WO2012174855A1 - 基于计算机网络的百万道级新型数字地震仪 - Google Patents

基于计算机网络的百万道级新型数字地震仪 Download PDF

Info

Publication number
WO2012174855A1
WO2012174855A1 PCT/CN2012/000831 CN2012000831W WO2012174855A1 WO 2012174855 A1 WO2012174855 A1 WO 2012174855A1 CN 2012000831 W CN2012000831 W CN 2012000831W WO 2012174855 A1 WO2012174855 A1 WO 2012174855A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
module
node
acquisition
power
Prior art date
Application number
PCT/CN2012/000831
Other languages
English (en)
French (fr)
Inventor
郭建
刘光鼎
徐善辉
刘宁
Original Assignee
中国科学院地质与地球物理研究所
北京吉奥菲斯科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所, 北京吉奥菲斯科技有限责任公司 filed Critical 中国科学院地质与地球物理研究所
Priority to EP12803240.6A priority Critical patent/EP2725387A4/en
Priority to US13/877,613 priority patent/US20130188455A1/en
Publication of WO2012174855A1 publication Critical patent/WO2012174855A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements

Definitions

  • the present invention relates to a seismograph, and more particularly to a novel million-level digital seismograph based on a computer network.
  • High-precision digital seismographs are used to record artificial or natural seismic signals, and then to find geological exploration instruments for oil, gas, coal and other mineral resources based on the records of these seismic signals, and can be used to detect the internal structure of the Earth, Conduct engineering and geological disaster prediction. Seismic exploration is still the main means of oil and gas exploration on land and sea. It is also an important exploration method for other mineral resources, and is widely used in the study of internal structure of the earth, engineering exploration and detection, and prediction of geological disasters.
  • the basic method is to embed thousands or even tens of thousands of seismic wave sensors (ie geophones) on the ground in the exploration target area, and then use explosives or vibrators to stimulate artificial earthquakes. Seismic waves propagate deep into the ground, and reflections are formed at the interface of different types of strata. The geophone picks up the reflected waves and converts them into analog electric signals, which are then converted by high-precision digital seismographs. Record the digital signal.
  • a large amount of data received by field exploration can be used to obtain clear and reliable images of underground structures by using high-speed computers in the room for complex signal processing and inversion calculations, and finally determine the location and depth of mineral resources.
  • a wired telemetry seismometer is characterized by the complete transmission of instructions and transmission of acquisition data by the cable system. It has a dominant position in current field applications and accounts for the majority of the world's seismograph market.
  • Serve's 408/428 series, ION's Scorpion and Aries systems, and WesternGeco's Uni Q system are commonly used.
  • the seismic acquisition system can be divided into three parts: the picking up of seismic signals (geostatic detectors), the transmission of seismic signals, and the recording and storage of seismic signals.
  • the main 24 telemetry seismographs at home and abroad can be divided into three categories: wired telemetry seismographs, wireless telemetry seismographs, and stored data recovery remote seismographs. Among these three types of telemetry seismographs, wired telemetry seismographs still dominate, occupying the vast majority of the world market.
  • France Sercel is a professional company engaged in the development of seismic instruments by CGG Holdings, with more than 50 years of experience in seismic instrument manufacturing.
  • Typical onshore seismic instruments are: SN338, SN368, SN388 and the 400 series currently in widespread use.
  • the 408U is a network seismograph launched by Sercel in the exploration market in the late 1990s. It uses the structure of the acquisition chain to integrate the station and cable.
  • the 408UL system is the first to introduce the concept of a seismic regional network. The core idea is to calculate The machine network node concept was introduced into the telemetry seismograph system to make the telemetry instrument system a computer network.
  • the host recording system, LAUL, and LAUX act as network nodes, and complete control and management with system software.
  • the 408UL large-line data transmission rate is 8. 192MHz
  • the cross-line teaching rate is 16. 384 MHz, the large-line real-time transmission of 1000 channels under the 2ms sampling rate, and the cross-line transmission of 2000 channels in real time.
  • the 428XL has a significant improvement in the host system and data transmission structure.
  • the host structure adopts the server I client mode, and its large-line data transmission rate is 16.384 MHz, and the single-track capability reaches 2000 channels / 2 ms. It is 10,000 channels / 2ms.
  • ION is also an internationally renowned manufacturer of geophysical equipment such as seismic instruments, vibrators, geophones, and excitation source synchronization systems. In the 1980s, it began to get involved in the manufacture of seismic instruments. The system - 1 and system - ⁇ instruments introduced at that time were well received by users. ION attaches great importance to advanced research of products. In recent years, it has taken the lead in introducing 24-bit A/D seismic instruments, and Vectorseis digital detectors (MEMS), which have revolutionized seismic instruments twice.
  • MEMS Vectorseis digital detectors
  • the onshore seismic instruments produced by ION mainly include the Scorpion and Aries systems. In 2010, I0N's onshore instrument division merged with PetroChina Eastern Geophysical Corporation (BGP) to form a new company, IN0VA.
  • the hardware part of the million-channel new digital seismograph based on the computer network is composed of seven major units: a central control operating system CCOS (Central Control Operation System), a root node RU (Root Unit), and a network node.
  • CCOS Central Control Operation System
  • Root Unit Root Unit
  • NU Network Unit
  • PU Power Unit
  • Acquisition String Fiber Line
  • Network Line where the central control system CCOS is the control center of the entire instrument. And the data recovery center and the root node RU are the connection interfaces of the central control operating system CCOS and the field device; the plurality of network nodes NU are connected in series by the optical cable FL to form a network node chain NUS (Network Unit String), and the root node RU is connected with one or more pieces.
  • the network node chain NUS is connected to the network node NU by any one of the power supply nodes PU and the collection chain AS.
  • the field device includes a network node NU, a power node PU, an acquisition chain AS, and an optical cable FL.
  • the central control operating system CCOS is connected through the root node RU.
  • the network node NU is connected in series by the optical cable FL to one or more network node chains NUS, and the power node PU and the acquisition chain AS are connected in series to form any one of the power nodes PU on the collection line AL and then connected to the network through a 100M network line NL.
  • Node NU It fully considers the data transmission characteristics of the million-channel digital seismograph, and uses different computer networks to meet different data transmission requirements. In the best configuration of cost, power consumption, etc., the computer network has been fully utilized to realize the unique million-level seismic acquisition instrument architecture.
  • the network node U and the power node PU are connected through a special network cable NL, so that the network node NU in the network node chain US can be connected to any power node PU on the collection line AL, which can greatly improve the deployment of the field collection device. flexibility.
  • the central control operating system CCOS is placed on the instrument car.
  • the central control operating system CCOS (see Figure 2) is mainly to achieve human-computer interaction, alignment control, acquisition synchronization, data recovery, quality control functions; central control operating system CCOS (-like placed on the instrument car) is the whole
  • the main control unit of the digital seismograph, the hardware part is mainly composed of the computer server Serve network switch Switch, the client computer terminal PC, the storage device Storage device, the drawing device Plotting equipment and the GPS; wherein the network switch Switch ⁇ is connected to the storage device Storage device, the drawing device Plotting equipmen connects the GPS computer server Server and multiple parallel client computer terminals PC, and the computer server Server connects to the root node RU;
  • the software is mainly composed of operating system software and control operation software; the root node RU and the central control operating system CCOS Connected through a 10 Gigabit network cable or multiple bonded Gigabit Ethernet cables.
  • the root node RU is composed of a high-speed switching module SM (Switch module).
  • the control module CM Control module.
  • the excitation source control interface module ICES Interface to control explosive source
  • Power module PM Power module
  • auxiliary channel interface module IAC Interface for auxiliary channels
  • GPS module GPS module
  • the root node RU is connected to the central control operating system CCOS through a 10 Gigabit network cable or multiple bound Gigabit network cables, and provides 2-10 Gigabits according to the requirements of the instrument capacity.
  • the optical cable interface is connected with the field node chain NUS and other field ground equipment; the high speed switching module SM (Switch module) provides the data exchange function; the control module CM implements the high speed switching module SM and the excitation source control interface module ICES according to the instruction of the central control operating system CCOS. And control of the auxiliary channel interface module IAC; the power module PM provides power support for each module. (See Fig. 3) wherein: the control module CM is respectively connected to the high speed switching module SM, the excitation source control interface module ICES, the power module PM, the auxiliary channel interface module IAC and the GPS module.
  • the idle switching module SM uses different configurations in different ways: for example, in the case of 1 million channels, it is connected to the central control operating system CC0S through a 10 Gigabit network cable, and provides 10 Gigabit optical cable interfaces and network node chains. In the case of 200,000 channels, the US ground equipment is connected to the central control system CC0S through two bundled Gigabit Ethernet cables, and two Gigabit optical cable interfaces are provided to connect with field devices such as the network node chain NUS.
  • the rest of the analogy analog control module CM controls the high-speed switching module SM, the excitation source control interface module ICES, and the auxiliary channel interface module IAC according to the instruction of the central control operating system CC0S; the power module PM provides power support for each module.
  • the data flow of the seismic instrument is determined by the number of acquisition channels and the sampling rate. We calculate the sampling rate of 1 million channels and 2ms. Real-time data traffic for millions of digital seismographs.
  • the root node RU can basically meet the sampling rate of 1 million channels and 2ms when connecting to the central control operating system CC0S and 10 Gigabit optical cable interfaces through a 10 Gigabit network cable and the field node chain US and other field devices. The need for seismograph data transfer.
  • the network node M3 is composed of a high-speed switching module SM, a control module CVU power module PM, and a GPS module;
  • the data switching module SM is a 100 Mbps/Gigabit switch module, and the Gigabit interfaces are respectively connected to the upper-level network node NU and the lower
  • the primary network node NU, the 100M interface is connected to the power node PU;
  • the network node NU has two power supply modes: one is to directly connect the battery to the battery; the other is to be powered by the power node PU through the network cable NL connection. (See Fig. 4) wherein the control module CM is connected to the high speed switching module SM, the power module PM and the GPS module, respectively.
  • the network node chain brain is formed by several network nodes NU serially connected by the optical cable FL, and is connected with the root node RU and connected with the root node RU; the root node RU is connected with one or more network node chains NUS, forming
  • the data transmission of the million-channel digital seismograph system is the main network.
  • the power node PU is composed of a control module CM, a power module PM and a GPS module, etc.; the control module CM has a 100M interface connected to the network node NU through the network line NL, and can supply power to the network node NU through the (special) network cable NL.
  • the control module CM has two dedicated communication interfaces respectively connected to the upper and lower level acquisition chains ASO (see Fig. 5).
  • the control module CM is respectively connected to the power module PM and the GPS module, and the control module CM is also connected to the network.
  • the node NU and the acquisition chain ASO are optimized.
  • the acquisition line AL can be formed by the power supply node PU and the acquisition chain AS, the acquisition chain AS and the acquisition chain AS.
  • the power supply node PU on the acquisition line AL provides the collection stations AU on both sides. Power supply, the power supply capability of the power node PU determines the maximum number of acquisition stations between the two power supply nodes PU.
  • the power node PU raises the 12V voltage of the power supply battery to 4 ⁇ 72V to supply power to the collection station; due to line loss, the supply voltage of the collection station ranges from 24 to 72V. That is, in the system, the power node PU boosts the 12V voltage of the power supply battery to 48-72V to supply power to the collection station. Due to line losses, the supply voltage of the acquisition station ranges from 24-72V.
  • the optimization of the control mode may also use multiple network nodes NU in one network node chain US to connect with multiple power nodes PU on one acquisition line AL, or multiple network nodes in multiple network node chains NUS NU
  • the connection with multiple power supply nodes PU on one acquisition line AL increases the flexibility of the field collection device layout, and can increase the collection line AL data flow to increase the connection length of the acquisition line AL.
  • the collection station AU is mainly composed of a control module CM, a power module PM and a GPS module; the control module CM has two dedicated communication interfaces respectively connected to the upper level and the next level acquisition station AU, and has a dedicated interface for connecting the conventional detector.
  • the power supply is remotely supplied by the power node PU through the communication interface by the "ghost pair" mode, and the power module PM converts the supplied 24 ⁇ 72V into various voltages required by the acquisition station AU.
  • the acquisition station AU (Fig. 6) in the new digital seismograph consists of the control module CM, the power module PM and the GPS module.
  • the control module CM has two dedicated communication interfaces respectively connected to the upper and lower level acquisition stations AU, and has a dedicated interface for connecting sensors such as conventional detectors or MEMS.
  • the power supply is remotely supplied by the power node PU through the communication interface using the "ghost pair" mode.
  • the power module PM supplies the supplied 24-72V (since the line loss supply voltage will decrease with the distance of the power supply, the minimum supply voltage setting of the acquisition station) Converted to 24V) to the various voltages required for the acquisition station.
  • the acquisition chain AS is formed by a plurality of acquisition stations MJ (Acquisition Unit) connected by cables, and the acquisition station AU collects signals of the digital detectors, and performs communication and data transmission through a dedicated communication interface. That is to say, the acquisition chain AS in the seismograph is made up of several (Acquisition Units) for the convenience of the field (6 to 12), and the acquisition station AU collects the signals of the digital detector and passes the special signal.
  • the communication interface performs communication and data transfer.
  • the seismograph of the invention fully considers the data transmission characteristics of the million-channel digital seismograph, utilizes different computer networks to meet different data transmission requirements, and completes the host server and the root node RU by using a 10 Gigabit network.
  • Data transmission between the data base backbone of the field component is completed by using Gigabit fiber; data transmission between the acquisition line AL and the backbone network node NU is completed by using a 100-megabit cable; real-time data acquisition chain is realized by using a token-like network.
  • the difference with the current seismographs at home and abroad is that the computer network has been fully utilized to realize a unique million-level seismic acquisition instrument architecture, which has the characteristics of flexible layout in the field and convenient construction.
  • FIG. 1 is a schematic block diagram of a million-channel new digital seismograph based on a computer network of the present invention
  • FIG. 2 is a schematic block diagram of a seismograph central control operating system (CC0S) of the present invention
  • FIG. 3 is a seismograph root node (RU) of the present invention
  • Schematic block diagram
  • 4 is a schematic block diagram of a seismograph network node (NU) of the present invention
  • FIG. 5 is a schematic block diagram of a seismograph power supply node (PU) of the present invention
  • FIG. 6 is a schematic block diagram of a seismograph acquisition station (AU) of the present invention.
  • the novel million-channel digital seismograph based on computer network is characterized by fully considering the data transmission characteristics of a million-channel digital seismograph, and utilizes different computer networks to meet different data transmission requirements.
  • the mega fiber completes the data transmission of the data backbone network, and uses the 100 megabyte cable to complete the data transmission of the data secondary network.
  • the dedicated communication method is used to realize the real-time data transmission of the data acquisition chain, and the optimal configuration of cost and power consumption is achieved.
  • the difference with the current seismographs at home and abroad is that the computer network is fully utilized to realize a unique million-level seismic acquisition instrument architecture, and it has the characteristics of flexible layout in the field and convenient construction.
  • the invention is based on a computer network of a million-channel new digital seismograph, the hardware part of which is composed of seven units (see Figure 1): Central Control Operating System CCOS (Central Control Operation System) Root Node RU (Root Unit) , Network Unit U, Power Unit (PU), Acquisition String (AS), Fiber Line (FL), and Network Line (NL).
  • the root node book of the novel digital seismograph of the present invention (see FIG. 1) is a connection interface between the central control operating system CC0S and the field device (network node NU, power node PU, acquisition chain AS, optical cable FL, etc.), and the central control operating system CC0S.
  • multiple network nodes NU can be connected in series through the optical cable FL to form a network node string US (Network Unit String), and connected to the root node RU, the root node RU
  • One or more network node chains NUS can be connected.
  • the power supply node PU and the acquisition chain AS are connected in series to form an acquisition line AL (Acquisition Line), and any one of the power supply nodes PU on the acquisition line AL is connected to the network node U through a 100M network line NL.
  • the novel digital seismograph of the present invention The central control operating system CC0S (see Figure 2) is the control center and data recovery center of the entire instrument, which realizes functions of human-computer interaction, alignment control, acquisition synchronization, data recovery, quality control, etc.
  • Central Control Operating System CC0S-General In the instrument vehicle, it is the main control unit of the whole digital seismograph.
  • the hardware part is composed of computer server Server, network switch Switch, client computer terminal PC: storage device, mapping device Plotting equipment and GPS.
  • the software and control operation software are composed of.
  • the central control operating system CC0S is connected to the root node RU through a 10 Gigabit network cable or a plurality of bound Gigabit network cables.
  • the computer server Server can use two sets of Dawning PHPC100 high-performance computers, each of which is standard. Has 5 sets of PHPC100 computing module, 10 multi-core CPU, 160G memory, 5 146G SAS hard disks, and can realize 3+1 redundant power supply S.
  • the Switch uses a 12-port high-performance network switch, and the client computer terminal PC uses an industrial control-grade computer with a 2-inch LCD screen.
  • the disk array uses a 10T RAID5 small disk array, and the tape drive can use the IBM3590 tape drive.
  • the root node TO see FIG.
  • SM Switch module
  • CM Control module
  • ICES excitation source control interface module
  • PM Power module
  • auxiliary channel interface module IAC Interface for auxiliary channels
  • GPS module GPS module.
  • the idle switching module SM uses different configurations in different ways: For example, in the case of 1 million channels, a 12-port 10 Gigabit switch module is selected, and a 10 Gigabit network cable is connected to the central control operating system CC0S, and 10 are provided.
  • the Gigabit optical cable interface is connected to the field ground equipment such as the network node chain US; in the case of 200,000 channels, the Gigabit switch module with more than 4 ports is selected, and the two control Gigabit network cables are connected to the central control operating system CC0S.
  • Two Gigabit optical cable interfaces are connected to the field node equipment such as the network node chain NUS, and the remaining number of channels are analogized.
  • the control module CM can select the CPU with the IEEEPC protocol of PowerPC, and realize the high-speed switching module SM according to the instruction of the central control operating system CC0S.
  • the control of the excitation source control interface module ICES and the auxiliary channel interface module IAC; the power module PM provides power support for each module.
  • the data flow of the seismic instrument is determined by the number of acquisition channels and the sampling rate.
  • the network node NU (Fig. 4) in the novel digital seismograph of the present invention is composed of a high speed switching module SM, a control module CM, a power module PM and a GPS module.
  • the data exchange module SM is a 100 Mbps/Gigabit switch module, and the Gigabit interface is respectively connected to the upper-level network node U and the next-level network node ⁇ , and the 100-Mbps interface is connected to the power node PU.
  • the network node NU has two power supply modes: one for directly connecting the battery; the other is for the power supply node PU to be powered by a special network cable NL connection.
  • the control module CM can select a CPU with an IEEE1588 protocol such as PowerPC 8313.
  • the network node chain NUS (Fig. 1) in the novel digital seismograph of the present invention is formed by serially connecting a plurality of network nodes NU through an optical cable FL, and is connected to the root node RU.
  • the root node RU can connect one or more network node chains NUS to form a million Road-level digital seismograph system data transmission backbone.
  • the power node Hi (Fig. 1
  • the control module CM has a 100M interface connected to the network node NU through the network line NL, and can supply power to the network node NU through a special network line NL.
  • the control module C has two dedicated communication interfaces respectively connected to the upper and lower level acquisition chains AS.
  • the acquisition line AL (Fig. 1) in the novel digital seismograph of the present invention can be formed by any combination of the power supply node PU and the acquisition chain AS, the acquisition chain AS and the acquisition chain AS.
  • the power supply node PU on the acquisition line AL provides power supply to the collection stations AU on both sides, and the power supply capability of the power supply node PU determines the maximum number of acquisition stations between the two power supply nodes.
  • the power node raises the 12V voltage of the power supply battery to 48-72V to supply power to the collection station. Due to line losses, the supply voltage of the acquisition station ranges from 24-72V. In this system, the number of collection stations between two power stations is between 60 and 180.
  • the acquisition chain AS in the novel digital seismograph of the present invention is formed by several cables (commonly connected to the AlKAcquisition Unit for the convenience of field transportation), and the acquisition station AU collects the signal of the digital detector and passes the signal.
  • the acquisition station AU (® 6) in the novel digital seismograph of the present invention is composed of a control module CM, a power module PM and a GPS module.
  • the control module CM has two dedicated communication interfaces respectively connected to the upper and lower level acquisition stations AU, and has a dedicated interface for connecting sensors such as conventional detectors or EMS.
  • the power supply is supplied by the power supply node through the communication interface in a "ghost pair" mode.
  • the power supply module supplies the supplied 24-72V (since the line loss supply voltage will decrease with the distance of the power supply, the minimum supply voltage setting of the collection station) It is 24V) converted into various voltages required for the acquisition station AU.
  • the novel digital seismograph of the present invention uses the network node U and the power supply node PU to connect through a special network cable NL, so that the network node NU in the network node chain US can be connected to any power node PU on the acquisition line AL, which can greatly Provide flexibility in the deployment of field collection equipment.
  • a plurality of network nodes in a network node chain NUS may be connected to multiple power nodes PU on one acquisition line AL, or multiple network nodes NU in multiple network node chains NUS
  • a plurality of power nodes on the ⁇ line AL are connected to increase the flexibility of the field collection device layout, and can increase the data flow of the collection line AL to increase the connection length of the collection line AL.
  • Each collection line AL is 2000 collection stations, requiring a total of 500 acquisition lines AL (field measurements);
  • the root node RU connects 10 optical cables, that is, 10 network node chains NUS.
  • Each network node chain NUS is connected in series with 50 network nodes NU, and 50 acquisition lines AL are connected.
  • the data flow of each network node chain NUS is lGb/s: The data flow of the network node chain-the number of acquisition lines X channels/ Line X sample points / second X bits / sample points
  • each acquisition chain AS to 10 acquisition stations AU, and connect 10 acquisition chains AS (100 acquisition stations AU) between the two power supply nodes.
  • Each acquisition line AL requires 20 power supply nodes PU. 2000 collection stations AU provide electricity.
  • 500 acquisition lines AL requires 10,000 power supply nodes to provide power.

Abstract

本发明涉及一种基于计算机网络的百万道级新型数字地震仪,其硬件部分由七大单元组成:中央控制操作系统CCOS、根节点RU、网络节点NU、电源节点PU、采集链AS、光缆FL和网线NL:其中:中央控制操作系统CCOS是整个仪器的控制中心和数据回收中心、根节点RU是中央控制操作系统CCOS与野外设备的连接接口;多个网络节点NU通过光缆FL串接形成网络节点链NUS,根节点RU连接一条或多条网络节点链NUS;由电源节点PU和采集链AS任意串接形成采集线AL,采集线AL上的任何一个电源节点PU通过一条百兆网线NL连接到网络节点NU上:所述野外设备包括网络节点NU、电源节点PU、采集链AS、光缆FL。其充分考虑了百万道级数字地震仪的数据传输特点,充分利用了计算机网络实现了一种特有的百万道级的地震采集仪器构架,具有野外布设灵活,施工方便等特点。

Description

基于计算机网络的百万道级新型数字地震仪 技术领域 本发明涉及一种地震仪, 特别是涉及一种基于计算机网络的百万道级新型数字地震仪。 玟术背暈 高精度数字地震仪是用来记录人工或天然地震信号, 然后根据这些地震信号的记录来寻 找油、气、煤和其他矿产资源的地质勘探仪器, 并可用于探测地球内部结构、进行工程及地 质灾害预测等。 地震勘探法目前仍然是在陆地和海洋勘探石油和天然气的主要手段, 同时也是其他矿产 资源的重要勘探方法, 并广泛应用于研究地球内部结构、工程勘探和检测、地质灾害预测等 等方面。其基本方法是在勘探靶区的地面上埋放数千乃至上万只地震波传感器(即地震检波 器), 然后用炸药或可控震源激发人工地震。 地震波向地下深处传播, 遇到不同性质地层的 分界面就会产生反射,地震检波器拾取到反射波并将其转换成模拟电信号,然后由高精度的 数字地震仪把这些模拟电信号转换成数字信号记录下来。野外勘探接收到的大量数据通过室 内用高速计算机进行复杂的信号处理和反演计算,才能得到清晰可靠的地下结构图像,最终 确定矿产资源的位置和深度。
目前在石油和天然气勘探行业使用的仪器极大部分是从由法国和美国等国家生产的有 线遥测地震仪。有线遥测地震仪的特征是完全由有线系统发送指令和传送采集数据。在目前 的野外实际应用中占有主导地位, 占据世界地震仪市场的绝大部分份额, 常用的有 Sercel 公司的 408/428系列、 ION公司的 Scorpion和 Aries系统和美国 WesternGeco公司的 Uni Q 系统等。
地震采集系统可分为地震信号的拾取(地震检波器)、 地震信号的传输、 地震信号的记 录与存储三部分。 国内外主要 24位遥测地震仪可分为三类: 有线遥测地震仪、无线遥测地 震仪、 存储式数据回收遥控地震仪。 这三类遥测地震仪中, 有线遥测地震仪仍占主导地位, 占据世界市场的绝大部分份额。
法国 Sercel公司是 CGG控股从事地震仪器研制的专业公司, 具有五十多年的地震仪器 制造经验。 典型的陆上地震仪器有: SN338、 SN368, SN388和目前广泛使用的 400系列。
408U是 Sercel公司九十年代末期推向勘探市场的网络地震仪, 采用采集链结构形式使 釆集站和电缆成为一体。 408UL系统率先引入了地震区域网络的概念, 其核心思想是把计算 机网络节点概念引入到遥测地震仪系统中,从而将遥测仪器系统作为一个计算机网络。主机 记录系统、 LAUL、 LAUX作为网络节点, 配合系统软件完成控制和管理。 408UL大线数传速率 为 8. 192MHz, 交叉线教传速率为 16. 384 MHz, 2ms采样率下大线实时传输 1000道, 交叉线 实时传输 2000道。 与 408UL相比, 428XL的主机系统和数据传输结构有重大改进, 主机结 构采用服务器 I客户机模式, 其大线数传速率为 16.384 MHz, 单线道能力达到了 2000道 / 2ms, 三维实时道能力为 10000道 / 2ms。
美国 ION公司也是国际知名的地震仪器、 可控震源、 地震检波器、 激发源同步系统等地 球物理装备制造商。 上世纪八十年代开始涉足地震仪器制造, 当时推出的系统- 1和系统 - Π 仪器深受用户欢迎。 ION公司非常重视产品的超前研究,近年来率先推出 24位 A / D地震仪 器, Vectorseis数字检波器(MEMS), 使地震仪器两次发生革命性的进步。 ION公司生产的 陆上地震仪器主要包括 Scorpion和 Aries系统。 在 2010年, I0N公司的陆上仪器部分与中 国石油东方地球物理公司 (BGP)合并成立了一家新公司 IN0VA。 发明内容 本发明目的在于提供一种基于计算机网络的百万道级新型数字地震仪。它应用在石油勘 探、天然气勘探、煤田勘探、矿产勘探、地质灾害监测地球内部结构调査等方面, 是一种检 测人工或天然地震信号、 将其转换成数字信号并记录下来的装置。 为实现上述目的,本发明基于计算机网络的百万道级新型数字地震仪的硬件部分由七大 单元组成:中央控制操作系统 CCOS (Central Control Operation System).根节点 RU(Root Unit)、网络节点 NU (Network Unit) 、电源节点 PU (Power Unit) 、釆集链 AS (Acquisition String) 、光缆 FL (Fiber Line)和网线 NL (Network Line):其中:中央控制操作系统 CCOS 是整个仪器的控制中心和数据回收中心、根节点 RU是中央控制操作系统 CCOS与野外设备 的连接接口;多个网络节点 NU通过光缆 FL串接形成网络节点链 NUS(Network Unit String), 根节点 RU连接一条或多条网络节点链 NUS; 由电源节点 PU和釆集链 AS任意串接形成采 集线 AL ((Acquisition Line), 采集线 AL上的任何一个电源节点 PU通过一条百兆网线 NL 连接到网络节点 NU上; 所述野外设备包括网络节点 NU、 电源节点 PU、 采集链 AS、 光缆 FL。即: 中央控制操作系统 CCOS通过根节点 RU连接多个网络节点 NU通过光缆 FL串联 成的一条或多条网络节点链 NUS, 电源节点 PU和采集链 AS任意串接形成采集线 AL上的 任何一个电源节点 PU再通过一条百兆网线 NL连接到网络节点 NU上。 其是充分考虑了百 万道级数字地震仪的数据传输特点,利用了不同的计算机网络满足不同的数据传输要求,达 到了成本、功耗等的最佳配置,充分利用了计算机网络实现了特有的百万道级的地震采集仪 器构架。 采用网络节点 U和电源节点 PU通过特制的网线 NL连接这种方式, 使得网络节点 链 US中的网络节点 NU可以连接到采集线 AL上的任一电源节点 PU, 可以大大提高野外采 集设备布设的灵活性。 中央控制操作系统 CCOS—般置于仪器车上。 作为优化, 中央控制操作系统 CCOS (请见图 2)是主要实现人机交互、 排列控制、 采 集同步、数据回收、 质量控制功能; 中央控制操作系统 CCOS (—般置于仪器车上)是整个 数字地震仪的主要控制单元, 硬件部分主要由计算机服务器 Serve 网络交换机 Switch、客 户计算机终端 PC、存储设备 Storage device,绘图设备 Plotting equipment和 GPS组成;其中 网络交换机 Switch^ 连接存储设备 Storage device, 绘图设备 Plotting equipmen 连接 GPS 的计算机服务器 Server和多个并列的客户计算机终端 PC, 计算机服务器 Server再向外连接 根节点 RU; 软件主要由操作系统软件和控制操作软件组成; 根节点 RU与中央控制操作系 统 CCOS通过一条万兆网线或多条绑定的千兆网线相连接。 作为优化, 根节点 RU由高速交换模块 SM (Switch module). 控制模块 CM (Control module). 激发源控制接口模块 ICES (Interface to control explosive source)^ 电源模块 PM (Power module)、 辅助道接口模块 IAC (Interface for auxiliary channels)和 GPS模块组成; 根节点 RU通过一条万兆网线或多条绑定的千兆网线与中央控制操作系统 CCOS连接,并根 据仪器容量的要求提供 2-10个千兆光缆接口与网络节点链 NUS等野外地面设备连接;高速 交换模块 SM (Switch module)提供数据交换功能; 控制模块 CM根据中央控制操作系统 CCOS的指令实现对高速交换模块 SM、 激发源控制接口模块 ICES和辅助道接口模块 IAC 的控制; 电源模块 PM为各模块提供电源支持。 (见图 3)其中:控制模块 CM分别与高速交 换模块 SM、 激发源控制接口模块 ICES、 电源模块 PM、 辅助道接口模块 IAC和 GPS模块 相连。 髙速交换模块 SM在不同道数情况下,选用不同的配置: 如在 100万道情况下,通过一条 万兆网线与中央控制操作系统 CC0S连接,并提供 10个千兆光缆接口与网络节点链 US等野 外地面设备连接;在 20万道情况下,通过 2条绑定的千兆网线与中央控制操作系统 CC0S连 接, 并提供 2个千兆光缆接口与网络节点链 NUS等野外地面设备连接, 其余依次类推; 控制 模块 CM根据中央控制操作系统 CC0S的指令实现对高速交换模块 SM、 激发源控制接口模块 ICES和辅助道接口模块 IAC的控制; 电源模块 PM为各模块提供电源支持。 地震仪器的数据流量由采集道数和采样率确定, 我们按 100万道和 2ms采样率为例计算 百万道级数字地震仪的实时数据流量。 按 2ms采样, 每秒为 500个采样点, 每个数据按 20 位采样, 100万道的数字地震仪每秒采集的数据流量为 10Gb/s, 即: 总数据量流量-总道数 X样点数 /秒 X位 /样点 =1, 000, 000X 500X 20=10, 000, 000, 000。 所以, 根节点 RU在通过一条万兆网线与中央控制操作系统 CC0S连接和 10个千兆光缆接口 与网络节点链 US等野外地面设备连接的情况下,可以基本满足 100万道和 2ms采样率采集 时地震仪数据传送的需要。 作为优化, 网络节点 M3由高速交换模块 SM、控制模块 CVU 电源模块 PM和 GPS模块 等组成;数据交换模块 SM为百兆 /千兆交换机模块,千兆接口分别连接上一级网络节点 NU 和下一级网络节点 NU,百兆接口连接电源节点 PU; 网络节点 NU具有两种供电模式:一种 为直接连接电池供电; 另一种方式为通过网线 NL连接由电源节点 PU供电。 (见图 4)其中 控制模块 CM分别连接高速交换模块 SM、 电源模块 PM和 GPS模块。 作为优化, 网络节点链腦由若干个网络节点 NU通过光缆 FL串接形成, 并与根节 点 RU相连接, 并与根节点 RU相连接; 根节点 RU连接一条或多条网络节点链 NUS, 形成 百万道级数字地震仪系统数据传输主千网。 作为优化, 电源节点 PU由控制模块 CM、 电源模块 PM和 GPS模块等组成; 控制模块 CM具有一个百兆接口通过网线 NL连接网络节点 NU, 并可以通过(特制的) 网线 NL给网 络节点 NU供电; 控制模块 CM具有 2个专用通信接口分别连接上一级和下一级采集链 ASo (见图 5)其中: 控制模块 CM分别连接电源模块 PM和 GPS模块, 并且控制模块 CM还向外 连接网络节点 NU和采集链 ASo 作为优化, 采集线 AL可以由电源节点 PU和采集链 AS、采集链 AS和采集链 AS任意 串接形成 ·, 采集线 AL上的电源节点 PU给两边的采集站 AU提供电源供给, 电源节点 PU 的供电能力确定了二个电源节点 PU之间的最多采集站个数。 电源节点 PU把供电电瓶的 12V电压提升到 4 ~72V对采集站进行供电;由于线路损耗, 采集站的供电电压范围在 24~72V。 即在本系统中, 电源节点 PU把供电电瓶的 12V电压提升 到 48- 72V对采集站进行供电。 由于线路损耗, 采集站的供电电压范围在 24- 72V。 作为优化, 经过控制方式的优化还可以采用一条网络节点链 US中的多个网络节点 NU 与一条采集线 AL上的多个电源节点 PU连接, 或多条网络节点链 NUS中的多个网络节点 NU 与一条采集线 AL上的多个电源节点 PU连接等方式增加野外采集设备布设的灵活性,并可以 提高采集线 AL数据流量从而增加采集线 AL的连接长度。 作为优化, 采集站 AU主要由控制模块 CM、 电源模块 PM和 GPS模块组成; 控制模块 CM具有 2个专用通信接口分别连接上一级和下一级采集站 AU,具有一个专用接口连接常规 检波器或 MEMS等传感器; 电源由电源节点 PU通过通信接口采用 "鬼对"方式远供, 电 源模块 PM把所供的 24~72V转换成采集站 AU所需的各种电压。 作为优化, 新型数字地震仪中的采集站 AU (图 6) 由控制模块 CM、 电源模块 PM和 GPS 模块等组成。 控制模块 CM具有 2个专用通信接口分别连接上一级和下一级采集站 AU, 具有 一个专用接口连接常规检波器或 MEMS等传感器。电源由电源节点 PU通过通信接口采用 "鬼 对"方式远供, 电源模块 PM把所供的 24- 72V (由于线路损耗供电电压会随着供电的距离而 降低, 采集站的最低供电电压设定为 24V)转换成采集站 Αϋ所需的各种电压。 作为优化, 采集链 AS由若干个采集站 MJ (Acquisition Unit)通过电缆连接而成, 采集 站 AU采集数字检波器的信号, 并通过专用通信接口进行通信和数据传送。即地震仪中的采 集链 AS由若干个(为方便野外搬运一般为 6个〜 12个)采集站 All (Acquisition Unit)通 过电缆连接而成, 采集站 AU采集数字检波器的信号, 并通过专用通信接口进行通信和数据 传送。 采用上述技术方案后, 本发明地震仪充分考虑了百万道级数字地震仪的数据传输特点, 利用了不同的计算机网络满足不同的数据传输要求,采用万兆网络完成主机服务器与根节点 RU之间的数据传送; 采用千兆光纤完成野外部件数据主干网的数据传送; 采用百兆电缆完 成采集线 AL与主干网网络节点 NU之间的数据传送;采用类令牌网实现数据采集链的实时数 据传送, 达到了成本、功耗等的最佳配置。 与国内外目前地震仪的不同之处是充分利用了计 算机网络实现了一种特有的百万道级的地震采集仪器构架,具有野外布设灵活,施工方便等 特点。
图 1是本发明基于计算机网络的百万道级新型数字地震仪的原理框图; 图 2是本发明地震仪中央控制操作系统(CC0S) 的原理框图; 图 3是本发明地震仪根节点 (RU)的原理框图; 图 4是本发明地震仪网络节点 (NU) 的原理框图; 图 5是本发明地震仪电源节点 (PU)的原理框图; 图 6是本发明地震仪采集站 (AU)的原理框图。 具体实施方式 本发明基于计算机网络的百万道级新型数字地震仪的特点是充分考虑了百万道级数字 地震仪的数据传输特点,利用了不同的计算机网络满足不同的数据传输要求,采用千兆光纤 完成数据主干网的数据传送,采用百兆电缆完成数据次干网的数据传送,采用专用的通信方 式实现数据采集链的实时数据传送,达到了成本、功耗等的最佳配置。与国内外目前地震仪 的不同之处是充分利用了计算机网络实现了一种特有的百万道级的地震采集仪器构架,并且 具有野外布设灵活, 施工方便等特点。 具体如下: 本发明基于计算机网络的百万道级新型数字地震仪, 其硬件部分由七大单元组成(见图 1 ): 中央控制操作系统 CCOS (Central Control Operation System) 根节点 RU (Root Unit )、 网络节点 U (Network Unit)、电源节点 PU (Power Unit)、釆集链 AS (Acquisition String)、 光缆 FL (Fiber Line)和网线 NL (Network Line)等。 本发明新型数字地震仪中根节点冊(见图 1 )是中央控制操作系统 CC0S与野外设备(网 络节点 NU、 电源节点 PU、 采集链 AS、 光缆 FL等) 的连接接口, 与中央控制操作系统 CC0S 通过一条万兆网线或多条绑定的千兆网线相连接;多个网络节点 NU可以通过光缆 FL串接形 成网络节点链 US (Network Unit String), 并与根节点 RU相连接, 根节点 RU可以连接一 条或多条网络节点链 NUS。由电源节点 PU和采集链 AS任意串接形成采集线 AL( (Acquisition Line), 采集线 AL上的任何一个电源节点 PU通过一条百兆网线 NL连接到网络节点 U上。 本发明新型数字地震仪中的中央控制操作系统 CC0S (见图 2)是整个仪器的控制中心和 数据回收中心, 实现人机交互、排列控制、采集同步、数据回收、质量控制等功能。 中央控 制操作系统 CC0S—般置于仪器车上, 是整个数字地震仪的主要控制单元, 硬件部分由计算 机服务器 Server、 网络交换机 Switch, 客户计算机终端 PC:、 存储设备 Storage device、 绘 图设备 Plotting equipment和 GPS等组成。 软件由操作系统软件和控制操作软件等组成。 中央控制操作系统 CC0S通过一条万兆网线或多条绑定的千兆网线与根节点 RU连接。计算机 服务器 Server可以采用曙光 PHPC100高性能计算机两台, 标配每台拥有 PHPC100计算模块 5套, 10个多核 CPU, 160G内存, 5块 146G SAS硬盘, 并可以实现 3+1冗余电源 S置。 网 络交换机 Switch选用 12口的高性能网络交换机, 客户计算机终端 PC选用工业控制级计算 机,采用 2 吋液晶屏。磁盘阵列采用 10T的 RAID5小型磁盘阵列,磁带机可以选用 IBM3590 磁带机。 本发明新型数字地震仪中的根节点 TO (见图 3) 由高速交换模块 SM (Switch module), 控制模块 CM(Control module)、激发源控制接口模块 ICES (Interface to control explosive source), 电源模块 PM (Power module)、 辅助道接口模块 IAC (Interface for auxiliary channels)和 GPS模块等组成。 髙速交换模块 SM在不同道数情况下, 选用不同的配置: 如 在 100万道情况下, 选用 12口万兆交换模块, 通过一条万兆网线与中央控制操作系统 CC0S 连接,并提供 10个千兆光缆接口与网络节点链 US等野外地面设备连接;在 20万道情况下, 选用 4口以上千兆交换模块, 通过 2条绑定的千兆网线与中央控制操作系统 CC0S连接, 并 提供 2个千兆光缆接口与网络节点链 NUS等野外地面设备连接,其余道数依次类推;控制模 块 CM可以选用 PowerPC具有 IEEE1588协议的 CPU, 根据中央控制操作系统 CC0S的指令实 现对高速交换模块 SM、 激发源控制接口模块 ICES和辅助道接口模块 IAC的控制; 电源模块 PM为各模块提供电源支持。 地震仪器的数据流量由采集道数和采样率确定, 我们按 100万道和 2ms采样率为例计算 百万道级数字地震仪的实时数据流量。 按 2ms采样, 每秒为 500个采样点, 每个数据按 20 位采样, 100万道的数字地震仪每秒采集的数据流量为 10Gb/s, 即: 总数据量流量 =总道数 X样点数 /秒 X位 /样点 =1, 000, 000 X 500 X 20=10, 000, 000, 000 所以, 根节点 RU在通过一条万兆网线与中央控制操作系统 CC0S连接和 10个千兆光缆接口 与网络节点链 NUS等野外地面设备连接的情况下,可以基本满足 100万道和 2ms采样率采集 时地震仪数据传送的需要。 本发明新型数字地震仪中的网络节点 NU (图 4)由高速交换模块 SM、控制模块 CM、 电源 模块 PM和 GPS模块等组成。 数据交换模块 SM为百兆 /千兆交换机模块, 千兆接口分别连接 上一级网络节点 U和下一级网络节点 Νϋ, 百兆接口连接电源节点 PU。 网络节点 NU具有两 种供电模式: 一种为直接连接电池供电; 另一种方式为通过特制的网线 NL连接由电源节点 PU供电。 控制模块 CM可以选用 PowerPC具有 IEEE1588协议的 CPU如 PowerPC 8313。 本发明新型数字地震仪中的网络节点链 NUS (图 1 )由若千个网络节点 NU通过光缆 FL串 接形成, 并与根节点 RU相连接。 根节点 RU可以连接一条或多条网络节点链 NUS, 形成百万 道级数字地震仪系统数据传输主干网。 本发明新型数字地震仪中的电源节点 Hi (图 5) 由控制模块 CM、 电源模块 PM和 GPS模 块等组成。 控制模块 CM具有一个百兆接口通过网线 NL连接网络节点 NU, 并可以通过特殊 的网线 NL给网络节点 NU供电。 控制模块 C 具有 2个专用通信接口分别连接上一级和下一 级采集链 AS。 本发明新型数字地震仪中的采集线 AL (图 1 )可以由电源节点 PU和采集链 AS、 采集链 AS和采集链 AS任意串接形成。 采集线 AL上的电源节点 PU给两边的采集站 AU提供电源供 给, 电源节点 PU的供电能力确定了二个电源节点 Ρϋ之间的最多采集站个数。 在本系统中, 电源节点 Ρϋ把供电电瓶的 12V电压提升到 48- 72V对采集站进行供电。由于线路损耗,采集 站的供电电压范围在 24- 72V。在本系统中,两个电源站之间的采集站个数大约在 60个到 180 个之间。 本发明新型数字地震仪中的采集链 AS由若干个(为方便野外搬运一般为 6个〜 12个) 采集站 AlKAcquisition Unit)通过电缆连接而成, 采集站 AU采集数字检波器的信号, 并 通过专用通信接口进行通信和数据传送。 本发明新型数字地震仪中的采集站 AU (® 6) 由控制模块 CM、 电源模块 PM和 GPS模块 等组成。 控制模块 CM具有 2个专用通信接口分别连接上一级和下一级采集站 AU, 具有一个 专用接口连接常规检波器或 EMS等传感器。 电源由电源节点 Ρϋ通过通信接口采用 "鬼对" 方式远供,电源模块 ΡΜ把所供的 24- 72V (由于线路损耗供电电压会随着供电的距离而降低, 采集站的最低供电电压设定为 24V)转换成采集站 AU所需的各种电压。 本发明新型数字地震仪采用网络节点 U和电源节点 PU通过特制的网线 NL连接这种方 式, 使得网络节点链 US中的网络节点 NU可以连接到采集线 AL上的任一电源节点 PU, 可 以大大提髙野外采集设备布设的灵活性。 经过控制方式的优化,还可以采用一条网络节点链 NUS中的多个网络节点 Νϋ与一条采集 线 AL上的多个电源节点 PU连接, 或多条网络节点链 NUS中的多个网络节点 NU与一条釆集 线 AL上的多个电源节点 Ρϋ连接等方式增加野外采集设备布设的灵活性,并可以提高采集线 AL数据流量从而增加采集线 AL的连接长度。 由于充分考虑了百万道级数字地震仪的数据传输特点, 利用了不同的计算机网络满足不 同的数据传输要求,整个架构设计非常灵活,还可以设计出很多种三维地震勘探测线布设方 下面以百万道布设为例描述一种完全平坦地貌的野外布设方法:
• 每条采集线 AL为 2000个采集站, 共计需要 500条采集线 AL (野外的测线);
• 根节点 RU连接 10条光缆, 即 10条网络节点链 NUS。 每条网络节点链 NUS串接 50 个网络节点 NU, 连接 50条采集线 AL, 每条网络节点链 NUS的数据流量为 lGb/s: 网络节点链的据量流量-采集线数 X道数 /测线 X样点数 /秒 X位 /样点
= 50X 2000X 500X20 = 1, 000, 000, 000 (b/s) = lGb/s。
• 设定每条采集链 AS为 10个采集站 AU, 2个电源节点 PU之间可以连接 10条采集链 AS ( 100个采集站 AU), 则每条采集线 AL需要 20个电源节点 PU给 2000个采集站 AU提供电力。 500条采集线 AL需要 1万个电源节点 PU提供电力供应。
• 设定采集站之间距离(野外称为道距) 为 ΙΟπι, 采集线之间距离(野外称为线距) 为 40m, 上述布设大约可以覆盖 20kmX20km=400km2的地表范围, 一次激发可以覆盖 大约 10kmX 10km=100km2的地下结构。

Claims

1、 一种基于计算机网络的百万道级新型数字地震仪, 其特征在于硬件部分由七大单元 组成: 中央控制操作系统 CCOS、根节点 RU、网络节点 NU、 电源节点 PU 、采集链 AS 、 光缆 FL和网线 NL: 其中: 中央控制操作系统 CCOS是整个仪器的控制中心和数据回收中 心、根节点 RU是中央控制操作系统 CCOS与野外设备的连接接口; 多个网络节点 NU通过 光缆 FL串接形成网络节点链 NUS,根节点 RU连接一条或多条网络节点链 NUS; 由电源节 点 PU和采集链 AS任意串接形成采集线 AL, 采集线 AL上的任何一个电源节点 PU通过一 条百兆网线 NL连接到网络节点 NU上; 所述野外设备包括网络节点 NU、 电源节点 PU、采 集链 AS、 光缆 FL。
2、 根据权利要求 1所述的地震仪, 其特征在于中央控制操作系统 CCOS主要实现人机 交互、排列控制、采集同步、数据回收、质量控制功能; 中央控制操作系统 CCOS是整个数 字地震仪的主要控制单元, 硬件部分主要由计算机服务器 Server, 网络交换机 Switeh、客户 计算机终端 PC、存储设备 Storage device、绘图设备 Plotting equipment和 GPS组成; 软件主 要由操作系统软件和控制操作软件组成;根节点 RU与中央控制操作系统 CCOS通过一条万 兆网线或多条绑定的千兆网线相连接。
3、 根据权利要求 1所述的地震仪, 其特征在于根节点 RU由高速交换模块 SM、 控制 模块 CM、激发源控制接口模块 ICES,电源模块 PM、辅助道接口模块 IAC和 GPS模块组成; 根节点 RU通过一条万兆网线或多条绑定的千兆网线与中央控制操作系统 CCOS连接,并根 据仪器容量的要求提供 2-10个千兆光缆接口与网络节点链 US等野外地面设备连接;高速 交换模块 SM提供数据交换功能;控制模块 CM根据中央控制操作系统 CCOS的指令实现对 高速交换模块 SM、激发源控制接口模块 ICES和辅助道接口模块 IAC的控制;电源模块 PM 为各模块提供电源支持。
4、 根据权利要求 1所述的地震仪, 其特征在于网络节点 U由高速交换模块 SM、控 制模块 CM、 电源模块 PM和 GPS模块等组成; 数据交换模块 SM为百兆 /千兆交换机模块, 千兆接口分别连接上一级网络节点 NU和下一级网络节点 NU, 百兆接口连接电源节点 PU; 网络节点 NU具有两种供电模式: 一种为直接连接电池供电; 另一种方式为通过网线 NL连 接由电源节点 PU供电。
5、根据权利要求 1所述的地震仪, 其特征在于网络节点链 NUS由若干个网络节点 NU
13 通过光缆 FL串接形成,并与根节点 RU相连接;根节点 RU连接一条或多条网络节点链 NUS, 形成百万道级数字地震仪系统数据传输主干网。
6、 根据权利要求 5所述的地震仪, 其特征在于采用一条网络节点链 NUS中的多个网络 节点 NU与一条采集线 AL上的多个电源节点 PU连接, 或多条网络节点链 NUS中的多个网络 节点 NU与一条采集线 AL上的多个电源节点 PU连接等方式增加野外采集设备布设的灵活性。
7、 根据权利要求 1所述的地震仪, 其特征在于电源节点 PU由控制模块 CM、 电源模块 PM和 GPS模块等组成;控制模块 CM具有一个百兆接口通过网线 NL连接网络节点 NU,并 可以通过网线 NL给网络节点 NU供电; 控制模块 CM具有 2个专用通信接口分别连接上一 级和下一级采集链 AS。
8、 根据权利要求 1所述的地震仪, 其特征在于采集线 AL可以由电源节点 PU和采集 链 AS、 采集链 AS和采集链 AS任意串接形成; 采集线 AL上的电源节点 PU给两边的采集 站 AU提供电源供给, 电源节点 PU的供电能力确定二个电源节点 PU之间的最多釆集站个 数; 电源节点 PU把供电电瓶的 12V电压提升到 48-72V对采集站进行供电;由于线路损耗, 采集站的供电电压范围在 24-72V。
9、 根据权利要求 1所述的地震仪, 其特征在于采集站 AU主要由控制模块 CM、 电源模 块 PM和 GPS模块组成; 控制模块 CM具有 2个专用通信接口分别连接上一级和下一级采集 站 AU, 具有一个专用接口连接常规检波器或 MEMS等传感器; 电源由电源节点 PU通过通 信接口釆用 "鬼对"方式远供, 电源模块 PM把所供的 24~72V转换成采集站 AU所需的各 种电压。
10、根据权利要求 1或者 2或者 3或者 4或者 5或者 6或者 7或者 8或者 9所述的地震 仪, 其特征在于采集链 AS由若干个采集站 AU通过电缆连接而成, 采集站 AU采集数字检 波器的信号, 并通过专用通信接口进行通信和数据传送。
14
PCT/CN2012/000831 2011-06-22 2012-06-15 基于计算机网络的百万道级新型数字地震仪 WO2012174855A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12803240.6A EP2725387A4 (en) 2011-06-22 2012-06-15 DIGITAL SEISMOMETER WITH MILLION CHANNEL CLASSES BASED ON A COMPUTER NETWORK
US13/877,613 US20130188455A1 (en) 2011-06-22 2012-06-15 Million channel-class digital seismometer based on computer network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110167832.9A CN102628957B (zh) 2011-06-22 2011-06-22 基于计算机网络的百万道级新型数字地震仪
CN201110167832.9 2011-06-22

Publications (1)

Publication Number Publication Date
WO2012174855A1 true WO2012174855A1 (zh) 2012-12-27

Family

ID=46587249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000831 WO2012174855A1 (zh) 2011-06-22 2012-06-15 基于计算机网络的百万道级新型数字地震仪

Country Status (4)

Country Link
US (1) US20130188455A1 (zh)
EP (1) EP2725387A4 (zh)
CN (1) CN102628957B (zh)
WO (1) WO2012174855A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063866A1 (zh) * 2011-11-02 2013-05-10 中国科学院地质与地球物理研究所 测量井下微震的专用数字地震仪
CN103592679B (zh) * 2013-11-06 2017-02-01 中国石油集团东方地球物理勘探有限责任公司 一种有线遥测地震仪的野外排列管理基站及方法
CN108169793A (zh) * 2017-12-27 2018-06-15 国家海洋局第海洋研究所 一种地震数据采集多协议实时传输系统
CN109031407B (zh) * 2018-08-01 2020-04-10 宁波市交通规划设计研究院有限公司 用于工程物探的地震道数字自动覆盖装置及其方法
CN112785828B (zh) * 2020-12-14 2022-04-22 江苏集萃微纳自动化系统与装备技术研究所有限公司 一种无线通信和有线网络混合的地震勘探系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417593A (zh) * 2001-11-09 2003-05-14 中国石油集团地球物理勘探局 Gps卫星授时遥测地震仪
US20090225629A1 (en) * 2003-11-21 2009-09-10 Ray Clifford H Method and system for transmission of seismic data
CN101923174A (zh) * 2008-11-25 2010-12-22 瑟塞尔公司 包含与连接到传感器的单元相关联的模块的地震数据采集系统
CN102213768A (zh) * 2010-04-09 2011-10-12 中国科学院地质与地球物理研究所 基于计算机网络的新型数字地震仪

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188962B1 (en) * 1998-06-25 2001-02-13 Western Atlas International, Inc. Continuous data seismic system
US6859831B1 (en) * 1999-10-06 2005-02-22 Sensoria Corporation Method and apparatus for internetworked wireless integrated network sensor (WINS) nodes
US20030128627A1 (en) * 2001-09-07 2003-07-10 Input/Output, Inc. Seismic data acquisition apparatus and method
US20040252585A1 (en) * 2001-10-10 2004-12-16 Smith Dexter G. Digital geophone system
US7668044B2 (en) * 2002-04-24 2010-02-23 Ascend Geo, Llc Data offload and charging systems and methods
WO2004027457A2 (en) * 2002-09-23 2004-04-01 Input/Output, Inc Seafloor seismic recording using mems
US6868339B2 (en) * 2003-03-24 2005-03-15 Vaisala Oyj Systems and methods for time corrected lightning detection
US7117094B2 (en) * 2003-07-17 2006-10-03 Novatel, Inc. Seismic measuring system including GPS receivers
FR2889386B1 (fr) * 2005-07-28 2007-10-19 Sercel Sa Dispositif et procede de connexion a un reseau sans fil
US8170802B2 (en) * 2006-03-21 2012-05-01 Westerngeco L.L.C. Communication between sensor units and a recorder
US7660203B2 (en) * 2007-03-08 2010-02-09 Westerngeco L.L.C. Systems and methods for seismic data acquisition employing asynchronous, decoupled data sampling and transmission
US7729202B2 (en) * 2006-09-29 2010-06-01 Ion Geophysical Corporation Apparatus and methods for transmitting unsolicited messages during seismic data acquisition
EP2034336A1 (en) * 2007-09-07 2009-03-11 Vibration Technology Limited Data transmission system
CN101639538B (zh) * 2008-07-30 2011-08-03 中国科学院地质与地球物理研究所 七通道多功能海底地震仪
CN101750629B (zh) * 2008-12-17 2011-12-21 中国石化集团胜利石油管理局钻井工艺研究院 一种差分定位随钻地震仪
CN101639539B (zh) * 2009-09-09 2011-07-20 中国科学院地质与地球物理研究所 存储式地震信号连续采集系统
CN201497813U (zh) * 2009-09-18 2010-06-02 中国石油天然气集团公司 一种分布式地震仪数据层次采集系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417593A (zh) * 2001-11-09 2003-05-14 中国石油集团地球物理勘探局 Gps卫星授时遥测地震仪
US20090225629A1 (en) * 2003-11-21 2009-09-10 Ray Clifford H Method and system for transmission of seismic data
CN101923174A (zh) * 2008-11-25 2010-12-22 瑟塞尔公司 包含与连接到传感器的单元相关联的模块的地震数据采集系统
CN102213768A (zh) * 2010-04-09 2011-10-12 中国科学院地质与地球物理研究所 基于计算机网络的新型数字地震仪

Also Published As

Publication number Publication date
CN102628957A (zh) 2012-08-08
EP2725387A4 (en) 2015-10-21
US20130188455A1 (en) 2013-07-25
CN102628957B (zh) 2014-05-07
EP2725387A1 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
CN102213768B (zh) 基于计算机网络的数字地震仪
CN103513274B (zh) 适于经由双导线线路连接在一起的数字地震波传感器和采集装置
US7193932B2 (en) Seismic data acquisition system
WO2012174855A1 (zh) 基于计算机网络的百万道级新型数字地震仪
CN101639539B (zh) 存储式地震信号连续采集系统
EP1787143A2 (en) Method and apparatus for imaging permeability pathways of geologic fluid reservoirs using seismic emission tomography
CN101776767A (zh) 无线地震仪系统
CN104181579A (zh) 一种全数字三分量vsp系统及其测量方法
CN100554998C (zh) 地震勘探数据采集系统
CN102628958B (zh) 有线、无线和无缆三合一数字地震仪
CN102768364A (zh) 组合了无线和无缆功能的地震采集站
EP2770343A1 (en) Wired, wireless and cableless all_in_one digital seismometer
Freed Cable-free nodes: The next generation land seismic system
CN1207578C (zh) 无线高速地震勘探数据采集装置
CN2898853Y (zh) 地震勘探数据采集系统
CN103257359A (zh) 用于煤矿井下连续振动信号自动记录装置
CN110412652A (zh) 一种海洋地震数据传输单元
CN102628961B (zh) 测量井下微震的专用数字地震仪
CN203299399U (zh) 一种用于煤矿井下连续振动信号自动记录装置
CN102778876A (zh) 一种地球物理勘探数据采集仪器的主控站
CN113296164A (zh) 无线实时传输节点式地震仪系统及同步校准方法
CN203630365U (zh) 一种有线遥测地震仪的野外排列管理基站装置
CN2657017Y (zh) 无线高速地震勘探数据采集装置
AU2013212012B2 (en) Clock synchronization over fiber
CN103592679A (zh) 一种有线遥测地震仪的野外排列管理基站及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13877613

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012803240

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012803240

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE