WO2012172928A1 - Serpentine heat exchanger - Google Patents

Serpentine heat exchanger Download PDF

Info

Publication number
WO2012172928A1
WO2012172928A1 PCT/JP2012/062900 JP2012062900W WO2012172928A1 WO 2012172928 A1 WO2012172928 A1 WO 2012172928A1 JP 2012062900 W JP2012062900 W JP 2012062900W WO 2012172928 A1 WO2012172928 A1 WO 2012172928A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat exchanger
serpentine heat
folded
serpentine
Prior art date
Application number
PCT/JP2012/062900
Other languages
French (fr)
Japanese (ja)
Inventor
由和 高松
中村 将之
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to EP12800204.5A priority Critical patent/EP2722628A4/en
Priority to US14/124,345 priority patent/US20140116662A1/en
Priority to CN201280029492.6A priority patent/CN103608636A/en
Publication of WO2012172928A1 publication Critical patent/WO2012172928A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0358Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by bent plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/04Reinforcing means for conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/122Fastening; Joining by methods involving deformation of the elements by crimping, caulking or clinching

Definitions

  • the present invention relates to a serpentine heat exchanger.
  • a serpentine heat exchanger disclosed in JP2001-27484A is known as a heat exchanger used as an evaporator or a condenser of a vehicle air conditioner.
  • the serpentine heat exchanger has a configuration in which a tube in which a medium passage is formed is folded back into a serpentine shape and fins are arranged in a space sandwiched between the folded tubes.
  • the serpentine heat exchanger has an advantage that heat exchangers of various sizes, that is, various capacities can be manufactured by changing the length of the tube and the position / number of times of bending.
  • the tube is thinned to reduce the radius of curvature of the bent portion, the space inside the bent portion where fins cannot be placed is reduced, and as many fins as possible. Need to be placed.
  • the tube used for the serpentine heat exchanger is formed by extrusion, it is difficult to reduce the thickness.
  • the medium passage formed in the tube is a plurality of parallel passages as shown in FIG.
  • a medium flowing in a certain passage is not mixed with a medium flowing in another passage. Therefore, a temperature difference occurs between the passages, and it is difficult to increase the efficiency of the heat exchanger.
  • the present invention has been made in view of such a technical problem, and an object thereof is to realize miniaturization and high efficiency in a serpentine heat exchanger.
  • a serpentine heat exchanger is configured by bonding two press-formed tube sheets, and is sandwiched between a tube folded in a serpentine shape and the folded tube Fins disposed in the space, and a plurality of convex portions protruding from one tube sheet and contacting the other tube sheet are formed in the folded portion of the tube at intervals.
  • An exchanger is provided.
  • a serpentine-like tube is configured by stacking press-formed tube sheets and turning them back. Since the thickness of the tube can be made thinner than that of a tube manufactured by extrusion molding, the radius of curvature of the bent portion can be reduced. Thereby, the space inside the bent portion where fins cannot be installed can be reduced, and more fins can be arranged to achieve downsizing and higher efficiency of the heat exchanger.
  • the efficiency of the heat exchanger can also be improved.
  • FIG. 1 is an overall configuration diagram of a serpentine heat exchanger according to a first embodiment of the present invention.
  • FIG. 2A is a view in which the tube is cut in the short direction at the folded portion.
  • FIG. 2B is a diagram in which the tube is cut in the short direction at the straight portion.
  • FIG. 2C is a view in which the folded portion and the straight portion of the tube are cut in the longitudinal direction.
  • FIG. 3 is a cross-sectional view of the tube.
  • FIG. 4A is a diagram illustrating a manufacturing method.
  • FIG. 4B is a diagram illustrating the manufacturing method.
  • FIG. 4C is a diagram illustrating the manufacturing method.
  • FIG. 4D is a diagram illustrating the manufacturing method.
  • FIG. 4E is a diagram illustrating a manufacturing method.
  • FIG. 4A is a diagram illustrating a manufacturing method.
  • FIG. 4B is a diagram illustrating the manufacturing method.
  • FIG. 4C is a diagram illustrating the manufacturing method.
  • FIG. 4F is a diagram for explaining the manufacturing method.
  • FIG. 4G is a diagram illustrating a manufacturing method.
  • FIG. 4H is a diagram for explaining the manufacturing method.
  • FIG. 5 is a cross-sectional view of a tube according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a conventional tube.
  • FIG. 1 is an overall configuration diagram of a serpentine heat exchanger (hereinafter referred to as “heat exchanger”) 100 according to a first embodiment of the present invention.
  • the heat exchanger 100 includes a tube 1, a corrugated fin 2, an inlet adapter 3, an outlet adapter 4, an inlet pipe 5, and an outlet pipe 6.
  • the tube 1 includes a tube sheet 11 (see FIG. 4A) in which a concave groove 7 and a plurality of frustoconical convex portions 8 (see FIGS. 2A to 2C and 3) projecting into the concave groove 7 are formed by press molding. Are overlapped and folded back into a serpentine shape.
  • the folded portion of the tube 1 is expressed as a “folded portion”, and the unfolded portion is expressed as a “straight line portion”.
  • FIG. 2A to 2C are diagrams in which the tube 1 is cut in the short direction at the folded portion, the tube 1 is cut in the short direction at the straight portion, and the folded portion and the straight portion of the tube 1 are cut in the longitudinal direction.
  • FIG. FIG. 3 is a cross-sectional view of the tube 1.
  • the convex portion 8 of one tube sheet 11 is brought into contact with the convex portion 8 of the other tube sheet 11 to form a column extending in the thickness direction of the tube 1 inside the tube 1. .
  • the convex portions 8 are formed at intervals in the surface direction of the tube sheet 11 (the flow direction of the medium and the direction perpendicular thereto), reinforce the linear portion, and the tube 1 is crushed at the folded portion to reduce the passage cross-sectional area. To prevent becoming.
  • the convex portions 8 are arranged in a staggered manner and do not block the passage of the medium.
  • the tab 12 of the tube sheet 11 is folded in the folded direction of the tube 1, and the tube sheets 11 are caulked.
  • the corrugated fin 2 is a fin configured by bending a metal plate into a wave shape.
  • the corrugated fins 2 are respectively arranged in a plurality of U-shaped spaces formed by the folded tube 1, and the upper end and the lower end are in contact with the tube 1.
  • the inlet adapter 3 and the inlet pipe 5 are connected to one end of the tube 1.
  • the outlet adapter 4 and the outlet pipe 6 are connected to the other end of the tube 1.
  • the heat exchanger 100 according to the first embodiment is configured as described above, and the medium flowing into the inlet adapter 3 from the inlet pipe 5 flows through the meandering tube 1 from the lower side to the upper side in the figure. Thus, heat exchange with the air passing through the corrugated fins 2 is performed. The medium after the heat exchange is sent to the outlet adapter 4 and discharged from the outlet pipe 6.
  • the tube sheet 11 is manufactured by press working (FIG. 4A).
  • the tube sheet 11 has a concave groove 7 extending in the longitudinal direction at the center, and a plurality of convex portions 8 project from the bottom of the concave groove 7 at intervals in the surface direction of the tube sheet 11.
  • the height of the convex portion 8 is equal to the depth of the concave groove 7.
  • tabs 12 are formed on both sides of the portion to be the folded portion.
  • the tube sheet 11 is crimped by bending the tab 12 (FIG. 4C).
  • the direction in which the tab 12 is bent is the same as the direction in which the tube 1 is folded.
  • the tube 1 is folded at a plurality of locations to form a serpentine shape (FIG. 4D).
  • the folding is performed by applying a force to both sides of the part while bringing the jig into contact with the part to be folded back. Since the tube sheets 11 are caulked by the tabs 12 in the portion, the two tube sheets 11 are kept in close contact even after being folded back, and no gap is formed on the side surface of the tube 1.
  • the inlet adapter 3 is connected to one end of the tube 1, and the outlet adapter 4 is connected to the other end (FIG. 4E).
  • Each of the inlet adapter 3 and the outlet adapter 4 has a cylindrical shape, and has an opening to which the inlet pipe 5 or the outlet pipe 6 is connected at the end face, and a slit-like opening to which the end of the tube 1 is connected to the side face. .
  • the corrugated fins 2 are inserted and arranged in the space between the folded tubes 1 (FIG. 4F).
  • the inlet pipe 5 is connected to the inlet adapter 3, and the outlet pipe 6 is connected to the outlet adapter 4 (FIG. 4G).
  • the serpentine-like tube 1 is configured by stacking the press-formed tube sheets 11 and folding them back at a plurality of locations. Since the wall thickness of the tube 1 can be made thinner than that of a tube manufactured by extrusion, the radius of curvature of the bent portion can be reduced. Thereby, the space inside a bending part which cannot install corrugated fin 2 can be made small, and more corrugated fins 2 can be arranged and size reduction and high efficiency of heat exchanger 100 can be realized.
  • the tube 1 when the thickness of the tube 1 is reduced, the tube 1 may be crushed at the bent portion.
  • a column is formed inside the tube 1 by the convex portion 8 protruding from the tube sheet 11. The tube 1 is not crushed at the bent portion and the passage cross-sectional area is not reduced.
  • the efficiency of the heat exchanger 100 can also be improved.
  • the tube sheets 11 are crimped by the tabs 12 in the folded portion, the tube sheet 11 and the tube sheet 11 are not separated when the tube 1 is folded, and the side surface of the tube 1 It is possible to prevent a gap from being generated.
  • the shape of the convex portion 8 formed on the tube sheet 11 is a truncated cone shape, it is possible to ensure the ease of bending at the bent portion while ensuring the strength of the tube 1 at the straight portion.
  • the second embodiment is different from the first embodiment in the method of forming columns formed inside the tube 1.
  • the convex part 8 was formed in both the two tube sheets 11 which comprise the tube 1, and the pillar was formed by attaching these together, in 2nd Embodiment, the convex part 8 is formed. Only one tube sheet 11 is formed, and the other tube sheet 11 is not formed. In 2nd Embodiment, a pillar is formed in the inside of the tube 1 by attaching the convex part 8 formed in one tube sheet 11 to the flat surface of the other tube sheet 11.
  • FIG. 5 is a cross-sectional view of the tube 1 of the second embodiment.
  • the convex portion 8 is formed only on one tube sheet 11 and is not formed on the other tube sheet 11. With such a configuration, a column may be formed inside the tube 1. According to this configuration, the alignment of the convex portion 8 is unnecessary, and the manufacturing process can be simplified.
  • the convex portion 8 is formed on the entire tube 2, but the convex portion 8 may be provided at least in the bent portion. If the strength of the straight portion can be ensured without the convex portion 8, the convex portion 8 of the straight portion is not necessary.
  • the shape of the convex portion 8 is not a truncated cone shape, but may be a cylindrical shape or a prism shape (triangular prism shape, quadrangular prism shape, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This serpentine heat exchanger comprises a tube folded into a serpentine shape and configured by bonding together two press-molded tube sheets, and corrugated fins arranged in spaces enclosed by the folded tube. A plurality of convex parts that protrude from one of the tube sheets to make contact with the other tube sheet are formed with intervals therebetween on the inside of the folded part of the tube.

Description

サーペンタイン熱交換器Serpentine heat exchanger
 本発明は、サーペンタイン熱交換器に関する。 The present invention relates to a serpentine heat exchanger.
 車両用空調装置のエバポレータ又はコンデンサとして利用される熱交換器として、JP2001-27484Aに開示されるサーペンタイン熱交換器が知られている。 A serpentine heat exchanger disclosed in JP2001-27484A is known as a heat exchanger used as an evaporator or a condenser of a vehicle air conditioner.
 サーペンタイン熱交換器は、内部に媒体の通路が形成されたチューブをサーペンタイン(蛇行)状に折り返し、折り返されたチューブで挟まれた空間にフィンを配置した構成である。 The serpentine heat exchanger has a configuration in which a tube in which a medium passage is formed is folded back into a serpentine shape and fins are arranged in a space sandwiched between the folded tubes.
 サーペンタイン熱交換器は、チューブの長さ、折り曲げる位置・回数を変更することで、様々な大きさ、すなわち、様々な容量の熱交換器を製造することができるという利点がある。 The serpentine heat exchanger has an advantage that heat exchangers of various sizes, that is, various capacities can be manufactured by changing the length of the tube and the position / number of times of bending.
 サーペンタイン熱交換器において小型化及び高効率化を実現するためには、チューブを薄肉化して折り曲げ部の曲率半径を小さくし、フィンを配置できない折り曲げ部内側の空間を小さくして、なるべく多くのフィンを配置する必要がある。 In order to achieve miniaturization and high efficiency in the serpentine heat exchanger, the tube is thinned to reduce the radius of curvature of the bent portion, the space inside the bent portion where fins cannot be placed is reduced, and as many fins as possible. Need to be placed.
 しかしながら、サーペンタイン熱交換器に用いられるチューブは、押し出し成形によって成形されるので、薄肉化が難しかった。 However, since the tube used for the serpentine heat exchanger is formed by extrusion, it is difficult to reduce the thickness.
 また、チューブに形成される媒体の通路は、図6に示すように、平行な複数の通路となる。このような流路構成では、ある通路を流れる媒体が他の通路を流れる媒体と混じることがないので、通路間で温度差が生じ、熱交換器の高効率化が難しかった。 Further, the medium passage formed in the tube is a plurality of parallel passages as shown in FIG. In such a flow path configuration, a medium flowing in a certain passage is not mixed with a medium flowing in another passage. Therefore, a temperature difference occurs between the passages, and it is difficult to increase the efficiency of the heat exchanger.
 本発明は、このような技術的課題に鑑みてなされたもので、サーペンタイン熱交換器において、小型化及び高効率化を実現することを目的とする。 The present invention has been made in view of such a technical problem, and an object thereof is to realize miniaturization and high efficiency in a serpentine heat exchanger.
 本発明のある態様によれば、サーペンタイン熱交換器であって、プレス成形された二枚のチューブシートを貼り合わせて構成され、サーペンタイン状に折り返されるチューブと、前記折り返されたチューブによって挟まれた空間に配置されるフィンと、を備え、前記チューブの折り返し部の内部には、一方のチューブシートから突出し、他方のチューブシートに当接する複数の凸部が間隔をおいて形成される、サーペンタイン熱交換器が提供される。 According to an aspect of the present invention, a serpentine heat exchanger is configured by bonding two press-formed tube sheets, and is sandwiched between a tube folded in a serpentine shape and the folded tube Fins disposed in the space, and a plurality of convex portions protruding from one tube sheet and contacting the other tube sheet are formed in the folded portion of the tube at intervals. An exchanger is provided.
 上記態様によれば、プレス成形されたチューブシートを重ね合わせ、これを折り返すことでサーペンタイン状のチューブが構成される。チューブの肉厚を押し出し成形によって製造されるチューブに比べて薄くできるので、折り曲げ部の曲率半径を小さくすることができる。これにより、フィンを設置できない折り曲げ部内側の空間を小さくすることができ、より多くのフィンを配置して熱交換器の小型化及び高効率化を実現することができる。 According to the above aspect, a serpentine-like tube is configured by stacking press-formed tube sheets and turning them back. Since the thickness of the tube can be made thinner than that of a tube manufactured by extrusion molding, the radius of curvature of the bent portion can be reduced. Thereby, the space inside the bent portion where fins cannot be installed can be reduced, and more fins can be arranged to achieve downsizing and higher efficiency of the heat exchanger.
 また、チューブ内を流れる媒体は、凸部間の隙間を介して絶えず混合されながら流れるので、これによっても熱交換器の高効率化が実現される。 Also, since the medium flowing in the tube flows while being constantly mixed through the gaps between the convex portions, the efficiency of the heat exchanger can also be improved.
図1は、本発明の第1実施形態に係るサーペンタイン熱交換器の全体構成図である。FIG. 1 is an overall configuration diagram of a serpentine heat exchanger according to a first embodiment of the present invention. 図2Aは、チューブを折り返し部で短手方向にカットした図である。FIG. 2A is a view in which the tube is cut in the short direction at the folded portion. 図2Bは、チューブを直線部で短手方向にカットした図である。FIG. 2B is a diagram in which the tube is cut in the short direction at the straight portion. 図2Cは、チューブの折り返し部及び直線部を長手方向にカットした図である。FIG. 2C is a view in which the folded portion and the straight portion of the tube are cut in the longitudinal direction. 図3は、チューブの断面図である。FIG. 3 is a cross-sectional view of the tube. 図4Aは、製造方法を説明する図である。FIG. 4A is a diagram illustrating a manufacturing method. 図4Bは、製造方法を説明する図である。FIG. 4B is a diagram illustrating the manufacturing method. 図4Cは、製造方法を説明する図である。FIG. 4C is a diagram illustrating the manufacturing method. 図4Dは、製造方法を説明する図である。FIG. 4D is a diagram illustrating the manufacturing method. 図4Eは、製造方法を説明する図である。FIG. 4E is a diagram illustrating a manufacturing method. 図4Fは、製造方法を説明する図である。FIG. 4F is a diagram for explaining the manufacturing method. 図4Gは、製造方法を説明する図である。FIG. 4G is a diagram illustrating a manufacturing method. 図4Hは、製造方法を説明する図である。FIG. 4H is a diagram for explaining the manufacturing method. 図5は、本発明の第2実施形態のチューブの断面図である。FIG. 5 is a cross-sectional view of a tube according to a second embodiment of the present invention. 図6は、従来のチューブの断面図である。FIG. 6 is a cross-sectional view of a conventional tube.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 <第1実施形態>
 図1は、本発明の第1実施形態に係るサーペンタイン熱交換器(以下、「熱交換器」という。)100の全体構成図である。
<First Embodiment>
FIG. 1 is an overall configuration diagram of a serpentine heat exchanger (hereinafter referred to as “heat exchanger”) 100 according to a first embodiment of the present invention.
 熱交換器100は、チューブ1と、コルゲートフィン2と、入口アダプタ3と、出口アダプタ4と、入口パイプ5と、出口パイプ6と、を備える。 The heat exchanger 100 includes a tube 1, a corrugated fin 2, an inlet adapter 3, an outlet adapter 4, an inlet pipe 5, and an outlet pipe 6.
 チューブ1は、プレス成形によって凹溝7及び凹溝7内に突出する円錐台形状の複数の凸部8(図2A~図2C及び図3参照)が形成されたチューブシート11(図4A参照)を重ね合わせ、サーペンタイン(蛇行)状に折り返すことで構成される。以下の説明では、チューブ1の折り返された部分を「折り返し部」と表現し、折り返されていない部分を「直線部」と表現する。 The tube 1 includes a tube sheet 11 (see FIG. 4A) in which a concave groove 7 and a plurality of frustoconical convex portions 8 (see FIGS. 2A to 2C and 3) projecting into the concave groove 7 are formed by press molding. Are overlapped and folded back into a serpentine shape. In the following description, the folded portion of the tube 1 is expressed as a “folded portion”, and the unfolded portion is expressed as a “straight line portion”.
 図2Aから図2Cは、それぞれ、チューブ1を折り返し部で短手方向にカットした図、チューブ1を直線部で短手方向にカットした図、チューブ1の折り返し部及び直線部を長手方向にカットした図である。図3はチューブ1の断面図である。 2A to 2C are diagrams in which the tube 1 is cut in the short direction at the folded portion, the tube 1 is cut in the short direction at the straight portion, and the folded portion and the straight portion of the tube 1 are cut in the longitudinal direction. FIG. FIG. 3 is a cross-sectional view of the tube 1.
 これらの図に示されるように、一方のチューブシート11の凸部8は、他方のチューブシート11の凸部8と付き合わされ、チューブ1の内部にチューブ1の厚さ方向に延びる柱を形成する。凸部8は、チューブシート11の面方向(媒体の流れ方向及びそれに直交する方向)に間隔をおいて形成され、直線部を補強するとともに、チューブ1が折り返し部において潰れて通路断面積が小さくなるのを防止する。凸部8は千鳥に配置され、媒体の通路を閉塞することはない。 As shown in these drawings, the convex portion 8 of one tube sheet 11 is brought into contact with the convex portion 8 of the other tube sheet 11 to form a column extending in the thickness direction of the tube 1 inside the tube 1. . The convex portions 8 are formed at intervals in the surface direction of the tube sheet 11 (the flow direction of the medium and the direction perpendicular thereto), reinforce the linear portion, and the tube 1 is crushed at the folded portion to reduce the passage cross-sectional area. To prevent becoming. The convex portions 8 are arranged in a staggered manner and do not block the passage of the medium.
 チューブ1の折り返し部においては、チューブシート11のタブ12がチューブ1の折り返し方向に折り曲げられて、チューブシート11同士がかしめ加工されている。 In the folded part of the tube 1, the tab 12 of the tube sheet 11 is folded in the folded direction of the tube 1, and the tube sheets 11 are caulked.
 コルゲートフィン2は、金属板を波状に折り曲げて構成されるフィンである。コルゲートフィン2は、折り返されたチューブ1によって形成される複数のU字状の空間にそれぞれ配置され、上端及び下端がチューブ1に接触する。 The corrugated fin 2 is a fin configured by bending a metal plate into a wave shape. The corrugated fins 2 are respectively arranged in a plurality of U-shaped spaces formed by the folded tube 1, and the upper end and the lower end are in contact with the tube 1.
 入口アダプタ3及び入口パイプ5はチューブ1の一方の端部に接続される。出口アダプタ4及び出口パイプ6はチューブ1の他方の端部に接続される。 The inlet adapter 3 and the inlet pipe 5 are connected to one end of the tube 1. The outlet adapter 4 and the outlet pipe 6 are connected to the other end of the tube 1.
 第1実施形態に係る熱交換器100は以上のように構成され、入口パイプ5から入口アダプタ3に流入する媒体は、蛇行するチューブ1内を通って図中下側から上側に流れ、その過程で、コルゲートフィン2を通過する空気と熱交換を行う。熱交換後の媒体は出口アダプタ4へと送られ、出口パイプ6から排出される。 The heat exchanger 100 according to the first embodiment is configured as described above, and the medium flowing into the inlet adapter 3 from the inlet pipe 5 flows through the meandering tube 1 from the lower side to the upper side in the figure. Thus, heat exchange with the air passing through the corrugated fins 2 is performed. The medium after the heat exchange is sent to the outlet adapter 4 and discharged from the outlet pipe 6.
 続いて、図4A~図4Hを参照しながら、第1実施形態に係る熱交換器100の製造方法について説明する。 Subsequently, a method of manufacturing the heat exchanger 100 according to the first embodiment will be described with reference to FIGS. 4A to 4H.
 まず、チューブシート11をプレス加工によって製造する(図4A)。チューブシート11は、長手方向に延びる凹溝7を中央に有し、凹溝7の底部からは複数の凸部8がチューブシート11の面方向に間隔をおいて突出する。凸部8の高さは凹溝7の深さに等しい。また、折り返し部となる部位の両側にはタブ12が形成される。 First, the tube sheet 11 is manufactured by press working (FIG. 4A). The tube sheet 11 has a concave groove 7 extending in the longitudinal direction at the center, and a plurality of convex portions 8 project from the bottom of the concave groove 7 at intervals in the surface direction of the tube sheet 11. The height of the convex portion 8 is equal to the depth of the concave groove 7. Further, tabs 12 are formed on both sides of the portion to be the folded portion.
 次に、チューブシート11を二枚用意し、凹溝7が内側になるようにこれらを重ね合わせ、チューブ1に構成する(図4B)。このとき、一方のチューブシート11の凸部8及びタブ12の位置が他方のチューブシート11の凸部8及びタブ12の位置と一致するように、二枚のチューブシート11の位置が合わされる。凹溝7が重ね合わされることによって、チューブ1の内部に媒体の通路が形成され、また、凸部8が付き合わされることによって、チューブ1の内部に厚さ方向に延びる柱が形成される。 Next, two tube sheets 11 are prepared, and they are overlapped so that the concave groove 7 is on the inner side to form the tube 1 (FIG. 4B). At this time, the positions of the two tube sheets 11 are aligned so that the positions of the convex portions 8 and tabs 12 of one tube sheet 11 coincide with the positions of the convex portions 8 and tabs 12 of the other tube sheet 11. When the concave grooves 7 are overlapped, a medium passage is formed inside the tube 1, and a protrusion extending in the thickness direction is formed inside the tube 1 by attaching the convex portions 8 together.
 次に、タブ12を折り曲げてチューブシート11同士をかしめ加工する(図4C)。タブ12を折り曲げる方向は、チューブ1が折り返される方向と同一である。 Next, the tube sheet 11 is crimped by bending the tab 12 (FIG. 4C). The direction in which the tab 12 is bent is the same as the direction in which the tube 1 is folded.
 次に、チューブ1を複数箇所で折り返し、サーペンタイン形状にする(図4D)。折り返しは、治具を折り返す部位に当接させながら、当該部位の両側に力を掛けることによって行われる。当該部位においては、タブ12によってチューブシート11同士がかしめ加工されているので、折り返された後でも二枚のチューブシート11は密着状態を維持し、チューブ1の側面に隙間が生じることはない。 Next, the tube 1 is folded at a plurality of locations to form a serpentine shape (FIG. 4D). The folding is performed by applying a force to both sides of the part while bringing the jig into contact with the part to be folded back. Since the tube sheets 11 are caulked by the tabs 12 in the portion, the two tube sheets 11 are kept in close contact even after being folded back, and no gap is formed on the side surface of the tube 1.
 次に、チューブ1の一方の端部に入口アダプタ3を接続し、他方の端部に出口アダプタ4を接続する(図4E)。入口アダプタ3及び出口アダプタ4は、いずれも円筒形状であり、端面に入口パイプ5又は出口パイプ6が接続される開口を有し、側面にチューブ1の端部が接続されるスリット状開口を有する。 Next, the inlet adapter 3 is connected to one end of the tube 1, and the outlet adapter 4 is connected to the other end (FIG. 4E). Each of the inlet adapter 3 and the outlet adapter 4 has a cylindrical shape, and has an opening to which the inlet pipe 5 or the outlet pipe 6 is connected at the end face, and a slit-like opening to which the end of the tube 1 is connected to the side face. .
 次に、折り返されたチューブ1の間の空間に、コルゲートフィン2を挿入し、配置する(図4F)。 Next, the corrugated fins 2 are inserted and arranged in the space between the folded tubes 1 (FIG. 4F).
 次に、入口アダプタ3に入口パイプ5を接続し、出口アダプタ4に出口パイプ6を接続する(図4G)。 Next, the inlet pipe 5 is connected to the inlet adapter 3, and the outlet pipe 6 is connected to the outlet adapter 4 (FIG. 4G).
 最後に、全体が炉の中に配置され、各部品をロウ付けによって結合する(図4H)。 Finally, the whole is placed in the furnace and the parts are joined by brazing (FIG. 4H).
 続いて、第1実施形態の作用効果について説明する。 Subsequently, the function and effect of the first embodiment will be described.
 第1実施形態によれば、プレス成形されたチューブシート11を重ね合わせ、これを複数箇所で折り返すことでサーペンタイン状のチューブ1が構成される。チューブ1の肉厚を押し出し成形によって製造されるチューブに比べて薄くできるので、折り曲げ部の曲率半径を小さくすることができる。これにより、コルゲートフィン2を設置できない折り曲げ部内側の空間を小さくすることができ、より多くのコルゲートフィン2を配置して熱交換器100の小型化及び高効率化を実現することができる。 According to the first embodiment, the serpentine-like tube 1 is configured by stacking the press-formed tube sheets 11 and folding them back at a plurality of locations. Since the wall thickness of the tube 1 can be made thinner than that of a tube manufactured by extrusion, the radius of curvature of the bent portion can be reduced. Thereby, the space inside a bending part which cannot install corrugated fin 2 can be made small, and more corrugated fins 2 can be arranged and size reduction and high efficiency of heat exchanger 100 can be realized.
 また、チューブ1の肉厚が薄くなると、折り曲げ部においてチューブ1が潰れる可能性があるが、第1実施形態ではチューブシート11から突出する凸部8によってチューブ1の内部に柱が形成されるので、チューブ1が折り曲げ部において潰れて通路断面積が小さくなることもない。 Moreover, when the thickness of the tube 1 is reduced, the tube 1 may be crushed at the bent portion. However, in the first embodiment, a column is formed inside the tube 1 by the convex portion 8 protruding from the tube sheet 11. The tube 1 is not crushed at the bent portion and the passage cross-sectional area is not reduced.
 また、チューブ1内を流れる媒体は、凸部8(柱)間の隙間を介して絶えず混合されながら流れるので、これによっても熱交換器100の高効率化が実現される。 Further, since the medium flowing in the tube 1 flows while being constantly mixed through the gaps between the convex portions 8 (columns), the efficiency of the heat exchanger 100 can also be improved.
 また、折り返し部においては、タブ12によってチューブシート11同士をかしめ加工するようにしたので、チューブ1を折り返す際に、チューブシート11とチューブシート11とが離れてしまうことはなく、チューブ1の側面に隙間が生じるのを防止することができる。 Further, since the tube sheets 11 are crimped by the tabs 12 in the folded portion, the tube sheet 11 and the tube sheet 11 are not separated when the tube 1 is folded, and the side surface of the tube 1 It is possible to prevent a gap from being generated.
 また、チューブシート11に形成した凸部8の形状を円錐台形状にしたので、直線部におけるチューブ1の強度を確保しつつ、折り曲げ部における折り曲げやすさを確保することができる。 Moreover, since the shape of the convex portion 8 formed on the tube sheet 11 is a truncated cone shape, it is possible to ensure the ease of bending at the bent portion while ensuring the strength of the tube 1 at the straight portion.
 <第2実施形態>
 第2実施形態は、チューブ1の内部に形成される柱の形成方法が第1実施形態と異なる。
Second Embodiment
The second embodiment is different from the first embodiment in the method of forming columns formed inside the tube 1.
 第1実施形態では、チューブ1を構成する二枚のチューブシート11の両方に凸部8を形成し、これらを付き合わせることで柱を形成したが、第2実施形態では、凸部8が形成されるのは一方のチューブシート11のみで、他方のチューブシート11には形成されない。第2実施形態では、一方のチューブシート11に形成される凸部8を他方のチューブシート11の平坦面に付き合わせることで、チューブ1の内部に柱が形成される。 In 1st Embodiment, although the convex part 8 was formed in both the two tube sheets 11 which comprise the tube 1, and the pillar was formed by attaching these together, in 2nd Embodiment, the convex part 8 is formed. Only one tube sheet 11 is formed, and the other tube sheet 11 is not formed. In 2nd Embodiment, a pillar is formed in the inside of the tube 1 by attaching the convex part 8 formed in one tube sheet 11 to the flat surface of the other tube sheet 11.
 図5は、第2実施形態のチューブ1の断面図である。凸部8が形成されるのは一方のチューブシート11のみであり、他方のチューブシート11には形成されない。このような構成で、チューブ1の内部に柱を形成するようにしてもよい。この構成によれば、凸部8の位置合わせが不要であり、製造工程を簡略化することが可能である。 FIG. 5 is a cross-sectional view of the tube 1 of the second embodiment. The convex portion 8 is formed only on one tube sheet 11 and is not formed on the other tube sheet 11. With such a configuration, a column may be formed inside the tube 1. According to this configuration, the alignment of the convex portion 8 is unnecessary, and the manufacturing process can be simplified.
 その他の構成は第1実施形態と同じであるので、説明を省略する。 Other configurations are the same as those in the first embodiment, and thus description thereof is omitted.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例を示したものであり、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above, but the above embodiment shows an application example of the present invention, and is not intended to limit the technical scope of the present invention to the specific configuration of the above embodiment.
 例えば、上記実施形態では、チューブ2の全体に凸部8を形成しているが、凸部8は少なくとも折り曲げ部に設けられていればよい。凸部8がなくても直線部の強度を確保できる場合は、直線部の凸部8は不要である。 For example, in the above embodiment, the convex portion 8 is formed on the entire tube 2, but the convex portion 8 may be provided at least in the bent portion. If the strength of the straight portion can be ensured without the convex portion 8, the convex portion 8 of the straight portion is not necessary.
 また、凸部8の形状は円錐台形状ではなく、円柱形状、角柱形状(三角柱形状、四角柱形状等)であってもよい。 Further, the shape of the convex portion 8 is not a truncated cone shape, but may be a cylindrical shape or a prism shape (triangular prism shape, quadrangular prism shape, etc.).
 本願は2011年6月17日に日本国特許庁に出願された特願2011-135178に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2011-135178 filed with the Japan Patent Office on June 17, 2011, the entire contents of which are incorporated herein by reference.

Claims (7)

  1.  サーペンタイン熱交換器であって、
     プレス成形された二枚のチューブシートを貼り合わせて構成され、サーペンタイン状に折り返されるチューブと、
     前記折り返されたチューブによって挟まれた空間に配置されるフィンと、
    を備え、
     前記チューブの折り返し部の内部には、一方のチューブシートから突出し、他方のチューブシートに当接する複数の凸部が間隔をおいて形成される、
    サーペンタイン熱交換器。
    A serpentine heat exchanger,
    A tube that is composed of two press-formed tube sheets bonded together and folded back into a serpentine shape,
    A fin disposed in a space sandwiched between the folded tubes;
    With
    Inside the folded portion of the tube, a plurality of convex portions that protrude from one tube sheet and come into contact with the other tube sheet are formed at intervals.
    Serpentine heat exchanger.
  2.  請求項1に記載のサーペンタイン熱交換器であって、
     前記チューブの直線部の内部にも前記凸部が形成される、
    サーペンタイン熱交換器。
    The serpentine heat exchanger according to claim 1,
    The convex portion is also formed inside the straight portion of the tube.
    Serpentine heat exchanger.
  3.  請求項1に記載のサーペンタイン熱交換器であって、
     前記凸部は、前記他方のチューブシートから突出する別の凸部と付き合わされる、
    サーペンタイン熱交換器。
    The serpentine heat exchanger according to claim 1,
    The convex portion is associated with another convex portion protruding from the other tube sheet.
    Serpentine heat exchanger.
  4.  請求項1に記載のサーペンタイン熱交換器であって、
     前記凸部は、前記一方のチューブシートにのみ形成される、
    サーペンタイン熱交換器。
    The serpentine heat exchanger according to claim 1,
    The convex portion is formed only on the one tube sheet.
    Serpentine heat exchanger.
  5.  請求項1に記載のサーペンタイン熱交換器であって、
     前記凸部は、千鳥に配置される、
    サーペンタイン熱交換器。
    The serpentine heat exchanger according to claim 1,
    The convex portions are arranged in a staggered manner,
    Serpentine heat exchanger.
  6.  請求項1に記載のサーペンタイン熱交換器であって、
     前記凸部は、円錐台形状、円柱形状又は角柱形状である、
    サーペンタイン熱交換器。
    The serpentine heat exchanger according to claim 1,
    The convex portion has a truncated cone shape, a cylindrical shape or a prismatic shape,
    Serpentine heat exchanger.
  7.  請求項1に記載のサーペンタイン熱交換器であって、
     前記チューブの前記折り返し部において、前記一方のチューブシートと前記他方のチューブシートとが両側においてかしめ加工される、
    サーペンタイン熱交換器。
     
    The serpentine heat exchanger according to claim 1,
    In the folded portion of the tube, the one tube sheet and the other tube sheet are caulked on both sides,
    Serpentine heat exchanger.
PCT/JP2012/062900 2011-06-17 2012-05-21 Serpentine heat exchanger WO2012172928A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12800204.5A EP2722628A4 (en) 2011-06-17 2012-05-21 Serpentine heat exchanger
US14/124,345 US20140116662A1 (en) 2011-06-17 2012-05-21 Serpentine heat exchanger
CN201280029492.6A CN103608636A (en) 2011-06-17 2012-05-21 Serpentine heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-135178 2011-06-17
JP2011135178A JP5663413B2 (en) 2011-06-17 2011-06-17 Serpentine heat exchanger

Publications (1)

Publication Number Publication Date
WO2012172928A1 true WO2012172928A1 (en) 2012-12-20

Family

ID=47356922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062900 WO2012172928A1 (en) 2011-06-17 2012-05-21 Serpentine heat exchanger

Country Status (5)

Country Link
US (1) US20140116662A1 (en)
EP (1) EP2722628A4 (en)
JP (1) JP5663413B2 (en)
CN (1) CN103608636A (en)
WO (1) WO2012172928A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160238262A1 (en) * 2013-09-30 2016-08-18 Arcelik Anonim Sirketi Forced convection heat exchanger for a refrigeration appliance

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012011520A1 (en) * 2012-06-08 2013-12-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Heat exchanger system, method of making same and fluid distribution element
USD763417S1 (en) * 2012-08-02 2016-08-09 Mitsubishi Electric Corporation Heat exchanger tube
CN104061683A (en) * 2014-06-14 2014-09-24 广东万和新电气股份有限公司 Cast aluminum heat exchanger of gas-fired boiler
FR3040478B1 (en) * 2015-08-25 2017-12-15 Valeo Systemes Thermiques HEAT EXCHANGER
CN105352181A (en) * 2015-11-13 2016-02-24 任能 Improved condensation type gas warm bath dual-purpose heat exchanger
US20170336152A1 (en) * 2016-05-20 2017-11-23 Hyundai Motor Company Double-sided cooler for cooling both sides of electronic component
DE102017222742A1 (en) * 2017-12-14 2019-06-19 Hanon Systems Pipe, in particular flat pipe for an exhaust gas cooler and exhaust gas cooler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937857U (en) * 1972-07-06 1974-04-03
JPS4950857U (en) * 1972-08-07 1974-05-04
JPS5730582U (en) * 1980-07-30 1982-02-17
JPS5959688U (en) * 1982-10-12 1984-04-18 株式会社デンソー Heat exchanger
JPS5970180U (en) * 1982-11-01 1984-05-12 昭和アルミニウム株式会社 Evaporator
JP2001027484A (en) 1999-07-15 2001-01-30 Zexel Valeo Climate Control Corp Serpentine heat-exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950857A (en) * 1972-09-18 1974-05-17
DE3142028A1 (en) * 1981-10-23 1983-05-05 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart OIL COOLER
JPH0566073A (en) * 1991-09-05 1993-03-19 Sanden Corp Multilayered heat exchanger
JPH07227631A (en) * 1993-12-21 1995-08-29 Zexel Corp Guide tube for heat exchanging in laminated layer type heat exchanger and its manufacture
JP2001248988A (en) * 2000-03-06 2001-09-14 Mitsubishi Heavy Ind Ltd Heat exchanger
CN100340835C (en) * 2001-12-17 2007-10-03 昭和电工株式会社 Heat exchanger and process for fabricating same
EP1541953B1 (en) * 2002-07-09 2007-04-25 Zexel Valeo Climate Control Corporation Tube for heat exchanger
US20040099408A1 (en) * 2002-11-26 2004-05-27 Shabtay Yoram Leon Interconnected microchannel tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937857U (en) * 1972-07-06 1974-04-03
JPS4950857U (en) * 1972-08-07 1974-05-04
JPS5730582U (en) * 1980-07-30 1982-02-17
JPS5959688U (en) * 1982-10-12 1984-04-18 株式会社デンソー Heat exchanger
JPS5970180U (en) * 1982-11-01 1984-05-12 昭和アルミニウム株式会社 Evaporator
JP2001027484A (en) 1999-07-15 2001-01-30 Zexel Valeo Climate Control Corp Serpentine heat-exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2722628A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160238262A1 (en) * 2013-09-30 2016-08-18 Arcelik Anonim Sirketi Forced convection heat exchanger for a refrigeration appliance
US9915437B2 (en) * 2013-09-30 2018-03-13 Arcelik Anonim Sirketi Forced convection heat exchanger for a refrigeration appliance

Also Published As

Publication number Publication date
EP2722628A1 (en) 2014-04-23
JP5663413B2 (en) 2015-02-04
JP2013002753A (en) 2013-01-07
CN103608636A (en) 2014-02-26
EP2722628A4 (en) 2015-06-03
US20140116662A1 (en) 2014-05-01

Similar Documents

Publication Publication Date Title
WO2012172928A1 (en) Serpentine heat exchanger
KR101488131B1 (en) Tube for heat exchanger
JP4171760B2 (en) Flat tube and manufacturing method of flat tube
US10247482B2 (en) Bent heat exchanger and method for bending the heat exchanger
WO2017169410A1 (en) Heat exchanger
EP3355020B1 (en) Heat exchange tube for heat exchanger, heat exchanger and assembly method thereof
CN104053965A (en) Brazed microchannel heat exchanger with thermal expansion compensation
JP5335568B2 (en) Flat tube heat exchanger
US6364006B1 (en) Beaded plate for a heat exchanger and method of making same
US6438840B2 (en) Method of making continuous corrugated heat exchanger
EP3578913B1 (en) Heat exchanger and refrigeration cycle apparatus
WO2008047827A1 (en) Heat exchanger tube and method of producing the same
EP1901021A1 (en) Tube for heat exchanger
JP2018124034A (en) Tube for heat exchanger
JP2007147173A (en) Heat exchanger and its manufacturing method
EP0866301A1 (en) Heat exchanger and method of manufacturing same
JP6191414B2 (en) Laminate heat exchanger
JP4774753B2 (en) Heat exchanger and manufacturing method thereof
JP3409350B2 (en) Stacked heat exchanger
EP4151942A1 (en) Flat tube
JP2006200770A (en) Stacked heat exchanger
KR101100118B1 (en) Manifold for heat exchanger and method for manufacturing the same
JP2006132904A (en) Fin manufacturing method, fin, and heat exchanger using the same
KR101527894B1 (en) Heat Exchanger
JP2000310499A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14124345

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012800204

Country of ref document: EP