WO2013063866A1 - 测量井下微震的专用数字地震仪 - Google Patents

测量井下微震的专用数字地震仪 Download PDF

Info

Publication number
WO2013063866A1
WO2013063866A1 PCT/CN2012/001476 CN2012001476W WO2013063866A1 WO 2013063866 A1 WO2013063866 A1 WO 2013063866A1 CN 2012001476 W CN2012001476 W CN 2012001476W WO 2013063866 A1 WO2013063866 A1 WO 2013063866A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
acquisition
node
data
seismograph
Prior art date
Application number
PCT/CN2012/001476
Other languages
English (en)
French (fr)
Inventor
郭建
刘光鼎
徐善辉
张正峰
Original Assignee
中国科学院地质与地球物理研究所
北京吉奥菲斯科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110341081.8A external-priority patent/CN102628962B/zh
Priority claimed from CN201110445737.0A external-priority patent/CN102628961B/zh
Application filed by 中国科学院地质与地球物理研究所, 北京吉奥菲斯科技有限责任公司 filed Critical 中国科学院地质与地球物理研究所
Publication of WO2013063866A1 publication Critical patent/WO2013063866A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/52Structural details
    • G01V2001/526Mounting of transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • G01V2210/646Fractures

Definitions

  • the present invention relates to a digital seismograph and a microseismic detection and observation system, and more particularly to a dedicated digital seismograph for measuring downhole microseisms and an observation system employed.
  • High-precision digital seismographs are geological exploration instruments used to record artificial or natural seismic signals and then search for oil, gas, coal and other mineral resources based on the records of these seismic signals, and can be used to detect the internal structure of the earth and carry out engineering. And geological disaster prediction. Seismic exploration is still the main means of oil and gas exploration on land and sea.
  • the basic method is to embed thousands or even tens of thousands of seismic wave sensors (ie geophones) on the ground in the exploration target area, and then use explosives or vibrators to stimulate artificial earthquakes. Seismic waves propagate deep into the ground, and reflections are formed at the interface of different types of strata. The geophone picks up the reflected waves and converts them into analog electric signals, which are then converted by high-precision digital seismographs. Record the digital signal.
  • seismic wave sensors ie geophones
  • the geophone picks up the reflected waves and converts them into analog electric signals, which are then converted by high-precision digital seismographs. Record the digital signal.
  • a large amount of data received by field exploration can be used to obtain clear and reliable images of underground structures by using high-speed computers in the room for complex signal processing and inversion calculations, and finally determine the location and depth of mineral resources.
  • seismic exploration in order to obtain a seismic record capable of systematically tracking the effective wave of the target layer, the mutual position of the excitation point and the reception point must be appropriately selected and selected in the field data collection, which describes the relationship between the excitation point and the reception point. And the positional relationship between the arrangement and arrangement is called the observation system. Seismic wave acquisition in the underground microseismic detection
  • the Guanyuan system is a special observation system. Its excitation source is the microseismic generated by the fracture of the reservoir, distributed around the well, and has randomness.
  • the energy is weak and the signal to noise ratio is very low.
  • the observation system used is radial, with the wellhead as the center, and several lines are radially outward. Its advantage is that the layout is simple and easy to implement. The disadvantage is that the farther away from the center point, the larger the arc direction spacing is, and the three-dimensional image cannot be formed.
  • the present invention is directed to overcoming the above-mentioned deficiencies of the prior art and providing a dedicated digital seismograph for measuring downhole microseisms.
  • the seismic wave acquisition and observation system for performing downhole microseismic detection can form a three-dimensional image. It is a seismic wave acquisition and observation system for detecting downhole microseisms, and is also a method for generating seismic waves when downhole fracturing.
  • the invention is a special digital seismograph for measuring downhole microseisms, and a seismic wave acquisition and observation system for detecting downhole microseisms for detecting seismic waves generated during fracturing in a well.
  • the observation system is composed of a plurality of concentric circles with a wellhead as a center 0, forming a ring-shaped structure, and the number of receiving points provided on each circumference may be different, generally increasing as the circumference length increases, so as to keep the distribution of the receiving points uniform.
  • niax The radius of the smallest circle is Rl, and the radius of the largest circle is Rmax;
  • the invention fully considers the effectiveness and economy of the underground microseismic detection, and is simple and easy to implement.
  • the received seismic data is a circular three-dimensional structure, and the layout is relatively uniform, and the three-dimensional stereoscopic display of seismic waves can be performed. Attributes.
  • the received seismic data is a circle structure, and each circle can be used as a two-dimensional section to display the properties of the seismic wave.
  • the number of receiving points arranged on the circumference is defined as 2 times of the innermost circle (excluding the innermost circle) and both are hook-shaped, and having a ring-like structure, it has a radial structure, and each ray can be used as A two-dimensional section shows the properties of seismic waves.
  • the distance in the radial direction of the receiving point (referred to as the radial distance) DRi can be a constant, but the distance in the circumferential direction of the receiving point (referred to as the arc distance) DLi cannot be a constant, can only be limited to a certain range, and has DLmin DLi DLmax.
  • the seismic wave acquisition and observation system for detecting downhole microseisms is an ideal observation system. When applied in the field, due to the constraints of surface geological conditions and surface environmental conditions, it can be reasoned according to actual conditions. Adjustment. As an optimization, the above system is an ideal observation system.
  • the distance DRi and the arc distance DLi can be Change within a certain range.
  • DRmin DRi DRmax There is DRmin DRi DRmax; DLmin ⁇ DLi ⁇ DLmax, where DRmin and DRmax are the allowed minimum and maximum spans, respectively, and DLmin and DLmax are the allowed minimum and maximum arc distances, respectively.
  • the seismic wave acquisition and observation system for detecting the microseismic vibration of the invention fully considers the effectiveness and economy of the microseismic detection under the well, and is simple and easy to implement, and can form a three-dimensional image, and the received seismic data is a circular three-dimensional structure, and the arrangement is relatively uniform.
  • the hardware part is controlled by the central control operating system CCOS (Central Control Operation System), the root node RU (Root Unit), the cross node XU (Cross Unit), the power node PU (Power Unit), the acquisition chain AS (Acquisition String) and the optical cable FL (Fiber Line) and other six units;
  • the central control operating system CCOS is the control center and data recovery center of the entire instrument, to achieve human-computer interaction, alignment control, acquisition synchronization, data recovery, quality control and other functions;
  • the node RU is connected to the central control operating system CCOS through the Gigabit network cable, and provides 1-2 Gigabit optical cable interfaces and the cross node XU connection according to the requirements of the instrument capacity; the cross node XU has two optical cable interfaces, which can pass the optical cable FL
  • the serial connection is connected to the root node RU.
  • the cross node XU has two dedicated communication interfaces, and the acquisition line AL (Acquisition Line) formed by any combination of the acquisition chain AS and the power supply node PU is connected.
  • the digital seismograph of the present invention is characterized by fully considering the characteristics of the loop structure observation system, and is a dedicated digital seismograph for detecting downhole microseisms, and has an extremely long data acquisition and recording capability, that is, all collected data are transmitted in real time. And records. As an optimization, all collected data is transmitted and recorded in real time, so it has an extremely long data acquisition and recording capability and can be continuously collected for several days, weeks or even months.
  • the central control operating system CCOS is placed on the instrument vehicle and is the main control unit of the entire digital seismograph.
  • the hardware part is composed of a computer server Server, a network switch, a client computer terminal PC, a storage device, a drawing device Plotting.
  • the equipment is composed of equipment and GPS;
  • the software is composed of operating system software and control operation software; in addition to providing position coordinate information, GPS also gives the instrument time to ensure the time accuracy of long-term recording.
  • the network switch Switch and the storage device Storage device, the drawing device Plotting equipment and A plurality of parallel client computer terminals are connected to the PC, and the network switch Switch is connected to the computer server Server, and the computer server server is connected to the root node RU.
  • the root node RU is composed of a high-speed switching module SM (Switch module), a control module CM (Control module), and a power module PM (Power Module);
  • the high-speed switching module SM (Switch module) provides a data exchange function;
  • the module CM implements control of the high-speed switching module SM according to the instruction of the central control operating system CCOS;
  • the power module PM provides power supply support for each module.
  • the cross node XU is composed of a high-speed switching module SM, a control module CM, a power module PM, and a GPS module;
  • the data switching module SM is a Gigabit switch module, and the Gigabit interface is respectively connected to the upper-level cross node XU and the lower The first-level cross node XU;
  • the control module CM has two dedicated communication interfaces respectively connecting the acquisition chains AS on both sides.
  • the high-speed switching module SM Switch module
  • the control module CM implements control of the idle switching module SM according to the instruction of the central control operating system CCOS;
  • the power module PM provides power support for each module.
  • the GPS module provides position coordinate information and the like.
  • the power supply node PU is composed of a control module CM, a power module PM and a GPS module, etc.;
  • the control module CM has two dedicated communication interfaces respectively connected to the upper level and the next level of the acquisition chain ASO control module CM according to the central control operation
  • the command of the system CCOS is controlled;
  • the power module PM provides power support for each module.
  • the GPS module provides position coordinate information and the like.
  • the acquisition line AL can be formed by any combination of the power supply node PU and the acquisition chain AS, the acquisition chain AS and the acquisition chain AS; the power supply node PU on the acquisition line AL provides power supply to the collection stations AU on both sides, and the power supply node
  • the power supply capability of the PU determines the maximum number of acquisition stations between the two power supply nodes PU.
  • the power node PU boosts the 12V voltage of the power supply battery to 72V to supply power to the collection station. Due to line losses, the supply voltage of the acquisition station ranges from 24 to 72V.
  • the acquisition chain AS is formed by a plurality of (usually 4, 6 or 8) Unit (Acquisition Units) connected by cables, and the acquisition station AU collects the signals of the digital detector and transmits the signals through dedicated communication. Interface for communication and data transfer.
  • the collection station is composed of a control module CM, a power module PM and a GPS module, etc.
  • the control module CM has two dedicated communication interfaces respectively connected to the upper level and the next level collection station AU, and has a dedicated interface connection routine.
  • the power supply is remotely supplied by the power supply node PU through the communication interface using the "ghost pair" mode, and the power supply module PM supplies 72V (due to the line loss, the supply voltage will decrease with the distance of the power supply, the collection station Most The low supply voltage is set to 24V) and the various voltages required to convert to the acquisition station AU.
  • the control module CM implements control according to the instruction of the central control operating system CCOS; the power module PM provides power support for each module.
  • the GPS module provides position coordinate information and the like.
  • FIG. 1 is a schematic diagram of a seismic wave acquisition and observation system for downhole microseismic detection according to the present invention
  • FIG. 2 is a schematic block diagram of a special seismograph for downhole microseismic detection according to the present invention
  • FIG. 3 is a central control operating system CCOS for a seismic seismograph for underground downhole detection of the present invention
  • FIG. 4 is a schematic block diagram of a root node RU of a seismograph for a downhole microseismic detection according to the present invention
  • FIG. 5 is a schematic block diagram of a cross node XU of a seismograph for a downhole microseismic detection of the present invention
  • FIG. 6 is a special seismograph for detecting a microseismic vibration of a downhole according to the present invention
  • FIG. 7 is a schematic block diagram of a collection station AU of a seismograph for a downhole microseismic detection according to the present invention
  • the present invention is a seismic wave acquisition and observation system for performing downhole microseismic detection for detecting seismic waves generated during mid-fracturing.
  • the observation system is composed of a plurality of concentric circles, and is formed by a plurality of concentric circles.
  • the number of receiving points on each circumference can be different, generally increasing with the increase of the circumference length, so as to keep the distribution of the receiving points uniform.
  • the radius of the i-th concentric circle is Ri (M, 2, - - ⁇ max), then:
  • the radius of the smallest circle is R1
  • the radius of the largest circle is Rmax
  • the arc length DLi 2 Ri/Mi between the two receiving points.
  • DLmin the longest arc length
  • DLmax the longest arc length
  • DLmin DLi DLmax the longest arc length
  • the seismic data received by the seismic wave acquisition and observation system of the present invention is a circular three-dimensional structure, and the layout is relatively uniform, and the properties of the seismic wave can be displayed in three dimensions.
  • the seismic data received by the seismic wave acquisition and observation system of the present invention is a circle structure, and each circle can be used as a two-dimensional section to display the properties of the seismic wave.
  • the seismic wave acquisition observation system of the present invention defines a number of receiving points arranged on the circumference as 2 times of the innermost circle (excluding the innermost circle) and is evenly distributed, and has a radial structure while having a ring-like structure, each of which can be The ray as a two-dimensional section shows the properties of the seismic wave.
  • the seismic wave acquisition observation system of the present invention has a constant radial distance (referred to as a radial distance) DRi at the receiving point, but the distance in the circumferential direction of the receiving point (referred to as the arc distance) DLi cannot be a constant, and can only be limited to a certain range, and There is DLmin DLi DLmax.
  • the seismic wave acquisition and observation system of the invention is an ideal observation system under the ideal situation. When it is actually applied in the field, due to the constraints of the surface geological conditions and the surface environmental conditions, reasonable adjustment can be made according to the actual situation.
  • the seismic wave acquisition and observation system of the invention is an ideal observation system under the ideal situation.
  • the distance DRi and the arc distance DLi can be Change within a certain range.
  • DRmin DRi DRmax There is DRmin DRi DRmax; DLmin ⁇ DLi ⁇ DLmax, where DRmin and DRmax are the allowed minimum and maximum spans, respectively, and DLmin and DLmax are the allowed minimum and maximum arc distances, respectively.
  • the observation system consists of 79 concentric circles, the minimum circle radius R1 is 50m, the maximum circle radius Rmax is 2000m, the minimum circumference length is 314m, and the maximum circumference length is 12560m.
  • the radial distance of the receiving point (referred to as the radial distance) DR is 25m ;
  • the distance between the receiving points in the circumferential direction (referred to as the arc distance) is DLi, and there is 20m DLi 40m
  • 4 8 receiving points are evenly distributed on the first circumference, 16 receiving points are evenly distributed on the 2nd to 3th circumferences; 32 receiving points are arranged on the 4th and 7th circumferences; 8th to 15th circumferences are There are 64 receiving points in the hook; 128 receiving points are arranged on the 16th to 31th circumferences; 256 receiving points are arranged on the 32th to 64th circumferences; 512 receiving points are evenly arranged on the 65th to 79th circumferences. .
  • the invention relates to a novel digital seismograph for detecting micro-seismic waves in a well, which is used for detecting seismic waves generated during fracturing in a well.
  • the observation system is centered on the wellhead and is composed of a plurality of concentric circles to form a ring-shaped structure on each circumference.
  • the number of receiving points can be set differently, generally increasing as the circumference length increases, so as to keep the receiving points evenly distributed.
  • the hardware part of the digital seismograph dedicated to the device of the present invention see FIG.
  • the digital seismograph of the present invention is characterized by fully considering the characteristics of the loop structure observation system. It is a special digital seismograph, and all collected data are transmitted and recorded in real time, and has long data acquisition and recording capability, and can continuously collect several Days, weeks, or even months.
  • the central control operating system CCOS (see Fig.
  • the digital seismograph for the device of the invention is the control center and data recovery center of the whole instrument, and realizes functions of human-computer interaction, arrangement control, acquisition synchronization, data recovery, quality control and the like.
  • the central control operating system CCOS is placed on the instrument vehicle and is the main control unit of the whole digital seismograph.
  • the hardware part is composed of computer server Server, network switch Switehu client computer terminal PC, storage device storage device, drawing device Plotting equipment and GPS. composition. In addition to providing position coordinate information, GPS also has an important role in the device of the present invention to time the instrument and ensure the time accuracy of long-term recording.
  • the software consists of operating system software and control operating software.
  • the central control operating system CCOS is connected to the root node RU through a gigabit network cable.
  • the root node (see FIG. 4) of the dedicated digital seismograph of the device of the present invention passes through the Gigabit network cable and the central control operating system ccos mm, and provides i-2 gigabit optical cable interfaces and cross node xu connections according to the requirements of the instrument capacity.
  • the root node U is composed of a high-speed switching module SM (Switch module), a control module CM (Control module), and a power module PM (Power Module).
  • the high-speed switching module SM (Switch module) provides data exchange function; the control module CM implements control of the high-speed switching module SM according to the instruction of the central control operating system CCOS; the power module PM provides power support for each module.
  • the cross node XU of the digital seismograph dedicated to the device of the present invention can be serially connected through the optical cable FL and connected to the root node RU; at the same time, the cross node XU has two dedicated communication interfaces, and the connection is formed by any combination of the acquisition chain AS and the power supply node PU.
  • the acquisition line AL ((Acquisition Line).
  • the intersection node U (see Fig.
  • the digital seismograph for the device of the invention is composed of a high speed switching module SM, a control module CM, a power module PM and a GPS module, etc.
  • the data exchange module SM is The Gigabit switch module, the Gigabit interface is respectively connected to the upper level cross node XU and the next level cross node XU.
  • the control module CM has two dedicated communication interfaces respectively connecting the two sides of the acquisition chain AS.
  • the node PU (see Fig. 6) is composed of a control module CM, a power module PM and a GPS module, etc.
  • the control module C has two dedicated communication interfaces respectively connected to the upper and lower level acquisition chains AS.
  • the acquisition line AL can be formed by any combination of the power supply node PU and the acquisition chain AS, the acquisition chain AS and the acquisition chain AS.
  • the power supply node PU on the acquisition line AL is provided on both sides.
  • the station AU provides power supply, and the power supply capability of the power node PU determines the maximum number of acquisition stations between the two power supply nodes PU.
  • the power supply node PU raises the 12V voltage of the power supply battery to 72V to the collection station. Power supply. Due to line loss, the supply voltage of the acquisition station ranges from 24-72 V.
  • the acquisition chain A of the digital seismograph for the device of the invention consists of several (generally 4, 6 or 8) acquisition stations AU (Acquisition Unit) through the cable.
  • the connection station AU collects the signal of the digital detector and communicates and transmits the data through the dedicated communication interface.
  • the collection station of the digital seismograph for the device of the invention (see Fig. 7) is controlled by the module CM, the power module PM and the GPS
  • the module C has two dedicated communication interfaces respectively connected to the upper and lower level acquisition stations AU, and has a dedicated interface for connecting sensors such as conventional detectors or MEMS.
  • the power source is adopted by the power node PU through the communication interface.
  • the power module PM will supply 72V (due to the line loss, the supply voltage will decrease with the distance of the power supply, the most of the collection station)
  • the low supply voltage is set to 24V) to convert various voltages required for the acquisition station AU.
  • the seismic wave acquisition observation system (see Fig. 1) used in the digital seismograph of the device of the invention: 1 is composed of a plurality of concentric circles, forming a ring shape Structure, the radius of the i-th concentric circle is Ri (i-1, 2, . - . max), the radius of the smallest circle is Rl, the radius of the largest circle is Rmax; 2 the radial direction of the receiving point (referred to as the span) For the DRi; 3 the arc length spacing (referred to as the arc distance) in the circumferential direction of the receiving point is DLi, and there is DLmin DLi DLmax.
  • the observation system consists of 79 concentric circles, the minimum circle radius R1 is 50m, the maximum circle radius Rmax is 2000m, the minimum circumference length is 314m, and the maximum circumference length is 12560m.
  • the distance between the receiving points in the radial direction (referred to as the span) DR is 25ra;
  • the distance between the receiving points in the circumferential direction (referred to as the arc distance) is DU, and there is 20m DLi 40m
  • 4 8 receiving points are evenly distributed on the first circumference, 16 receiving points are evenly distributed on the 2nd to 3th circumferences; 32 receiving points are arranged on the 4th to 7th circumferences; 8th to 15th circumferences are 64 receiving points are arranged; 128 receiving points are evenly distributed on the 16th to 31st circumferences; 256 receiving points are evenly arranged on the 32nd to 64th circumferences; 512 receiving points are evenly arranged on the 65th to 79th circumferences.

Abstract

提供一种测量井下微震的专用数字地震仪,其能够解决现有地震仪记录时间不够长的问题。该专用数字地震仪用于检测井中压裂时产生的地震波,其观测系统是以井口为圆心,由多个同心圆组成,形成圈状结构,每个圆周上设置的接收点数可以不同,随着圆周长的增加而增加,以保持接收点分布均匀。接收的地震数据为圈状三维结构,而且布设比较均匀,可以进行三维立体显示地震波的属性。基于井下微震检测的地震波采集观测系统的井下微震采集数字地震仪所采集的数据能够实时传送和记录,并具有超长的数据采集和记录能力,可以实时连续采集数据。

Description

测量井下微震的专用数字地震仪 技术领域 本发明涉及一种数字地震仪及微震检测观测系统, 特别是涉及一种测量井下微震的专用 数字地震仪及采用的观测系统。 技术背景 高精度数字地震仪是用来记录人工或天然地震信号, 然后根据这些地震信号的记录来寻 找油、气、煤和其他矿产资源的地质勘探仪器, 并可用于探测地球内部结构、进行工程及地 质灾害预测等。 地震勘探法目前仍然是在陆地和海洋勘探石油和天然气的主要手段, 同时也是其他矿产 资源的重要勘探方法, 并广泛应用于研究地球内部结构、工程勘探和检测、地质灾害预测等 等方面。其基本方法是在勘探靶区的地面上埋放数千乃至上万只地震波传感器(即地震检波 器), 然后用炸药或可控震源激发人工地震。 地震波向地下深处传播, 遇到不同性质地层的 分界面就会产生反射,地震检波器拾取到反射波并将其转换成模拟电信号,然后由高精度的 数字地震仪把这些模拟电信号转换成数字信号记录下来。野外勘探接收到的大量数据通过室 内用高速计算机进行复杂的信号处理和反演计算,才能得到清晰可靠的地下结构图像,最终 确定矿产资源的位置和深度。 在地震勘探时, 为了得到能够系统地追踪目的层有效波的地震记录,在野外资料采集时 必须适当地安抹和选择激发点与接收点的相互位置,这种描述激发点和接收点之间以及排列 和排列之间位置关系称为观测系统。 井下微震检测的地震波采集观渊系统是一种比较特殊的观测系统, 它的激发源为储层压 裂时破裂产生的微震, 分布于井的周围, 具有随机性。 而且能量较弱, 信噪比非常低。 目前 采用的观察系统均为放射状, 以井口为中心, 由若干条测线呈放射状向外延伸。它的优势是 布设简单, 容易实现, 缺点是离中心点越远, 圆弧方向间距越大, 不能形成三维图像。
到目前为止, 国际上还没有专用的井下微震检測的地震仪, 均采用常规地震仪进行井下 微震检测, 但存在记录时长不够, 时间精度不够等问题。 发明内容 本发明目的在于克服现有技术的上述缺陷, 提供一种测量井下微震的专用数字地震仪, 其进行井下微震检测的地震波采集观测系统能形成三维图像。是检测井下微震的地震波采集 观测系统, 也是一种采集井下压裂时产生地震波的方法。 本发明为一种测量井下微震的专用数字地震仪, 其进行井下微震检测的地震波采集观测 系统,用于检测井中压裂时产生的地震波。本观测系统以井口为圆心 0,由多个同心圆组成, 形成圈状结构, 每个圆周上设置的接收点数可以不同, 一般随着圆周长的增加而增加, 以保 持接收点分布均匀。 接收点按如下要求分布: 我们定义第 i个同心圆的半径为 Ri (i=l,2, - - . niax), 则有: 最小圆的半径为 Rl, 最大圆的半径为 Rmax; 第 i个圆的周长为 Ci=2wRi,第 i个圆与第 i+1 个圆的半径差 DRi=R (i+1 ) -Ri。 定义在第 i个圆周上布设 Mi个接收点并均匀分布, 并且 Mi-NX2m (Ν=3,4,5,6,7,8, · · -, πι=0,1,2,3,···)则有: 2个接收点之间的弧长 DLi=2wRi/Mi。 定义最短弧长为 DLmin, 最长 弧长为 DLmax, 则有: DLmin DLi DLmax。 根据以上定义, 我们给出了检测井下徼震的地震波采集观测系统(见图 1 ):①由多个同 心圆组成,形成圈状结构,第 i个同心圆的半径为 Ri (i=l,2, •••. max),最小圆的半径为 Rl, 最大圆的半径为 Rmax; ②接收点的半径方向间距(简称径距)为 DRi; ③接收点圆周方向 的间距(简称弧距)为 DLi, 并有 DLmin DLi DLmax。④第 i个圆周上布设 Mi个接收点 并均匀分布, 并且 Mi-N X 2m (N=3,4,5,6,7,8, · · m=0,l,2,3, · * ·)。 本发明充分考虑了井下微震检測的有效性和经济性, 布设简单, 容易实现, 其能形成三 维图像, 接收的地震数据为圈状三维结构,而且布设比较均勾, 可以进行三维立体显示地震 波的属性。 作为优化, 接收的地震数据为圈状结构, 可以把每个圆圈作为一个二维剖面显示地震波 的属性。 作为优化, 由于定义了圆周上布设的接收点个数为最内圈的 2倍数(最内圈除外)并且 均勾分布,在具有圈状结构的同时, 具有放射状结构, 可以把每一条射线作为一个二维剖面 显示地震波的属性。 作为优化, 在接收点的半径方向间距(简称径距) DRi可以为常数, 但接收点圆周方向 的间距(简称弧距) DLi则不能为常数,只能限制在一定范围内,并有 DLmin DLi DLmax。 作为优化, 本发明检测井下微震的地震波采集观测系统, 是一种理想情况下的规则观测 系统,在野外实际应用时, 由于受地表地质条件和地表环境条件的制约, 可以根据实际情况 做出合理调整。 作为优化, 上述系统是一种理想情况下的规则观测系统, 在野外实际应用时, 由于受地 表地质条件和地表环境条件的制约,可以不太规则,即径距 DRi和弧距 DLi均可以在一定范 围内变化。 有 DRmin DRi DRmax; DLmin^DLi^DLmax, 其中 DRmin和 DRmax分别 为允许的最小和最大径距, DLmin和 DLmax分别为允许的最小和最大弧距。 本发明进行井下微震检测的地震波采集观测系统充分考虑了井下微震检测的有效性和经 济性, 并且布设简单, 容易实现, 能形成三维图像, 接收的地震数据为圈状三维结构, 而且 布设比较均匀, 可以进行三维立体显示地震波的属性。 其硬件部分由中央控制操作系统 CCOS (Central Control Operation System )、 根节点 RU (Root Unit),交叉节点 XU (Cross Unit)、电源节点 PU (Power Unit)、采集链 AS (Acquisition String)和光缆 FL (Fiber Line)等六大单元组成;所述中央控制操作系统 CCOS是整个仪器的 控制中心和数据回收中心, 实现人机交互、排列控制、采集同步、数据回收、质量控制等功 能;所述根节点 RU通过千兆网线与中央控制操作系统 CCOS连接,并根据仪器容量的要求 提供 1-2个千兆光缆接口与交叉节点 XU连接; 所述交叉节点 XU具有 2个光缆接口, 可以 通过光缆 FL串接, 并与根节点 RU相连接; 同时交叉节点 XU具有 2个专用通信接口, 连 接由采集链 AS和电源节点 PU任意串接形成的采集线 AL(Acquisition Line)。 本发明数字地震仪的特点是充分考虑了圈状结构观测系统的特点, 为一种检测井下微震 的专用数字地震仪,并且具有超长的数据采集和记录能力,也就是所有采集数据均实时传送 和记录。 作为优化, 所有采集数据均实时传送和记录, 所以具有超长的数据采集和记录能力, 可以连续采集几天、 几周甚至几个月。 作为优化, 所述中央控制操作系统 CCOS置于仪器车上, 是整个数字地震仪的主要控 制单元, 硬件部分由计算机服务器 Server、 网络交换机 Switch、 客户计算机终端 PC、 存储 设备 Storage device, 绘图设备 Plotting equipment和 GPS等组成; 软件由操作系统软件和控 制操作软件等组成; GPS除提供位置坐标信息外,还给仪器授时,确保长时间记录的时间准 确性。 所述网络交换机 Switch与存储设备 Storage device, 绘图设备 Plotting equipment和 多个并列的客户计算机终端 PC相连, 网络交换机 Switch再连接计算机服务器 Server, 计算 机服务器 Server向外连接根节点 RU。 作为优化,所述根节点 RU由高速交换模块 SM ( Switch module )、控制模块 CM (Control module)和电源模块 PM (Power Module)等组成; 高速交换模块 SM (Switch module)提 供数据交换功能; 控制模块 CM根据中央控制操作系统 CCOS的指令实现对高速交换模块 SM的控制; 电源模块 PM为各模块提供电源支持。 作为优化,所述交叉节点 XU由高速交换模块 SM、控制模块 CM、电源模块 PM和 GPS 模块等组成; 数据交换模块 SM为千兆交换机模块, 千兆接口分别连接上一级交叉节点 XU 和下一级交叉节点 XU; 控制模块 CM具有 2个专用通信接口分别连接两边的采集链 AS。 高 速交换模块 SM (Switch module)提供数据交换功能; 控制模块 CM根据中央控制操作系统 CCOS的指令实现对髙速交换模块 SM的控制; 电源模块 PM为各模块提供电源支持。 GPS 模块除提供位置坐标信息等。 作为优化, 所述电源节点 PU由控制模块 CM、 电源模块 PM和 GPS模块等组成; 控制 模块 CM具有 2个专用通信接口分别连接上一级和下一级采集链 ASo控制模块 CM根据中央 控制操作系统 CCOS的指令实现控制;电源模块 PM为各模块提供电源支持。 GPS模块提供 位置坐标信息等。 作为优化,所述采集线 AL可以由电源节点 PU和采集链 AS、采集链 AS和采集链 AS 任意串接形成; 采集线 AL上的电源节点 PU给两边的采集站 AU提供电源供给, 电源节点 PU的供电能力确定了二个电源节点 PU之间的最多采集站个数。在本系统中, 电源节点 PU 把供电电瓶的 12V电压提升到 72V对采集站进行供电。 由于线路损耗, 采集站的供电电压 范围在 24~72V。 作为优化,所述的采集链 AS由若干个 (一般为 4、6或 8个)釆集站 AU (Acquisition Unit) 通过电缆连接而成,采集站 AU采集数字检波器的信号, 并通过专用通信接口进行通信和数 据传送。 作为优化, 所述采集站 Αϋ由控制模块 CM、 电源模块 PM和 GPS模块等组成; 控制模 块 CM具有 2个专用通信接口分别连接上一级和下一级采集站 AU, 具有一个专用接口连接 常规检波器或 MEMS等传感器; 电源由电源节点 PU通过通信接口采用 "鬼对"方式远供, 电源模块 PM把所供的 72V (由于线路损耗供电电压会随着供电的距离而降低, 采集站的最 低供电电压设定为 24V)转换成采集站 AU所需的各种电压。控制模块 CM根据中央控制操 作系统 CCOS的指令实现控制;电源模块 PM为各模块提供电源支持。 GPS模块提供位置坐 标信息等。 采用上述技术方案后, 本发明充分考虑了圈状结构观测系统的特点, 具有超长的数据采 集和记录能力,可以连续采集几天、几周甚至几个月, 也就是所有采集数据均实时传送和记 录。 附图说明 图 1是本发明井下微震检测的地震波采集观测系统示意图; 图 2是本发明井下微震检测专用地震仪原理框图; 图 3是本发明井下徼震检測专用地震仪的中央控制操作系统 CCOS原理框图; 图 4是本发明井下微震检测专用地震仪的根节点 RU原理框图; 图 5是本发明井下微震检测专用地震仪的交叉节点 XU原理框图; 图 6是本发明井下微震检測专用地震仪的电源节点 PU原理框图; 图 7是本发明井下微震检测专用地震仪的采集站 AU原理框图; 图 8是本发明井下微震检测专用地震仪的一种布设方案示意图。 具体实施方式 如图 1所示, 本发明为一种进行井下微震检测的地震波采集观测系统, 用于检测并中压 裂时产生的地震波。本观测系统以井口为圆心 0, 由多个同心圆组成, 形成圈状结构, 每个 圆周上设置的接收点数可以不同, 一般随着圆周长的增加而增加, 以保持接收点分布均勾。 我们定义第 i个同心圆的半径为 Ri (M, 2, - - ^ max), 则有: 最小圆的半径为 R1, 最大 圆的半径为 Rmax;第 i个圆的周长为 Ci=2jtRi,第 i个圆与第 i+1个圆的半径差 DRi=R(i+l )
定义在第 i个圆周上布设 Mi个接收点并均匀分布, 并且 Mi-NX2m (N=3,4,5,6,7,8, ··-, ιη=0,1,2,3,···)则有: 2个接收点之间的弧长 DLi=2 Ri/Mi。 定义最短弧长为 DLmin, 最长 弧长为 DLmax, 则有: DLmin DLi DLmax。 根据以上定义, 我们给出了检测井下微震的地震波采集观测系统(见图 1 ) : ①由多个同 心圆组成,形成圈状结构,第 i个同心圆的半径为 Ri (i=l,2, - - . max),最小圆的半径为 Rl, 最大圆的半径为 Rmax; ②接收点的半径方向间距(简称径距)为 DRi; ③接收点圆周方向 的间距(简称弧距)为 DLi, 并有 DLmin DLi DLmax。④第 i个圆周上布设 Mi个接收点 并均匀分布, 并且 Mi=N X 2m (N=3,4,5,6,7,8, · · m=0, 1 ,2,3, · · ·)。 本发明地震波采集观测系统接收的地震数据为圈状三维结构, 而且布设比较均勾, 可以 进行三维立体显示地震波的属性。 本发明地震波采集观测系统接收的地震数据为圈状结构, 可以把每个圆圈作为一个二维 剖面显示地震波的属性。 本发明地震波采集观测系统由于定义了圆周上布设的接收点个数为最内圈的 2倍数(最 内圈除外)并且均匀分布, 在具有圈状结构的同时, 具有放射状结构, 可以把每一条射线作 为一个二维剖面显示地震波的属性。 本发明地震波采集观测系统在接收点的半径方向间距(简称径距) DRi可以为常数, 但 接收点圆周方向的间距(简称弧距) DLi则不能为常数,只能限制在一定范围内,并有 DLmin DLi DLmax。 本发明地震波采集观测系统是一种理想情况下的规则观测系统, 在野外实际应用时, 由 于受地表地质条件和地表环境条件的制约, 可以根据实际情况做出合理调整。 本发明地震波采集观测系统是一种理想情况下的规则观测系统, 在野外实际应用时, 由 于受地表地质条件和地表环境条件的制约,可以不太规则,即径距 DRi和弧距 DLi均可以在 一定范围内变化。有 DRmin DRi DRmax; DLmin^DLi ^DLmax,其中 DRmin和 DRmax 分别为允许的最小和最大径距, DLmin和 DLmax分别为允许的最小和最大弧距。 实例- 设: Rl=50m; Rmax=2000m; DR=25m; DLmin=20m; DLmax=40m; N=8。 则有-
①观测系统由 79个同心圆组成, 最小圆半径 R1为 50m, 最大圆半径 Rmax为 2000m, 最小圆周长为 314m, 最大圆周长为 12560m, ②接收点的半径方向间距(简称径距) DR为 25m;
③接收点圆周方向的间距 (简称弧距)为 DLi, 并有 20m DLi 40m
④第 1个圆周上均匀布设 8个接收点, 第 2~3个圆周上均匀布设 16个接收点; 第 4^7 个圆周上均勾布设 32个接收点; 第 8~15个圆周上均勾布设 64个接收点; 第 16~31个圆周 上均勾布设 128个接收点;第 32~64个圆周上均勾布设 256个接收点;第 65~79个圆周上均 匀布设 512个接收点。
⑤整个观测系统布设有 18856个接收点。 每个同心圆上的布设情况见表 1。
表 1: 观测系统参数表
圆周上采
序号 半径 周长 弧距 径距
集点个数
i Ri (m) Ci (m) DLi (m) DR(ni)
Mi
1 50 314 8 39. 25 25
2 75 471 16 29. 44 25
3 100 628 16 39. 25 25
4 125 785 32 24. 53 25
5 150 942 32 29. 4 25
6 175 1099 32 34. 34 25
7 200 1256 32 39. 25 25
8 225 1413 64 22. 08 25
9 250 1570 64 24. 53 25
10 275 1727 64 26. 98 25
11 300 1884 64 29. 44 25
12 325 2041 64 31. 89 25
13 350 2198 64 34. 34 25
14 375 2355 64 36. 80 25
15 400 2512 64 39. 25 25
16 425 2669 128 20. 85 25
17 450 2826 128 22. 08 25
18 475 2983 128 23. 30 25
19 500 3140 128 24. 53 25
20 525 3297 128 25. 76 25
21 550 3454 128 26. 98 25
22 575 3611 128 28. 21 25
23 600 3768 128 29. 4 25
24 625 3925 128 30. 66 25
25 650 4082 128 31. 89 25
26 675 4239 128 33. 12 25 700 4396 128 34. 34 25
725 4553 128 35. 57 25
750 4710 128 36. 80 25
775 4867 128 38. 02 25
800 5024 128 39. 25 25
825 5181 256 20. 24 25
850 5338 256 20. 85 25
875 5495 256 21. 46 25
900 5652 256 22. 08 25
925 5809 256 22.69 25
950 5966 256 23. 30 25
975 6123 256 23. 92 25
1000 6280 256 24. 53 25
1025 6437 256 25. 14 25
1050 6594 256 25. 76 25
1075 6751 256 26. 37 25
1100 6908 256 26. 98 25
1125 7065 256 27. 60 25
1150 7222 256 28. 21 25
1175 7379 256 28. 82 25
1200 7536 256 29. 44 25
1225 7693 256 30. 05 25
1250 7850 256 30. 66 25
1275 8007 256 31. 28 25
1300 8164 256 31. 89 25
1325 8321 256 32. 50 25
1350 8478 256 33. 12 25
1375 8635 256 33. 73 25
1400 8792 256 34. 34 25
1425 8949 256 34. 96 25
1450 9106 256 35. 57 25
1475 9263 256 36. 18 25
1500 9420 256 36. 80 25
1525 9577 256 37. 41 25
1550 9734 256 38. 02 25
1575 9891 256 38. 64 25
1600 10048 256 39. 25 25
1625 10205 256 39. 86 25
1650 10362 512 20. 24 25
1675 10519 512 20. 54 25
1700 10676 522 20. 85 25
1725 10833 512 21. 16 25
1750 10990 512 21. 46 25 70 1775 11147 512 21. 77 25
71 1800 11304 512 22. 08 25
72 1825 11461 512 22. 38 25
73 1850 11618 512 22, 69 25
74 1875 11775 512 23. 00 25
75 1900 11932 512 23. 30 25
76 1925 12089 512 23. 61 25
77 1950 12246 512 23. 92 25
78 1975 12403 512 24. 22 25
79 2000 12560 512 24. 53 25
18856 本发明用于井下微震检测的新型数字地震仪, 用于检测井中压裂时产生的地震波, 其观 测系统是以井口为圆心, 由多个同心圆组成, 形成圈状结构, 每个圆周上设置的接收点数可 以不同, 一般随着圆周长的增加而增加, 以保持接收点分布均匀。 本发明装置专用数字地震仪硬件部分 (见图 2)由中央控制操作系统 CCOS( Central Control Operation System),根节点 RU (Root Unit)、交叉节点 XU (Cross Unit),电源节点 PU (Power Unit)>采集链 AS (Acquisition String)和光缆 FL (Fiber Line)等六大单元组成。本发明数字地 震仪的特点是充分考虑了圈状结构观测系统的特点,为一种专用数字地震仪,所有采集数据 均实时传送和记录,具有超长的数据采集和记录能力,可以连续采集几天、几周甚至几个月。 本发明装置专用数字地震仪的中央控制操作系统 CCOS (见图 3)是整个仪器的控制中心 和数据回收中心, 实现人机交互、排列控制、采集同步、数据回收、质量控制等功能。 中央 控制操作系统 CCOS—般置于仪器车上,是整个数字地震仪的主要控制单元,硬件部分由计 算机服务器 Server、 网络交换机 Switehu 客户计算机终端 PC、 存储设备 Storage device、 绘 图设备 Plotting equipment和 GPS等组成。 GPS除提供位置坐标信息外, 在本发明装置中还 有一个重要作用是给仪器授时,确保长时间记录的时间准确性。软件由操作系统软件和控制 操作软件等组成。 中央控制操作系统 CCOS通过千兆网线与根节点 RU连接。 本发明装置专用数字地震仪的根节点 (见图 4)通过千兆网线与中央控制操作系统 ccos mm, 并根据仪器容量的要求提供 i-2个千兆光缆接口与交叉节点 xu连接。 根节点 U由高速交换模块 SM( Switch module)、控制模块 CM( Control module)和电源模块 PM( Power Module)等组成。 高速交换模块 SM (Switch module)提供数据交换功能; 控制模块 CM根 据中央控制操作系统 CCOS的指令实现对高速交换模块 SM的控制;电源模块 PM为各模块 提供电源支持。 本发明装置专用数字地震仪的交叉节点 XU可以通过光缆 FL串接,并与根节点 RU相连 接; 同时交叉节点 XU具有 2个专用通信接口, 连接由采集链 AS和电源节点 PU任意串接 形成的采集线 AL ((Acquisition Line)。 本发明装置专用数字地震仪的交叉节点 U (见图 5)由高速交换模块 SM、控制模块 CM、 电源模块 PM和 GPS模块等组成。数据交换模块 SM为千兆交换机模块,千兆接口分别连接 上一级交叉节点 XU和下一级交叉节点 XU。控制模块 CM具有 2个专用通信接口分别连接两 边的采集链 AS。 本发明装置专用数字地震仪的电源节点 PU (见图 6) 由控制模块 CM、 电源模块 PM和 GPS模块等组成。 控制模块 C 具有 2个专用通信接口分别连接上一级和下一级采集链 AS。 本发明装置专用数字地震仪的采集线 AL可以由电源节点 PU和采集链 AS、 采集链 AS 和采集链 AS任意串接形成。 采集线 AL上的电源节点 PU给两边的采集站 AU提供电源供 给, 电源节点 PU的供电能力确定了二个电源节点 PU之间的最多采集站个数。在本系统中, 电源节点 PU把供电电瓶的 12V电压提升到 72V对采集站进行供电。 由于线路损耗, 采集 站的供电电压范围在 24-72V。 本发明装置专用数字地震仪的采集链 A 由若干个 (一般为 4、 6或 8个) 采集站 AU (Acquisition Unit)通过电缆连接而成, 采集站 AU采集数字检波器的信号, 并通过专用 通信接口进行通信和数据传送。 本发明装置专用数字地震仪的采集站 (见图 7) 由控制模块 CM、 电源模块 PM和 GPS 模块等组成。 控制模块 C 具有 2个专用通信接口分别连接上一级和下一级采集站 AU, 具 有一个专用接口连接常规检波器或 MEMS等传感器。 电源由电源节点 PU通过通信接口采 用 "鬼对"方式远供, 电源模块 PM把所供的 72V (由于线路损耗供电电压会随着供电的距 离而降低, 采集站的最低供电电压设定为 24V)转换成采集站 AU所需的各种电压。 本发明装置专用数字地震仪采用的地震波采集观测系统(见图 1 ):①由多个同心圆组成, 形成圈状结构, 第 i个同心圆的半径为 Ri (i-1,2, . - . max), 最小圆的半径为 Rl, 最大圆的 半径为 Rmax; ②接收点的半径方向间距(简称径距) 为 DRi; ③接收点圆周方向的弧长间 距(简称弧距)为 DLi, 并有 DLmin DLi DLmax。④第 i个圆周上布设 Mi个接收点并均 匀分布, 并且1^^ 2*" ^3,4,5,6,7,8," , m=0,U,3, · · ·)。按照这种观测系统, 我们给出 如下观测系统实例, 并且给出 2种布设方案, 分别见图 1和图 8。 图 8的布设方案考虑了近 井口圆周周长教短的情况, 采用迂回方式, 使得布设相对简洁、 并使用较少的交叉节点 Χϋ。 观测系统实例: 设: Rl-50m; Rmax=2000m; DR=25m; DLmin=20m; DLmax=40m。 则有:
①观测系统由 79个同心圆组成, 最小圆半径 R1为 50m, 最大圆半径 Rmax为 2000m, 最小圆周长为 314m, 最大圆周长为 12560m,
②接收点的半径方向间距(简称径距) DR为 25ra;
③接收点圆周方向的间距(简称弧距)为 DU , 并有 20m DLi 40m
④第 1个圆周上均匀布设 8个接收点, 第 2~3个圆周上均匀布设 16个接收点; 第 4~7 个圆周上均勾布设 32个接收点; 第 8~15个圆周上均勾布设 64个接收点; 第 16~31个圆周 上均匀布设 128个接收点;第 32^64个圆周上均匀布设 256个接收点;第 65〜79个圆周上均 匀布设 512个接收点。
⑤整个观测系统布设有 18856个接收点。每个同心圆上的布设情况见表 1。

