WO2012175328A1 - Installation de turbine à vapeur, comprenant une turbine à vapeur et un mécanisme d'entraînement en rotation d'un arbre de rotor de turbine lors du démarrage de la turbine - Google Patents

Installation de turbine à vapeur, comprenant une turbine à vapeur et un mécanisme d'entraînement en rotation d'un arbre de rotor de turbine lors du démarrage de la turbine Download PDF

Info

Publication number
WO2012175328A1
WO2012175328A1 PCT/EP2012/060565 EP2012060565W WO2012175328A1 WO 2012175328 A1 WO2012175328 A1 WO 2012175328A1 EP 2012060565 W EP2012060565 W EP 2012060565W WO 2012175328 A1 WO2012175328 A1 WO 2012175328A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
steam
rotor shaft
steam turbine
rotor
Prior art date
Application number
PCT/EP2012/060565
Other languages
German (de)
English (en)
Inventor
Frank EIDNER
Ingo GLEISNER
Max HEINRICH
Marco HERKERT
Gustl SCHREIBER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2012175328A1 publication Critical patent/WO2012175328A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/026Shaft to shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator

Definitions

  • Steam turbine plant comprising a steam turbine and a rotating device for the rotary drive of a turbine rotor shaft at turbine start
  • the present invention relates to a steam turbine plant, comprising a steam turbine with a turbine rotor shaft and a controllable rotating device for rotationally driving the turbine rotor shaft at an operating start and / or Massiven ⁇ de the steam turbine.
  • Rotary power of a turbine rotor The turbine runner is rotatably accommodated for this purpose in a turbine housing through which steam flows and is generally equipped with a large number of rotor blade rings which, in combination with stationary stationary blade rings arranged in mesh therewith, effect the energy conversion.
  • Flow through the turbine housing reduces the pressure and temperature of the steam.
  • the expanded steam is discharged at the end of the flow ⁇ path as "boil-off" and recycled usually by means of a capacitor, at least a condensate pump and egg nens steam heater, and (in a CLOSED ⁇ Senen steam-water circuit) again as fresh steam of the steam turbines ⁇ ne fed.
  • the steam turbine can z. B.
  • turbine rotor shaft refers to the entirety of turbine runners (within the steam- flow turbine housing) and the non-rotatably or navgekop ⁇ pelt associated with other system components (outside the steam-flow turbine housing).
  • the turbine rotor (“rotor of the turbine") forms only an axial section of the overall longer turbine rotor shaft, wherein further shaft sections are present outside of the steam-flow turbine housing.
  • the latter Wel ⁇ lenabitese are required to supply the rotational power of the turbine rotor a respective use, for example, to drive a pump, a compressor or an electric generator.
  • the latter shaft sections can, for. Example, be integrally connected to the located within the steam-flow turbine housing shaft portion, or be connected by one or more non-rotatable connections (eg., Screwed flange). If a work machine to be driven by the steam turbine (eg electrical generator) is not to be operated directly with the rotational speed of the turbine runner , then a suitable speed-changing transmission is to be arranged in the drive train formed by the turbine runner shaft. In this case, z. B. a running from the output of the transmission to the working machine to ⁇ drive shaft a rotationally coupled to the turbine rotor Anla ⁇ genkomponente and thus a portion of the "turbine rotor shaft" in the context of the invention.
  • a clutch can be seen ⁇ to temporarily interrupt the transmission of rotational power from the turbine rotor to the machine can.
  • the turbine rotor rotates at a speed of typically a few thousand rpm.
  • so-called “gearless machines” corresponds to the speed of the turbine rotor to be supplied by the electric generator power frequency, ie z. 3,000 rpm (for a mains frequency of 50 Hz) or 3,600 rpm (for 60 Hz).
  • so-called gear machines regardless of this frequency to be generated be operated electric current. These machines typically have higher speeds, for example in the range of about 4,500 to 7,000 rpm.
  • Rotary device disadvantageously, however, often lead to an unfavorable force introduction into the turbine rotor shaft and / or to a complication of the system design.
  • the turning device can except or at an operating start of the steam turbine alternatively or additionally at a
  • the rotating means is an electric motor whose rotor is formed by a shaft portion of the Turbinenexrwel ⁇ le, wherein the stator of the electric motor surrounds the rotor at its outer periphery. According to a preferred use of the rotating device, this is activated both at the start of operation and at the end of operation of the turbine.
  • the invention can be realized structurally simple and has a high reliability. Apart from the already rotating turbine rotor shaft, advantageously no further moving components are required for the realization of the rotating device. In addition, a wear is advantageously avoided, as it may arise in known mechanically coupled rotating devices. Also, the solution of the invention does not require the use of significant amounts of oil as in the known rotating device based on an oil-driven Pelton wheel.
  • the steam turbine plant comprises egg ⁇ nen from the steam turbine via the turbine rotor shaft navan- driven electrical generator for generating electrical energy.
  • the steam turbine plant may comprise another type of work machine which is driven via the turbine rotor shaft.
  • the rotor of the electric motor forming shaft portion of the turbine rotor shaft outside of a steam flowing through Turbi ⁇ nengephaseuses the steam turbine is provided.
  • this shaft portion between the steam turbine and ei ⁇ ner thereof rotationally driven via the turbine rotor shaft the driven machine (z. B. electric generator) may be provided.
  • each electric motor based on the ⁇ together men strict of magnetic fields that are generated on the one hand of "rotor magnet” and the other part of “stator".
  • the terms “rotor magnet” and “stator magnet” are very broad meaning here, so including only “Perma ⁇ nentmagnete” fall by no means, but in particular magnetic coils or a plurality of magnetic coils formed magnetic coils, is irrelevant whether the of such turns or Coils generated magnetic field is caused by active current or by an induced current.
  • rotor magnets of the electric motor are designed as permanent magnets or as short-circuited magnetic coils or magnetic coils. This advantageously eliminates the need for a supply of electric current to the respective shaft section of the turbine rotor shaft, or a "commutator".
  • stator magnets of the electric motor before Trains t ⁇ as magnetic coils to generate a rotating magnetic field formed in the simplest case is considered as an exaggerated navstrombe- arrangement of three in the circumferential direction by 120 ° to each other arranged magnet coils.
  • the electric motor can thus be designed in particular as a so-called asynchronous motor with squirrel cage.
  • the invention will be further described below with reference to two embodiments ⁇ examples with reference to the accompanying drawings. They show:
  • Fig. 1 is a schematic longitudinal sectional view of a
  • Fig. 2 shows a detail (rotating device) of Fig. 1, but according to a modified embodiment.
  • Fig. 1 shows a steam turbine plant, comprising a steam turbine ⁇ 10, which is coupled via a turbine rotor shaft 12 with a rotary driven work machine 14.
  • Steam turbine plant further comprises a controllable Drehein ⁇ direction 16 for rotational driving of the turbine rotor shaft 12 at a start of operation or an end of operation ("shutdown") of the steam turbine.
  • the turbine 10 includes a turbine housing 18 having a turbine runner 20 rotatably mounted therein about an axial axis A. Rotor blades 22 are secured to the circumference of the turbine runner 20 and cooperate with stationary vanes 24 mounted in the turbine housing 18 in operation of the turbine 10; in order to convert energy from supplied steam into mechanical rotational energy of the turbine rotor shaft 12 during a steam flow.
  • the arrows ⁇ is recorded in Fig. 1 illustrate this steam flow from a steam inlet 26 to an exhaust vapor outlet 28th
  • the pivot bearing of the turbine rotor shaft 12 is accomplished in Darge ⁇ presented embodiment by means of a thrust bearing 30, a first radial bearing 32 and a second radial bearing 34. Furthermore, one recognizes in Fig. 1, a first bearing housing 36, a second bearing housing 38 and
  • the turbine rotor shaft 12 extends in the axial direction over the entire area of the steam turbine installation shown in FIG. 1, ie, starting from the area of the first bearing housing 36 over the area of the steam-flow turbine housing 18 and the area of the second bearing housing 38 into the area of the work machine 14, the here z. B. is designed as an electrical generator for generating electrical energy. From the working machine 14 of the
  • the turbine runner 20 thus forms a part of the turbine rotor shaft 12, namely the shaft portion of the Turbi ⁇ nenexrwelle 12 located in axial direction in the region of the turbine housing 18th
  • the turbine rotor shaft is composed of several parts.
  • a flange connection 50 eg. B. bolted flange
  • Fig. 1 by means of which as separate pieces gefer ⁇ preferential shaft portions of the turbine rotor shaft 12 in the ones shown, easily assembled state are joined together.
  • control device ST is used to control the operation of the steam turbine 10, in particular for STEU ⁇ tion or control of the live steam supply at the inlet 26 and other controllable system components, the z. B. in connection with the (not shown) steam treatment can be used to reprocess the effluent at the outlet 28 exhaust steam and supply live steam again at the inlet 26.
  • control device ST controls the operation of the rotary device 16 described in more detail below, by means of which, when the turbine 10 starts operating, the turbine Rotor shaft 12 is set in rotation or the start-up of the turbine 10 is supported.
  • the rotating device 16 is an electric motor whose rotor 52 is formed by a shaft portion 56 of the turbine rotor shaft 12 which is fitted with rotor magnets 54, the stator 58 of the electric motor being formed by stator magnets 62 mounted in a stator housing 60 and surrounding the rotor 52 at its outer periphery.
  • the rotor magnets 54 are provided as permanent magnets (adhered z. B. or raised ⁇ screwed) on the outer circumference of the Wel ⁇ lenabiteses 56 are attached. In a simple case, for. B. three rotor magnet 54 in the circumferential direction evenly distributed (in
  • stator ⁇ magnets 62 are formed in the illustrated embodiment as ak ⁇ tively energizable solenoids. In a simple case, it is again three circumferentially evenly distributed magnets.
  • the control device ST initiates energization of the stator magnet 62 in order to generate a rotating magnetic field in order to bring about or assist in starting up the turbine 10.
  • the rotation field generation in response to the current angle of rotation of the rotor is suitable to control.
  • This control can se in a known per se WEI are betechnik ⁇ stelligt by a so-called electronic commutation. It is then a synchronous motor.
  • rotary operation of the turbine 10 in which the Drehein ⁇ direction 16 is activated, can also be used advantageously in a shutdown of the turbine 10, such as to prevent a distortion of the turbine rotor 20.
  • the same reference numbers are used for equivalent components, in each case supplemented by a small letter "a” to distinguish the embodiment.
  • Fig. 2 shows a modified embodiment of a z.
  • rotatable means 16a which is also designed as an electric motor, where ⁇ is formed at the rotor 52a of the electric motor by a shaft portion 56a with circumferentially arranged rotor magnet 54a and the stator 58a of the electric motor of in a Statorge ⁇ housing 60a accommodated stator 62a is formed.
  • is formed at the rotor 52a of the electric motor by a shaft portion 56a with circumferentially arranged rotor magnet 54a and the stator 58a of the electric motor of in a Statorge ⁇ housing 60a accommodated stator 62a is formed.
  • a magnetic rotating field is generated again by means of the stator magnets 62a.
  • ⁇ for the rotor magnets 54a are vorgese ⁇ hen as short-circuited Mag ⁇ netwindungen in the form of a so-called squirrel-cage rotor.
  • the rotary device 16a is a squirrel-cage three-phase asynchronous motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

L'invention concerne une installation de turbine à vapeur, qui comprend une turbine à vapeur (10) ayant un arbre de rotor de turbine (12) et un mécanisme d'entraînement (16) actionnable destiné à entraîner en rotation l'arbre de rotor de turbine (12) lors de la mise en marche de la turbine à vapeur (10). Selon l'invention, le mécanisme d'entraînement (16) est un moteur électrique dont le rotor (52) est formé par un segment (56) de l'arbre de rotor de turbine (12) et dont le stator (58) entoure le rotor (52) sur sa circonférence extérieure. On obtient ainsi une possibilité simple du point de vue de la structure, fiable et peu susceptible d'usure pour entraîner en rotation l'arbre de rotor de turbine (12) lors de la mise en marche de la turbine.
PCT/EP2012/060565 2011-06-20 2012-06-05 Installation de turbine à vapeur, comprenant une turbine à vapeur et un mécanisme d'entraînement en rotation d'un arbre de rotor de turbine lors du démarrage de la turbine WO2012175328A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011077805.5 2011-06-20
DE102011077805 2011-06-20

Publications (1)

Publication Number Publication Date
WO2012175328A1 true WO2012175328A1 (fr) 2012-12-27

Family

ID=46210251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/060565 WO2012175328A1 (fr) 2011-06-20 2012-06-05 Installation de turbine à vapeur, comprenant une turbine à vapeur et un mécanisme d'entraînement en rotation d'un arbre de rotor de turbine lors du démarrage de la turbine

Country Status (1)

Country Link
WO (1) WO2012175328A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204006A1 (de) 2013-03-08 2014-09-11 Siemens Aktiengesellschaft Diffusoranordnung für ein Abdampfgehäuse einer Dampfturbine, sowie damit ausgestattete Dampfturbine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185311A (ja) * 1992-12-16 1994-07-05 Hitachi Ltd 発電設備の速度制御方式
JP2004218532A (ja) * 2003-01-15 2004-08-05 Toshiba Corp ガスタービンプラントおよびその運転方法
EP1591628A1 (fr) * 2004-04-30 2005-11-02 Siemens Aktiengesellschaft Centrale combinée et méthode de refroidissement de ladite centrale
US20070200351A1 (en) * 2006-02-07 2007-08-30 Masakazu Miyagi Plant facility
WO2008098894A1 (fr) * 2007-02-14 2008-08-21 Alstom Technology Ltd Centrale électrique comportant un consommateur et procédé de fonctionnement associé
US20090277400A1 (en) * 2008-05-06 2009-11-12 Ronald David Conry Rankine cycle heat recovery methods and devices
DE202009011512U1 (de) * 2009-08-24 2010-02-11 Semcon München GmbH Vorrichtung zur Energiegewinnung im Abgaskreislauf eines Verbrennungsmotors
JP2011106316A (ja) * 2009-11-16 2011-06-02 Ihi Corp 回転機の熱回収システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185311A (ja) * 1992-12-16 1994-07-05 Hitachi Ltd 発電設備の速度制御方式
JP2004218532A (ja) * 2003-01-15 2004-08-05 Toshiba Corp ガスタービンプラントおよびその運転方法
EP1591628A1 (fr) * 2004-04-30 2005-11-02 Siemens Aktiengesellschaft Centrale combinée et méthode de refroidissement de ladite centrale
US20070200351A1 (en) * 2006-02-07 2007-08-30 Masakazu Miyagi Plant facility
WO2008098894A1 (fr) * 2007-02-14 2008-08-21 Alstom Technology Ltd Centrale électrique comportant un consommateur et procédé de fonctionnement associé
US20090277400A1 (en) * 2008-05-06 2009-11-12 Ronald David Conry Rankine cycle heat recovery methods and devices
DE202009011512U1 (de) * 2009-08-24 2010-02-11 Semcon München GmbH Vorrichtung zur Energiegewinnung im Abgaskreislauf eines Verbrennungsmotors
JP2011106316A (ja) * 2009-11-16 2011-06-02 Ihi Corp 回転機の熱回収システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204006A1 (de) 2013-03-08 2014-09-11 Siemens Aktiengesellschaft Diffusoranordnung für ein Abdampfgehäuse einer Dampfturbine, sowie damit ausgestattete Dampfturbine

Similar Documents

Publication Publication Date Title
EP1711690B1 (fr) Turbine a gaz, notamment groupe motopropulseur
EP2467600B1 (fr) Éolienne et procédé de commande du fonctionnement d'une éolienne
EP2981709B1 (fr) Procédé d'arrêt d'une éolienne et éolienne permettant la mise en oeuvre de ce procédé
EP3714535B1 (fr) Machine électrique avec sécurité de fonctionnement améliorée
EP1367257A2 (fr) Eolienne avec écran protecteur
EP1694944A1 (fr) Turbine a gaz, notamment groupe motopropulseur
DE102009018361B4 (de) Anordnung zur Pitchwinkel-Verstellung mindestens eines Rotorblatts und Maschine, insbesondere Windkraftanlage
EP2441166A1 (fr) Procédé et agencement pour le fonctionnement vireur d'un turbogénérateur
AT511720A4 (de) Energiegewinnungsanlage
WO1999028599A1 (fr) Turbogenerateur a paliers et soupapes lubrifies par eau
DE102007050496A1 (de) Generator mit Multistator und Multirotor
DE202011001111U1 (de) System zur Kopplung von Rankine-Prozessen an Verbrennungsmotoren und Gasturbinen
WO2000074210A1 (fr) Machine synchrone
WO2012175328A1 (fr) Installation de turbine à vapeur, comprenant une turbine à vapeur et un mécanisme d'entraînement en rotation d'un arbre de rotor de turbine lors du démarrage de la turbine
WO2008064791A2 (fr) Dispositif d'entraînement électrique
EP2295733A1 (fr) Centrale et procédé de fonctionnement d'une centrale
DE102008029377B4 (de) Vorrichtung für eine Wind- oder Wasserkraftanlage zur Erzeugung elektrischer Energie
EP3093452A1 (fr) Train de turbomachines et procédé de fonctionnement d'un train de turbomachines
EP2984738B1 (fr) Dispositif pour la production d'energie electrique
DE102011008027A1 (de) Verfahren zur Kopplung von Rankine-Prozessen an Verbrennungsmotoren und Gasturbinen
WO2010121586A2 (fr) Chaîne cinématique pour éolienne, nacelle d'éolienne, éolienne et parc d'éoliennes ainsi que conteneur standard
DE102011000420B4 (de) Turbo-Generator-Einheit
EP3740673A1 (fr) Module d'arrêt et de freinage d'une éolienne ainsi que générateur et éolienne munie dudit module
DE4306131A1 (de) Strömungsmaschine mit Verstellpropeller
EP3807517B1 (fr) Turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12726097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12726097

Country of ref document: EP

Kind code of ref document: A1