WO2012172755A1 - Sheet, mold, and manufacturing method thereof - Google Patents

Sheet, mold, and manufacturing method thereof Download PDF

Info

Publication number
WO2012172755A1
WO2012172755A1 PCT/JP2012/003719 JP2012003719W WO2012172755A1 WO 2012172755 A1 WO2012172755 A1 WO 2012172755A1 JP 2012003719 W JP2012003719 W JP 2012003719W WO 2012172755 A1 WO2012172755 A1 WO 2012172755A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine pattern
curable resin
resin composition
ultraviolet curable
mold
Prior art date
Application number
PCT/JP2012/003719
Other languages
French (fr)
Japanese (ja)
Inventor
純平 松崎
若林 信一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012172755A1 publication Critical patent/WO2012172755A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • B29C2043/141Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making single layer articles
    • B29C2043/142Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making single layer articles by moving a single mould or the article progressively, i.e. portionwise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Definitions

  • the present application relates to a method for forming a fine pattern, a mold and a sheet formed using the method.
  • nanoimprint lithography a fine pattern transfer process called nanoimprint lithography
  • a substrate having a fine pattern is used as a mold, and the fine pattern is transferred onto a resin.
  • a thermal method and a UV method are known.
  • the thermal method a mold having a fine structure formed is pressed against a resin heated to a glass transition temperature or higher to transfer the fine structure to the resin.
  • the thermal method is superior to the UV method in selecting the material to be transferred.
  • the throughput is inferior to that of the UV method, and a large pressure is required, so that the deformation of the base material becomes large. For this reason, when it is desired to transfer the fine structure to a large area by step and repeat, the alignment accuracy is deteriorated, and it becomes difficult to form a fine pattern on the large area sheet.
  • the UV method irradiates the ultraviolet curable resin composition with ultraviolet rays while pressing a mold having a microstructure formed on the ultraviolet curable resin composition, thereby transferring the fine structure onto the resin.
  • the selectivity of the material to be transferred is inferior to that of the thermal method, transfer at room temperature is possible, and it is not necessary to heat or cool the substrate or mold. For this reason, it is possible to improve the throughput as compared with the thermal method.
  • a large pressure is not required at the time of transfer, deformation of the base material and thermal shrinkage of the material are suppressed, which is superior to the thermal method in terms of transfer accuracy and alignment accuracy. For this reason, research and development for forming a fine pattern using the UV method in particular are being actively performed among nanoimprint lithography techniques.
  • Patent Document 1 discloses a method of forming a fine structure in two stages. Specifically, an ultraviolet curable resin composition for imprinting is applied on a substrate, and first, the mold is pressed a plurality of times at a predetermined interval, and ultraviolet rays are irradiated only near the portion where the mold is pressed. Then, the fine structure is transferred to an ultraviolet curable resin for imprinting. Next, the substrate is etched using the UV curable resin for imprint as a mask, and the fine structure is transferred to the substrate.
  • the UV curable resin for imprinting After removing the UV curable resin for imprinting, apply the UV curable resin composition for imprinting again on the substrate, press the mold in the area where the fine structure is not transferred, and irradiate with ultraviolet rays. Thus, the fine structure is transferred to the UV curable resin for imprinting. By etching the substrate again using the UV curable resin for imprinting as a mask, a substrate to which a continuous fine structure is transferred can be obtained.
  • Patent Document 2 and Patent Document 3 disclose a method of continuously transferring a fine structure using a roller-shaped mold or a belt-shaped mold.
  • One non-limiting exemplary embodiment of the present application provides a fine pattern forming method for forming a fine structure in a large area, and a mold and a sheet formed using the method.
  • the method for forming a fine pattern includes a step (A) of disposing an ultraviolet curable resin composition having oxygen inhibition on the surface of a support, and a mold surface on which a unit fine pattern is formed.
  • the step (D) of separating from the ultraviolet curable resin composition, and the unit fine pattern of the ultraviolet curable resin composition A step (E) of repeating the unit transfer step including the steps (B), (C) and (D) at least once in the next region including the uncured region other than the transferred cured region, and the ultraviolet curing.
  • the unit fine pattern of the master mold is substantially filled with the ultraviolet curable resin composition.
  • an ultraviolet curable resin composition is used in which an ultraviolet curable resin composition having oxygen inhibition properties is used, irradiated with ultraviolet light in an oxygen-containing atmosphere, and a master mold is pressed.
  • the resin composition is cured. For this reason, it is suppressed that a swell part hardens
  • (A) to (e) are process cross sections showing a first embodiment of a fine pattern forming method according to the present invention.
  • (F) to (i) are process cross sections showing a first embodiment of a fine pattern forming method according to the present invention.
  • (A) And (b) is the perspective view and side view of a master mold which are used in 1st Embodiment of the fine pattern formation method.
  • (A) to (c) is a diagram showing the relationship between the cured region and the next region in the first embodiment of the fine pattern forming method.
  • (A) to (c) are cross-sectional views showing a fine structure formed by the first embodiment of the fine pattern forming method.
  • FIG. 1 It is a figure which shows the structure of the nanoimprint system used in order to implement 1st Embodiment of the fine pattern formation method.
  • (A) And (b) is the perspective view and side view of a master mold used in 2nd Embodiment of the fine pattern formation method,
  • (c) is a figure which shows the two-dimensional arrangement
  • (A) is the figure which compared the relationship between the area of a mold surface, and the maximum flow length a which resin should move by a square and a hexagon
  • (b) is the maximum flow length a in a square and a hexagon. It is a figure which shows a position.
  • FIGS. 7A and 7B are an enlarged view of a loose sleeve mold in the vicinity of a press roll and an ultraviolet curable resin composition in contact with the loose sleeve mold in the step of forming a fine pattern using the loose sleeve mold shown in FIG. It is an enlarged view of a thing.
  • (A) And (b) is the top view and sectional drawing which show embodiment of the optical sheet by this invention.
  • (A) And (b) is the top view and sectional drawing which show embodiment of the optical sheet by this invention.
  • (A) And (b) is the top view and sectional drawing which show other embodiment of the optical sheet by this invention.
  • (A) And (b) is the top view and sectional drawing which show other embodiment of the optical sheet by this invention.
  • (A) And (b) is the top view and sectional drawing which show other embodiment of the optical sheet by this invention.
  • (A) to (c) are cross-sectional views showing the steps of Experimental Example 1. It is the result of Experimental example 1, Comprising: The relationship between extrusion resin volume and the amount of swelling is shown.
  • the fine pattern forming method includes a step (A) of disposing an ultraviolet curable resin composition having oxygen inhibition on the surface of a support, and a mold surface on which a unit fine pattern is formed.
  • the step (D) of separating from the ultraviolet curable resin composition, and the unit fine pattern of the ultraviolet curable resin composition A step (E) of repeating the unit transfer step including the steps (B), (C) and (D) at least once in the next region including the uncured region other than the transferred cured region, and the ultraviolet curing.
  • the unit fine pattern of the master mold is substantially filled with the ultraviolet curable resin composition.
  • the mold surface has a hexagonal shape.
  • the atmosphere containing oxygen contains 15% by volume or more of oxygen.
  • the support has a plate shape, a cylindrical shape, or a roll sleeve shape.
  • the mold which is one embodiment of the present invention is a support, and a resin cured layer which is supported on the support and has a fine pattern formed on the surface by any of the fine pattern formation methods described above, A metal layer provided on the surface of the cured resin layer.
  • the fine pattern is transferred to the sheet according to one embodiment of the present invention using the mold.
  • a sheet according to an embodiment of the present invention includes a support, a resin cured layer of an ultraviolet curable resin disposed on the surface of the support, and a plurality of unit fine patterns transferred onto the surface of the resin cured layer.
  • the upper surface of each unit fine pattern is not parallel to the surface of the support, and a step is provided between the upper surfaces of a pair of adjacent unit fine patterns.
  • the sheet according to an aspect of the present invention includes a support, a resin cured layer of an ultraviolet curable resin disposed on the surface of the support, a plurality of unit fine patterns transferred onto the surface of the resin cured layer, A metal layer provided on the surface of the cured resin layer, the upper surface of each unit fine pattern is not parallel to the surface of the support, and a step is provided between the upper surfaces of a pair of adjacent unit fine patterns. Yes.
  • the fine pattern is formed by repeating the unit fine pattern and is formed in the ultraviolet curable resin.
  • an ultraviolet curable resin composition 20 is prepared on a support 10.
  • the support 10 may be made of a metal, a semiconductor such as silicon, glass, a resin such as PET (polyethylene terephthalate) or acrylic, and a structural material having various thicknesses.
  • the ultraviolet curable resin composition 20 when the ultraviolet curable resin composition 20 is irradiated via the support 10 with ultraviolet rays for curing the ultraviolet curable resin composition 20, the support 10 transmits the ultraviolet rays. It is preferable that it is comprised with the material to do.
  • the support 10 preferably has a smooth surface 10a on which a fine pattern is formed.
  • the support 10 may be substantially flat in the region where the unit fine pattern is transferred, and the entire support 10 may have a plate shape, a cylindrical shape, or a roll sleeve shape, and is flexible. You may have.
  • the size of the surface 10a can be adjusted according to the size of the unit fine pattern, the number of repetitions of the unit fine pattern, and the use of the fine pattern to be formed.
  • the ultraviolet curable resin composition 20 various ultraviolet curable resin compositions that are cured by irradiation with ultraviolet rays can be used. It is preferable that the ultraviolet curable resin composition 20 has an oxygen inhibitory property that inhibits polymerization in the presence of oxygen.
  • various radical polymerization type ultraviolet curable resin compositions are preferably used.
  • such a radical polymerization type ultraviolet curable resin composition includes a photopolymerization initiator and a monomer or oligomer having a vinyl group or a methacryl group capable of radical polymerization.
  • the “ultraviolet curable resin composition” refers to an ultraviolet curable resin before curing.
  • the ultraviolet curable resin composition 20 is uniformly applied to the surface 10a of the support 10 by a spin coat method, a bar coat method, or the like, and has a layer shape.
  • the thickness t1 of the applied ultraviolet curable resin composition 20 depends on the use of the fine pattern, the depth of the fine pattern to be transferred, and the like. Moreover, as will be described below, if the applied ultraviolet curable resin composition 20 is too thick, it is difficult to control the inhibition of curing of the ultraviolet curable resin composition 20. For this reason, the thickness t1 is preferably 10 ⁇ m or less, and more preferably 1 ⁇ m or less. On the other hand, the lower limit value of the thickness t1 depends on the shape of the fine pattern to be formed and the pattern depth. For this reason, it can determine suitably according to the fine pattern which should be formed.
  • the master mold 30 has a mold surface 30a, and a unit fine pattern 31 is formed on the mold surface 30a.
  • the mold surface 30a has a rectangular shape. It may be a rectangle or a square.
  • the unit fine pattern 31 is preferably formed up to the end of the mold surface 30a. Thereby, when the unit fine pattern 31 of the master mold 30 is adjacently transferred to the ultraviolet curable resin composition 20 a plurality of times, the adjacent unit fine pattern 31 can be continuously formed without interruption.
  • the master mold 30 is made of quartz, glass, a silicon substrate, or the like. It is preferable that the unit fine pattern 31 is made of a material that can be easily formed.
  • the master mold 30 is comprised with the material with the high transmittance
  • a step portion 30d having a width X and a depth T is provided around the mold surface 30a.
  • the step portion 30 d holds the bulge of the ultraviolet curable resin composition 20 when the master mold 30 is pressed against the ultraviolet curable resin composition 20.
  • the ultraviolet curable resin composition 20 can be prevented from adhering to the member that supports the master mold 30. it can.
  • the unit fine pattern 31 formed on the mold surface 30a has various shapes depending on the application.
  • a pattern obtained by inverting the fine pattern 31 is transferred to the surface of the ultraviolet curable resin composition 20.
  • the unit fine pattern 31 has a structure in which rectangular concave portions are regularly arranged in two dimensions.
  • a structure in which unit structures are randomly arranged may be used.
  • the depth of the fine pattern 31 may be one level, or the fine pattern 31 having two or more different depths.
  • the fine patterns disclosed in JP2009-217292, WO2010 / 131440, WO2010 / 131439, and WO2010 / 131434 can be suitably used.
  • the size d2 of the minimum structural unit of the unit fine pattern 31 depends on the application, the ultraviolet curable resin composition 20 used, the nanoimprint apparatus, and the like.
  • the size d2 of the minimum structural unit of the unit fine pattern 31 is, for example, not less than 10 nm and not more than 1 mm, and the depth t2 is, for example, 10 nm to 1 mm.
  • the length L of one side of the unit fine pattern 31 is, for example, 1 mm to 50 mm. 2A and 2B, the master mold 30 is more schematically shown, and the size of the fine pattern 31 is easy to understand. It is greatly expressed compared to. Further, the step portion 30d is not shown.
  • the unit fine pattern 31 and the stepped portion 30d are produced by, for example, a semiconductor process or high-precision grinding and have good edge roughness.
  • the edge 31a of the unit fine pattern 31 is preferably excellent in linearity and smoothness.
  • the master mold 30 is lowered with high parallelism with respect to the ultraviolet curable resin composition 20
  • the master molding 30 and the ultraviolet curable resin composition 20 are reduced. Air is trapped in the vicinity of the edge 31a and is not pushed out, and bubble biting occurs. As a result, pattern non-transfer is likely to occur at the portion where the bubble is bitten.
  • unevenness is likely to occur in the size of the swelled portion described below.
  • the master mold 30 is arranged so that the mold surface 30 a faces the ultraviolet curable resin composition 20.
  • the master mold 30 is pressed against the ultraviolet curable resin composition 20 so that the mold surface 30a is in contact with the ultraviolet curable resin composition 20 as indicated by an arrow in FIG. 1A (b).
  • the concave portion of the unit fine pattern 31 is filled with the ultraviolet curable resin composition 20 by pressing the master mold 30 against the ultraviolet curable resin composition 20. Further, a part of the ultraviolet curable resin composition 20 excluded by pressing the master mold 30 forms a raised portion 20b, and a step portion 30d of the master mold 30 (not shown in FIG. 1A (c)). It adheres to the side wall.
  • the whole is exposed to an atmosphere containing oxygen, and the ultraviolet curable resin composition 20 is irradiated with ultraviolet rays.
  • the atmosphere contains 15% by volume or more of oxygen, and more preferably contains 20.6% by volume or more.
  • the ultraviolet curable resin composition 20 is irradiated with ultraviolet rays through a mask (not shown) in which a region corresponding to the mold surface 30a of the master mold 30 is opened. Thereby, the region where the unit fine pattern 31 of the master mold 30 is transferred is cured to form the cured region 21. Since the whole is placed in an atmosphere containing oxygen, the raised portion 20b of the ultraviolet curable resin composition 20 is exposed to an atmosphere containing oxygen and polymerization is inhibited.
  • the region where the unit fine pattern 31 is transferred is in contact with the master mold 30, it is not exposed to an atmosphere containing oxygen. For this reason, only the region where the unit fine pattern 31 is transferred selectively becomes the cured region 21. However, if the raised portion 20b becomes too large, oxygen from the surface does not reach the inside of the raised portion 20b, and the inside of the raised portion 20b may be cured. For this reason, it is preferable to adjust the thickness of the ultraviolet curable resin composition 20 formed on the support 10 and the intensity and range of the irradiated ultraviolet rays so that the raised portion 20b does not become too large.
  • radical polymerization type ultraviolet curable resins have oxygen inhibition properties. For this reason, in order to make the ultraviolet curable resin sufficiently, it is common to irradiate ultraviolet rays in an atmosphere in which oxygen does not exist. In particular, in UV nanoimprint lithography, it is necessary to transfer a fine pattern. Therefore, it may be preferable to perform nanoimprint lithography in an atmosphere in which oxygen is not present.
  • the present invention forms a region that is partially not easily affected by oxygen while exposing the whole to an oxygen-containing atmosphere, and cures only that region, thereby converting the unit fine pattern of the master mold into an ultraviolet curable type. The transfer to the resin composition is realized repeatedly.
  • the pulled-up master mold 30 is moved in the horizontal direction, and in the next region 22 including the uncured region other than the cured region 21 in the ultraviolet curable resin composition 20, the master mold 30 is lowered and the master mold 30 is pressed against the ultraviolet curable resin composition 20 as shown in FIG. 1B (f).
  • the unit fine pattern 31 ′ is formed a desired number of times, the unit fine pattern 31 is removed by removing the uncured ultraviolet curable resin composition 20 with an organic solvent such as ethanol as shown in FIG. 1B (i).
  • a cured resin layer 20 ′ having a fine pattern in which “is arranged” is obtained.
  • the fine structure 40 including the support 10 and the cured resin layer 20 ′ supported by the support 10 may be used as it is for various applications, or may be used as a mold for transferring a fine pattern.
  • a metal layer may be formed on the surface of the cured resin layer 20 ′ by sputtering, plating, or the like to improve durability.
  • a large-area optical sheet having a fine pattern directly on the surface may be produced using the fine pattern forming method according to the present embodiment.
  • the fine structure 40 may be manufactured using the flat plate-shaped or roll sleeve-shaped support 10, and the large-sized optical sheet may be manufactured using the manufactured fine structure as a flat plate mold or a roll sleeve mold.
  • the arrangement of unit fine patterns formed in the fine pattern forming method of this embodiment will be described.
  • the next region with respect to the cured region 21 22 can take three arrangements, when adjacent to each other without a gap, when overlapping, and when arranged with a gap.
  • the master mold 30 is adjacent to the curing region 21 so that the boundary defining the next region 22 and the boundary defining the curing region 21 are in contact with each other. Press against composition 20.
  • the cured region 21 is formed, since the ultraviolet curable resin composition 20 is irradiated with ultraviolet rays in an atmosphere containing oxygen, the raised portion 20b is not cured. For this reason, the next region 22 can be determined without leaving a space between the cured region 21 and the next region 22.
  • FIG. 4A schematically shows the microstructure 41 formed in this way. As shown in FIG.
  • a plurality of unit fine patterns 31' are formed adjacent to each other without a gap.
  • This arrangement is particularly suitable when the position where the master mold 30 is lowered can be accurately aligned, or when it is desired to form a fine pattern in which the boundaries of the unit fine patterns 31 'are accurately aligned. Since the plurality of unit fine patterns 31 ′ do not overlap, the upper surface 31 ′ a of each unit fine pattern 31 ′ is parallel to the surface 10 a of the support 10.
  • the master mold 30 is pressed against the ultraviolet curable resin composition 20 adjacent to the cured region 21 so that the next region 22 overlaps a part of the cured region 21.
  • the master mold 30 is pulled up from the cured region 21, a part of the uncured raised portion 20b overlaps the cured region 21 in the range of the width d1. Therefore, if the overlap d3 between the next region 22 and the cured region 21 is within the width d1, the concave portion of the mold surface 30a of the master mold 30 is filled with the ultraviolet curable resin composition 20, and therefore the next region 22
  • the unit fine pattern 31 ' is correctly formed on the entire surface.
  • the next region 22 may overlap the cured region 21 in two directions in which the unit fine patterns 31 ′ are arranged, or may overlap only in one direction.
  • FIG. 3B when the master mold 30 is pressed against the ultraviolet curable resin composition 20 so that the next region 22 overlaps a part of the cured region 21, the master mold 30 is against the support 10. However, it is preferable to arrange them diagonally so that the cured region 21 side is high and the opposite side is low.
  • FIG. 4B schematically shows the fine structure 42 formed in this way.
  • the unit fine pattern 31 ' overlaps with the adjacent unit fine pattern 31 '.
  • the unit fine pattern 31 ' is continuously formed.
  • the upper surface 31 ′ a of each unit fine pattern 31 ′ is not parallel to the surface 10 a of the support 10 by pressing the master mold 30 obliquely.
  • a step Z is provided in a direction perpendicular to the upper surface 31'a between the upper surfaces 31'a of a pair of adjacent unit fine patterns 31 '.
  • the fine structure 42 having such a level difference Z when used as a cylindrical mold, is easy to remove bubbles when transferring a fine pattern, and suppresses the occurrence of defects.
  • the fine pattern of the fine structure 42 can be accurately transferred. According to this arrangement, the unit fine pattern 31 ′ can be continuously formed without accurately aligning the position where the master mold 30 is lowered.
  • the UV curable resin composition is adjacent to the cured region 21 so that the next region 22 is positioned with a gap from the end of the cured region 21.
  • Press 20 The gap d2 between the next region 22 and the cured region 21 can be determined according to the specifications of the fine pattern to be produced.
  • the gap d2 is an arbitrary value as long as it is 0 ⁇ m or more. Can take.
  • the gap d2 is preferably 0.2 ⁇ m or less.
  • FIG. 4C schematically shows the fine structure 43 formed in this way.
  • a plurality of cured resin layers 20 ′ having unit fine patterns 31 ′ are formed on the support 10.
  • Each cured resin layer 20 ' is not connected to the adjacent cured resin layer 20' and is independent. This is because the region that becomes the gap d2 in the ultraviolet curable resin composition 20 is an uncured region, so that the ultraviolet curable resin composition 20 in the region that becomes the gap d2 is finally removed.
  • the plurality of unit fine patterns 31 ′ can be formed without accurately aligning the position where the master mold 30 is lowered.
  • the fine pattern forming method of the present embodiment can be executed using, for example, the nanoimprint system 50 shown in FIG.
  • the nanoimprint system 50 includes a glove box 51, an ultraviolet irradiation type imprint apparatus 52, an exposure time adjustment controller 53, an XY stage controller 54, an oxygen concentration meter 55, and a substrate chuck vacuum pump 56.
  • the ultraviolet irradiation type imprint apparatus 52 is disposed in the glove box 51, and the glove box 51 is provided with an introduction port for introducing nitrogen and oxygen and an exhaust port for exhausting the inside of the glove box 51.
  • the ultraviolet irradiation type imprint apparatus 52, the exposure time adjustment controller 53, the XY stage controller 54, the oxygen concentration meter 55, and the substrate chuck vacuum pump 56 are connected to the ultraviolet irradiation type imprint apparatus 52.
  • the support is introduced into the ultraviolet irradiation imprint apparatus 52. Thereafter, the inside of the glove box 51 is exhausted, and oxygen and nitrogen are introduced. The oxygen concentration in the glove box 51 is confirmed by the oxygen concentration meter 55, and the ultraviolet curable resin composition 20 is used by using the exposure time adjustment controller 53 and the XY stage controller 54 according to the fine pattern forming method of the present embodiment described above. Is cured.
  • the support body 10 is taken out from the glove box 51, and the uncured ultraviolet curable resin composition 20 is removed to remove the microstructures 41, 42 shown in FIG. 4 (a), (b) or (c). 43 can be obtained.
  • an ultraviolet curable resin composition having an oxygen-inhibiting property, irradiated with ultraviolet rays in an atmosphere containing oxygen, and pressed against a master mold.
  • the resin composition is cured.
  • the second embodiment of the fine pattern forming method according to the present invention will be described below.
  • the fine pattern forming method of the present embodiment is the same as that of the first embodiment except that the shape of the mold surface of the master mold is different. For this reason, a different part from 1st Embodiment is mainly demonstrated.
  • the master mold 30 has a mold surface 30a, and a unit fine pattern 31 is formed on the mold surface 30a.
  • the mold surface 30a of the master mold 30 used in the present embodiment has a hexagonal shape, for example, a regular hexagonal shape.
  • the unit fine pattern 31 is preferably formed up to the end of the mold surface 30a. In this case, the unit fine pattern 31 also has a hexagonal or regular hexagonal shape.
  • the unit fine pattern 31 of the master mold 30 is adjacently transferred to the ultraviolet curable resin composition 20 a plurality of times, the adjacent unit fine pattern 31 is continuous without interruption. Can be formed.
  • the size d2 of the minimum constituent unit of the unit fine pattern 31 depends on the application, the ultraviolet curable resin composition 20 used, the nanoimprint apparatus, and the like.
  • the size d2 of the minimum structural unit of the unit fine pattern 31 is, for example, not less than 10 nm and not more than 1 mm, and the depth t2 is, for example, 10 nm to 1 mm.
  • the length L of one side (one side of the hexagon) of the unit fine pattern 31 is, for example, 1 mm to 50 mm.
  • the unit fine pattern 31 has a hexagonal shape and the unit fine pattern 31 is transferred without a gap in the two-dimensional space
  • a plurality of unit fine patterns 31 ′ are arranged so that the centers of the adjacent unit fine patterns 31 ′ are located on the direction A1.
  • one side of the adjacent unit fine pattern 31 is located on the direction A2.
  • the unit fine pattern 31 is arranged in the x direction with the interval between two parallel sides of the unit fine pattern 31 'facing each other, but adjacent to the y direction. This is because the unit fine pattern 31 ′ to be shifted is arranged by being shifted by 1 ⁇ 2 period in the x direction.
  • the mold 30 shown in FIGS. 6A and 6B When the unit fine pattern 31 is transferred without a gap in the two-dimensional space as shown in FIG. 6C, first, as described in the first embodiment, the mold 30 shown in FIGS. 6A and 6B. Is pressed against the ultraviolet curable resin composition 20, and the unit fine pattern 31 ′ obtained by inverting the unit fine pattern 31 is directed to the ultraviolet curable resin composition 20 in one direction (the x direction in FIG. 6C or the A1 direction). Are formed sequentially. Thereby, the transfer of the unit fine pattern in the first row is completed.
  • the row direction is such that the first unit fine pattern 31 ′ of the second row is adjacent to the first and second unit fine patterns 31 ′ of the first row.
  • the next region 22 when the master mold 30 is pressed against the ultraviolet curable resin composition 20 adjacent to the already formed cured region 21, in the direction A1 (FIG. 6C), the next region 22 may be arranged in three cases, in the case of overlapping, or in the case of being arranged with a gap.
  • the master mold 30 when the master mold 30 is pressed against the ultraviolet curable resin composition 20 adjacent to the already formed cured region 21 in the direction perpendicular to the direction A1, that is, in the second row, the third row, etc., 2- It is preferable that the hardened regions 21 in the immediately preceding rows such as the first row and the 3-1 row are adjacent to each other without a gap or arranged with a gap. Since the unit fine pattern 31 has a hexagonal shape, the unit fine pattern 31 ′ in one row is adjacent to the two unit fine patterns 31 ′ in the previous row. This is because a step in the previous row is located in the middle of “and it may be difficult to transfer the shape of the correct unit fine pattern 31 ′.
  • the mold surface 30a of the master mold 30 has a hexagonal shape. Therefore, in addition to the various effects of 1st Embodiment, the bubble biting at the time of transferring the unit fine pattern 31 can be suppressed.
  • the mold surface 30a of the master mold 30 is preferably as large as possible. However, when the mold surface 30a is too large, the occurrence probability of bubble biting increases.
  • the mold surface is formed of a hexagon.
  • FIG. 7A is a diagram in which the relationship between the area of the mold surface and the maximum flow length a to which the resin should move is compared between a square and a hexagon.
  • FIG. 7B shows the position of the maximum flow length a in a square and a hexagon. In the square and hexagon, the diagonal distance is the longest and the maximum flow length a is obtained.
  • the maximum flow length a increases as the mold surface area increases, but the hexagonal maximum flow length a is 12.3% shorter than the square.
  • production of the defect by bubble biting can be suppressed compared with the past, and the fine pattern of a fine structure can be transcribe
  • the fine pattern forming method of the present embodiment can be executed using, for example, the nanoimprint system 50 shown in FIG. 6 as in the first embodiment.
  • a flexible roll sleeve 110 is prepared as a support, and an ultraviolet curable resin composition 20 is applied to the surface.
  • an ultraviolet curable resin composition 20 is applied to the surface.
  • a stainless steel roll whose surface is flattened by welding and polishing can be used.
  • the master mold 30 is repeatedly pressed against the ultraviolet curable resin composition 20 applied to the roll sleeve 110 as described in the first embodiment, and ultraviolet rays are applied.
  • unit fine patterns 31 ′ are sequentially formed.
  • the cured region and the next region may be arranged in any relationship shown in FIGS. 4 (a), (b), and (c).
  • the uncured ultraviolet curable resin composition 20 is made of ethanol or the like. By washing away with an organic solvent, a fine structure 141 having a fine pattern formed on the surface of the roll sleeve 110 is obtained.
  • a roll sleeve mold 142 shown in FIG. 9A is obtained by forming a metal thin film on the surface of the fine pattern of the fine structure 141 by vapor deposition or plating.
  • a roll sleeve mold may be manufactured by transferring the fine structure 141 to silicone.
  • the roll sleeve mold 142 includes a microstructure 141 including a roll sleeve 110 and a cured resin layer 20 ′ supported by the roll sleeve 110, and a plurality of unit fine patterns 31 ′ are formed on the surface of the cured resin layer 20 ′.
  • the arrangement of the plurality of unit fine patterns 31 ′ may be any of those shown in FIGS. 4A, 4B, and 4C, but the fine structure 141 is shown in FIG.
  • the microstructure 42 shown is preferable.
  • FIG. 9B shows how the pattern is transferred to the ultraviolet curable resin composition 220 using the roll sleeve mold 142.
  • the ultraviolet curable resin composition 220 is applied on the support 210.
  • the roll sleeve mold 142 is supported by the auxiliary roll 201 and the press roll 202, and is held by the press roll 202 so that the surface of the roll sleeve mold 142 is pressed against the ultraviolet curable resin composition 220 on the support 210.
  • the support 210 is moved in synchronization with the rotation of the roll sleeve mold 142, and, for example, ultraviolet rays from the ultraviolet lamp 203 are irradiated only from the support 210 side to the vicinity of the press roll 202.
  • the fine pattern of the roll sleeve mold 142 is sequentially transferred to the ultraviolet curable resin composition 220 by the pressing of the press roll 202, and ultraviolet rays are irradiated in the transferred state.
  • the support 210 moves, the cured resin layer 220 ′ to which the fine pattern has been transferred is sequentially generated.
  • FIG. 10A is an enlarged view showing the vicinity of the press roll 202. Moreover, FIG.10 (b) has expanded and shown the part which the roll sleeve mold 142 and the ultraviolet curable resin composition 220 contact
  • the surface 31′a of each unit fine pattern 31 ′ is formed on the support 10 as shown in FIG. It is not parallel but inclined with respect to the surface 10a. Further, a step z is formed between the surface 31'a of the unit fine pattern 31 'and the surface 31'a of the adjacent unit fine pattern 31'. For this reason, as shown in FIG. 10B, when the roll sleeve mold 142 is in contact with the ultraviolet curable resin composition 220, in the region where each unit fine pattern 31 ′ is transferred, the traveling direction of the support 210 (x direction) ) Has changed from Ax to Ay.
  • the extrusion force Px acts on the ultraviolet curable resin composition 220.
  • the presence of this Px improves the fluidity of the ultraviolet curable resin composition 220. For example, even if the resin composition is trapped at a specific point on the surface of the roll sleeve mold due to various factors such as dust, formation of a fine structure, and unevenness of the release agent, bubbles are generated and the resin composition is Even if an unfilled point occurs, the resin can be filled by an extrusion force. Therefore, transfer with few defects can be performed, and a cured resin layer 220 'to which a fine pattern with few defects is transferred can be obtained.
  • FIG. 11A and 11B are a plan view and a cross-sectional view of the optical sheet 242.
  • FIG. The optical sheet 242 includes a support 210 and a cured resin layer 220 ′ disposed on the support 210.
  • a plurality of unit fine patterns 31 ′ are formed on the surface of the cured resin layer 220 ′.
  • the unit fine pattern 31 ' has a square shape.
  • the plurality of unit fine patterns 31 ′ are two-dimensionally arranged at intervals A, for example.
  • Such an optical sheet 242 can be manufactured using, for example, the fine pattern forming method described in the first embodiment and the roll sleeve mold described in the second embodiment.
  • the size of the unit fine pattern 31 ′ depends on the size at which the master mold can be manufactured at a low cost, the transfer rate at which the unit fine pattern of the master mold can be correctly transferred by one transfer, the size of the optical sheet to be formed, and the like. Further, the unit irradiation pattern 31 'can be enlarged as the ultraviolet irradiation type imprint apparatus can move the master mold with high alignment accuracy and can be pressed down to the ultraviolet curable resin composition with a large pressure.
  • the upper surface 31 ′ a of each unit fine pattern 31 ′ is not parallel to the surface 220 a of the support 210.
  • a step z is formed between the upper surfaces 31'a of the adjacent unit fine patterns 31 '.
  • Such a structure can be manufactured using, for example, the roll sleeve mold described in the second embodiment. The level difference z is determined according to the specifications of the optical sheet 242.
  • FIGS. 12A and 12B are a plan view and a cross-sectional view of another optical sheet 242.
  • Other structures are the same as those of the optical sheet 242 shown in FIGS.
  • FIGS. 13A and 13B are a plan view and a cross-sectional view of an optical sheet 241 having another form.
  • the optical sheet 242 includes a support 210 and a cured resin layer 220 ′ disposed on the support 210.
  • each unit fine pattern 31a is arranged without providing a gap between the adjacent unit fine patterns 31'. Therefore, the upper surface 31 ′ a of each unit fine pattern 31 ′ is parallel to the surface 220 a of the support 210.
  • the unit fine pattern 31 ' has a square shape.
  • the optical sheet 241 having such a structure can be manufactured by using a mold having a fine structure in which unit fine patterns 31 ′ are arranged as shown in FIG.
  • FIGS. 14A and 14B are a plan view and a cross-sectional view of an optical sheet 241 having still another form. Except that the unit fine pattern 31 ′ has a regular hexagonal shape, it is the same as the optical sheet 242 shown in FIGS. 13A and 13B.
  • the ultraviolet curable resin composition 320 was applied on the support 310 by spin coating.
  • the thickness t of the ultraviolet curable resin composition 320 was changed by changing the spin coating conditions.
  • PAK01-200 manufactured by Toyo Gosei Co., Ltd. having oxygen inhibition properties was used as the ultraviolet curable resin composition 320.
  • a SiO 2 layer having a thickness of 0.6 ⁇ m was deposited on a plate glass having a thickness of 0.5 mm, and processed into a rectangular shape having a side of 8 mm.
  • the edge end face was processed by dicing with a resin blade so that the chip of the edge was 1 ⁇ m or less.
  • the master mold 330 was pressed against the ultraviolet curable resin composition 320 and cured by irradiation with ultraviolet rays.
  • the imprint apparatus Nanoimprint apparatus EUN-4200 manufactured by Engineering System Co., Ltd. was used.
  • the UV-LED light source (wavelength 375 nm / ultraviolet light intensity 2.57 mW / cm 2 ) attached to the nanoimprint apparatus was used as the light source, and curing was performed by irradiating the ultraviolet curable resin composition 320 with ultraviolet light for 60 seconds. .
  • the transfer pressure was 2.26 N / mm 2 .
  • EGC1720 manufactured by 3M was used as the mold release agent. Curing was performed in an atmosphere containing oxygen at a ratio of 0.5, 10, 15, 20.6% by volume.
  • the uncured ultraviolet curable resin composition 320 is removed with ethanol, and the rising amount D and the partial thickness t ′ where the master mold 330 is in contact with each other. was measured using a laser microscope.
  • the extruded resin volume was determined by A ⁇ (t ⁇ t ′), where A is the area of the master mold 330.
  • FIG. 16 shows the relationship between the swell amount D and the extruded resin volume.
  • the swell amount D can be controlled by adjusting the oxygen concentration in the atmosphere and the thickness t of the ultraviolet curable resin composition 320.
  • a PET film (Toyobo Cosmo Shine double-sided easy adhesion treatment) having a thickness of 250 ⁇ m was used as the support 310.
  • the UV curable resin composition 320 was applied to the easily adhesive surface of the PET film by spin coating.
  • the thickness of the ultraviolet curable resin composition 320 was 300 nm.
  • the support 310 has a plate shape, but a sleeve roll may be used as the support as long as a desired structure is obtained.
  • PAK01-200 manufactured by Toyo Gosei Co., Ltd. having oxygen inhibition properties was used.
  • the master mold 330 is a three-dimensional random structure in which a SiO 2 layer having a thickness of 0.6 ⁇ m is deposited on a plate glass having a thickness of 0.5 mm, and multi-stage fine processing is performed on the SiO 2 layer by lithography and etching. Formed.
  • the master mold had a square shape of about 8 mm square, and the edge end face was processed without chipping by dicing with a resin blade.
  • a nanoimprint apparatus EUN-4200 manufactured by Engineering System Co., Ltd. was used, and a stage capable of step-and-repeat was attached.
  • the master mold was fixed to the quartz top plate using a double-sided tape that transmits ultraviolet rays, and the quartz top plate was fixed to the nanoimprint apparatus.
  • the UV-LED light source (wavelength 375 nm / ultraviolet light intensity 2.57 mW / cm 2 ) attached to the nanoimprint apparatus was used as the light source, and curing was performed by irradiating the ultraviolet curable resin composition 320 with ultraviolet light for 60 seconds. .
  • the transfer pressure was 2.26 N / mm 2 .
  • EGC1720 manufactured by 3M was used as the mold release agent. The transfer was performed in an air atmosphere (oxygen concentration 20.6%).
  • the unit fine pattern of the master mold 330 was transferred once under these conditions, the unit fine pattern was transferred a plurality of times so that the next region overlaps a part of the cured region as described in the first embodiment.
  • the overlapping amount was about 20 ⁇ m.
  • the uncured ultraviolet curable resin composition 320 was removed with ethanol and allowed to dry naturally.
  • the transfer rate was determined by the following method. First, areas other than the minimum processing dimension were extracted near the boundary between two adjacent unit fine patterns of the created fine structure by image processing, and the areas were integrated. Next, the integrated area was similarly determined in the vicinity of the center of the unit fine pattern of the master mold, and the ratio of the integrated area near the boundary to the integrated area of the master mold was taken as the transfer rate. For comparison, a sample in which a unit fine pattern was transferred by irradiating ultraviolet rays in a nitrogen atmosphere containing no oxygen and producing a unit fine pattern was prepared, and the transfer rate was determined by the same method.
  • FIG. 17 shows a laser microscope image of the center part of the unit fine pattern of the master mold and a laser microscope image near the boundary between two adjacent unit fine patterns in the conventional example and the example. Moreover, the image which extracted the defect is shown under each image. A portion shown in black in the image from which the defect is extracted indicates a region other than the minimum processing size. It indicates that the more black portions are on the mold, the more transfer defects are generated.
  • FIG. 18 shows the transfer rate of each sample. The measurement was evaluated at 5 points for each sample.
  • the conventional sample has a low transfer rate and a large variation in the transfer rate.
  • the transfer rate of the sample of the example is high and the transfer rate variation is small. This indicates that the transfer failure and the variation due to the hardening of the raised portion are greatly suppressed near the boundary with the adjacent unit fine pattern by performing the transfer in an atmosphere containing oxygen.
  • FIG. 19A shows a laser microscope image.
  • FIG. 19B shows a cross-sectional profile along the straight line a in FIG.
  • a PET film (Toyobo Cosmo Shine double-sided easy adhesion treatment) having a thickness of 250 ⁇ m was used.
  • the ultraviolet curable resin composition was applied to the easily adhesive surface of the support 10 by spin coating. In this experiment, a sleeve was not used, but a sleeve roll may be used as a support if a desired structure is obtained.
  • the UV curable resin composition used was NIAC23 manufactured by Daicel Chemical Industries, which has oxygen-inhibiting properties and can be prepared to have a low viscosity suitable for thin film formation.
  • the thickness of the ultraviolet curable resin composition was about 300 nm by adjusting the rotation speed of the spin coat.
  • the master mold 30 used has a three-dimensional random structure by depositing 0.6 ⁇ m of SiO 2 on a 0.5 mm thick white glass, and then subjecting the formed SiO 2 film to multistage fine processing by lithography and etching.
  • a unit fine pattern 31 was formed.
  • the unit fine pattern 31 ′ formed on the support 10 may be a three-dimensional random structure, and therefore, the unit fine pattern 31 to be transferred and the unit fine pattern 31 ′ to be formed are not considered. It was. However, it is preferable to form a pattern obtained by inverting the unit fine pattern 31 ′ to be formed on the support 10 as the unit fine pattern 31 in the master mold 30 as necessary.
  • a resist having a hexagonal pattern is formed on the unit fine pattern 31 by photolithography, the SiO 2 film is etched by ECR using the resist as a mask, and a mold surface 30a having a hexagonal step shape is formed. Formed.
  • This etching may be performed by a wet process.
  • it is preferable that the end of the unit fine pattern 31 is not located at the position where the step shape is to be formed.
  • the etching proceeds from the surface of the unit fine pattern 31, so that the fine structure is reflected at the edge and the roughness of the edge increases.
  • the unit fine pattern 31 is transferred, the amount of swelling of the resin composition varies depending on the position of the edge, and a region where the influence of oxygen inhibition is weak is generated. Can occur.
  • a nanoimprint apparatus EUN-4200 manufactured by Engineering System Co., Ltd. was used and a stage capable of step-and-repeat was attached.
  • the master mold was fixed to the quartz top plate using a double-sided tape that transmits ultraviolet rays, and the quartz top plate was fixed to the nanoimprint apparatus.
  • the UV-LED light source (wavelength 375 nm / ultraviolet intensity 2.57 mW / cm 2 ) attached to the nanoimprint apparatus was used as the light source, and curing was performed by irradiating the ultraviolet curable resin composition 20 with ultraviolet rays for 60 seconds. .
  • the transfer pressure was 2.26 N / mm 2 .
  • EGC1720 manufactured by 3M was used as the mold release agent.
  • the transfer was performed in an air atmosphere (oxygen concentration 20.6%). Under this condition, the unit fine pattern 31 was transferred once, and then the unit fine pattern 31 was repeatedly transferred by step & repeat. The overlapping amount of the transfer after the second time was about 20 ⁇ m. After imprinting, the uncured resin was washed with ethanol and dried by air blow.
  • the entire region of the support 10 was irradiated with ultraviolet rays in a nitrogen atmosphere and afterbaked at 60 ° C. to completely cure the resin.
  • a sheet-like mold was obtained in which the unit fine patterns 31 ′ were two-dimensionally arranged and the transferred resin cured layer was provided on the support.
  • the produced sheet-like mold was attached to the outer surface of the cylindrical dedicated container.
  • a cylindrical container having a larger diameter than the cylindrical container on which the sheet-shaped mold is attached is prepared, and the cylindrical container on which the sheet-shaped mold is attached is disposed inside the large-diameter cylindrical container.
  • a silicone resin (SIM260 manufactured by Shin-Etsu Chemical Co., Ltd.) was filled between the containers and cured.
  • a roll sleeve mold having a silicone resin layer on which the unit fine pattern 31 ′ was transferred was obtained.
  • the surface of the silicone resin layer was plated with nickel to obtain a roll sleeve mold in which the unit fine patterns 31 'were two-dimensionally arranged on the surface.
  • a large area sheet having a fine structure was produced by a roll-to-roll method.
  • a sheet mold that is directly coated with a high-hardness thin film coating for example, diamond-like carbon coating
  • a structure is produced by step-and-repeat inside the sleeve.
  • nickel plating may be directly applied thereto.
  • the method for forming a fine pattern disclosed in the present application is suitably used for forming a fine pattern of a large area, an optical sheet used for preventing reflection, improving emission efficiency, improving light distribution characteristics, and other various uses. It is suitably used for forming a fine pattern used in the above, or for producing a mold for forming these.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