Claims

1、 一种用于并下微震检测的新型数字地震仪, 其特征在于用于检测井中压裂时产生的 地震波, 其观测系统是以井口为圆心, 由多个同心圆组成, 形成圈状结构, 每个圆周上设置 的接收点数可以不同, 一般随着圆周长的增加而增加, 以保持接收点分布均勾; 其硬件部分由中央控制操作系统 CCOS、根节点 RU、 交叉节点 XU (Cross Unit)、 电源节 点 PU 、采集链 AS和光缆 FL等六大单元组成;所述中央控制操作系统 CCOS是整个仪器 的控制中心和数据回收中心, 实现人机交互、排列控制、采集同步、数据回收、质量控制等 功能;所述根节点 RU通过千兆网线与中央控制操作系统 CCOS连接,并根据仪器容量的要 求提供 1-2个千兆光缆接口与交叉节点 XU连接; 所述交叉节点 XU具有 2个光缆接口, 可 以通过光缆 FL串接, 并与根节点 RU相连接; 同时交叉节点 XU具有 2个专用通信接口, 连接由采集链 AS和电源节点 PU任意串接形成的采集线 AL。
2、 根据权利要求 1所述地震仪, 所有采集数据均实时传送和记录, 所以具有超长的数 据采集和记录能力, 可以实时连续采集。
3、 根据权利要求 1所述地震仪, 其特征在于所述观测系统: ①由多个同心圆组成, 形 成圈状结构, 第 i个同心圆的半径为 Ri , i=l,2, .- . max, 最小圆的半径为 Rl, 最大圆的 半径为 Rmax; ②相邻接收点的半径方向间距简称径距 DRi=R(i+I) - Ri; ③相邻接收点圆周 方向的弧长间距简称弧距为 DLi, 并有 DLmin DLi DLmax, 其中最短弧长为 DLmin, 最 长弧长为 DLmax; ④第 i个圆周上布设 Mi个接收点并均勾分布, 并且 Mi=NX2m , N=3,4,5,6,7,8,— ί m=0, 3, - 即每个圆周上布设的接收点为最内圈的 2倍数,最内圈除 外。
4、 根据权利要求 1所述地震仪, 其特征在于所述中央控制操作系统 CCOS置于仪器车 上,是整个数字地震仪的主要控制单元,硬件部分由计算机服务器 Server、网络交换机 Switch、 客户计算机终端 PC、 存储设备 Storage device, 绘图设备 Plotting equipment和 GPS等组成; 软件由操作系统软件和控制操作软件等组成; GPS除提供位置坐标信息外, 还给仪器授时。
5、 根据权利要求 1所述地震仪,其特征在于所述根节点 RU由高速交换模块 SM、控制 模块 CM和电源模块 PM等组成; 髙速交换模块 SM提供数据交换功能; 控制模块 CM根据 中央控制操作系统 CCOS的指令实现对高速交换模块 SM的控制;电源模块 PM为各模块提 供电源支持。
6、 根据权利要求 1所述地震仪,其特征在于所述交叉节点 XU由髙速交换模块 SM、控 制模块 CM, 电源模块 PM和 GPS模块等组成; 数据交换模块 SM为千兆交换机模块, 千兆 接口分别连接上一级交叉节点 XU和下一级交叉节点 XU;控制模块 CM具有 2个专用通信接 口分别连接两边的釆集链 AS。
7、 根据权利要求 1所述地震仪, 其特征在于所述电源节点 PU由控制模块 CM、 电源模 块 PM和 GPS模块等组成; 控制模块 CM具有 2个专用通信接口分别连接上一级和下一级采 集链 AS。
8、 根据权利要求 1所述地震仪,其特征在于所述采集线 AL可以由电源节点 PU和采集 链 AS、 采集链 AS和采集链 AS任意串接形成; 采集线 AL上的电源节点 PU给两边的采集 站 AU提供电源供给, 电源节点 PU的供电能力确定了二个电源节点 PU之间的最多采集站 个数。
9、 根据权利要求 1或者 2或者 3或者 4或者 5或者 7所述地震仪, 其特征在于所述的 采集链 AS由若干个采集站 AU通过电缆连接而成, 釆集站 AU采集数字检波器的信号, 并 通过专用通信接口进行通信和数据传送。
10、 根据权利要求 9所述地震仪, 其特征在于所述采集站 AU由控制模块 CM、 电源模块 PM和 GPS模块等组成; 控制模块 CM具有 2个专用通信接口分别连接上一级和下一级采集 站 AU, 具有一个专用接口连接常规检波器或 MEMS等传感器; 电源由电源节点 PU通过通 信接口采用 "鬼对"方式远供, 电源模块 PM把所供的 72V转换成采集站 AU所需的各种电 压。
11、 根据权利要求 3所述地震仪, 其特征在于采用的观测系统: 接收的地震数据为圈状 三维结构, 而且布设比较均匀,可以进行三维立体显示地震波的属性。 同时其特征在于接收 的地震数据为圈状结构, 可以把每个圆圈作为一个二维剖面显示地震波的属性。
12、 根据权利要求 3所述地震仪, 其特征在于采用的观测系统: 圆周上布设的接收点个 数为最内圈的 2倍数并且均匀分布,在具有圈状结构的同时, 具有放射状结构, 可以把每一 条射线作为一个二维剖面显示地震波的属性。
13、 根据权利要求 3所述地震仪, 其特钲在于采用的观测系统: 在接收点的半径方向间 距 DRi可以为常数, 但接收点圆周方向的间距 DLi则不能为常数, 只能限制在一定范围内, 并有 DLmin DLi DLmax。
14、 根据权利要求 3所述地震仪, 其特征在于采用的观测系统: 是一种理想情况下的规 则观测系统, 在野外实际应用时, 由于受地表地质条件和地表环境条件的制约, 可以根据实 际情况做出合理调整; 即在野外实际应用时, 由于受地表地质条件和地表环境条件的制约, 径距 DRi和弧距 DLi均可以在一定范围内变化, 即 DRmin DRi DRmax; DLmin^DLi^ DLmax, 其中 DRmin和 DRmax分别为允许的最小和最大径距, DLmin和 DLmax分别为 允许的最小和最大弧距。
PCT/CN2012/001476 2011-11-02 2012-10-31 测量井下微震的专用数字地震仪 WO2013063866A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110341081.8A CN102628962B (zh) 2011-11-02 2011-11-02 进行井下微震检测的地震波采集观测系统
CN201110341081.8 2011-11-02
CN201110445737.0A CN102628961B (zh) 2011-12-28 2011-12-28 测量井下微震的专用数字地震仪
CN201110445737.0 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013063866A1 true WO2013063866A1 (zh) 2013-05-10

Family

ID=48191250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001476 WO2013063866A1 (zh) 2011-11-02 2012-10-31 测量井下微震的专用数字地震仪

Country Status (1)

Country Link
WO (1) WO2013063866A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803543A (en) * 1967-03-17 1974-04-09 Us Navy Remotely formed multibeam hydrophone system
US20080123467A1 (en) * 2006-05-05 2008-05-29 Erlend Ronnekleiv Seismic streamer array
WO2009062286A2 (en) * 2007-11-14 2009-05-22 Pan Geo Subsea, Inc. Method for acoustic imaging of the earth's subsurface using a fixed position sensor array and beam steering
CN101639539A (zh) * 2009-09-09 2010-02-03 中国科学院地质与地球物理研究所 存储式地震信号连续采集系统
US20110158048A1 (en) * 2009-12-28 2011-06-30 Guigne Jacques Y Spiral sensor configuration for seismic beamforming and focusing
WO2011094179A2 (en) * 2010-01-27 2011-08-04 Geco Technology B.V. Providing communications redundancy using one or more loop connections in a subterranean survey system
CN102213768A (zh) * 2010-04-09 2011-10-12 中国科学院地质与地球物理研究所 基于计算机网络的新型数字地震仪
CN102628957A (zh) * 2011-06-22 2012-08-08 中国科学院地质与地球物理研究所 基于计算机网络的百万道级新型数字地震仪
CN102628961A (zh) * 2011-12-28 2012-08-08 中国科学院地质与地球物理研究所 测量井下微震的专用数字地震仪
CN102628962A (zh) * 2011-11-02 2012-08-08 中国科学院地质与地球物理研究所 进行井下微震检测的地震波采集观测系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803543A (en) * 1967-03-17 1974-04-09 Us Navy Remotely formed multibeam hydrophone system
US20080123467A1 (en) * 2006-05-05 2008-05-29 Erlend Ronnekleiv Seismic streamer array
WO2009062286A2 (en) * 2007-11-14 2009-05-22 Pan Geo Subsea, Inc. Method for acoustic imaging of the earth's subsurface using a fixed position sensor array and beam steering
CN101639539A (zh) * 2009-09-09 2010-02-03 中国科学院地质与地球物理研究所 存储式地震信号连续采集系统
US20110158048A1 (en) * 2009-12-28 2011-06-30 Guigne Jacques Y Spiral sensor configuration for seismic beamforming and focusing
WO2011094179A2 (en) * 2010-01-27 2011-08-04 Geco Technology B.V. Providing communications redundancy using one or more loop connections in a subterranean survey system
CN102213768A (zh) * 2010-04-09 2011-10-12 中国科学院地质与地球物理研究所 基于计算机网络的新型数字地震仪
CN102628957A (zh) * 2011-06-22 2012-08-08 中国科学院地质与地球物理研究所 基于计算机网络的百万道级新型数字地震仪
CN102628962A (zh) * 2011-11-02 2012-08-08 中国科学院地质与地球物理研究所 进行井下微震检测的地震波采集观测系统
CN102628961A (zh) * 2011-12-28 2012-08-08 中国科学院地质与地球物理研究所 测量井下微震的专用数字地震仪

Similar Documents

Publication Publication Date Title
Lindsey et al. Fiber-optic seismology
US11016213B2 (en) Gradient-based 4D seabed acquisition positioning
AU2012369973B2 (en) Shear wave source for VSP and surface seismic exploration
WO2022257429A1 (zh) 海底光纤四分量地震仪器系统及其数据采集方法
BR112018001180A2 (pt) sistemas e métodos para detecção de características da subsuperfície com uso de convergência de ângulos 3d
US6662899B2 (en) Use of autonomous moveable obstructions as seismic sources
CN106646617A (zh) 一种地震数据采集方法及装置
CN104215934A (zh) 一种利用井口检波器进行水力压裂微地震监测的方法
Spica et al. PubDAS: a public distributed acoustic sensing datasets repository for geosciences
Eaton et al. Investigating Canada's lithosphere and earthquake hazards with portable arrays
CN101100940B (zh) 一种阵列化声信号检测系统及其工程应用
Li Recent advances in earthquake monitoring I: Ongoing revolution of seismic instrumentation
Lin et al. Seismogenic crustal structure affected by the Hainan mantle plume
US20210389437A1 (en) Near surface imaging and hazard detection
US20190187317A1 (en) Offshore reservoir monitoring system and method for its operation
Rintamäki et al. A seismic network to monitor the 2020 EGS stimulation in the Espoo/Helsinki area, southern Finland
EP2725387A1 (en) Million channel-class digital seismometer based on computer network
CN102628961B (zh) 测量井下微震的专用数字地震仪
JPH11287865A (ja) 微動観測による地下構造推定方法
WO2013063866A1 (zh) 测量井下微震的专用数字地震仪
Collins et al. Shear‐wave velocity structure of shallow‐water sediments in the East China Sea
Abbas et al. An Open‐Access Data Set of Active‐Source and Passive‐Wavefield DAS and Nodal Seismometer Measurements at the Newberry Florida Site
Stubailo Seismic anisotropy below Mexico and its implications for mantle dynamics
Aster et al. IRIS Seismology Program marks 20 years of discovery
Ichinose et al. Seismic Array Analysis Using Fiber-Optic Distributed Acoustic Sensing on Small Local and Regional Earthquakes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846560

Country of ref document: EP

Kind code of ref document: A1