WO2012173015A1 - Probe set and use thereof - Google Patents

Probe set and use thereof Download PDF

Info

Publication number
WO2012173015A1
WO2012173015A1 PCT/JP2012/064471 JP2012064471W WO2012173015A1 WO 2012173015 A1 WO2012173015 A1 WO 2012173015A1 JP 2012064471 W JP2012064471 W JP 2012064471W WO 2012173015 A1 WO2012173015 A1 WO 2012173015A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybridization
probe
probe set
sequence
base
Prior art date
Application number
PCT/JP2012/064471
Other languages
French (fr)
Japanese (ja)
Inventor
明 陶山
廣田 寿一
孝介 丹羽
Original Assignee
国立大学法人東京大学
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 日本碍子株式会社 filed Critical 国立大学法人東京大学
Publication of WO2012173015A1 publication Critical patent/WO2012173015A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • This specification relates to the probe set and its use.
  • probe hybridization techniques are frequently used for searching for homologous genes, determining base sequences, detecting gene mutations and polymorphisms, and the like.
  • the probe hybridization technique is a technique for detecting a specific base sequence (hereinafter also referred to as a target sequence) in a polynucleotide such as DNA of biological origin by hybridization using an oligonucleotide probe to form a base pair.
  • a target sequence a specific base sequence
  • an array on which a plurality of probes are immobilized is often used.
  • probes having a base sequence complementary to the target sequence are immobilized on the array.
  • hybridization between a probe and a DNA sample of biological origin varies depending on the type of sample, the length of the immobilized probe, the base sequence and the form (single strand or double strand). In general, it takes about several to 48 hours (Non-Patent Document 1).
  • the melting temperature (Tm) is within a certain temperature range, does not form a stable secondary structure, and is selected from 100 artificially selected molecules that are highly specifically hybridized with complementary sequences.
  • a method of using a universal array in which a base sequence is determined and a universal probe having this base sequence is immobilized has also been reported (Non-patent Document 1, Patent Document 1).
  • a hybridization sample having an identification sequence associated with a specific base sequence in a probe on an array is prepared in advance as a linking molecule using a ligase reaction or the like from a DNA sample. When such a sample is applied to a universal array, it will hybridize with a probe in which the identification sequence in the sample is pre-associated.
  • the hybridization time can be about 1 hour. It is also described that it is even more preferable to use a probe with a melting temperature as close as possible (Patent Document 1).
  • Non-patent Document 2 describes that a probe that does not form a secondary structure at the probe end has higher hybridization promoting ability than a probe that does not.
  • DNA chip application technology Chapter 5: DNA microarrays and their applications, pages 43-54, August 2000, CM Publishing Co., Ltd. Analytical Biochemistry, 364, 1, 2007, 78-85 Proceedings of the 13th international conference on DNA computing, pp.119-129, 2008, Springer-Verlag Berlin, Heidelberg
  • the present specification provides a probe set with better analytical performance and its use.
  • the inventors of the present invention have made various studies on the hybridization speed of the probe, and have found that there is a difference in hybridization speed exceeding expectations in actual hybridization. Furthermore, the present inventors have found that by selecting a probe based on the hybridization rate, it is possible to realize an analysis with a hybridization time that cannot be assumed in the past. It was also found that an analysis with excellent quantitative response can be realized by using a probe with a uniform hybridization rate.
  • the present specification provides the following means.
  • a probe set comprising one or more probes each having one or more base sequences selected from the group consisting of the base sequences described in the following table or their complementary sequences.
  • the method according to (1) comprising one or two or more probes each having one or more base sequences selected from the group consisting of the base sequences described in the following table or a complementary sequence thereof.
  • Probe set. consisting of one or two or more probes each having one or two or more types of base sequences selected from the group consisting of the base sequences described in the following table or their complementary sequences, (1) or ( The probe set according to 2).
  • the probe set according to (3) comprising 10 or more types of probes having 10 or more types of base sequences selected from the group consisting of the base sequences described in the table according to (1) or a complementary sequence thereof .
  • the probe set according to (4) comprising at least probes having the base sequences or complementary sequences described in the following table.
  • a screening method comprising: (9) A probe screening method, A hybridization step in which a probe having a melting temperature of 57 ° C. or more and 61 ° C.
  • a screening method comprising: (10) A probe set, The set which consists of a probe which satisfies the following (a) and (b).
  • the melting temperature is 57 ° C. or more and 61 ° C. or less, and the base sequence is a 23-base long orthonormal sequence.
  • the hybridization rate at 15 seconds after the start of hybridization is 50% or more relative to the hybridization rate at 3600 seconds after the start of hybridization.
  • This specification relates to a probe set that can shorten hybridization and its use.
  • the probe set disclosed in the present specification it is possible to achieve target hybridization at a level sufficient to achieve rapid hybridization exceeding expectations, to ensure detection accuracy even in a very short time, and to achieve a level of reliability. Yes.
  • Such rapid detection enables further expansion of application of probe hybridization.
  • Probe set This probe set is selected from a group of base sequences selected from the specific base sequences (SEQ ID NOs: 1 to 100) shown in Table 5 or their complementary sequences (SEQ ID NOs: 101 to 200) so as to satisfy certain conditions.
  • a probe set having a base sequence is selected from a group of base sequences selected from the specific base sequences (SEQ ID NOs: 1 to 100) shown in Table 5 or their complementary sequences (SEQ ID NOs: 101 to 200) so as to satisfy certain conditions.
  • the base sequences described in Table 5 are also called orthonormal sequences.
  • a DNA sequence having a predetermined base length obtained from a random number has a continuous match length, melting temperature prediction by Nearest-Neighbor method, Hamming distance, secondary structure prediction. It is designed by performing the calculation of
  • An orthonormal sequence is a base sequence of nucleic acid having a uniform melting temperature, that is, a sequence designed so that the melting temperature is within a certain range, and the nucleic acid itself is intramolecular. It means a base sequence that does not form a structure and does not inhibit hybridization with a complementary sequence, and does not form a stable hybrid other than a complementary base sequence.
  • a sequence included in one orthonormal sequence group hardly reacts between sequences other than the desired combination and within a self-sequence, or does not generate a reaction.
  • the orthogonal sequence is amplified by PCR, the amount of nucleic acid corresponding to the initial amount of the nucleic acid having the orthogonal sequence is quantitatively amplified without being affected by the problems such as the above-mentioned cross-hybridization. It has the property to be.
  • Orthonormal sequences such as the above are designed based on the information described in H. Yoshida and A.Suyama, “Solution to 3-SAT by breadth first search”, DIMACS Vl.54, 9-20 (2000). It was.
  • the three-digit number in the left column of each column in Table 5 corresponds to the sequence number. That is, the base sequences specified by D01-001 to 100 in Table 5 correspond to SEQ ID NOs: 1 to 100. In addition, base sequences complementary to the base sequences represented by SEQ ID NOs: 1 to 100 are represented by SEQ ID NOs: 101 to 200.
  • the melting temperature of the base sequence of Table 5 is in the range of 57 ° C. or more and 61 ° C. or less. Among them, the melting temperature is preferably 58 ° C. or more and 60 ° C. or less, more preferably about 59 ° C.
  • the melting temperature can be measured using a Nearest-neighbor method with a probe concentration of 0.1 ⁇ M and conditions of 50 mM Na +1 and 1.5 mM Mg 2+ .
  • the melting temperature of the orthonormal array that can be used in the present invention is not limited to the above temperature, and is within a certain range, preferably a target melting temperature of ⁇ 2 ° C., more preferably ⁇ 1 ° C. Can be set within a certain range.
  • the base sequences in Table 5 are all 23 bases long, but the base lengths of orthonormal sequences that can be used in the present invention are not limited to 23 bases. Orthonormal sequences with fewer or more base lengths are designed as needed.
  • This probe set can be composed of one or more probes each having one or more base sequences selected from the group consisting of the base sequences shown in Table 6 below or their complementary sequences. .
  • the base sequence possessed by the probe included in the probe set is either a base sequence specifically represented in the following table or the like or a complementary sequence thereof.
  • the other probe when one probe has one base sequence specifically represented in a table or the like, the other probe has another specifically represented base sequence, and its complementary sequence It is preferable not to have.
  • the probe having the base sequence shown in Table 6 is selected based on the hybridization rate. That is, these probes are probes that can achieve a hybridization rate of 50% or more within 15 seconds after the start of hybridization with respect to the hybridization rate (fluorescence intensity) in hybridization of 3600 seconds (1 hour). .
  • such a probe has a hybridization rate of 85% or more (indicated by A in Table 6) within 900 seconds after the start of hybridization, preferably 90% or more (shown as AA in Table 6). More preferably 95% or more (AAA is added and shown in Table 6).
  • a probe having a hybridization rate within a certain range at 3600 seconds versus 3).
  • the difference in the hybridization rate is within 20%, more preferably within 15%, still more preferably within 10%, and even more preferably within 5%. It is preferable.
  • a probe set composed of such probes it is possible to perform hybridization that is rapid and excellent in quantitativeness.
  • This probe set preferably comprises probes having one or more base sequences selected from the group consisting of the base sequences described in the following table. These probes are probes in which the hybridization rate at 3600 seconds is 65% or more within 15 seconds after the start of hybridization. According to such a probe, hybridization with higher accuracy can be detected more rapidly. Also in these probes, as described above, the time of 3600 seconds after a certain time from the start of hybridization (for example, 15 seconds, 30 seconds, 60 seconds, 120 seconds, 240 seconds, and 900 seconds). It is preferable to select a probe whose hybridization rate is within a certain range.
  • the probe set is more preferably composed of probes having one or more base sequences selected from the group consisting of the base sequences shown in Table 7 below.
  • These probes are probes in which the hybridization rate at 3600 seconds is 70% or more within 15 seconds after the start of hybridization. According to such a probe, hybridization with higher accuracy can be detected more rapidly. Also in these probes, as described above, the time of 3600 seconds after a certain time from the start of hybridization (for example, 15 seconds, 30 seconds, 60 seconds, 120 seconds, 240 seconds, and 900 seconds). It is preferable to select a probe whose hybridization rate is within a certain range.
  • the probe set is more preferably composed of probes having one or more base sequences selected from the group consisting of the base sequences shown in Table 8 below.
  • These probes are probes whose hybridization rate at 3600 seconds is 75% or more within 15 seconds after the start of hybridization. According to such a probe, hybridization with higher accuracy can be detected more rapidly. Also in these probes, as described above, the time of 3600 seconds after a certain time from the start of hybridization (for example, 15 seconds, 30 seconds, 60 seconds, 120 seconds, 240 seconds, and 900 seconds). It is preferable to select a probe whose hybridization rate is within a certain range.
  • the probes constituting this probe set preferably have a hybridization rate of 80% or more at 3600 seconds within 15 seconds after the start of hybridization, more preferably 85% or more.
  • This probe set is composed of probes having one or two or more kinds of base sequences selected from the base sequence group shown in Table 6.
  • the probe set is further composed of many kinds of probes.
  • the present probe set may include other probes that realize a hybridization rate equal to or higher than that of the probes constituting the present probe set.
  • This probe set preferably comprises one or more probes having one or more base sequences selected from the group consisting of the base sequences shown in Table 9 below or their complementary sequences. Preferably, all of these are preferably included. All of these probes have a hybridization rate of 85% or more at 3600 seconds within 30 seconds after the start of hybridization, and further, 88 at 3600 seconds within 30 seconds after the start of hybridization. % Hybrid formation rate.
  • the composition of the hybridization solution is 1 to 10 ⁇ SSC (sodium citrate buffer; 1 ⁇ SSC composition: 0.15 M NaCl, 15 mM Buffers of sodium acid, pH 7.0) (preferably 1 to 2 ⁇ SSC) and 0.1 to 1.0% SDS (sodium dodecyl sulfate) (preferably about 0.1 to 0.3%)
  • the hybridization temperature is preferably about 20 ° C. to 70 ° C. using If necessary, 10-50% formamide such as DM can be added. Further, EDTA or the like can be added at 1 mM to 10 mM (preferably 2 mM).
  • the following composition can be used. 20 x SSC 2.0 ml 10% SDS 0.8 ml 100% Formamide 12.0 ml 100 mM EDTA 0.8 ml 24.4 ml water 40.0 ml
  • this probe set can also take the following forms. That is, it is possible to take the form of a set including the probe that satisfies the following (a) and (b).
  • the melting temperature is 57 ° C. or more and 61 ° C. or less, and the base sequence is a 23-base long orthonormal sequence.
  • the hybridization rate at 15 seconds after the start of hybridization is 50% or more relative to the hybridization rate at 3600 seconds after the start of hybridization.
  • the various forms of the probe which comprises this probe set are applicable.
  • the probe constituting this probe set only needs to have the above base sequence and can be hybridized with a polynucleotide such as DNA in a detection target having a complementary base sequence. Therefore, the base structure is not particularly limited as long as it can retain the base sequence. Therefore, the probe may be various artificially synthesized nucleic acids such as DNA, peptide nucleic acid, morpholino nucleic acid, methyl phosphonate nucleic acid and S-oligonucleic acid. Furthermore, the probe may be single-stranded or double-stranded, but is preferably single-stranded when immobilized on a carrier.
  • the probe can be provided with an identification mark if necessary.
  • an identification label various conventionally known identification labels can be provided, and those skilled in the art can select an appropriate identification label and give it to the probes of the present probe set.
  • the probe can be provided with a structure for immobilization on a carrier described later by chemical or physical adsorption.
  • the probe can be immobilized on the surface of the solid phase carrier by various known methods.
  • Such a structure is well known to those skilled in the art of probe hybridization, and a person skilled in the art can appropriately select the structure depending on the type of the holder and the like, and immobilize the probe on the holder.
  • the probe may be provided with an appropriate linker sequence for the structural part for immobilization.
  • the linker sequence is preferably the same sequence with the same base length between the probes.
  • Such a probe set can directly or indirectly detect a specific base sequence in a detection target.
  • a probe set is previously given to a detection target, and a specific base sequence included in the probe is used as a discrimination base sequence to be used for identification of the detection target. It is done.
  • detection targets in such cases include products distributed in the market, parts (including intermediate products), fishery products, agricultural products, banknotes, and the like.
  • the detection target can be identified by the detection probe set having a base sequence complementary to the base sequence for identification of probes constituting the probe set assigned to the detection target. In this case, it is preferable that the probe set provided to the detection target is an array described later.
  • the probe set for detection is preferably a solution sample.
  • Non-Patent Document 2 a base sequence previously associated with a specific base sequence of a probe constituting this probe set by using a hybridization reaction, a ligase reaction, or the like for a target sequence of an organism (a base sequence identical or complementary to the specific base sequence)
  • a ligase product having the above and providing a label of this ligase product to this probe set
  • the target sequence in the detection target can be detected or identified.
  • an array described later is preferably used as the probe set.
  • the probe set can be dissolved in a solution and used for a hybridization reaction in the solution, or can be used for a hybridization reaction as a solid-liquid reaction in a state of being immobilized on an appropriate carrier.
  • a probe screening method is also provided from the above. That is, in the screening method, for example, a probe having a base sequence which is a normal orthogonal sequence having a melting temperature of 57 ° C. or more and 61 ° C. or less and a base length of 23 bases is complementary to the base sequence. And a step of selecting a probe having a hybridization rate of a predetermined value or more within a predetermined time in the hybridization step.
  • this screening method is, for example, a probe having a base sequence selected based on a probe having a base sequence that is a normal orthogonal sequence having a melting temperature of 57 ° C. or more and 61 ° C.
  • a hybridization step of performing hybridization with an oligonucleotide having a base sequence complementary to the base sequence, and a step of selecting a probe having a hybridization rate within a predetermined numerical range within a predetermined time in the hybridization step And can be provided. According to this method, a probe having high analytical ability can be efficiently selected as a universal probe.
  • Various forms applied to the probes constituting this probe set can be applied to the hybridization rate that is a probe selection in the screening step.
  • the probe set is held on a carrier.
  • the probe set is immobilized and held on a carrier by physical adsorption or chemical bonding.
  • the carrier is not particularly limited as long as it can withstand normal hybridization conditions. Specific examples include those that are insoluble in a solvent used for immobilization of nucleic acid, hybridization, and the like and are solid or gel at room temperature or in the vicinity of a temperature range (for example, 0 to 100 ° C.).
  • such a carrier material examples include plastics, inorganic polymers, metals, natural polymers, and ceramics.
  • the plastic is not particularly limited as long as it can immobilize biomolecules by ultraviolet irradiation, and specific examples include thermoplastic resins, thermosetting resins, and copolymers. .
  • thermoplastic resin examples include ionomers (styrene-based, olefin-based), polynorbornene, polyacetal, polyarylate, polyether ether ketone, polyethylene oxide, polyoxymethylene, polyethylene terephthalate, polycarbonate, polystyrene, polysulfone, Polyparamethylstyrene, polyallylamine, polyphenylene ether, polyphenylene sulfide, polybutadiene, polybutylene terephthalate, polypropylene, polymethylpentene, polyethersulfone, polyphenylene sulfide, polyoxybenzoyl, polyoxyethylene, cellulose acetate, polydimethylsiloxane, polyisobutylene , Cellulose triacetate, poly-p-phenylene terephthalamide, poly Soprene, polyacrylonitrile, polymethylpentene, chlorine plastic (polyvinyl chloride, polychlorinated ethylene
  • Thermosetting resins include epoxy, polyxylene, polyguanamine, polydiallyl phthalate, polyvinyl ester, polyphenol, unsaturated polyester, polyfuran, polyimide, polyurethane, polymaleic acid, melamine, urea, alkyd, benzoguanamine, polycyanate, polycyanate.
  • An isocyanate etc. are mentioned.
  • the copolymer includes isobutylene maleic anhydride copolymer, acrylonitrile acrylate styrene copolymer, acrylonitrile EPDM styrene copolymer, acrylonitrile styrene copolymer, acrylonitrile butadiene styrene copolymer, butadiene styrene methyl methacrylate copolymer.
  • Ethylene vinyl chloride copolymer ethylene vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, acrylonitrile-butadiene styrene copolymer, polyether ether ketone copolymer, fluorinated ethylene polypropylene copolymer, tetrafluoroethylene
  • Ethylene vinyl chloride copolymer ethylene vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, acrylonitrile-butadiene styrene copolymer, polyether ether ketone copolymer, fluorinated ethylene polypropylene copolymer, tetrafluoroethylene
  • perfluoroalkyl vinyl ether copolymers and tetrafluoroethylene ethylene copolymers.
  • polycarbonate particularly preferred are polycarbonate, polymethyl methacrylate, acrylonitrile butadiene styrene copolymer, polyethylene, polyethylene terephthalate, polyphenol, polystyrene, polyacrylonitrile, polyvinyl chloride, aramid and the like.
  • the inorganic polymer include glass, crystal, carbon, silica gel, and graphite.
  • Specific examples of the metal include gold, platinum, silver, copper, iron, aluminum, a magnet, and a paramagnet.
  • natural polymers include polyamino acids, cellulose, chitin, chitosan, alginic acid, and derivatives thereof.
  • Specific examples of the ceramic include apatite, alumina, silica, silicon carbide, silicon nitride, and boron carbide.
  • the probe may be directly held on the carrier, but may further be provided with an immobilized phase for immobilization on the carrier.
  • an immobilization phase as long as it is supported on the carrier, it may be supported simply using physical adhesiveness, or may be chemically supported via a covalent bond or the like.
  • the said fixed phase may be carry
  • the immobilized phase include small organic molecules in addition to the materials described above as materials for the carrier and the like.
  • Specific examples of the organic low molecule include a carbodiimide group-containing compound, an isocyanate group-containing compound, a nitrogen iperit group-containing compound, an aldehyde group-containing compound, and an amino group-containing compound.
  • the immobilization phase is preferably supported as a film on the carrier.
  • known methods such as spraying, dipping, brushing, stamping, vapor deposition, coating using a film coater, and the like can be used.
  • an amino-substituted organoalkoxysilane such as 3-aminopropyltriethoxysilane is dissolved in a suitable solvent into a solution obtained.
  • the carrier is taken out, washed with water, and further heated and dried at about 100 to 120 ° C. for about 4 to 5 hours.
  • the substrate is immersed in a suitable solvent, carbodiimide resin is added, and the mixture is stirred for about 12 hours at a temperature of about 30 to 170 ° C.
  • amino group of 3-aminopropyltriethoxysilane can be reacted with a functional group other than the nucleic acid binding group of the nitrogen iperit group using an appropriate solvent to introduce the nitrogen iperit group onto the surface of the glass carrier.
  • plastic carriers mentioned above already have the functional group as described above on the surface of the carrier. In this case, without introducing the functional group onto the surface of the carrier or the like, this can be used as it is. It can also be used for the production of carriers and the like. Further, even such a plastic carrier can be used for the production of the carrier by further introducing a functional group.
  • the method of using the probe set comprises a hybridization step of performing hybridization using the probe set, and a step of detecting a hybridization product obtained in the hybridization step, and a method of detecting a detection target It can be. Since this probe set can rapidly realize specific hybridization, the detection target can be identified or detected quickly.
  • detection means that the present probe set (identification probe set) is provided in advance for a detection target, and the detection target is a specific base sequence (discrimination base sequence) in the probe (identification probe). ). Then, hybridization with a detection probe set (also this probe set) having a base sequence complementary to the base sequence for identification of the probes of these detection probe sets is performed on such a detection target. In addition to identifying the object to be detected, this includes detecting or identifying authenticity, alteration, deterioration, and the like. This method can also be used as a method for management, monitoring, authentication, identification, tracking, and the like of detection targets. Hereinafter, this embodiment will be described first.
  • This method of use can comprise a hybridization step and a detection step.
  • the hybridization step includes an identification probe set assigned to a detection target, and a detection probe set including one or more detection probes having a base sequence complementary to the identification base sequence included in the probe. It can be a step of performing hybridization.
  • the detection target includes an identification probe associated in advance
  • the identification probe on the detection target and the detection probe can form a hybridization product.
  • the detection probe set may supply only probes corresponding to the identification base sequence previously assigned to the detection target, or may supply probes that are universally applicable to many detection targets.
  • the detection probe is preferably labeled.
  • a conventionally known one can be appropriately selected and used. It may be various dyes such as a fluorescent substance that emits a fluorescent signal when excited by itself, or may be a substance that emits various signals in combination with the second component by an enzyme reaction or an antigen-antibody reaction.
  • a fluorescent labeling substance such as Cy3, Alexa555, Cy5, Alexa647 can be used.
  • biotin and streptavidin HPR may be combined for detection by color development such as by treatment with a substrate.
  • the conditions for the hybridization process are not particularly limited.
  • a normal hybridization medium can be used. Moreover, it can set to moderate temperature.
  • the hybridization time can be 15 minutes or less. Moreover, it can also preferably be 10 minutes or less, and can also be 5 minutes or less.
  • the array may be separated from the detection target.
  • the hybridization step can be performed in a state separated from the detection target. If possible, a hybridization step may be performed on the detection target. For example, the case where a cavity for hybridization is provided on the present array can be mentioned.
  • the identification probe is immobilized on the carrier, the hybridized product is retained on the carrier even if the excess probe is washed.
  • the detection step can be a step of detecting a hybridized product in the hybridization step.
  • the detection target By detecting the hybridization product, the detection target can be detected and identified.
  • the method for detecting the hybridized product in the detection step is not particularly limited.
  • the label When the linking molecule has a label, the label may be detected. Alternatively, the double strand may be detected by an electrical detection method or the like.
  • the detection target is identified and identified. That is, since the identity of the detection target is determined, it can be determined that the detection target has not been tampered with, has not been replaced, or has not been damaged. Further, when the hybridized product is not detected, it is determined that the detection target is absent or the detection target is not identical. That is, it is determined whether the detection target has been lost, altered, or damaged.
  • the time required for the detection process is not particularly limited, but can be 1 second or more and 1 hour or less.
  • hybridization and detection can be performed at 40 ° C. or less (eg, about 37 ° C.) compared to a general detection temperature (50 ° C. to 70 ° C.).
  • the detection process can be speeded up. More preferably, they are 1 second or more and 5 minutes or less, More preferably, they are 1 second or more and 1 minute or less.
  • detection refers to a base sequence (target sequence) that may exist in a nucleic acid of an organism, by using a hybridization reaction and a ligase reaction, and a base associated with the probe of this probe set.
  • This includes performing hybridization with this probe set using a ligase product having a sequence (a base sequence identical or complementary to a specific base sequence) as a mediator, and detecting a detection target.
  • This type of method can be carried out with reference to Non-Patent Document 2 and Patent Document 1, as well as Japanese Unexamined Patent Application Publication Nos. 2009-232778 and 2009-24.
  • a probe constituting this probe set can be used as a capture probe in a method for detecting a polymorphism or mutation in one or more target nucleic acids in a sample. . Further, in the method for detecting a mutation in a target nucleic acid described in JP-A-2009-232778, a probe constituting this probe set can be used as a capture probe. Furthermore, in the method for detecting a mutation in a target nucleic acid described in JP-A-2009-24, the probes constituting this probe set can be used as a capture probe.
  • nucleic acid includes all DNA and RNA including cDNA, genomic DNA, mRNA, total RNA, hnRNA, and synthetic RNA.
  • the target nucleic acid is a nucleic acid having a target sequence
  • the target sequence is a human such as onset, disease diagnosis, treatment prognosis, drug or treatment selection for a specific disease such as constitution, genetic disease, cancer, etc.
  • a nucleotide sequence that serves as a genetic index in a living organism such as a non-human animal.
  • polymorphisms such as SNP and congenital or acquired mutations can be mentioned.
  • base sequences derived from microorganisms such as pathogenic bacteria and viruses are also included in the target sequence.
  • the synthetic oligo DNA sequences used were all 100 species (first probe set) D1-D1-100 (Table 10) described in Supplementary Table 1 of the literature (Analytical Biochemistry 364 (2007) 78-85), D1- From 001 to D1-100, three sets of 52 types (second probe set) shown in Table 11 and 48 types (third probe set) shown in Table 12 were prepared, and these sets were immobilized respectively. did. After the spot, baking was performed at 80 ° C. for 1 hour.
  • the probe was immobilized according to the procedure described below. That is, after washing with 2 ⁇ SSC / 0.2% SDS for 15 minutes, washing with 2 ⁇ SSC / 0.2% SDS at 95 ° C. for 5 minutes, and further washing with shaking 10 times or more using sterile water 3 times Then, the solution was centrifuged at 1000 rpm for 3 minutes to drain the liquid.
  • a base sequence complementary to each probe sequence of the probe set on the three types of DNA microarrays is selected from Table 13, and has such a complementary base sequence and is modified with a fluorescent dye.
  • a set of sample DNA was prepared. Hybridization reactivity was evaluated using the corresponding three types of sample DNA sets for the three types of DNA microarrays.
  • the reaction operation and the detection procedure were as follows.
  • a labeled DNA sample solution for hybridization was prepared as follows. (Preparation of labeled sample DNA solution for hybridization) Sample DNA solution 9.0 ⁇ l Hybridization solution 9.0 ⁇ l 18.0 ⁇ l total
  • composition of the sample DNA solution was as follows. 100 types of Alexa555-rD1-001-100 (1 mM each) 2 ⁇ l x 100 each TE 800 ⁇ l 1000 ⁇ l
  • composition of the hybridization solution was as follows. 20 x SSC 2.0 ml 10% SDS 0.8 ml 100% Formamide 12.0 ml 100 mM EDTA 0.8 ml Milli-Q water 24.4 ml 40.0 ml
  • Hybridization between the DNA microarray and the sample DNA set was performed as follows. First, the prepared labeled DNA sample solution was heated at 90 ° C. for 1 minute using a heat block (TAITEC DTU-N), and further heated at 80 ° C. for 1 minute. Next, 9 ⁇ l each of the above sample solution is applied to the spot area of the DNA microarray, sealed in a container to prevent drying, and at 23 ° C. for 15 seconds, 30 seconds, 1 minute, 2 minutes, 4 minutes, 15 minutes, 1 hour, respectively. Hybridization was carried out by allowing the reaction to stand for a period of time.
  • TAITEC DTU-N a heat block
  • the glass substrate after hybridization was immersed in a glass staining vat containing a cleaning solution having the following composition, and shaken up and down for 5 minutes. Thereafter, the glass substrate was transferred to a glass staining vat containing sterilized water and shaken up and down for 1 minute. Furthermore, the water remaining on the glass substrate surface was removed by centrifugal drying at 2000 rpm for 1 minute.
  • Fluorescence detection with a scanner was performed as follows. That is, the measurement conditions were appropriately adjusted using Molecular® Devices® GenePix4000B, and fluorescence images were acquired. Furthermore, using GenePix®Pro, the fluorescence signal of the obtained image was digitized. Furthermore, in the hybridization with three types of DNA microarrays, the relative values (hybrid formation rate) for each reaction time and each probe when the fluorescence intensity obtained from each probe after hybridization for 1 hour is defined as 100. Plotted. The results for the three arrays are shown in FIGS. FIGS. 1 to 3 show the results of the DNA microarray of the first probe set consisting of 100 probes. FIGS. 4 and 5 show the results of the DNA microarray of the second probe set consisting of 52 probes. FIG. 6 and FIG. 7 show the results in the DNA microarray of the third probe set consisting of 48 probes.
  • the second probe set and Among the third probe sets significant differences between the probe sets were confirmed with respect to the reactivity immediately after the reaction (15 seconds) and the reactivity after 15 minutes (900 seconds).
  • the probes constituting the second probe set are all probes that achieve 50% or more of the hybridization rate during 1 hour hybridization within 15 seconds. Furthermore, a hybridization rate of 55% or more, more preferably 60% or more, more preferably 65% or more, more preferably 70% or more, even more preferably 75% or more, and even more preferably 80% or more within 15 seconds. By selecting this probe, more rapid hybridization becomes possible.
  • the probe selected from the second probe set can promote hybridization and rapidly form a hybridization product. That is, by using a probe selected from such a probe set, it is possible to obtain an array with high probe responsiveness (instantaneous) during hybridization and high reaction completion in a short time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The disclosure of this specification provides a probe set having superior analysis performance. The disclosure of this specification is a probe set comprising one or more types of probes each having one or more types of base sequences selected from the group consisting of the base sequences listed in the table, and complementary sequences thereof.

Description

プローブセット及びその利用Probe set and its use
 本願は、日本国特許出願特願2011-133285に基づく優先権を主張する出願であって、その全内容が引用により本明細書に組み込まれる。 This application is an application claiming priority based on Japanese Patent Application No. 2011-133285, the entire contents of which are incorporated herein by reference.
 本明細書は、プローブセット及びその利用に関する。 This specification relates to the probe set and its use.
 微生物などの特定生物の検出あるいは同定のほか、相同遺伝子の探索、塩基配列の決定、遺伝子の変異や多型の検出などに、プローブハイブリダイゼーション技術が多用されている。プローブハイブリダイゼーション技術は、生物起源のDNAなどのポリヌクレオチドにおける特定の塩基配列(以下、標的配列ともいう。)を、オリゴヌクレオチドプローブを用い、塩基対を形成させるハイブリダイゼーションによって検出する技術である。プローブハイブリダイゼーションにおいては、複数のプローブを固定化したアレイが用いられることが多い。 In addition to detecting or identifying specific organisms such as microorganisms, probe hybridization techniques are frequently used for searching for homologous genes, determining base sequences, detecting gene mutations and polymorphisms, and the like. The probe hybridization technique is a technique for detecting a specific base sequence (hereinafter also referred to as a target sequence) in a polynucleotide such as DNA of biological origin by hybridization using an oligonucleotide probe to form a base pair. In probe hybridization, an array on which a plurality of probes are immobilized is often used.
 アレイには、従来、標的配列に相補的な塩基配列を有するプローブが固定化されている。こうしたアレイでは、一般に、プローブと生物起源のDNA試料とのハイブリダイゼーションには、サンプルの種類や固定化されたプローブの長さ、塩基配列や形態(1本鎖又は2本鎖)によっても異なるが、概ね数時間から48時間程度を要するとされている(非特許文献1)。 Conventionally, probes having a base sequence complementary to the target sequence are immobilized on the array. In such an array, in general, hybridization between a probe and a DNA sample of biological origin varies depending on the type of sample, the length of the immobilized probe, the base sequence and the form (single strand or double strand). In general, it takes about several to 48 hours (Non-Patent Document 1).
 また、融解温度(Tm)を一定温度範囲内とし、安定な二次構造を形成せず、しかも、相補的な配列と高度に特異的にハイブリダイゼーションするように選択された人工的な100個の塩基配列を決定し、この塩基配列を有するユニバーサルプローブを固定化したユニバーサルアレイを用いる方法も報告されている(非特許文献1、特許文献1)。この方法では、DNA試料から、アレイ上のプローブ中の特定塩基配列と関連付けた識別配列を有するハイブリダイゼーション用サンプルをリガーゼ反応等を用いた連結分子として予め調製しておく。こうしたサンプルを、ユニバーサルアレイに適用すれば、サンプル中の識別配列が予め関連付けられたプローブとハイブリダイゼーションすることになる。ユニバーサルプローブでは、塩基配列の多様性が低減されていることなどから、ハイブリダイゼーション時間は1時間程度でも可能となっている。また、融解温度をなるべく近接させたプローブを用いることがより一層好ましいことも記載されている(特許文献1)。 In addition, the melting temperature (Tm) is within a certain temperature range, does not form a stable secondary structure, and is selected from 100 artificially selected molecules that are highly specifically hybridized with complementary sequences. A method of using a universal array in which a base sequence is determined and a universal probe having this base sequence is immobilized has also been reported (Non-patent Document 1, Patent Document 1). In this method, a hybridization sample having an identification sequence associated with a specific base sequence in a probe on an array is prepared in advance as a linking molecule using a ligase reaction or the like from a DNA sample. When such a sample is applied to a universal array, it will hybridize with a probe in which the identification sequence in the sample is pre-associated. In the universal probe, since the diversity of the base sequence is reduced, the hybridization time can be about 1 hour. It is also described that it is even more preferable to use a probe with a melting temperature as close as possible (Patent Document 1).
 さらに、こうした100種の塩基配列を有する100のプローブのうち一部のプローブについてハイブリダイゼーション率(速度)について検討されている(非特許文献2)。この文献には、プローブ末端に二次構造を形成しないプローブが、そうでないプローブよりもハイブリダイゼーション促進能が高いことが記載されている。 Furthermore, the hybridization rate (speed) of some of the 100 probes having 100 kinds of base sequences has been studied (Non-patent Document 2). This document describes that a probe that does not form a secondary structure at the probe end has higher hybridization promoting ability than a probe that does not.
特開2008-306941号公報JP 2008-306941 A
 従来の一般的なプローブを用いたハイブリダイゼーションにおいては、プローブの塩基配列は標的配列に応じて決定されるため、プローブの配列を検討してハイブリダイゼーション時間を短縮するという試み自体が困難である。したがって、従来のプローブハイブリダイゼーションにおいては、こうした試みは具体的になされていない。 In conventional hybridization using a general probe, since the base sequence of the probe is determined according to the target sequence, it is difficult to attempt to shorten the hybridization time by examining the probe sequence. Accordingly, no specific attempt has been made in conventional probe hybridization.
 一方で、検出や診断についての迅速性の要請を考慮すると、ハイブリダイゼーション時間のさらなる短縮が望まれている。 On the other hand, considering the promptness of detection and diagnosis, further shortening of the hybridization time is desired.
 ユニバーサルプローブを用いたハイブリダイゼーションにおいては、既に1時間というハイブリダイゼーション時間が達成されており、従来技術に比べて著しい改善がなされている。しかしながら、これらのユニバーサルプローブについてのさらなる改善について未だ報告はされていない。 In hybridization using a universal probe, a hybridization time of 1 hour has already been achieved, which is a significant improvement over the prior art. However, no further improvements have been reported for these universal probes.
 また、本発明者らの検討によれば、二次構造を形成しにくくかつTmが均質に設計されたなユニバーサルプローブであっても、ハイブリダイゼーション速度の観点からみると相当程度大きな差があることがわかった。 Further, according to the study by the present inventors, even a universal probe that is difficult to form a secondary structure and is designed to have a uniform Tm has a considerable difference from the viewpoint of the hybridization rate. I understood.
 そこで、本明細書は、より分析性能に優れたプローブセット及びその利用を提供する。 Therefore, the present specification provides a probe set with better analytical performance and its use.
 本発明者らは、プローブのハイブリダイゼーション速度について種々検討したところ、実際のハイブリダイゼーションにおいては、予想を超えたハイブリダイゼーション速度の相違があるという知見を得た。さらに、ハイブリダイゼーション速度に基づいてプローブを選択することで従来では想定しえなかった程度のハイブリダイゼーション時間での分析を実現できることを見出し、本発明を完成した。また、ハイブリダイゼーション速度がそろったプローブを用いることで定量応答性の優れた分析を実現できることがわかった。本明細書は以下の手段を提供する。 The inventors of the present invention have made various studies on the hybridization speed of the probe, and have found that there is a difference in hybridization speed exceeding expectations in actual hybridization. Furthermore, the present inventors have found that by selecting a probe based on the hybridization rate, it is possible to realize an analysis with a hybridization time that cannot be assumed in the past. It was also found that an analysis with excellent quantitative response can be realized by using a probe with a uniform hybridization rate. The present specification provides the following means.
(1)以下の表に記載の塩基配列又はその相補配列からなる群から選択される1種又は2種以上の塩基配列をそれぞれ有する1種又は2種以上のプローブからなる、プローブセット。
Figure JPOXMLDOC01-appb-T000005
 
(2)以下の表に記載の塩基配列又はその相補配列からなる群から選択される1種又は2種以上の塩基配列をそれぞれ有する1種又は2種以上のプローブからなる、(1)に記載のプローブセット。
Figure JPOXMLDOC01-appb-T000006
 
(3)以下の表に記載の塩基配列又はその相補配列からなる群から選択される1種又は2種以上の塩基配列をそれぞれ有する1種又は2種以上のプローブからなる、(1)又は(2)に記載のプローブセット。
Figure JPOXMLDOC01-appb-T000007
 
(4)(1)に記載の表に記載の塩基配列又はその相補配列からなる群から選択される10種以上の塩基配列を有する10種以上のプローブからなる、(3)に記載のプローブセット。
(5)少なくとも以下の表に記載の塩基配列又は相補配列を有するプローブを含む、(4)に記載のプローブセット。
Figure JPOXMLDOC01-appb-T000008
 
(6)(1)~(5)のいずれかに記載のプローブセットが担体に固定化されたアレイ。
(7)(1)~(5)のいずれかに記載のプローブセットを用いてハイブリダイゼーションを実施するハイブリダイゼーション工程と、
 前記ハイブリダイゼーション工程のハイブリダイズ産物を検出する検出工程と、
を備える、プローブセットの使用方法。
(8)プローブのスクリーニング方法であって、
 融解温度が57℃以上61℃以下であり、23塩基長の正規直交配列である塩基配列を有するプローブについて、前記塩基配列と相補的な塩基配列を有するオリゴヌクレオチドとハイブリダイゼーションを実施するハイブリダイゼーション工程と、
 前記ハイブリダイゼーション工程において、所定時間内におけるハイブリッド形成率が所定数値以上のプローブを選択する工程と、
を備える、スクリーニング方法。
(9)プローブのスクリーニング方法であって、
 融解温度が57℃以上61℃以下であり、23塩基長の正規直交配列である塩基配列を有するプローブについて、前記塩基配列と相補的な塩基配列を有するオリゴヌクレオチドとハイブリダイゼーションを実施するハイブリダイゼーション工程と、
 前記ハイブリダイゼーション工程において、所定時間内におけるハイブリッド形成率が所定数値範囲内のプローブを選択する工程と、
を備える、スクリーニング方法。
(10)プローブセットであって、
 以下の(a)及び(b)を充足する、プローブからなる、セット。
(a)融解温度が57℃以上61℃以下であり、23塩基長の正規直交配列である塩基配列を有する。
(b)ハイブリダイゼーション開始後3600秒後におけるハイブリッド形成率に対する
ハイブリダイゼーション開始後15秒後のハイブリッド形成率が50%以上である。
(1) A probe set comprising one or more probes each having one or more base sequences selected from the group consisting of the base sequences described in the following table or their complementary sequences.
Figure JPOXMLDOC01-appb-T000005

(2) The method according to (1), comprising one or two or more probes each having one or more base sequences selected from the group consisting of the base sequences described in the following table or a complementary sequence thereof. Probe set.
Figure JPOXMLDOC01-appb-T000006

(3) consisting of one or two or more probes each having one or two or more types of base sequences selected from the group consisting of the base sequences described in the following table or their complementary sequences, (1) or ( The probe set according to 2).
Figure JPOXMLDOC01-appb-T000007

(4) The probe set according to (3), comprising 10 or more types of probes having 10 or more types of base sequences selected from the group consisting of the base sequences described in the table according to (1) or a complementary sequence thereof .
(5) The probe set according to (4), comprising at least probes having the base sequences or complementary sequences described in the following table.
Figure JPOXMLDOC01-appb-T000008

(6) An array in which the probe set according to any one of (1) to (5) is immobilized on a carrier.
(7) a hybridization step of performing hybridization using the probe set according to any one of (1) to (5);
A detection step of detecting a hybridization product of the hybridization step;
A method of using a probe set comprising:
(8) A probe screening method comprising:
A hybridization step in which a probe having a melting temperature of 57 ° C. or more and 61 ° C. or less and having a base sequence that is a 23-base long orthonormal sequence is hybridized with an oligonucleotide having a base sequence complementary to the base sequence When,
In the hybridization step, a step of selecting a probe having a hybridization rate within a predetermined time over a predetermined value;
A screening method comprising:
(9) A probe screening method,
A hybridization step in which a probe having a melting temperature of 57 ° C. or more and 61 ° C. or less and having a base sequence that is a 23-base long orthonormal sequence is hybridized with an oligonucleotide having a base sequence complementary to the base sequence When,
In the hybridization step, selecting a probe having a hybridization rate within a predetermined numerical range within a predetermined time; and
A screening method comprising:
(10) A probe set,
The set which consists of a probe which satisfies the following (a) and (b).
(A) The melting temperature is 57 ° C. or more and 61 ° C. or less, and the base sequence is a 23-base long orthonormal sequence.
(B) The hybridization rate at 15 seconds after the start of hybridization is 50% or more relative to the hybridization rate at 3600 seconds after the start of hybridization.
実施例における第1のプローブセットを固定化したDNAマイクロアレイにおけるサンプルDNAとのハイブリダイゼーションにおけるハイブリッド形成率を評価した結果を表として示す図である。It is a figure which shows the result of having evaluated the hybridization rate in hybridization with sample DNA in the DNA microarray which fix | immobilized the 1st probe set in an Example. 実施例における第1のプローブセットを固定化したDNAマイクロアレイにおけるサンプルDNAとのハイブリダイゼーションにおけるハイブリッド形成率を評価した結果を表として示す図である。It is a figure which shows the result of having evaluated the hybridization rate in hybridization with sample DNA in the DNA microarray which fix | immobilized the 1st probe set in an Example. 実施例における第1のプローブセットを固定化したDNAマイクロアレイにおけるサンプルDNAとのハイブリダイゼーションにおけるハイブリッド形成率を評価した結果を示す図である。It is a figure which shows the result of having evaluated the hybridization rate in hybridization with sample DNA in the DNA microarray which fix | immobilized the 1st probe set in an Example. 実施例における第2のプローブセットを固定化したDNAマイクロアレイにおけるサンプルDNAとのハイブリダイゼーションにおけるハイブリッド形成率を評価した結果を表として示す図である。It is a figure which shows as a table | surface the result of having evaluated the hybridization rate in hybridization with sample DNA in the DNA microarray which fix | immobilized the 2nd probe set in an Example. 実施例における第2のプローブセットを固定化したDNAマイクロアレイにおけるサンプルDNAとのハイブリダイゼーションにおけるハイブリッド形成率を評価した結果を示す図である。It is a figure which shows the result of having evaluated the hybridization rate in hybridization with sample DNA in the DNA microarray which fix | immobilized the 2nd probe set in an Example. 実施例における第3のプローブセットを固定化したDNAマイクロアレイにおけるサンプルDNAとのハイブリダイゼーションにおけるハイブリッド形成率を評価した結果を表として示す図である。It is a figure which shows as a table | surface the result of having evaluated the hybridization rate in hybridization with sample DNA in the DNA microarray which fix | immobilized the 3rd probe set in an Example. 実施例における第3のプローブセットを固定化したDNAマイクロアレイにおけるサンプルDNAとのハイブリダイゼーションにおけるハイブリッド形成率を評価した結果を示す図である。It is a figure which shows the result of having evaluated the hybridization rate in hybridization with sample DNA in the DNA microarray which fix | immobilized the 3rd probe set in an Example.
 本明細書は、ハイブリダイゼーションを短縮できるプローブセット及びその利用に関する。本明細書に開示されるプローブセットによれば、予想を超えて迅速なハイブリダイゼーションを達成し、極めて短時間でも検出精度を確保し信頼性に足るレベルでの標的配列の検出が可能となっている。こうした迅速な検出が可能となることにより、プローブハイブリダイゼーションの一層の適用拡大が可能となる。 This specification relates to a probe set that can shorten hybridization and its use. According to the probe set disclosed in the present specification, it is possible to achieve target hybridization at a level sufficient to achieve rapid hybridization exceeding expectations, to ensure detection accuracy even in a very short time, and to achieve a level of reliability. Yes. Such rapid detection enables further expansion of application of probe hybridization.
 また、本プローブセットによれば、ハイブリダイゼーション速度が近似しているので、定量応答性が良好なハイブリダイゼーションを達成できる。こうした定量的な検出が可能となることにより、プローブハイブリダイゼーションの一層の適用拡大が可能となる。 Further, according to this probe set, since the hybridization speed is approximate, hybridization with good quantitative response can be achieved. By making such quantitative detection possible, it is possible to further expand the application of probe hybridization.
 以下では、本発明の代表的かつ非限定的な具体例について、図面を参照して詳細に説明する。この詳細な説明は、本発明の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本発明の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに発明は、さらに改善されたプローブセット及びその利用を提供するために、他の特徴や発明とは別に、又は共に用いることができる。 Hereinafter, representative and non-limiting specific examples of the present invention will be described in detail with reference to the drawings. This detailed description is intended merely to present those skilled in the art with the details for practicing the preferred embodiments of the present invention and is not intended to limit the scope of the invention. Additionally, the additional features and inventions disclosed below can be used separately from or in conjunction with other features and inventions to provide further improved probe sets and uses thereof.
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本発明を実施する際に必須のものではなく、特に本発明の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本発明の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。 Further, the combinations of features and steps disclosed in the following detailed description are not indispensable when practicing the present invention in the broadest sense, and are particularly only for explaining representative specific examples of the present invention. It is described. Moreover, various features of the representative embodiments described above and below, as well as those described in the independent and dependent claims, are described herein in providing additional and useful embodiments of the present invention. They do not have to be combined in the specific examples given or in the order listed.
 本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。 All features described in this specification and / or claims, apart from the configuration of the features described in the examples and / or claims, are individually disclosed as limitations on the original disclosure and claimed specific matters. And are intended to be disclosed independently of each other. Further, all numerical ranges and group or group descriptions are intended to disclose intermediate configurations thereof as a limitation to the original disclosure and claimed subject matter.
 以下、本明細書の開示の各種実施形態について説明する。 Hereinafter, various embodiments disclosed in this specification will be described.
(プローブセット)
 本プローブセットは、表5に示す特定の塩基配列(配列番号1~100)又はその相補配列(配列番号101~200)から一定条件を充足するように選抜された塩基配列の群から選択される塩基配列を有するプローブセットである。
(Probe set)
This probe set is selected from a group of base sequences selected from the specific base sequences (SEQ ID NOs: 1 to 100) shown in Table 5 or their complementary sequences (SEQ ID NOs: 101 to 200) so as to satisfy certain conditions. A probe set having a base sequence.
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
 表5に記載する塩基配列は、正規直交配列ともいい、たとえば乱数から得られた所定塩基長のDNA配列に対して連続一致長、Nearest-Neighbor法による融解温度予測、ハミング距離、二次構造予測の計算を行うことにより設計される。正規直交配列は、核酸の塩基配列であって、その融解温度が均一であるもの、即ち融解温度が一定範囲内に揃うように設計された配列であって、核酸自身が分子内(intramolecular)で構造化して、相補的な配列とのハイブリッド形成を阻害することのない配列であり、尚且つこれに相補的な塩基配列以外とは安定したハイブリッドを形成しない塩基配列を意味する。1つの正規直交配列群に含まれる配列は、所望の組み合わせ以外の配列間および自己配列内において反応が生じ難いか、または反応が生じない。また、正規直交配列は、PCRにおいて増幅させると、たとえば上述のクロスハイブリダイズのような問題に影響されずに、当該正規直交配列を有する核酸の初期量に応じた量の核酸が定量的に増幅される性質を有している。上記のような正規直交配列は、H.Yoshida and A.Suyama,“Solution to 3-SAT by breadth first search”,DIMACS Vl.54, 9-20(2000)に記載された情報に基づいて設計された。なお、表5における各欄の左欄における三桁の数字は、配列番号に対応している。すなわち、表5中のD01-001~100で特定される塩基配列は、配列番号1~100に対応している。また、配列番号1~100で表される塩基配列と相補的な塩基配列が配列番号101~200で表される。 The base sequences described in Table 5 are also called orthonormal sequences. For example, a DNA sequence having a predetermined base length obtained from a random number has a continuous match length, melting temperature prediction by Nearest-Neighbor method, Hamming distance, secondary structure prediction. It is designed by performing the calculation of An orthonormal sequence is a base sequence of nucleic acid having a uniform melting temperature, that is, a sequence designed so that the melting temperature is within a certain range, and the nucleic acid itself is intramolecular. It means a base sequence that does not form a structure and does not inhibit hybridization with a complementary sequence, and does not form a stable hybrid other than a complementary base sequence. A sequence included in one orthonormal sequence group hardly reacts between sequences other than the desired combination and within a self-sequence, or does not generate a reaction. In addition, when the orthogonal sequence is amplified by PCR, the amount of nucleic acid corresponding to the initial amount of the nucleic acid having the orthogonal sequence is quantitatively amplified without being affected by the problems such as the above-mentioned cross-hybridization. It has the property to be. Orthonormal sequences such as the above are designed based on the information described in H. Yoshida and A.Suyama, “Solution to 3-SAT by breadth first search”, DIMACS Vl.54, 9-20 (2000). It was. The three-digit number in the left column of each column in Table 5 corresponds to the sequence number. That is, the base sequences specified by D01-001 to 100 in Table 5 correspond to SEQ ID NOs: 1 to 100. In addition, base sequences complementary to the base sequences represented by SEQ ID NOs: 1 to 100 are represented by SEQ ID NOs: 101 to 200.
 なお、表5の塩基配列の融解温度は、57℃以上61℃以下の範囲内となっている。なかでも、融解温度は好ましくは、58℃以上60℃以下であり、より好ましくは約59℃である。融解温度は、Nearest-neighbor法を用い、0.1μMのプローブ濃度で、50mM Na+1,1.5mM Mg2+の条件で測定することができる。なお、本発明において用いられうる正規直交配列の融解温度は、上記温度に限定されるものではなく、一定範囲内、好ましくは目標とする融解温度の±2℃、より好ましくは±1℃の範囲内の一定範囲に設定することができる。 In addition, the melting temperature of the base sequence of Table 5 is in the range of 57 ° C. or more and 61 ° C. or less. Among them, the melting temperature is preferably 58 ° C. or more and 60 ° C. or less, more preferably about 59 ° C. The melting temperature can be measured using a Nearest-neighbor method with a probe concentration of 0.1 μM and conditions of 50 mM Na +1 and 1.5 mM Mg 2+ . In addition, the melting temperature of the orthonormal array that can be used in the present invention is not limited to the above temperature, and is within a certain range, preferably a target melting temperature of ± 2 ° C., more preferably ± 1 ° C. Can be set within a certain range.
 また、表5の塩基配列はいずれも23塩基長であるが、本発明において用いられうる正規直交配列の塩基長は23塩基長に限定するものではない。必要に応じてより少ないあるいはより多い塩基長の正規直交配列が設計される。 The base sequences in Table 5 are all 23 bases long, but the base lengths of orthonormal sequences that can be used in the present invention are not limited to 23 bases. Orthonormal sequences with fewer or more base lengths are designed as needed.
 本プローブセットは、以下の表6に記載の塩基配列又はその相補配列からなる群から選択される1種又は2種以上の塩基配列をそれぞれ有する1種又は2種以上のプローブからなることができる。以下の説明において、プローブセットに含まれるプローブが有する塩基配列は、以下の表等において具体的に表される塩基配列かあるいはその相補配列のいずれかである。一つのプローブセットにおいて、一つのプローブが表等において具体的に表される一つの塩基配列を有するとき、他のプローブは、他の具体的に表される塩基配列を有し、その相補配列を有していないことが好ましい。 This probe set can be composed of one or more probes each having one or more base sequences selected from the group consisting of the base sequences shown in Table 6 below or their complementary sequences. . In the following description, the base sequence possessed by the probe included in the probe set is either a base sequence specifically represented in the following table or the like or a complementary sequence thereof. In one probe set, when one probe has one base sequence specifically represented in a table or the like, the other probe has another specifically represented base sequence, and its complementary sequence It is preferable not to have.
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
 表6に示す塩基配列を有するプローブは、ハイブリダイゼーション速度に基づいて選択されている。すなわち、これらのプローブは、3600秒(1時間)のハイブリダイゼーションにおけるハイブリッド形成率(蛍光強度)に対してハイブリダイゼーション開始後15秒以内にハイブリッド形成率が50%以上となることができるプローブである。 The probe having the base sequence shown in Table 6 is selected based on the hybridization rate. That is, these probes are probes that can achieve a hybridization rate of 50% or more within 15 seconds after the start of hybridization with respect to the hybridization rate (fluorescence intensity) in hybridization of 3600 seconds (1 hour). .
 また、こうしたプローブは、ハイブリダイゼーション開始後900秒以内に対3600秒時のハイブリッド形成率が85%以上(表6中Aを付記して示す。)、好ましくは90%以上(表6中AAを付記して示す。)であり、より好ましくは95%以上(表6中AAAを付記して示す。)に到達することができる。 In addition, such a probe has a hybridization rate of 85% or more (indicated by A in Table 6) within 900 seconds after the start of hybridization, preferably 90% or more (shown as AA in Table 6). More preferably 95% or more (AAA is added and shown in Table 6).
 また、表6に示す塩基配列を有するプローブのうち、さらに、ハイブリダイゼーション開始から一定時間後(例えば、15秒後、30秒後、60秒後、120秒後、240秒後及び900秒後等)における対3600秒時のハイブリッド形成率が一定範囲内にあるプローブが選択されることが好ましい。例えば、前記ハイブリッド形成率の差が20%以内であることが好ましく、より好ましくは15%以内であり、さらに好ましくは10%以内であり、一層このましくは5%以内であるプローブが選択されることが好ましい。こうしたプローブからなるプローブセットであれば、迅速でかつ定量性に優れたハイブリダイゼーションが可能となる。 Further, among the probes having the base sequences shown in Table 6, after a certain time from the start of hybridization (for example, 15 seconds, 30 seconds, 60 seconds, 120 seconds, 240 seconds, 900 seconds, etc.) It is preferable to select a probe having a hybridization rate within a certain range at 3600 seconds versus 3). For example, it is preferable that the difference in the hybridization rate is within 20%, more preferably within 15%, still more preferably within 10%, and even more preferably within 5%. It is preferable. With a probe set composed of such probes, it is possible to perform hybridization that is rapid and excellent in quantitativeness.
 本プローブセットは、好ましくは以下の表に記載の塩基配列からなる群から選択される1種又は2種以上の塩基配列を有するプローブからなる。これらのプローブは、ハイブリダイゼーション開始後15秒以内に対3600秒時のハイブリッド形成率が65%以上となるプローブである。こうしたプローブによればより迅速にかつ精度の高いハイブリッド形成を検出することができる。これらのプローブにおいても、上述のとおり、ハイブリダイゼーション開始から一定時間後(例えば、15秒後、30秒後、60秒後、120秒後、240秒後及び900秒後等)における対3600秒時のハイブリッド形成率が一定範囲内にあるプローブが選択されることが好ましい。 This probe set preferably comprises probes having one or more base sequences selected from the group consisting of the base sequences described in the following table. These probes are probes in which the hybridization rate at 3600 seconds is 65% or more within 15 seconds after the start of hybridization. According to such a probe, hybridization with higher accuracy can be detected more rapidly. Also in these probes, as described above, the time of 3600 seconds after a certain time from the start of hybridization (for example, 15 seconds, 30 seconds, 60 seconds, 120 seconds, 240 seconds, and 900 seconds). It is preferable to select a probe whose hybridization rate is within a certain range.
 本プローブセットは、より好ましくは、以下の表7に記載の塩基配列からなる群から選択される1種又は2種以上の塩基配列を有するプローブからなる。 The probe set is more preferably composed of probes having one or more base sequences selected from the group consisting of the base sequences shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000011
  
Figure JPOXMLDOC01-appb-T000011
  
 これらのプローブは、ハイブリダイゼーション開始後15秒以内に対3600秒時のハイブリッド形成率が70%以上となるプローブである。こうしたプローブによればより迅速にかつ精度の高いハイブリッド形成を検出することができる。これらのプローブにおいても、上述のとおり、ハイブリダイゼーション開始から一定時間後(例えば、15秒後、30秒後、60秒後、120秒後、240秒後及び900秒後等)における対3600秒時のハイブリッド形成率が一定範囲内にあるプローブが選択されることが好ましい。 These probes are probes in which the hybridization rate at 3600 seconds is 70% or more within 15 seconds after the start of hybridization. According to such a probe, hybridization with higher accuracy can be detected more rapidly. Also in these probes, as described above, the time of 3600 seconds after a certain time from the start of hybridization (for example, 15 seconds, 30 seconds, 60 seconds, 120 seconds, 240 seconds, and 900 seconds). It is preferable to select a probe whose hybridization rate is within a certain range.
 本プローブセットは、より好ましくは、以下の表8に記載の塩基配列からなる群から選択される1種又は2種以上の塩基配列を有するプローブからなる。 The probe set is more preferably composed of probes having one or more base sequences selected from the group consisting of the base sequences shown in Table 8 below.
Figure JPOXMLDOC01-appb-T000012
  
Figure JPOXMLDOC01-appb-T000012
  
 これらのプローブは、ハイブリダイゼーション開始後15秒以内に対3600秒時のハイブリッド形成率が75%以上となるプローブである。こうしたプローブによればより迅速にかつ精度の高いハイブリッド形成を検出することができる。これらのプローブにおいても、上述のとおり、ハイブリダイゼーション開始から一定時間後(例えば、15秒後、30秒後、60秒後、120秒後、240秒後及び900秒後等)における対3600秒時のハイブリッド形成率が一定範囲内にあるプローブが選択されることが好ましい。 These probes are probes whose hybridization rate at 3600 seconds is 75% or more within 15 seconds after the start of hybridization. According to such a probe, hybridization with higher accuracy can be detected more rapidly. Also in these probes, as described above, the time of 3600 seconds after a certain time from the start of hybridization (for example, 15 seconds, 30 seconds, 60 seconds, 120 seconds, 240 seconds, and 900 seconds). It is preferable to select a probe whose hybridization rate is within a certain range.
 本プローブセットを構成するプローブは、ハイブリダイゼーション開始後15秒以内に対3600秒時のハイブリッド形成率が80%以上であることがより好ましく、同85%以上であることがさらに好ましい。 The probes constituting this probe set preferably have a hybridization rate of 80% or more at 3600 seconds within 15 seconds after the start of hybridization, more preferably 85% or more.
 本プローブセットは、表6に示す塩基配列群から選択される1種又は2種以上の塩基配列を有するプローブからなるが、好ましくはさらに多種類のプローブからなる。例えば、より好ましくは、3種類以上、4種以上、6種類以上、8種類以上、10種類以上、20種類以上、さらには30種類以上、最も好ましくは33種類以上を含むことが好ましい。本プローブセットは、本プローブセットを構成するプローブと同等あるいはそれ以上のハイブリッド形成率を実現する他のプローブが含まれていてもよい。 This probe set is composed of probes having one or two or more kinds of base sequences selected from the base sequence group shown in Table 6. Preferably, the probe set is further composed of many kinds of probes. For example, it is more preferable to include 3 or more types, 4 or more types, 6 or more types, 8 or more types, 10 or more types, 20 or more types, further 30 types or more, and most preferably 33 types or more. The present probe set may include other probes that realize a hybridization rate equal to or higher than that of the probes constituting the present probe set.
 本プローブセットは、以下の表9に示す塩基配列又はその相補配列からなる群から選択される1種又は2種以上の塩基配列を有する1種又は2種以上のプローブからなることが好ましい。好ましくは、これらの全てを少なくとも含むことが好ましい。これらのプローブは、いずれもハイブリダイゼーション開始後30秒以内に対3600秒時の85%以上のハイブリッド形成率を有しており、さらには、ハイブリダイゼーション開始後30秒以内に対3600秒時の88%以上のハイブリッド形成率を有している。 This probe set preferably comprises one or more probes having one or more base sequences selected from the group consisting of the base sequences shown in Table 9 below or their complementary sequences. Preferably, all of these are preferably included. All of these probes have a hybridization rate of 85% or more at 3600 seconds within 30 seconds after the start of hybridization, and further, 88 at 3600 seconds within 30 seconds after the start of hybridization. % Hybrid formation rate.
Figure JPOXMLDOC01-appb-T000013
  
Figure JPOXMLDOC01-appb-T000013
  
 なお、本プローブセットを構成するプローブを選択する際のハイブリダイゼーション条件としては、ハイブリダイゼーション液の組成は、1~10×SSC(クエン酸ナトリウム緩衝液;1×SSC組成:0.15MNaCl、15mMクエン酸ナトリウム、pH7.0)(好ましくは、1~2×SSC)及び0.1~1.0%SDS(ドデシル硫酸ナトリウム)(好ましくは、0.1~0.3%程度)の緩衝液等を用いてハイブリダイゼーション温度を20℃~70℃程度することが好ましい。必要に応じて、DMなどのホルムアミドを10~50%添加することができる。さらに、EDTAなどを1mM~10mM(好ましくは2mM)添加することもできる。典型的には、以下の組成とすることができる。
 
20×SSC             2.0 ml
10%SDS             0.8 ml
100%Formamide     12.0 ml
100 mM EDTA         0.8 ml
水                 24.4 ml
              40.0 ml
The hybridization conditions for selecting the probes constituting this probe set are as follows: the composition of the hybridization solution is 1 to 10 × SSC (sodium citrate buffer; 1 × SSC composition: 0.15 M NaCl, 15 mM Buffers of sodium acid, pH 7.0) (preferably 1 to 2 × SSC) and 0.1 to 1.0% SDS (sodium dodecyl sulfate) (preferably about 0.1 to 0.3%) The hybridization temperature is preferably about 20 ° C. to 70 ° C. using If necessary, 10-50% formamide such as DM can be added. Further, EDTA or the like can be added at 1 mM to 10 mM (preferably 2 mM). Typically, the following composition can be used.

20 x SSC 2.0 ml
10% SDS 0.8 ml
100% Formamide 12.0 ml
100 mM EDTA 0.8 ml
24.4 ml water
40.0 ml
 なお、以上の実施形態によれば、本プローブセットは、以下の形態を採ることもできる。すなわち、以下の(a)及び(b)を充足する、プローブを含む、セットという形態を採ることができる。
(a)融解温度が57℃以上61℃以下であり、23塩基長の正規直交配列である塩基配列を有する。
(b)ハイブリダイゼーション開始後3600秒後におけるハイブリッド形成率に対する
ハイブリダイゼーション開始後15秒後のハイブリッド形成率が50%以上である。
 なお、条件(b)については、本プローブセットを構成するプローブの各種形態を適用することができる。
In addition, according to the above embodiment, this probe set can also take the following forms. That is, it is possible to take the form of a set including the probe that satisfies the following (a) and (b).
(A) The melting temperature is 57 ° C. or more and 61 ° C. or less, and the base sequence is a 23-base long orthonormal sequence.
(B) The hybridization rate at 15 seconds after the start of hybridization is 50% or more relative to the hybridization rate at 3600 seconds after the start of hybridization.
In addition, about the condition (b), the various forms of the probe which comprises this probe set are applicable.
 本プローブセットを構成するプローブは、上記塩基配列を有して、相補的な塩基配列を有する検出対象中のDNA等のポリヌクレオチドとハイブリダイゼーション可能であればよい。したがって、塩基配列を保持しうるものであればよく、塩基を有する骨格は特に限定しない。したがって、プローブは、DNA、ペプチド核酸、モルホリノ核酸、メチルフォスフォネート核酸およびS-オリゴ核酸などの各種人工合成核酸であってもよい。さらに、プローブは、1本鎖であっても2本鎖であってもよいが、担体に固定化される場合には、1本鎖とすることが好ましい。 The probe constituting this probe set only needs to have the above base sequence and can be hybridized with a polynucleotide such as DNA in a detection target having a complementary base sequence. Therefore, the base structure is not particularly limited as long as it can retain the base sequence. Therefore, the probe may be various artificially synthesized nucleic acids such as DNA, peptide nucleic acid, morpholino nucleic acid, methyl phosphonate nucleic acid and S-oligonucleic acid. Furthermore, the probe may be single-stranded or double-stranded, but is preferably single-stranded when immobilized on a carrier.
 プローブは、必要に応じて識別標識を備えることができる。識別標識としては、従来公知の各種の識別標識を備えることができ、当業者であれば、適当な識別標識を選択して、本プローブセットのプローブに付与することができる。 The probe can be provided with an identification mark if necessary. As the identification label, various conventionally known identification labels can be provided, and those skilled in the art can select an appropriate identification label and give it to the probes of the present probe set.
 プローブは、後述する担体に化学的にあるいは物理的吸着等によって固定化するための構造を備えることができる。プローブは、従来公知の各種の方法で固相担体表面に固定化することができる。こうした構造は、プローブハイブリダイゼーションの分野の当業者において周知であり、保持体等の種類に応じて当業者であれば適宜選択し、プローブを保持体に固定化することができる。また、プローブは、固定化のための構造部分に対する適当なリンカー配列を備えていてもよい。リンカー配列は、好ましくはプローブ間において同一塩基長で同一配列とする。 The probe can be provided with a structure for immobilization on a carrier described later by chemical or physical adsorption. The probe can be immobilized on the surface of the solid phase carrier by various known methods. Such a structure is well known to those skilled in the art of probe hybridization, and a person skilled in the art can appropriately select the structure depending on the type of the holder and the like, and immobilize the probe on the holder. In addition, the probe may be provided with an appropriate linker sequence for the structural part for immobilization. The linker sequence is preferably the same sequence with the same base length between the probes.
 こうしたプローブセットは、検出対象中の特定の塩基配列を直接的に又は間接的に検出することができる。直接的に検出する場合としては、例えば、予め検出対象に対してプローブセットを付与しておき、プローブに含まれる特定の塩基配列を識別用塩基配列として用いて検出対象の識別に用いる場合が挙げられる。こうした場合の検出対象として、市場を流通する製品、部品(中間製品を含む)、水産物、農産物、銀行券等が挙げられる。検出対象に付与されているプローブセットを構成するプローブの識別用塩基配列を、これらに相補的な塩基配列を有する検出用のプローブセットで検出対象を同定することができる。この場合、検出対象に付与されるプローブセットが後述するアレイであることが好ましい。また、検出用のプローブセットは溶液サンプルであることが好ましい。 Such a probe set can directly or indirectly detect a specific base sequence in a detection target. As a case of direct detection, for example, a probe set is previously given to a detection target, and a specific base sequence included in the probe is used as a discrimination base sequence to be used for identification of the detection target. It is done. Examples of detection targets in such cases include products distributed in the market, parts (including intermediate products), fishery products, agricultural products, banknotes, and the like. The detection target can be identified by the detection probe set having a base sequence complementary to the base sequence for identification of probes constituting the probe set assigned to the detection target. In this case, it is preferable that the probe set provided to the detection target is an array described later. The probe set for detection is preferably a solution sample.
 また、検出対象中の特定の塩基配列を間接的に検出する場合としては、検出対象が生物体の場合が挙げられる。この場合、非特許文献2及び特許文献1等に開示の方法が挙げられる。すなわち、生物体の標的配列をハイブリダイゼーション反応及びリガーゼ反応等を用いて、本プローブセットを構成するプローブの特定塩基配列に予め関連付けられた塩基配列(特定塩基配列と同一又は相補的な塩基配列)を有するようなリガーゼ産物を取得して、このリガーゼ産物の標識体を本プローブセットに提供することで、検出対象中の標的配列を検出したり同定したりすることができる。この場合、本プローブセットとして、後述するアレイが用いられることが好ましい。 In addition, as a case where a specific base sequence in a detection target is indirectly detected, a case where the detection target is a living body can be mentioned. In this case, methods disclosed in Non-Patent Document 2, Patent Document 1, and the like can be cited. That is, a base sequence previously associated with a specific base sequence of a probe constituting this probe set by using a hybridization reaction, a ligase reaction, or the like for a target sequence of an organism (a base sequence identical or complementary to the specific base sequence) By obtaining a ligase product having the above and providing a label of this ligase product to this probe set, the target sequence in the detection target can be detected or identified. In this case, an array described later is preferably used as the probe set.
 本プローブセットは、溶液に溶解して溶液中のハイブリダイゼーション反応に用いることができるし、適当な担体に固定化された状態での固液反応としてのハイブリダイゼーション反応に用いることもできる。 The probe set can be dissolved in a solution and used for a hybridization reaction in the solution, or can be used for a hybridization reaction as a solid-liquid reaction in a state of being immobilized on an appropriate carrier.
(プローブのスクリーニング方法)
 本発明によれば、以上のことから、プローブのスクリーニング方法も提供される。すなわち、本スクリーニング方法は、例えば、融解温度が57℃以上61℃以下であり、例えば塩基長が23塩基長の正規直交配列である塩基配列を有するプローブについて、前記塩基配列と相補的な塩基配列を有するオリゴヌクレオチドとハイブリダイゼーションを実施するハイブリダイゼーション工程と、前記ハイブリダイゼーション工程において、所定時間内におけるハイブリッド形成率が所定数値以上のプローブを選択する工程と、を備えることができる。また、本スクリーニング方法は、例えば、融解温度が57℃以上61℃以下であり、例えば塩基長が23塩基長の正規直交配列である塩基配列を有するプローブに基づいて選択された塩基配列を有するプローブについて、前記塩基配列と相補的な塩基配列を有するオリゴヌクレオチドとハイブリダイゼーションを実施するハイブリダイゼーション工程と、前記ハイブリダイゼーション工程において、所定時間内におけるハイブリッド形成率が所定数値範囲内のプローブを選択する工程と、を備えることができる。この方法によれば、ユニバーサルプローブとして分析能の高いプローブを効率的に選択することができる。
(Probe screening method)
According to the present invention, a probe screening method is also provided from the above. That is, in the screening method, for example, a probe having a base sequence which is a normal orthogonal sequence having a melting temperature of 57 ° C. or more and 61 ° C. or less and a base length of 23 bases is complementary to the base sequence. And a step of selecting a probe having a hybridization rate of a predetermined value or more within a predetermined time in the hybridization step. In addition, this screening method is, for example, a probe having a base sequence selected based on a probe having a base sequence that is a normal orthogonal sequence having a melting temperature of 57 ° C. or more and 61 ° C. or less, for example, a base length of 23 A hybridization step of performing hybridization with an oligonucleotide having a base sequence complementary to the base sequence, and a step of selecting a probe having a hybridization rate within a predetermined numerical range within a predetermined time in the hybridization step And can be provided. According to this method, a probe having high analytical ability can be efficiently selected as a universal probe.
 スクリーニング工程においてプローブの選択となるハイブリダイゼーション速度については、本プローブセットを構成するプローブについて適用される各種形態を適用することができる。 Various forms applied to the probes constituting this probe set can be applied to the hybridization rate that is a probe selection in the screening step.
(プローブセットが固定化されたアレイ)
 本明細書に開示されるアレイは、本プローブセットが担体に保持されている。プローブセットは、物理的吸着又は化学結合によって担体に固定化され保持されている。担体は、通常のハイブリダイゼーションの条件に耐えうるものであれば特に制限されない。具体的には、核酸の固定及びハイブリダイゼーション等に用いる溶剤に不溶であり、かつ常温若しくはその付近の温度範囲内(例えば0~100℃)で固体又はゲル状であるものが挙げられる。
(Array with immobilized probe set)
In the array disclosed in the present specification, the probe set is held on a carrier. The probe set is immobilized and held on a carrier by physical adsorption or chemical bonding. The carrier is not particularly limited as long as it can withstand normal hybridization conditions. Specific examples include those that are insoluble in a solvent used for immobilization of nucleic acid, hybridization, and the like and are solid or gel at room temperature or in the vicinity of a temperature range (for example, 0 to 100 ° C.).
 このような担体の材質としては、具体的には、プラスチック、無機高分子、金属、天然高分子、セラミック等が挙げられる。上記プラスチックとして具体的には、紫外線照射により生体分子を固定化することができるものであれば特に制限されず、具体的には、熱可塑性樹脂、熱硬化性樹脂及び共重合体等が挙げられる。さらに具体的には、熱可塑性樹脂としては、アイオノマー(スチレン系、オレフィン系)、ポリノルボルネン、ポリアセタール、ポリアリレート、ポリエーテルエーテルケトン、ポリエチレンオキサイド、ポリオキシメチレン、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、ポリスルホン、ポリパラメチルスチレン、ポリアリルアミン、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリブタジエン、ポリブチレンテレフタレート、ポリプロピレン、ポリメチルペンテン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリオキシベンゾイル、ポリオキシエチレン、酢酸セルロース、ポリジメチルシロキサン、ポリイソブチレン、セルローストリアセテート、ポリ-p-フェニレンテレフタラミド、ポリイソプレン、ポリアクリロニトリル、ポリメチルペンテン、塩素プラスティック(ポリ塩化ビニル、ポリ塩化エチレン、塩素化ポリプロピレン、ポリ塩化ビニリデン)、フッ素プラスチック(テトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン)、ポリアミド(ナイロン6、ナイロン66)、ポリアミドイミド、ポリイミド(熱可塑性ポリイミド、ポリエーテルイミド)、ポリエチレンプラスティック(塩素化、高密度、低密度)、ポリビニルプラスティック(ポリ塩化ビニル、ポリ酢酸ビニル、ポリパラビニルフェノール、ポリビニルアルコール、ポリビニルエーテル、ポリビニルブチラール、ポリビニルホルマール)、液晶ポリマー(ポリエステル系液晶高分子)、アクリレートプラスティック(アミノポリアクリルアミド、ポリアクリル酸メチル、ポリメチルメタクリレート、エチルポリメタクリレート、ブチルポリメタクリレート)、熱可塑性エラストマー(スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリアミド系、1,2-ポリブタジエン系、塩化ビニル系、フッ素系、ポリアイオノマー系、塩素化ポリエチレン系、シリコーン系)等が挙げられる。 Specific examples of such a carrier material include plastics, inorganic polymers, metals, natural polymers, and ceramics. Specifically, the plastic is not particularly limited as long as it can immobilize biomolecules by ultraviolet irradiation, and specific examples include thermoplastic resins, thermosetting resins, and copolymers. . More specifically, examples of the thermoplastic resin include ionomers (styrene-based, olefin-based), polynorbornene, polyacetal, polyarylate, polyether ether ketone, polyethylene oxide, polyoxymethylene, polyethylene terephthalate, polycarbonate, polystyrene, polysulfone, Polyparamethylstyrene, polyallylamine, polyphenylene ether, polyphenylene sulfide, polybutadiene, polybutylene terephthalate, polypropylene, polymethylpentene, polyethersulfone, polyphenylene sulfide, polyoxybenzoyl, polyoxyethylene, cellulose acetate, polydimethylsiloxane, polyisobutylene , Cellulose triacetate, poly-p-phenylene terephthalamide, poly Soprene, polyacrylonitrile, polymethylpentene, chlorine plastic (polyvinyl chloride, polychlorinated ethylene, chlorinated polypropylene, polyvinylidene chloride), fluoroplastic (tetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride), polyamide (nylon) 6, nylon 66), polyamideimide, polyimide (thermoplastic polyimide, polyetherimide), polyethylene plastic (chlorinated, high density, low density), polyvinyl plastic (polyvinyl chloride, polyvinyl acetate, polyparavinylphenol, polyvinyl) Alcohol, polyvinyl ether, polyvinyl butyral, polyvinyl formal), liquid crystal polymer (polyester-based liquid crystal polymer), acrylate plastic (aminopoly) Kurylamide, polymethyl acrylate, polymethyl methacrylate, ethyl polymethacrylate, butyl polymethacrylate), thermoplastic elastomer (styrene, olefin, urethane, polyester, polyamide, 1,2-polybutadiene, vinyl chloride, Fluorine, polyionomer, chlorinated polyethylene, and silicone).
 また、熱硬化性樹脂としては、エポキシ、ポリキシレン、ポリグアナミン、ポリジアリルフタレート、ポリビニルエステル、ポリフェノール、不飽和ポリエステル、ポリフラン、ポリイミド、ポリウレタン、ポリマレイン酸、メラミン、ユリア、アルキド、ベンゾグアナミン、ポリシアナート、ポリイソシアナート等が挙げられる。 Thermosetting resins include epoxy, polyxylene, polyguanamine, polydiallyl phthalate, polyvinyl ester, polyphenol, unsaturated polyester, polyfuran, polyimide, polyurethane, polymaleic acid, melamine, urea, alkyd, benzoguanamine, polycyanate, polycyanate. An isocyanate etc. are mentioned.
 さらに、共重合体としては、イソブチレン無水マレイン酸共重合体、アクリロニトリルアクリレートスチレン共重合体、アクリロニトリルEPDMスチレン共重合体、アクリロニトリルスチレン共重合体、アクリロニトリルブタジエンスチレン共重合体、ブタジエンスチレンメチルメタクリレート共重合体、エチレン塩化ビニル共重合体、エチレン酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、アクリロニトリル-ブタジエンスチレン共重合体、ポリエーテルエーテルケトン共重合体、フッ化エチレンポリプロピレン共重合体、テトラフルオロエチレンパーフロロアルキルビニルエーテル共重合体、テトラフルオロエチレンエチレン共重合体等が挙げられる。 Further, the copolymer includes isobutylene maleic anhydride copolymer, acrylonitrile acrylate styrene copolymer, acrylonitrile EPDM styrene copolymer, acrylonitrile styrene copolymer, acrylonitrile butadiene styrene copolymer, butadiene styrene methyl methacrylate copolymer. , Ethylene vinyl chloride copolymer, ethylene vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, acrylonitrile-butadiene styrene copolymer, polyether ether ketone copolymer, fluorinated ethylene polypropylene copolymer, tetrafluoroethylene Examples include perfluoroalkyl vinyl ether copolymers and tetrafluoroethylene ethylene copolymers.
 上記の合成樹脂のうち、特に好ましいものとしては、ポリカーボネート、ポリメチルメタクリレート、アクリロニトリルブタジエンスチレン共重合体、ポリエチレン、ポリエチレンテレフタレート、ポリフェノール、ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、アラミド等が挙げられる。 Among the above synthetic resins, particularly preferred are polycarbonate, polymethyl methacrylate, acrylonitrile butadiene styrene copolymer, polyethylene, polyethylene terephthalate, polyphenol, polystyrene, polyacrylonitrile, polyvinyl chloride, aramid and the like.
 無機高分子として具体的には、ガラス、水晶、カーボン、シリカゲル及びグラファイト等が挙げられる。金属として具体的には、金、白金、銀、銅、鉄、アルミニウム、磁石、パラマグネット等が挙げられる。天然高分子としては、ポリアミノ酸、セルロース、キチン、キトサン、アルギン酸及びそれらの誘導体が挙げられる。セラミックとして具体的には、アパタイト、アルミナ、シリカ、炭化ケイ素、窒化ケイ素及び炭化ホウ素等が挙げられる。 Specific examples of the inorganic polymer include glass, crystal, carbon, silica gel, and graphite. Specific examples of the metal include gold, platinum, silver, copper, iron, aluminum, a magnet, and a paramagnet. Examples of natural polymers include polyamino acids, cellulose, chitin, chitosan, alginic acid, and derivatives thereof. Specific examples of the ceramic include apatite, alumina, silica, silicon carbide, silicon nitride, and boron carbide.
 上記担体には、直接プローブが保持されていてもよいが、さらに、担体に対して固定化のための固定化相が付与されていてもよい。こうした固定化相としては、上記担体上に担持される限り、単に物理的な接着性を利用して担持されていてもよく、また、化学的に共有結合等を介して担持されていてもよい。また、上記固定化相は、必要に応じ、担体等上の全面において担持されても、また、その一部において担持されてもよい。固定化相としては、上記した担体等の材料として説明した材料の他、有機低分子が挙げられる。上記有機低分子として具体的には、カルボジイミド基含有化合物、イソシアネート基含有化合物、窒素イペリット基含有化合物、アルデヒド基含有化合物、アミノ基含有化合物等が挙げられる。 The probe may be directly held on the carrier, but may further be provided with an immobilized phase for immobilization on the carrier. As such an immobilization phase, as long as it is supported on the carrier, it may be supported simply using physical adhesiveness, or may be chemically supported via a covalent bond or the like. . Moreover, the said fixed phase may be carry | supported on the whole surface on a support | carrier etc. as needed, and may be carry | supported in a part. Examples of the immobilized phase include small organic molecules in addition to the materials described above as materials for the carrier and the like. Specific examples of the organic low molecule include a carbodiimide group-containing compound, an isocyanate group-containing compound, a nitrogen iperit group-containing compound, an aldehyde group-containing compound, and an amino group-containing compound.
 固定化相は、担体上に皮膜として担持されることが好ましい。担体上に固定化相を皮膜で担持させる方法としては、スプレー、浸漬、ブラッシング、スタンプ、蒸着、フィルムコータを用いたコーティング等の公知の方法を用いることができる。 The immobilization phase is preferably supported as a film on the carrier. As a method for supporting the immobilized phase as a film on the carrier, known methods such as spraying, dipping, brushing, stamping, vapor deposition, coating using a film coater, and the like can be used.
 例えば、ガラス製担体の表面全体にカルボジイミド基(樹脂)を導入する方法については、まず、3-アミノプロピルトリエトキシシラン等のアミノ置換オルガノアルコキシシランを適当な溶媒に溶解して得られた溶液に70~80℃程度の温度条件下で担体等を概ね2~3時間程度浸漬した後、これを取り出して水洗し、さらに、100~120℃程度で約4~5時間加熱乾燥する。乾燥後、適当な溶媒中に浸し、カルボジイミド樹脂を加え30~170℃程度の温度条件下で12時間程度攪拌し、洗浄すればよい。また、上記3-アミノプロピルトリエトキシシランのアミノ基と窒素イペリット基の核酸結合基以外の官能基を適当な溶媒を用いて反応させ、ガラス製担体の表面に窒素イペリット基を導入することもできる。 For example, with respect to a method for introducing a carbodiimide group (resin) over the entire surface of a glass carrier, first, an amino-substituted organoalkoxysilane such as 3-aminopropyltriethoxysilane is dissolved in a suitable solvent into a solution obtained. After immersing the carrier or the like under a temperature of about 70 to 80 ° C. for about 2 to 3 hours, the carrier is taken out, washed with water, and further heated and dried at about 100 to 120 ° C. for about 4 to 5 hours. After drying, the substrate is immersed in a suitable solvent, carbodiimide resin is added, and the mixture is stirred for about 12 hours at a temperature of about 30 to 170 ° C. and washed. In addition, the amino group of 3-aminopropyltriethoxysilane can be reacted with a functional group other than the nucleic acid binding group of the nitrogen iperit group using an appropriate solvent to introduce the nitrogen iperit group onto the surface of the glass carrier. .
 また、ガラス製担体にアミノ基以外場合や、担体がガラス以外の材料からなる場合においても、上記担体の説明で挙げた各種材料表面に種々の官能基を導入することは、従来より一般的に行われていることであり、その方法も公知であるので、このような公知の方法を用いて担体等の表面への官能基の導入を行うことができる。 In addition, when a glass carrier other than an amino group is used, or when the carrier is made of a material other than glass, it is generally known that various functional groups are introduced on the surface of various materials mentioned in the explanation of the carrier. Since this method is performed and its method is also known, it is possible to introduce a functional group onto the surface of a carrier or the like using such a known method.
 さらに、上記で挙げたプラスチック製担体の中には、担体表面に既に上記のような官能基を有するものも有り、この場合には担体等表面に官能基を導入することなしに、これをそのまま担体等の製造に用いることも可能である。また、このようなプラスチック製担体等であってもさらに官能基を導入して上記担体等の製造に用いることも可能である。 Furthermore, some of the plastic carriers mentioned above already have the functional group as described above on the surface of the carrier. In this case, without introducing the functional group onto the surface of the carrier or the like, this can be used as it is. It can also be used for the production of carriers and the like. Further, even such a plastic carrier can be used for the production of the carrier by further introducing a functional group.
 また、上記担体や固定化相の材料に公知の光重合開始剤を混合することもできる。光重合開始剤を混合することによって、紫外線等の電磁波の照射による核酸の固定化の際の反応性が向上し得る。 It is also possible to mix a known photopolymerization initiator into the carrier and the material of the immobilized phase. By mixing a photopolymerization initiator, the reactivity at the time of immobilizing nucleic acid by irradiation with electromagnetic waves such as ultraviolet rays can be improved.
(プローブセットの使用方法)
 本プローブセットの使用方法は、本プローブセットを用いてハイブリダイゼーションを実施するハイブリダイゼーション工程と、前記ハイブリダイゼーション工程で得られたハイブリダイズ産物を検出する工程と、を備える、検出対象を検出する方法とすることできる。本プローブセットは、特異的ハイブリダイゼーションを迅速に実現できるため、迅速に検出対象を同定又は検出することができる。
(How to use the probe set)
The method of using the probe set comprises a hybridization step of performing hybridization using the probe set, and a step of detecting a hybridization product obtained in the hybridization step, and a method of detecting a detection target It can be. Since this probe set can rapidly realize specific hybridization, the detection target can be identified or detected quickly.
 本明細書に開示される使用方法は、本プローブセットを用いる限り特に限定されない。本発明方法において、検出とは、検出対象に対して予め本プローブセット(識別用プローブセット)を提供しておき、検出対象を、プローブ(識別用プローブ)中の特定塩基配列(識別用塩基配列)で識別しておく。そして、こうした検出対象に対してこれらの検出用プローブセットのプローブの識別用塩基配列に相補的な塩基配列を有する検出用プローブセット(これも本プローブセットである。)とのハイブリダイゼーションを実施し、検出対象を同定することのほか、真贋、改変、劣化等を検出又は識別することを含んでいる。本方法は、検出対象の管理、監視、認証、同定、追跡等の方法としても利用できる。以下、まずこの実施形態について説明する。 The method of use disclosed in this specification is not particularly limited as long as this probe set is used. In the method of the present invention, detection means that the present probe set (identification probe set) is provided in advance for a detection target, and the detection target is a specific base sequence (discrimination base sequence) in the probe (identification probe). ). Then, hybridization with a detection probe set (also this probe set) having a base sequence complementary to the base sequence for identification of the probes of these detection probe sets is performed on such a detection target. In addition to identifying the object to be detected, this includes detecting or identifying authenticity, alteration, deterioration, and the like. This method can also be used as a method for management, monitoring, authentication, identification, tracking, and the like of detection targets. Hereinafter, this embodiment will be described first.
 本使用方法は、ハイブリダイゼーション工程と、検出工程と、を備えることができる。 This method of use can comprise a hybridization step and a detection step.
(ハイブリダイゼーション工程)
 ハイブリダイゼーション工程は、検出対象に付与された識別用プローブセットと、このプローブに含まれる識別用塩基配列と相補的な塩基配列を有する1又は2以上の検出用プローブを含む検出用プローブセットとのハイブリダイゼーションを実施する工程とすることができる。ハイブリダイゼーション工程において、検出対象が予め関連付けられた識別用プローブを備えているとき、検出対象上の識別用プローブと検出用プローブとがハイブリダイズ産物を形成することができる。検出用プローブセットは、検出対象に予め付与した識別用塩基配列に対応するプローブだけを供給してもよいし、ユニバーサルに多くの検出対象に適用可能に組成したプローブを供給してもよい。
(Hybridization process)
The hybridization step includes an identification probe set assigned to a detection target, and a detection probe set including one or more detection probes having a base sequence complementary to the identification base sequence included in the probe. It can be a step of performing hybridization. In the hybridization step, when the detection target includes an identification probe associated in advance, the identification probe on the detection target and the detection probe can form a hybridization product. The detection probe set may supply only probes corresponding to the identification base sequence previously assigned to the detection target, or may supply probes that are universally applicable to many detection targets.
 検出用プローブは、標識されていることが好ましい。標識としては従来公知のものを適宜選択して用いることができる。それ自体励起されると蛍光シグナルを発する蛍光物質などの各種色素であってもよいし、さらに酵素反応や抗原抗体反応により第2成分と組み合わせて各種シグナルを発する物質であってもよい。典型的には、Cy3、Alexa555、Cy5、Alexa647等の蛍光標識物質を用いることができる。また、ビオチンとストレプトアビイジンHPRとを組み合わせて基質による処理等による発色による検出を用いてもよい。 The detection probe is preferably labeled. As the label, a conventionally known one can be appropriately selected and used. It may be various dyes such as a fluorescent substance that emits a fluorescent signal when excited by itself, or may be a substance that emits various signals in combination with the second component by an enzyme reaction or an antigen-antibody reaction. Typically, a fluorescent labeling substance such as Cy3, Alexa555, Cy5, Alexa647 can be used. Alternatively, biotin and streptavidin HPR may be combined for detection by color development such as by treatment with a substrate.
 ハイブリダイゼーション工程の条件は特に限定しない。通常のハイブリダイズ媒体を用いることができる。また、適度な温度に設定することができる。本方法においては、ハイブリダイゼーション時間を15分以下とすることができる。また、好ましくは10分以下とすることもでき、さらに5分以下とすることもできる。 The conditions for the hybridization process are not particularly limited. A normal hybridization medium can be used. Moreover, it can set to moderate temperature. In this method, the hybridization time can be 15 minutes or less. Moreover, it can also preferably be 10 minutes or less, and can also be 5 minutes or less.
 なお、ハイブリダイゼーション工程に際しては、アレイを検出対象から分離してもよい。分離可能な固定化手段によりアレイが検出対象に固定化されている場合には、検出対象とから分離した状態でハイブリダイゼーション工程を実施できる。また、可能な場合には、検出対象上でハイブリダイゼーション工程を実施してもよい。例えば、本アレイ上に、ハイブリダイゼーション用のキャビティを備える場合が挙げられる。 In the hybridization step, the array may be separated from the detection target. When the array is immobilized on the detection target by the separable immobilization means, the hybridization step can be performed in a state separated from the detection target. If possible, a hybridization step may be performed on the detection target. For example, the case where a cavity for hybridization is provided on the present array can be mentioned.
 後段の検出工程に先立って、過剰のプローブを洗浄除去することが好ましい。識別用プローブは担体に固定化されているため、余分なプローブを洗浄しても、ハイブリダイズ産物は、担体上に保持される。 It is preferable to wash away excess probe prior to the subsequent detection step. Since the identification probe is immobilized on the carrier, the hybridized product is retained on the carrier even if the excess probe is washed.
(検出工程)
 検出工程は、ハイブリダイゼーション工程のハイブリダイズ産物を検出する工程とすることができる。ハイブリダイゼーション産物を検出することにより、検出対象を検出・同定できる。検出工程におけるハイブリダイズ産物の検出方法は特に限定されない。連結分子が標識を有する場合には、その標識を検出すればよい。また、電気的な検出方法などにより、二重鎖を検出してもよい。
(Detection process)
The detection step can be a step of detecting a hybridized product in the hybridization step. By detecting the hybridization product, the detection target can be detected and identified. The method for detecting the hybridized product in the detection step is not particularly limited. When the linking molecule has a label, the label may be detected. Alternatively, the double strand may be detected by an electrical detection method or the like.
 ハイブリダイズ産物が検出されたとき、検出対象が識別、同定される。すなわち、検出対象の同一性が判定されるため、改ざんされていないこと、置換されていないこと、損なわれていないことなどが判定できる。また、ハイブリダイズ産物が検出されないとき、検出対象の不存在ないし検出対象の非同一と判定される。すなわち、検出対象は失われたか、改ざんされたか、損なわれたかなどと判定される。 When the hybridized product is detected, the detection target is identified and identified. That is, since the identity of the detection target is determined, it can be determined that the detection target has not been tampered with, has not been replaced, or has not been damaged. Further, when the hybridized product is not detected, it is determined that the detection target is absent or the detection target is not identical. That is, it is determined whether the detection target has been lost, altered, or damaged.
 検出工程に要する時間は、特に限定しないが、1秒以上1時間以下とすることできる。本方法においては、例えば、特定の識別用塩基配列を用いるため、一般的な検出温度(50℃~70℃)と比べ40℃以下(例えば37℃程度)でハイブリダイズ及び検出が可能であるため、検出工程の迅速化も可能となっている。より好ましくは1秒以上5分以下であり、さらに好ましくは1秒以上1分以下である。 The time required for the detection process is not particularly limited, but can be 1 second or more and 1 hour or less. In this method, for example, since a specific base sequence for identification is used, hybridization and detection can be performed at 40 ° C. or less (eg, about 37 ° C.) compared to a general detection temperature (50 ° C. to 70 ° C.). In addition, the detection process can be speeded up. More preferably, they are 1 second or more and 5 minutes or less, More preferably, they are 1 second or more and 1 minute or less.
 また、本明細書において検出とは、生物体の核酸等において存在する可能性のある塩基配列(標的配列)を、ハイブリダイゼーション反応とリガーゼ反応を用いて、本プローブセットのプローブに関連付けられた塩基配列(特定塩基配列と同一又は相補的な塩基配列)を有するリガーゼ産物を媒介物として、本プローブセットとのハイブリダイゼーションを実施し、検出対象を検出することを含んでいる。この種の方法は、非特許文献2、特許文献1のほか、特開2009-232778号公報、特開2009-24号公報、を参照して実施することができる。 In this specification, detection refers to a base sequence (target sequence) that may exist in a nucleic acid of an organism, by using a hybridization reaction and a ligase reaction, and a base associated with the probe of this probe set. This includes performing hybridization with this probe set using a ligase product having a sequence (a base sequence identical or complementary to a specific base sequence) as a mediator, and detecting a detection target. This type of method can be carried out with reference to Non-Patent Document 2 and Patent Document 1, as well as Japanese Unexamined Patent Application Publication Nos. 2009-232778 and 2009-24.
 すなわち、例えば、特許文献1によれば、試料中の1種又は2種以上の標的核酸中の多型又は変異を検出する方法に、本プローブセットを構成するプローブをキャプチャープローブとして用いることができる。また、特開2009-232778号公報に記載の標的核酸中の変異を検出する方法に、本プローブセットを構成するプローブをキャプチャープローブとして用いることができる。さらに、特開2009-24号公報に記載の標的核酸中の変異の検出方法において、本プローブセットを構成するプローブをキャプチャープローブとして用いることができる。 That is, for example, according to Patent Document 1, a probe constituting this probe set can be used as a capture probe in a method for detecting a polymorphism or mutation in one or more target nucleic acids in a sample. . Further, in the method for detecting a mutation in a target nucleic acid described in JP-A-2009-232778, a probe constituting this probe set can be used as a capture probe. Furthermore, in the method for detecting a mutation in a target nucleic acid described in JP-A-2009-24, the probes constituting this probe set can be used as a capture probe.
 なお、この種の方法において、「核酸」とは、cDNA、ゲノムDNA、mRNA、全RNA、hnRNAおよび合成RNAを含む全てのDNAおよびRNAが含まれる。 In this type of method, “nucleic acid” includes all DNA and RNA including cDNA, genomic DNA, mRNA, total RNA, hnRNA, and synthetic RNA.
 なお、標的核酸とは、標的配列を有する核酸であり、標的配列とは、例えば、体質、遺伝病、癌などの特定疾患についての発症、疾患診断、治療予後、薬剤や治療の選択などのヒト、非ヒト動物などの生物における遺伝子上の指標となる塩基配列が挙げられる。典型的には、SNPなどの多型や先天的又は後天的変異が挙げられる。また、病原菌やウイルスなどの微生物由来の塩基配列も標的配列に含まれる。 The target nucleic acid is a nucleic acid having a target sequence, and the target sequence is a human such as onset, disease diagnosis, treatment prognosis, drug or treatment selection for a specific disease such as constitution, genetic disease, cancer, etc. And a nucleotide sequence that serves as a genetic index in a living organism such as a non-human animal. Typically, polymorphisms such as SNP and congenital or acquired mutations can be mentioned. In addition, base sequences derived from microorganisms such as pathogenic bacteria and viruses are also included in the target sequence.
 以下、本発明を実施例を挙げて具体的に説明するが、以下の実施例は本発明を説明するものであって、本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the following examples illustrate the present invention and do not limit the scope of the present invention.
(1)サンプル検出用DNAマイクロアレイの作製
 ガラス基板(東洋鋼鈑社製geneslide)に、5’末端をアミノ基で修飾した合成オリゴDNA(シグマ アルドリッチ ジャパン株式会社製)を溶かした水溶液をキャプチャープローブとして、日本ガイシ株式会社製GENESHOT(登録商標)スポッターを用いてスポットした。使用した合成オリゴDNA配列は、文献(Analytical Biochemistry 364(2007)78-85)のSupplementary Table1記載のD1-1からD1-100(表10)の100種すべて(第1のプローブセット)、D1-001からD1-100のうち表11に示す52種(第2のプローブセット)及び表12に示す48種(第3のプローブセット)の3セットとして、これらのセットをそれぞれ固定化したアレイを作製した。スポットの後、80℃、1時間のベークを行った。
(1) Preparation of DNA microarray for sample detection An aqueous solution in which a synthetic oligo DNA (manufactured by Sigma Aldrich Japan Co., Ltd.) whose 5 'end is modified with an amino group is dissolved in a glass substrate (geneslide manufactured by Toyo Kohan Co., Ltd.) as a capture probe Spotting was performed using GENESHOT (registered trademark) spotter manufactured by NGK. The synthetic oligo DNA sequences used were all 100 species (first probe set) D1-D1-100 (Table 10) described in Supplementary Table 1 of the literature (Analytical Biochemistry 364 (2007) 78-85), D1- From 001 to D1-100, three sets of 52 types (second probe set) shown in Table 11 and 48 types (third probe set) shown in Table 12 were prepared, and these sets were immobilized respectively. did. After the spot, baking was performed at 80 ° C. for 1 hour.
Figure JPOXMLDOC01-appb-T000014
  
Figure JPOXMLDOC01-appb-T000014
  
Figure JPOXMLDOC01-appb-T000015
  
Figure JPOXMLDOC01-appb-T000015
  
Figure JPOXMLDOC01-appb-T000016
  
Figure JPOXMLDOC01-appb-T000016
  
 さらに、以下に記載した手順で、プローブの固定化を行った。すなわち、2×SSC/0.2%SDSで15分洗浄後、95℃の2×SSC/0.2%SDSで5分間洗浄し、さらに滅菌水を用いて10回以上、上下振とうさせる洗浄を3回行った後、1000rpm、3分で遠心して液切りした。 Furthermore, the probe was immobilized according to the procedure described below. That is, after washing with 2 × SSC / 0.2% SDS for 15 minutes, washing with 2 × SSC / 0.2% SDS at 95 ° C. for 5 minutes, and further washing with shaking 10 times or more using sterile water 3 times Then, the solution was centrifuged at 1000 rpm for 3 minutes to drain the liquid.
(2)DNAマイクロアレイを用いた検出
 次に、3種のDNAマイクロアレイ上のプローブセットの各プローブ配列に相補な塩基配列を表13から選択し、こうした相補的塩基配列を有し、蛍光色素修飾されたサンプルDNAのセットを準備した。3種のDNAマイクロアレイに対して、対応する3種のサンプルDNAセットを用いて、ハイブリダイゼーション反応性を評価した。反応操作及びその検出手順は以下の通りとした。
(2) Detection using DNA microarray Next, a base sequence complementary to each probe sequence of the probe set on the three types of DNA microarrays is selected from Table 13, and has such a complementary base sequence and is modified with a fluorescent dye. A set of sample DNA was prepared. Hybridization reactivity was evaluated using the corresponding three types of sample DNA sets for the three types of DNA microarrays. The reaction operation and the detection procedure were as follows.
Figure JPOXMLDOC01-appb-T000017
  
Figure JPOXMLDOC01-appb-T000017
  
 まず、ハイブリダイゼーション用の標識済みのDNAサンプル溶液を以下のようにして調製した。
(ハイブリダイズ用標識サンプルDNA溶液の調製)
サンプルDNA溶液    9.0 μl
ハイブリダイズ用溶液  9.0 μl
合計                 18.0 μl
First, a labeled DNA sample solution for hybridization was prepared as follows.
(Preparation of labeled sample DNA solution for hybridization)
Sample DNA solution 9.0 μl
Hybridization solution 9.0 μl
18.0 μl total
 なお、サンプルDNA溶液(各2μM)の組成は、以下の通りとした。
Alexa555-rD1-001~100の100種(各1mM)      各2μl×100
TE                                                800 μl
                                                 1000 μl
 
The composition of the sample DNA solution (each 2 μM) was as follows.
100 types of Alexa555-rD1-001-100 (1 mM each) 2 μl x 100 each
TE 800 μl
1000 μl
 また、ハイブリダイズ用溶液の組成は以下の通りとした。
20×SSC            2.0 ml
10%SDS            0.8 ml
100%Formamide    12.0 ml
100 mM EDTA        0.8 ml
ミリQ水          24.4 ml
                  40.0 ml
 
The composition of the hybridization solution was as follows.
20 x SSC 2.0 ml
10% SDS 0.8 ml
100% Formamide 12.0 ml
100 mM EDTA 0.8 ml
Milli-Q water 24.4 ml
40.0 ml
 DNAマイクロアレイとサンプルDNAセットとのハイブリダイゼーションは以下のようにして行った。まず、調製した標識DNAサンプル溶液を、ヒートブロック(TAITEC社DTU-N)を使用し、90℃で1分加熱した後、さらに80℃で1分加熱した。次いで、上記サンプル溶液を各9μlずつ、DNAマイクロアレイのスポットエリアにかけ、乾燥防止のため容器に密閉し、23℃で15秒、30秒、1分、2分、4分、15分、1時間それぞれの時間で静置にて反応させることによりハイブリダイゼーションを実施した。 Hybridization between the DNA microarray and the sample DNA set was performed as follows. First, the prepared labeled DNA sample solution was heated at 90 ° C. for 1 minute using a heat block (TAITEC DTU-N), and further heated at 80 ° C. for 1 minute. Next, 9 μl each of the above sample solution is applied to the spot area of the DNA microarray, sealed in a container to prevent drying, and at 23 ° C. for 15 seconds, 30 seconds, 1 minute, 2 minutes, 4 minutes, 15 minutes, 1 hour, respectively. Hybridization was carried out by allowing the reaction to stand for a period of time.
 所定時間のハイブリダイゼーション後、以下の組成の洗浄液が入ったガラス染色バットに、ハイブリダイゼーション後のガラス基板を浸漬し、5分間上下振とうした。その後、滅菌水を入れたガラス染色バットにガラス基板を移し、1分間上下振とうした。さらに、2000rpmで1分間遠心乾燥し、ガラス基板表面に残った水分を除去した。 After hybridization for a predetermined time, the glass substrate after hybridization was immersed in a glass staining vat containing a cleaning solution having the following composition, and shaken up and down for 5 minutes. Thereafter, the glass substrate was transferred to a glass staining vat containing sterilized water and shaken up and down for 1 minute. Furthermore, the water remaining on the glass substrate surface was removed by centrifugal drying at 2000 rpm for 1 minute.
(洗浄液の組成)
ミリQ水            188.0 ml
20×SSC              10.0 ml
10%SDS               2.0 ml
合計                200.0 ml
(Composition of cleaning solution)
Milli-Q water 188.0 ml
20 x SSC 10.0 ml
10% SDS 2.0 ml
200.0 ml total
 スキャナーによる蛍光検出は以下のようにして行った。すなわち、Molecular Devices GenePix4000Bを使用して適宜測定条件を調節し、蛍光画像を取得した。さらにGenePix Proを使用し、得られた画像の蛍光シグナルの数値化を行った。さらに、3種のDNAマイクロアレイによるハイブリダイゼーションにおいて、それぞれ1時間のハイブリダイゼーション後の各プローブから得られた蛍光強度を100とした時の、反応時間毎、プローブ毎の相対値(ハイブリッド形成率)をプロットした。3種のアレイについての結果を図1~図7に示す。図1~3には、100個のプローブからなる第1のプローブセットのDNAマイクロアレイについての結果を示し、図4及び図5には、52個のプローブからなる第2のプローブセットのDNAマイクロアレイにいての結果を示し、図6及び図7には、48個のプローブからなる第3のプローブセットのDNAマイクロアレイにいての結果を示す。 Fluorescence detection with a scanner was performed as follows. That is, the measurement conditions were appropriately adjusted using Molecular® Devices® GenePix4000B, and fluorescence images were acquired. Furthermore, using GenePix®Pro, the fluorescence signal of the obtained image was digitized. Furthermore, in the hybridization with three types of DNA microarrays, the relative values (hybrid formation rate) for each reaction time and each probe when the fluorescence intensity obtained from each probe after hybridization for 1 hour is defined as 100. Plotted. The results for the three arrays are shown in FIGS. FIGS. 1 to 3 show the results of the DNA microarray of the first probe set consisting of 100 probes. FIGS. 4 and 5 show the results of the DNA microarray of the second probe set consisting of 52 probes. FIG. 6 and FIG. 7 show the results in the DNA microarray of the third probe set consisting of 48 probes.
 図1~図3の結果から、反応直後(15秒)の反応性及び15分後(900秒後)の反応性に関し、プローブ間で顕著な差が見られることが確認された。 From the results shown in FIGS. 1 to 3, it was confirmed that there was a significant difference between the probes regarding the reactivity immediately after the reaction (15 seconds) and the reactivity after 15 minutes (900 seconds).
 図4及び図5に示す第2のプローブセットを固定化したアレイの結果及び図6及び図7に示す第3のプローブセットを固定化したアレイの結果が示すように、第2のプローブセットと第3のプローブセットの間においては、反応直後(15秒)の反応性及び15分後(900秒後)の反応性に関し、プローブセット間で顕著な差を確認できた。第2のプローブセットを構成するプローブは、いずれも15秒以内に1時間ハイブリダイゼーション時のハイブリッド形成率の50%以上となるプローブである。さらに、15秒以内において55%以上、より好ましくは60%以上、さらに好ましくは65%以上、一層好ましくは70%以上、より一層好ましくは75%以上、さらに一層好ましくは80%以上のハイブリッド形成率のプローブを選択することで、より迅速なハイブリダイゼーションが可能となる。 As shown in the results of the array immobilized with the second probe set shown in FIGS. 4 and 5 and the results of the array immobilized with the third probe set shown in FIGS. 6 and 7, the second probe set and Among the third probe sets, significant differences between the probe sets were confirmed with respect to the reactivity immediately after the reaction (15 seconds) and the reactivity after 15 minutes (900 seconds). The probes constituting the second probe set are all probes that achieve 50% or more of the hybridization rate during 1 hour hybridization within 15 seconds. Furthermore, a hybridization rate of 55% or more, more preferably 60% or more, more preferably 65% or more, more preferably 70% or more, even more preferably 75% or more, and even more preferably 80% or more within 15 seconds. By selecting this probe, more rapid hybridization becomes possible.
 以上のことから、第2のプローブセットから選択されるプローブは、ハイブリダイゼーションを促進して迅速にハイブリダイズ産物を形成できることがわかった。すなわち、こうしたプローブセットから選択されるプローブを用いることで、ハイブリダイゼーション時のプローブ応答性(瞬時)および短時間での反応完結性の高いアレイを得ることが可能となった。 From the above, it was found that the probe selected from the second probe set can promote hybridization and rapidly form a hybridization product. That is, by using a probe selected from such a probe set, it is possible to obtain an array with high probe responsiveness (instantaneous) during hybridization and high reaction completion in a short time.
 以上の検討結果から、例えば、以下の10種のプローブが迅速性及び定量性において最も優れるプローブとして選択された。
Figure JPOXMLDOC01-appb-T000018
  
From the above examination results, for example, the following 10 probes were selected as the probes that are most excellent in rapidity and quantitativeness.
Figure JPOXMLDOC01-appb-T000018
配列番号1~200:プローブ SEQ ID NOs: 1 to 200: Probe

Claims (10)

  1.  以下の表に記載の塩基配列又はその相補配列からなる群から選択される1種又は2種以上の塩基配列をそれぞれ有する1種又は2種以上のプローブからなる、プローブセット。
    Figure JPOXMLDOC01-appb-T000001
      
    A probe set comprising one or more probes each having one or more base sequences selected from the group consisting of the base sequences described in the following table or their complementary sequences.
    Figure JPOXMLDOC01-appb-T000001
  2.  以下の表に記載の塩基配列又はその相補配列からなる群から選択される1種又は2種以上の塩基配列をそれぞれ有する1種又は2種以上のプローブからなる、請求項1に記載のプローブセット。
    Figure JPOXMLDOC01-appb-T000002
      
    The probe set according to claim 1, comprising one or two or more probes each having one or more base sequences selected from the group consisting of the base sequences shown in the following table or a complementary sequence thereof. .
    Figure JPOXMLDOC01-appb-T000002
  3.  以下の表に記載の塩基配列又はその相補配列からなる群から選択される1種又は2種以上の塩基配列をそれぞれ有する1種又は2種以上のプローブからなる、請求項1又は2に記載のプローブセット。
    Figure JPOXMLDOC01-appb-T000003
      
    It consists of 1 type, or 2 or more types of probes each having 1 type, or 2 or more types of base sequences selected from the group which consists of the base sequence shown in the following table | surfaces, or its complementary sequence. Probe set.
    Figure JPOXMLDOC01-appb-T000003
  4.  請求項1に記載の表に記載の塩基配列又はその相補配列からなる群から選択される10種以上の塩基配列を有する10種以上のプローブからなる、請求項3に記載のプローブセット。 4. The probe set according to claim 3, comprising 10 or more types of probes having 10 or more types of base sequences selected from the group consisting of the base sequences described in the table of claim 1 or their complementary sequences.
  5.  少なくとも以下の表に記載の塩基配列又は相補配列を有するプローブを含む、請求項4に記載のプローブセット。
    Figure JPOXMLDOC01-appb-T000004
      
    The probe set according to claim 4, comprising a probe having at least a base sequence or a complementary sequence described in the following table.
    Figure JPOXMLDOC01-appb-T000004
  6.  請求項1~5のいずれかに記載のプローブセットが担体に固定化されたアレイ。 An array in which the probe set according to any one of claims 1 to 5 is immobilized on a carrier.
  7.  請求項1~5のいずれかに記載のプローブセットを用いてハイブリダイゼーションを実施するハイブリダイゼーション工程と、
     前記ハイブリダイゼーション工程のハイブリダイズ産物を検出する検出工程と、
    を備える、プローブセットの使用方法。
    A hybridization step of performing hybridization using the probe set according to any one of claims 1 to 5,
    A detection step of detecting a hybridization product of the hybridization step;
    A method of using a probe set comprising:
  8.  プローブのスクリーニング方法であって、
     融解温度が57℃以上61℃以下であり、23塩基長の正規直交配列である塩基配列を有するプローブについて、前記塩基配列と相補的な塩基配列を有するオリゴヌクレオチドとハイブリダイゼーションを実施するハイブリダイゼーション工程と、
     前記ハイブリダイゼーション工程において、所定時間内におけるハイブリッド形成率が所定数値以上のプローブを選択する工程と、
    を備える、スクリーニング方法。
    A probe screening method comprising:
    A hybridization step in which a probe having a melting temperature of 57 ° C. or more and 61 ° C. or less and having a base sequence that is a 23-base long orthonormal sequence is hybridized with an oligonucleotide having a base sequence complementary to the base sequence When,
    In the hybridization step, a step of selecting a probe having a hybridization rate within a predetermined time of a predetermined numerical value or more;
    A screening method comprising:
  9.  プローブのスクリーニング方法であって、
     融解温度が57℃以上61℃以下であり、23塩基長の正規直交配列である塩基配列を有するプローブについて、前記塩基配列と相補的な塩基配列を有するオリゴヌクレオチドとハイブリダイゼーションを実施するハイブリダイゼーション工程と、
     前記ハイブリダイゼーション工程において、所定時間内におけるハイブリッド形成率が所定数値範囲内のプローブを選択する工程と、
    を備える、スクリーニング方法。
    A probe screening method comprising:
    A hybridization step in which a probe having a melting temperature of 57 ° C. or more and 61 ° C. or less and having a base sequence that is a 23-base long orthonormal sequence is hybridized with an oligonucleotide having a base sequence complementary to the base sequence When,
    In the hybridization step, a step of selecting a probe having a hybridization rate within a predetermined numerical range within a predetermined time; and
    A screening method comprising:
  10.  プローブセットであって、
     以下の(a)及び(b)を充足する、プローブからなる、セット。
    (a)融解温度が57℃以上61℃以下であり、23塩基長の正規直交配列である塩基配列を有する。
    (b)ハイブリダイゼーション開始後3600秒後におけるハイブリッド形成率に対する
    ハイブリダイゼーション開始後15秒後のハイブリッド形成率が50%以上である。
    A probe set,
    The set which consists of a probe which satisfies the following (a) and (b).
    (A) The melting temperature is 57 ° C. or more and 61 ° C. or less, and the base sequence is a 23-base long orthonormal sequence.
    (B) The hybridization rate at 15 seconds after the start of hybridization is 50% or more relative to the hybridization rate at 3600 seconds after the start of hybridization.
PCT/JP2012/064471 2011-06-15 2012-06-05 Probe set and use thereof WO2012173015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-133285 2011-06-15
JP2011133285 2011-06-15

Publications (1)

Publication Number Publication Date
WO2012173015A1 true WO2012173015A1 (en) 2012-12-20

Family

ID=47357005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064471 WO2012173015A1 (en) 2011-06-15 2012-06-05 Probe set and use thereof

Country Status (2)

Country Link
JP (1) JPWO2012173015A1 (en)
WO (1) WO2012173015A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NISHIDA NAO ET AL.: "DigiTag assay for multiplex single nucleotide polymorphism typing with high success rate.", ANALYTICAL BIOCHEMISTRY, vol. 346, no. 2, 2005, pages 281 - 288 *
NISHIDA NAO ET AL.: "Further development of multiplex single nucleotide polymorphism typing method, the DigiTag2 assay.", ANALYTICAL BIOCHEMISTRY, vol. 364, no. 1, 2007, pages 78 - 85 *

Also Published As

Publication number Publication date
JPWO2012173015A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP2005502346A (en) Method for blocking non-specific hybridization of nucleic acid sequences
JP6020164B2 (en) Nucleic acid detection method
JP2012509078A (en) Real-time multiplex PCR detection on solid surface using double-stranded nucleic acid specific dye
KR20010085860A (en) Methods of nucleic acid amplification and sequencing
JP2009171969A (en) Method for assaying microarray hybridization
JP6182300B2 (en) Target nucleic acid detection method
JP5663491B2 (en) Target nucleic acid detection method
EP1807535A2 (en) Array-based methods for producing ribonucleic acids
US20230175047A1 (en) Array and method for detecting spatial information of nucleic acids
US7754475B2 (en) Nucleic acid probes and microarrays for analysis of polynucleotides
US20030152931A1 (en) Nucleic acid detection device and method utilizing the same
JP5403573B2 (en) Primer set for detecting pneumonia
Gudnason et al. An inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly (T) 10-poly (C) 10–tagged DNA probes
Sethi et al. New protocol for oligonucleotide microarray fabrication using SU-8-coated glass microslides
JP4301941B2 (en) Nucleic acid probe immobilization substrate
JP5613160B2 (en) Method for detecting or analyzing a target sequence in genomic DNA
Saifullah et al. Single nucleotide recognition using a probes-on-carrier DNA chip
JP5165936B2 (en) Method and array for detecting mutations in target nucleic acid
WO2012173015A1 (en) Probe set and use thereof
JP5936541B2 (en) Retainer of identification information for identifying identification object and use thereof
KR101566402B1 (en) Diagnostic Multiplex Kit for White Spot Syndrome Virus Using Microarray Chip
Sinibaldi et al. Gene expression analysis on medium-density oligonucleotide arrays
JP3917640B2 (en) Method for detecting presence of target nucleic acid using nucleic acid probe-immobilized substrate
WO2019229792A1 (en) Method for detecting target nucleic acid fragment
JP2006246774A (en) Method of extending dna strand, method of amplifying dna strand, and microarray for extending dna strand

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520509

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800785

Country of ref document: EP

Kind code of ref document: A1