The micropattern formation method disclosed in the present patent application involves: a step (A) in which an ultraviolet-curable resin composition with an oxygen inhibiting property is provided on the top surface of a support; a step (B) in which a master mold having a unit micropattern formed on the molding surface is pressed against the ultraviolet-curable resin composition so as to bring the molding surface into contact with the ultraviolet-curable resin composition; a step (C) in which at least the area of the ultraviolet-curable resin composition where the unit micropattern has been transferred is cured by irradiating the ultraviolet-curable resin composition with ultraviolet rays with the master mold being pressed in an oxygen-containing atmosphere; a step (D) in which the master mold is separated from the ultraviolet-curable resin composition; a step (E) in which a unit transfer step, which includes the steps (B), (C), and (D), is repeated for more than one time in each subsequent area which includes an uncured area other than the area where the unit micropattern has already been transferred to the ultraviolet-curable resin composition; and a step (F) in which uncured sections of the ultraviolet-curable resin composition are removed. In the step (E), the subsequent area is overlapped partially with the cured area. In the step (B) of the step (E), the unit micropattern of the master mold is substantially filled with the ultraviolet-curable resin composition.

Description

シートおよびモールドならびにその製造方法Sheet and mold and method for producing the same
 本願は、微細パターンの形成方法およびそれを用いて形成されたモールドならびにシートに関する。 The present application relates to a method for forming a fine pattern, a mold and a sheet formed using the method.
 近年、ナノインプリントリソグラフィと呼ばれる微細パターンの転写プロセスが盛んに研究されている。ナノインプリントリソグラフィは、微細パターンを備えた基板をモールドとして用い、樹脂上に微細パターンを転写する。ナノインプリントリソグラフィには、熱方式およびUV方式が知られている。 Recently, a fine pattern transfer process called nanoimprint lithography has been actively studied. In nanoimprint lithography, a substrate having a fine pattern is used as a mold, and the fine pattern is transferred onto a resin. For nanoimprint lithography, a thermal method and a UV method are known.
 熱方式は、微細構造を形成したモールドをガラス転移温度以上に加熱した樹脂に押し当て、樹脂に微細構造を転写する。熱方式はUV方式に比べて被転写材料の選択性に優れる。一方、基板・型の加熱・冷却が必要であるため、UV方式に比べてスループットに劣る他、大きな加圧力を必要とするため、基材の変形が大きくなる。このため、微細構造をステップ&リピートで大面積に転写したい場合、アライメント精度が悪くなり、大面積のシートに微細パターンを形成するのが困難となる。 In the thermal method, a mold having a fine structure formed is pressed against a resin heated to a glass transition temperature or higher to transfer the fine structure to the resin. The thermal method is superior to the UV method in selecting the material to be transferred. On the other hand, since it is necessary to heat and cool the substrate and mold, the throughput is inferior to that of the UV method, and a large pressure is required, so that the deformation of the base material becomes large. For this reason, when it is desired to transfer the fine structure to a large area by step and repeat, the alignment accuracy is deteriorated, and it becomes difficult to form a fine pattern on the large area sheet.
 UV方式は、紫外線硬化型樹脂組成物に微細構造を形成したモールドを押し当てながら、紫外線硬化型樹脂組成物に紫外線を照射し、樹脂上に微細構造を転写する。熱方式に比べて被転写材料の選択性は劣るものの、室温での転写が可能であり、基材やモールドを加熱したり冷却したりする必要がない。このため、熱方式に比べて、スループットを向上させることが可能となる。また、転写時には大きな圧力を必要としないため、基材の変形および材料の熱収縮が抑制され、転写精度およびアライメント精度の点で、熱方式に比べて優れる。このため、ナノインプリントリソグラフィ技術のなかでも、特にUV方式を用いて微細パターンを形成する研究開発が盛んに行われている。 The UV method irradiates the ultraviolet curable resin composition with ultraviolet rays while pressing a mold having a microstructure formed on the ultraviolet curable resin composition, thereby transferring the fine structure onto the resin. Although the selectivity of the material to be transferred is inferior to that of the thermal method, transfer at room temperature is possible, and it is not necessary to heat or cool the substrate or mold. For this reason, it is possible to improve the throughput as compared with the thermal method. Further, since a large pressure is not required at the time of transfer, deformation of the base material and thermal shrinkage of the material are suppressed, which is superior to the thermal method in terms of transfer accuracy and alignment accuracy. For this reason, research and development for forming a fine pattern using the UV method in particular are being actively performed among nanoimprint lithography techniques.
 しかし、UV方式のナノインプリントリソグラフィ技術において、基材に塗布された紫外線硬化型樹脂組成物にモールドを押し当てると、紫外線硬化型樹脂組成物の一部がモールドの横にはみ出し、盛り上がり部を形成する。このため、この状態で、紫外線硬化型樹脂組成物に紫外線を照射すると、はみ出した盛り上がり部も硬化してしまい、モールドによって転写された微細構造のパターンの横に盛り上がり部が生じる。この状態でモールドをシフトさせて押し当(ステップアンドリピート)て、微細構造を連続して形成しようとした場合、盛り上がり部において、微細構造のパターンを正確に形成することが困難となる。 However, in the UV nanoimprint lithography technology, when the mold is pressed against the ultraviolet curable resin composition applied to the substrate, a part of the ultraviolet curable resin composition protrudes to the side of the mold to form a raised portion. . For this reason, when the ultraviolet curable resin composition is irradiated with ultraviolet rays in this state, the protruding bulge portion is also cured, and a bulge portion is formed beside the fine structure pattern transferred by the mold. In this state, when the mold is shifted and pressed (step-and-repeat) to continuously form the fine structure, it is difficult to accurately form the fine structure pattern in the raised portion.
 このような課題を解決するために、特許文献1は、2段階で微細構造を形成する方法を開示している。具体的には、基材上にインプリント用紫外線硬化型樹脂組成物を塗布し、まず、所定の間隔を隔ててモールドを複数回押し当て、モールドが押し当てられた部分近傍にのみ紫外線を照射し、微細構造をインプリント用紫外線硬化型樹脂に転写する。次に、インプリント用紫外線硬化型樹脂をマスクとして基材をエッチングし、微細構造を基材に転写する。インプリント用紫外線硬化型樹脂を除去後、再度、基材上にインプリント用紫外線硬化型樹脂組成物を塗布し、微細構造が転写されていない領域において、モールドを押し当て、紫外線を照射することにより、微細構造をインプリント用紫外線硬化型樹脂に転写する。インプリント用紫外線硬化型樹脂をマスクとして基材を再度エッチングすることによって、連続した微細構造が転写された基材を得ることができる。 In order to solve such a problem, Patent Document 1 discloses a method of forming a fine structure in two stages. Specifically, an ultraviolet curable resin composition for imprinting is applied on a substrate, and first, the mold is pressed a plurality of times at a predetermined interval, and ultraviolet rays are irradiated only near the portion where the mold is pressed. Then, the fine structure is transferred to an ultraviolet curable resin for imprinting. Next, the substrate is etched using the UV curable resin for imprint as a mask, and the fine structure is transferred to the substrate. After removing the UV curable resin for imprinting, apply the UV curable resin composition for imprinting again on the substrate, press the mold in the area where the fine structure is not transferred, and irradiate with ultraviolet rays. Thus, the fine structure is transferred to the UV curable resin for imprinting. By etching the substrate again using the UV curable resin for imprinting as a mask, a substrate to which a continuous fine structure is transferred can be obtained.
 また、上述の方法で、大面積の微細構造を形成する場合、モールドを何回も押し当て、微細構造を転写させる必要がある。このような課題を解決するため、特許文献2および特許文献3は、ローラ状のモールドまたはベルト状のモールドを用いて連続的に微細構造を転写する方法を開示している。 Also, when forming a fine structure with a large area by the above method, it is necessary to press the mold many times to transfer the fine structure. In order to solve such problems, Patent Document 2 and Patent Document 3 disclose a method of continuously transferring a fine structure using a roller-shaped mold or a belt-shaped mold.
特開2008-247022号公報Japanese Patent Laid-Open No. 2008-247022 特開2010-201641号公報JP 2010-16441 A 特開2009-158731号公報JP 2009-158731 A
 しかし従来技術によれば、製造工程が複雑であったり、大型の真空装置が必要であったりし、また、大面積にわたって均一な微細構造を形成するのが困難であったりするなどの課題がある。 However, according to the prior art, there are problems such that the manufacturing process is complicated, a large vacuum device is required, and it is difficult to form a uniform fine structure over a large area. .
 本願の、限定的ではない例示的なある実施形態は、大きな面積に微細構造を形成するための微細パターン形成方法およびそれを用いて形成されたモールドならびにシートを提供する。 One non-limiting exemplary embodiment of the present application provides a fine pattern forming method for forming a fine structure in a large area, and a mold and a sheet formed using the method.
 本発明の一態様に係る微細パターンの形成方法は、酸素阻害性を有する紫外線硬化型樹脂組成物を支持体の表面に配置する工程(A)と、単位微細パターンが形成されたモールド面を有するマスターモールドを、前記モールド面と前記紫外線硬化型樹脂組成物とが接触するように前記紫外線硬化型樹脂組成物に押し付ける工程(B)と、前記マスターモールドが押し付けられた状態で、酸素を含む雰囲気下において、前記紫外線硬化型樹脂組成物に紫外線を照射することにより、前記紫外線硬化型樹脂組成物のうち少なくとも前記単位微細パターンが転写された領域を硬化させる工程(C)と、前記マスターモールドを前記紫外線硬化型樹脂組成物から分離させる工程(D)と、前記紫外線硬化型樹脂組成物のうち、前記単位微細パターンが転写された前記硬化領域以外の未硬化領域を含む次の領域において、前記工程(B)、(C)および(D)を含む単位転写工程を1回以上繰り返す工程(E)と、前記紫外線硬化型樹脂組成物のうち、未硬化の部分を除去する工程(F)とを包含し、前記工程(E)において、前記次の領域は、前記硬化領域の一部と重なっており、前記工程(E)における工程(B)において、前記マスターモールドの前記単位微細パターンには前記紫外線硬化型樹脂組成物が略充填されている。 The method for forming a fine pattern according to one aspect of the present invention includes a step (A) of disposing an ultraviolet curable resin composition having oxygen inhibition on the surface of a support, and a mold surface on which a unit fine pattern is formed. A step (B) of pressing the master mold against the ultraviolet curable resin composition so that the mold surface and the ultraviolet curable resin composition are in contact; and an atmosphere containing oxygen in a state where the master mold is pressed Under the step (C) of curing at least the region where the unit fine pattern is transferred in the ultraviolet curable resin composition by irradiating the ultraviolet curable resin composition with ultraviolet rays, and the master mold The step (D) of separating from the ultraviolet curable resin composition, and the unit fine pattern of the ultraviolet curable resin composition A step (E) of repeating the unit transfer step including the steps (B), (C) and (D) at least once in the next region including the uncured region other than the transferred cured region, and the ultraviolet curing. Step (F) of removing an uncured part of the mold resin composition, and in the step (E), the next region overlaps a part of the cured region, In the step (B) in E), the unit fine pattern of the master mold is substantially filled with the ultraviolet curable resin composition.
 本発明の一態様に係る微細パターンの形成方法によれば、酸素阻害性を有する紫外線硬化型樹脂組成物を用い、酸素を含む雰囲気下で紫外線を照射し、マスターモールドが押し付けられた紫外線硬化型樹脂組成物を硬化させる。このため盛り上がり部が硬化するのが抑制され、単位微細パターンを繰り返し転写させた大面積の微細パターンを製造することができる。 According to the method for forming a fine pattern according to one aspect of the present invention, an ultraviolet curable resin composition is used in which an ultraviolet curable resin composition having oxygen inhibition properties is used, irradiated with ultraviolet light in an oxygen-containing atmosphere, and a master mold is pressed. The resin composition is cured. For this reason, it is suppressed that a swell part hardens | cures and the large area fine pattern which transferred the unit fine pattern repeatedly can be manufactured.
(a)から(e)は、本発明による微細パターン形成方法の第1の実施形態を示す工程断面である。(A) to (e) are process cross sections showing a first embodiment of a fine pattern forming method according to the present invention. (f)から(i)は、本発明による微細パターン形成方法の第1実施形態を示す工程断面である。(F) to (i) are process cross sections showing a first embodiment of a fine pattern forming method according to the present invention. (a)および(b)は、微細パターン形成方法の第1の実施形態で用いるマスターモールドの斜視図および側面図である。(A) And (b) is the perspective view and side view of a master mold which are used in 1st Embodiment of the fine pattern formation method. (a)から(c)は、微細パターン形成方法の第1の実施形態における硬化領域と次の領域との関係を示す図である。(A) to (c) is a diagram showing the relationship between the cured region and the next region in the first embodiment of the fine pattern forming method. (a)から(c)は、微細パターン形成方法の第1の実施形態によって形成される微細構造体を示す断面図である。(A) to (c) are cross-sectional views showing a fine structure formed by the first embodiment of the fine pattern forming method. 微細パターン形成方法の第1の実施形態を実行するために用いるナノインプリントシステムの構成を示す図である。It is a figure which shows the structure of the nanoimprint system used in order to implement 1st Embodiment of the fine pattern formation method. (a)および(b)は、微細パターン形成方法の第2の実施形態で用いるマスターモールドの斜視図および側面図であり、(c)は六角形の単位微細パターンの二次元的配置を示す図である。(A) And (b) is the perspective view and side view of a master mold used in 2nd Embodiment of the fine pattern formation method, (c) is a figure which shows the two-dimensional arrangement | positioning of a hexagonal unit fine pattern It is. (a)は、モールド面の面積と、樹脂が移動すべき最大流動長aとの関係を四角形と六角形で比較した図であり、(b)は、四角形と六角形における最大流動長aの位置を示す図である。(A) is the figure which compared the relationship between the area of a mold surface, and the maximum flow length a which resin should move by a square and a hexagon, (b) is the maximum flow length a in a square and a hexagon. It is a figure which shows a position. (a)から(i)は、本発明によるモールドの実施形態であって、ローススリーブモールドの製造工程を示す斜視図である。(A) to (i) are perspective views showing an embodiment of a mold according to the present invention and showing a manufacturing process of a low sleeve mold. (a)は、ローススリーブモールドの実施形態を示す斜視図であり、(b)は、(a)に示すローススリーブモールドを用いて微細パターンを形成する方法を説明する図である。(A) is a perspective view which shows embodiment of a roast sleeve mold, (b) is a figure explaining the method of forming a fine pattern using the loin sleeve mold shown to (a). (a)および(b)は、図7(a)に示すローススリーブモールドを用いて微細パターンを形成する工程におけるプレスロール近傍のローススリーブモールドの拡大図およびローススリーブモールドと接する紫外線硬化型樹脂組成物の拡大図である。FIGS. 7A and 7B are an enlarged view of a loose sleeve mold in the vicinity of a press roll and an ultraviolet curable resin composition in contact with the loose sleeve mold in the step of forming a fine pattern using the loose sleeve mold shown in FIG. It is an enlarged view of a thing. (a)および(b)は、本発明による光学シートの実施形態を示す平面図および断面図である。(A) And (b) is the top view and sectional drawing which show embodiment of the optical sheet by this invention. (a)および(b)は、本発明による光学シートの実施形態を示す平面図および断面図である。(A) And (b) is the top view and sectional drawing which show embodiment of the optical sheet by this invention. (a)および(b)は、本発明による光学シートの他の実施形態を示す平面図および断面図である。(A) And (b) is the top view and sectional drawing which show other embodiment of the optical sheet by this invention. (a)および(b)は、本発明による光学シートの他の実施形態を示す平面図および断面図である。(A) And (b) is the top view and sectional drawing which show other embodiment of the optical sheet by this invention. (a)から(c)は、実験例1の工程を示す断面図である。(A) to (c) are cross-sectional views showing the steps of Experimental Example 1. 実験例1の結果であって、押出し樹脂体積と盛り上がり量との関係を示している。It is the result of Experimental example 1, Comprising: The relationship between extrusion resin volume and the amount of swelling is shown. 実験例2の結果であって、マスターモールドの単位微細パターンの中心部分および、隣接する単位微細パターンとの境界付近のレーザー顕微鏡像および欠陥を抽出した画像を示す。It is a result of Experimental example 2, Comprising: The laser microscope image and the image which extracted the defect of the center part of the unit fine pattern of a master mold, and the boundary vicinity of an adjacent unit fine pattern are shown. 実験例2の結果であって、転写率を示している。It is a result of Experimental Example 2 and shows a transfer rate. 実験例3の結果であって、(a)は、レーザー顕微鏡像を示し(b)は、(a)のレーザー顕微鏡像の直線aにおける断面プロファイルを示している。It is a result of Experimental example 3, Comprising: (a) shows a laser microscope image, (b) has shown the cross-sectional profile in the straight line a of the laser microscope image of (a).
 本発明の一態様の概要は以下のとおりである。 The outline of one embodiment of the present invention is as follows.
 本発明の一態様である微細パターンの形成方法は、酸素阻害性を有する紫外線硬化型樹脂組成物を支持体の表面に配置する工程(A)と、単位微細パターンが形成されたモールド面を有するマスターモールドを、前記モールド面と前記紫外線硬化型樹脂組成物とが接触するように前記紫外線硬化型樹脂組成物に押し付ける工程(B)と、前記マスターモールドが押し付けられた状態で、酸素を含む雰囲気下において、前記紫外線硬化型樹脂組成物に紫外線を照射することにより、前記紫外線硬化型樹脂組成物のうち少なくとも前記単位微細パターンが転写された領域を硬化させる工程(C)と、前記マスターモールドを前記紫外線硬化型樹脂組成物から分離させる工程(D)と、前記紫外線硬化型樹脂組成物のうち、前記単位微細パターンが転写された前記硬化領域以外の未硬化領域を含む次の領域において、前記工程(B)、(C)および(D)を含む単位転写工程を1回以上繰り返す工程(E)と、前記紫外線硬化型樹脂組成物のうち、未硬化の部分を除去する工程(F)とを包含し、前記工程(E)において、前記次の領域は、前記硬化領域の一部と重なっており、前記工程(E)における工程(B)において、前記マスターモールドの前記単位微細パターンには前記紫外線硬化型樹脂組成物が略充填されている。 The fine pattern forming method according to one embodiment of the present invention includes a step (A) of disposing an ultraviolet curable resin composition having oxygen inhibition on the surface of a support, and a mold surface on which a unit fine pattern is formed. A step (B) of pressing the master mold against the ultraviolet curable resin composition so that the mold surface and the ultraviolet curable resin composition are in contact; and an atmosphere containing oxygen in a state where the master mold is pressed Under the step (C) of curing at least the region where the unit fine pattern is transferred in the ultraviolet curable resin composition by irradiating the ultraviolet curable resin composition with ultraviolet rays, and the master mold The step (D) of separating from the ultraviolet curable resin composition, and the unit fine pattern of the ultraviolet curable resin composition A step (E) of repeating the unit transfer step including the steps (B), (C) and (D) at least once in the next region including the uncured region other than the transferred cured region, and the ultraviolet curing. Step (F) of removing an uncured part of the mold resin composition, and in the step (E), the next region overlaps a part of the cured region, In the step (B) in E), the unit fine pattern of the master mold is substantially filled with the ultraviolet curable resin composition.
 前記モールド面は六角形の形状を有する。 The mold surface has a hexagonal shape.
 前記酸素を含む雰囲気は、前記酸素を15体積%以上含んでいる。 The atmosphere containing oxygen contains 15% by volume or more of oxygen.
 前記支持体は、板形状、円筒形状またはロールスリーブ形状を有する。 The support has a plate shape, a cylindrical shape, or a roll sleeve shape.
 本発明の一態様であるモールドは、支持体と、前記支持体上に支持されており、上記いずれかに記載の微細パターンの形成方法によって、微細パターンが表面に形成された樹脂硬化層と、前記樹脂硬化層の表面に設けられた金属層とを備える。 The mold which is one embodiment of the present invention is a support, and a resin cured layer which is supported on the support and has a fine pattern formed on the surface by any of the fine pattern formation methods described above, A metal layer provided on the surface of the cured resin layer.
 本発明の一態様であるシートは上記モールドを用いて微細パターンが転写されている。 The fine pattern is transferred to the sheet according to one embodiment of the present invention using the mold.
 本発明の一態様であるシートは、支持体と、前記支持体の表面上に配置された紫外線硬化樹脂の樹脂硬化層と、前記樹脂硬化層の表面に複数転写された単位微細パターンとを備え、前記各単位微細パターンの上面は前記支持体の表面と非平行であり隣接する一対の単位微細パターンの上面間に段差が設けられている。 A sheet according to an embodiment of the present invention includes a support, a resin cured layer of an ultraviolet curable resin disposed on the surface of the support, and a plurality of unit fine patterns transferred onto the surface of the resin cured layer. The upper surface of each unit fine pattern is not parallel to the surface of the support, and a step is provided between the upper surfaces of a pair of adjacent unit fine patterns.
 本発明の一態様であるシートは、支持体と、前記支持体の表面上に配置された紫外線硬化樹脂の樹脂硬化層と、前記樹脂硬化層の表面に複数転写された単位微細パターンと、前記樹脂硬化層の表面に設けられた金属層とを備え、前記各単位微細パターンの上面は前記支持体の表面と非平行であり、隣接する一対の単位微細パターンの上面間に段差が設けられている。 The sheet according to an aspect of the present invention includes a support, a resin cured layer of an ultraviolet curable resin disposed on the surface of the support, a plurality of unit fine patterns transferred onto the surface of the resin cured layer, A metal layer provided on the surface of the cured resin layer, the upper surface of each unit fine pattern is not parallel to the surface of the support, and a step is provided between the upper surfaces of a pair of adjacent unit fine patterns. Yes.
(第1の実施形態)
 以下、本発明による微細パターンの形成方法の第1の実施形態を説明する。本実施形態では、微細パターンは、単位微細パターンの繰り返しによって構成され、紫外線硬化型樹脂に形成される。
(First embodiment)
Hereinafter, a first embodiment of a fine pattern forming method according to the present invention will be described. In the present embodiment, the fine pattern is formed by repeating the unit fine pattern and is formed in the ultraviolet curable resin.
 まず、図1A(a)のように、支持体10上に紫外線硬化型樹脂組成物20を用意する。支持体10には、金属、シリコンなどの半導体、ガラス、PET(ポリエチレンテレフタレート)やアクリルなどの樹脂によって構成され、種々の厚さを有する構造材を用いることができる。以下において説明するように、紫外線硬化型樹脂組成物20を硬化させるための紫外線を、支持体10を介して紫外線硬化型樹脂組成物20に照射する場合には、支持体10は、紫外線を透過する材料によって構成されていることが好ましい。 First, as shown in FIG. 1A (a), an ultraviolet curable resin composition 20 is prepared on a support 10. The support 10 may be made of a metal, a semiconductor such as silicon, glass, a resin such as PET (polyethylene terephthalate) or acrylic, and a structural material having various thicknesses. As described below, when the ultraviolet curable resin composition 20 is irradiated via the support 10 with ultraviolet rays for curing the ultraviolet curable resin composition 20, the support 10 transmits the ultraviolet rays. It is preferable that it is comprised with the material to do.
 支持体10は、微細パターンが形成される平滑な表面10aを有していることが好ましい。支持体10は、単位微細パターンを転写する領域において、概ね平坦であればよく、支持体10の全体は、板状、円筒形状、あるいは、ロールスリーブ形状を有していてもよく、可撓性を有していてもよい。表面10aの大きさは、単位微細パターンの大きさや単位微細パターンの繰り返し回数および形成する微細パターンの用途に応じて調整し得る。 The support 10 preferably has a smooth surface 10a on which a fine pattern is formed. The support 10 may be substantially flat in the region where the unit fine pattern is transferred, and the entire support 10 may have a plate shape, a cylindrical shape, or a roll sleeve shape, and is flexible. You may have. The size of the surface 10a can be adjusted according to the size of the unit fine pattern, the number of repetitions of the unit fine pattern, and the use of the fine pattern to be formed.
 紫外線硬化型樹脂組成物20には、紫外線の照射によって硬化する種々の紫外線硬化型樹脂組成物を用いることができる。紫外線硬化型樹脂組成物20は、酸素の存在下において、重合が阻害される酸素阻害性を有していることが好ましい。このような性質を有する紫外線硬化型樹脂組成物20には、種々のラジカル重合型の紫外線硬化型樹脂組成物が好適に用いられる。典型的には、このようなラジカル重合型の紫外線硬化型樹脂組成物は、光重合開始剤と、ラジカル重合可能なビニル基やメタアクリル基を有するモノマーまたはオリゴマーとを含む。なお、本願明細書において「紫外線硬化型樹脂組成物」とは、硬化前の紫外線硬化型樹脂をいう。 As the ultraviolet curable resin composition 20, various ultraviolet curable resin compositions that are cured by irradiation with ultraviolet rays can be used. It is preferable that the ultraviolet curable resin composition 20 has an oxygen inhibitory property that inhibits polymerization in the presence of oxygen. As the ultraviolet curable resin composition 20 having such properties, various radical polymerization type ultraviolet curable resin compositions are preferably used. Typically, such a radical polymerization type ultraviolet curable resin composition includes a photopolymerization initiator and a monomer or oligomer having a vinyl group or a methacryl group capable of radical polymerization. In the present specification, the “ultraviolet curable resin composition” refers to an ultraviolet curable resin before curing.
 紫外線硬化型樹脂組成物20は、スピンコート法やバーコート法などによって支持体10の表面10aに均一に塗布され、層形状を有している。塗布された紫外線硬化型樹脂組成物20の厚さt1は、微細パターンの用途や転写する微細パターンの深さなどに依存する。また、以下において説明するように、塗布された紫外線硬化型樹脂組成物20が厚すぎると、紫外線硬化型樹脂組成物20の硬化阻害を制御しにくくなる。このため、厚さt1は、10μm以下であることが好ましく、1μm以下であることがより好ましい。一方、厚さt1の下限値は、形成すべき微細パターンの形状やパターンの深さに依存する。このため、形成すべき微細パターンに応じて適宜決定し得る。 The ultraviolet curable resin composition 20 is uniformly applied to the surface 10a of the support 10 by a spin coat method, a bar coat method, or the like, and has a layer shape. The thickness t1 of the applied ultraviolet curable resin composition 20 depends on the use of the fine pattern, the depth of the fine pattern to be transferred, and the like. Moreover, as will be described below, if the applied ultraviolet curable resin composition 20 is too thick, it is difficult to control the inhibition of curing of the ultraviolet curable resin composition 20. For this reason, the thickness t1 is preferably 10 μm or less, and more preferably 1 μm or less. On the other hand, the lower limit value of the thickness t1 depends on the shape of the fine pattern to be formed and the pattern depth. For this reason, it can determine suitably according to the fine pattern which should be formed.
 次に、マスターモールド30を用意する。図2(a)および(b)は、マスターモールド30の模式的な斜視図および側面図である。マスターモールド30はモールド面30aを有しており、モールド面30aに単位微細パターン31が形成されている。モールド面30aは矩形の形状を有している。長方形であってもよいし、正方形であってもよい。単位微細パターン31はモールド面30aの端部にまで形成されていることが好ましい。これにより、マスターモールド30の単位微細パターン31を隣接させて複数回、紫外線硬化型樹脂組成物20に転写した場合に隣接する単位微細パターン31を途切れることなく連続して形成することができる。マスターモールド30は、石英やガラス、シリコン基板などによって構成されている。単位微細パターン31を形成しやすい材料によって構成されていることが好ましい。また、モールド側から紫外線を照射する場合には、マスターモールド30は紫外線の透過率が高い材料によって構成されていることが好ましい。必要に応じて、離形性に優れた材料を選択したり、単位微細パターン31の表面に離型を高めるためのコーティングを施してもよい。 Next, a master mold 30 is prepared. 2A and 2B are a schematic perspective view and a side view of the master mold 30. FIG. The master mold 30 has a mold surface 30a, and a unit fine pattern 31 is formed on the mold surface 30a. The mold surface 30a has a rectangular shape. It may be a rectangle or a square. The unit fine pattern 31 is preferably formed up to the end of the mold surface 30a. Thereby, when the unit fine pattern 31 of the master mold 30 is adjacently transferred to the ultraviolet curable resin composition 20 a plurality of times, the adjacent unit fine pattern 31 can be continuously formed without interruption. The master mold 30 is made of quartz, glass, a silicon substrate, or the like. It is preferable that the unit fine pattern 31 is made of a material that can be easily formed. Moreover, when irradiating an ultraviolet-ray from the mold side, it is preferable that the master mold 30 is comprised with the material with the high transmittance | permeability of an ultraviolet-ray. If necessary, a material excellent in releasability may be selected, or a coating for enhancing mold release may be applied to the surface of the unit fine pattern 31.
 本実施形態では、モールド面30aの周囲に幅Xおよび深さTの段差部30dが設けられている。段差部30dは、マスターモールド30を紫外線硬化型樹脂組成物20に押し付ける際に紫外線硬化型樹脂組成物20の盛り上がりを保持する。これにより、マスターモールド30をナノインプリント装置に取り付け、本実施形態の方法によって微細パターンを形成する場合において、マスターモールド30を支持する部材に紫外線硬化型樹脂組成物20が付着するのを防止することができる。 In this embodiment, a step portion 30d having a width X and a depth T is provided around the mold surface 30a. The step portion 30 d holds the bulge of the ultraviolet curable resin composition 20 when the master mold 30 is pressed against the ultraviolet curable resin composition 20. Thus, when the master mold 30 is attached to the nanoimprint apparatus and a fine pattern is formed by the method of this embodiment, the ultraviolet curable resin composition 20 can be prevented from adhering to the member that supports the master mold 30. it can.
 モールド面30aに形成する単位微細パターン31は用途に応じた種々の形状を有する。微細パターン31を反転させたパターンが紫外線硬化型樹脂組成物20の表面に転写される。本実施形態では、単位微細パターン31は矩形の凹部が2次元に規則的に配列された構造を備える。しかし、単位構造がランダムに配置された構造であってもよい。微細パターン31の深さは、1レベルであってもよいし、2以上の異なる深さを有する微細パターン31であってもよい。たとえば、特開2009-217292号公報、国際公開第2010/131440号パンフレット、国際公開第2010/131439号パンフレット、国際公開第2010/131434号パンフレットに開示された微細パターンを好適に用いることができる。単位微細パターン31の最小構成単位の大きさd2は、用途や用いる紫外線硬化型樹脂組成物20、ナノインプリント装置などに依存する。本実施形態では、単位微細パターン31の最小構成単位の大きさd2は、たとえば、10nm以上から1mm以下であり、深さt2はたとえば、10nmから1mmである。また、単位微細パターン31の一辺の長さLは、たとえば、1mmから50mmである。なお、図2(a)および(b)以外の図では、マスターモールド30はより模式的に示されており、微細パターン31の大きさは分かり易さのため、支持体10など他の構成要素に比べて大きく表されている。また、段差部30dは示されていない。 The unit fine pattern 31 formed on the mold surface 30a has various shapes depending on the application. A pattern obtained by inverting the fine pattern 31 is transferred to the surface of the ultraviolet curable resin composition 20. In the present embodiment, the unit fine pattern 31 has a structure in which rectangular concave portions are regularly arranged in two dimensions. However, a structure in which unit structures are randomly arranged may be used. The depth of the fine pattern 31 may be one level, or the fine pattern 31 having two or more different depths. For example, the fine patterns disclosed in JP2009-217292, WO2010 / 131440, WO2010 / 131439, and WO2010 / 131434 can be suitably used. The size d2 of the minimum structural unit of the unit fine pattern 31 depends on the application, the ultraviolet curable resin composition 20 used, the nanoimprint apparatus, and the like. In the present embodiment, the size d2 of the minimum structural unit of the unit fine pattern 31 is, for example, not less than 10 nm and not more than 1 mm, and the depth t2 is, for example, 10 nm to 1 mm. The length L of one side of the unit fine pattern 31 is, for example, 1 mm to 50 mm. 2A and 2B, the master mold 30 is more schematically shown, and the size of the fine pattern 31 is easy to understand. It is greatly expressed compared to. Further, the step portion 30d is not shown.
 単位微細パターン31および段差部30dは、たとえば、半導体プロセスや高精度の研削加工によって作製され、良好なエッジラフネスを有している。特に単位微細パターン31のエッジ31aは直線性および平滑性が優れていることが好ましい。エッジ31aにおいてチッピングやマイクロクラック等の要因により、ラフネスが悪い場合、紫外線硬化型樹脂組成物20に対してマスターモールド30を高平行度で降下させると、マスターモール30と紫外線硬化型樹脂組成物20との間の空気がエッジ31a付近でトラップされて押し出されず、泡噛みが発生する。これにより、泡が噛んだ部分でパターンの未転写が発生しやすくなる。また、エッジラフネスが悪い場合、以下で説明する盛り上がり部の大きさにムラが生じやすくなる。 The unit fine pattern 31 and the stepped portion 30d are produced by, for example, a semiconductor process or high-precision grinding and have good edge roughness. In particular, the edge 31a of the unit fine pattern 31 is preferably excellent in linearity and smoothness. When roughness is poor due to chipping or microcracking at the edge 31a, when the master mold 30 is lowered with high parallelism with respect to the ultraviolet curable resin composition 20, the master molding 30 and the ultraviolet curable resin composition 20 are reduced. Air is trapped in the vicinity of the edge 31a and is not pushed out, and bubble biting occurs. As a result, pattern non-transfer is likely to occur at the portion where the bubble is bitten. Further, when the edge roughness is poor, unevenness is likely to occur in the size of the swelled portion described below.
 次に、図1A(b)に示すように、このマスターモールド30を、モールド面30aが紫外線硬化型樹脂組成物20と対向するように配置する。図1A(b)中矢印で示すようにモールド面30aが紫外線硬化型樹脂組成物20と接触するように、マスターモールド30を紫外線硬化型樹脂組成物20に押し付ける。 Next, as shown in FIG. 1A (b), the master mold 30 is arranged so that the mold surface 30 a faces the ultraviolet curable resin composition 20. The master mold 30 is pressed against the ultraviolet curable resin composition 20 so that the mold surface 30a is in contact with the ultraviolet curable resin composition 20 as indicated by an arrow in FIG. 1A (b).
 図1A(c)に示すように、マスターモールド30を紫外線硬化型樹脂組成物20に押し付けることにより、単位微細パターン31の凹部に紫外線硬化型樹脂組成物20が充填される。また、マスターモールド30を押し付けることによって排除された紫外線硬化型樹脂組成物20の一部は盛り上がり部20bを形成し、マスターモールド30の段差部30d(図1A(c)には示されていない)の側壁に付着する。 As shown in FIG. 1A (c), the concave portion of the unit fine pattern 31 is filled with the ultraviolet curable resin composition 20 by pressing the master mold 30 against the ultraviolet curable resin composition 20. Further, a part of the ultraviolet curable resin composition 20 excluded by pressing the master mold 30 forms a raised portion 20b, and a step portion 30d of the master mold 30 (not shown in FIG. 1A (c)). It adheres to the side wall.
 マスターモールド30が紫外線硬化型樹脂組成物20に押し付けられた状態で、酸素を含む雰囲気下に全体を曝し、紫外線硬化型樹脂組成物20に紫外線を照射する。好ましくは、雰囲気は、酸素を15体積%以上の割合で含んでおり、20.6体積%以上の割合で含むことがより好ましい。雰囲気中に含まれる酸素の含有量に特に制限はなく、100体積%以下であればよい。 In a state where the master mold 30 is pressed against the ultraviolet curable resin composition 20, the whole is exposed to an atmosphere containing oxygen, and the ultraviolet curable resin composition 20 is irradiated with ultraviolet rays. Preferably, the atmosphere contains 15% by volume or more of oxygen, and more preferably contains 20.6% by volume or more. There is no restriction | limiting in particular in content of oxygen contained in atmosphere, What is necessary is just 100 volume% or less.
 紫外線は、支持体10に配置された紫外線硬化型樹脂組成物20のうち、マスターモールド30と接触している領域のみに照射することが好ましい。たとえば、マスターモールド30のモールド面30aに対応する領域が開口されたマスク(図示していない)を介して紫外線を紫外線硬化型樹脂組成物20に照射する。これにより、マスターモールド30の単位微細パターン31が転写された領域が硬化し硬化領域21を形成する。全体が酸素を含む雰囲気下に置かれているため、紫外線硬化型樹脂組成物20の盛り上がり部20bでは、酸素を含む雰囲気下に曝され、重合が阻害される。これに対し、単位微細パターン31が転写された領域はマスターモールド30と接しているため、酸素を含む雰囲気には曝されない。このため、単位微細パターン31が転写された領域のみが選択的に硬化領域21となる。ただし、盛り上がり部20bがあまり大きくなりすぎると、盛り上がり部20bの内部に表面からの酸素が到達せず、盛り上がり部20bの内部が硬化する可能性がある。このため、盛り上がり部20bがあまり大きくならないように支持体10上に形成する紫外線硬化型樹脂組成物20の厚さ、照射する紫外線の強度および範囲を調整することが好ましい。 It is preferable to irradiate ultraviolet rays only to a region in contact with the master mold 30 in the ultraviolet curable resin composition 20 disposed on the support 10. For example, the ultraviolet curable resin composition 20 is irradiated with ultraviolet rays through a mask (not shown) in which a region corresponding to the mold surface 30a of the master mold 30 is opened. Thereby, the region where the unit fine pattern 31 of the master mold 30 is transferred is cured to form the cured region 21. Since the whole is placed in an atmosphere containing oxygen, the raised portion 20b of the ultraviolet curable resin composition 20 is exposed to an atmosphere containing oxygen and polymerization is inhibited. On the other hand, since the region where the unit fine pattern 31 is transferred is in contact with the master mold 30, it is not exposed to an atmosphere containing oxygen. For this reason, only the region where the unit fine pattern 31 is transferred selectively becomes the cured region 21. However, if the raised portion 20b becomes too large, oxygen from the surface does not reach the inside of the raised portion 20b, and the inside of the raised portion 20b may be cured. For this reason, it is preferable to adjust the thickness of the ultraviolet curable resin composition 20 formed on the support 10 and the intensity and range of the irradiated ultraviolet rays so that the raised portion 20b does not become too large.
 ラジカル重合型の紫外線硬化型樹脂が酸素阻害性を有していることは公知である。このため、紫外線硬化型樹脂を十分にさせるために、酸素が存在しない雰囲気で紫外線を照射するのが一般的である。UV方式のナノインプリントリソグラフィでは特に、微細なパターンを転写する必要があるため、ナノインプリントリソグラフィはむしろ酸素が存在しない雰囲気で行うほうが好ましいとも考えられる。しかし、本発明は、全体を酸素を含む雰囲気下に曝しながら、部分的に酸素の影響を受けにくい領域を形成し、その領域のみを硬化させることによって、マスターモールドの単位微細パターンを紫外線硬化型樹脂組成物へ繰り返し転写することを実現している。 It is known that radical polymerization type ultraviolet curable resins have oxygen inhibition properties. For this reason, in order to make the ultraviolet curable resin sufficiently, it is common to irradiate ultraviolet rays in an atmosphere in which oxygen does not exist. In particular, in UV nanoimprint lithography, it is necessary to transfer a fine pattern. Therefore, it may be preferable to perform nanoimprint lithography in an atmosphere in which oxygen is not present. However, the present invention forms a region that is partially not easily affected by oxygen while exposing the whole to an oxygen-containing atmosphere, and cures only that region, thereby converting the unit fine pattern of the master mold into an ultraviolet curable type. The transfer to the resin composition is realized repeatedly.
 図1A(d)に示すように、マスターモールド30を紫外線硬化型樹脂組成物20から引き上げ、分離させると、単位微細パターン31を反転させた単位微細パターン31’を有する硬化領域21が形成される。このとき、マスターモールド30の段差部の側面に付着していた盛り上がり部20bが支持を失うため、表面張力によって未硬化の盛り上がり部20bの一部が倒れ、硬化領域21に重なる。硬化領域21の端部から未硬化の盛り上がり部20bが重なる幅d1は、盛り上がり部20bの大きさに依存する。 As shown in FIG. 1A (d), when the master mold 30 is pulled up from the ultraviolet curable resin composition 20 and separated, a cured region 21 having a unit fine pattern 31 ′ obtained by inverting the unit fine pattern 31 is formed. . At this time, since the raised portion 20b attached to the side surface of the step portion of the master mold 30 loses support, a part of the uncured raised portion 20b falls due to the surface tension and overlaps the cured region 21. The width d1 in which the uncured raised portion 20b overlaps from the end of the cured region 21 depends on the size of the raised portion 20b.
 図1A(e)に示すように、引き上げたマスターモールド30を水平方向に移動させ、紫外線硬化型樹脂組成物20のうち、硬化領域21以外の未硬化領域を含む次の領域22において、マスターモールド30を下ろし、図1B(f)に示すように、マスターモールド30を紫外線硬化型樹脂組成物20に押し付ける。 As shown in FIG. 1A (e), the pulled-up master mold 30 is moved in the horizontal direction, and in the next region 22 including the uncured region other than the cured region 21 in the ultraviolet curable resin composition 20, the master mold 30 is lowered and the master mold 30 is pressed against the ultraviolet curable resin composition 20 as shown in FIG. 1B (f).
 この状態で、酸素を含む雰囲気下に全体を曝し、紫外線硬化型樹脂組成物20に紫外線を照射する。これにより、次の領域22を硬化させる。以降、図1B(g)および(h)に示すように、マスターモールド30を移動させ、紫外線硬化型樹脂組成物20を硬化させるという工程を繰り返すことによって単位微細パターン31を反転させた単位微細パターン31’を順次形成する。 In this state, the whole is exposed to an atmosphere containing oxygen, and the ultraviolet curable resin composition 20 is irradiated with ultraviolet rays. As a result, the next region 22 is cured. Thereafter, as shown in FIGS. 1B (g) and (h), the unit fine pattern obtained by inverting the unit fine pattern 31 by moving the master mold 30 and curing the ultraviolet curable resin composition 20 is repeated. 31 'are formed sequentially.
 所望の回数、単位微細パターン31’を形成した後、図1B(i)に示すように、未硬化の紫外線硬化型樹脂組成物20をエタノールなどの有機溶剤で除去することによって、単位微細パターン31’が配列された微細パターンを有する樹脂硬化層20’が得られる。支持体10と支持体10に支持された樹脂硬化層20’とを含む微細構造体40を種々の用途にそのまま用いてもよいし、微細パターンを転写するためのモールドとして用いてもよい。この場合、たとえば樹脂硬化層20’の表面に、スパッタやメッキなどによって金属層を形成し、耐久性を高めてもよい。たとえば、本実施形態による微細パターンの形成方法を用いて直接微細パターンを表面に有する大面積の光学シートを作製してもよい。また、平板状あるいはロールスリーブ形状の支持体10を用いて微細構造体40を作製し、作製した微細構造体を平板モールドあるいはロールスリーブモールドとして用い、大面積の光学シートを作製してもよい。 After the unit fine pattern 31 ′ is formed a desired number of times, the unit fine pattern 31 is removed by removing the uncured ultraviolet curable resin composition 20 with an organic solvent such as ethanol as shown in FIG. 1B (i). A cured resin layer 20 ′ having a fine pattern in which “is arranged” is obtained. The fine structure 40 including the support 10 and the cured resin layer 20 ′ supported by the support 10 may be used as it is for various applications, or may be used as a mold for transferring a fine pattern. In this case, for example, a metal layer may be formed on the surface of the cured resin layer 20 ′ by sputtering, plating, or the like to improve durability. For example, a large-area optical sheet having a fine pattern directly on the surface may be produced using the fine pattern forming method according to the present embodiment. Alternatively, the fine structure 40 may be manufactured using the flat plate-shaped or roll sleeve-shaped support 10, and the large-sized optical sheet may be manufactured using the manufactured fine structure as a flat plate mold or a roll sleeve mold.
 次に、本実施形態の微細パターンの形成方法において、形成される単位微細パターンの配置を説明する。図1B(e)および(f)に示すように、マスターモールド30をすでに形成された硬化領域21に隣接して紫外線硬化型樹脂組成物20に押し当てる場合、硬化領域21に対して次の領域22は、隙間なく隣接する場合、重なる場合、間隙を空けて配置される場合の3つ配置を取り得る。 Next, the arrangement of unit fine patterns formed in the fine pattern forming method of this embodiment will be described. As shown in FIGS. 1B (e) and (f), when the master mold 30 is pressed against the ultraviolet curable resin composition 20 adjacent to the already-cured cured region 21, the next region with respect to the cured region 21 22 can take three arrangements, when adjacent to each other without a gap, when overlapping, and when arranged with a gap.
 まず、隙間なく隣接する場合を説明する。この場合、図3(a)に示すように、次の領域22を規定する境界と硬化領域21を規定する境界とが接するように、マスターモールド30を硬化領域21に隣接して紫外線硬化型樹脂組成物20に押し当てる。上述したように、硬化領域21を形成する際、酸素を含む雰囲気下において紫外線硬化型樹脂組成物20に紫外線を照射しているため、盛り上がり部20bは硬化していない。このため、硬化領域21と次の領域22との間に空間を空けることなく次の領域22を決定することができる。図4(a)は、このようにして形成した微細構造体41を模式的に示している。図4(a)に示すように、樹脂硬化層20’において、複数の単位微細パターン31’は隙間なく隣接して形成される。この配置は、特に、マスターモールド30を降下させる位置を正確に位置合わせできる場合や、単位微細パターン31’の境界同士を正確に合わせた微細パターンを形成したい場合に適している。複数の単位微細パターン31’が重なり合わないため、各単位微細パターン31’の上面31’aは支持体10の表面10aと平行である。 First, the case of adjoining without a gap will be described. In this case, as shown in FIG. 3A, the master mold 30 is adjacent to the curing region 21 so that the boundary defining the next region 22 and the boundary defining the curing region 21 are in contact with each other. Press against composition 20. As described above, when the cured region 21 is formed, since the ultraviolet curable resin composition 20 is irradiated with ultraviolet rays in an atmosphere containing oxygen, the raised portion 20b is not cured. For this reason, the next region 22 can be determined without leaving a space between the cured region 21 and the next region 22. FIG. 4A schematically shows the microstructure 41 formed in this way. As shown in FIG. 4A, in the cured resin layer 20 ', a plurality of unit fine patterns 31' are formed adjacent to each other without a gap. This arrangement is particularly suitable when the position where the master mold 30 is lowered can be accurately aligned, or when it is desired to form a fine pattern in which the boundaries of the unit fine patterns 31 'are accurately aligned. Since the plurality of unit fine patterns 31 ′ do not overlap, the upper surface 31 ′ a of each unit fine pattern 31 ′ is parallel to the surface 10 a of the support 10.
 次に硬化領域21に対して次の領域22が重なる場合を説明する。この場合、図3(b)に示すように、次の領域22が硬化領域21の一部と重なるようにマスターモールド30を硬化領域21に隣接して紫外線硬化型樹脂組成物20に押し当てる。上述したように、硬化領域21からマスターモールド30を引き上げる際、未硬化の盛り上がり部20bの一部が硬化領域21に幅d1の範囲で重なる。したがって、次の領域22と硬化領域21との重なりd3が幅d1以内であれば、マスターモールド30のモールド面30aが有する凹部に紫外線硬化型樹脂組成物20が充填されるため、次の領域22の全体に正しく単位微細パターン31’が形成される。複数の単位微細パターン31’を2次元に配置する場合、配置される2方向において、次の領域22が硬化領域21に重なっていてもよいし、1方向においてのみ重なっていてもよい。図3(b)に示すように、次の領域22が硬化領域21の一部と重なるようにマスターモールド30を紫外線硬化型樹脂組成物20に押し当てる場合、マスターモールド30は支持体10に対して水平ではなく、硬化領域21側が高く、反対側が低くなるように斜めに配置することが好ましい。 Next, the case where the next region 22 overlaps the cured region 21 will be described. In this case, as shown in FIG. 3B, the master mold 30 is pressed against the ultraviolet curable resin composition 20 adjacent to the cured region 21 so that the next region 22 overlaps a part of the cured region 21. As described above, when the master mold 30 is pulled up from the cured region 21, a part of the uncured raised portion 20b overlaps the cured region 21 in the range of the width d1. Therefore, if the overlap d3 between the next region 22 and the cured region 21 is within the width d1, the concave portion of the mold surface 30a of the master mold 30 is filled with the ultraviolet curable resin composition 20, and therefore the next region 22 The unit fine pattern 31 'is correctly formed on the entire surface. When the plurality of unit fine patterns 31 ′ are two-dimensionally arranged, the next region 22 may overlap the cured region 21 in two directions in which the unit fine patterns 31 ′ are arranged, or may overlap only in one direction. As shown in FIG. 3B, when the master mold 30 is pressed against the ultraviolet curable resin composition 20 so that the next region 22 overlaps a part of the cured region 21, the master mold 30 is against the support 10. However, it is preferable to arrange them diagonally so that the cured region 21 side is high and the opposite side is low.
 図4(b)は、このようにして形成した微細構造体42を模式的に示している。図4(b)に示すように、樹脂硬化層20’において、各単位微細パターン31’の一端は隣接する単位微細パターン31’と重なっている。このため、単位微細パターン31’が連続して形成されている。図4(b)に示すように、マスターモールド30を斜めに押し当てることによって、各単位微細パターン31’の上面31’aは、支持体10の表面10aと非平行である。隣接する一対の単位微細パターン31’の上面31’a間には上面31’aと垂直な方向に段差Zを有している。以下において説明するように、このような段差Zを有する微細構造体42は、特に、円筒形状のモールドとして用いた場合に、微細パターンを転写する際に気泡などが抜け易く、欠陥の発生を抑制し、微細構造体42の微細パターンを正確に転写することができる。この配置によれば、マスターモールド30を降下させる位置を正確に位置合わせすることなく、単位微細パターン31’を連続して形成できる。 FIG. 4B schematically shows the fine structure 42 formed in this way. As shown in FIG. 4B, in the resin cured layer 20 ', one end of each unit fine pattern 31' overlaps with the adjacent unit fine pattern 31 '. For this reason, the unit fine pattern 31 'is continuously formed. As shown in FIG. 4B, the upper surface 31 ′ a of each unit fine pattern 31 ′ is not parallel to the surface 10 a of the support 10 by pressing the master mold 30 obliquely. A step Z is provided in a direction perpendicular to the upper surface 31'a between the upper surfaces 31'a of a pair of adjacent unit fine patterns 31 '. As will be described below, the fine structure 42 having such a level difference Z, when used as a cylindrical mold, is easy to remove bubbles when transferring a fine pattern, and suppresses the occurrence of defects. In addition, the fine pattern of the fine structure 42 can be accurately transferred. According to this arrangement, the unit fine pattern 31 ′ can be continuously formed without accurately aligning the position where the master mold 30 is lowered.
 次に硬化領域21と次の領域22との間に空隙を設ける場合を説明する。図3(c)に示すように、この場合、次の領域22が硬化領域21の端部から間隙を設けて位置するようにマスターモールド30を硬化領域21に隣接して紫外線硬化型樹脂組成物20に押し当てる。次の領域22と硬化領域21との間隙d2は、作製する微細パターンの仕様等によって決定し得る。次の領域22を確定する際、紫外線硬化型樹脂組成物20のうち、硬化領域21以外の領域は未硬化の状態にあるため、原理的には間隙d2は、0μm以上であれば任意の値を取り得る。ただし、間隙d2があまり大きくなると、作製した微細パターンにおいて、単位微細パターン31’の間隔が大きくなり間隙d2が目立つようになる。このため、間隙d2は0.2μm以下であることが好ましい。 Next, a case where a gap is provided between the cured region 21 and the next region 22 will be described. As shown in FIG. 3C, in this case, the UV curable resin composition is adjacent to the cured region 21 so that the next region 22 is positioned with a gap from the end of the cured region 21. Press 20 The gap d2 between the next region 22 and the cured region 21 can be determined according to the specifications of the fine pattern to be produced. When the next region 22 is determined, the region other than the cured region 21 in the ultraviolet curable resin composition 20 is in an uncured state, so that in principle, the gap d2 is an arbitrary value as long as it is 0 μm or more. Can take. However, when the gap d2 becomes too large, the interval between the unit fine patterns 31 'becomes large and the gap d2 becomes conspicuous in the produced fine pattern. Therefore, the gap d2 is preferably 0.2 μm or less.
 図4(c)は、このようにして形成した微細構造体43を模式的に示している。図4(c)に示すように、微細構造体43において、支持体10上に単位微細パターン31’を有する複数の樹脂硬化層20’が形成されている。各樹脂硬化層20’は隣接する樹脂硬化層20’と接続されておらず、独立している。これは、紫外線硬化型樹脂組成物20のうち間隙d2となる領域は未硬化領域であるため、最終的には間隙d2となる領域の紫外線硬化型樹脂組成物20が除去されるからである。この配置によれば、マスターモールド30を降下させる位置を正確に位置合わせすることなく、複数の単位微細パターン31’を形成できる。 FIG. 4C schematically shows the fine structure 43 formed in this way. As shown in FIG. 4C, in the fine structure 43, a plurality of cured resin layers 20 ′ having unit fine patterns 31 ′ are formed on the support 10. Each cured resin layer 20 'is not connected to the adjacent cured resin layer 20' and is independent. This is because the region that becomes the gap d2 in the ultraviolet curable resin composition 20 is an uncured region, so that the ultraviolet curable resin composition 20 in the region that becomes the gap d2 is finally removed. According to this arrangement, the plurality of unit fine patterns 31 ′ can be formed without accurately aligning the position where the master mold 30 is lowered.
 本実施形態の微細パターンの形成方法は、たとえば、図5に示すナノインプリントシステム50を用いて実行することができる。ナノインプリントシステム50は、グローブボックス51と、紫外線照射型インプリント装置52と、露光時間調節コントローラ53と、XYステージコントローラ54と酸素濃度計55と基板チャック用真空ポンプ56とを備える。紫外線照射型インプリント装置52はグローブボックス51内に配置さており、グローブボックス51には、窒素および酸素を導入する導入口およびグローブボックス51内を排気するための排気口が設けられている。紫外線照射型インプリント装置52と、露光時間調節コントローラ53と、XYステージコントローラ54と酸素濃度計55と基板チャック用真空ポンプ56とは紫外線照射型インプリント装置52に接続されている。 The fine pattern forming method of the present embodiment can be executed using, for example, the nanoimprint system 50 shown in FIG. The nanoimprint system 50 includes a glove box 51, an ultraviolet irradiation type imprint apparatus 52, an exposure time adjustment controller 53, an XY stage controller 54, an oxygen concentration meter 55, and a substrate chuck vacuum pump 56. The ultraviolet irradiation type imprint apparatus 52 is disposed in the glove box 51, and the glove box 51 is provided with an introduction port for introducing nitrogen and oxygen and an exhaust port for exhausting the inside of the glove box 51. The ultraviolet irradiation type imprint apparatus 52, the exposure time adjustment controller 53, the XY stage controller 54, the oxygen concentration meter 55, and the substrate chuck vacuum pump 56 are connected to the ultraviolet irradiation type imprint apparatus 52.
 支持体10に紫外線硬化型樹脂組成物20を塗布した後、支持体を紫外線照射型インプリント装置52に導入する。その後、グローブボックス51内を排気し、酸素および窒素を導入する。酸素濃度計55でグローブボックス51内の酸素濃度を確認し、露光時間調節コントローラ53およびXYステージコントローラ54を用いて、上述した本実施形態の微細パターンの形成方法に従い、紫外線硬化型樹脂組成物20を硬化させる。 After the ultraviolet curable resin composition 20 is applied to the support 10, the support is introduced into the ultraviolet irradiation imprint apparatus 52. Thereafter, the inside of the glove box 51 is exhausted, and oxygen and nitrogen are introduced. The oxygen concentration in the glove box 51 is confirmed by the oxygen concentration meter 55, and the ultraviolet curable resin composition 20 is used by using the exposure time adjustment controller 53 and the XY stage controller 54 according to the fine pattern forming method of the present embodiment described above. Is cured.
 その後、グローブボックス51内から支持体10を取り出し、未硬化の紫外線硬化型樹脂組成物20を除去することによって図4(a)、(b)または(c)に示す微細構造体41、42または43を得ることができる。 Thereafter, the support body 10 is taken out from the glove box 51, and the uncured ultraviolet curable resin composition 20 is removed to remove the microstructures 41, 42 shown in FIG. 4 (a), (b) or (c). 43 can be obtained.
 このように本実施形態の微細パターンの形成方法によれば、酸素阻害性を有する紫外線硬化型樹脂組成物を用い、酸素を含む雰囲気下で紫外線を照射し、マスターモールドが押し付けられた紫外線硬化型樹脂組成物を硬化させる。この際、マスターモールドと接していない部分では重合が阻害されるため、盛り上がり部が硬化するのが抑制される。よって、マスターモールドを繰り返し押し当て、紫外線硬化型樹脂組成物の一部を逐次硬化させる場合でも、マスターモールドから転写された単位微細パターンの端部に不要な硬化部分が生成せず、単位微細パターンがつなぎ目なく転写された微細パターンを形成することができる。 As described above, according to the fine pattern forming method of the present embodiment, an ultraviolet curable resin composition having an oxygen-inhibiting property, irradiated with ultraviolet rays in an atmosphere containing oxygen, and pressed against a master mold. The resin composition is cured. Under the present circumstances, since superposition | polymerization is inhibited in the part which is not in contact with a master mold, it is suppressed that a swelling part hardens | cures. Therefore, even when the master mold is repeatedly pressed and a part of the ultraviolet curable resin composition is sequentially cured, an unnecessary cured portion is not generated at the end of the unit fine pattern transferred from the master mold, and the unit fine pattern It is possible to form a fine pattern transferred without a joint.
(第2の実施形態)
 以下、本発明による微細パターンの形成方法の第2の実施形態を説明する。本実施形態の微細パターンの形成方法は、マスターモールドのモールド面の形状が異なる点を除き第1の実施形態と同じである。このため、第1の実施形態と異なる部分を主に説明する。
(Second Embodiment)
The second embodiment of the fine pattern forming method according to the present invention will be described below. The fine pattern forming method of the present embodiment is the same as that of the first embodiment except that the shape of the mold surface of the master mold is different. For this reason, a different part from 1st Embodiment is mainly demonstrated.
 図6(a)および(b)は、本実施形態で用いるマスターモールド30の模式的な斜視図および側面図である。マスターモールド30はモールド面30aを有しており、モールド面30aに単位微細パターン31が形成されている。本実施形態で用いるマスターモールド30のモールド面30aは、六角形の形状を有しており、例えば、正六角形の形状を有している。単位微細パターン31はモールド面30aの端部にまで形成されていることが好ましい。この場合、単位微細パターン31も六角形または正六角形の形状を有している。第1の実施形態と同様、これにより、マスターモールド30の単位微細パターン31を隣接させて複数回、紫外線硬化型樹脂組成物20に転写した場合に隣接する単位微細パターン31を途切れることなく連続して形成することができる。 6 (a) and 6 (b) are a schematic perspective view and a side view of the master mold 30 used in the present embodiment. The master mold 30 has a mold surface 30a, and a unit fine pattern 31 is formed on the mold surface 30a. The mold surface 30a of the master mold 30 used in the present embodiment has a hexagonal shape, for example, a regular hexagonal shape. The unit fine pattern 31 is preferably formed up to the end of the mold surface 30a. In this case, the unit fine pattern 31 also has a hexagonal or regular hexagonal shape. As in the first embodiment, when the unit fine pattern 31 of the master mold 30 is adjacently transferred to the ultraviolet curable resin composition 20 a plurality of times, the adjacent unit fine pattern 31 is continuous without interruption. Can be formed.
 単位微細パターン31の最小構成単位の大きさd2は、用途や用いる紫外線硬化型樹脂組成物20、ナノインプリント装置などに依存する。本実施形態では、単位微細パターン31の最小構成単位の大きさd2は、たとえば、10nm以上から1mm以下であり、深さt2はたとえば、10nmから1mmである。また、単位微細パターン31の一辺(六角形の一辺)の長さLは、たとえば、1mmから50mmである。 The size d2 of the minimum constituent unit of the unit fine pattern 31 depends on the application, the ultraviolet curable resin composition 20 used, the nanoimprint apparatus, and the like. In the present embodiment, the size d2 of the minimum structural unit of the unit fine pattern 31 is, for example, not less than 10 nm and not more than 1 mm, and the depth t2 is, for example, 10 nm to 1 mm. The length L of one side (one side of the hexagon) of the unit fine pattern 31 is, for example, 1 mm to 50 mm.
 図6(c)に示すように、単位微細パターン31が六角形の形状を有しており、2次元空間において単位微細パターン31を隙間なく転写する場合、転写された単位微細パターン31’の六角形の各辺に垂直な方向A1には、隣接する単位微細パターン31’の中心が方向A1上に位置するように複数の単位微細パターン31’が配置される。これに対し、六角形の各頂点と六角形の中心を結ぶ方向A2には、隣接する単位微細パターン31の一辺が方向A2上に位置する。これは方向A1をx軸方向にとった場合、x方向には単位微細パターン31’の対向する平行な2辺の間隔を周期として単位微細パターン31が配置されるのに対し、y方向に隣接する単位微細パターン31’は、x方向に1/2周期分シフトして配置されているからである。 As shown in FIG. 6C, when the unit fine pattern 31 has a hexagonal shape and the unit fine pattern 31 is transferred without a gap in the two-dimensional space, In the direction A1 perpendicular to each side of the square, a plurality of unit fine patterns 31 ′ are arranged so that the centers of the adjacent unit fine patterns 31 ′ are located on the direction A1. On the other hand, in a direction A2 connecting each vertex of the hexagon and the center of the hexagon, one side of the adjacent unit fine pattern 31 is located on the direction A2. When the direction A1 is taken in the x-axis direction, the unit fine pattern 31 is arranged in the x direction with the interval between two parallel sides of the unit fine pattern 31 'facing each other, but adjacent to the y direction. This is because the unit fine pattern 31 ′ to be shifted is arranged by being shifted by ½ period in the x direction.
 図6(c)に示すように2次元空間において単位微細パターン31を隙間なく転写する場合、まず、第1の実施形態で説明したように、図6(a)および(b)に示すモールド30を紫外線硬化型樹脂組成物20に押し当て、単位微細パターン31を反転させた単位微細パターン31’を紫外線硬化型樹脂組成物20に一方向(図6(c)のx方向、あるいはA1方向)に沿って順次形成する。これにより1行目の単位微細パターンの転写が完了する。 When the unit fine pattern 31 is transferred without a gap in the two-dimensional space as shown in FIG. 6C, first, as described in the first embodiment, the mold 30 shown in FIGS. 6A and 6B. Is pressed against the ultraviolet curable resin composition 20, and the unit fine pattern 31 ′ obtained by inverting the unit fine pattern 31 is directed to the ultraviolet curable resin composition 20 in one direction (the x direction in FIG. 6C or the A1 direction). Are formed sequentially. Thereby, the transfer of the unit fine pattern in the first row is completed.
 その後、最初に形成した単位微細パターン31’の位置へ戻り、2行目の先頭の単位微細パターン31’が1行目の1番目および2番目の単位微細パターン31’に隣接するように行方向(図6(c)のx方向)および列方向(図6(c)のy方向)にマスターモールド30の位置をずらし、同様の工程を繰りかえすことによって、2行目、3行目・・・の単位微細パターンを転写する。 After that, returning to the position of the unit fine pattern 31 ′ formed first, the row direction is such that the first unit fine pattern 31 ′ of the second row is adjacent to the first and second unit fine patterns 31 ′ of the first row. By shifting the position of the master mold 30 in the x direction (FIG. 6C) and the column direction (y direction in FIG. 6C) and repeating the same process, the second row, the third row, etc. The unit fine pattern is transferred.
 第1の実施形態で説明したように、マスターモールド30をすでに形成された硬化領域21に隣接して紫外線硬化型樹脂組成物20に押し当てる場合、方向A1(図6(c))には、硬化領域21に対して次の領域22は、隙間なく隣接する場合、重なる場合、間隙を空けて配置される場合の3つ配置を取り得る。 As described in the first embodiment, when the master mold 30 is pressed against the ultraviolet curable resin composition 20 adjacent to the already formed cured region 21, in the direction A1 (FIG. 6C), When the next region 22 is adjacent to the cured region 21 without a gap, the next region 22 may be arranged in three cases, in the case of overlapping, or in the case of being arranged with a gap.
 一方、方向A1と垂直な方向、つまり、2行目、3行目等において、マスターモールド30をすでに形成された硬化領域21に隣接して紫外線硬化型樹脂組成物20に押し当てる場合、2-1行目、3-1行目等、直前の行の硬化領域21とは、隙間なく隣接させるか、間隙を空けて配置することが好ましい。単位微細パターン31が六角形の形状を有していることにより、ある行の単位微細パターン31’は前の行の2つの単位微細パターン31’と隣接するため、重ねて配置すると単位微細パターン31’の途中に前の行の段差が位置し、正しい単位微細パターン31’の形状を転写することが難しい場合があるからである。 On the other hand, when the master mold 30 is pressed against the ultraviolet curable resin composition 20 adjacent to the already formed cured region 21 in the direction perpendicular to the direction A1, that is, in the second row, the third row, etc., 2- It is preferable that the hardened regions 21 in the immediately preceding rows such as the first row and the 3-1 row are adjacent to each other without a gap or arranged with a gap. Since the unit fine pattern 31 has a hexagonal shape, the unit fine pattern 31 ′ in one row is adjacent to the two unit fine patterns 31 ′ in the previous row. This is because a step in the previous row is located in the middle of “and it may be difficult to transfer the shape of the correct unit fine pattern 31 ′.
 本実施形態の微細パターンの形成方法において、マスターモールド30のモールド面30aは六角形の形状を有している。これにより、第1の実施形態の種々の効果に加えて、単位微細パターン31を転写する際の泡噛みを抑制することができる。 In the fine pattern forming method of the present embodiment, the mold surface 30a of the master mold 30 has a hexagonal shape. Thereby, in addition to the various effects of 1st Embodiment, the bubble biting at the time of transferring the unit fine pattern 31 can be suppressed.
 マスターモールド30を用いてUVインプリントを行う場合、マスターモールド30のモールド面30aの面積が小さいと、シートを形成するために必要な単位微細パターン31の転写回数が多くなり、転写時のエラーが起こる確率が増大する他、タクトタイムの大幅な上昇を引き起こし、結果的にコストが増大する。このため、マスターモールド30のモールド面30aは大きいほど好ましい。しかし、モールド面30aが大きすぎる場合、泡噛みの発生確率が増大する。 When UV imprinting is performed using the master mold 30, if the area of the mold surface 30 a of the master mold 30 is small, the number of times the unit fine pattern 31 is transferred to form a sheet increases, and an error occurs during transfer. In addition to increasing the probability of occurrence, it causes a significant increase in tact time, resulting in an increase in cost. For this reason, the mold surface 30a of the master mold 30 is preferably as large as possible. However, when the mold surface 30a is too large, the occurrence probability of bubble biting increases.
 一般に、UVインプリント中、マスターモールドと紫外線硬化型樹脂組成物とが接触する際、必ず接触面で泡の抱きこみが発生する。これは、マスターモールドの平坦度をゼロにすることや、紫外線硬化型樹脂組成物を塗布する最に組成物最表面での面平坦度を0にすることができないためと考えられる。発生した泡は、マスターモールドで紫外線硬化型樹脂組成物を押圧する途中において、紫外線硬化型樹脂組成物と一緒にモールドの接触領域外に押し出される。このため、適正な転写条件下では硬化物に泡噛みが現れることなく、転写することができる。しかし、マスターモールドのモールド面を大きくしてゆくと、泡を含んだ樹脂組成物がモールドとの接触領域外まで移動するための流動距離が増大するため、泡を接触領域外まで排除することができず、泡噛みによるエラーが発生する確率が高まる。 Generally, during UV imprinting, when the master mold and the ultraviolet curable resin composition come into contact with each other, bubbles are embraced on the contact surface. This is considered to be because the flatness of the master mold cannot be reduced to zero, or the surface flatness on the outermost surface of the composition cannot be reduced to 0 when the ultraviolet curable resin composition is applied. The generated bubbles are pushed out of the contact area of the mold together with the ultraviolet curable resin composition in the course of pressing the ultraviolet curable resin composition with the master mold. For this reason, the transfer can be performed without the appearance of bubble biting on the cured product under appropriate transfer conditions. However, when the mold surface of the master mold is enlarged, the flow distance for the resin composition containing foam to move out of the contact area with the mold increases, so that the foam can be excluded out of the contact area. Unable to increase the probability of an error due to foam biting.
 この相反する課題を解決するために、本実施形態では、モールド面を六角形で構成している。図7(a)は、モールド面の面積と、樹脂が移動すべき最大流動長aとの関係を四角形と六角形で比較した図である。図7(b)、は四角形と六角形における最大流動長aの位置を示している。四角形および六角形では対角方向の距離が最も長くなり最大流動長aとなる。図7(a)からわかるように、モールド面の面積が増大するにつれて、最大流動長aは増加するが、四角形に比べて六角形の最大流動長aは、12.3%短くなる。このため、本実施形態の微細パターンの形成方法によれば、従来よりも泡噛みによる欠陥の発生を抑制し、微細構造体の微細パターンをより正確に転写することができる。 In order to solve this conflicting problem, in this embodiment, the mold surface is formed of a hexagon. FIG. 7A is a diagram in which the relationship between the area of the mold surface and the maximum flow length a to which the resin should move is compared between a square and a hexagon. FIG. 7B shows the position of the maximum flow length a in a square and a hexagon. In the square and hexagon, the diagonal distance is the longest and the maximum flow length a is obtained. As can be seen from FIG. 7A, the maximum flow length a increases as the mold surface area increases, but the hexagonal maximum flow length a is 12.3% shorter than the square. For this reason, according to the formation method of the fine pattern of this embodiment, generation | occurrence | production of the defect by bubble biting can be suppressed compared with the past, and the fine pattern of a fine structure can be transcribe | transferred more correctly.
 本実施形態の微細パターンの形成方法は、第1の実施形態と同様、たとえば、図6に示すナノインプリントシステム50を用いて実行することができる。 The fine pattern forming method of the present embodiment can be executed using, for example, the nanoimprint system 50 shown in FIG. 6 as in the first embodiment.
 (第3の実施形態)
 本発明によるモールドの実施形態を説明する。第1および第2の実施形態で説明したように本発明の微細パターンの形成方法によって種々の形状の大面積のモールドを作製することができる。以下、第1または第2の実施形態で説明した方法により作製される微細パターンを備えるローススリーブモールドおよびその製造方法を説明する。
(Third embodiment)
An embodiment of a mold according to the present invention will be described. As described in the first and second embodiments, large-area molds having various shapes can be produced by the fine pattern forming method of the present invention. The loin sleeve mold having a fine pattern manufactured by the method described in the first or second embodiment and the manufacturing method thereof will be described below.
 図8(a)に示すように、支持体として可撓性を有するロールスリーブ110を用意し、表面に紫外線硬化型樹脂組成物20を塗布する。ロールスリーブ110には、接合部を溶接と研磨によって平坦化したステンレスロールなどを用いることができる。 As shown in FIG. 8A, a flexible roll sleeve 110 is prepared as a support, and an ultraviolet curable resin composition 20 is applied to the surface. As the roll sleeve 110, a stainless steel roll whose surface is flattened by welding and polishing can be used.
 図8(b)から(i)に示すように、ロールスリーブ110に塗布された紫外線硬化型樹脂組成物20に、第1の実施形態で説明したようにマスターモールド30を繰り返し押し当て、紫外線を照射することによって、単位微細パターン31’を逐次形成する。硬化領域と次の領域とは、図4(a)、(b)および(c)に示すいずれの関係で配置されていてもよい。 As shown in FIGS. 8B to 8I, the master mold 30 is repeatedly pressed against the ultraviolet curable resin composition 20 applied to the roll sleeve 110 as described in the first embodiment, and ultraviolet rays are applied. By irradiation, unit fine patterns 31 ′ are sequentially formed. The cured region and the next region may be arranged in any relationship shown in FIGS. 4 (a), (b), and (c).
 図8(i)に示すように、ロールスリーブ110に塗布された紫外線硬化型樹脂組成物20全体に単位微細パターン31’を形成した後、未硬化の紫外線硬化型樹脂組成物20をエタノール等の有機溶剤で洗い流すことにより、ロールスリーブ110上に微細パターンが表面に形成された微細構造体141が得られる。 As shown in FIG. 8 (i), after the unit fine pattern 31 ′ is formed on the entire ultraviolet curable resin composition 20 applied to the roll sleeve 110, the uncured ultraviolet curable resin composition 20 is made of ethanol or the like. By washing away with an organic solvent, a fine structure 141 having a fine pattern formed on the surface of the roll sleeve 110 is obtained.
 微細構造体141の微細パターンの表面に、蒸着やメッキなどによって金属薄膜を形成することによって、図9(a)に示すロールスリーブモールド142が得られる。あるいは、微細構造体141をシリコーンに転写することによってロールスリーブモールドを作製してもよい。 A roll sleeve mold 142 shown in FIG. 9A is obtained by forming a metal thin film on the surface of the fine pattern of the fine structure 141 by vapor deposition or plating. Alternatively, a roll sleeve mold may be manufactured by transferring the fine structure 141 to silicone.
 ロールスリーブモールド142は、ロールスリーブ110とロールスリーブ110に支持される樹脂硬化層20’とからなる微細構造体141を含み、樹脂硬化層20’の表面には複数の単位微細パターン31’が形成されている。上述したように複数の単位微細パターン31’の配置は、図4(a)、(b)および(c)に示すいずれであってもよいが、微細構造体141は、図4(b)に示す微細構造体42であることが好ましい。 The roll sleeve mold 142 includes a microstructure 141 including a roll sleeve 110 and a cured resin layer 20 ′ supported by the roll sleeve 110, and a plurality of unit fine patterns 31 ′ are formed on the surface of the cured resin layer 20 ′. Has been. As described above, the arrangement of the plurality of unit fine patterns 31 ′ may be any of those shown in FIGS. 4A, 4B, and 4C, but the fine structure 141 is shown in FIG. The microstructure 42 shown is preferable.
 図9(b)は、ロールスリーブモールド142を用いて紫外線硬化型樹脂組成物220にパターンを転写する様子を示している。まず、支持体210上に紫外線硬化型樹脂組成物220を塗布する。ロールスリーブモールド142は補助ロール201およびプレスロール202によって支持され、プレスロール202によってロールスリーブモールド142の表面が支持体210上の紫外線硬化型樹脂組成物220に押し付けられるように保持される。 FIG. 9B shows how the pattern is transferred to the ultraviolet curable resin composition 220 using the roll sleeve mold 142. First, the ultraviolet curable resin composition 220 is applied on the support 210. The roll sleeve mold 142 is supported by the auxiliary roll 201 and the press roll 202, and is held by the press roll 202 so that the surface of the roll sleeve mold 142 is pressed against the ultraviolet curable resin composition 220 on the support 210.
 支持体210をロールスリーブモールド142の回転に同期して移動させ、たとえば、支持体210側からプレスロール202近傍にのみ紫外線ランプ203による紫外線を照射する。これにより、プレスロール202の押圧によって、ロールスリーブモールド142の微細パターンが紫外線硬化型樹脂組成物220に逐次転写され、転写された状態で紫外線が照射される。このため、支持体210の移動に伴い、微細パターンが転写された樹脂硬化層220’が逐次生成する。 The support 210 is moved in synchronization with the rotation of the roll sleeve mold 142, and, for example, ultraviolet rays from the ultraviolet lamp 203 are irradiated only from the support 210 side to the vicinity of the press roll 202. Thereby, the fine pattern of the roll sleeve mold 142 is sequentially transferred to the ultraviolet curable resin composition 220 by the pressing of the press roll 202, and ultraviolet rays are irradiated in the transferred state. For this reason, as the support 210 moves, the cured resin layer 220 ′ to which the fine pattern has been transferred is sequentially generated.
 図10(a)は、プレスロール202近傍を拡大して示す図である。また、図10(b)は、ロールスリーブモールド142と紫外線硬化型樹脂組成物220とが接する部分を拡大して示している。 FIG. 10A is an enlarged view showing the vicinity of the press roll 202. Moreover, FIG.10 (b) has expanded and shown the part which the roll sleeve mold 142 and the ultraviolet curable resin composition 220 contact | connect.
 ロールスリーブモールド142の微細構造体141が図4(b)で示す微細構造体42である場合、図4(a)に示すように各単位微細パターン31’の表面31’aは、支持体10の表面10aに対し、平行ではなく斜めになっている。また、単位微細パターン31’の表面31’aと隣接する単位微細パターン31’の表面31’aとの間には段差zが形成されている。このため図10(b)に示すように、ロールスリーブモールド142が紫外線硬化型樹脂組成物220に接する際、各単位微細パターン31’が転写された領域において、支持体210の進行方向(x方向)に厚さが、AxからAyへ変化している。このため、紫外線硬化型樹脂組成物220に対して、押出し力Pxが働く。このPxが存在することにより、紫外線硬化型樹脂組成物220の流動性が向上する。たとえば、ダストや、微細構造の形成不良、離型剤のムラなど、種々の要因によって、ロールスリーブモールド表面の特定の点に樹脂組成物がトラップされても、あるいは、気泡が生じ樹脂組成物が充填されていない点が生じても、押出し力によって樹脂を充填させることができる。よって、欠陥の少ない転写を行うことができ、欠陥の少ない微細パターンが転写された樹脂硬化層220’を得ることができる。 When the fine structure 141 of the roll sleeve mold 142 is the fine structure 42 shown in FIG. 4B, the surface 31′a of each unit fine pattern 31 ′ is formed on the support 10 as shown in FIG. It is not parallel but inclined with respect to the surface 10a. Further, a step z is formed between the surface 31'a of the unit fine pattern 31 'and the surface 31'a of the adjacent unit fine pattern 31'. For this reason, as shown in FIG. 10B, when the roll sleeve mold 142 is in contact with the ultraviolet curable resin composition 220, in the region where each unit fine pattern 31 ′ is transferred, the traveling direction of the support 210 (x direction) ) Has changed from Ax to Ay. For this reason, the extrusion force Px acts on the ultraviolet curable resin composition 220. The presence of this Px improves the fluidity of the ultraviolet curable resin composition 220. For example, even if the resin composition is trapped at a specific point on the surface of the roll sleeve mold due to various factors such as dust, formation of a fine structure, and unevenness of the release agent, bubbles are generated and the resin composition is Even if an unfilled point occurs, the resin can be filled by an extrusion force. Therefore, transfer with few defects can be performed, and a cured resin layer 220 'to which a fine pattern with few defects is transferred can be obtained.
 (第4の実施形態)
 本発明による光学シートの実施形態を説明する。
(Fourth embodiment)
An embodiment of an optical sheet according to the present invention will be described.
 図11(a)および(b)は光学シート242の平面図および断面図である。光学シート242は、支持体210および支持体210上に配置された樹脂硬化層220’を備える。樹脂硬化層220’の表面には複数の単位微細パターン31’が形成されている。単位微細パターン31’は正方形の形状を有している。複数の単位微細パターン31’は、たとえば、間隔Aで2次元に配置されている。このような光学シート242は、たとえば、第1の実施形態で説明した微細パターンの形成方法および第2の実施形態で説明したロールスリーブモールドを用いて製造することができる。 11A and 11B are a plan view and a cross-sectional view of the optical sheet 242. FIG. The optical sheet 242 includes a support 210 and a cured resin layer 220 ′ disposed on the support 210. A plurality of unit fine patterns 31 ′ are formed on the surface of the cured resin layer 220 ′. The unit fine pattern 31 'has a square shape. The plurality of unit fine patterns 31 ′ are two-dimensionally arranged at intervals A, for example. Such an optical sheet 242 can be manufactured using, for example, the fine pattern forming method described in the first embodiment and the roll sleeve mold described in the second embodiment.
 単位微細パターン31’の大きさは、マスターモールドを安価に製造できるサイズ、1回の転写でマスターモールドの単位微細パターンが正しく転写できる転写率、形成すべき光学シートの大きさなどに依存する。また、紫外線照射型インプリント装置がマスターモールドを高い位置合わせ精度で移動させることができ、大きな圧力で紫外線硬化型樹脂組成物に押下できるほど、単位微細パターン31’を大きくすることができる。 The size of the unit fine pattern 31 ′ depends on the size at which the master mold can be manufactured at a low cost, the transfer rate at which the unit fine pattern of the master mold can be correctly transferred by one transfer, the size of the optical sheet to be formed, and the like. Further, the unit irradiation pattern 31 'can be enlarged as the ultraviolet irradiation type imprint apparatus can move the master mold with high alignment accuracy and can be pressed down to the ultraviolet curable resin composition with a large pressure.
 図9(b)に示すように、樹脂硬化層220’において、各単位微細パターン31’の上面31’aは、支持体210の表面220aと非平行である。隣接する単位微細パターン31’の上面31’a間には段差zが生じている。このような構造は、たとえば、第2の実施形態で説明したロールスリーブモールドを用いて製造することができる。段差zは光学シート242の仕様に応じて決定される。 As shown in FIG. 9B, in the resin cured layer 220 ′, the upper surface 31 ′ a of each unit fine pattern 31 ′ is not parallel to the surface 220 a of the support 210. A step z is formed between the upper surfaces 31'a of the adjacent unit fine patterns 31 '. Such a structure can be manufactured using, for example, the roll sleeve mold described in the second embodiment. The level difference z is determined according to the specifications of the optical sheet 242.
 図12(a)および(b)は、他の光学シート242の平面図および断面図である。図12(a)および(b)に示すシート242において、単位微細パターン31’は正六角形の形状を有している。その他の構造は、図11(a)および(b)に示す光学シート242と同じである。 FIGS. 12A and 12B are a plan view and a cross-sectional view of another optical sheet 242. FIG. In the sheet 242 shown in FIGS. 12A and 12B, the unit fine pattern 31 'has a regular hexagonal shape. Other structures are the same as those of the optical sheet 242 shown in FIGS.
 図13(a)および(b)は、他の形態を有する光学シート241の平面図および断面図である。光学シート242は、支持体210および支持体210上に配置された樹脂硬化層220’を備える。樹脂硬化層220’において、各単位微細パターン31aは隣接する単位微細パターン31’との間に空隙を設けることなく配置されている。このため、各単位微細パターン31’の上面31’aは、支持体210の表面220aと平行である。単位微細パターン31’は正方形の形状を有している。 FIGS. 13A and 13B are a plan view and a cross-sectional view of an optical sheet 241 having another form. The optical sheet 242 includes a support 210 and a cured resin layer 220 ′ disposed on the support 210. In the resin cured layer 220 ', each unit fine pattern 31a is arranged without providing a gap between the adjacent unit fine patterns 31'. Therefore, the upper surface 31 ′ a of each unit fine pattern 31 ′ is parallel to the surface 220 a of the support 210. The unit fine pattern 31 'has a square shape.
 このような構造を有する光学シート241は、単位微細パターン31’が図4(a)に示すように配置された微細構造体を有するモールドを用いることによって製造することができる。 The optical sheet 241 having such a structure can be manufactured by using a mold having a fine structure in which unit fine patterns 31 ′ are arranged as shown in FIG.
 図14(a)および(b)は、更に他の形態を有する光学シート241の平面図および断面図である。単位微細パターン31’が正六角形の形状を有していることを除けば、図13(a)および(b)に示す光学シート242と同じである。 FIGS. 14A and 14B are a plan view and a cross-sectional view of an optical sheet 241 having still another form. Except that the unit fine pattern 31 ′ has a regular hexagonal shape, it is the same as the optical sheet 242 shown in FIGS. 13A and 13B.
 (実験例)
 本発明の微細パターンの形成方法の実施形態による効果を確認するために、実験を行った。以下、実験及びその結果を説明する。
(Experimental example)
An experiment was conducted to confirm the effect of the embodiment of the fine pattern forming method of the present invention. Hereinafter, experiments and results will be described.
 (実験例1)
 まず、マスターモールドを紫外線硬化型樹脂組成物に押し当てた場合において形成される盛り上がり部が硬化しない条件を求めた。
(Experimental example 1)
First, the conditions under which the raised portion formed when the master mold was pressed against the ultraviolet curable resin composition were not cured were determined.
 図15(a)に示すように、支持体310上にスピンコートによって、紫外線硬化型樹脂組成物320を塗布した。スピンコートの条件を変更することにより紫外線硬化型樹脂組成物320の厚さtを変化させた。紫外線硬化型樹脂組成物320には、酸素阻害性のある東洋合成製PAK01-200を用いた。マスターモールド330は、0.5mmの厚さを有する板ガラス上に0.6μmの厚さを有するSiO2層を堆積し、一辺が8mmの矩形形状に加工した。エッジ端面はレジンブレードでダイシングすることによって、エッジのチッピが1μm以下となるように加工した。 As shown in FIG. 15A, the ultraviolet curable resin composition 320 was applied on the support 310 by spin coating. The thickness t of the ultraviolet curable resin composition 320 was changed by changing the spin coating conditions. As the ultraviolet curable resin composition 320, PAK01-200 manufactured by Toyo Gosei Co., Ltd. having oxygen inhibition properties was used. In the master mold 330, a SiO 2 layer having a thickness of 0.6 μm was deposited on a plate glass having a thickness of 0.5 mm, and processed into a rectangular shape having a side of 8 mm. The edge end face was processed by dicing with a resin blade so that the chip of the edge was 1 μm or less.
 次に、図15(b)に示すように、マスターモールド330を紫外線硬化型樹脂組成物320に押し当て、紫外線を照射して硬化させた。インプリント装置にはエンジニアリングシステム株式会社製ナノインプリント装置EUN-4200を用いた。光源にはナノインプリント装置に付属しているUV-LED光源(波長375nm/紫外線強度2.57mW/cm2)を用い、紫外線硬化型樹脂組成物320に60秒間紫外線を照射することにより硬化を行った。転写圧力は2.26N/mm2で行った。離型剤には3M社製EGC1720を用いた。硬化は、酸素を0.5、10、15、20.6体積%の割合で含む雰囲気下でそれぞれ行った。 Next, as shown in FIG. 15 (b), the master mold 330 was pressed against the ultraviolet curable resin composition 320 and cured by irradiation with ultraviolet rays. As the imprint apparatus, Nanoimprint apparatus EUN-4200 manufactured by Engineering System Co., Ltd. was used. The UV-LED light source (wavelength 375 nm / ultraviolet light intensity 2.57 mW / cm 2 ) attached to the nanoimprint apparatus was used as the light source, and curing was performed by irradiating the ultraviolet curable resin composition 320 with ultraviolet light for 60 seconds. . The transfer pressure was 2.26 N / mm 2 . EGC1720 manufactured by 3M was used as the mold release agent. Curing was performed in an atmosphere containing oxygen at a ratio of 0.5, 10, 15, 20.6% by volume.
 図15(c)に示すように、マスターモールド330を引き上げた後、未硬化の紫外線硬化型樹脂組成物320をエタノールで除去し、盛り上がり量Dおよびマスターモールド330が接していた部分厚さt’をレーザー顕微鏡を用いて測定した。 As shown in FIG. 15 (c), after pulling up the master mold 330, the uncured ultraviolet curable resin composition 320 is removed with ethanol, and the rising amount D and the partial thickness t ′ where the master mold 330 is in contact with each other. Was measured using a laser microscope.
 押出し樹脂体積は、マスターモールド330の面積をAとして、A×(t-t’)によって求めた。図16に、盛り上がり量Dと押出し樹脂体積との関係を示す。 The extruded resin volume was determined by A × (t−t ′), where A is the area of the master mold 330. FIG. 16 shows the relationship between the swell amount D and the extruded resin volume.
 図16から分かるように、紫外線照射時の雰囲気に酸素が15体積%以上含まれると、盛り上がり量Dを抑制する効果が顕著に現れる。また、酸素の含有量が20.6体積%であれば、押出し樹脂体積が0.001cm3であっても、盛り上がり量Dをほとんどゼロにすることができる。これらの結果から、雰囲気中の酸素濃度および紫外線硬化型樹脂組成物320の厚さtを調整することによって、盛り上がり量Dを制御できることが分かる。 As can be seen from FIG. 16, when the atmosphere during ultraviolet irradiation contains 15% by volume or more of oxygen, the effect of suppressing the swell amount D appears significantly. Further, if the oxygen content is 20.6% by volume, even if the extruded resin volume is 0.001 cm 3 , the swell amount D can be made almost zero. From these results, it can be seen that the swell amount D can be controlled by adjusting the oxygen concentration in the atmosphere and the thickness t of the ultraviolet curable resin composition 320.
 (実験例2)
 次に、実際にランダムな微細パターンを有するマスターモールドを用い、第1の実施形態で説明したように、硬化領域と次の領域とが重なるようにマスターモールドを紫外線硬化型樹脂組成物に押し当てて微細パターンを形成し、評価を行った。
(Experimental example 2)
Next, a master mold having a random fine pattern is actually used, and as described in the first embodiment, the master mold is pressed against the ultraviolet curable resin composition so that the cured region and the next region overlap. Then, a fine pattern was formed and evaluated.
 図15(a)に示すように、支持体310として250μmの厚さを有するPETフィルム(東洋紡製コスモシャイン両面易接着処理)を用いた。このPETフィルムの易接着面に、スピンコートで紫外線硬化型樹脂組成物320を塗布した。紫外線硬化型樹脂組成物320の厚さは300nmであった。本実験例では支持体310は板形状を有しているが、所望の構造が得られれば、スリーブロールを支持体として用いてもよい。紫外線硬化型樹脂組成物320には、酸素阻害性のある東洋合成製PAK01-200を用いた。 As shown in FIG. 15 (a), a PET film (Toyobo Cosmo Shine double-sided easy adhesion treatment) having a thickness of 250 μm was used as the support 310. The UV curable resin composition 320 was applied to the easily adhesive surface of the PET film by spin coating. The thickness of the ultraviolet curable resin composition 320 was 300 nm. In this experimental example, the support 310 has a plate shape, but a sleeve roll may be used as the support as long as a desired structure is obtained. As the ultraviolet curable resin composition 320, PAK01-200 manufactured by Toyo Gosei Co., Ltd. having oxygen inhibition properties was used.
 マスターモールド330は、0.5mmの厚さを有する板ガラス上に0.6μmの厚さを有するSiO2層を堆積し、リソグラフィとエッチングによってSiO2層に多段の微細加工を施し、三次元ランダム構造を形成した。また、マスターモールドは約8mm角の正方形状を有し、エッジ端面はレジンブレードでダイシングすることによってチッピングレスに加工した。 The master mold 330 is a three-dimensional random structure in which a SiO 2 layer having a thickness of 0.6 μm is deposited on a plate glass having a thickness of 0.5 mm, and multi-stage fine processing is performed on the SiO 2 layer by lithography and etching. Formed. The master mold had a square shape of about 8 mm square, and the edge end face was processed without chipping by dicing with a resin blade.
 インプリント装置にはエンジニアリングシステム株式会社製ナノインプリント装置EUN-4200を用い、ステップ&リピートが可能なステージを取り付けた。マスターモールドは、紫外線を透過する両面テープを用いて石英天板に固定し、石英天板をナノインプリント装置に固定した。光源にはナノインプリント装置に付属しているUV-LED光源(波長375nm/紫外線強度2.57mW/cm2)を用い、紫外線硬化型樹脂組成物320に60秒間紫外線を照射することにより硬化を行った。転写圧力は2.26N/mm2で行った。離型剤には3M社製EGC1720を用いた。転写は大気雰囲気下(酸素濃度20.6%)で転写を行った。 As the imprint apparatus, a nanoimprint apparatus EUN-4200 manufactured by Engineering System Co., Ltd. was used, and a stage capable of step-and-repeat was attached. The master mold was fixed to the quartz top plate using a double-sided tape that transmits ultraviolet rays, and the quartz top plate was fixed to the nanoimprint apparatus. The UV-LED light source (wavelength 375 nm / ultraviolet light intensity 2.57 mW / cm 2 ) attached to the nanoimprint apparatus was used as the light source, and curing was performed by irradiating the ultraviolet curable resin composition 320 with ultraviolet light for 60 seconds. . The transfer pressure was 2.26 N / mm 2 . EGC1720 manufactured by 3M was used as the mold release agent. The transfer was performed in an air atmosphere (oxygen concentration 20.6%).
 この条件でマスターモールド330の単位微細パターンを1回転写した後、第1の実施形態で説明したように、次の領域が硬化領域の一部と重なるように複数回単位微細パターンを転写した。重ね合わせ量は約20μmであった。転写後エタノールで未硬化の紫外線硬化型樹脂組成物320を除去し、自然乾燥させた。 After the unit fine pattern of the master mold 330 was transferred once under these conditions, the unit fine pattern was transferred a plurality of times so that the next region overlaps a part of the cured region as described in the first embodiment. The overlapping amount was about 20 μm. After the transfer, the uncured ultraviolet curable resin composition 320 was removed with ethanol and allowed to dry naturally.
 転写後に境界部の構造をキーエンス製レーザー顕微鏡VK9700を用いて撮影した。転写される微細パターンがランダムな形状を有しているため以下の方法によって転写率を求めた。まず、画像処理により、作成した微細構造体の隣接する2つの単位微細パターンの境界付近において、最小加工寸法以外の領域を抽出し、その面積を積算した。次にマスターモールドの単位微細パターンの中心付近において同様に積算面積を求め、マスターモールドの積算面積に対する境界付近の積算面積の割合を転写率とした。比較のために、従来として、重ね合わせ量を100μmに設定し、酸素を含まない窒素雰囲気下において紫外線を照射させ単位微細パターンを転写した試料も作製し、同様の方法によって転写率を求めた。 After the transfer, the structure of the boundary portion was photographed using a Keyence laser microscope VK9700. Since the fine pattern to be transferred has a random shape, the transfer rate was determined by the following method. First, areas other than the minimum processing dimension were extracted near the boundary between two adjacent unit fine patterns of the created fine structure by image processing, and the areas were integrated. Next, the integrated area was similarly determined in the vicinity of the center of the unit fine pattern of the master mold, and the ratio of the integrated area near the boundary to the integrated area of the master mold was taken as the transfer rate. For comparison, a sample in which a unit fine pattern was transferred by irradiating ultraviolet rays in a nitrogen atmosphere containing no oxygen and producing a unit fine pattern was prepared, and the transfer rate was determined by the same method.
 図17に、マスターモールドの単位微細パターンの中心部分のレーザー顕微鏡像、ならびに、従来例および実施例において、隣接する2つの単位微細パターンの境界付近のレーザー顕微鏡像を示す。また、それぞれの像の下に、欠陥を抽出した画像を示す。欠陥を抽出した画像において黒く示される部分が、最小加工寸法以外の領域を示している。この黒色部がモールドに対して多いほど、転写不良が多く発生していることを示している。また図18に各サンプルの転写率を示す。測定は各サンプル5点で評価した。 FIG. 17 shows a laser microscope image of the center part of the unit fine pattern of the master mold and a laser microscope image near the boundary between two adjacent unit fine patterns in the conventional example and the example. Moreover, the image which extracted the defect is shown under each image. A portion shown in black in the image from which the defect is extracted indicates a region other than the minimum processing size. It indicates that the more black portions are on the mold, the more transfer defects are generated. FIG. 18 shows the transfer rate of each sample. The measurement was evaluated at 5 points for each sample.
 図17および図18より、従来例の試料では、転写率も低く、かつ転写率のバラツキも大きいことが分かる。これに対し、実施例の試料では転写率が高く、また、転写率のバラつきも小さい。これは、酸素を含む雰囲気下で転写を行うことにより、隣接する単位微細パターンとの境界付近において、盛り上がり部の硬化に起因する転写不良およびバラツキが大きく抑制されていることを示している。 17 and 18, it can be seen that the conventional sample has a low transfer rate and a large variation in the transfer rate. On the other hand, the transfer rate of the sample of the example is high and the transfer rate variation is small. This indicates that the transfer failure and the variation due to the hardening of the raised portion are greatly suppressed near the boundary with the adjacent unit fine pattern by performing the transfer in an atmosphere containing oxygen.
 (実験例3)
 酸素が0.5体積%含まれる雰囲気下で転写を行った場合に生じる盛り上がり部を評価した。転写時の雰囲気として、酸素が0.5体積%含まれる雰囲気を用い、マスターモールド330を一度だけ転写させたことを除いて実験例2と同じ条件で微細パターンを形成し、レーザー顕微鏡で評価を行った。図19(a)にレーザー顕微鏡像を示す。また、図19(a)の直線aにおける断面プロファイルを図19(b)に示す。
(Experimental example 3)
The raised portion produced when the transfer was performed in an atmosphere containing 0.5% by volume of oxygen was evaluated. Using an atmosphere containing 0.5% by volume of oxygen as the atmosphere at the time of transfer, a fine pattern was formed under the same conditions as in Experimental Example 2 except that the master mold 330 was transferred only once and evaluated with a laser microscope. went. FIG. 19A shows a laser microscope image. FIG. 19B shows a cross-sectional profile along the straight line a in FIG.
 図19(a)および(b)に示すように、転写時の雰囲気に含まれる酸素が少ない場合、盛り上がり部の硬化が十分には抑制できない。このため、転写された単位微細パターンに隣接して数μmの盛り上がり部が生じている。このように盛り上がり部が硬化する場合、転写した単位微細パターンに隣接して次の単位微細パターンを形成するのは困難と成ることが分かる。 As shown in FIGS. 19A and 19B, when the oxygen contained in the atmosphere at the time of transfer is small, curing of the raised portion cannot be sufficiently suppressed. For this reason, a raised portion of several μm is generated adjacent to the transferred unit fine pattern. In this way, when the raised portion is cured, it is difficult to form the next unit fine pattern adjacent to the transferred unit fine pattern.
 (実験例4)
 第2の実施形態の方法により、微細パターンを作製した実験例を説明する。
(Experimental example 4)
An experimental example in which a fine pattern is produced by the method of the second embodiment will be described.
 支持体10として、250μmの厚さを有するPETフィルム(東洋紡製コスモシャイン両面易接着処理)を用いた。スピンコートによって、この支持体10の易接着面に紫外線硬化型樹脂組成物を塗布した。本実験ではスリーブを用いなかったが、所望の構造が得られれば、スリーブロールを支持体として用いてもよい。紫外線硬化型樹脂組成物には酸素阻害性を有し、薄膜形成に適した低粘度に調製することが可能な、ダイセル化学工業製NIAC23を用いた。紫外線硬化型樹脂組成物の厚さは、スピンコートの回転数を調整し、約300nmとした。使用したマスターモールド30は0.5mm厚の白板ガラス上にSiO2を0.6μm堆積し、その後、形成したSiO2の膜に、リソグラフィとエッチングによる多段微細加工を施し、三次元ランダム構造を有する単位微細パターン31を形成した。本実施例では、支持体10上に形成する単位微細パターン31’は三次元のランダムな構造であればよいため、特に転写する単位微細パターン31と形成される単位微細パターン31’を考慮しなかった。しかし、必要に応じて、支持体10上に形成すべき単位微細パターン31’を反転させたパターンを単位微細パターン31としてマスターモールド30に形成することが好ましい。 As the support 10, a PET film (Toyobo Cosmo Shine double-sided easy adhesion treatment) having a thickness of 250 μm was used. The ultraviolet curable resin composition was applied to the easily adhesive surface of the support 10 by spin coating. In this experiment, a sleeve was not used, but a sleeve roll may be used as a support if a desired structure is obtained. The UV curable resin composition used was NIAC23 manufactured by Daicel Chemical Industries, which has oxygen-inhibiting properties and can be prepared to have a low viscosity suitable for thin film formation. The thickness of the ultraviolet curable resin composition was about 300 nm by adjusting the rotation speed of the spin coat. The master mold 30 used has a three-dimensional random structure by depositing 0.6 μm of SiO 2 on a 0.5 mm thick white glass, and then subjecting the formed SiO 2 film to multistage fine processing by lithography and etching. A unit fine pattern 31 was formed. In the present embodiment, the unit fine pattern 31 ′ formed on the support 10 may be a three-dimensional random structure, and therefore, the unit fine pattern 31 to be transferred and the unit fine pattern 31 ′ to be formed are not considered. It was. However, it is preferable to form a pattern obtained by inverting the unit fine pattern 31 ′ to be formed on the support 10 as the unit fine pattern 31 in the master mold 30 as necessary.
 その後、フォトリソグラフィによって、六角形の形状を有するパターンのレジストを単位微細パターン31上に形成し、レジストをマスクとし、ECRによってSiO2の膜をエッチングし、六角形の段差形状を有するモールド面30aを形成した。このエッチングはウェットプロセスで行ってもよい。ただし、この場合、段差形状を形成すべき位置に単位微細パターン31の端部が位置しないことが好ましい。段差形状を形成すべき位置に単位微細パターン31の端部が位置する場合、単位微細パターン31の表面からエッチングが進行するため、エッジ部において微細構造が反映され、エッジのラフネスが増大する。この場合、単位微細パターン31の転写時に樹脂組成物の盛り上がりの量がエッジの位置によって異なり、酸素阻害の影響が弱い領域が発生することによって、盛り上がり部が部分的に硬化し、継ぎ目において転写不良が発生し得る。 Thereafter, a resist having a hexagonal pattern is formed on the unit fine pattern 31 by photolithography, the SiO 2 film is etched by ECR using the resist as a mask, and a mold surface 30a having a hexagonal step shape is formed. Formed. This etching may be performed by a wet process. However, in this case, it is preferable that the end of the unit fine pattern 31 is not located at the position where the step shape is to be formed. When the end of the unit fine pattern 31 is located at the position where the step shape is to be formed, the etching proceeds from the surface of the unit fine pattern 31, so that the fine structure is reflected at the edge and the roughness of the edge increases. In this case, when the unit fine pattern 31 is transferred, the amount of swelling of the resin composition varies depending on the position of the edge, and a region where the influence of oxygen inhibition is weak is generated. Can occur.
 インプリント装置には、エンジニアリングシステム株式会社製ナノインプリント装置EUN-4200を用い、ステップ&リピートが可能なステージを取り付けた。マスターモールドは、紫外線を透過する両面テープを用いて石英天板に固定し、石英天板をナノインプリント装置に固定した。光源にはナノインプリント装置に付属しているUV-LED光源(波長375nm/紫外線強度2.57mW/cm2)を用い、紫外線硬化型樹脂組成物20に60秒間紫外線を照射することにより硬化を行った。転写圧力は2.26N/mm2で行った。離型剤には3M社製EGC1720を用いた。転写は大気雰囲気下(酸素濃度20.6%)で転写を行った。この条件で、単位微細パターン31を一回転写した後、ステップ&リピートによって、単位微細パターン31を繰り返し転写した。二回目以降の転写の重ね合わせ量は約20μmとした。インプリント後、エタノールで未硬化樹脂を洗浄し、エアブローで乾燥した。 As the imprint apparatus, a nanoimprint apparatus EUN-4200 manufactured by Engineering System Co., Ltd. was used and a stage capable of step-and-repeat was attached. The master mold was fixed to the quartz top plate using a double-sided tape that transmits ultraviolet rays, and the quartz top plate was fixed to the nanoimprint apparatus. The UV-LED light source (wavelength 375 nm / ultraviolet intensity 2.57 mW / cm 2 ) attached to the nanoimprint apparatus was used as the light source, and curing was performed by irradiating the ultraviolet curable resin composition 20 with ultraviolet rays for 60 seconds. . The transfer pressure was 2.26 N / mm 2 . EGC1720 manufactured by 3M was used as the mold release agent. The transfer was performed in an air atmosphere (oxygen concentration 20.6%). Under this condition, the unit fine pattern 31 was transferred once, and then the unit fine pattern 31 was repeatedly transferred by step & repeat. The overlapping amount of the transfer after the second time was about 20 μm. After imprinting, the uncured resin was washed with ethanol and dried by air blow.
 その後、窒素雰囲気下で支持体10の全領域にわたって紫外線を照射し、60℃でアフターベークを行い、樹脂を完全に硬化させた。これにより、単位微細パターン31’が二次元に配列され、転写された樹脂硬化層が支持体上に設けられたシート状のモールドを得た。 Thereafter, the entire region of the support 10 was irradiated with ultraviolet rays in a nitrogen atmosphere and afterbaked at 60 ° C. to completely cure the resin. Thus, a sheet-like mold was obtained in which the unit fine patterns 31 ′ were two-dimensionally arranged and the transferred resin cured layer was provided on the support.
 その後円筒状の専用の容器の外側面に、作製したシート状のモールドを貼り付けた。次に、シート状モールドを貼り付けた円筒容器よりも大きな直径の円筒容器を用意し、この大直径の円筒容器内部にシート状モールドを貼り付けた円筒容器を配置し、シート状のモールドと円筒容器の間にシリコーン樹脂(信越化学工業製SIM260)を充填し、硬化させた。これにより、表面に単位微細パターン31’が転写されたシリコーン樹脂の層を有するロールスリーブモールドを得た。さらに、シリコーン樹脂の層の表面にニッケルめっきを施すことによって、単位微細パターン31’が二次元的に表面に配列されたロールスリーブモールドを得た。このロールスリーブモールドを用いてロールトゥロール工法により、微細構造を有する大面積シートを作製した。尚、今回の手法に限らず、シート状モールドに対して直接高硬度の薄膜コーティング(例えばダイヤモンドライクカーボンコーティング)を施したものをスリーブモールドとしても良いし、スリーブ内部にステップアンドリピートにより構造を作製し、それに対して直接ニッケルめっきを施しても良い。本実施形態の微細パターンの形成方法によってロールシートを作製することにより、高品質、低コストで三次元微細構造を有する光学シートを提供することができる。 After that, the produced sheet-like mold was attached to the outer surface of the cylindrical dedicated container. Next, a cylindrical container having a larger diameter than the cylindrical container on which the sheet-shaped mold is attached is prepared, and the cylindrical container on which the sheet-shaped mold is attached is disposed inside the large-diameter cylindrical container. A silicone resin (SIM260 manufactured by Shin-Etsu Chemical Co., Ltd.) was filled between the containers and cured. As a result, a roll sleeve mold having a silicone resin layer on which the unit fine pattern 31 ′ was transferred was obtained. Further, the surface of the silicone resin layer was plated with nickel to obtain a roll sleeve mold in which the unit fine patterns 31 'were two-dimensionally arranged on the surface. By using this roll sleeve mold, a large area sheet having a fine structure was produced by a roll-to-roll method. In addition to the current method, a sheet mold that is directly coated with a high-hardness thin film coating (for example, diamond-like carbon coating) may be used as a sleeve mold, or a structure is produced by step-and-repeat inside the sleeve. However, nickel plating may be directly applied thereto. By producing a roll sheet by the fine pattern forming method of the present embodiment, an optical sheet having a three-dimensional microstructure can be provided with high quality and low cost.
 本願に開示された微細パターンの形成方法は、大面積の微細パターンの形成に好適に用いられ、反射防止、出射効率向上、配光特性の向上等に用いられる光学シートや、その他の種々の用途に用いられる微細パターンの形成、あるいは、これら形成するためのモールドの作製に好適に用いられる。 The method for forming a fine pattern disclosed in the present application is suitably used for forming a fine pattern of a large area, an optical sheet used for preventing reflection, improving emission efficiency, improving light distribution characteristics, and other various uses. It is suitably used for forming a fine pattern used in the above, or for producing a mold for forming these.
 10、110、210  支持体
 20、220  紫外線硬化型樹脂組成物
 21  硬化領域
 22  次の領域
 30  マスターモールド
 31  単位微細パターン
 40、41、42、43、141  微細構造体
 50  ナノインプリントシステム
 51  グローブボックス
 52  紫外線照射型インプリント装置
 53  露光時間調節コントローラ
 54  XYステージコントローラ
 55  酸素濃度計
 56  基板チャック用真空ポンプ
 201 補助ロール
 202 プレスロール
 241、242  光学シート
10, 110, 210 Support 20, 220 UV curable resin composition 21 Curing region 22 Next region 30 Master mold 31 Unit fine pattern 40, 41, 42, 43, 141 Microstructure 50 Nanoimprint system 51 Glove box 52 UV Irradiation type imprint apparatus 53 Exposure time adjustment controller 54 XY stage controller 55 Oxygen concentration meter 56 Vacuum pump for substrate chuck 201 Auxiliary roll 202 Press roll 241 242 Optical sheet

Claims (8)

  1.  酸素阻害性を有する紫外線硬化型樹脂組成物を支持体の表面に配置する工程(A)と、
     単位微細パターンが形成されたモールド面を有するマスターモールドを、前記モールド面と前記紫外線硬化型樹脂組成物とが接触するように前記紫外線硬化型樹脂組成物に押し付ける工程(B)と、
     前記マスターモールドが押し付けられた状態で、酸素を含む雰囲気下において、前記紫外線硬化型樹脂組成物に紫外線を照射することにより、前記紫外線硬化型樹脂組成物のうち少なくとも前記単位微細パターンが転写された領域を硬化させる工程(C)と、
     前記マスターモールドを前記紫外線硬化型樹脂組成物から分離させる工程(D)と、
     前記紫外線硬化型樹脂組成物のうち、前記単位微細パターンが転写された前記硬化領域以外の未硬化領域を含む次の領域において、前記工程(B)、(C)および(D)を含む単位転写工程を1回以上繰り返す工程(E)と、
     前記紫外線硬化型樹脂組成物のうち、未硬化の部分を除去する工程(F)と、
    を包含し、
     前記工程(E)において、前記次の領域は、前記硬化領域の一部と重なっており、
     前記工程(E)における工程(B)において、前記マスターモールドの前記単位微細パターンには前記紫外線硬化型樹脂組成物が略充填されている微細パターンの形成方法。
    A step (A) of disposing an ultraviolet curable resin composition having oxygen inhibition properties on the surface of the support;
    A step (B) of pressing a master mold having a mold surface on which a unit fine pattern is formed against the ultraviolet curable resin composition so that the mold surface and the ultraviolet curable resin composition are in contact with each other;
    In a state where the master mold is pressed, at least the unit fine pattern of the ultraviolet curable resin composition is transferred by irradiating the ultraviolet curable resin composition with ultraviolet rays in an atmosphere containing oxygen. A step (C) of curing the region;
    Separating the master mold from the ultraviolet curable resin composition (D);
    Unit transfer including the steps (B), (C) and (D) in the next region including the uncured region other than the cured region to which the unit fine pattern has been transferred in the ultraviolet curable resin composition. A step (E) of repeating the step one or more times;
    Step (F) of removing an uncured portion of the ultraviolet curable resin composition;
    Including
    In the step (E), the next region overlaps a part of the cured region,
    In the step (B) in the step (E), a method for forming a fine pattern in which the unit fine pattern of the master mold is substantially filled with the ultraviolet curable resin composition.
  2.  前記モールド面は六角形の形状を有する、請求項1に記載の微細パターンの形成方法。 The method for forming a fine pattern according to claim 1, wherein the mold surface has a hexagonal shape.
  3.  前記酸素を含む雰囲気は、前記酸素を15体積%以上含んでいる請求項1または2に記載の微細パターンの形成方法。 The method for forming a fine pattern according to claim 1 or 2, wherein the oxygen-containing atmosphere contains 15% by volume or more of the oxygen.
  4.  前記支持体は、板形状、円筒形状またはロールスリーブ形状を有する請求項1から3のいずれかに記載の微細パターンの形成方法。 The method for forming a fine pattern according to any one of claims 1 to 3, wherein the support has a plate shape, a cylindrical shape, or a roll sleeve shape.
  5.  支持体と、
     前記支持体上に支持されており、請求項1から4のいずれかに記載の微細パターンの形成方法によって、微細パターンが表面に形成された樹脂硬化層と、
     前記樹脂硬化層の表面に設けられた金属層と
    を備えた微細パターンを形成するためのモールド。
    A support;
    A resin cured layer, which is supported on the support and has a fine pattern formed on the surface by the method for forming a fine pattern according to any one of claims 1 to 4,
    A mold for forming a fine pattern comprising a metal layer provided on the surface of the cured resin layer.
  6.  請求項5に記載のモールドを用いて微細パターンが転写されたシート。 A sheet on which a fine pattern is transferred using the mold according to claim 5.
  7.  支持体と、
     前記支持体の表面上に配置された紫外線硬化樹脂の樹脂硬化層と、
     前記樹脂硬化層の表面に複数転写された単位微細パターンと
    を備え、
     前記各単位微細パターンの上面は前記支持体の表面と非平行であり
     隣接する一対の単位微細パターンの上面間に段差が設けられているシート。
    A support;
    A resin cured layer of an ultraviolet curable resin disposed on the surface of the support;
    A plurality of unit fine patterns transferred to the surface of the cured resin layer;
    The sheet | seat in which the upper surface of each said unit fine pattern is non-parallel to the surface of the said support body, and the level | step difference is provided between the upper surfaces of a pair of adjacent unit fine pattern.
  8.  支持体と、
     前記支持体の表面上に配置された紫外線硬化樹脂の樹脂硬化層と、
     前記樹脂硬化層の表面に複数転写された単位微細パターンと
     前記樹脂硬化層の表面に設けられた金属層と、
    を備え、
     前記各単位微細パターンの上面は前記支持体の表面と非平行であり、
     隣接する一対の単位微細パターンの上面間に段差が設けられているモールド。
    A support;
    A resin cured layer of an ultraviolet curable resin disposed on the surface of the support;
    A plurality of unit fine patterns transferred onto the surface of the cured resin layer, a metal layer provided on the surface of the cured resin layer,
    With
    The upper surface of each unit fine pattern is non-parallel to the surface of the support,
    A mold in which a step is provided between the upper surfaces of a pair of adjacent unit fine patterns.
PCT/JP2012/003719 2011-06-16 2012-06-07 Sheet, mold, and manufacturing method thereof WO2012172755A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-134216 2011-06-16
JP2011134216 2011-06-16
JP2011-182867 2011-08-24
JP2011182867 2011-08-24

Publications (1)

Publication Number Publication Date
WO2012172755A1 true WO2012172755A1 (en) 2012-12-20

Family

ID=47356765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003719 WO2012172755A1 (en) 2011-06-16 2012-06-07 Sheet, mold, and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2012172755A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017202242A (en) * 2016-05-13 2017-11-16 富士フイルム株式会社 Method of manufacturing mold, method of manufacturing pattern sheet, method of manufacturing electroformed mold, method of manufacturing mold using electroformed mold, and original plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231932A (en) * 2004-02-18 2005-09-02 Matsushita Electric Ind Co Ltd Metallic mold for press-molding glass made optical device and method of producing the same
JP2006154185A (en) * 2004-11-29 2006-06-15 Toppan Printing Co Ltd Method of manufacturing light guide plate formed of fine rugged pattern and its light guide plate
JP2008504141A (en) * 2004-06-03 2008-02-14 モレキュラー・インプリンツ・インコーポレーテッド Apparatus, system and method for changing substrate dimensions during nanoscale processing
JP2008183732A (en) * 2007-01-26 2008-08-14 Toshiba Corp Pattern forming method and mold for forming pattern
JP2009177146A (en) * 2007-12-26 2009-08-06 Canon Inc Method of processing substrate by imprinting
JP2011108805A (en) * 2009-11-17 2011-06-02 Dainippon Printing Co Ltd Pattern forming method by nano imprint

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231932A (en) * 2004-02-18 2005-09-02 Matsushita Electric Ind Co Ltd Metallic mold for press-molding glass made optical device and method of producing the same
JP2008504141A (en) * 2004-06-03 2008-02-14 モレキュラー・インプリンツ・インコーポレーテッド Apparatus, system and method for changing substrate dimensions during nanoscale processing
JP2006154185A (en) * 2004-11-29 2006-06-15 Toppan Printing Co Ltd Method of manufacturing light guide plate formed of fine rugged pattern and its light guide plate
JP2008183732A (en) * 2007-01-26 2008-08-14 Toshiba Corp Pattern forming method and mold for forming pattern
JP2009177146A (en) * 2007-12-26 2009-08-06 Canon Inc Method of processing substrate by imprinting
JP2011108805A (en) * 2009-11-17 2011-06-02 Dainippon Printing Co Ltd Pattern forming method by nano imprint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017202242A (en) * 2016-05-13 2017-11-16 富士フイルム株式会社 Method of manufacturing mold, method of manufacturing pattern sheet, method of manufacturing electroformed mold, method of manufacturing mold using electroformed mold, and original plate

Similar Documents

Publication Publication Date Title
EP2185974B1 (en) Imprint method and processing method of substrate
JP4671860B2 (en) Imprint lithography
JP5499668B2 (en) Imprint mold and pattern forming method using the mold
Lan et al. Nanoimprint lithography
JP5633744B2 (en) Substrate preparation method, nanoimprint lithography method and mold replication method
JP5480530B2 (en) Fine structure transfer method and fine structure transfer apparatus
JP2010239118A (en) Imprint apparatus and method
KR20100035130A (en) Imprinting method
KR101022506B1 (en) Pattern transfer method of nanoimprint lithography using shadow evaportation and nanotransfer printing
JP2008078550A (en) Imprint mold, its manufacturing method, and pattern formation method
JP2005286222A (en) Imprinting stamper, manufacturing method of the imprinting stamper, imprint method, and disassembling method of the imprinting stamper
JP5397054B2 (en) Nanoimprint method and nanoimprint apparatus
JP2008200997A (en) Method for manufacturing mold for nano-imprint
JP5644906B2 (en) Nanoimprint method
WO2012172755A1 (en) Sheet, mold, and manufacturing method thereof
JP2007102156A (en) Method for manufacturing three-dimensional structure, three-dimensional structure, optical element, and stencil mask
JP5993230B2 (en) Fine structure transfer device and fine structure transfer stamper
JP5502592B2 (en) Imprint processing apparatus, imprint processing method, and imprint processed product
KR101751683B1 (en) manufacturing method of elastomeric nano structure
Kim et al. Development of a very large-area ultraviolet imprint lithography process
JP6036865B2 (en) Imprint mold
KR101401579B1 (en) Method for fabricating wire grid polarizer
Cadarso et al. Direct imprinting of organic–inorganic hybrid materials into high aspect ratio sub-100 nm structures
KR101604912B1 (en) Method for manufacturing nano metal line
Unno et al. Thermal roll-to-roll nanoimprinting using a replica mold without release agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800744

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP