)

Publication Number Publication Date
WO2012176242A1 true WO2012176242A1 (en) 2012-12-27

Family

ID=47422126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003618 WO2012176242A1 (en) 2011-06-24 2011-06-24 Plasma processing device

Country Status (1)

Country Link
WO (1) WO2012176242A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317299A (en) * 1998-02-17 1999-11-16 Toshiba Corp High frequency discharge method, its device, and high frequency processing device
WO2001088221A1 (en) * 2000-05-17 2001-11-22 Ishikawajima-Harima Heavy Industries Co., Ltd. Plasma cvd apparatus and method
JP2005285564A (en) * 2004-03-30 2005-10-13 Mitsui Eng & Shipbuild Co Ltd Plasma treatment device
JP2007165410A (en) * 2005-12-09 2007-06-28 Mitsubishi Heavy Ind Ltd Electrical discharge electrode, thin film manufacturing device, and manufacturing method of solar battery
JP2009238898A (en) * 2008-03-26 2009-10-15 Mitsui Eng & Shipbuild Co Ltd Plasma processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317299A (en) * 1998-02-17 1999-11-16 Toshiba Corp High frequency discharge method, its device, and high frequency processing device
WO2001088221A1 (en) * 2000-05-17 2001-11-22 Ishikawajima-Harima Heavy Industries Co., Ltd. Plasma cvd apparatus and method
JP2005285564A (en) * 2004-03-30 2005-10-13 Mitsui Eng & Shipbuild Co Ltd Plasma treatment device
JP2007165410A (en) * 2005-12-09 2007-06-28 Mitsubishi Heavy Ind Ltd Electrical discharge electrode, thin film manufacturing device, and manufacturing method of solar battery
JP2009238898A (en) * 2008-03-26 2009-10-15 Mitsui Eng & Shipbuild Co Ltd Plasma processing device

Similar Documents

Publication Publication Date Title
JP4844697B1 (en) Plasma processing equipment
JP5747231B2 (en) Plasma generating apparatus and plasma processing apparatus
US7880392B2 (en) Plasma producing method and apparatus as well as plasma processing apparatus
KR101867147B1 (en) Plasma processing apparatus
JP2010225296A (en) Inductively coupled antenna unit and plasma processing device
JP5969856B2 (en) Sputtering equipment
JP2017033788A (en) Plasma processing apparatus
WO2011058608A1 (en) Plasma processing apparatus
TWI770144B (en) Plasma processing device
JP2012133899A (en) Plasma processing device
JP5018994B1 (en) Plasma processing equipment
JP2013134836A (en) Plasma processing apparatus
JP2013020871A (en) Plasma processing apparatus
WO2013099366A1 (en) Plasma processing device
JP6431303B2 (en) Etching apparatus and etching method
WO2012176242A1 (en) Plasma processing device
JP2013131295A (en) Plasma processing apparatus
JP5447725B1 (en) Plasma processing equipment
JP2016149287A (en) Plasma processing apparatus
KR100603286B1 (en) Antenna having multiple central axix and inductively coupled plasma generating apparatus applying the same
JP2017228422A (en) Plasma generating device
JP2012226888A (en) Plasma processing apparatus
TW202330969A (en) Sputtering apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP