WO2012172654A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2012172654A1
WO2012172654A1 PCT/JP2011/063683 JP2011063683W WO2012172654A1 WO 2012172654 A1 WO2012172654 A1 WO 2012172654A1 JP 2011063683 W JP2011063683 W JP 2011063683W WO 2012172654 A1 WO2012172654 A1 WO 2012172654A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
mirror
axis
driven
vibration
Prior art date
Application number
PCT/JP2011/063683
Other languages
French (fr)
Japanese (ja)
Inventor
純 鈴木
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/063683 priority Critical patent/WO2012172654A1/en
Publication of WO2012172654A1 publication Critical patent/WO2012172654A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/004Angular deflection
    • B81B3/0045Improve properties related to angular swinging, e.g. control resonance frequency
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/52Electrodynamic transducer
    • B06B2201/53Electrodynamic transducer with vibrating magnet or coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0145Flexible holders
    • B81B2203/0154Torsion bars

Definitions

  • the present invention relates to a technical field of a driving device such as a MEMS scanner that rotates a driven object such as a mirror.
  • MEMS Micro Electro Mechanical System
  • a display field in which light incident from a light source is scanned with respect to a predetermined screen region to embody an image, or light reflected by scanning light with respect to a predetermined screen region.
  • a micro-structured mirror driving device optical scanner or MEMS scanner
  • a mirror driving device includes a fixed main body serving as a base, a mirror rotatable around a predetermined central axis, and a torsion bar (twisting member) that connects or joins the main body and the mirror.
  • the structure provided is known (refer patent document 1).
  • the mirror driving device having such a configuration has a technical problem that the frequency at which the mirror rotates cannot be increased. In other words, the mirror driving device having such a configuration has a technical problem that the cycle of rotating the mirror cannot be shortened.
  • the present invention provides, for example, a driving device (that is, a MEMS scanner) capable of relatively increasing the frequency at which a mirror (or rotating driven object) rotates. It is an issue to provide.
  • a driving device that is, a MEMS scanner
  • a base unit, a plurality of driven units each rotatable, and a base unit and a corresponding one driven unit among the plurality of driven units are connected.
  • a plurality of elastic portions each having elasticity that rotates the corresponding one driven portion about an axis along one direction as a central axis, and each of the plurality of driven portions and the plurality of elasticity.
  • the plurality of driven parts rotate at a resonance frequency determined by one elastic part corresponding to each of the driven parts, while resonating with the axis along the one direction as a central axis.
  • An application unit that applies an excitation force for rotating the driven unit to the base unit, and the application unit has a plurality of phases in which a first driven unit of the plurality of driven units rotates. Phase in which the second driven part of the driving part rotates As the reverse phase against, adding the excitation force.
  • the driving apparatus connects a base unit, a plurality of driven units that can rotate, and a base unit and a corresponding one driven unit among the plurality of driven units. And a plurality of elastic portions each having elasticity that rotates the corresponding one driven portion about an axis along one direction as a central axis, and each of the plurality of driven portions and the plurality of elasticity.
  • the plurality of driven parts rotate at a resonance frequency determined by one elastic part corresponding to each of the driven parts, while resonating with the axis along the one direction as a central axis.
  • An application unit that applies an excitation force for rotating the driven unit to the base unit, and the application unit has a plurality of phases in which a first driven unit of the plurality of driven units rotates.
  • the second driven part of the drive part of the As the reverse phase by, adding the excitation force.
  • an elastic portion for example, a torsion bar or the like described later
  • the base portion serving as a base and a driven portion for example, a mirror or the like described later
  • the driven part is driven to rotate about the axis along one direction as the central axis by the elasticity of the elastic part (for example, the elasticity that the driven part can be rotated about the axis along one direction as the central axis) Is done.
  • the driving device of the present embodiment includes a plurality of driven parts.
  • the drive device of this embodiment includes a plurality of elastic portions so as to correspond to the plurality of driven portions.
  • the drive device of the present embodiment includes N (where N is an integer of 2 or more) driven parts and N elastic parts.
  • the kth (where k is an integer of 1 or more and N or less) driven parts are N elastic parts.
  • each driven unit is in one direction at a resonance frequency determined by each of the plurality of driven units and the corresponding one of the plurality of elastic units by the operation of the application unit.
  • An excitation force that rotates while resonating with the axis along the axis as the central axis is applied.
  • the application unit is configured to (i) around the axis along one direction of the first driven unit among the N driven units (that is, the rotation of the first driven unit).
  • the first driven part is centered on the axis along one direction at a resonance frequency determined by the moment of inertia around the axis) and the torsion spring constant of the first elastic part corresponding to the first driven part.
  • the application unit is configured such that the phase of the first driven unit among the plurality of driven units rotates and the phase of the second driven unit among the plurality of driven units rotates.
  • An excitation force is applied so as to be in reverse phase with respect to.
  • the application unit is between a phase in which the first driven unit among the plurality of driven units rotates and a phase in which the second driven unit among the plurality of driven units rotates. Excitation force is applied so that the deviation is 180 °.
  • the first driven part is rotating clockwise with respect to the central axis along one direction
  • the second driven part is relative to the central axis along one direction. Will rotate counterclockwise.
  • the second driven part when the first driven part is rotating counterclockwise with respect to the central axis along one direction, the second driven part is placed on the central axis along one direction. In contrast, it will rotate clockwise.
  • the first driven part when the first driven part is rotated by a predetermined amount (or a predetermined angle) clockwise from the reference position, the second driven part is the same position counterclockwise from the reference position. It rotates by a fixed amount (or a predetermined angle).
  • the first driven part when the first driven part is rotated by a predetermined amount (or a predetermined angle) counterclockwise from the reference position, the second driven part is rotated clockwise from the reference position. It is rotated by the same predetermined amount (or a predetermined angle).
  • a plurality of driven parts (for example, first and second driven parts rotating in opposite phases to each other) are compared with a driving apparatus that rotates one driven object at a specific frequency f.
  • a driving apparatus that rotates one driven object at a specific frequency f.
  • the plurality of driven parts for example, the first and second driven parts rotating in opposite phases to each other
  • the plurality of driven parts for example, The first and second driven parts that rotate in opposite phases to each other are handled like one driven part, so that one driven part is substantially rotated at twice the frequency f.
  • a similar state can be realized.
  • the resonance frequency determined by each of the plurality of driven parts and one elastic part corresponding to each of the plurality of elastic parts is the plurality of the plurality of driven parts. It is the same between at least two of the driven parts.
  • the resonance frequency determined by one elastic part corresponding to each driven part among each of the plurality of driven parts and the plurality of elastic parts is between at least two of the plurality of driven parts. It will be the same. More specifically, (i) around the axis along one direction of the first driven part among the N driven parts (that is, around the rotation axis of the first driven part). The resonance frequency determined by the moment of inertia and the torsion spring constant of the first elastic part corresponding to the first driven part, and (ii) the second driven part of the N driven parts.
  • Resonance frequency ..., (N) Around the axis along one direction of the Nth driven part among the N driven parts (that is, around the rotation axis of the Nth driven part) ) And the torsion spring constant of the Nth elastic part corresponding to the Nth driven part. At least two of the oscillation frequencies are the same.
  • the excitation force is applied from the application unit at a specific period corresponding to the resonance frequency that is the same in at least two of the plurality of driven units, so that at least one of the plurality of driven units is The two can be rotated while resonating and synchronizing.
  • the application unit applies the excitation force so that the base unit deforms and vibrates in a standing wave shape along another direction different from the one direction.
  • Each of the plurality of driven parts is connected to a location corresponding to a node in the deformation vibration of the base part via the plurality of elastic parts.
  • the base portion to which the excitation force is applied deforms and vibrates in a standing wave shape (that is, in a standing wave shape) along the other direction. That is, the appearance of the base portion is deformed so that a part thereof becomes an antinode of deformation vibration and the other part becomes a node of deformation vibration. Due to the deformation vibration of the base portion, the belly and the node appear along other directions. Since the deformation vibration of the base portion is performed in accordance with a so-called standing wave waveform, the positions of its antinodes and nodes are substantially fixed.
  • each of the plurality of driven parts is connected to a location corresponding to a node in the deformation vibration of the base part. For this reason, while preventing the movement of the plurality of driven parts in the vertical direction (specifically, the direction perpendicular to the one direction and the other direction and perpendicular to the surface of the base part).
  • the plurality of driven parts can be rotated in opposite phases.
  • the application unit applies an excitation force so that the base unit deforms and vibrates in a standing wave shape along the other direction
  • the application unit is configured to perform deformation vibration of the base unit along the other direction. You may comprise so that the said excitation force may be applied so that it may become resonance.
  • a resonance frequency at which the base portion resonates may be configured to be the same as at least one resonance frequency of the plurality of driven portions.
  • the plurality of driven parts can be rotated in opposite phases.
  • the rigidity of the portion corresponding to the node in the deformation vibration of the base unit is determined by the base unit. You may comprise so that it may be higher than the rigidity of places other than the node in deformation vibration of this.
  • the base portion can be easily deformed and oscillated in a standing wave shape along other directions by adjusting the rigidity of the base portion.
  • the mass of the portion corresponding to the node in the deformation vibration of the base unit is the base unit. You may comprise so that it may be smaller than the mass of parts other than the node in deformation vibration of this.
  • the base portion by adjusting the mass of the base portion (specifically, for example, the mass per unit length, the mass per unit volume, etc.), the base portion is in a standing wave shape along other directions. Can be easily deformed and vibrated.
  • the excitation force is non-directional fine vibration or anisotropic fine vibration as non-directional vibration energy.
  • the application unit applies a slight vibration to the base portion so that the fine vibration propagates in the structure called the base portion. That is, instead of applying a force that directly twists the base part itself, the application unit applies the excitation energy (in other words, wave energy) for rotating the plurality of driven parts with the fine vibration propagating in the structure.
  • the application unit rotates a plurality of driven units with micro vibrations that propagate as energy in the structure (in other words, energy that expresses the force without changing the force of “vibration” into vibration).
  • wave energy for Such fine vibration (in other words, wave energy propagating in the structure) becomes a force having no directionality at least in the stage of propagation in the structure.
  • the wave energy propagating in the base portion as a minute vibration propagates in the base portion in an arbitrary direction.
  • this micro vibration is transmitted as wave energy from, for example, a structure such as a base portion to a plurality of elastic portions (further, from the base portion to a plurality of driven portions via the plurality of elastic portions).
  • micro vibrations in other words, wave energy
  • a plurality of driven parts are rotated in the direction of the movement.
  • this wave energy can be taken out as vibrations in all directions without limiting the direction of micro vibrations. That is, the wave energy propagated in the base portion can be taken out in the form of vibration (more specifically, resonance), and as a result, a plurality of driven portions can be rotated.
  • the wave energy can be extracted to the outside as sound, but the sound generated in this case has a different sound generation principle compared to the sound obtained by so-called piston motion.
  • a so-called directional force for example, the base part itself is largely twisted in the rotational direction of the plurality of driven parts
  • a force having a directionality that twists a structure such as a base portion in a rotation direction having an axis along one direction as a central axis
  • the arrangement position of the application unit must be appropriately set so that a force having such directionality can be applied. That is, when a force having directionality is applied, the arrangement position of the application unit is limited depending on the direction in which the force is applied.
  • the arrangement position of the application unit is not limited.
  • the arrangement position of the application unit is not limited depending on the direction of rotation of the plurality of driven units.
  • the slight vibration (that is, non-directional force) applied from the application unit is obtained by using the elasticity of the plurality of elastic units.
  • the driven part can be rotated about an axis along one direction as a central axis. Thereby, the freedom degree of design of a drive device can be increased relatively.
  • the wave energy propagating in the base portion as non-directional fine vibration or anisotropic fine vibration can be propagated in the base portion in an arbitrary direction.
  • the “non-directional fine vibration” or “anisotropic fine vibration” may be, for example, a fine vibration in a direction uncorrelated with the rotation direction of the plurality of driven parts.
  • the wave energy can be extracted as vibrations in all directions without limiting the direction of the fine vibration. That is, the wave energy propagated in the base portion can be taken out in the form of vibration (more specifically, resonance), and as a result, a plurality of driven portions can be rotated.
  • the application unit is a rotation direction having an axis along the one direction as a central axis. You may comprise so that the said fine vibration produced by the force which acts on a different direction may be added.
  • the application unit when applying the fine vibration, the application unit firstly has a direction different from the rotation direction having the axis along one direction as the central axis (that is, the rotation direction of the driven unit). Generate an acting force. As will be described in detail later with reference to the drawings, this force is applied to the base portion as fine vibration (in other words, wave energy). In other words, it is possible to apply a minute vibration (in other words, a minute vibration or wave energy generated by converting the force) caused by a force acting in a direction different from the rotation direction with the axis along one direction as the central axis. . Therefore, the various effects described above can be suitably enjoyed.
  • the application unit is a force acting in a direction along the surface of the driven unit at rest It may be configured to apply the fine vibration generated by the above.
  • the application unit when applying the fine vibration, the application unit firstly has a direction along the surface of the plurality of driven parts at rest (in other words, at the initial placement) (that is, in-plane direction). ) Is generated.
  • this force is applied to the base portion as fine vibration (in other words, wave energy). That is, it is possible to apply a minute vibration (in other words, a minute vibration or wave energy generated by converting the force) caused by a force acting in a direction along the surfaces of the plurality of driven parts at rest. Therefore, the various effects described above can be suitably enjoyed.
  • the base unit, the plurality of driven parts, the plurality of elastic parts, and the applying part are provided, and the applying part includes the first driven part. Slight vibration is applied so that the rotating phase is opposite to the rotating phase of the second driven part. Accordingly, the plurality of driven parts can be suitably rotated.
  • FIG. 1 is a plan view conceptually showing the basic structure of the MEMS scanner 100 of the first embodiment.
  • the MEMS scanner 100 of the first embodiment includes a base 110, torsion bars 120a and 120b, torsion bars 120c and 120d, a mirror 130a, a mirror 130c, and a drive source unit 160. ing.
  • the base 110 has a frame shape with a gap inside. That is, the base 110 has two sides extending in the Y-axis direction in FIG. 1 and two sides extending in the X-axis direction (that is, the axial direction perpendicular to the Y-axis) in FIG. It has a frame shape having a gap surrounded by two sides extending in the axial direction and two sides extending in the X-axis direction.
  • the base 110 has a square shape, but is not limited thereto, and other shapes (for example, a rectangular shape such as a rectangle or a circular shape) may be used. You may have.
  • the base 110 is a structure that is the basis of the MEMS scanner 100 according to the first embodiment, and is fixed to a substrate or a support member (not shown) (in other words, the inside of the system called the MEMS scanner 100). Is preferably fixed).
  • FIG. 1 shows an example in which the base 110 has a frame shape
  • the base 110 may have a U-shape in which a part of the base 110 is an opening.
  • the base 110 may have a box shape with a gap inside. That is, the base 110 is defined by two surfaces distributed on a plane defined by the X axis and the Y axis, and the X axis and a Z axis (not shown) (that is, an axis orthogonal to both the X axis and the Y axis).
  • the shape of the base 110 may be arbitrarily changed according to the manner in which the mirrors 130a and 130c are arranged.
  • the torsion bar 120a is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin or the like.
  • the torsion bar 120a is arranged to extend in the direction of the Y axis in FIG.
  • the torsion bar 120a has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction.
  • the torsion bar 120a may have a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction according to the setting state of the resonance frequency described later.
  • One end 121 a of the torsion bar 120 a is connected to the side 111 inside the base 110.
  • the other end 122a of the torsion bar 120a is connected to the side 131a of the mirror 130a that faces the side 111 inside the base 110 along the Y-axis direction.
  • the torsion bar 120b is an elastic member such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like.
  • the torsion bar 120b is arranged so as to extend in the direction of the Y axis in FIG.
  • the torsion bar 120b has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction.
  • the torsion bar 120b may have a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction according to the setting state of the resonance frequency described later.
  • One end 121b of the torsion bar 120b is on the inner side 111 of the base 110 along the Y-axis direction (that is, the inner side 111 of the base 110 to which the one end 121a of the torsion bar 120a is connected). It is connected to the inner side 112 of the opposing base 110.
  • the other end 122b of the torsion bar 120b is connected to the side 132a of the mirror 130a facing the side 112 inside the base 110 along the Y-axis direction.
  • the torsion bar 120c is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin or the like.
  • the torsion bar 120c is arranged to extend in the direction of the Y axis in FIG.
  • the torsion bar 120c has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction.
  • the torsion bar 120c may have a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction in accordance with a setting state of a resonance frequency described later.
  • One end 121 c of the torsion bar 120 c is connected to the side 111 inside the base 110.
  • the other end 122c of the torsion bar 120c is connected to a side 131c of the mirror 130c that faces the side 111 inside the base 110 along the Y-axis direction.
  • the torsion bar 120d is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like.
  • the torsion bar 120d is disposed so as to extend in the direction of the Y axis in FIG.
  • the torsion bar 120d has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction.
  • the torsion bar 120d may have a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction according to the setting state of the resonance frequency described later.
  • One end 121d of the torsion bar 120d is on the inner side 111 of the base 110 along the Y-axis direction (that is, the inner side 111 of the base 110 to which the one end 121c of the torsion bar 120c is connected). It is connected to the inner side 112 of the opposing base 110.
  • the other end 122d of the torsion bar 120d is connected to the side 132c of the mirror 130c facing the inner side 112 of the base 110 along the Y-axis direction.
  • the mirror 130a is arranged to be suspended or supported by the torsion bars 120a and 120b in the space inside the base 110.
  • the mirror 130a is configured to rotate about the Y-axis direction as a central axis by the elasticity of the torsion bars 120a and 120b.
  • the mirror 130c is arranged to be suspended or supported by the torsion bars 120c and 120d in the gap inside the base 110.
  • the mirror 130c is configured to rotate about the Y-axis direction as a central axis by the elasticity of the torsion bars 120c and 120d.
  • the drive source unit 160 applies fine vibrations necessary for rotating the mirrors 130 a and 130 c about the axis along the Y-axis direction to the base 110.
  • the arrangement mode may be arbitrarily determined.
  • the force is not limited to the base 110, and is applied to other positions (for example, the torsion bar 120a, the torsion bar 120b, the torsion bar 120c, the torsion bar 120b, the mirror 130a, the mirror 130c, etc.). It may be configured such that a force can be applied to it.
  • the drive source unit 160 is a drive source unit that applies a force due to an electromagnetic force, and is fixed to a coil 161 arranged along the frame shape of the base 110 and a base material (not shown). Magnetic pole 162.
  • a desired voltage is applied to the coil 161 at a desired timing from a drive source unit control circuit (not shown).
  • a voltage is applied to the coil 161
  • a current flows, and electromagnetic interaction occurs between the coil 161 and the magnetic pole 162.
  • electromagnetic force due to electromagnetic interaction is generated. This electromagnetic force is transmitted to the base 110 as a slight vibration.
  • FIG. 2 is a plan perspective view showing the configuration of the back side of the base 110 (specifically, the side opposite to the base 110 shown in FIG. 1).
  • ribs 119 protruding from the surface of the base 110 are formed in a partial region 110 a of the frame shape of the base 110.
  • the rib 119 may be formed integrally with the base 110 or may be additionally arranged after the base 110 is formed. On the other hand, the rib 119 is not formed in the other partial area 110b of the frame shape of the base 110.
  • the rigidity of a part of the region 110a in the frame shape of the base 110 is higher than the rigidity of the other part of the region 110b in the frame shape of the base 110.
  • the rib 119 realizes a state in which the rigidity of a part of the region 110a in the frame shape of the base 110 is higher than the rigidity of the other part of the region 110b in the frame shape of the base 110. It is preferable to be formed on the base 110 so that the That is, a state in which the rigidity of a part of the region 110a in the frame shape of the base 110 is higher than the rigidity of the other part of the region 110b in the frame shape of the base 110 can be realized. It is preferable that the formation position, size, mass, rigidity, density, and the like of the rib 119 are appropriately determined.
  • the mass (or mass per unit length along the frame direction of the base 110) of a part of the region 110 a in the frame shape of the base 110 can be reduced. It becomes larger than the mass (or mass per unit length along the frame direction of the base 110) of some other regions 110b.
  • the rib 119 can realize a state in which the mass of a part of the region 110a in the frame shape of the base 110 is larger than the mass of the other part of the region 110b in the frame shape of the base 110. It is preferable to be formed on the base 110 so as to be able to.
  • the formation position, size, mass, rigidity, density, and the like of the rib 119 are appropriately determined.
  • the region 110a where the rib 119 is formed and the region 110b where the rib 119 is not formed are in a direction (that is, a direction along the X axis) perpendicular to the respective rotation axes (that is, the Y axis) of the mirrors 130a and 130b. It is preferable to line up along.
  • FIG. 2 shows an example in which the rib 119 is formed on the back side of the base 110.
  • the rib 119 may be formed on the front side of the base 110, may be formed on the side surface of the base 110, or may be formed on the inner surface of the base 110.
  • the rigidity of the partial area 110a in the frame shape of the base 110 is higher than the rigidity of the other partial area 110b in the frame shape of the base 110. May be realized.
  • the mass of a part of the region 110a in the frame shape of the base 110 is larger than the mass of the other part of the region 110b in the frame shape of the base 110. May be realized.
  • the above-described state may be realized by making the density and material of the base 110 different between the region 110a and the region 110b.
  • FIG. 3 is a plan view conceptually showing an operation mode by the MEMS scanner 100 of the first embodiment.
  • a desired voltage is applied to the coil 161 at a desired timing from a drive source unit control circuit (not shown).
  • a voltage is applied to the coil 161
  • a current flows, and electromagnetic interaction occurs between the coil 161 and the magnetic pole 162.
  • electromagnetic force due to electromagnetic interaction is generated.
  • This electromagnetic force is transmitted to the base 110 as slight vibration (or wave energy).
  • the direction of the electromagnetic force due to electromagnetic interaction is from the back side (the back side of the paper) to the near side (the front side of the paper) in FIG.
  • This electromagnetic force itself is different from the rotation direction of the mirrors 130a and 130c (that is, the rotation direction with the direction along the Y axis as the central axis).
  • this electromagnetic force is transmitted to the base 110 as micro vibrations (in other words, wave energy having no directivity).
  • the drive source unit 160 applies, as wave energy, fine vibrations that propagate through the base 110 while eliminating the twist in the rotation direction of the base 110 itself to the base 110 that is the base.
  • the drive source unit 160 transmits micro vibrations that propagate through the base 110 as energy (in other words, as wave energy that expresses the force).
  • energy in other words, as wave energy that expresses the force.
  • Such fine vibration becomes a force having no directivity when propagating through the base 110.
  • the wave energy propagating in the base 110 as micro vibrations propagates in the base 110 in an arbitrary direction.
  • the base 110 to which such a minute vibration is applied becomes a medium for propagating the minute vibration (in other words, wave energy) rather than the object that the base 110 itself vibrates.
  • the slight vibration applied from the drive source unit 160 to the base 110 is transmitted from the base 110 to the torsion bars 120a and 120b.
  • the micro-vibration in other words, wave energy
  • the micro-vibration propagating through the base 110 rotates the torsion bars 120a and 120b in a direction corresponding to the elasticity of the torsion bars 120a and 120b themselves. Or rotate the mirror 130a.
  • the micro vibration that has propagated through the base 110 appears in the form of rotation of the torsion bars 120a and 120b and rotation of the mirror 130a.
  • this wave energy can be taken out as vibrations in all directions without limiting the direction of micro vibrations.
  • the wave energy propagated in the base 110 can be extracted outside in the form of vibration (more specifically, resonance), and as a result, the mirror 130a can be rotated.
  • the mirror 130a rotates about the axis along the Y-axis direction as the central axis. More specifically, the mirror 130a repeats the rotation operation at the resonance frequency within a predetermined angle range (in other words, repeats the reciprocating motion of rotation within the predetermined angle range).
  • the mirror 130a rotates so as to resonate at a resonance frequency determined according to the mirror 130a and the torsion bars 120a and 120b. More specifically, the mirror 130a is an inertia around the axis along the Y axis of the mirror 130a (more specifically, a suspended part including the mirror 130a and suspended by the torsion bars 120a and 120b). It rotates so as to resonate at a resonance frequency determined according to the moment and the torsion spring constants of the torsion bars 120a and 120b.
  • the mirror 130a is ( 1 / (2 ⁇ )) ⁇ ⁇ (ka / Ia) resonance frequency (or (1 / (2 ⁇ )) ⁇ ⁇ (ka / Ia) N times or 1 / N times (where N Is rotated about the axis along the direction of the Y axis so as to resonate at a resonance frequency of 1).
  • the drive source unit 160 applies slight vibration in a manner synchronized with the resonance frequency so that the mirror 130a resonates at the resonance frequency described above.
  • the resonance frequency of the mirror 130a may change depending on the rigidity and mass (or moment of inertia) of the base supporting the rotating system including the rotating body called the mirror 130a.
  • the resonance frequency of the mirror 130a may change depending on the rigidity and mass (or moment of inertia) of the base 110 that supports a rotating system including a rotating body called the mirror 130a.
  • an equation (1 / (2 ⁇ )) ⁇ ⁇ (ka / Ia) (or a parameter specifying the equation) A resonance frequency obtained as a result of performing a predetermined correction operation on certain ka and Ia) may be handled as the actual resonance frequency of the mirror 130a.
  • the slight vibration applied to the base 110 from the drive source unit 160 is transmitted from the base 110 to the torsion bars 120c and 120d.
  • micro vibrations in other words, wave energy
  • the micro vibration that has propagated through the base 110 appears in the form of rotation of the torsion bars 120c and 120d and rotation of the mirror 130c.
  • this wave energy can be taken out as vibrations in all directions without limiting the direction of micro vibrations.
  • the wave energy propagated in the base 110 can be extracted outside in the form of vibration (more specifically, resonance), and as a result, the mirror 130c can be rotated.
  • the mirror 130c rotates about the axis along the Y-axis direction as the central axis. More specifically, the mirror 130c repeats the rotation operation at the resonance frequency within a predetermined angle range (in other words, the reciprocating motion of rotation within the predetermined angle range is repeated).
  • the mirror 130c rotates so as to resonate at a resonance frequency determined according to the mirror 130c and the torsion bars 120c and 120d. More specifically, the mirror 130c is an inertia around the axis along the Y axis of the mirror 130c (more specifically, a suspended portion including the mirror 130c and suspended by the torsion bars 120c and 120d). It rotates so as to resonate at a resonance frequency determined according to the moment and the torsion spring constants of the torsion bars 120c and 120d.
  • the drive source unit 160 applies slight vibration in a manner synchronized with the resonance frequency so that the mirror 130c resonates at the resonance frequency described above.
  • the resonance frequency of the mirror 130a may change depending on the rigidity and mass (or moment of inertia) of the base supporting the rotating system including the rotating body called the mirror 130c.
  • the resonance frequency of the mirror 130a may change depending on the rigidity and mass (or moment of inertia) of the base 110 that supports a rotating system including a rotating body called the mirror 130c.
  • an equation (1 / (2 ⁇ )) ⁇ ⁇ (kc / Ic) (or a parameter for specifying the equation) may be handled as an actual resonance frequency of the mirror 130c.
  • FIG. 4 is a plan view for explaining a non-directional force caused by the micro vibration applied from the drive source unit 160.
  • the description will be given using the drive source unit 160 having a configuration different from the drive source unit 160 shown in FIG.
  • the electromagnetic force as a minute vibration applied from the drive source unit 160 shown in FIG. 1 and the electromagnetic force as a minute vibration applied from the drive source unit 160 shown in FIG. 4 are actually the same force (that is, direction). Power without sex).
  • the drive source unit 160 includes a transmission branch 160b and a first support plate 160-1c connected to the base 110 via the transmission branch 160b and facing each other along the direction of the Y axis.
  • a first support plate 160-1c having first branches 160-1x and 160-1y, and a second support plate 160-2c connected to the base 110 via the transmission branch 160b, and in the direction of the Y-axis
  • a second support plate 160-2c having second branches 160-2x and 160-2y facing each other along, and a first coil 160-1z wound around each of the first branches 160-1x and 160-1y, A second coil 160-2z wound around each of the second branches 160-2x and 160-2y.
  • the shapes and characteristics of the first branches 160-1x and 160-1y and the second branches 160-2x and 160-2y are the same, and the characteristics of the coil 160-1z wound around the first branch 160-1x ( For example, the number of turns, etc.) and the characteristics (eg, the number of turns, etc.) of the coil 160-1z wound around the first branch 160-1y are the same, and the coil 160-2z wound around the second branch 160-2x
  • the characteristics (for example, the number of windings) and the characteristics (for example, the number of windings) of the coil 160-2z wound around the second branch 160-2y are the same.
  • the first branch 160-1x and the second branch 160 are also applied to the first branch 160-1y and the second branch 160-2y.
  • ⁇ 2x is generated (that is, a force acting in the negative direction of the Y axis and in the downward direction in FIG. 4). Since these forces are opposite to each other and have the same magnitude, the first branch 160-1x and the first branch 160-1y do not cause acceleration to the outside or generate acceleration themselves. Only a slight vibration is transmitted to the point P1 where the two parts are joined and the point P2 where the second branch 160-2x and the second branch 160-2y are joined. As a result, the forces at points P1 and P2 are not directional.
  • a fine vibration that is, a wave energy having no directivity
  • the mirrors 130a and 130c have the Y axis. It has been found that it rotates about the axis along the direction as the central axis. That is, the micro-vibration applied by the drive source unit 160 propagates in the base 110 as the above-described non-directional force (in other words, wave energy), so that the mirrors 130a and 130c have an axis along the Y-axis direction. It has been found that it rotates as a central axis.
  • the mirror 130a is rotated about the axis along the Y-axis direction as the central axis so that the mirror 130a resonates at a resonance frequency determined according to the mirror 130a and the torsion bars 120a and 120b.
  • the mirror 130c is rotated about the axis along the Y-axis direction as a central axis so that the mirror 130c resonates at a resonance frequency determined according to the mirror 130c and the torsion bars 120c and 120d.
  • the mirrors 130a and 130c self-resonate with the Y axis as the central axis.
  • “resonance” is a phenomenon in which infinite displacement occurs due to repeated infinitesimal force. Therefore, even if the force applied to rotate the mirrors 130a and 130c is reduced, the rotation range of the mirrors 130a and 130c (in other words, the amplitude in the rotation direction) can be increased. That is, the force required to rotate the mirrors 130a and 130c can be relatively reduced. For this reason, it is possible to reduce the amount of electric power necessary for applying the force necessary to rotate the mirrors 130a and 130c. Therefore, the mirrors 130a and 130c can be moved more efficiently, and as a result, low power consumption of the MEMS scanner 100 can be realized.
  • a force having no directionality is applied.
  • a configuration in which the mirrors 130a and 130c are rotationally driven by applying a so-called directional force for example, the base 110 itself is largely twisted in the rotational direction of the mirrors 130a and 130c, and the torsion is performed.
  • the torsion bars 120a and 120b, the torsion bars 120c and 120d, and the mirrors 130a and 130c are directly driven to rotate the mirrors 130a and 130c.
  • a force having a directionality to rotate the mirrors 130a and 130c about the axis along the Y-axis direction that is, the base 110 is rotated about the axis along the Y-axis direction as the central axis).
  • the arrangement position of the drive source unit 160 must be appropriately set so that a force having such directionality can be applied. That is, when applying a force having directionality, the arrangement position of the drive source unit 160 is limited depending on the direction in which the force is applied.
  • the arrangement position of the drive source unit 160 is not limited.
  • the arrangement position of the drive source unit 160 is not limited depending on the direction of rotation of the mirrors 130a and 130c. That is, no matter what the position of the drive source unit 160 is set, the slight vibration (that is, nondirectional force) applied from the drive source unit 160 causes the torsion bars 120a and 120b and the torsion bar 120c. And 120d, the mirrors 130a and 130c can be rotated about the axis along the Y-axis direction as the central axis. Thereby, the design freedom of the MEMS scanner 100 can be relatively increased. This is very advantageous in practice for MEMS scanners where the size or design constraints of each component are large.
  • FIG. 5 is a side view showing the deformation mode of the base 110 in association with the rotation mode of the mirrors 130a and 130b. 5 shows a side view when the base 110 and the mirrors 130a and 130c are observed from the direction of the arrow “III” shown in FIG.
  • the base 110 is not deformed and the mirrors 130a and 130b are not rotating in a state where the vibration is not applied to the base 110 from the drive source unit 160.
  • the region 110a in which the rib 119 is formed has a relatively high rigidity and is bent by the slight vibration.
  • the region 110b where the rib 119 is not formed has a relatively low rigidity, it is easy to bend by slight vibration.
  • the base 110 deforms and vibrates so as to wave in the direction of the X-axis, with the region 110a where the rib is formed as a node and the region 110b where the rib 119 is not formed as a belly.
  • the base 110 vibrates while deforming its appearance like a standing wave having a region 110a where the rib 119 is formed as a node and a region 110b where the rib 119 is not formed as an antinode.
  • the base 110 is deformed and oscillated so as to be bent from the center.
  • the base 110 may be deformed and oscillated in other deformation modes (for example, a deformation mode having more nodes).
  • the deformation vibration of the base 110 in the first embodiment is realized by forming the rib 119 at an appropriate location. Therefore, the above-described rib 119 has the base 110 such that the base 110 is deformed and oscillated along the direction of the X-axis with the region 110a where the rib is formed as a node and the region 110b where the rib 119 is not formed as an antinode. It is preferably formed at an appropriate location on 110. At this time, it is preferable that a portion where the torsion bars 120a and 120b and the torsion bars 120c and 120d are connected corresponds to the region 110a.
  • a portion having a relatively high bending rigidity along the X-axis direction and a portion having a relatively low bending rigidity along the X-axis direction appear in order along the X-axis direction.
  • it is preferably formed at an appropriate location on the base 110.
  • a portion having a relatively high bending rigidity along the X-axis direction and a portion having a relatively low bending rigidity along the X-axis direction are along the X-axis direction. It is formed in an appropriate place on the base 110 so that the places where the torsion bars 120a and 120b and the torsion bars 120c and 120d are connected become the area 110a and the other places become the area 110b. Is preferred.
  • the resonance frequency in the deformation vibration of the base 110 is preferably the same as the resonance frequency of the mirrors 130a and 130b.
  • the characteristics of the base 110 are preferably determined so that the base 110 deforms and vibrates at the same resonance frequency as that of the mirrors 130a and 130b.
  • characteristics of the rib 119 formed on the back side of the base 110 so as to deform and vibrate at the same resonance frequency as the resonance frequency of the mirrors 130a and 130b is preferably defined.
  • the resonance frequency in the deformation vibration of the base 110 is such that the structure including the base 110 and the rib 119 is regarded as one spring system, the mass added to the spring system is M, and the spring constant of the spring system is k. In this case, it is specified by (1 / (2 ⁇ )) ⁇ ⁇ (k / M). However, if the spring system is a one-degree-of-freedom spring system in which one mass structure is connected to one spring (in other words, the natural frequency is one and the natural vibration mode is one). , (1 / (2 ⁇ )) ⁇ ⁇ (k / M) resonant frequency can be employed.
  • the spring system is a two-degree-of-freedom spring system in which two mass structures are connected to one spring, “k” at a resonance frequency of (1 / (2 ⁇ )) ⁇ ⁇ (k / M). ",” M "and the like are preferably corrected.
  • the mass M added to the spring system and the spring constant k of the spring system depend on the rigidity and mass of the base 110. Determined.
  • the rigidity and mass of the base 110 are adjusted by the ribs 119. For this reason, the resonance frequency of the base 110 is substantially determined by the characteristics of the rib 119 described above.
  • the resonance frequency in the deformation vibration of the base 110 is specified by the equation (1 / (2 ⁇ )) ⁇ ⁇ (k / M).
  • the resonance frequency in the deformation vibration of the base 110 may change depending on the rigidity and mass (or moment of inertia) of the base supporting the vibration system including the deformation vibration body called the base 110.
  • an equation (1 / (2 ⁇ )) ⁇ ⁇ (k / M) (or a parameter specifying the equation)
  • a resonance frequency obtained as a result of performing a predetermined correction operation on a certain k and M) may be handled as a resonance frequency in an actual deformation vibration of the base 110.
  • the resonance in the deformation vibration of the base 110 is replaced by defining the spring system related to the deformation vibration of the base 110 as a two-degree-of-freedom spring system in which two mass structures are connected to one spring. It may be defined by considering it as a higher-order resonance mode of a plate-like member called the base 110.
  • the base 110 is deformed and oscillated so as to resonate due to the application of such fine vibration. That is, as shown in FIG. 5A to FIG. 5F in time series, the base 110 is deformed and oscillated so as to have an appearance like a standing wave with both ends open. That is, the base 110 has an appearance such that a standing wave appears along a direction orthogonal to the rotation axes of the mirrors 130a and 130c (that is, the direction of the X axis).
  • the base 110 on the mirror 130a side (specifically, the relatively left base 110 in FIGS. 5A to 5F) is deformed. This is opposite to the deformation mode of the base 110 on the mirror 130c side (specifically, the relatively right-side base 110 in FIGS. 5A to 5F).
  • the base 110 on the mirror 130a side is deformed counterclockwise around the rotation axis of the mirror 130a (for example, when deformed as shown in FIGS. 5A to 5C).
  • the base 110 on the mirror 130c side is deformed clockwise around the rotation axis of the mirror 130c.
  • the base 110 on the mirror 130a side is deformed clockwise around the rotation axis of the mirror 130a (for example, as illustrated in FIGS. 5D to 5F). )
  • the base 110 on the mirror 130c side is deformed counterclockwise around the rotation axis of the mirror 130c. Accordingly, since the resonance frequencies of the mirrors 130a and 130c are the same, the mirrors 130a and 130c have the rotation phase of the mirror 130a and the rotation phase of the mirror 130c reversed in phase with the deformation vibration of the base 110. Rotate to In other words, the mirrors 130a and 130c rotate so that the phase of rotation of the mirror 130a is shifted by 180 ° with respect to the phase of rotation of the mirror 130c.
  • the mirrors 130a and 130c rotate so that the deviation between the rotation phase of the mirror 130a and the rotation phase of the mirror 130c is fixed at 180 °.
  • the relationship between the phase of rotation of the mirror 130a and the phase of rotation of the mirror 130c is as shown in FIGS. 5 (c) to 5 (f). Even if it exists, it is established.
  • the deviation between the phase of rotation of the mirror 130a and the phase of deformation vibration of the base 110 may vary with time or may be fixed.
  • the deviation between the phase of rotation of the mirror 130c and the phase of deformation vibration of the base 110 may vary with time or may be fixed.
  • the above description with reference to FIG. 5 shows an example in which the deviation between the phase of rotation of the mirrors 130a and 130c and the phase of deformation vibration of the base 110 is fixed.
  • the mirrors 130a and 130c may change the phase of the rotation of the mirror 130a and the rotation of the mirror 130c. There is no change in rotating so that the phases are opposite to each other.
  • the mirrors 130a and 130c can be rotated so that the rotation phase of the mirror 130a and the rotation phase of the mirror 130c are opposite to each other. That is, the two mirrors 130a and 130c can be rotated (that is, driven) in opposite phases while being synchronized. Therefore, compared to a MEMS scanner that rotates one mirror 130 at the reference frequency f, the two mirrors 130a and 130c are handled as one mirror 130 at a frequency 2f that is twice the reference frequency f (in other words, A state similar to the state of rotating one mirror 130 (with a period of 1/2) can be realized.
  • each of the mirrors 130a and 130c is rotated at a frequency f / 2 that is half the reference frequency f
  • the two mirrors 130a and 130c are handled as one mirror 130, so that one mirror at the reference frequency f.
  • a state similar to the state of rotating 130 can be realized.
  • a mirror 130 that can be rotated ⁇ X ° in one cycle with the state at rest being 0 ° will be described as an example. If one mirror 130 is used, a period of one cycle is required to use an angle from ⁇ X ° to X °.
  • the mirror 130a rotates from 0 ° to X ° and the mirror 130c rotates from 0 ° to ⁇ X ° in a half cycle.
  • one period is not necessarily required, and a half period is sufficient, for example. Therefore, even if the frequency for driving each of the mirrors 130a and 130c is lowered, the driving frequency of the mirror 130 when the mirrors 130a and 130c are handled like one mirror 130 is not lowered.
  • FIG. 5 shows an example in which the rotation phase of each of the mirrors 130a and 130c and the phase of deformation vibration of the base 110 are reversed.
  • the phase of rotation of each of the mirrors 130 a and 130 c and the phase of deformation vibration of the base 110 may be in phase.
  • the phase of deformation vibration of the base 110 may be in phase.
  • Various effects that can be enjoyed when the phase of rotation of each of the mirrors 130a and 130c and the phase of deformation vibration of the base 110 are in opposite phases can be suitably enjoyed.
  • any force other than the slight vibration may be used as the force for rotating the mirrors 130a and 130c.
  • the mirror 130a and the mirror 130a and the “driving method in which torsional vibration is generated in the mirror using the plate wave of the substrate for example, Lamb wave resonance piezoelectric driving method” described in JP-A-2006-293116 is disclosed.
  • 130c may be rotated.
  • a directional force acting in the direction of directly rotating the mirrors 130a and 130c may be used.
  • a directional force acting in a direction that directly twists the torsion bars 120a and 120b and 120c and 120d may be used.
  • FIG. 7 is a plan view conceptually showing the basic structure of the MEMS scanner 101 of the second embodiment.
  • the detailed description is abbreviate
  • the MEMS scanner 101 of the second embodiment is similar to the MEMS scanner 100 of the first embodiment, in that a base 110, torsion bars 120a and 120b, torsion bars 120c and 120d, a mirror 130a, , And a mirror 130c.
  • the MEMS scanner 101 according to the second embodiment includes a drive source unit 140 that applies force (microvibration) due to the piezoelectric effect, instead of the drive source unit 160 that applies force (microvibration) due to electromagnetic force. .
  • the drive source unit 140 includes a first piezoelectric element 140-1a, a second piezoelectric element 140-2a, a transmission branch 140b, a first gap 140-1d, and is fixed to the base 110 via the transmission branch 140b.
  • a first support plate 140-1c and a second support plate 140-2c having a second gap 140-2d and being fixed to the base 110 via the transmission branch 140b are provided.
  • the first piezoelectric element 140-1a is sandwiched by the first branches 140-1e and 140-1f facing each other defined by the first gap 140-1d.
  • the second piezoelectric element 140-2a is sandwiched between the opposing second branches 140-2e and 140-2f defined by the second gap 140-2d.
  • the first piezoelectric element 140-1a changes its shape.
  • This change in the shape of the first piezoelectric element 140-1a causes a change in the shape of the first branches 140-1e and 140-1f.
  • changes in the shapes of the first branches 140-1e and 140-1f are transmitted to the base 110 through the transmission branch 140b as fine vibration (or wave energy) as will be described in detail later.
  • the second piezoelectric element 140-2a changes its shape.
  • This change in the shape of the second piezoelectric element 140-2a causes a change in the shape of the second branches 140-2e and 140-2f.
  • changes in the shapes of the second branches 140-2e and 140-2f are transmitted to the base 110 through the transmission branch 140b as fine vibration (or wave energy) as will be described in detail later.
  • Such micro-vibration applied from the drive source unit 140 is a force having no direction described with reference to FIG. Therefore, according to the MEMS scanner 101 of 2nd Example, the effect similar to the various effects which the MEMS scanner 100 of 1st Example mentioned above can enjoy suitably can be enjoyed.
  • FIG. 8 is a plan view conceptually showing the basic structure of the MEMS scanner 102 of the third embodiment.
  • the detailed description is abbreviate
  • the MEMS scanner 102 of the third embodiment is similar to the MEMS scanner 100 of the first embodiment, in that a base 110, torsion bars 120a and 120b, torsion bars 120c and 120d, a mirror 130a, , And a mirror 130c.
  • the MEMS scanner 102 according to the third embodiment includes a drive source unit 150 that applies a force (microvibration) due to an electrostatic force, instead of the drive source unit 160 that applies a force (microvibration) due to electromagnetic force. .
  • the drive source unit 150 has a comb-like first electrode 151 disposed along the outer side of the base 110 and a comb-like shape that is fixed to a base material (not shown) and distributed between the first electrodes 151.
  • the second electrode 152 is provided.
  • a desired voltage is applied to the first electrode 151 (or the second electrode 152) at a desired timing from a drive source unit control circuit (not shown).
  • an electrostatic force in other words, Coulomb force
  • electrostatic force is generated between the first electrode 151 and the second electrode 152.
  • electrostatic force is generated. This electrostatic force is transmitted to the base 110 as a slight vibration.
  • Such micro-vibration applied from the driving source unit 150 is a force having no direction described with reference to FIG. Therefore, according to the MEMS scanner 102 of 3rd Example, the effect similar to the various effects which the MEMS scanner 100 of 1st Example mentioned above can enjoy can be enjoyed suitably.
  • FIG. 9 is a plan view conceptually showing the basic structure of the MEMS scanner 103 of the fourth embodiment.
  • the MEMS scanner 103 of the fourth embodiment includes a first base 110-1, first torsion bars 120a-1 and 120b-1, a second base 110-2, and a second torsion bar. 120a-2 and 120b-2, second torsion bars 120c-2 and 120d-2, a mirror 130a, a mirror 130c, and a drive source unit 160.
  • the first base 110-1 has a frame shape with a gap inside. That is, the first base 110-1 has two sides extending in the Y-axis direction in FIG. 9 and two sides extending in the X-axis direction (that is, the axial direction perpendicular to the Y-axis) in FIG. And a frame shape having a gap surrounded by two sides extending in the Y-axis direction and two sides extending in the X-axis direction. In the example shown in FIG. 9, the first base 110-1 has a square shape. However, the first base 110-1 is not limited to this. For example, other shapes (for example, a rectangular shape such as a rectangle or a circular shape) Shape etc.).
  • the first base 110-1 is a structure that is the basis of the MEMS scanner 103 of the fourth embodiment, and is fixed to a substrate or a support member (not shown) (in other words, the MEMS scanner 103). It is preferably fixed inside the system).
  • FIG. 9 shows an example in which the first base 110-1 has a frame shape
  • the first base 110-1 may have other shapes.
  • the first base 110-1 may have a U-shape in which a part of the first base 110-1 is an opening.
  • the first base 110-1 may have a box shape with a gap inside. That is, the first base 110-1 is orthogonal to the two surfaces distributed on the plane defined by the X axis and the Y axis, and the Z axis (not shown) (that is, both the X axis and the Y axis).
  • the shape of the first base 110-1 may be arbitrarily changed according to the manner in which the mirrors 130a and 130c are arranged.
  • the first torsion bar 120a-1 is an elastic member such as a spring made of, for example, silicon, copper alloy, iron-based alloy, other metal, resin, or the like.
  • the first torsion bar 120a-1 is disposed so as to extend in the direction of the X axis in FIG.
  • the first torsion bar 120a-1 has a shape having a long side extending in the X-axis direction and a short side extending in the Y-axis direction.
  • the first torsion bar 120a-1 has a shape having a short side extending in the X-axis direction and a long side extending in the Y-axis direction, depending on the setting condition of the resonance frequency described later. Also good.
  • One end 121a-1 of the first torsion bar 120a-1 is connected to the inner side 115-1 of the first base 110-1.
  • the other end 122a-1 of the first torsion bar 120a-1 is an outer side of the second base 110-2 that faces the inner side 115-1 of the first base 110-1 along the X-axis direction. 117-2.
  • the first torsion bar 120b-1 is an elastic member such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like.
  • the first torsion bar 120b-1 is disposed so as to extend in the direction of the X axis in FIG.
  • the first torsion bar 120b-1 has a shape having a long side extending in the X-axis direction and a short side extending in the Y-axis direction.
  • the first torsion bar 120b-1 has a short shape extending in the X-axis direction and a long shape extending in the Y-axis direction, depending on the setting condition of the resonance frequency described later. Also good.
  • One end 121b-1 of the first torsion bar 120b-1 is located on the inner side (in other words, a region portion) 115-1 (that is, the first torsion bar) along the X-axis direction.
  • the bar 120a-1 is connected to the inner side 116-1 of the first base 110-1 opposite to the inner side 115-1) of the first base 110-1 to which one end 121a-1 is connected.
  • the other end 122b-1 of the first torsion bar 120b-1 is an outer side of the second base 110-2 that faces the inner side 116-1 of the first base 110-1 along the X-axis direction. It is connected to 118-2.
  • the second base 110-2 has a frame shape with a gap inside. That is, the second base 110-2 has two sides extending in the Y-axis direction in FIG. 9 and two sides extending in the X-axis direction (that is, the axis direction orthogonal to the Y-axis) in FIG. And a frame shape having a gap surrounded by two sides extending in the Y-axis direction and two sides extending in the X-axis direction.
  • the second base 110-2 has a square shape.
  • the second base 110-2 is not limited to this.
  • the second base 110-2 has other shapes (for example, a rectangular shape such as a rectangle or a circular shape). Shape etc.).
  • the second base 110-2 is arranged to be suspended or supported by the first torsion bars 120a-1 and 120b-1 in the space inside the first base 110-1.
  • the second base 110-2 is configured to rotate about the X-axis direction as a central axis by the elasticity of the first torsion bars 120a-1 and 120b-1.
  • FIG. 9 shows an example in which the second base 110-2 has a frame shape
  • the second base 110-2 may have other shapes.
  • the second base 110-2 may have a U-shape in which a part of the second base 110-2 is an opening.
  • the second base 110-2 may have a box shape with a gap inside. That is, the second base 110-2 is orthogonal to the two surfaces distributed on the plane defined by the X axis and the Y axis, and the Z axis (not shown) (that is, both the X axis and the Y axis).
  • the shape of the second base 110-2 may be arbitrarily changed according to the manner in which the mirrors 130a and 130c are arranged.
  • the second torsion bar 120a-2 is an elastic member such as a spring made of, for example, silicon, copper alloy, iron-based alloy, other metal, resin, or the like. Second torsion bar 120a-2 is arranged to extend in the direction of the Y-axis in FIG. In other words, the second torsion bar 120a-2 has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction. However, the second torsion bar 120a-2 has a shape that has a short side that extends in the direction of the Y axis and a length that extends in the direction of the X axis, depending on the setting state of the resonance frequency described later. Also good.
  • One end 121a-2 of the second torsion bar 120a-2 is connected to the inner side 111-2 of the second base 110-2.
  • the other end 122a-2 of the second torsion bar 120a-2 is connected to one side 131a of the mirror 130a facing the side 111-2 on the inner side of the second base 110-2 along the Y-axis direction.
  • the second torsion bar 120b-2 is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like. Second torsion bar 120b-2 is arranged to extend in the direction of the Y-axis in FIG. In other words, the second torsion bar 120b-2 has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction. However, the second torsion bar 120b-1 has a shape that has a short side that extends in the direction of the Y-axis and a length that extends in the direction of the X-axis, depending on the setting state of the resonance frequency described later. Also good.
  • One end 121b-2 of the second torsion bar 120b-2 is located on the inner side 111-2 of the second base 110-2 along the Y-axis direction (that is, one end of the second torsion bar 120a-2). It is connected to the inner side 112-2 of the second base 110-2 opposite to the inner side 111-2) of the second base 110-2 to which the end 121a-2 is connected.
  • the other end 122b-2 of the second torsion bar 120b-2 is connected to the other side 132a of the mirror 130a facing the side 112-2 on the inner side of the second base 110-2 along the Y-axis direction.
  • the second torsion bar 120c-2 is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin or the like.
  • the second torsion bar 120c-2 is disposed so as to extend in the Y-axis direction in FIG.
  • the second torsion bar 120c-2 has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction.
  • the second torsion bar 120c-2 has a shape having a short side extending in the direction of the Y-axis and a length extending in the direction of the X-axis depending on the setting state of the resonance frequency described later. Also good.
  • One end 121c-2 of the second torsion bar 120c-2 is connected to the inner side 111-2 of the second base 110-2.
  • the other end 122c-2 of the second torsion bar 120c-2 is connected to one side 131c of the mirror 130c facing the inner side 111-2 of the second base 110-2 along the Y-axis direction.
  • the second torsion bar 120d-2 is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like.
  • the second torsion bar 120d-2 is disposed so as to extend in the Y-axis direction in FIG.
  • the second torsion bar 120d-2 has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction.
  • the second torsion bar 120d-1 has a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction according to the setting state of the resonance frequency described later. Also good.
  • One end 121d-2 of the second torsion bar 120d-2 extends along the Y-axis direction along the side 111-2 inside the second base 110-2 (that is, one end of the second torsion bar 120c-2). It is connected to the inner side 112-2 of the second base 110-2 opposite to the inner side 111-2) of the second base 110-2 to which the end 121c-2 is connected.
  • the other end 122d-2 of the second torsion bar 120d-2 is connected to the other side 132c of the mirror 130c facing the inner side 112-2 of the second base 110-2 along the Y-axis direction.
  • the mirror 130a is arranged to be suspended or supported by the second torsion bars 120a-2 and 120b-2 in the gap inside the second base 110-2.
  • the mirror 130a is configured to rotate about the Y-axis direction as a central axis by the elasticity of the second torsion bars 120a-2 and 120b-2.
  • the mirror 130c is arranged to be suspended or supported by the second torsion bars 120c-2 and 120d-2 in the gap inside the second base 110-2.
  • the mirror 130c is configured to rotate about the Y-axis direction as a central axis by the elasticity of the second torsion bars 120c-2 and 120d-2.
  • the drive source unit 160 applies to the second base 110-2 a fine vibration necessary to rotate the mirrors 130a and 130c about the axis along the Y-axis direction as a central axis.
  • the arrangement mode may be arbitrarily determined.
  • the present invention is not limited to applying force to the second base 110-2, and may be configured to apply force to other positions (for example, the first base 110-1).
  • the drive source unit 160 is a drive source unit that applies a force due to electromagnetic force, and includes a coil 161 arranged along the frame shape of the second base 110-2, and the first base 110. Magnetic poles 162a to 162c fixed to -1.
  • a desired voltage is applied to the coil 161 at a desired timing from a drive source unit control circuit (not shown).
  • a voltage is applied to the coil 161 at a desired timing from a drive source unit control circuit (not shown).
  • a voltage By applying a voltage to the coil 161, a current flows, and electromagnetic interaction occurs between the coil 161 and the magnetic poles 162a to 162c.
  • electromagnetic force due to electromagnetic interaction is generated. This electromagnetic force is transmitted to the second base 110-2 as a slight vibration.
  • the magnetic pole 162a is a side 110-2 on one side of the second base 110-2 and a region between the mirror 130a and the mirror 130c (that is, the antinode of deformation vibration in the second base 110-2). It is preferable to be arranged adjacent to the region.
  • the magnetic poles 162b and 162c are regions located on the opposite side of the magnetic pole 162a with respect to the rotation axis of the second base 110-2, and the second base 110-2 (or the mirror 130a and the mirror 130c are connected).
  • It is preferably arranged at a position sandwiched along the direction of the Y axis.
  • FIG. 10 is a plan perspective view showing the configuration of the back side of the second base 110-2 (specifically, the side opposite to the second base 110-2 shown in FIG. 9).
  • ribs 119 protruding from the surface of the second base 110-2 are formed in a partial region 110a of the frame shape of the second base 110-2.
  • the rib 119 may be formed integrally with the second base 110-2, or may be additionally disposed after the second base 110-2 is formed.
  • the rib 119 is not formed in the other partial area 110b of the frame shape of the second base 110-2.
  • the rigidity of a part of the region 110a in the frame shape of the second base 110-2 is set to the rigidity of the other part of the region 110b of the frame shape of the second base 110-2. Higher than. In other words, in the rib 119, the rigidity of a part of the region 110a in the frame shape of the second base 110-2 is higher than the rigidity of the other part of the region 110b in the frame shape of the second base 110-2. It is preferable that the second base 110-2 be formed so that a higher state can be realized.
  • the rigidity of a part of the region 110a in the frame shape of the second base 110-2 is higher than the rigidity of the other part of the region 110b in the frame shape of the second base 110-2. It is preferable that the formation position, size, mass, rigidity, density, density, and the like of the ribs 119 are appropriately determined so that they can be realized.
  • the mass of a part of the region 110a in the frame shape of the second base 110-2 (or the mass per unit length along the frame direction of the second base 110-2). Is larger than the mass of the other partial region 110b in the frame shape of the second base 110-2 (or the mass per unit length along the frame direction of the second base 110-2).
  • the rib 119 may be configured such that the mass of a part of the region 110a in the frame shape of the second base 110-2 is larger than the mass of the other part of the region 110b in the frame shape of the second base 110-2. It is preferable that the second base 110-2 be formed so that a large state can be realized.
  • the mass of the partial area 110a in the frame shape of the second base 110-2 is larger than the mass of the other partial area 110b in the frame shape of the second base 110-2. It is preferable that the formation position, size, mass, rigidity, density, density, and the like of the ribs 119 are appropriately determined so that they can be realized.
  • the region 110a where the rib 119 is formed and the region 110b where the rib 119 is not formed are in a direction (that is, a direction along the X axis) perpendicular to the respective rotation axes (that is, the Y axis) of the mirrors 130a and 130b. It is preferable to line up along.
  • FIG. 10 shows an example in which the rib 119 is formed on the back side of the second base 110-2.
  • the rib 119 may be formed on the front side of the second base 110-2, may be formed on the side surface of the second base 110-2, or may be formed on the inner surface of the second base 110-2. Also good.
  • the rigidity of a part of the region 110a in the frame shape of the second base 110-2 is set to be a part of the other part of the frame shape of the second base 110-2. You may implement
  • the mass of a part of the region 110a in the frame shape of the second base 110-2 may be changed to the other part of the frame shape of the second base 110-2.
  • the above-described state may be realized by making the density and material of the second base 110-2 different between the region 110a and the region 110b.
  • FIG. 11 is a plan view conceptually showing an operation mode of the MEMS scanner 103 according to the fourth embodiment.
  • a desired voltage is applied to the coil 161 at a desired timing from a drive source unit control circuit (not shown).
  • a voltage is applied to the coil 161 at a desired timing from a drive source unit control circuit (not shown).
  • a current flows, and electromagnetic interaction occurs between the coil 161 and the magnetic poles 162a to 162c.
  • electromagnetic force due to electromagnetic interaction is generated.
  • This electromagnetic force is transmitted to the second base 110-2 as fine vibration (or wave energy).
  • the direction of the electromagnetic force due to the electromagnetic interaction between the coil 161 and the magnetic pole 162a is from the back side (the back side of the paper) to the near side (the front side of the paper) in FIG.
  • the direction of electromagnetic force due to electromagnetic interaction between the coil 161 and the magnetic pole 162b is from the front side to the back side in FIG.
  • the direction of the electromagnetic force due to the electromagnetic interaction between the coil 161 and the magnetic pole 162c is from the front side to the back side in FIG.
  • this electromagnetic force rotates the first torsion bars 120a-1 and 120b-1 in the direction according to the elasticity of the first torsion bars 120a-1 and 120b-1 itself.
  • rotating the second base 110-2 rotates about the axis along the X-axis direction as the central axis.
  • the second base 110-2 may repeat the rotation operation within the predetermined angle range at the same frequency as the resonance frequency of mirrors 130a and 130c, which will be described later, or at a frequency lower or higher than the resonance frequency.
  • the second base 110-2 has a frequency (for example, 60 Hz) corresponding to the scanning period or frame rate of the display, for example. ) May be repeated.
  • the second base 110-2 repeats the rotation operation at the resonance frequency determined by the suspended portion including the second base 110-2 and the first torsion bars 120a-1 and 120b-1 within a predetermined angle range. May be.
  • the second base 110-2 includes a suspended portion including the second base 110-2 (in other words, the second base 110-2 suspended by the first torsion bars 120a-1 and 120b-1). Including the suspended portion) and the first torsion bars 120a-1 and 120b-1 may be rotated so as to resonate at a resonance frequency determined.
  • the electromagnetic force itself applied from the drive source unit 160 is different from the rotation direction of the mirrors 130a and 130c (that is, the rotation direction centered on the direction along the Y axis).
  • this electromagnetic force is transmitted to the second base 110-2 as fine vibration.
  • the drive source unit 160 is a fine vibration that propagates in the second base 110-2 while eliminating the twist in the rotational direction of the second base 110-2 itself with respect to the second base 110-2. Is added as wave energy.
  • the drive source unit 160 instead of applying a force that imparts a twist in the rotational direction to the second base 110-2 itself, uses the inside of the second base 110-2 as energy (in other words, a wave that expresses the force).
  • Such fine vibration becomes a force having no directivity when propagating in the second base 110-2.
  • the wave energy propagating in the second base 110-2 as a minute vibration propagates in the second base 110-2 in an arbitrary direction.
  • the second base 110-2 to which such a fine vibration is applied is a medium that propagates the fine vibration (in other words, wave energy) rather than the second base 110-2 itself becoming an oscillating object.
  • the slight vibration applied from the drive source unit 160 to the second base 110-2 is transmitted from the second base 110-1 to the second torsion bars 120a-2 and 120b-2.
  • the micro-vibration in other words, wave energy
  • the micro-vibration propagating through the second base 110-2 is directed in a direction corresponding to the elasticity of the second torsion bars 120a-2 and 120b-2 itself.
  • the second torsion bars 120a-2 and 120b-2 are rotated toward the front, and the mirror 130a is rotated.
  • the micro vibrations propagated in the second base 110-2 are manifested in the form of rotation of the second torsion bars 120a-2 and 120b-2 and rotation of the mirror 130a.
  • this wave energy can be taken out as vibrations in all directions without limiting the direction of micro vibrations. That is, the wave energy propagated in the second base 110-2 can be extracted outside in the form of vibration (more specifically, resonance), and as a result, the mirror 130a can be rotated. As a result, as shown in FIG. 11, the mirror 130a rotates about the axis along the Y-axis direction as the central axis. More specifically, the mirror 130a repeats the rotation operation at the resonance frequency within a predetermined angle range (in other words, repeats the reciprocating motion of rotation within the predetermined angle range).
  • the mirror 130a rotates so as to resonate at a resonance frequency determined according to the mirror 130a and the second torsion bars 120a-2 and 120b-2.
  • the mirror 130a is a Y axis of the mirror 130a (more specifically, a suspended portion including the mirror 130a and a structure suspended by the second torsion bars 120a-2 and 120b-2).
  • a torsion spring constant of the second torsion bars 120a-2 and 120b-2 is Ia and the torsion spring constant when the second torsion bars 120a-2 and 120b-2 are regarded as one spring is ka.
  • the mirror 130a has a resonance frequency specified by (1 / (2 ⁇ )) ⁇ ⁇ (ka / Ia) (or N times or N minutes of (1 / (2 ⁇ )) ⁇ ⁇ (ka / Ia). So that it resonates at a resonance frequency of 1 (where N is an integer equal to or greater than 1). For this reason, the drive source unit 160 applies slight vibration in a manner synchronized with the resonance frequency so that the mirror 130a resonates at the resonance frequency described above.
  • the resonance frequency of the mirror 130a may change depending on the rigidity and mass (or moment of inertia) of the base supporting the rotating system including the rotating body called the mirror 130a.
  • the resonance frequency of the mirror 130a is such that the rigidity and mass of the first base 110-1, the first torsion bars 120a-1 and 120b-1, the second base 110-2, and the like that support a rotating system including a rotating body called the mirror 130a. (Or moment of inertia).
  • an equation (1 / (2 ⁇ )) ⁇ ⁇ (ka / Ia) (or a parameter specifying the equation) A resonance frequency obtained as a result of performing a predetermined correction operation on certain ka and Ia) may be handled as the actual resonance frequency of the mirror 130a.
  • the slight vibration applied from the drive source unit 160 to the second base 110-2 is transmitted from the second base 110-1 to the second torsion bars 120c-2 and 120d-2.
  • the micro-vibration in other words, wave energy
  • the micro-vibration propagating in the second base 110-2 is directed in a direction corresponding to the elasticity of the second torsion bars 120c-2 and 120d-2 themselves.
  • the second torsion bars 120c-2 and 120d-2 are rotated or the mirror 130c is rotated.
  • the minute vibrations that have propagated through the second base 110-2 are manifested in the form of rotation of the second torsion bars 120c-2 and 120d-2 and rotation of the mirror 130c.
  • this wave energy can be taken out as vibrations in all directions without limiting the direction of micro vibrations. That is, the wave energy propagated in the second base 110-2 can be extracted outside in the form of vibration (more specifically, resonance), and as a result, the mirror 130c can be rotated. As a result, as shown in FIG. 11, the mirror 130c rotates about the axis along the Y-axis direction as the central axis. More specifically, the mirror 130c repeats the rotation operation at the resonance frequency within a predetermined angle range (in other words, the reciprocating motion of rotation within the predetermined angle range is repeated).
  • the mirror 130c rotates so as to resonate at a resonance frequency determined according to the mirror 130c and the second torsion bars 120c-2 and 120d-2.
  • the mirror 130c is a Y-axis of the mirror 130c (more specifically, a suspended portion including the mirror 130c and suspended by the second torsion bars 120c-2 and 120d-2).
  • the torsion spring constant of the second torsion bars 120c-2 and 120d-2 is Ic and the torsion spring constant when the second torsion bars 120c-2 and 120d-2 are regarded as one spring is kc.
  • the mirror 130a has a resonance frequency specified by (1 / (2 ⁇ )) ⁇ ⁇ (kc / Ic) (or N times or N minutes of (1 / (2 ⁇ )) ⁇ ⁇ (kc / Ic). So that it resonates at a resonance frequency of 1 (where N is an integer equal to or greater than 1). For this reason, the drive source unit 160 applies slight vibration in a manner synchronized with the resonance frequency so that the mirror 130c resonates at the resonance frequency described above.
  • the resonance frequency of the mirror 130a may change depending on the rigidity and mass (or moment of inertia) of the base supporting the rotating system including the rotating body called the mirror 130c.
  • the resonance frequency of the mirror 130a is such that the rigidity and mass of the first base 110-1, the first torsion bars 120a-1 and 120b-1, the second base 110-2, and the like that support a rotating system including a rotating body called the mirror 130c. (Or moment of inertia).
  • an equation (1 / (2 ⁇ )) ⁇ ⁇ (kc / Ic) (or a parameter for specifying the equation) may be handled as an actual resonance frequency of the mirror 130c.
  • FIG. 12 is a plan view for explaining a force having no directivity due to the fine vibration applied from the drive source unit 160.
  • the description will be given using the drive source unit 160 having a configuration different from that of the drive source unit 160 shown in FIG.
  • the electromagnetic force as fine vibration applied from the drive source unit 160 shown in FIG. 9 and the electromagnetic force as fine vibration applied from the drive source unit 160 shown in FIG. 12 are actually the same force (that is, direction). Power without sex).
  • the drive source unit 160 includes a transmission branch 160b, a first support plate 160-1c connected to the first base 110-1 via the transmission branch 160b, and in the Y-axis direction.
  • a first support plate 160-1c having first branches 160-1x and 160-1y facing each other along, and a second support plate 160-2c connected to the first base 110-1 via a transmission branch 160b.
  • the second support plate 160-2c having the second branches 160-2x and 160-2y facing each other along the direction of the Y-axis and wound on the first branches 160-1x and 160-1y, respectively.
  • a first coil 160-1z and a second coil 160-2z wound around each of the second branches 160-2x and 160-2y are provided.
  • the shapes and characteristics of the first branches 160-1x and 160-1y and the second branches 160-2x and 160-2y are the same, and the characteristics of the coil 160-1z wound around the first branch 160-1x ( For example, the number of turns, etc.) and the characteristics (eg, the number of turns, etc.) of the coil 160-1z wound around the first branch 160-1y are the same, and the coil 160-2z wound around the second branch 160-2x
  • the characteristics (for example, the number of windings) and the characteristics (for example, the number of windings) of the coil 160-2z wound around the second branch 160-2y are the same.
  • the first branch 160-1x and the second branch 160 are also applied to the first branch 160-1y and the second branch 160-2y.
  • -2x is generated (that is, a force acting in the negative direction of the Y-axis and in the downward direction in FIG. 12). Since these forces are opposite to each other and have the same magnitude, the first branch 160-1x and the first branch 160-1y do not cause acceleration to the outside or generate acceleration themselves. Only a slight vibration is transmitted to the point P1 where the two parts are joined and the point P2 where the second branch 160-2x and the second branch 160-2y are joined. As a result, the forces at points P1 and P2 are not directional.
  • the above-described configuration causes micro vibrations transmitted through the first base 110-1 and the first torsion bars 120a-1 and 120b-1 (that is, wave energy having directional characteristics). It has been found that the mirrors 130a and 130c rotate about the axis along the direction of the Y axis as a central axis. That is, the micro-vibration applied by the drive source unit 160 propagates in the second base 110-2 as the above-described non-directional force (in other words, wave energy), so that the mirrors 130a and 130c move in the Y-axis direction. It has been found that the axis along the axis rotates.
  • the axis along the Y-axis direction is centered so that the mirror 130a resonates at a resonance frequency determined according to the mirror 130a and the second torsion bars 120a-2 and 120b-2.
  • the mirror 130a can be rotated as an axis.
  • the axis along the Y-axis direction is set as the central axis so that the mirror 130c resonates at a resonance frequency determined according to the mirror 130c and the second torsion bars 120c-2 and 120d-2.
  • the mirror 130c can be rotated.
  • the second base 110-2 can be rotated about the axis along the X-axis direction as the central axis.
  • the mirrors 130a and 130c are connected to the second base 110-2 via the second torsion bars 120a-2 and 120b-2 and the second torsion bars 120c-2 and 120d-2.
  • the mirrors 130a and 130c also rotate about the axis along the X-axis direction as the central axis.
  • the mirrors 130a and 130c can be rotated so that the mirrors 130a and 130c resonate with the X axis and the Y axis as the central axes.
  • the mirrors 130a and 130c are driven to rotate about the X axis as the central axis and self-resonate with the Y axis as the central axis.
  • “resonance” is a phenomenon in which infinite displacement occurs due to repeated infinitesimal force. Therefore, even if the force applied to rotate the mirrors 130a and 130c is reduced, the rotation range of the mirrors 130a and 130c (in other words, the amplitude in the rotation direction) can be increased. That is, the force required to rotate the mirrors 130a and 130c can be relatively reduced. For this reason, it is possible to reduce the amount of electric power necessary for applying the force necessary to rotate the mirrors 130a and 130c. Therefore, the mirrors 130a and 130c can be moved more efficiently, and as a result, low power consumption of the MEMS scanner 103 can be realized.
  • a configuration in which a so-called directional force is applied to perform biaxial rotation driving of the mirrors 130a and 130c (eg, the second base 110-2 itself is directed toward the rotation direction of the mirrors 130a and 130c) Twisting the mirrors 130a and 130c directly by directly twisting the torsion bars 120a-2 and 120b-2, the second torsion bars 120c-2 and 120d-2, and the mirrors 130a and 130c.
  • a configuration to be performed will be described as an example.
  • a force having directionality to rotate the mirrors 130a and 130c about the axis along the X-axis direction (for example, the first base 110-1 is set about the axis along the X-axis direction as the central axis).
  • a force (for example, the second base 110-) that applies a direction to rotate the mirrors 130a and 130c about the axis along the direction of the Y axis as a central axis is applied from a certain drive source unit 160. 2 is required to be applied from the other drive source unit 160) (a force for twisting 2 to rotate about an axis along the Y-axis direction as a central axis).
  • the MEMS scanner when performing biaxial rotation driving of the mirrors 130a and 130c by applying a force having directionality, normally, the MEMS scanner must include two or more drive source units 160. In other words, when the two-axis rotational drive of the mirrors 130a and 130c is performed by applying a directional force, only one force acting in one direction can be applied from one drive source unit 160.
  • the MEMS scanner must include two or more drive source units 160.
  • the two-axis rotation drive of the mirrors 130a and 130c can be performed by applying a non-directional force due to the micro-vibration.
  • the micro-vibration that is, non-directional force
  • the micro-vibration applied from one drive source unit 160 is the first torsion bar 120a-1.
  • the mirrors 130a and 130c are axes along the X-axis and Y-axis directions, respectively. Can be rotated around the center axis. That is, in the fourth embodiment, it is not always necessary to provide the two drive source units 160 even when the two-axis rotational drive of the mirrors 130a and 130c is performed. For this reason, it is possible to apply a non-directional force due to the fine vibration for performing the biaxial rotation drive of the mirrors 130a and 130c using the single drive source unit 160.
  • the arrangement position of the drive source unit 160 is not limited. In other words, since a non-directional force due to micro vibration is applied, the arrangement position of the drive source unit 160 is not limited depending on the direction of rotation of the mirrors 130a and 130c. In other words, no matter what the position of the drive source unit 160 is set, the minute vibration (that is, non-directional force) applied from the drive source unit 160 is caused by the second torsion bars 120a-2 and 120b. -2 and the elasticity of the second torsion bars 120c-2 and 120d-2, the mirrors 130a and 130c can be rotated about the axis along the direction of the Y axis as the central axis. Thereby, the design freedom of the MEMS scanner 103 can be relatively increased. This is very advantageous in practice for MEMS scanners where the size or design constraints of each component are large.
  • FIG. 13 is a side view showing the deformation vibration mode of the second base 110-2 in association with the rotation mode of the mirrors 130a and 130b.
  • FIG. 13 is a side view when the second base 110-2 and the mirrors 130a and 130c are observed from the direction of the arrow “X” shown in FIG.
  • the region 110a where the rib 119 is formed has a relatively high rigidity. While it is difficult to bend due to slight vibration, the region 110b where the rib 119 is not formed is relatively low in rigidity, and thus is easily bent due to slight vibration. As a result, the second base 110-2 deforms and vibrates so as to wave in the direction of the X axis, with the region 110a where the rib is formed as a node and the region 110b where the rib 119 is not formed as a belly. .
  • the second base 110-2 vibrates while deforming its appearance like a standing wave having a portion where the rib 119 is formed as a node and a portion where the rib 119 is not formed as a belly. .
  • the second base 110-2 is deformed and oscillated so as to be bent from the center thereof.
  • the second base 110-2 may be subjected to deformation vibration in another deformation mode (for example, a deformation mode having more nodes).
  • the deformation vibration of the second base 110-2 in the fourth embodiment is realized by forming the rib 119 at an appropriate location. Therefore, in the rib 119 described above, the second base 110-2 deforms and vibrates along the X-axis direction with the region 110a where the rib is formed as a node and the region 110b where the rib 119 is not formed as an antinode. Thus, it is preferably formed at an appropriate location on the second base 110-2. At this time, it is preferable that the portion where the second torsion bars 120a-2 and 120b-2 and the second torsion bars 120c-2 and 120d-2 are connected corresponds to the region 110a.
  • a portion having a relatively high bending rigidity along the X-axis direction and a portion having a relatively low bending rigidity along the X-axis direction appear in order along the X-axis direction.
  • it is preferably formed at an appropriate location on the second base 110-2.
  • a portion having a relatively high bending rigidity along the X-axis direction and a portion having a relatively low bending rigidity along the X-axis direction are along the X-axis direction.
  • the portion to which the second torsion bars 120a-2 and 120b-2 and the second torsion bars 120c-2 and 120d-2 are connected becomes the region 110a, and the other portions become the region 110b.
  • the second base 110-2 is formed at an appropriate location.
  • the second base 110-2 undergoes deformation vibration so as to resonate.
  • the resonance frequency in the deformation vibration of the second base 110-2 is preferably the same as the resonance frequency of the mirrors 130a and 130b.
  • the characteristics of the second base 110-2 be determined such that the second base 110-2 deforms and vibrates at the same resonance frequency as that of the mirrors 130a and 130b.
  • the characteristics of the ribs 119 formed on the back side of the second base 110-2 so as to deform and vibrate at the same resonance frequency as that of the mirrors 130a and 130b are preferably determined.
  • the resonance frequency in the deformation vibration of the second base 110-2 is that the structure including the second base 110-2 and the rib 119 is regarded as one spring system, and the mass added to the spring system is M and When the spring constant of the spring system is k, it is specified by (1 / (2 ⁇ )) ⁇ ⁇ (k / M). However, if the spring system is a one-degree-of-freedom spring system in which one mass structure is connected to one spring (in other words, the natural frequency is one and the natural vibration mode is one). , (1 / (2 ⁇ )) ⁇ ⁇ (k / M) resonant frequency can be employed.
  • the mass M added to the spring system and the spring constant k of the spring system are determined by the second base 110-. 2 is determined according to rigidity and mass.
  • the rigidity and mass of the second base 110-2 are adjusted by the rib 119. Therefore, the resonance frequency of the second base 110-2 is substantially determined by the characteristics of the rib 119 described above.
  • the resonance frequency in the deformation vibration of the second base 110-2 varies depending on the rigidity and mass (or moment of inertia) of the base supporting the vibration system including the deformation vibration body called the second base 110-2.
  • the resonance frequency in the deformation vibration of the second base 110-2 is such that the first base 110-1 and the first torsion bars 120a-1 and 120b-1 supporting the vibration system including the deformation vibration body called the second base 110-2. It may change depending on rigidity and mass (or moment of inertia).
  • an equation (1 / (2 ⁇ )) ⁇ ⁇ (k / M) (or the equation)
  • the resonance frequency obtained as a result of performing a predetermined correction operation on the specified parameters k and M) may be handled as the resonance frequency in the actual deformation vibration of the second base 110-2.
  • the resonance in the deformation vibration of the second base 110-2 regards the spring system related to the deformation vibration of the second base 110-2 as a two-degree-of-freedom spring system in which two mass structures are connected to one spring. Instead of the above, it may be defined as a higher-order resonance mode of a plate-like member called the second base 110-2.
  • the second base 110-2 is deformed and oscillated so as to resonate due to the application of such fine vibration. That is, as shown in FIG. 13A to FIG. 13F in time series, the second base 110-2 deforms and vibrates so as to have an appearance like a standing wave with both ends open. That is, the second base 110-2 has an appearance such that a standing wave appears along a direction orthogonal to the rotation axes of the mirrors 130a and 130c (that is, the X-axis direction).
  • the second base 110-2 deforms and vibrates in this manner, the second base 110-2 on the mirror 130a side (specifically, the relatively left side of each of FIGS. 13 (a) to 13 (f)).
  • the second base 110-2 On the mirror 130a side (specifically, the relatively left side of each of FIGS. 13 (a) to 13 (f)).
  • the second base 110-2 on the side of the mirror 130c specifically, the second base on the relatively right side of each of FIGS. 13 (a) to 13 (f).
  • This is the opposite of the deformation mode of the base 110-2).
  • the second base 110-2 on the mirror 130a side is deformed counterclockwise around the rotation axis of the mirror 130a (for example, as illustrated in FIGS. 13A to 13C).
  • the second base 110-2 on the mirror 130c side is deformed clockwise around the rotation axis of the mirror 130c.
  • the second base 110-2 on the mirror 130a side is deformed clockwise around the rotation axis of the mirror 130a (for example, as shown in FIGS. 13 (d) to 13 (f)).
  • the second base 110-2 on the mirror 130c side is deformed counterclockwise around the rotation axis of the mirror 130c. Accordingly, since the resonance frequencies of the mirrors 130a and 130c are the same, the mirrors 130a and 130c have a rotation phase of the mirror 130a and a rotation phase of the mirror 130c in accordance with the deformation vibration of the second base 110-2. Rotate so that they are out of phase with each other.
  • the mirrors 130a and 130c rotate so that the phase of rotation of the mirror 130a is shifted by 180 ° with respect to the phase of rotation of the mirror 130c.
  • the mirrors 130a and 130c rotate so that the deviation between the rotation phase of the mirror 130a and the rotation phase of the mirror 130c is fixed at 180 °.
  • the relationship between the phase of rotation of the mirror 130a and the phase of rotation of the mirror 130c is based on which deformation vibration of the second base 110-2 occurs as shown in FIGS. 13 (c) to 13 (f). This is true even in such a state.
  • the deviation between the phase of rotation of the mirror 130a and the phase of deformation vibration of the second base 110-2 may vary over time or may be fixed.
  • the deviation between the phase of rotation of the mirror 130c and the phase of deformation vibration of the second base 110-2 may vary with time or may be fixed.
  • FIG. 13 shows an example in the case where the deviation between the rotation phase of the mirrors 130a and 130c and the phase of the deformation vibration of the second base 110-2 is fixed.
  • the mirrors 130a and 130c There is no change in the rotation so that the phases of the rotation of 130c are opposite to each other.
  • the mirrors 130a and 130c can be rotated so that the rotation phase of the mirror 130a and the rotation phase of the mirror 130c are opposite to each other. That is, the two mirrors 130a and 130c can be rotated (that is, driven) in opposite phases while being synchronized. Therefore, compared to a MEMS scanner that rotates one mirror 130 at the reference frequency f, the two mirrors 130a and 130c are handled as one mirror 130 at a frequency 2f that is twice the reference frequency f (in other words, A state similar to the state of rotating one mirror 130 (with a period of 1/2) can be realized.
  • each of the mirrors 130a and 130c is rotated at a frequency f / 2 that is half the reference frequency f
  • the two mirrors 130a and 130c are handled as one mirror 130, so that one mirror at the reference frequency f.
  • a state similar to the state of rotating 130 can be realized.
  • a mirror 130 that can be rotated ⁇ X ° in one cycle with the state at rest being 0 ° will be described as an example. If one mirror 130 is used, a period of one cycle is required to use an angle from ⁇ X ° to X °.
  • the mirror 130a rotates from 0 ° to X ° and the mirror 130c rotates from 0 ° to ⁇ X ° in a half cycle.
  • one period is not necessarily required, and a half period is sufficient, for example. Therefore, even if the frequency for driving each of the mirrors 130a and 130c is lowered, the driving frequency of the mirror 130 when the mirrors 130a and 130c are handled like one mirror 130 is not lowered.
  • FIG. 13 shows an example in which the rotation phase of each of the mirrors 130a and 130c and the phase of the deformation vibration of the second base 110-2 are reversed.
  • the rotation phase of each of the mirrors 130a and 130c may be in phase with the phase of the deformation vibration of the second base 110-2.
  • the phase of the deformation vibration of the base 110 may be in phase.
  • Various effects that can be enjoyed when the phase of the rotation of each of the mirrors 130a and 130c and the phase of the deformation vibration of the second base 110-2 are reversed are preferably enjoyed.
  • the magnetic pole 162a is a side 110-2 on one side of the second base 110-2 and a region between the mirror 130a and the mirror 130c (that is, the second base 110-2).
  • the magnetic poles 162b and 162c are located on the side opposite to the magnetic pole 162a with respect to the rotation axis of the second base 110-2.
  • the mirror 130a and the mirror 130c are disposed at positions where the mirror 130a and the mirror 130c are sandwiched along the Y-axis direction. That is, the magnetic pole 162a is disposed at a position where the rotation axis of the second base 110-2 is sandwiched between the magnetic poles 162b and 162c.
  • the magnetic poles 162b and 162c are arranged at positions where the second base 110-2 (or the mirror 130a and the mirror 130c) is sandwiched along the direction of the Y axis. Accordingly, the second base 110-2 is easily deformed and vibrated by the slight vibration generated by the magnetic poles 162b and 162c.
  • any force other than the slight vibration may be used as the force for rotating the mirrors 130a and 130c.
  • the mirror 130a and the mirror 130a and the “driving method in which torsional vibration is generated in the mirror using the plate wave of the substrate for example, Lamb wave resonance piezoelectric driving method” described in JP-A-2006-293116 is disclosed.
  • 130c may be rotated.
  • a directional force acting in the direction of directly rotating the mirrors 130a and 130c may be used.
  • first torsion bars 120a-1 and 120b-1 and the second torsion bars 120a-1 to 120d-1 act as a force for rotating the mirrors 130a and 130c in the direction of directly twisting.
  • a directional force may be used. The same applies to the following fifth to sixth embodiments.
  • FIG. 15 is a plan view conceptually showing the basic structure of the MEMS scanner 104 of the fifth embodiment.
  • the detailed description is abbreviate
  • the MEMS scanner 104 according to the fifth embodiment is similar to the MEMS scanner 103 according to the fourth embodiment in that the first base 110-1, the first torsion bars 120a-1 and 120b-1, A second base 110-2, second torsion bars 120a-2 and 120b-2, second torsion bars 120c-2 and 120d-2, a mirror 130a, and a mirror 130c are provided.
  • the MEMS scanner 104 of the fifth embodiment includes a drive source unit 140 that applies a force (microvibration) due to the piezoelectric effect, instead of the drive source unit 160 that applies a force (microvibration) due to electromagnetic force. .
  • the drive source unit 140 includes a first piezoelectric element 140-1a, a second piezoelectric element 140-2a, a transmission branch 140b, a first gap 140-1d, and the first base 110-1 via the transmission branch 140b. And a second support plate 140-2c having a second gap 140-2d and fixed to the first base 110-1 via the transmission branch 140b. .
  • the first piezoelectric element 140-1a is sandwiched by the first branches 140-1e and 140-1f facing each other defined by the first gap 140-1d.
  • the second piezoelectric element 140-2a is sandwiched between the opposing second branches 140-2e and 140-2f defined by the second gap 140-2d.
  • the first piezoelectric element 140-1a changes its shape.
  • This change in the shape of the first piezoelectric element 140-1a causes a change in the shape of the first branches 140-1e and 140-1f.
  • changes in the shapes of the first branches 140-1e and 140-1f are transmitted to the first base 110-1 via the transmission branch 140b as fine vibration (or wave energy) as will be described in detail later.
  • the second piezoelectric element 140-2a changes its shape.
  • This change in the shape of the second piezoelectric element 140-2a causes a change in the shape of the second branches 140-2e and 140-2f.
  • changes in the shapes of the second branches 140-2e and 140-2f are transmitted to the first base 110-1 via the transmission branch 140b as fine vibration (or wave energy) as will be described in detail later.
  • Such micro-vibration applied from the drive source unit 140 is a force having no direction described with reference to FIG. Therefore, according to the MEMS scanner 104 of 5th Example, the effect similar to the various effects which the MEMS scanner 103 of 4th Example mentioned above can enjoy can be enjoyed suitably.
  • FIG. 16 is a plan view conceptually showing the basic structure of the MEMS scanner 105 of the sixth embodiment.
  • the detailed description is abbreviate
  • the MEMS scanner 105 of the sixth embodiment is similar to the MEMS scanner 103 of the fourth embodiment in that the first base 110-1, the first torsion bars 120a-1 and 120b-1, A second base 110-2, second torsion bars 120a-2 and 120b-2, second torsion bars 120c-2 and 120d-2, a mirror 130a, and a mirror 130c are provided.
  • the MEMS scanner 105 according to the sixth embodiment includes a drive source unit 150 that applies a force (microvibration) due to an electrostatic force, instead of the drive source unit 160 that applies a force (microvibration) due to electromagnetic force. .
  • the drive source unit 150 (150a to 150c) is provided on the inner side of the first base 110-1 and the comb-shaped first electrodes 151a to 151c arranged along the outer side of the second base 110-2.
  • Comb-like second electrodes 152a to 152c that are fixed and distributed between the first electrodes 151a to 151c are provided.
  • the first electrode 151a and the second electrode 152a are arranged at the same position as the magnetic pole 162a described above.
  • the first electrode 151b and the second electrode 152b are disposed at the same position as the magnetic pole 162b described above.
  • the first electrode 151c and the second electrode 152c are disposed at the same position as the magnetic pole 162c described above.
  • a desired voltage is applied to the first electrodes 151a to 151c (or the second electrodes 152a to 152c) at a desired timing from a drive source unit control circuit (not shown). Due to the potential difference between the first electrode and the second electrode, an electrostatic force (in other words, Coulomb force) is generated between the first electrodes 151a to 151c and the second electrodes 152a to 152c. As a result, electrostatic force is generated. This electrostatic force is transmitted to the second base 110-2 as a slight vibration.
  • Such micro-vibration applied from the driving source unit 150 is a force having no direction described with reference to FIG. Therefore, according to the MEMS scanner 105 of the sixth embodiment, it is possible to preferably enjoy the same effects as the various effects that the MEMS scanner 103 of the fourth embodiment described above enjoys.
  • the MEMS scanners 100 to 106 including two mirrors 130a and 130c are described. However, the above-described configuration may be applied to a MEMS scanner including three or more mirrors 130. Needless to say.
  • the MEMS scanner 100 of the first embodiment to the MEMS scanner 105 of the sixth embodiment described above are various types such as a head-up display, a head mounted display, a laser scanner, a laser printer, and a scanning drive device. It can be applied to electronic devices. Therefore, these electronic devices are also included in the scope of the present invention.
  • the present invention can be appropriately changed without departing from the gist or concept of the present invention that can be read from the claims and the entire specification, and a drive device that includes such a change is also included in the technical concept of the present invention. It is.

Abstract

A drive device (100) comprises: a base section (110); a plurality of driven sections (130a, 130c); a plurality of elastic sections (120a-120d); and an application unit (160) that applies to the base section an excitation force for rotating the plurality of driven sections such that each driven section rotates while resonating, around a central axis being an axis along one direction, at a resonant frequency determined by each of the plurality of driven sections and one elastic section among the plurality of elastic sections that corresponds to each driven section. The application unit applies the excitation force such that the rotation phase of a first driven section among the plurality of driven sections is the reverse phase to the rotation phase of a second driven section among the plurality of drive sections.

Description

駆動装置Drive device
 本発明は、例えばミラー等の被駆動物を回転させるMEMSスキャナ等の駆動装置の技術分野に関する。 The present invention relates to a technical field of a driving device such as a MEMS scanner that rotates a driven object such as a mirror.
 例えば、ディスプレイ、プリンティング装置、精密測定、精密加工、情報記録再生などの多様な技術分野において、半導体工程技術によって製造されるMEMS(Micro Electro Mechanical System)デバイスについての研究が活発に進められている。このようなMEMSデバイスとして、例えば、光源から入射された光を所定の画面領域に対して走査して画像を具現するディスプレイ分野、または所定の画面領域に対して光を走査して反射された光を受光して画像情報を読み込むスキャニング分野では、微小構造のミラー駆動装置(光スキャナないしはMEMSスキャナ)が注目されている。 For example, in various technical fields such as a display, a printing apparatus, precision measurement, precision processing, and information recording / reproduction, research on MEMS (Micro Electro Mechanical System) devices manufactured by semiconductor process technology is being actively promoted. As such a MEMS device, for example, a display field in which light incident from a light source is scanned with respect to a predetermined screen region to embody an image, or light reflected by scanning light with respect to a predetermined screen region. In the scanning field where light is received and image information is read, a micro-structured mirror driving device (optical scanner or MEMS scanner) has attracted attention.
 ミラー駆動装置は、一般的には、ベースとなる固定された本体と、所定の中心軸の周りに回転可能なミラーと、本体とミラーとを接続する又は接合するトーションバー(ねじれ部材)とを備える構成が知られている(特許文献1参照)。 In general, a mirror driving device includes a fixed main body serving as a base, a mirror rotatable around a predetermined central axis, and a torsion bar (twisting member) that connects or joins the main body and the mirror. The structure provided is known (refer patent document 1).
特表2007-522529号公報Special table 2007-522529
 このような構成を有するミラー駆動装置では、ミラーが回転する周波数を高くすることができないという技術的な問題点を有している。言い換えれば、このような構成を有するミラー駆動装置では、ミラーが回転する周期を短くすることができないという技術的な問題点を有している。 The mirror driving device having such a configuration has a technical problem that the frequency at which the mirror rotates cannot be increased. In other words, the mirror driving device having such a configuration has a technical problem that the cycle of rotating the mirror cannot be shortened.
 このような従来のミラー駆動装置に対して、本発明は、例えば、ミラー(或いは、回転する被駆動物)が回転する周波数を相対的に高くすることが可能な駆動装置(つまり、MEMSスキャナ)を提供することを課題とする。 In contrast to such a conventional mirror driving device, the present invention provides, for example, a driving device (that is, a MEMS scanner) capable of relatively increasing the frequency at which a mirror (or rotating driven object) rotates. It is an issue to provide.
 上記課題を解決するために、ベース部と、夫々が回転可能な複数の被駆動部と、夫々が前記ベース部と前記複数の被駆動部のうちの対応する一つの被駆動部とを接続し、且つ夫々が前記対応する一つの被駆動部を一の方向に沿った軸を中心軸として回転させるような弾性を有する複数の弾性部と、前記複数の被駆動部の夫々及び前記複数の弾性部のうち前記夫々の被駆動部に対応する一つの弾性部により定まる共振周波数で前記夫々の被駆動部が前記一の方向に沿った軸を中心軸として共振しながら回転するように前記複数の被駆動部を回転させるための加振力を前記ベース部に加える印加部とを備え、前記印加部は、前記複数の被駆動部のうちの第1の被駆動部が回転する位相が前記複数の駆動部のうちの第2の被駆動部が回転する位相に対して逆相となるように、前記加振力を加える。 In order to solve the above-described problem, a base unit, a plurality of driven units each rotatable, and a base unit and a corresponding one driven unit among the plurality of driven units are connected. And a plurality of elastic portions each having elasticity that rotates the corresponding one driven portion about an axis along one direction as a central axis, and each of the plurality of driven portions and the plurality of elasticity. The plurality of driven parts rotate at a resonance frequency determined by one elastic part corresponding to each of the driven parts, while resonating with the axis along the one direction as a central axis. An application unit that applies an excitation force for rotating the driven unit to the base unit, and the application unit has a plurality of phases in which a first driven unit of the plurality of driven units rotates. Phase in which the second driven part of the driving part rotates As the reverse phase against, adding the excitation force.
第1実施例のMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner of 1st Example. ベースの裏側(具体的には、図1に示したベースの反対側)の構成を示す平面斜視図である。It is a top perspective view which shows the structure of the back side (specifically, the other side of the base shown in FIG. 1) of a base. 第1実施例のMEMSスキャナによる動作の態様を概念的に示す平面図である。It is a top view which shows notionally the mode of operation | movement by the MEMS scanner of 1st Example. 駆動源部から加えられる微振動に起因した方向性のない力について説明するための平面図である。It is a top view for demonstrating the force without directionality resulting from the fine vibration applied from a drive source part. ベースの変形振動の態様を、ミラーの回転の態様と関連付けて示す側面図である。It is a side view which shows the aspect of a deformation | transformation vibration of a base in relation to the aspect of rotation of a mirror. ベースの変形振動の態様を、ミラーの回転の態様と関連付けて示す側面図である。It is a side view which shows the aspect of a deformation | transformation vibration of a base in relation to the aspect of rotation of a mirror. 第2実施例のMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner of 2nd Example. 第3実施例のMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner of 3rd Example. 第4実施例のMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner of 4th Example. 第2ベースの裏側(具体的には、図9に示した第2ベースの反対側)の構成を示す平面斜視図である。It is a top perspective view which shows the structure of the back side (specifically, the other side of 2nd base shown in FIG. 9) of the 2nd base. 第4実施例のMEMSスキャナによる動作の態様を概念的に示す平面図である。It is a top view which shows notionally the aspect of the operation | movement by the MEMS scanner of 4th Example. 駆動源部から加えられる微振動に起因した方向性のない力について説明するための平面図である。It is a top view for demonstrating the force without directionality resulting from the fine vibration applied from a drive source part. 第2ベースの変形振動の態様を、ミラーの回転の態様と関連付けて示す断面図である。It is sectional drawing which shows the aspect of the deformation vibration of a 2nd base in relation to the aspect of rotation of a mirror. 第2ベースの変形振動の態様を、ミラーの回転の態様と関連付けて示す断面図である。It is sectional drawing which shows the aspect of the deformation vibration of a 2nd base in relation to the aspect of rotation of a mirror. 第5実施例のMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner of 5th Example. 第6実施例のMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner of 6th Example.
 以下、駆動装置の実施形態について順に説明する。 Hereinafter, embodiments of the drive device will be described in order.
 本実施形態の駆動装置は、ベース部と、夫々が回転可能な複数の被駆動部と、夫々が前記ベース部と前記複数の被駆動部のうちの対応する一つの被駆動部とを接続し、且つ夫々が前記対応する一つの被駆動部を一の方向に沿った軸を中心軸として回転させるような弾性を有する複数の弾性部と、前記複数の被駆動部の夫々及び前記複数の弾性部のうち前記夫々の被駆動部に対応する一つの弾性部により定まる共振周波数で前記夫々の被駆動部が前記一の方向に沿った軸を中心軸として共振しながら回転するように前記複数の被駆動部を回転させるための加振力を前記ベース部に加える印加部とを備え、前記印加部は、前記複数の被駆動部のうちの第1の被駆動部が回転する位相が前記複数の駆動部のうちの第2の被駆動部が回転する位相に対して逆相となるように、前記加振力を加える。 The driving apparatus according to the present embodiment connects a base unit, a plurality of driven units that can rotate, and a base unit and a corresponding one driven unit among the plurality of driven units. And a plurality of elastic portions each having elasticity that rotates the corresponding one driven portion about an axis along one direction as a central axis, and each of the plurality of driven portions and the plurality of elasticity. The plurality of driven parts rotate at a resonance frequency determined by one elastic part corresponding to each of the driven parts, while resonating with the axis along the one direction as a central axis. An application unit that applies an excitation force for rotating the driven unit to the base unit, and the application unit has a plurality of phases in which a first driven unit of the plurality of driven units rotates. The second driven part of the drive part of the As the reverse phase by, adding the excitation force.
 本実施形態の駆動装置によれば、基礎となるベース部と回転可能に配置される被駆動部(例えば、後述するミラー等)とが、弾性を有する弾性部(例えば、後述するトーションバー等)によって直接的に又は間接的に接続されている。被駆動部は、弾性部の弾性(例えば、被駆動部を一の方向に沿った軸を中心軸として回転させることができるという弾性)によって、一の方向に沿った軸を中心軸として回転駆動される。 According to the drive device of the present embodiment, an elastic portion (for example, a torsion bar or the like described later) in which the base portion serving as a base and a driven portion (for example, a mirror or the like described later) that is rotatably arranged have elasticity. Connected directly or indirectly by. The driven part is driven to rotate about the axis along one direction as the central axis by the elasticity of the elastic part (for example, the elasticity that the driven part can be rotated about the axis along one direction as the central axis) Is done.
 本実施形態の駆動装置は、複数の被駆動部を備えている。本実施形態の駆動装置は、複数の被駆動部に対応するように複数の弾性部を備えている。例えば、本実施形態の駆動装置は、N個(但し、Nは2以上の整数)の被駆動部及びN個の弾性部を備えている。この場合、N個(但し、Nは2以上の整数)の被駆動部のうちの第k(但し、kは、1以上且つN以下の整数)番目の被駆動部は、N個の弾性部のうちの第k番目の被駆動部に対応する第k番目の弾性部によってベース部と接続される。 The driving device of the present embodiment includes a plurality of driven parts. The drive device of this embodiment includes a plurality of elastic portions so as to correspond to the plurality of driven portions. For example, the drive device of the present embodiment includes N (where N is an integer of 2 or more) driven parts and N elastic parts. In this case, of the N (where N is an integer of 2 or more) driven parts, the kth (where k is an integer of 1 or more and N or less) driven parts are N elastic parts. Are connected to the base portion by the kth elastic portion corresponding to the kth driven portion.
 本実施形態の駆動装置では特に、印加部の動作により、複数の被駆動部の夫々及び複数の弾性部のうちの対応する一つの弾性部により定まる共振周波数で夫々の被駆動部が一の方向に沿った軸を中心軸として共振しながら回転するような加振力が加えられる。より具体的には、印加部は、(i)N個の被駆動部のうちの第1番目の被駆動部の一の方向に沿った軸周り(つまり、第1番目の被駆動部の回転軸周り)の慣性モーメント及び当該第1番目の被駆動部に対応する第1番目の弾性部のねじりばね定数により定まる共振周波数で第1番目の被駆動部が一の方向に沿った軸を中心軸として回転し、(ii)N個の被駆動部のうちの第2番目の被駆動部の一の方向に沿った軸周り(つまり、第2番目の被駆動部の回転軸周り)の慣性モーメント及び当該第2番目の被駆動部に対応する第2番目の弾性部のねじりばね定数により定まる共振周波数で第2番目の被駆動部が一の方向に沿った軸を中心軸として回転し、・・・、(N)N個の被駆動部のうちの第N番目の被駆動部の一の方向に沿った軸周り(つまり、第N番目の被駆動部の回転軸周り)の慣性モーメント及び当該第N番目の被駆動部に対応する第N番目の弾性部のねじりばね定数により定まる共振周波数で第N番目の被駆動部が一の方向に沿った軸を中心軸として回転するような加振力を加える。 In the driving apparatus of this embodiment, in particular, each driven unit is in one direction at a resonance frequency determined by each of the plurality of driven units and the corresponding one of the plurality of elastic units by the operation of the application unit. An excitation force that rotates while resonating with the axis along the axis as the central axis is applied. More specifically, the application unit is configured to (i) around the axis along one direction of the first driven unit among the N driven units (that is, the rotation of the first driven unit). The first driven part is centered on the axis along one direction at a resonance frequency determined by the moment of inertia around the axis) and the torsion spring constant of the first elastic part corresponding to the first driven part. (Ii) Inertia around the axis along one direction of the second driven part of the N driven parts (that is, around the rotational axis of the second driven part) The second driven part rotates about the axis along one direction at the resonance frequency determined by the moment and the torsion spring constant of the second elastic part corresponding to the second driven part; ... (N) around the axis along one direction of the Nth driven part among the N driven parts (that is, the Nth driven part) The Nth driven part is equal to the resonance frequency determined by the moment of inertia around the rotation axis of the Nth driven part and the torsion spring constant of the Nth elastic part corresponding to the Nth driven part. An exciting force is applied that rotates about the axis along the direction as the central axis.
 更に、本実施形態の駆動装置では、印加部は、複数の被駆動部のうちの第1の被駆動部が回転する位相が複数の駆動部のうちの第2の被駆動部が回転する位相に対して逆相となるように、加振力を加える。具体的には、例えば、印加部は、複数の被駆動部のうちの第1の被駆動部が回転する位相と複数の駆動部のうちの第2の被駆動部が回転する位相との間のずれが180°となるように、加振力を加える。その結果、第1の被駆動部が一の方向に沿った中心軸に対して時計回りで回転している場合には、第2の被駆動部は、一の方向に沿った中心軸に対して半時計回りで回転することになる。同様に、第1の被駆動部が一の方向に沿った中心軸に対して半時計回りで回転している場合には、第2の被駆動部は、一の方向に沿った中心軸に対して時計回りで回転することになる。加えて、第1の被駆動部が基準位置から時計回りで所定量(或いは、所定角度)だけ回転している時点で、第2の被駆動部は、基準位置から半時計回りで同一の所定量(或いは、所定角度)だけ回転している。同様に、加えて、第1の被駆動部が基準位置から半時計回りで所定量(或いは、所定角度)だけ回転している時点で、第2の被駆動部は、基準位置から時計回りで同一の所定量(或いは、所定角度)だけ回転している。従って、1つの被駆動物を特定の周波数fで回転させる駆動装置と比較して、複数の被駆動部(例えば、互いに逆相で回転する第1及び第2の被駆動部)を1つの被駆動部の如く取り扱うことで、実質的には、2倍の周波数2fで(言い換えれば、1/2の周期で)1つの被駆動部を回転させている状態と同様の状態を実現することができる。言い換えれば、複数の被駆動部(例えば、互いに逆相で回転する第1及び第2の被駆動部)の夫々を半分の周波数f/2で回転させても、複数の被駆動部(例えば、互いに逆相で回転する第1及び第2の被駆動部)を1つの被駆動部の如く取り扱うことで、実質的には、2倍の周波数fで1つの被駆動部を回転させている状態と同様の状態を実現することができる。 Further, in the driving device of the present embodiment, the application unit is configured such that the phase of the first driven unit among the plurality of driven units rotates and the phase of the second driven unit among the plurality of driven units rotates. An excitation force is applied so as to be in reverse phase with respect to. Specifically, for example, the application unit is between a phase in which the first driven unit among the plurality of driven units rotates and a phase in which the second driven unit among the plurality of driven units rotates. Excitation force is applied so that the deviation is 180 °. As a result, when the first driven part is rotating clockwise with respect to the central axis along one direction, the second driven part is relative to the central axis along one direction. Will rotate counterclockwise. Similarly, when the first driven part is rotating counterclockwise with respect to the central axis along one direction, the second driven part is placed on the central axis along one direction. In contrast, it will rotate clockwise. In addition, when the first driven part is rotated by a predetermined amount (or a predetermined angle) clockwise from the reference position, the second driven part is the same position counterclockwise from the reference position. It rotates by a fixed amount (or a predetermined angle). Similarly, in addition, when the first driven part is rotated by a predetermined amount (or a predetermined angle) counterclockwise from the reference position, the second driven part is rotated clockwise from the reference position. It is rotated by the same predetermined amount (or a predetermined angle). Therefore, a plurality of driven parts (for example, first and second driven parts rotating in opposite phases to each other) are compared with a driving apparatus that rotates one driven object at a specific frequency f. By handling like a drive unit, it is possible to realize a state that is substantially the same as a state where one driven unit is rotated at twice the frequency 2f (in other words, with a period of 1/2). it can. In other words, even if each of the plurality of driven parts (for example, the first and second driven parts rotating in opposite phases to each other) is rotated at half the frequency f / 2, the plurality of driven parts (for example, The first and second driven parts that rotate in opposite phases to each other are handled like one driven part, so that one driven part is substantially rotated at twice the frequency f. A similar state can be realized.
 本実施形態の駆動装置の一の態様では、前記複数の被駆動部の夫々及び前記複数の弾性部のうち前記夫々の被駆動部に対応する一つの弾性部により定まる共振周波数は、前記複数の被駆動部の少なくとも2つの間で同じになる。 In one aspect of the driving device of the present embodiment, the resonance frequency determined by each of the plurality of driven parts and one elastic part corresponding to each of the plurality of elastic parts is the plurality of the plurality of driven parts. It is the same between at least two of the driven parts.
 この態様によれば、複数の被駆動部の夫々及び複数の弾性部のうち夫々の被駆動部に対応する一つの弾性部により定まる共振周波数は、複数の被駆動部のうちの少なくとも2つの間で同じになる。より具体的には、(i)N個の被駆動部のうちの第1番目の被駆動部の一の方向に沿った軸周り(つまり、第1番目の被駆動部の回転軸周り)の慣性モーメント及び当該第1番目の被駆動部に対応する第1番目の弾性部のねじりばね定数により定まる共振周波数と、(ii)N個の被駆動部のうちの第2番目の被駆動部の一の方向に沿った軸周り(つまり、第2番目の被駆動部の回転軸周り)の慣性モーメント及び当該第2番目の被駆動部に対応する第2番目の弾性部のねじりばね定数により定まる共振周波数と、・・・、(N)N個の被駆動部のうちの第N番目の被駆動部の一の方向に沿った軸周り(つまり、第N番目の被駆動部の回転軸周り)の慣性モーメント及び当該第N番目の被駆動部に対応する第N番目の弾性部のねじりばね定数により定まる共振周波数とのうちの少なくとも2つは、同じになる。従って、複数の被駆動部のうちの少なくとも2つで同じになる共振周波数に対応する特定の一つの周期で印加部から加振力が印加されることで、複数の被駆動部のうちの少なくとも2つを共振させながら且つ同期させながら回転させることができる。 According to this aspect, the resonance frequency determined by one elastic part corresponding to each driven part among each of the plurality of driven parts and the plurality of elastic parts is between at least two of the plurality of driven parts. It will be the same. More specifically, (i) around the axis along one direction of the first driven part among the N driven parts (that is, around the rotation axis of the first driven part). The resonance frequency determined by the moment of inertia and the torsion spring constant of the first elastic part corresponding to the first driven part, and (ii) the second driven part of the N driven parts. It is determined by the moment of inertia around the axis along one direction (that is, around the rotation axis of the second driven part) and the torsion spring constant of the second elastic part corresponding to the second driven part. Resonance frequency, ..., (N) Around the axis along one direction of the Nth driven part among the N driven parts (that is, around the rotation axis of the Nth driven part) ) And the torsion spring constant of the Nth elastic part corresponding to the Nth driven part. At least two of the oscillation frequencies are the same. Therefore, the excitation force is applied from the application unit at a specific period corresponding to the resonance frequency that is the same in at least two of the plurality of driven units, so that at least one of the plurality of driven units is The two can be rotated while resonating and synchronizing.
 本実施形態の駆動装置の他の態様では、前記印加部は、前記一の方向とは異なる他の方向に沿って前記ベース部が定常波状に変形振動するように前記加振力を加え、前記複数の被駆動部の夫々は、前記複数の弾性部を介して、前記ベース部の変形振動における節に対応する箇所に接続されている。 In another aspect of the driving apparatus of the present embodiment, the application unit applies the excitation force so that the base unit deforms and vibrates in a standing wave shape along another direction different from the one direction. Each of the plurality of driven parts is connected to a location corresponding to a node in the deformation vibration of the base part via the plurality of elastic parts.
 この態様によれば、加振力が加えられるベース部は、他の方向に沿って定常波状に(つまり、定常波の波形状に)変形振動する。つまり、ベース部は、そのある一部分が変形振動の腹となり且つその他の一部分が変形振動の節となるように、その外観を変形させる。このようなベース部の変形振動によって、他の方向に沿って腹及び節が現れる。ベース部の変形振動は、いわゆる定常波の波形に従って行われるため、その腹及び節の位置は実質的には固定されている。 According to this aspect, the base portion to which the excitation force is applied deforms and vibrates in a standing wave shape (that is, in a standing wave shape) along the other direction. That is, the appearance of the base portion is deformed so that a part thereof becomes an antinode of deformation vibration and the other part becomes a node of deformation vibration. Due to the deformation vibration of the base portion, the belly and the node appear along other directions. Since the deformation vibration of the base portion is performed in accordance with a so-called standing wave waveform, the positions of its antinodes and nodes are substantially fixed.
 更に、この態様によれば、ベース部の変形振動における節に対応する箇所に複数の被駆動部の夫々が接続されている。このため、複数の被駆動部の上下方向(具体的には、一の方向及び他の方向の夫々に直交する方向であって、ベース部の表面に対して垂直な方向)の移動を防ぎつつ、複数の被駆動部を互いに逆相で回転させることができる。 Furthermore, according to this aspect, each of the plurality of driven parts is connected to a location corresponding to a node in the deformation vibration of the base part. For this reason, while preventing the movement of the plurality of driven parts in the vertical direction (specifically, the direction perpendicular to the one direction and the other direction and perpendicular to the surface of the base part). The plurality of driven parts can be rotated in opposite phases.
 他の方向に沿ってベース部が定常波状に変形振動するように印加部が加振力を加える駆動装置の態様では、前記印加部は、前記他の方向に沿った前記ベース部の変形振動が共振となるように前記加振力を加えるように構成してもよい。 In an aspect of the driving device in which the application unit applies an excitation force so that the base unit deforms and vibrates in a standing wave shape along the other direction, the application unit is configured to perform deformation vibration of the base unit along the other direction. You may comprise so that the said excitation force may be applied so that it may become resonance.
 このように構成すれば、ベース部の変形振動が共振となるため、ベース部の変形振動を好適に実現することができる。 With this configuration, since the deformation vibration of the base portion becomes resonance, the deformation vibration of the base portion can be suitably realized.
 ベース部の変形振動が共振となる駆動装置の態様では、前記ベース部が共振する共振周波数は、前記複数の被駆動部のうちの少なくとも一つの共振周波数と同一であるように構成してもよい。 In an aspect of the driving device in which the deformation vibration of the base portion resonates, a resonance frequency at which the base portion resonates may be configured to be the same as at least one resonance frequency of the plurality of driven portions. .
 このように構成すれば、ベース部の変形振動の周期と複数の被駆動部の回転の周期との間の同期をとりやすくなる。従って、ベース部の変形振動の周期と複数の被駆動部の回転との間の同期を適切に図ることで、複数の被駆動部を互いに逆相で回転させることができる。 If configured in this way, it becomes easy to synchronize between the period of deformation vibration of the base part and the period of rotation of the plurality of driven parts. Accordingly, by appropriately synchronizing the period of deformation vibration of the base portion and the rotation of the plurality of driven parts, the plurality of driven parts can be rotated in opposite phases.
 他の方向に沿ってベース部が定常波状に変形振動するように印加部が加振力を加える駆動装置の態様では、前記ベース部の変形振動における節に対応する箇所の剛性が、前記ベース部の変形振動における節以外の箇所の剛性よりも高いように構成してもよい。 In an aspect of the driving device in which the application unit applies an excitation force so that the base unit deforms and vibrates in a standing wave shape along another direction, the rigidity of the portion corresponding to the node in the deformation vibration of the base unit is determined by the base unit. You may comprise so that it may be higher than the rigidity of places other than the node in deformation vibration of this.
 このように構成すれば、ベース部の剛性を調整することで、ベース部を他の方向に沿って定常波状に変形振動させやすくすることができる。 With this configuration, the base portion can be easily deformed and oscillated in a standing wave shape along other directions by adjusting the rigidity of the base portion.
 他の方向に沿ってベース部が定常波状に変形振動するように印加部が加振力を加える駆動装置の態様では、前記ベース部の変形振動における節に対応する箇所の質量が、前記ベース部の変形振動における節以外の箇所の質量よりも小さいように構成してもよい。 In an aspect of the driving device in which the application unit applies an excitation force so that the base unit deforms and vibrates in a standing wave shape along the other direction, the mass of the portion corresponding to the node in the deformation vibration of the base unit is the base unit. You may comprise so that it may be smaller than the mass of parts other than the node in deformation vibration of this.
 このように構成すれば、ベース部の質量(具体的には、例えば、単位長当たりの質量や、単位体積当たりの質量等)を調整することで、ベース部を他の方向に沿って定常波状に変形振動させやすくすることができる。 With this configuration, by adjusting the mass of the base portion (specifically, for example, the mass per unit length, the mass per unit volume, etc.), the base portion is in a standing wave shape along other directions. Can be easily deformed and vibrated.
 本実施形態の駆動装置の他の態様では、前記加振力は、無方向性振動エネルギーとしての無方向性微振動又は異方性微振動である。 In another aspect of the driving apparatus of the present embodiment, the excitation force is non-directional fine vibration or anisotropic fine vibration as non-directional vibration energy.
 この態様によれば、印加部は、ベース部という構造体内を微振動が伝搬するように、微振動をベース部に対して加える。つまり、印加部は、ベース部そのものを直接ねじれさせる力を加えることに代えて、構造体内を伝搬する微振動を、複数の被駆動部を回転させるための加振エネルギー(言い換えれば、波動エネルギー)として加える。言い換えれば、印加部は、構造体内をエネルギーとして(言い換えれば、「振動」という力を振動に変えることなく、当該力を発現させるエネルギーとして)伝搬する微振動を、複数の被駆動部を回転させるための波動エネルギーとして加える。このような微振動(言い換えれば、構造体内を伝搬する波動エネルギー)は、少なくとも構造体内を伝搬している段階では、方向性を有していない力となる。言い換えれば、微振動としてベース部内を伝搬する波動エネルギーは、ベース部内を任意の方向に向かって伝搬する。その結果、この微振動は、波動エネルギーとして、例えばベース部等の構造体から複数の弾性部へと(更には、ベース部から複数の弾性部を介して複数の被駆動部へと)伝わる。その後、構造体内を伝搬してきた微振動(言い換えれば、波動エネルギー)が、複数の弾性部自身の弾性に応じた方向に向かって複数の弾性部を振動させたり、複数の弾性部の弾性に応じた方向に向かって複数の被駆動部を回転させたりする。言い換えれば、この波動エネルギーは、微振動の方向を限定することなくあらゆる方向の振動として取り出すことができる。つまり、ベース部内を伝搬した波動エネルギーは、振動(より具体的には、共振)という形で外部に取り出すことができ、その結果、複数の被駆動部を回転させることができる。尚、波動エネルギーは、音として外部に取り出すことができるが、この場合に発生する音は、いわゆるピストンモーションによって得られる音と比較して、その発音原理が異なるものである。 According to this aspect, the application unit applies a slight vibration to the base portion so that the fine vibration propagates in the structure called the base portion. That is, instead of applying a force that directly twists the base part itself, the application unit applies the excitation energy (in other words, wave energy) for rotating the plurality of driven parts with the fine vibration propagating in the structure. Add as. In other words, the application unit rotates a plurality of driven units with micro vibrations that propagate as energy in the structure (in other words, energy that expresses the force without changing the force of “vibration” into vibration). Add as wave energy for. Such fine vibration (in other words, wave energy propagating in the structure) becomes a force having no directionality at least in the stage of propagation in the structure. In other words, the wave energy propagating in the base portion as a minute vibration propagates in the base portion in an arbitrary direction. As a result, this micro vibration is transmitted as wave energy from, for example, a structure such as a base portion to a plurality of elastic portions (further, from the base portion to a plurality of driven portions via the plurality of elastic portions). After that, micro vibrations (in other words, wave energy) that have propagated through the structure cause the plurality of elastic parts to vibrate in the direction corresponding to the elasticity of the plurality of elastic parts themselves, or according to the elasticity of the plurality of elastic parts. A plurality of driven parts are rotated in the direction of the movement. In other words, this wave energy can be taken out as vibrations in all directions without limiting the direction of micro vibrations. That is, the wave energy propagated in the base portion can be taken out in the form of vibration (more specifically, resonance), and as a result, a plurality of driven portions can be rotated. The wave energy can be extracted to the outside as sound, but the sound generated in this case has a different sound generation principle compared to the sound obtained by so-called piston motion.
 ここで、いわゆる方向性を有する力を加えることで複数の被駆動部の回転駆動を行う場合(例えば、ベース部そのものを複数の被駆動部の回転方向に向かって大きくねじれさせ、そのねじれを複数の弾性部や複数の被駆動部に直接加えることで複数の被駆動部の回転駆動を行う場合)には、複数の被駆動部を一の方向に沿った軸を中心軸として回転させる方向性を有する力(つまり、ベース部等の構造体を一の方向に沿った軸を中心軸とする回転方向に向けてねじれさせる方向性を有する力)を印加部から加える必要がある。このため、このような方向性を有する力を加えることができるように、印加部の配置位置を適切に設定しなければならない。つまり、方向性を有する力を加える場合には、当該力を作用させる方向に依存して印加部の配置位置が限定されてしまう。 Here, when a plurality of driven parts are rotationally driven by applying a so-called directional force (for example, the base part itself is largely twisted in the rotational direction of the plurality of driven parts, Direction of rotating a plurality of driven parts around an axis along one direction as a central axis when the plurality of driven parts are rotationally driven by being directly applied to the elastic part or the plurality of driven parts. (I.e., a force having a directionality that twists a structure such as a base portion in a rotation direction having an axis along one direction as a central axis) from the application unit. For this reason, the arrangement position of the application unit must be appropriately set so that a force having such directionality can be applied. That is, when a force having directionality is applied, the arrangement position of the application unit is limited depending on the direction in which the force is applied.
 しかるに、本実施形態では、微振動に起因した方向性のない力を加えているがゆえに、印加部の配置位置が限定されてしまうことはなくなる。言い換えれば、微振動に起因した方向性のない力を加えているがゆえに、複数の被駆動部の回転の方向に依存して印加部の配置位置が限定されてしまうことはなくなる。つまり、印加部の配置位置がどのような位置に設定されたとしても、印加部から加えられる微振動(つまり、方向性のない力)は、複数の弾性部の弾性を利用して、複数の被駆動部を一の方向に沿った軸を中心軸として回転させることができる。これにより、駆動装置の設計の自由度を相対的に増加させることができる。 However, in this embodiment, since a non-directional force due to micro vibration is applied, the arrangement position of the application unit is not limited. In other words, since a non-directional force due to micro vibration is applied, the arrangement position of the application unit is not limited depending on the direction of rotation of the plurality of driven units. In other words, no matter what the arrangement position of the application unit is set, the slight vibration (that is, non-directional force) applied from the application unit is obtained by using the elasticity of the plurality of elastic units. The driven part can be rotated about an axis along one direction as a central axis. Thereby, the freedom degree of design of a drive device can be increased relatively.
 この態様によれば、無方向性微振動又は異方性微振動としてベース部内を伝搬する波動エネルギーを、ベース部内を任意の方向に向かって伝搬させることができる。尚、「無方向性微振動」又は「異方性微振動」は、例えば、複数の被駆動部の回転方向に対して無相関な方向の微振動であってもよい。その結果、この波動エネルギーは、微振動の方向を限定することなくあらゆる方向の振動として取り出すことができる。つまり、ベース部内を伝搬した波動エネルギーは、振動(より具体的には、共振)という形で外部に取り出すことができ、その結果、複数の被駆動部を回転させることができる。 According to this aspect, the wave energy propagating in the base portion as non-directional fine vibration or anisotropic fine vibration can be propagated in the base portion in an arbitrary direction. The “non-directional fine vibration” or “anisotropic fine vibration” may be, for example, a fine vibration in a direction uncorrelated with the rotation direction of the plurality of driven parts. As a result, the wave energy can be extracted as vibrations in all directions without limiting the direction of the fine vibration. That is, the wave energy propagated in the base portion can be taken out in the form of vibration (more specifically, resonance), and as a result, a plurality of driven portions can be rotated.
 加振力が無方向性振動エネルギーとしての無方向性微振動又は異方性微振動である駆動装置の態様では、前記印加部は、前記一の方向に沿った軸を中心軸とする回転方向とは異なる方向に作用する力によって生ずる前記微振動を加えるように構成してもよい。 In an aspect of the driving device in which the excitation force is non-directional fine vibration or anisotropic fine vibration as non-directional vibration energy, the application unit is a rotation direction having an axis along the one direction as a central axis. You may comprise so that the said fine vibration produced by the force which acts on a different direction may be added.
 このように構成すれば、印加部は、微振動を加える際には、まず、一の方向に沿った軸を中心軸とする回転方向(つまり、被駆動部の回転方向)とは異なる方向に作用する力を発生させる。この力は、後に図面を用いて詳細に説明するように、微振動(言い換えれば、波動エネルギー)となってベース部に加えられる。つまり、一の方向に沿った軸を中心軸とする回転方向とは異なる方向に作用する力によって生ずる微振動(言い換えれば、当該力が変換されて生ずる微振動ないしは波動エネルギー)を加えることができる。従って、上述した各種効果を好適に享受することができる。 According to this configuration, when applying the fine vibration, the application unit firstly has a direction different from the rotation direction having the axis along one direction as the central axis (that is, the rotation direction of the driven unit). Generate an acting force. As will be described in detail later with reference to the drawings, this force is applied to the base portion as fine vibration (in other words, wave energy). In other words, it is possible to apply a minute vibration (in other words, a minute vibration or wave energy generated by converting the force) caused by a force acting in a direction different from the rotation direction with the axis along one direction as the central axis. . Therefore, the various effects described above can be suitably enjoyed.
 加振力が無方向性振動エネルギーとしての無方向性微振動又は異方性微振動である駆動装置の態様では、前記印加部は、静止時の前記被駆動部の表面に沿った方向に作用する力によって生ずる前記微振動を加えるように構成してもよい。 In an aspect of the driving device in which the excitation force is non-directional fine vibration or anisotropic fine vibration as non-directional vibration energy, the application unit is a force acting in a direction along the surface of the driven unit at rest It may be configured to apply the fine vibration generated by the above.
 このように構成すれば、印加部は、微振動を加える際には、まず、静止時の(言い換えれば、初期配置時の)複数の被駆動部の表面に沿った方向(つまり、面内方向)に作用する力を発生させる。この力は、後に図面を用いて詳細に説明するように、微振動(言い換えれば、波動エネルギー)となってベース部に加えられる。つまり、静止時の複数の被駆動部の表面に沿った方向に作用する力によって生ずる微振動(言い換えれば、当該力が変換されて生ずる微振動ないしは波動エネルギー)を加えることができる。従って、上述した各種効果を好適に享受することができる。 According to this configuration, when applying the fine vibration, the application unit firstly has a direction along the surface of the plurality of driven parts at rest (in other words, at the initial placement) (that is, in-plane direction). ) Is generated. As will be described in detail later with reference to the drawings, this force is applied to the base portion as fine vibration (in other words, wave energy). That is, it is possible to apply a minute vibration (in other words, a minute vibration or wave energy generated by converting the force) caused by a force acting in a direction along the surfaces of the plurality of driven parts at rest. Therefore, the various effects described above can be suitably enjoyed.
 本実施形態のこのような作用及び他の利得は次に説明する実施例から明らかにされる。 Such an operation and other advantages of the present embodiment will be clarified from examples described below.
 以上説明したように、本実施形態の駆動装置によれば、ベース部と、複数の被駆動部と、複数の弾性部と、印加部とを備え、印加部は、第1の被駆動部が回転する位相が第2の被駆動部が回転する位相に対して逆相となるように微振動を加える。従って、複数の被駆動部を好適に回転させることができる。 As described above, according to the driving apparatus of the present embodiment, the base unit, the plurality of driven parts, the plurality of elastic parts, and the applying part are provided, and the applying part includes the first driven part. Slight vibration is applied so that the rotating phase is opposite to the rotating phase of the second driven part. Accordingly, the plurality of driven parts can be suitably rotated.
 以下、図面を参照しながら、駆動装置の実施例について説明する。尚、以下では、駆動装置をMEMSスキャナに適用した例について説明する。 Hereinafter, embodiments of the drive device will be described with reference to the drawings. In the following, an example in which the driving device is applied to a MEMS scanner will be described.
 (1)第1実施例
 図1から図5を参照して、第1実施例のMEMSスキャナ100について説明する。
(1) First Embodiment A MEMS scanner 100 according to a first embodiment will be described with reference to FIGS.
 (1-1)基本構成
 図1を参照して、第1実施例のMEMSスキャナ100の基本構成について説明する。図1は、第1実施例のMEMSスキャナ100の基本構成を概念的に示す平面図である。
(1-1) Basic Configuration The basic configuration of the MEMS scanner 100 according to the first embodiment will be described with reference to FIG. FIG. 1 is a plan view conceptually showing the basic structure of the MEMS scanner 100 of the first embodiment.
 図1に示すように、第1実施例のMEMSスキャナ100は、ベース110と、トーションバー120a及び120bと、トーションバー120c及び120dと、ミラー130aと、ミラー130cと、駆動源部160とを備えている。 As shown in FIG. 1, the MEMS scanner 100 of the first embodiment includes a base 110, torsion bars 120a and 120b, torsion bars 120c and 120d, a mirror 130a, a mirror 130c, and a drive source unit 160. ing.
 ベース110は、内部に空隙を備える枠形状を有している。つまり、ベース110は、図1中のY軸方向に延伸する2つの辺と図1中のX軸方向(つまり、Y軸に直交する軸方向)に延伸する2つの辺とを有すると共に、Y軸方向に延伸する2つの辺とX軸方向に延伸する2つの辺とによって取り囲まれた空隙を有する枠形状を有している。図1に示す例では、ベース110は、正方形の形状を有しているが、これに限定されることはなく、例えばその他の形状(例えば、長方形等の矩形の形状や円形の形状等)を有していてもよい。また、ベース110は、第1実施例に係るMEMSスキャナ100の基礎となる構造体であって、不図示の基板ないしは支持部材に対して固定されている(言い換えれば、MEMSスキャナ100という系の内部においては固定されている)ことが好ましい。 The base 110 has a frame shape with a gap inside. That is, the base 110 has two sides extending in the Y-axis direction in FIG. 1 and two sides extending in the X-axis direction (that is, the axial direction perpendicular to the Y-axis) in FIG. It has a frame shape having a gap surrounded by two sides extending in the axial direction and two sides extending in the X-axis direction. In the example illustrated in FIG. 1, the base 110 has a square shape, but is not limited thereto, and other shapes (for example, a rectangular shape such as a rectangle or a circular shape) may be used. You may have. The base 110 is a structure that is the basis of the MEMS scanner 100 according to the first embodiment, and is fixed to a substrate or a support member (not shown) (in other words, the inside of the system called the MEMS scanner 100). Is preferably fixed).
 尚、図1では、ベース110が枠形状を有している例を示しているが、その他の形状を有していてもよいことは言うまでもない。例えば、ベース110は、その一部の辺が開口となるコの字型形状を有していてもよい。或いは、例えば、ベース110は、内部に空隙を備える箱型形状を有していてもよい。つまり、ベース110は、X軸及びY軸によって規定される平面上に分布する2つの面と、X軸及び不図示のZ軸(つまり、X軸及びY軸の双方に直交する軸)によって規定される平面上に分布する2つの面と、Y軸及び不図示のZ軸によって規定される平面上に分布する2つの面とを有すると共に、これらの6つの面によって取り囲まれた空隙を有する箱形状を有していてもよい。或いは、ミラー130a及び130cが配置される態様に応じて適宜ベース110の形状を任意に代えてもよい。 Although FIG. 1 shows an example in which the base 110 has a frame shape, it goes without saying that it may have other shapes. For example, the base 110 may have a U-shape in which a part of the base 110 is an opening. Alternatively, for example, the base 110 may have a box shape with a gap inside. That is, the base 110 is defined by two surfaces distributed on a plane defined by the X axis and the Y axis, and the X axis and a Z axis (not shown) (that is, an axis orthogonal to both the X axis and the Y axis). Box having two planes distributed on a flat plane and two planes distributed on a plane defined by a Y-axis and a Z-axis (not shown) and a space surrounded by these six planes You may have a shape. Alternatively, the shape of the base 110 may be arbitrarily changed according to the manner in which the mirrors 130a and 130c are arranged.
 トーションバー120aは、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。トーションバー120aは、図1中Y軸の方向に延伸するように配置される。言い換えれば、トーションバー120aは、Y軸の方向に延伸する長手を有すると共にX軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、トーションバー120aは、Y軸の方向に延伸する短手を有すると共にX軸の方向に延伸する長手を有する形状を有していてもよい。トーションバー120aの一方の端部121aは、ベース110の内側の辺111に接続される。トーションバー120aの他方の端部122aは、Y軸の方向に沿ってベース110の内側の辺111に対向するミラー130aの辺131aに接続される。 The torsion bar 120a is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin or the like. The torsion bar 120a is arranged to extend in the direction of the Y axis in FIG. In other words, the torsion bar 120a has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction. However, the torsion bar 120a may have a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction according to the setting state of the resonance frequency described later. One end 121 a of the torsion bar 120 a is connected to the side 111 inside the base 110. The other end 122a of the torsion bar 120a is connected to the side 131a of the mirror 130a that faces the side 111 inside the base 110 along the Y-axis direction.
 トーションバー120bは、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。トーションバー120bは、図1中Y軸の方向に延伸するように配置される。言い換えれば、トーションバー120bは、Y軸の方向に延伸する長手を有すると共にX軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、トーションバー120bは、Y軸の方向に延伸する短手を有すると共にX軸の方向に延伸する長手を有する形状を有していてもよい。トーションバー120bの一方の端部121bは、Y軸の方向に沿ってベース110の内側の辺111(つまり、トーションバー120aの一方の端部121aが接続されるベース110の内側の辺111)に対向するベース110の内側の辺112に接続される。トーションバー120bの他方の端部122bは、Y軸の方向に沿ってベース110の内側の辺112に対向するミラー130aの辺132aに接続される。 The torsion bar 120b is an elastic member such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like. The torsion bar 120b is arranged so as to extend in the direction of the Y axis in FIG. In other words, the torsion bar 120b has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction. However, the torsion bar 120b may have a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction according to the setting state of the resonance frequency described later. One end 121b of the torsion bar 120b is on the inner side 111 of the base 110 along the Y-axis direction (that is, the inner side 111 of the base 110 to which the one end 121a of the torsion bar 120a is connected). It is connected to the inner side 112 of the opposing base 110. The other end 122b of the torsion bar 120b is connected to the side 132a of the mirror 130a facing the side 112 inside the base 110 along the Y-axis direction.
 トーションバー120cは、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。トーションバー120cは、図1中Y軸の方向に延伸するように配置される。言い換えれば、トーションバー120cは、Y軸の方向に延伸する長手を有すると共にX軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、トーションバー120cは、Y軸の方向に延伸する短手を有すると共にX軸の方向に延伸する長手を有する形状を有していてもよい。トーションバー120cの一方の端部121cは、ベース110の内側の辺111に接続される。トーションバー120cの他方の端部122cは、Y軸の方向に沿ってベース110の内側の辺111に対向するミラー130cの辺131cに接続される。 The torsion bar 120c is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin or the like. The torsion bar 120c is arranged to extend in the direction of the Y axis in FIG. In other words, the torsion bar 120c has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction. However, the torsion bar 120c may have a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction in accordance with a setting state of a resonance frequency described later. One end 121 c of the torsion bar 120 c is connected to the side 111 inside the base 110. The other end 122c of the torsion bar 120c is connected to a side 131c of the mirror 130c that faces the side 111 inside the base 110 along the Y-axis direction.
 トーションバー120dは、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。トーションバー120dは、図1中Y軸の方向に延伸するように配置される。言い換えれば、トーションバー120dは、Y軸の方向に延伸する長手を有すると共にX軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、トーションバー120dは、Y軸の方向に延伸する短手を有すると共にX軸の方向に延伸する長手を有する形状を有していてもよい。トーションバー120dの一方の端部121dは、Y軸の方向に沿ってベース110の内側の辺111(つまり、トーションバー120cの一方の端部121cが接続されるベース110の内側の辺111)に対向するベース110の内側の辺112に接続される。トーションバー120dの他方の端部122dは、Y軸の方向に沿ってベース110の内側の辺112に対向するミラー130cの辺132cに接続される。 The torsion bar 120d is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like. The torsion bar 120d is disposed so as to extend in the direction of the Y axis in FIG. In other words, the torsion bar 120d has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction. However, the torsion bar 120d may have a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction according to the setting state of the resonance frequency described later. One end 121d of the torsion bar 120d is on the inner side 111 of the base 110 along the Y-axis direction (that is, the inner side 111 of the base 110 to which the one end 121c of the torsion bar 120c is connected). It is connected to the inner side 112 of the opposing base 110. The other end 122d of the torsion bar 120d is connected to the side 132c of the mirror 130c facing the inner side 112 of the base 110 along the Y-axis direction.
 ミラー130aは、ベース110の内部の空隙に、トーションバー120a及び120bによって吊り下げられる又は支持されるように配置される。ミラー130aは、トーションバー120a及び120bの弾性によって、Y軸の方向を中心軸として回転するように構成されている。 The mirror 130a is arranged to be suspended or supported by the torsion bars 120a and 120b in the space inside the base 110. The mirror 130a is configured to rotate about the Y-axis direction as a central axis by the elasticity of the torsion bars 120a and 120b.
 ミラー130cは、ベース110の内部の空隙に、トーションバー120c及び120dによって吊り下げられる又は支持されるように配置される。ミラー130cは、トーションバー120c及び120dの弾性によって、Y軸の方向を中心軸として回転するように構成されている。 The mirror 130c is arranged to be suspended or supported by the torsion bars 120c and 120d in the gap inside the base 110. The mirror 130c is configured to rotate about the Y-axis direction as a central axis by the elasticity of the torsion bars 120c and 120d.
 駆動源部160は、ミラー130a及び130cをY軸の方向に沿った軸を中心軸として回転させるために必要な微振動をベース110に対して加える。尚、駆動源部160が微振動をベース110に加えることができる限りは、その配置態様は任意に定めてもよい。また、ベース110に対して力を加えることに限らず、その他の位置(例えば、トーションバー120aや、トーションバー120bや、トーションバー120cや、トーションバー120bや、ミラー130aや、ミラー130c等)に対して力を加えることができるように構成されてもよい。 The drive source unit 160 applies fine vibrations necessary for rotating the mirrors 130 a and 130 c about the axis along the Y-axis direction to the base 110. In addition, as long as the drive source part 160 can apply a slight vibration to the base 110, the arrangement mode may be arbitrarily determined. Further, the force is not limited to the base 110, and is applied to other positions (for example, the torsion bar 120a, the torsion bar 120b, the torsion bar 120c, the torsion bar 120b, the mirror 130a, the mirror 130c, etc.). It may be configured such that a force can be applied to it.
 より具体的には、駆動源部160は、電磁力に起因した力を加える駆動源部であって、ベース110の枠形状に沿って配置されるコイル161と、不図示の基材に固定される磁極162とを備える。この場合、コイル161には、不図示の駆動源部制御回路から所望のタイミングで、所望の電圧が印加される。コイル161への電圧の印加によって電流が流れ、コイル161と磁極162との間に電磁相互作用が生ずる。その結果、電磁相互作用による電磁力が発生する。この電磁力は微振動としてベース110に伝えられる。 More specifically, the drive source unit 160 is a drive source unit that applies a force due to an electromagnetic force, and is fixed to a coil 161 arranged along the frame shape of the base 110 and a base material (not shown). Magnetic pole 162. In this case, a desired voltage is applied to the coil 161 at a desired timing from a drive source unit control circuit (not shown). When a voltage is applied to the coil 161, a current flows, and electromagnetic interaction occurs between the coil 161 and the magnetic pole 162. As a result, electromagnetic force due to electromagnetic interaction is generated. This electromagnetic force is transmitted to the base 110 as a slight vibration.
 続いて、図2を参照して、ベース110の裏側(具体的には、図1に示したベース110の反対側)の構成について説明する。図2は、ベース110の裏側(具体的には、図1に示したベース110の反対側)の構成を示す平面斜視図である。 Subsequently, the configuration of the back side of the base 110 (specifically, the side opposite to the base 110 shown in FIG. 1) will be described with reference to FIG. 2 is a plan perspective view showing the configuration of the back side of the base 110 (specifically, the side opposite to the base 110 shown in FIG. 1).
 図2に示すように、ベース110の枠形状のうちの一部の領域110aには、ベース110の表面から突き出るリブ119が形成されている。リブ119は、ベース110と一体的に形成されていてもよいし、ベース110が形成された後に付加的に配置されていてもよい。一方で、ベース110の枠形状のうちの他の一部の領域110bには、リブ119が形成されていない。 As shown in FIG. 2, ribs 119 protruding from the surface of the base 110 are formed in a partial region 110 a of the frame shape of the base 110. The rib 119 may be formed integrally with the base 110 or may be additionally arranged after the base 110 is formed. On the other hand, the rib 119 is not formed in the other partial area 110b of the frame shape of the base 110.
 図2に示すリブ119により、ベース110の枠形状のうちの一部の領域110aの剛性は、ベース110の枠形状のうちの他の一部の領域110bの剛性よりも高くなる。言い換えれば、リブ119は、ベース110の枠形状のうちの一部の領域110aの剛性が、ベース110の枠形状のうちの他の一部の領域110bの剛性よりも高くなる状態を実現することができるように、ベース110に形成されることが好ましい。つまり、ベース110の枠形状のうちの一部の領域110aの剛性が、ベース110の枠形状のうちの他の一部の領域110bの剛性よりも高くなる状態を実現することができるように、リブ119の形成位置や、大きさや、質量や、剛性や、密度等が適宜決定されることが好ましい。 2, the rigidity of a part of the region 110a in the frame shape of the base 110 is higher than the rigidity of the other part of the region 110b in the frame shape of the base 110. In other words, the rib 119 realizes a state in which the rigidity of a part of the region 110a in the frame shape of the base 110 is higher than the rigidity of the other part of the region 110b in the frame shape of the base 110. It is preferable to be formed on the base 110 so that the That is, a state in which the rigidity of a part of the region 110a in the frame shape of the base 110 is higher than the rigidity of the other part of the region 110b in the frame shape of the base 110 can be realized. It is preferable that the formation position, size, mass, rigidity, density, and the like of the rib 119 are appropriately determined.
 或いは、図2に示すリブ119により、ベース110の枠形状のうちの一部の領域110aの質量(或いは、ベース110の枠方向に沿った単位長当たりの質量)は、ベース110の枠形状のうちの他の一部の領域110bの質量(或いは、ベース110の枠方向に沿った単位長当たりの質量)よりも大きくなる。或いは、リブ119は、ベース110の枠形状のうちの一部の領域110aの質量が、ベース110の枠形状のうちの他の一部の領域110bの質量よりも大きくなる状態を実現することができるように、ベース110に形成されることが好ましい。つまり、ベース110の枠形状のうちの一部の領域110aの質量が、ベース110の枠形状のうちの他の一部の領域110bの質量よりも大きくなる状態を実現することができるように、リブ119の形成位置や、大きさや、質量や、剛性や、密度等が適宜決定されることが好ましい。 Alternatively, by the rib 119 shown in FIG. 2, the mass (or mass per unit length along the frame direction of the base 110) of a part of the region 110 a in the frame shape of the base 110 can be reduced. It becomes larger than the mass (or mass per unit length along the frame direction of the base 110) of some other regions 110b. Alternatively, the rib 119 can realize a state in which the mass of a part of the region 110a in the frame shape of the base 110 is larger than the mass of the other part of the region 110b in the frame shape of the base 110. It is preferable to be formed on the base 110 so as to be able to. That is, in order to realize a state in which the mass of a part of the region 110a in the frame shape of the base 110 is larger than the mass of the other part of the region 110b in the frame shape of the base 110, It is preferable that the formation position, size, mass, rigidity, density, and the like of the rib 119 are appropriately determined.
 尚、リブ119が形成される領域110aとリブ119が形成されない領域110bは、ミラー130a及び130bの夫々の回転軸(つまり、Y軸)に直交する方向(つまり、X軸に沿った方向)に沿って並ぶことが好ましい。 The region 110a where the rib 119 is formed and the region 110b where the rib 119 is not formed are in a direction (that is, a direction along the X axis) perpendicular to the respective rotation axes (that is, the Y axis) of the mirrors 130a and 130b. It is preferable to line up along.
 尚、図2は、リブ119がベース110の裏側に形成される例を示している。しかしながら、リブ119は、ベース110の表側に形成されてもよいし、ベース110の側面に形成されてもよいし、ベース110の内面に形成されてもよい。或いは、リブ119以外の構成を用いて、ベース110の枠形状のうちの一部の領域110aの剛性が、ベース110の枠形状のうちの他の一部の領域110bの剛性よりも高くなる状態を実現してもよい。或いは、リブ119以外の構成を用いて、ベース110の枠形状のうちの一部の領域110aの質量が、ベース110の枠形状のうちの他の一部の領域110bの質量よりも大きくなる状態を実現してもよい。例えば、ベース110の密度や材質等を領域110aと領域110bとで異ならしめることで、上述の状態を実現してもよい。 FIG. 2 shows an example in which the rib 119 is formed on the back side of the base 110. However, the rib 119 may be formed on the front side of the base 110, may be formed on the side surface of the base 110, or may be formed on the inner surface of the base 110. Alternatively, by using a configuration other than the rib 119, the rigidity of the partial area 110a in the frame shape of the base 110 is higher than the rigidity of the other partial area 110b in the frame shape of the base 110. May be realized. Alternatively, by using a configuration other than the rib 119, the mass of a part of the region 110a in the frame shape of the base 110 is larger than the mass of the other part of the region 110b in the frame shape of the base 110. May be realized. For example, the above-described state may be realized by making the density and material of the base 110 different between the region 110a and the region 110b.
 (1-2)MEMSスキャナの動作
 続いて、図3を参照して、第1実施例のMEMSスキャナ100の動作の態様(具体的には、ミラー130a及び130cを回転させる動作の態様)について説明する。図3は、第1実施例のMEMSスキャナ100による動作の態様を概念的に示す平面図である。
(1-2) Operation of the MEMS Scanner Next, with reference to FIG. 3, an operation mode (specifically, an operation mode for rotating the mirrors 130a and 130c) of the MEMS scanner 100 of the first embodiment will be described. To do. FIG. 3 is a plan view conceptually showing an operation mode by the MEMS scanner 100 of the first embodiment.
 第1実施例のMEMSスキャナ100の動作時には、コイル161には、不図示の駆動源部制御回路から所望のタイミングで、所望の電圧が印加される。コイル161への電圧の印加によって電流が流れ、コイル161と磁極162との間に電磁相互作用が生ずる。その結果、電磁相互作用による電磁力が発生する。この電磁力は微振動(ないしは、波動エネルギー)としてベース110に伝えられる。 During the operation of the MEMS scanner 100 of the first embodiment, a desired voltage is applied to the coil 161 at a desired timing from a drive source unit control circuit (not shown). When a voltage is applied to the coil 161, a current flows, and electromagnetic interaction occurs between the coil 161 and the magnetic pole 162. As a result, electromagnetic force due to electromagnetic interaction is generated. This electromagnetic force is transmitted to the base 110 as slight vibration (or wave energy).
 ここで、電磁相互作用による電磁力の方向は、図3中奥側(紙面奥側)から手前側(紙面手前側)方向である。この電磁力そのものは、ミラー130a及び130cの回転方向(つまり、Y軸に沿った方向を中心軸とする回転方向)とは異なる。一方で、この電磁力は、微振動(言い換えれば、波動エネルギーであって、方向性のない力)としてベース110に伝わる。より具体的には、駆動源部160は、基礎となるベース110に対して、ベース110そのものの回転方向のねじれをなくしつつもベース110内を伝搬する微振動を、波動エネルギーとして加える。言い換えれば、駆動源部160は、ベース110そのものに回転方向のねじれを与える力を加えることに代えて、ベース110内をエネルギーとして(言い換えれば、力を発現させる波動エネルギーとして)伝搬する微振動を加える。このような微振動は、ベース110内を伝搬している時点では、方向性を有していない力となる。言い換えれば、微振動としてベース110内を伝搬する波動エネルギーは、ベース110内を任意の方向に向かって伝搬する。また、このような微振動が加えられたベース110は、ベース110そのものが振動する物体となるというよりは、微振動(言い換えれば、波動エネルギー)を伝搬する媒体となる。 Here, the direction of the electromagnetic force due to electromagnetic interaction is from the back side (the back side of the paper) to the near side (the front side of the paper) in FIG. This electromagnetic force itself is different from the rotation direction of the mirrors 130a and 130c (that is, the rotation direction with the direction along the Y axis as the central axis). On the other hand, this electromagnetic force is transmitted to the base 110 as micro vibrations (in other words, wave energy having no directivity). More specifically, the drive source unit 160 applies, as wave energy, fine vibrations that propagate through the base 110 while eliminating the twist in the rotation direction of the base 110 itself to the base 110 that is the base. In other words, instead of applying a force that imparts a twist in the rotational direction to the base 110 itself, the drive source unit 160 transmits micro vibrations that propagate through the base 110 as energy (in other words, as wave energy that expresses the force). Add. Such fine vibration becomes a force having no directivity when propagating through the base 110. In other words, the wave energy propagating in the base 110 as micro vibrations propagates in the base 110 in an arbitrary direction. In addition, the base 110 to which such a minute vibration is applied becomes a medium for propagating the minute vibration (in other words, wave energy) rather than the object that the base 110 itself vibrates.
 その結果、駆動源部160からベース110に対して加えられる微振動は、ベース110からトーションバー120a及び120bへと伝わる。その後、図3に示すように、ベース110内を伝搬してきた微振動(言い換えれば、波動エネルギー)が、トーションバー120a及び120b自身の弾性に応じた方向に向かってトーションバー120a及び120bを回転させたり、ミラー130aを回転させたりする。言い換えれば、ベース110内を伝搬してきた微振動は、トーションバー120a及び120bの回転やミラー130aの回転という形で発現する。言い換えれば、この波動エネルギーは、微振動の方向を限定することなくあらゆる方向の振動として取り出すことができる。つまり、ベース110内を伝搬した波動エネルギーは、振動(より具体的には、共振)という形で外部に取り出すことができ、その結果、ミラー130aを回転させることができる。その結果、図3に示すように、ミラー130aが、Y軸の方向に沿った軸を中心軸として回転する。より具体的には、ミラー130aは、共振周波数での回転動作を所定の角度の範囲内で繰り返すように(言い換えれば、所定の角度の範囲内での回転の往復運動を繰り返す)。 As a result, the slight vibration applied from the drive source unit 160 to the base 110 is transmitted from the base 110 to the torsion bars 120a and 120b. After that, as shown in FIG. 3, the micro-vibration (in other words, wave energy) propagating through the base 110 rotates the torsion bars 120a and 120b in a direction corresponding to the elasticity of the torsion bars 120a and 120b themselves. Or rotate the mirror 130a. In other words, the micro vibration that has propagated through the base 110 appears in the form of rotation of the torsion bars 120a and 120b and rotation of the mirror 130a. In other words, this wave energy can be taken out as vibrations in all directions without limiting the direction of micro vibrations. That is, the wave energy propagated in the base 110 can be extracted outside in the form of vibration (more specifically, resonance), and as a result, the mirror 130a can be rotated. As a result, as shown in FIG. 3, the mirror 130a rotates about the axis along the Y-axis direction as the central axis. More specifically, the mirror 130a repeats the rotation operation at the resonance frequency within a predetermined angle range (in other words, repeats the reciprocating motion of rotation within the predetermined angle range).
 このとき、ミラー130aは、ミラー130a並びにトーションバー120a及び120bに応じて定まる共振周波数で共振するように回転する。より具体的には、ミラー130aは、ミラー130a(より具体的には、ミラー130aを含む被懸架部であり、トーションバー120a及び120bによって吊り下げられる構造物)のY軸に沿った軸周り慣性モーメント並びにトーションバー120a及び120bのねじりバネ定数に応じて定まる共振周波数で共振するように回転する。例えば、ミラー130aのY軸に沿った軸回り慣性モーメントがIaであり且つトーションバー120a及び120bを1本のバネとみなした場合のねじりバネ定数がkaであるとすれば、ミラー130aは、(1/(2π))×√(ka/Ia)にて特定される共振周波数(或いは、(1/(2π))×√(ka/Ia)のN倍若しくはN分の1倍(但し、Nは1以上の整数)の共振周波数)で共振するように、Y軸の方向に沿った軸を中心軸として回転する。このため、駆動源部160は、ミラー130aが上述の共振周波数で共振するように、上記共振周波数に同期した態様で微振動を加える。 At this time, the mirror 130a rotates so as to resonate at a resonance frequency determined according to the mirror 130a and the torsion bars 120a and 120b. More specifically, the mirror 130a is an inertia around the axis along the Y axis of the mirror 130a (more specifically, a suspended part including the mirror 130a and suspended by the torsion bars 120a and 120b). It rotates so as to resonate at a resonance frequency determined according to the moment and the torsion spring constants of the torsion bars 120a and 120b. For example, if the moment of inertia about the axis along the Y-axis of the mirror 130a is Ia and the torsion spring constant when the torsion bars 120a and 120b are regarded as one spring is ka, the mirror 130a is ( 1 / (2π)) × √ (ka / Ia) resonance frequency (or (1 / (2π)) × √ (ka / Ia) N times or 1 / N times (where N Is rotated about the axis along the direction of the Y axis so as to resonate at a resonance frequency of 1). For this reason, the drive source unit 160 applies slight vibration in a manner synchronized with the resonance frequency so that the mirror 130a resonates at the resonance frequency described above.
 また、ミラー130aの共振周波数は、厳密に言えば、ミラー130aという回転体を含む回転系を支える土台の剛性や質量(或いは、慣性モーメント)によって変化しかねない。例えば、ミラー130aの共振周波数は、ミラー130aという回転体を含む回転系を支えるベース110等の剛性や質量(或いは、慣性モーメント)によって変化しかねない。このため、ミラー130aを支える土台の剛性や質量(或いは、慣性モーメント)を考慮した上で、(1/(2π))×√(ka/Ia)という数式(或いは、当該数式を特定するパラメータであるka及びIa)に対して所定の補正演算を施した結果得られる共振周波数を、実際のミラー130aの共振周波数として取り扱ってもよい。 Strictly speaking, the resonance frequency of the mirror 130a may change depending on the rigidity and mass (or moment of inertia) of the base supporting the rotating system including the rotating body called the mirror 130a. For example, the resonance frequency of the mirror 130a may change depending on the rigidity and mass (or moment of inertia) of the base 110 that supports a rotating system including a rotating body called the mirror 130a. Therefore, in consideration of the rigidity and mass (or moment of inertia) of the base supporting the mirror 130a, an equation (1 / (2π)) × √ (ka / Ia) (or a parameter specifying the equation) A resonance frequency obtained as a result of performing a predetermined correction operation on certain ka and Ia) may be handled as the actual resonance frequency of the mirror 130a.
 同様に、駆動源部160からベース110に対して加えられる微振動は、ベース110からトーションバー120c及び120dへと伝わる。その後、図3に示すように、ベース110内を伝搬してきた微振動(言い換えれば、波動エネルギー)が、トーションバー120c及び120d自身の弾性に応じた方向に向かってトーションバー120c及び120dを回転させたり、ミラー130cを回転させたりする。言い換えれば、ベース110内を伝搬してきた微振動は、トーションバー120c及び120dの回転やミラー130cの回転という形で発現する。言い換えれば、この波動エネルギーは、微振動の方向を限定することなくあらゆる方向の振動として取り出すことができる。つまり、ベース110内を伝搬した波動エネルギーは、振動(より具体的には、共振)という形で外部に取り出すことができ、その結果、ミラー130cを回転させることができる。その結果、図3に示すように、ミラー130cが、Y軸の方向に沿った軸を中心軸として回転する。より具体的には、ミラー130cは、共振周波数での回転動作を所定の角度の範囲内で繰り返すように(言い換えれば、所定の角度の範囲内での回転の往復運動を繰り返す)。 Similarly, the slight vibration applied to the base 110 from the drive source unit 160 is transmitted from the base 110 to the torsion bars 120c and 120d. After that, as shown in FIG. 3, micro vibrations (in other words, wave energy) propagating through the base 110 rotate the torsion bars 120 c and 120 d in a direction corresponding to the elasticity of the torsion bars 120 c and 120 d themselves. Or rotate the mirror 130c. In other words, the micro vibration that has propagated through the base 110 appears in the form of rotation of the torsion bars 120c and 120d and rotation of the mirror 130c. In other words, this wave energy can be taken out as vibrations in all directions without limiting the direction of micro vibrations. That is, the wave energy propagated in the base 110 can be extracted outside in the form of vibration (more specifically, resonance), and as a result, the mirror 130c can be rotated. As a result, as shown in FIG. 3, the mirror 130c rotates about the axis along the Y-axis direction as the central axis. More specifically, the mirror 130c repeats the rotation operation at the resonance frequency within a predetermined angle range (in other words, the reciprocating motion of rotation within the predetermined angle range is repeated).
 このとき、ミラー130cは、ミラー130c並びにトーションバー120c及び120dに応じて定まる共振周波数で共振するように回転する。より具体的には、ミラー130cは、ミラー130c(より具体的には、ミラー130cを含む被懸架部であり、トーションバー120c及び120dによって吊り下げられる構造物)のY軸に沿った軸周り慣性モーメント並びにトーションバー120c及び120dのねじりバネ定数に応じて定まる共振周波数で共振するように回転する。例えば、ミラー130cのY軸に沿った軸回り慣性モーメントがIcであり且つトーションバー120c及び120dを1本のバネとみなした場合のねじりバネ定数がkcであるとすれば、ミラー130cは、(1/(2π))×√(kc/Ic)にて特定される共振周波数(或いは、(1/(2π))×√(kc/Ic)のN倍若しくはN分の1倍(但し、Nは1以上の整数)の共振周波数)で共振するように、Y軸の方向に沿った軸を中心軸として回転する。このため、駆動源部160は、ミラー130cが上述の共振周波数で共振するように、上記共振周波数に同期した態様で微振動を加える。 At this time, the mirror 130c rotates so as to resonate at a resonance frequency determined according to the mirror 130c and the torsion bars 120c and 120d. More specifically, the mirror 130c is an inertia around the axis along the Y axis of the mirror 130c (more specifically, a suspended portion including the mirror 130c and suspended by the torsion bars 120c and 120d). It rotates so as to resonate at a resonance frequency determined according to the moment and the torsion spring constants of the torsion bars 120c and 120d. For example, assuming that the moment of inertia about the axis along the Y-axis of the mirror 130c is Ic and the torsion spring constant kc when the torsion bars 120c and 120d are regarded as one spring is kc, 1 / (2π)) × √ (kc / Ic) specified by the resonance frequency (or (1 / (2π)) × √ (kc / Ic) N times or 1 / N times (where N Is rotated about the axis along the direction of the Y axis so as to resonate at a resonance frequency of 1). For this reason, the drive source unit 160 applies slight vibration in a manner synchronized with the resonance frequency so that the mirror 130c resonates at the resonance frequency described above.
 また、ミラー130aの共振周波数は、厳密に言えば、ミラー130cという回転体を含む回転系を支える土台の剛性や質量(或いは、慣性モーメント)によって変化しかねない。例えば、ミラー130aの共振周波数は、ミラー130cという回転体を含む回転系を支えるベース110等の剛性や質量(或いは、慣性モーメント)によって変化しかねない。このため、ミラー130cを支える土台の剛性や質量(或いは、慣性モーメント)を考慮した上で、(1/(2π))×√(kc/Ic)という数式(或いは、当該数式を特定するパラメータであるkc及びIc)に対して所定の補正演算を施した結果得られる共振周波数を、実際のミラー130cの共振周波数として取り扱ってもよい。 Strictly speaking, the resonance frequency of the mirror 130a may change depending on the rigidity and mass (or moment of inertia) of the base supporting the rotating system including the rotating body called the mirror 130c. For example, the resonance frequency of the mirror 130a may change depending on the rigidity and mass (or moment of inertia) of the base 110 that supports a rotating system including a rotating body called the mirror 130c. Therefore, in consideration of the rigidity and mass (or moment of inertia) of the base supporting the mirror 130c, an equation (1 / (2π)) × √ (kc / Ic) (or a parameter for specifying the equation) A resonance frequency obtained as a result of performing a predetermined correction operation on a certain kc and Ic) may be handled as an actual resonance frequency of the mirror 130c.
 尚、第1実施例では、ミラー130aの共振周波数とミラー130cの共振周波数とは同一であることが好ましい。具体的には、(1/(2π))×√(ka/Ia)=(1/(2π))×√(kc/Ic)となることが好ましい。或いは、MEMSスキャナ100が3つ以上の複数のミラー130を備えている場合には、複数のミラー130のうちの少なくとも2つの共振周波数が同一であることが好ましい。 In the first embodiment, it is preferable that the resonance frequency of the mirror 130a and the resonance frequency of the mirror 130c are the same. Specifically, it is preferable that (1 / (2π)) × √ (ka / Ia) = (1 / (2π)) × √ (kc / Ic). Alternatively, when the MEMS scanner 100 includes three or more mirrors 130, it is preferable that at least two resonance frequencies of the plurality of mirrors 130 are the same.
 ここで、図4を参照して、駆動源部160から加えられる微振動に起因した方向性のない力について更に説明する。図4は、駆動源部160から加えられる微振動に起因した方向性のない力について説明するための平面図である。尚、以下の説明では、説明を分かりやすくするために、図1に示す駆動源部160とは異なる構成を有する駆動源部160を用いて説明を進める。但し、図1に示す駆動源部160から加えられる微振動としての電磁力と図4に示す駆動源部160から加えられる微振動としての電磁力とは、実際上は同一の力(つまり、方向性のない力)である。 Here, with reference to FIG. 4, the non-directional force resulting from the fine vibration applied from the drive source unit 160 will be further described. FIG. 4 is a plan view for explaining a non-directional force caused by the micro vibration applied from the drive source unit 160. In the following description, in order to make the description easy to understand, the description will be given using the drive source unit 160 having a configuration different from the drive source unit 160 shown in FIG. However, the electromagnetic force as a minute vibration applied from the drive source unit 160 shown in FIG. 1 and the electromagnetic force as a minute vibration applied from the drive source unit 160 shown in FIG. 4 are actually the same force (that is, direction). Power without sex).
 図4に示すように、駆動源部160は、伝達枝160bと、伝達枝160bを介してベース110に接続される第1支持板160-1cであって且つY軸の方向に沿って相対向する第1枝160-1x及び160-1yを備える第1支持板160-1cと、伝達枝160bを介してベース110に接続される第2支持板160-2cであって且つY軸の方向に沿って相対向する第2枝160-2x及び160-2yを備える第2支持板160-2cと、第1枝160-1x及び160-1yの夫々に巻かれた第1コイル160-1zと、第2枝160-2x及び160-2yの夫々に巻かれた第2コイル160-2zとを備えている。また、第1枝160-1x及び160-1y並びに第2枝160-2x及び160-2yの形状及び特性は同一であるとし、第1枝160-1xに巻かれたコイル160-1zの特性(例えば、巻き数等)及び第1枝160-1yに巻かれたコイル160-1zの特性(例えば、巻き数等)は同一であるとし、第2枝160-2xに巻かれたコイル160-2zの特性(例えば、巻き数等)及び第2枝160-2yに巻かれたコイル160-2zの特性(例えば、巻き数等)は同一であるものとする。 As shown in FIG. 4, the drive source unit 160 includes a transmission branch 160b and a first support plate 160-1c connected to the base 110 via the transmission branch 160b and facing each other along the direction of the Y axis. A first support plate 160-1c having first branches 160-1x and 160-1y, and a second support plate 160-2c connected to the base 110 via the transmission branch 160b, and in the direction of the Y-axis A second support plate 160-2c having second branches 160-2x and 160-2y facing each other along, and a first coil 160-1z wound around each of the first branches 160-1x and 160-1y, A second coil 160-2z wound around each of the second branches 160-2x and 160-2y. Further, it is assumed that the shapes and characteristics of the first branches 160-1x and 160-1y and the second branches 160-2x and 160-2y are the same, and the characteristics of the coil 160-1z wound around the first branch 160-1x ( For example, the number of turns, etc.) and the characteristics (eg, the number of turns, etc.) of the coil 160-1z wound around the first branch 160-1y are the same, and the coil 160-2z wound around the second branch 160-2x The characteristics (for example, the number of windings) and the characteristics (for example, the number of windings) of the coil 160-2z wound around the second branch 160-2y are the same.
 ここで、第1枝160-1x及び160-1y並びに第2枝160-2x及び160-2yの夫々に巻かれたコイル160-1z及び160-2zに電流を流すと、電磁相互作用により、第1枝160-1x及び第2枝160-2xに対して第1枝160-1y及び第2枝160-2yの方向に向かって引っ張られる力(つまり、Y軸の負の方向であって図4中下側に向かう方向に作用する力)が発生する場合には、第1枝160-1y及び第2枝160-2yに対しても、第1枝160-1x及び第2枝160-2xの方向に向かって引っ張られる力(つまり、Y軸の正の方向であって図4中上側に向かう方向に作用する力)が発生する。この力は、互いに逆向きで同じ大きさであるため、それらが外部に加速度を生じさせたり、それら自身に加速度を発生させることもなく、第1枝160-1xと第1枝160-1yとが接合する点P1(言い換えれば、伝達枝160b上の点P1)及び第2枝160-2xと第2枝160-2yとが接合する点P2(言い換えれば、伝達枝160b上の点P2)には微振動のみが伝達される。その結果、点P1及びP2における力には方向性がないことになる。同様に、電磁相互作用により、第1枝160-1x及び第2枝160-2xに対して第1枝160-1y及び第2枝160-2yから引き離される力(つまり、Y軸の正の方向であって図4中上側に向かう方向に作用する力)が発生する場合には、第1枝160-1y及び第2枝160-2yに対しても第1枝160-1x及び第2枝160-2xから引き離される力(つまり、Y軸の負の方向であって図4中下側に向かう方向に作用する力)が発生する。この力は、互いに逆向きで同じ大きさであるため、それらが外部に加速度を生じさせたり、それら自身に加速度を発生させることもなく、第1枝160-1xと第1枝160-1yとが接合する点P1及び第2枝160-2xと第2枝160-2yとが接合する点P2には微振動のみが伝達される。その結果、点P1及びP2における力には方向性がないことになる。 Here, when an electric current is passed through the coils 160-1z and 160-2z wound around the first branches 160-1x and 160-1y and the second branches 160-2x and 160-2y, respectively, A force pulled in the direction of the first branch 160-1y and the second branch 160-2y with respect to the first branch 160-1x and the second branch 160-2x (that is, in the negative direction of the Y-axis, as shown in FIG. When a force acting in the direction toward the middle and lower side is generated, the first branch 160-1x and the second branch 160-2x are also applied to the first branch 160-1y and the second branch 160-2y. A force that is pulled in the direction (that is, a force acting in the positive direction of the Y axis and in the direction toward the upper side in FIG. 4) is generated. Since these forces are opposite to each other and have the same magnitude, the first branch 160-1x and the first branch 160-1y do not cause acceleration to the outside or generate acceleration themselves. Are joined at point P1 (in other words, point P1 on the transmission branch 160b) and point P2 (in other words, point P2 on the transmission branch 160b) where the second branch 160-2x and the second branch 160-2y are joined. Only fine vibrations are transmitted. As a result, the forces at points P1 and P2 are not directional. Similarly, the force that separates the first branch 160-1y and the second branch 160-2y from the first branch 160-1y and the second branch 160-2y by the electromagnetic interaction (that is, the positive direction of the Y-axis). 4), the first branch 160-1x and the second branch 160 are also applied to the first branch 160-1y and the second branch 160-2y. −2x is generated (that is, a force acting in the negative direction of the Y axis and in the downward direction in FIG. 4). Since these forces are opposite to each other and have the same magnitude, the first branch 160-1x and the first branch 160-1y do not cause acceleration to the outside or generate acceleration themselves. Only a slight vibration is transmitted to the point P1 where the two parts are joined and the point P2 where the second branch 160-2x and the second branch 160-2y are joined. As a result, the forces at points P1 and P2 are not directional.
 しかしながら、本願発明者の実験によれば、上記構成によってベース110内を微振動(つまり、波動エネルギーであって、方向性のない力)が伝搬し、その結果、ミラー130a及び130cがY軸の方向に沿った軸を中心軸として回転することが判明している。つまり、駆動源部160により加えられる微振動が上述した方向性のない力(言い換えれば、波動エネルギー)としてベース110内を伝搬することで、ミラー130a及び130cがY軸の方向に沿った軸を中心軸として回転することが判明している。 However, according to the experiment by the inventors of the present application, a fine vibration (that is, a wave energy having no directivity) propagates in the base 110 according to the above configuration, and as a result, the mirrors 130a and 130c have the Y axis. It has been found that it rotates about the axis along the direction as the central axis. That is, the micro-vibration applied by the drive source unit 160 propagates in the base 110 as the above-described non-directional force (in other words, wave energy), so that the mirrors 130a and 130c have an axis along the Y-axis direction. It has been found that it rotates as a central axis.
 このように、第1実施例においては、ミラー130aがミラー130a並びにトーションバー120a及び120bに応じて定まる共振周波数で共振するように、Y軸の方向に沿った軸を中心軸としてミラー130aを回転させることができる。更に、第1実施例においては、ミラー130cがミラー130c並びにトーションバー120c及び120dに応じて定まる共振周波数で共振するように、Y軸の方向に沿った軸を中心軸としてミラー130cを回転させることができる。つまり、第1実施例においては、ミラー130a及び130cはY軸を中心軸として自励共振する。 Thus, in the first embodiment, the mirror 130a is rotated about the axis along the Y-axis direction as the central axis so that the mirror 130a resonates at a resonance frequency determined according to the mirror 130a and the torsion bars 120a and 120b. Can be made. Further, in the first embodiment, the mirror 130c is rotated about the axis along the Y-axis direction as a central axis so that the mirror 130c resonates at a resonance frequency determined according to the mirror 130c and the torsion bars 120c and 120d. Can do. That is, in the first embodiment, the mirrors 130a and 130c self-resonate with the Y axis as the central axis.
 ここで、「共振」とは、無限小の力の繰り返しにより無限大の変位が生じる現象である。このため、ミラー130a及び130cを回転させるために加えられる力を小さくしても、ミラー130a及び130cの回転範囲(言い換えれば、回転方向の振幅)を大きくとることができる。つまり、ミラー130a及び130cが回転するために必要な力を相対的に小さくすることができる。このため、ミラー130a及び130cの回転に必要な力を加えるために必要な電力量をも少なくすることができる。従って、より効率的にミラー130a及び130cを移動させることができ、その結果、MEMSスキャナ100の低消費電力化を実現することができる。 Here, “resonance” is a phenomenon in which infinite displacement occurs due to repeated infinitesimal force. Therefore, even if the force applied to rotate the mirrors 130a and 130c is reduced, the rotation range of the mirrors 130a and 130c (in other words, the amplitude in the rotation direction) can be increased. That is, the force required to rotate the mirrors 130a and 130c can be relatively reduced. For this reason, it is possible to reduce the amount of electric power necessary for applying the force necessary to rotate the mirrors 130a and 130c. Therefore, the mirrors 130a and 130c can be moved more efficiently, and as a result, low power consumption of the MEMS scanner 100 can be realized.
 加えて、第1実施例では、方向性を有していない力を加えている。 In addition, in the first embodiment, a force having no directionality is applied.
 ここで、比較例として、いわゆる方向性を有する力を加えることでミラー130a及び130cの回転駆動を行う構成(例えば、ベース110そのものをミラー130a及び130cの回転方向に向かって大きくねじれさせ、そのねじれをトーションバー120a及び120b並びにトーションバー120c及び120dやミラー130a及び130cに直接加えることでミラー130a及び130cの回転駆動を行う構成)を例にあげて説明する。この場合、ミラー130a及び130cをY軸の方向に沿った軸を中心軸として回転させる方向性を有する力(つまり、ベース110を、Y軸の方向に沿った軸を中心軸として回転させるようにねじれさせる力)をある駆動源部160から加える必要がある。このため、このような方向性を有する力を加えることができるように、駆動源部160の配置位置を適切に設定しなければならない。つまり、方向性を有する力を加える場合には、当該力を作用させる方向に依存して駆動源部160の配置位置が限定されてしまう。 Here, as a comparative example, a configuration in which the mirrors 130a and 130c are rotationally driven by applying a so-called directional force (for example, the base 110 itself is largely twisted in the rotational direction of the mirrors 130a and 130c, and the torsion is performed. The torsion bars 120a and 120b, the torsion bars 120c and 120d, and the mirrors 130a and 130c are directly driven to rotate the mirrors 130a and 130c. In this case, a force having a directionality to rotate the mirrors 130a and 130c about the axis along the Y-axis direction (that is, the base 110 is rotated about the axis along the Y-axis direction as the central axis). It is necessary to apply a twisting force from a certain drive source unit 160. For this reason, the arrangement position of the drive source unit 160 must be appropriately set so that a force having such directionality can be applied. That is, when applying a force having directionality, the arrangement position of the drive source unit 160 is limited depending on the direction in which the force is applied.
 しかるに、第1実施例では、微振動に起因した方向性のない力を加えているがゆえに、駆動源部160の配置位置が限定されてしまうことはなくなる。言い換えれば、微振動に起因した方向性のない力を加えているがゆえに、ミラー130a及び130cの回転の方向に依存して駆動源部160の配置位置が限定されてしまうことはなくなる。つまり、駆動源部160の配置位置がどのような位置に設定されたとしても、駆動源部160から加えられる微振動(つまり、方向性のない力)は、トーションバー120a及び120b並びにトーションバー120c及び120dの弾性を利用して、ミラー130a及び130cをY軸の方向に沿った軸を中心軸として回転させることができる。これにより、MEMSスキャナ100の設計の自由度を相対的に増加させることができる。これは、各構成要件のサイズ的な又は設計的な制約が大きいMEMSスキャナにとって実践上非常に有利である。 However, in the first embodiment, since a non-directional force due to micro vibration is applied, the arrangement position of the drive source unit 160 is not limited. In other words, since a non-directional force due to micro vibration is applied, the arrangement position of the drive source unit 160 is not limited depending on the direction of rotation of the mirrors 130a and 130c. That is, no matter what the position of the drive source unit 160 is set, the slight vibration (that is, nondirectional force) applied from the drive source unit 160 causes the torsion bars 120a and 120b and the torsion bar 120c. And 120d, the mirrors 130a and 130c can be rotated about the axis along the Y-axis direction as the central axis. Thereby, the design freedom of the MEMS scanner 100 can be relatively increased. This is very advantageous in practice for MEMS scanners where the size or design constraints of each component are large.
 更に第1実施例では、ベース110の裏側にリブ119が形成されているため、駆動源部160から加えられる微振動によって、ベース110そのものが波打つように変形振動する。以下、図5を参照して、ベース110の変形振動の態様について説明する。図5は、ベース110の変形振動の態様を、ミラー130a及び130bの回転の態様と関連付けて示す側面図である。尚、図5は、図3に示す矢印「III」の方向からベース110並びにミラー130a及び130cを観察した場合の側面図を示す。 Further, in the first embodiment, since the rib 119 is formed on the back side of the base 110, the base 110 itself deforms and vibrates so as to wave due to the slight vibration applied from the drive source unit 160. Hereinafter, with reference to FIG. 5, the deformation | transformation aspect of the base 110 is demonstrated. FIG. 5 is a side view showing the deformation mode of the base 110 in association with the rotation mode of the mirrors 130a and 130b. 5 shows a side view when the base 110 and the mirrors 130a and 130c are observed from the direction of the arrow “III” shown in FIG.
 図5(a)に示すように、駆動源部160からベース110に対して微振動が加えられていない状態では、ベース110は変形振動しておらず、ミラー130a及び130bも回転していない。 As shown in FIG. 5A, the base 110 is not deformed and the mirrors 130a and 130b are not rotating in a state where the vibration is not applied to the base 110 from the drive source unit 160.
 図5(b)に示すように、駆動源部160からベース110に対して微振動が加えられると、リブ119が形成されている領域110aは、剛性が相対的に高いため、微振動によって屈曲しにくい一方で、リブ119が形成されていない領域110bは、剛性が相対的に低いため、微振動によって屈曲しやすい。その結果、ベース110は、リブが形成されている領域110aを節とし且つリブ119が形成されていない領域110bを腹にして、X軸の方向に沿って波打つように変形振動する。より具体的には、ベース110は、リブ119が形成されている領域110aを節とし且つリブ119が形成されていない領域110bを腹にする定常波のようにその外観を変形させながら振動する。尚、図5(b)に示す例では、ベース110は、その中心から折れ曲がるように変形振動する。但し、ベース110は、他の変形モード(例えば、更に多くの節を有する変形モード)で変形振動してもよい。 As shown in FIG. 5B, when a slight vibration is applied from the drive source unit 160 to the base 110, the region 110a in which the rib 119 is formed has a relatively high rigidity and is bent by the slight vibration. On the other hand, since the region 110b where the rib 119 is not formed has a relatively low rigidity, it is easy to bend by slight vibration. As a result, the base 110 deforms and vibrates so as to wave in the direction of the X-axis, with the region 110a where the rib is formed as a node and the region 110b where the rib 119 is not formed as a belly. More specifically, the base 110 vibrates while deforming its appearance like a standing wave having a region 110a where the rib 119 is formed as a node and a region 110b where the rib 119 is not formed as an antinode. In the example shown in FIG. 5B, the base 110 is deformed and oscillated so as to be bent from the center. However, the base 110 may be deformed and oscillated in other deformation modes (for example, a deformation mode having more nodes).
 尚、第1実施例におけるベース110の変形振動は、リブ119が適切な箇所に形成されることによって実現されている。従って、上述したリブ119は、リブが形成されている領域110aを節とし且つリブ119が形成されていない領域110bを腹にしてベース110がX軸の方向に沿って変形振動するように、ベース110上の適切な箇所に形成されることが好ましい。このとき、トーションバー120a及び120b並びにトーションバー120c及び120dが接続されている箇所が領域110aに対応することが好ましい。例えば、上述したリブ119は、X軸の方向に沿った曲げ剛性が相対的に高い部分とX軸の方向に沿った曲げ剛性が相対的に低い部分とがX軸の方向に沿って順に現れるように、ベース110上の適切な箇所に形成されることが好ましい。或いは、例えば、上述したリブ119は、X軸の方向に沿った曲げ剛性が相対的に高い部分とX軸の方向に沿った曲げ剛性が相対的に低い部分とがX軸の方向に沿って順に現れると共に、トーションバー120a及び120b並びにトーションバー120c及び120dが接続されている箇所が領域110aになり且つその他の箇所が領域110bになるように、ベース110上の適切な箇所に形成されることが好ましい。 The deformation vibration of the base 110 in the first embodiment is realized by forming the rib 119 at an appropriate location. Therefore, the above-described rib 119 has the base 110 such that the base 110 is deformed and oscillated along the direction of the X-axis with the region 110a where the rib is formed as a node and the region 110b where the rib 119 is not formed as an antinode. It is preferably formed at an appropriate location on 110. At this time, it is preferable that a portion where the torsion bars 120a and 120b and the torsion bars 120c and 120d are connected corresponds to the region 110a. For example, in the rib 119 described above, a portion having a relatively high bending rigidity along the X-axis direction and a portion having a relatively low bending rigidity along the X-axis direction appear in order along the X-axis direction. As such, it is preferably formed at an appropriate location on the base 110. Alternatively, for example, in the rib 119 described above, a portion having a relatively high bending rigidity along the X-axis direction and a portion having a relatively low bending rigidity along the X-axis direction are along the X-axis direction. It is formed in an appropriate place on the base 110 so that the places where the torsion bars 120a and 120b and the torsion bars 120c and 120d are connected become the area 110a and the other places become the area 110b. Is preferred.
 このとき、駆動源部160から加えられる微振動の周期によっては、ベース110は、共振するように変形振動する。ここで、第1実施例では、ベース110の変形振動における共振周波数は、ミラー130a及び130bの共振周波数と同一であることが好ましい。言い換えれば、ミラー130a及び130bの共振周波数と同一の共振周波数でベース110が変形振動するように、ベース110の特性が定められることが好ましい。例えば、ミラー130a及び130bの共振周波数と同一の共振周波数で変形振動するように、ベース110の裏側に形成されるリブ119の特性(例えば、形成位置や、大きさや、質量や、剛性や、密度等)が定められることが好ましい。 At this time, depending on the period of fine vibration applied from the drive source unit 160, the base 110 undergoes deformation vibration so as to resonate. Here, in the first embodiment, the resonance frequency in the deformation vibration of the base 110 is preferably the same as the resonance frequency of the mirrors 130a and 130b. In other words, the characteristics of the base 110 are preferably determined so that the base 110 deforms and vibrates at the same resonance frequency as that of the mirrors 130a and 130b. For example, characteristics of the rib 119 formed on the back side of the base 110 so as to deform and vibrate at the same resonance frequency as the resonance frequency of the mirrors 130a and 130b (for example, the formation position, size, mass, rigidity, density, etc. Etc.) is preferably defined.
 尚、ベース110の変形振動における共振周波数は、ベース110及びリブ119を含む構造物を一つのバネ系としてみなし、当該バネ系に付加されている質量をMとし且つ当該バネ系のバネ定数をkとした場合には、(1/(2π))×√(k/M)にて特定される。但し、当該バネ系が一つのバネに一つの質量構造物が接続された(言い換えれば、固有振動数が1個であり且つ固有振動モードが1個である)1自由度のバネ系であれば、(1/(2π))×√(k/M)という共振周波数を採用することができる。一方で、当該バネ系が一つのバネに2つの質量構造物が接続された2自由度のバネ系であれば、(1/(2π))×√(k/M)という共振周波数における「k」及び「M」等を補正することが好ましい。尚、ベース110及びリブ119を含む構造物を一つのバネ系とみなした場合、当該バネ系に付加されている質量M及び当該バネ系のバネ定数kは、ベース110の剛性及び質量に応じて定まる。第1実施例では、ベース110の剛性及び質量をリブ119によって調整している。このため、ベース110の共振周波数は、実質的には、上述したリブ119の特性によって定められる。 The resonance frequency in the deformation vibration of the base 110 is such that the structure including the base 110 and the rib 119 is regarded as one spring system, the mass added to the spring system is M, and the spring constant of the spring system is k. In this case, it is specified by (1 / (2π)) × √ (k / M). However, if the spring system is a one-degree-of-freedom spring system in which one mass structure is connected to one spring (in other words, the natural frequency is one and the natural vibration mode is one). , (1 / (2π)) × √ (k / M) resonant frequency can be employed. On the other hand, if the spring system is a two-degree-of-freedom spring system in which two mass structures are connected to one spring, “k” at a resonance frequency of (1 / (2π)) × √ (k / M). "," M "and the like are preferably corrected. When the structure including the base 110 and the rib 119 is regarded as one spring system, the mass M added to the spring system and the spring constant k of the spring system depend on the rigidity and mass of the base 110. Determined. In the first embodiment, the rigidity and mass of the base 110 are adjusted by the ribs 119. For this reason, the resonance frequency of the base 110 is substantially determined by the characteristics of the rib 119 described above.
 また、ベース110の変形振動における共振周波数は、(1/(2π))×√(k/M)という式によって特定される。しかしながら、ベース110の変形振動における共振周波数は、厳密に言えば、ベース110という変形振動体を含む振動系を支える土台の剛性や質量(或いは、慣性モーメント)によって変化しかねない。このため、ベース110を支える土台の剛性や質量(或いは、慣性モーメント)を考慮した上で、(1/(2π))×√(k/M)という数式(或いは、当該数式を特定するパラメータであるk及びM)に対して所定の補正演算を施した結果得られる共振周波数を、実際のベース110の変形振動における共振周波数として取り扱ってもよい。 Also, the resonance frequency in the deformation vibration of the base 110 is specified by the equation (1 / (2π)) × √ (k / M). However, strictly speaking, the resonance frequency in the deformation vibration of the base 110 may change depending on the rigidity and mass (or moment of inertia) of the base supporting the vibration system including the deformation vibration body called the base 110. For this reason, after considering the rigidity and mass (or moment of inertia) of the base supporting the base 110, an equation (1 / (2π)) × √ (k / M) (or a parameter specifying the equation) A resonance frequency obtained as a result of performing a predetermined correction operation on a certain k and M) may be handled as a resonance frequency in an actual deformation vibration of the base 110.
 また、ベース110の変形振動における共振は、ベース110の変形振動に係るバネ系を一つのバネに2つの質量構造物が接続された2自由度のバネ系とみなすことによって規定することに代えて、ベース110という板状の部材の高次の共振モードとみなすことによって規定してもよい。 Further, the resonance in the deformation vibration of the base 110 is replaced by defining the spring system related to the deformation vibration of the base 110 as a two-degree-of-freedom spring system in which two mass structures are connected to one spring. It may be defined by considering it as a higher-order resonance mode of a plate-like member called the base 110.
 ここで、上述したように、駆動源部160からはミラー130a及び130cが上述の共振周波数で共振するように当該共振周波数に同期した態様で微振動が加えられている。従って、このような微振動の印加により、ベース110は、共振するように変形振動する。つまり、図5(a)から図5(f)に時系列的に示すように、ベース110は、両端が開放された定常波の如き外観を有するように変形振動する。つまり、ベース110は、ミラー130a及び130cの回転軸に直交する方向(つまり、X軸の方向)に沿って定常波が現れるような外観を有する。 Here, as described above, fine vibration is applied from the drive source unit 160 in a manner synchronized with the resonance frequency so that the mirrors 130a and 130c resonate at the resonance frequency. Therefore, the base 110 is deformed and oscillated so as to resonate due to the application of such fine vibration. That is, as shown in FIG. 5A to FIG. 5F in time series, the base 110 is deformed and oscillated so as to have an appearance like a standing wave with both ends open. That is, the base 110 has an appearance such that a standing wave appears along a direction orthogonal to the rotation axes of the mirrors 130a and 130c (that is, the direction of the X axis).
 このような態様でベース110が変形振動すると、ミラー130a側におけるベース110(具体的には、図5(a)から図5(f)の夫々の相対的に左側のベース110)の変形の態様とミラー130c側におけるベース110(具体的には、図5(a)から図5(f)の夫々の相対的に右側のベース110)の変形の態様とは逆になる。例えば、ミラー130a側におけるベース110がミラー130aの回転軸を中心として反時計周りに変形している場合(例えば、図5(a)から図5(c)に示すように変形している場合)、ミラー130c側におけるベース110は、ミラー130cの回転軸を中心として時計周りに変形することになる。同様に、例えば、ミラー130a側におけるベース110がミラー130aの回転軸を中心として時計周りに変形している場合(例えば、図5(d)から図5(f)に示すように変形している場合)、ミラー130c側におけるベース110は、ミラー130cの回転軸を中心として反時計周りに変形することになる。従って、ミラー130a及び130cの夫々の共振周波数が等しいことから、ミラー130a及び130cは、ベース110の変形振動に伴って、ミラー130aの回転の位相とミラー130cの回転の位相とが互いに逆相になるように回転する。言い換えれば、ミラー130a及び130cは、ミラー130aの回転の位相がミラー130cの回転の位相に対して180°ずれるように回転する。言い換えれば、ミラー130a及び130cは、ミラー130aの回転の位相とミラー130cの回転の位相との間のずれが180°に固定されるように回転する。このようなミラー130aの回転の位相とミラー130cの回転の位相との間の関係は、図5(c)から図5(f)に示すように、ベース110の変形振動がどのような状態であっても成立する。 When the base 110 is deformed and vibrated in this manner, the base 110 on the mirror 130a side (specifically, the relatively left base 110 in FIGS. 5A to 5F) is deformed. This is opposite to the deformation mode of the base 110 on the mirror 130c side (specifically, the relatively right-side base 110 in FIGS. 5A to 5F). For example, when the base 110 on the mirror 130a side is deformed counterclockwise around the rotation axis of the mirror 130a (for example, when deformed as shown in FIGS. 5A to 5C). The base 110 on the mirror 130c side is deformed clockwise around the rotation axis of the mirror 130c. Similarly, for example, when the base 110 on the mirror 130a side is deformed clockwise around the rotation axis of the mirror 130a (for example, as illustrated in FIGS. 5D to 5F). ), The base 110 on the mirror 130c side is deformed counterclockwise around the rotation axis of the mirror 130c. Accordingly, since the resonance frequencies of the mirrors 130a and 130c are the same, the mirrors 130a and 130c have the rotation phase of the mirror 130a and the rotation phase of the mirror 130c reversed in phase with the deformation vibration of the base 110. Rotate to In other words, the mirrors 130a and 130c rotate so that the phase of rotation of the mirror 130a is shifted by 180 ° with respect to the phase of rotation of the mirror 130c. In other words, the mirrors 130a and 130c rotate so that the deviation between the rotation phase of the mirror 130a and the rotation phase of the mirror 130c is fixed at 180 °. The relationship between the phase of rotation of the mirror 130a and the phase of rotation of the mirror 130c is as shown in FIGS. 5 (c) to 5 (f). Even if it exists, it is established.
 尚、ミラー130aの回転の位相とベース110の変形振動の位相との間のずれは、時間の経過によって変動してもよいし固定されていてもよい。同様に、ミラー130cの回転の位相とベース110の変形振動の位相との間のずれは、時間の経過によって変動してもよいし固定されていてもよい。上述の図5を用いた説明は、ミラー130a及び130cの回転の位相とベース110の変形振動の位相との間のずれが固定されている場合の例を示している。しかしながら、ミラー130a及び130cの回転の位相とベース110の変形振動の位相との間のずれが変動する場合であっても、ミラー130a及び130cが、ミラー130aの回転の位相とミラー130cの回転の位相とが互いに逆相になるように回転することに変わりはない。 It should be noted that the deviation between the phase of rotation of the mirror 130a and the phase of deformation vibration of the base 110 may vary with time or may be fixed. Similarly, the deviation between the phase of rotation of the mirror 130c and the phase of deformation vibration of the base 110 may vary with time or may be fixed. The above description with reference to FIG. 5 shows an example in which the deviation between the phase of rotation of the mirrors 130a and 130c and the phase of deformation vibration of the base 110 is fixed. However, even if the deviation between the phase of the rotation of the mirrors 130a and 130c and the phase of the deformation vibration of the base 110 fluctuates, the mirrors 130a and 130c may change the phase of the rotation of the mirror 130a and the rotation of the mirror 130c. There is no change in rotating so that the phases are opposite to each other.
 このように、第1実施例によれば、ミラー130aの回転の位相とミラー130cの回転の位相とが互いに逆相になるように、ミラー130a及び130cを回転させることができる。つまり、2つのミラー130a及び130cを同期させながら逆相で回転(つまり、駆動)させることができる。従って、1つのミラー130を基準周波数fで回転させるMEMSスキャナと比較して、2つのミラー130a及び130cを1つのミラー130の如く取り扱うことで、基準周波数fの2倍の周波数2fで(言い換えれば、1/2の周期で)1つのミラー130を回転させている状態と同様の状態を実現することができる。言い換えれば、ミラー130a及び130cの夫々を基準周波数fの半分の周波数f/2で回転させても、2つのミラー130a及び130cを1つのミラー130の如く取り扱うことで、基準周波数fで1つのミラー130を回転させている状態と同様の状態を実現することができる。例えば、静止時の状態を0°として1周期で±X°回転することができるミラー130を例にあげて説明する。仮に1つのミラー130を用いるのであれば、-X°からX°に至るまでの角度を利用するためには、1周期の期間が必要になる。一方で、互いに逆相で回転する2つのミラー130a及び130cを用いるのであれば、半周期で、ミラー130aが0°からX°まで回転すると共にミラー130cが0°から-X°まで回転する。このため、第1実施例によれば、-X°からX°に至るまでの角度を利用するためには、1周期の期間は必ずしも必要ではなく、例えば半周期で足りる。従って、ミラー130a及び130cの夫々を駆動する周波数を落としても、ミラー130a及び130cを1枚のミラー130の如く取り扱った場合の当該ミラー130の駆動周波数が落ちることはない。 Thus, according to the first embodiment, the mirrors 130a and 130c can be rotated so that the rotation phase of the mirror 130a and the rotation phase of the mirror 130c are opposite to each other. That is, the two mirrors 130a and 130c can be rotated (that is, driven) in opposite phases while being synchronized. Therefore, compared to a MEMS scanner that rotates one mirror 130 at the reference frequency f, the two mirrors 130a and 130c are handled as one mirror 130 at a frequency 2f that is twice the reference frequency f (in other words, A state similar to the state of rotating one mirror 130 (with a period of 1/2) can be realized. In other words, even if each of the mirrors 130a and 130c is rotated at a frequency f / 2 that is half the reference frequency f, the two mirrors 130a and 130c are handled as one mirror 130, so that one mirror at the reference frequency f. A state similar to the state of rotating 130 can be realized. For example, a mirror 130 that can be rotated ± X ° in one cycle with the state at rest being 0 ° will be described as an example. If one mirror 130 is used, a period of one cycle is required to use an angle from −X ° to X °. On the other hand, if two mirrors 130a and 130c rotating in opposite phases are used, the mirror 130a rotates from 0 ° to X ° and the mirror 130c rotates from 0 ° to −X ° in a half cycle. For this reason, according to the first embodiment, in order to use the angle from −X ° to X °, one period is not necessarily required, and a half period is sufficient, for example. Therefore, even if the frequency for driving each of the mirrors 130a and 130c is lowered, the driving frequency of the mirror 130 when the mirrors 130a and 130c are handled like one mirror 130 is not lowered.
 尚、図5では、ミラー130a及び130cの夫々の回転の位相と、ベース110の変形振動の位相とが逆相になる例を示している。しかしながら、図6に示すように、ミラー130a及び130cの夫々の回転の位相と、ベース110の変形振動の位相とが同相になってもよい。ミラー130a及び130cの夫々の回転の位相とベース110の変形振動の位相とが同相になる場合であっても、ベース110の変形振動の位相とが同相になってもよい。ミラー130a及び130cの夫々の回転の位相とベース110の変形振動の位相とが逆相になる場合に享受することができる各種効果を好適に享受することができる。 FIG. 5 shows an example in which the rotation phase of each of the mirrors 130a and 130c and the phase of deformation vibration of the base 110 are reversed. However, as shown in FIG. 6, the phase of rotation of each of the mirrors 130 a and 130 c and the phase of deformation vibration of the base 110 may be in phase. Even if the phase of rotation of each of the mirrors 130a and 130c and the phase of deformation vibration of the base 110 are in phase, the phase of deformation vibration of the base 110 may be in phase. Various effects that can be enjoyed when the phase of rotation of each of the mirrors 130a and 130c and the phase of deformation vibration of the base 110 are in opposite phases can be suitably enjoyed.
 尚、上述した第1実施例では、ミラー130a及び130cを回転させるための力(つまり、駆動源部から加えられる)として、微振動を用いる例について説明している。しかしながら、ミラー130a及び130cを回転させるための力として、微振動以外の任意の力を用いてもよい。例えば、特開2006-293116号公報に記載されている「基板の板波を用いてミラーにねじれ振動を生じさせる駆動方式(例えば、ラム波共鳴圧電駆動方式)」を利用して、ミラー130a及び130cを回転させてもよい。或いは、例えば、ミラー130a及び130cを回転させるための力として、ミラー130a及び130cを直接的に回転させる方向に作用する方向性のある力を用いてもよい。言い換えれば、例えば、ミラー130a及び130cを回転させるための力として、トーションバー120a及び120b並びに120c及び120dを直接的にねじれさせる方向に作用する方向性のある力を用いてもよい。以下の第2実施例から第3実施例においても同様である。 In the first embodiment described above, an example is described in which fine vibration is used as the force for rotating the mirrors 130a and 130c (that is, applied from the drive source unit). However, any force other than the slight vibration may be used as the force for rotating the mirrors 130a and 130c. For example, the mirror 130a and the mirror 130a and the “driving method in which torsional vibration is generated in the mirror using the plate wave of the substrate (for example, Lamb wave resonance piezoelectric driving method)” described in JP-A-2006-293116 is disclosed. 130c may be rotated. Alternatively, for example, as a force for rotating the mirrors 130a and 130c, a directional force acting in the direction of directly rotating the mirrors 130a and 130c may be used. In other words, for example, as a force for rotating the mirrors 130a and 130c, a directional force acting in a direction that directly twists the torsion bars 120a and 120b and 120c and 120d may be used. The same applies to the following second to third embodiments.
 (2)第2実施例
 続いて、図7を参照して、第2実施例のMEMSスキャナ101について説明する。図7は、第2実施例のMEMSスキャナ101の基本構成を概念的に示す平面図である。尚、上述の第1実施例のMEMSスキャナ100と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
(2) Second Embodiment Next, the MEMS scanner 101 of the second embodiment will be described with reference to FIG. FIG. 7 is a plan view conceptually showing the basic structure of the MEMS scanner 101 of the second embodiment. In addition, about the structure same as the MEMS scanner 100 of the above-mentioned 1st Example, the detailed description is abbreviate | omitted by attaching | subjecting the same referential mark.
 図7に示すように、第2実施例のMEMSスキャナ101は、第1実施例のMEMSスキャナ100と同様に、ベース110と、トーションバー120a及び120bと、トーションバー120c及び120dと、ミラー130aと、ミラー130cとを備えている。第2実施例のMEMSスキャナ101は、電磁力に起因した力(微振動)を加える駆動源部160に代えて、圧電効果に起因した力(微振動)を加える駆動源部140を備えている。 As shown in FIG. 7, the MEMS scanner 101 of the second embodiment is similar to the MEMS scanner 100 of the first embodiment, in that a base 110, torsion bars 120a and 120b, torsion bars 120c and 120d, a mirror 130a, , And a mirror 130c. The MEMS scanner 101 according to the second embodiment includes a drive source unit 140 that applies force (microvibration) due to the piezoelectric effect, instead of the drive source unit 160 that applies force (microvibration) due to electromagnetic force. .
 駆動源部140は、第1圧電素子140-1aと、第2圧電素子140-2aと、伝達枝140bと、第1空隙140-1dを有すると共に伝達枝140bを介してベース110に固定される第1支持板140-1cと、第2空隙140-2dを有すると共に伝達枝140bを介してベース110に固定される第2支持板140-2cとを備えている。第1支持板140-1c上では、第1空隙140-1dによって規定される相対向する第1枝140-1e及び140-1fによって、第1圧電素子140-1aが挟持される。第2支持板140-2c上では、第2空隙140-2dによって規定される相対向する第2枝140-2e及び140-2fによって、第2圧電素子140-2aが挟持される。不図示の電極を介して第1圧電素子140-1aに電圧を印加することで、第1圧電素子140-1aはその形状を変化させる。この第1圧電素子140-1aの形状の変化は、第1枝140-1e及び140-1fの形状の変化を引き起こす。その結果、第1枝140-1e及び140-1fの形状の変化は、後に詳述するように微振動(ないしは、波動エネルギー)として伝達枝140bを介してベース110に伝えられる。同様に、不図示の電極を介して第2圧電素子140-2aに電圧を印加することで、第2圧電素子140-2aはその形状を変化させる。この第2圧電素子140-2aの形状の変化は、第2枝140-2e及び140-2fの形状の変化を引き起こす。その結果、第2枝140-2e及び140-2fの形状の変化は、後に詳述するように微振動(ないしは、波動エネルギー)として伝達枝140bを介してベース110に伝えられる。 The drive source unit 140 includes a first piezoelectric element 140-1a, a second piezoelectric element 140-2a, a transmission branch 140b, a first gap 140-1d, and is fixed to the base 110 via the transmission branch 140b. A first support plate 140-1c and a second support plate 140-2c having a second gap 140-2d and being fixed to the base 110 via the transmission branch 140b are provided. On the first support plate 140-1c, the first piezoelectric element 140-1a is sandwiched by the first branches 140-1e and 140-1f facing each other defined by the first gap 140-1d. On the second support plate 140-2c, the second piezoelectric element 140-2a is sandwiched between the opposing second branches 140-2e and 140-2f defined by the second gap 140-2d. By applying a voltage to the first piezoelectric element 140-1a via an electrode (not shown), the first piezoelectric element 140-1a changes its shape. This change in the shape of the first piezoelectric element 140-1a causes a change in the shape of the first branches 140-1e and 140-1f. As a result, changes in the shapes of the first branches 140-1e and 140-1f are transmitted to the base 110 through the transmission branch 140b as fine vibration (or wave energy) as will be described in detail later. Similarly, by applying a voltage to the second piezoelectric element 140-2a via an electrode (not shown), the second piezoelectric element 140-2a changes its shape. This change in the shape of the second piezoelectric element 140-2a causes a change in the shape of the second branches 140-2e and 140-2f. As a result, changes in the shapes of the second branches 140-2e and 140-2f are transmitted to the base 110 through the transmission branch 140b as fine vibration (or wave energy) as will be described in detail later.
 このような駆動源部140から加えられる微振動は、図4を用いて説明した方向性のない力となる。従って、第2実施例のMEMSスキャナ101によれば、上述した第1実施例のMEMSスキャナ100が享受する各種効果と同様の効果を好適に享受することができる。 Such micro-vibration applied from the drive source unit 140 is a force having no direction described with reference to FIG. Therefore, according to the MEMS scanner 101 of 2nd Example, the effect similar to the various effects which the MEMS scanner 100 of 1st Example mentioned above can enjoy suitably can be enjoyed.
 (3)第3実施例
 続いて、図8を参照して、第3実施例のMEMSスキャナ102について説明する。図8は、第3実施例のMEMSスキャナ102の基本構成を概念的に示す平面図である。尚、上述の第1実施例のMEMSスキャナ100と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
(3) Third Embodiment Next, the MEMS scanner 102 of the third embodiment will be described with reference to FIG. FIG. 8 is a plan view conceptually showing the basic structure of the MEMS scanner 102 of the third embodiment. In addition, about the structure same as the MEMS scanner 100 of the above-mentioned 1st Example, the detailed description is abbreviate | omitted by attaching | subjecting the same referential mark.
 図7に示すように、第3実施例のMEMSスキャナ102は、第1実施例のMEMSスキャナ100と同様に、ベース110と、トーションバー120a及び120bと、トーションバー120c及び120dと、ミラー130aと、ミラー130cとを備えている。第3実施例のMEMSスキャナ102は、電磁力に起因した力(微振動)を加える駆動源部160に代えて、静電力に起因した力(微振動)を加える駆動源部150を備えている。 As shown in FIG. 7, the MEMS scanner 102 of the third embodiment is similar to the MEMS scanner 100 of the first embodiment, in that a base 110, torsion bars 120a and 120b, torsion bars 120c and 120d, a mirror 130a, , And a mirror 130c. The MEMS scanner 102 according to the third embodiment includes a drive source unit 150 that applies a force (microvibration) due to an electrostatic force, instead of the drive source unit 160 that applies a force (microvibration) due to electromagnetic force. .
 駆動源部150は、ベース110の外側の辺に沿って配置される櫛歯状の第1電極151と、不図示の基材に固定されると共に第1電極151の間に分布する櫛歯状の第2電極152とを備える。この場合、第1電極151(又は、第2電極152)には、不図示の駆動源部制御回路から所望のタイミングで、所望の電圧が印加される。第1電極151と第2電極152との間の電位差に起因して、第1電極151と第2電極152との間には静電力(言い換えれば、クーロン力)が生ずる。その結果、静電力が発生する。この静電力は微振動としてベース110に伝えられる。 The drive source unit 150 has a comb-like first electrode 151 disposed along the outer side of the base 110 and a comb-like shape that is fixed to a base material (not shown) and distributed between the first electrodes 151. The second electrode 152 is provided. In this case, a desired voltage is applied to the first electrode 151 (or the second electrode 152) at a desired timing from a drive source unit control circuit (not shown). Due to the potential difference between the first electrode 151 and the second electrode 152, an electrostatic force (in other words, Coulomb force) is generated between the first electrode 151 and the second electrode 152. As a result, electrostatic force is generated. This electrostatic force is transmitted to the base 110 as a slight vibration.
 このような駆動源部150から加えられる微振動は、図4を用いて説明した方向性のない力となる。従って、第3実施例のMEMSスキャナ102によれば、上述した第1実施例のMEMSスキャナ100が享受する各種効果と同様の効果を好適に享受することができる。 Such micro-vibration applied from the driving source unit 150 is a force having no direction described with reference to FIG. Therefore, according to the MEMS scanner 102 of 3rd Example, the effect similar to the various effects which the MEMS scanner 100 of 1st Example mentioned above can enjoy can be enjoyed suitably.
 (4)第4実施例
 続いて、図9から図14を参照して、MEMSスキャナの第4実施例について説明する。
(4) Fourth Embodiment Next, a fourth embodiment of the MEMS scanner will be described with reference to FIGS.
 (4-1)基本構成
 初めに、図9を参照して、第4実施例のMEMSスキャナ103の基本構成について説明する。ここに、図9は、第4実施例のMEMSスキャナ103の基本構成を概念的に示す平面図である。
(4-1) Basic Configuration First, the basic configuration of the MEMS scanner 103 according to the fourth embodiment will be described with reference to FIG. FIG. 9 is a plan view conceptually showing the basic structure of the MEMS scanner 103 of the fourth embodiment.
 図9に示すように、第4実施例のMEMSスキャナ103は、第1ベース110-1と、第1トーションバー120a-1及び120b-1と、第2ベース110-2と、第2トーションバー120a-2及び120b-2と、第2トーションバー120c-2及び120d-2と、ミラー130aと、ミラー130cと、駆動源部160とを備えている。 As shown in FIG. 9, the MEMS scanner 103 of the fourth embodiment includes a first base 110-1, first torsion bars 120a-1 and 120b-1, a second base 110-2, and a second torsion bar. 120a-2 and 120b-2, second torsion bars 120c-2 and 120d-2, a mirror 130a, a mirror 130c, and a drive source unit 160.
 第1ベース110-1は、内部に空隙を備える枠形状を有している。つまり、第1ベース110-1は、図9中のY軸方向に延伸する2つの辺と図9中のX軸方向(つまり、Y軸に直交する軸方向)に延伸する2つの辺とを有すると共に、Y軸方向に延伸する2つの辺とX軸方向に延伸する2つの辺とによって取り囲まれた空隙を有する枠形状を有している。図9に示す例では、第1ベース110-1は、正方形の形状を有しているが、これに限定されることはなく、例えばその他の形状(例えば、長方形等の矩形の形状や円形の形状等)を有していてもよい。また、第1ベース110-1は、第4実施例のMEMSスキャナ103の基礎となる構造体であって、不図示の基板ないしは支持部材に対して固定されている(言い換えれば、MEMSスキャナ103という系の内部においては固定されている)ことが好ましい。 The first base 110-1 has a frame shape with a gap inside. That is, the first base 110-1 has two sides extending in the Y-axis direction in FIG. 9 and two sides extending in the X-axis direction (that is, the axial direction perpendicular to the Y-axis) in FIG. And a frame shape having a gap surrounded by two sides extending in the Y-axis direction and two sides extending in the X-axis direction. In the example shown in FIG. 9, the first base 110-1 has a square shape. However, the first base 110-1 is not limited to this. For example, other shapes (for example, a rectangular shape such as a rectangle or a circular shape) Shape etc.). The first base 110-1 is a structure that is the basis of the MEMS scanner 103 of the fourth embodiment, and is fixed to a substrate or a support member (not shown) (in other words, the MEMS scanner 103). It is preferably fixed inside the system).
 尚、図9では、第1ベース110-1が枠形状を有している例を示しているが、その他の形状を有していてもよいことは言うまでもない。例えば、第1ベース110-1は、その一部の辺が開口となるコの字型形状を有していてもよい。或いは、例えば、第1ベース110-1は、内部に空隙を備える箱型形状を有していてもよい。つまり、第1ベース110-1は、X軸及びY軸によって規定される平面上に分布する2つの面と、X軸及び不図示のZ軸(つまり、X軸及びY軸の双方に直交する軸)によって規定される平面上に分布する2つの面と、Y軸及び不図示のZ軸によって規定される平面上に分布する2つの面とを有すると共に、これらの6つの面によって取り囲まれた空隙を有する箱形状を有していてもよい。或いは、ミラー130a及び130cが配置される態様に応じて適宜第1ベース110-1の形状を任意に代えてもよい。 Although FIG. 9 shows an example in which the first base 110-1 has a frame shape, it goes without saying that the first base 110-1 may have other shapes. For example, the first base 110-1 may have a U-shape in which a part of the first base 110-1 is an opening. Alternatively, for example, the first base 110-1 may have a box shape with a gap inside. That is, the first base 110-1 is orthogonal to the two surfaces distributed on the plane defined by the X axis and the Y axis, and the Z axis (not shown) (that is, both the X axis and the Y axis). 2 planes distributed on a plane defined by the axis) and two planes distributed on a plane defined by the Y axis and a Z axis (not shown) and surrounded by these 6 planes You may have the box shape which has a space | gap. Alternatively, the shape of the first base 110-1 may be arbitrarily changed according to the manner in which the mirrors 130a and 130c are arranged.
 第1トーションバー120a-1は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第1トーションバー120a-1は、図9中X軸の方向に延伸するように配置される。言い換えれば、第1トーションバー120a-1は、X軸の方向に延伸する長手を有すると共にY軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第1トーションバー120a-1は、X軸の方向に延伸する短手を有すると共にY軸の方向に延伸する長手を有する形状を有していてもよい。第1トーションバー120a-1の一方の端部121a-1は、第1ベース110-1の内側の辺115-1に接続される。第1トーションバー120a-1の他方の端部122a-1は、X軸の方向に沿って第1ベース110-1の内側の辺115-1に対向する第2ベース110-2の外側の辺117-2に接続される。 The first torsion bar 120a-1 is an elastic member such as a spring made of, for example, silicon, copper alloy, iron-based alloy, other metal, resin, or the like. The first torsion bar 120a-1 is disposed so as to extend in the direction of the X axis in FIG. In other words, the first torsion bar 120a-1 has a shape having a long side extending in the X-axis direction and a short side extending in the Y-axis direction. However, the first torsion bar 120a-1 has a shape having a short side extending in the X-axis direction and a long side extending in the Y-axis direction, depending on the setting condition of the resonance frequency described later. Also good. One end 121a-1 of the first torsion bar 120a-1 is connected to the inner side 115-1 of the first base 110-1. The other end 122a-1 of the first torsion bar 120a-1 is an outer side of the second base 110-2 that faces the inner side 115-1 of the first base 110-1 along the X-axis direction. 117-2.
 第1トーションバー120b-1は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第1トーションバー120b-1は、図9中X軸の方向に延伸するように配置される。言い換えれば、第1トーションバー120b-1は、X軸の方向に延伸する長手を有すると共にY軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第1トーションバー120b-1は、X軸の方向に延伸する短手を有すると共にY軸の方向に延伸する長手を有する形状を有していてもよい。第1トーションバー120b-1の一方の端部121b-1は、X軸の方向に沿って第1ベース110-1の内側の辺(言い換えれば、領域部分)115-1(つまり、第1トーションバー120a-1の一方の端部121a-1が接続される第1ベース110-1の内側の辺115-1)に対向する第1ベース110-1の内側の辺116-1に接続される。第1トーションバー120b-1の他方の端部122b-1は、X軸の方向に沿って第1ベース110-1の内側の辺116-1に対向する第2ベース110-2の外側の辺118-2に接続される。 The first torsion bar 120b-1 is an elastic member such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like. The first torsion bar 120b-1 is disposed so as to extend in the direction of the X axis in FIG. In other words, the first torsion bar 120b-1 has a shape having a long side extending in the X-axis direction and a short side extending in the Y-axis direction. However, the first torsion bar 120b-1 has a short shape extending in the X-axis direction and a long shape extending in the Y-axis direction, depending on the setting condition of the resonance frequency described later. Also good. One end 121b-1 of the first torsion bar 120b-1 is located on the inner side (in other words, a region portion) 115-1 (that is, the first torsion bar) along the X-axis direction. The bar 120a-1 is connected to the inner side 116-1 of the first base 110-1 opposite to the inner side 115-1) of the first base 110-1 to which one end 121a-1 is connected. . The other end 122b-1 of the first torsion bar 120b-1 is an outer side of the second base 110-2 that faces the inner side 116-1 of the first base 110-1 along the X-axis direction. It is connected to 118-2.
 第2ベース110-2は、内部に空隙を備える枠形状を有している。つまり、第2ベース110-2は、図9中のY軸方向に延伸する2つの辺と図9中のX軸方向(つまり、Y軸に直交する軸方向)に延伸する2つの辺とを有すると共に、Y軸方向に延伸する2つの辺とX軸方向に延伸する2つの辺とによって取り囲まれた空隙を有する枠形状を有している。図9に示す例では、第2ベース110-2は、正方形の形状を有しているが、これに限定されることはなく、例えばその他の形状(例えば、長方形等の矩形の形状や円形の形状等)を有していてもよい。 The second base 110-2 has a frame shape with a gap inside. That is, the second base 110-2 has two sides extending in the Y-axis direction in FIG. 9 and two sides extending in the X-axis direction (that is, the axis direction orthogonal to the Y-axis) in FIG. And a frame shape having a gap surrounded by two sides extending in the Y-axis direction and two sides extending in the X-axis direction. In the example shown in FIG. 9, the second base 110-2 has a square shape. However, the second base 110-2 is not limited to this. For example, the second base 110-2 has other shapes (for example, a rectangular shape such as a rectangle or a circular shape). Shape etc.).
 第2ベース110-2は、第1ベース110-1の内部の空隙に、第1トーションバー120a-1及び120b-1によって吊り下げられる又は支持されるように配置される。第2ベース110-2は、第1トーションバー120a-1及び120b-1の弾性によって、X軸の方向を中心軸として回転するように構成されている。 The second base 110-2 is arranged to be suspended or supported by the first torsion bars 120a-1 and 120b-1 in the space inside the first base 110-1. The second base 110-2 is configured to rotate about the X-axis direction as a central axis by the elasticity of the first torsion bars 120a-1 and 120b-1.
 尚、図9では、第2ベース110-2が枠形状を有している例を示しているが、その他の形状を有していてもよいことは言うまでもない。例えば、第2ベース110-2は、その一部の辺が開口となるコの字型形状を有していてもよい。或いは、例えば、第2ベース110-2は、内部に空隙を備える箱型形状を有していてもよい。つまり、第2ベース110-2は、X軸及びY軸によって規定される平面上に分布する2つの面と、X軸及び不図示のZ軸(つまり、X軸及びY軸の双方に直交する軸)によって規定される平面上に分布する2つの面と、Y軸及び不図示のZ軸によって規定される平面上に分布する2つの面とを有すると共に、これらの6つの面によって取り囲まれた空隙を有する箱形状を有していてもよい。或いは、ミラー130a及び130cが配置される態様に応じて適宜第2ベース110-2の形状を任意に代えてもよい。 Although FIG. 9 shows an example in which the second base 110-2 has a frame shape, it goes without saying that the second base 110-2 may have other shapes. For example, the second base 110-2 may have a U-shape in which a part of the second base 110-2 is an opening. Alternatively, for example, the second base 110-2 may have a box shape with a gap inside. That is, the second base 110-2 is orthogonal to the two surfaces distributed on the plane defined by the X axis and the Y axis, and the Z axis (not shown) (that is, both the X axis and the Y axis). 2 planes distributed on a plane defined by the axis) and two planes distributed on a plane defined by the Y axis and a Z axis (not shown) and surrounded by these 6 planes You may have the box shape which has a space | gap. Alternatively, the shape of the second base 110-2 may be arbitrarily changed according to the manner in which the mirrors 130a and 130c are arranged.
 第2トーションバー120a-2は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第2トーションバー120a-2は、図9中Y軸の方向に延伸するように配置される。言い換えれば、第2トーションバー120a-2は、Y軸の方向に延伸する長手を有すると共にX軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第2トーションバー120a-2は、Y軸の方向に延伸する短手を有すると共にX軸の方向に延伸する長手を有する形状を有していてもよい。第2トーションバー120a-2の一方の端部121a-2は、第2ベース110-2の内側の辺111-2に接続される。第2トーションバー120a-2の他方の端部122a-2は、Y軸の方向に沿って第2ベース110-2の内側の辺111-2に対向するミラー130aの一方の辺131aに接続される。 The second torsion bar 120a-2 is an elastic member such as a spring made of, for example, silicon, copper alloy, iron-based alloy, other metal, resin, or the like. Second torsion bar 120a-2 is arranged to extend in the direction of the Y-axis in FIG. In other words, the second torsion bar 120a-2 has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction. However, the second torsion bar 120a-2 has a shape that has a short side that extends in the direction of the Y axis and a length that extends in the direction of the X axis, depending on the setting state of the resonance frequency described later. Also good. One end 121a-2 of the second torsion bar 120a-2 is connected to the inner side 111-2 of the second base 110-2. The other end 122a-2 of the second torsion bar 120a-2 is connected to one side 131a of the mirror 130a facing the side 111-2 on the inner side of the second base 110-2 along the Y-axis direction. The
 第2トーションバー120b-2は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第2トーションバー120b-2は、図9中Y軸の方向に延伸するように配置される。言い換えれば、第2トーションバー120b-2は、Y軸の方向に延伸する長手を有すると共にX軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第2トーションバー120b-1は、Y軸の方向に延伸する短手を有すると共にX軸の方向に延伸する長手を有する形状を有していてもよい。第2トーションバー120b-2の一方の端部121b-2は、Y軸の方向に沿って第2ベース110-2の内側の辺111-2(つまり、第2トーションバー120a-2の一方の端部121a-2が接続される第2ベース110-2の内側の辺111-2)に対向する第2ベース110-2の内側の辺112-2に接続される。第2トーションバー120b-2の他方の端部122b-2は、Y軸の方向に沿って第2ベース110-2の内側の辺112-2に対向するミラー130aの他方の辺132aに接続される。 The second torsion bar 120b-2 is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like. Second torsion bar 120b-2 is arranged to extend in the direction of the Y-axis in FIG. In other words, the second torsion bar 120b-2 has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction. However, the second torsion bar 120b-1 has a shape that has a short side that extends in the direction of the Y-axis and a length that extends in the direction of the X-axis, depending on the setting state of the resonance frequency described later. Also good. One end 121b-2 of the second torsion bar 120b-2 is located on the inner side 111-2 of the second base 110-2 along the Y-axis direction (that is, one end of the second torsion bar 120a-2). It is connected to the inner side 112-2 of the second base 110-2 opposite to the inner side 111-2) of the second base 110-2 to which the end 121a-2 is connected. The other end 122b-2 of the second torsion bar 120b-2 is connected to the other side 132a of the mirror 130a facing the side 112-2 on the inner side of the second base 110-2 along the Y-axis direction. The
 第2トーションバー120c-2は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第2トーションバー120c-2は、図9中Y軸の方向に延伸するように配置される。言い換えれば、第2トーションバー120c-2は、Y軸の方向に延伸する長手を有すると共にX軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第2トーションバー120c-2は、Y軸の方向に延伸する短手を有すると共にX軸の方向に延伸する長手を有する形状を有していてもよい。第2トーションバー120c-2の一方の端部121c-2は、第2ベース110-2の内側の辺111-2に接続される。第2トーションバー120c-2の他方の端部122c-2は、Y軸の方向に沿って第2ベース110-2の内側の辺111-2に対向するミラー130cの一方の辺131cに接続される。 The second torsion bar 120c-2 is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin or the like. The second torsion bar 120c-2 is disposed so as to extend in the Y-axis direction in FIG. In other words, the second torsion bar 120c-2 has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction. However, the second torsion bar 120c-2 has a shape having a short side extending in the direction of the Y-axis and a length extending in the direction of the X-axis depending on the setting state of the resonance frequency described later. Also good. One end 121c-2 of the second torsion bar 120c-2 is connected to the inner side 111-2 of the second base 110-2. The other end 122c-2 of the second torsion bar 120c-2 is connected to one side 131c of the mirror 130c facing the inner side 111-2 of the second base 110-2 along the Y-axis direction. The
 第2トーションバー120d-2は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第2トーションバー120d-2は、図9中Y軸の方向に延伸するように配置される。言い換えれば、第2トーションバー120d-2は、Y軸の方向に延伸する長手を有すると共にX軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第2トーションバー120d-1は、Y軸の方向に延伸する短手を有すると共にX軸の方向に延伸する長手を有する形状を有していてもよい。第2トーションバー120d-2の一方の端部121d-2は、Y軸の方向に沿って第2ベース110-2の内側の辺111-2(つまり、第2トーションバー120c-2の一方の端部121c-2が接続される第2ベース110-2の内側の辺111-2)に対向する第2ベース110-2の内側の辺112-2に接続される。第2トーションバー120d-2の他方の端部122d-2は、Y軸の方向に沿って第2ベース110-2の内側の辺112-2に対向するミラー130cの他方の辺132cに接続される。 The second torsion bar 120d-2 is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like. The second torsion bar 120d-2 is disposed so as to extend in the Y-axis direction in FIG. In other words, the second torsion bar 120d-2 has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction. However, the second torsion bar 120d-1 has a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction according to the setting state of the resonance frequency described later. Also good. One end 121d-2 of the second torsion bar 120d-2 extends along the Y-axis direction along the side 111-2 inside the second base 110-2 (that is, one end of the second torsion bar 120c-2). It is connected to the inner side 112-2 of the second base 110-2 opposite to the inner side 111-2) of the second base 110-2 to which the end 121c-2 is connected. The other end 122d-2 of the second torsion bar 120d-2 is connected to the other side 132c of the mirror 130c facing the inner side 112-2 of the second base 110-2 along the Y-axis direction. The
 ミラー130aは、第2ベース110-2の内部の空隙に、第2トーションバー120a-2及び120b-2によって吊り下げられる又は支持されるように配置される。ミラー130aは、第2トーションバー120a-2及び120b-2の弾性によって、Y軸の方向を中心軸として回転するように構成されている。 The mirror 130a is arranged to be suspended or supported by the second torsion bars 120a-2 and 120b-2 in the gap inside the second base 110-2. The mirror 130a is configured to rotate about the Y-axis direction as a central axis by the elasticity of the second torsion bars 120a-2 and 120b-2.
 ミラー130cは、第2ベース110-2の内部の空隙に、第2トーションバー120c-2及び120d-2によって吊り下げられる又は支持されるように配置される。ミラー130cは、第2トーションバー120c-2及び120d-2の弾性によって、Y軸の方向を中心軸として回転するように構成されている。 The mirror 130c is arranged to be suspended or supported by the second torsion bars 120c-2 and 120d-2 in the gap inside the second base 110-2. The mirror 130c is configured to rotate about the Y-axis direction as a central axis by the elasticity of the second torsion bars 120c-2 and 120d-2.
 駆動源部160は、ミラー130a及び130cをY軸の方向に沿った軸を中心軸として回転させるために必要な微振動を第2ベース110-2に対して加える。尚、駆動源部160が微振動を第2ベース110-2に加えることができる限りは、その配置態様は任意に定めてもよい。また、第2ベース110-2に対して力を加えることに限らず、その他の位置(例えば、第1ベース110-1)に対して力を加えることができるように構成されてもよい。 The drive source unit 160 applies to the second base 110-2 a fine vibration necessary to rotate the mirrors 130a and 130c about the axis along the Y-axis direction as a central axis. As long as the drive source unit 160 can apply a slight vibration to the second base 110-2, the arrangement mode may be arbitrarily determined. Further, the present invention is not limited to applying force to the second base 110-2, and may be configured to apply force to other positions (for example, the first base 110-1).
 より具体的には、駆動源部160は、電磁力に起因した力を加える駆動源部であって、第2ベース110-2の枠形状に沿って配置されるコイル161と、第1ベース110-1に固定される磁極162aから162cとを備える。この場合、コイル161には、不図示の駆動源部制御回路から所望のタイミングで、所望の電圧が印加される。コイル161への電圧の印加によって電流が流れ、コイル161と磁極162aから162cとの間に電磁相互作用が生ずる。その結果、電磁相互作用による電磁力が発生する。この電磁力は微振動として第2ベース110-2に伝えられる。 More specifically, the drive source unit 160 is a drive source unit that applies a force due to electromagnetic force, and includes a coil 161 arranged along the frame shape of the second base 110-2, and the first base 110. Magnetic poles 162a to 162c fixed to -1. In this case, a desired voltage is applied to the coil 161 at a desired timing from a drive source unit control circuit (not shown). By applying a voltage to the coil 161, a current flows, and electromagnetic interaction occurs between the coil 161 and the magnetic poles 162a to 162c. As a result, electromagnetic force due to electromagnetic interaction is generated. This electromagnetic force is transmitted to the second base 110-2 as a slight vibration.
 尚、磁極162aは、第2ベース110-2の一方側の辺110-2であって且つミラー130aとミラー130cとの間の領域(つまりは、第2ベース110-2における変形振動の腹となる領域)に隣接して配置されることが好ましい。一方で、磁極162b及び162cは、第2ベース110-2の回転軸に対して磁極162aと反対側に位置する領域であって且つ第2ベース110-2を(或いは、ミラー130a及びミラー130cを)Y軸の方向に沿って挟みこむ位置に配置されることが好ましい。 The magnetic pole 162a is a side 110-2 on one side of the second base 110-2 and a region between the mirror 130a and the mirror 130c (that is, the antinode of deformation vibration in the second base 110-2). It is preferable to be arranged adjacent to the region. On the other hand, the magnetic poles 162b and 162c are regions located on the opposite side of the magnetic pole 162a with respect to the rotation axis of the second base 110-2, and the second base 110-2 (or the mirror 130a and the mirror 130c are connected). ) It is preferably arranged at a position sandwiched along the direction of the Y axis.
 続いて、図10を参照して、第2ベース110-2の裏側(具体的には、図9に示した第2ベース110-2の反対側)の構成について説明する。図10は、第2ベース110-2の裏側(具体的には、図9に示した第2ベース110-2の反対側)の構成を示す平面斜視図である。 Subsequently, the configuration of the back side of the second base 110-2 (specifically, the opposite side of the second base 110-2 shown in FIG. 9) will be described with reference to FIG. FIG. 10 is a plan perspective view showing the configuration of the back side of the second base 110-2 (specifically, the side opposite to the second base 110-2 shown in FIG. 9).
 図10に示すように、第2ベース110-2の枠形状のうちの一部の領域110aには、第2ベース110-2の表面から突き出るリブ119が形成されている。リブ119は、第2ベース110-2と一体的に形成されていてもよいし、第2ベース110-2が形成された後に付加的に配置されていてもよい。一方で、第2ベース110-2の枠形状のうちの他の一部の領域110bには、リブ119が形成されていない。 As shown in FIG. 10, ribs 119 protruding from the surface of the second base 110-2 are formed in a partial region 110a of the frame shape of the second base 110-2. The rib 119 may be formed integrally with the second base 110-2, or may be additionally disposed after the second base 110-2 is formed. On the other hand, the rib 119 is not formed in the other partial area 110b of the frame shape of the second base 110-2.
 図10に示すリブ119により、第2ベース110-2の枠形状のうちの一部の領域110aの剛性は、第2ベース110-2の枠形状のうちの他の一部の領域110bの剛性よりも高くなる。言い換えれば、リブ119は、第2ベース110-2の枠形状のうちの一部の領域110aの剛性が、第2ベース110-2の枠形状のうちの他の一部の領域110bの剛性よりも高くなる状態を実現することができるように、第2ベース110-2に形成されることが好ましい。つまり、第2ベース110-2の枠形状のうちの一部の領域110aの剛性が、第2ベース110-2の枠形状のうちの他の一部の領域110bの剛性よりも高くなる状態を実現することができるように、リブ119の形成位置や、大きさや、質量や、剛性や、密度等が適宜決定されることが好ましい。 By the rib 119 shown in FIG. 10, the rigidity of a part of the region 110a in the frame shape of the second base 110-2 is set to the rigidity of the other part of the region 110b of the frame shape of the second base 110-2. Higher than. In other words, in the rib 119, the rigidity of a part of the region 110a in the frame shape of the second base 110-2 is higher than the rigidity of the other part of the region 110b in the frame shape of the second base 110-2. It is preferable that the second base 110-2 be formed so that a higher state can be realized. That is, the rigidity of a part of the region 110a in the frame shape of the second base 110-2 is higher than the rigidity of the other part of the region 110b in the frame shape of the second base 110-2. It is preferable that the formation position, size, mass, rigidity, density, density, and the like of the ribs 119 are appropriately determined so that they can be realized.
 或いは、図10に示すリブ119により、第2ベース110-2の枠形状のうちの一部の領域110aの質量(或いは、第2ベース110-2の枠方向に沿った単位長当たりの質量)は、第2ベース110-2の枠形状のうちの他の一部の領域110bの質量(或いは、第2ベース110-2の枠方向に沿った単位長当たりの質量)よりも大きくなる。或いは、リブ119は、第2ベース110-2の枠形状のうちの一部の領域110aの質量が、第2ベース110-2の枠形状のうちの他の一部の領域110bの質量よりも大きくなる状態を実現することができるように、第2ベース110-2に形成されることが好ましい。つまり、第2ベース110-2の枠形状のうちの一部の領域110aの質量が、第2ベース110-2の枠形状のうちの他の一部の領域110bの質量よりも大きくなる状態を実現することができるように、リブ119の形成位置や、大きさや、質量や、剛性や、密度等が適宜決定されることが好ましい。 Alternatively, by the rib 119 shown in FIG. 10, the mass of a part of the region 110a in the frame shape of the second base 110-2 (or the mass per unit length along the frame direction of the second base 110-2). Is larger than the mass of the other partial region 110b in the frame shape of the second base 110-2 (or the mass per unit length along the frame direction of the second base 110-2). Alternatively, the rib 119 may be configured such that the mass of a part of the region 110a in the frame shape of the second base 110-2 is larger than the mass of the other part of the region 110b in the frame shape of the second base 110-2. It is preferable that the second base 110-2 be formed so that a large state can be realized. That is, the mass of the partial area 110a in the frame shape of the second base 110-2 is larger than the mass of the other partial area 110b in the frame shape of the second base 110-2. It is preferable that the formation position, size, mass, rigidity, density, density, and the like of the ribs 119 are appropriately determined so that they can be realized.
 尚、リブ119が形成される領域110aとリブ119が形成されない領域110bは、ミラー130a及び130bの夫々の回転軸(つまり、Y軸)に直交する方向(つまり、X軸に沿った方向)に沿って並ぶことが好ましい。 The region 110a where the rib 119 is formed and the region 110b where the rib 119 is not formed are in a direction (that is, a direction along the X axis) perpendicular to the respective rotation axes (that is, the Y axis) of the mirrors 130a and 130b. It is preferable to line up along.
 尚、図10は、リブ119が第2ベース110-2の裏側に形成される例を示している。しかしながら、リブ119は、第2ベース110-2の表側に形成されてもよいし、第2ベース110-2の側面に形成されてもよいし、第2ベース110-2の内面に形成されてもよい。或いは、リブ119以外の構成を用いて、第2ベース110-2の枠形状のうちの一部の領域110aの剛性が、第2ベース110-2の枠形状のうちの他の一部の領域110bの剛性よりも高くなる状態を実現してもよい。或いは、リブ119以外の構成を用いて、第2ベース110-2の枠形状のうちの一部の領域110aの質量が、第2ベース110-2の枠形状のうちの他の一部の領域110bの質量よりも大きくなる状態を実現してもよい。例えば、第2ベース110-2の密度や材質等を領域110aと領域110bとで異ならしめることで、上述の状態を実現してもよい。 FIG. 10 shows an example in which the rib 119 is formed on the back side of the second base 110-2. However, the rib 119 may be formed on the front side of the second base 110-2, may be formed on the side surface of the second base 110-2, or may be formed on the inner surface of the second base 110-2. Also good. Alternatively, by using a configuration other than the rib 119, the rigidity of a part of the region 110a in the frame shape of the second base 110-2 is set to be a part of the other part of the frame shape of the second base 110-2. You may implement | achieve the state which becomes higher than the rigidity of 110b. Alternatively, by using a configuration other than the rib 119, the mass of a part of the region 110a in the frame shape of the second base 110-2 may be changed to the other part of the frame shape of the second base 110-2. You may implement | achieve the state which becomes larger than the mass of 110b. For example, the above-described state may be realized by making the density and material of the second base 110-2 different between the region 110a and the region 110b.
 (4-2)MEMSスキャナの動作
 続いて、図11を参照して、第4実施例のMEMSスキャナ103の動作の態様(具体的には、ミラー130a及び130cを回転させる動作の態様)について説明する。ここに、図11は、第4実施例のMEMSスキャナ103による動作の態様を概念的に示す平面図である。
(4-2) Operation of MEMS Scanner Next, with reference to FIG. 11, an operation mode (specifically, an operation mode for rotating the mirrors 130 a and 130 c) of the MEMS scanner 103 of the fourth embodiment will be described. To do. FIG. 11 is a plan view conceptually showing an operation mode of the MEMS scanner 103 according to the fourth embodiment.
 第4実施例のMEMSスキャナ103の動作時には、コイル161には、不図示の駆動源部制御回路から所望のタイミングで、所望の電圧が印加される。コイル161への電圧の印加によって電流が流れ、コイル161と磁極162aから162cとの間に電磁相互作用が生ずる。その結果、電磁相互作用による電磁力が発生する。この電磁力は微振動(ないしは、波動エネルギー)として第2ベース110-2に伝えられる。 During the operation of the MEMS scanner 103 of the fourth embodiment, a desired voltage is applied to the coil 161 at a desired timing from a drive source unit control circuit (not shown). By applying a voltage to the coil 161, a current flows, and electromagnetic interaction occurs between the coil 161 and the magnetic poles 162a to 162c. As a result, electromagnetic force due to electromagnetic interaction is generated. This electromagnetic force is transmitted to the second base 110-2 as fine vibration (or wave energy).
 ここで、コイル161と磁極162aとの間の電磁相互作用による電磁力の方向は、図11中奥側(紙面奥側)から手前側(紙面手前側)方向である。コイル161と磁極162bとの間の電磁相互作用による電磁力の方向は、図11中手前側から奥側方向である。コイル161と磁極162cとの間の電磁相互作用による電磁力の方向は、図11中手前側から奥側方向である。その結果、図11に示すように、この電磁力は、第1トーションバー120a-1及び120b-1自身の弾性に応じた方向に向かって第1トーションバー120a-1及び120b-1を回転させたり、第2ベース110-2を回転させたりする。その結果、図11に示すように、第2ベース110-2が、X軸の方向に沿った軸を中心軸として回転する。 Here, the direction of the electromagnetic force due to the electromagnetic interaction between the coil 161 and the magnetic pole 162a is from the back side (the back side of the paper) to the near side (the front side of the paper) in FIG. The direction of electromagnetic force due to electromagnetic interaction between the coil 161 and the magnetic pole 162b is from the front side to the back side in FIG. The direction of the electromagnetic force due to the electromagnetic interaction between the coil 161 and the magnetic pole 162c is from the front side to the back side in FIG. As a result, as shown in FIG. 11, this electromagnetic force rotates the first torsion bars 120a-1 and 120b-1 in the direction according to the elasticity of the first torsion bars 120a-1 and 120b-1 itself. Or rotating the second base 110-2. As a result, as shown in FIG. 11, the second base 110-2 rotates about the axis along the X-axis direction as the central axis.
 尚、第2ベース110-2は、後述するミラー130a及び130cの共振周波数と同じ周波数、又は当該共振周波数よりも低い若しくは高い周波数での回転動作を所定の角度の範囲内で繰り返してもよい。例えば、第4実施例のMEMSスキャナ103をディスプレイ(或いは、ヘッドマウントディスプレイ)に適用する場合には、第2ベース110-2は、例えばディスプレイの走査周期又はフレームレートに応じた周波数(例えば、60Hz)での回転動作を繰り返してもよい。 It should be noted that the second base 110-2 may repeat the rotation operation within the predetermined angle range at the same frequency as the resonance frequency of mirrors 130a and 130c, which will be described later, or at a frequency lower or higher than the resonance frequency. For example, when the MEMS scanner 103 of the fourth embodiment is applied to a display (or a head-mounted display), the second base 110-2 has a frequency (for example, 60 Hz) corresponding to the scanning period or frame rate of the display, for example. ) May be repeated.
 或いは、第2ベース110-2は、第2ベース110-2を含む被懸架部並びに第1トーションバー120a-1及び120b-1により定まる共振周波数での回転動作を所定の角度の範囲内で繰り返してもよい。具体的には、第2ベース110-2は、第2ベース110-2を含む被懸架部(言い換えれば、第1トーションバー120a-1及び120b-1により懸架される第2ベース110-2を含む被懸架部)並びに第1トーションバー120a-1及び120b-1に応じて定まる共振周波数で共振するように回転してもよい。例えば、第2ベース110-2を含む被懸架部のX軸に沿った軸回りの慣性モーメント(より具体的には、第2ベース110-2内に備えられる第2トーションバー120a-2から120d-2並びにミラー130a及び130cの夫々の質量をも加味した第2ベース110-2という系全体からなる被懸架設部のX軸に沿った軸回りの慣性モーメント)がI1であり且つ第1トーションバー120a-1及び120b-1を1本のバネとみなした場合のねじりバネ定数がk1であるとすれば、第2ベース110-2は、(1/(2π))×√(k1/I1)にて特定される共振周波数(或いは、(1/(2π))×√(k1/I1)のN倍若しくはN分の1倍(但し、Nは1以上の整数)の共振周波数)で共振するように、X軸の方向に沿った軸を中心軸として回転してもよい。 Alternatively, the second base 110-2 repeats the rotation operation at the resonance frequency determined by the suspended portion including the second base 110-2 and the first torsion bars 120a-1 and 120b-1 within a predetermined angle range. May be. Specifically, the second base 110-2 includes a suspended portion including the second base 110-2 (in other words, the second base 110-2 suspended by the first torsion bars 120a-1 and 120b-1). Including the suspended portion) and the first torsion bars 120a-1 and 120b-1 may be rotated so as to resonate at a resonance frequency determined. For example, the moment of inertia about the axis along the X axis of the suspended portion including the second base 110-2 (more specifically, the second torsion bars 120a-2 to 120d provided in the second base 110-2) -2 and the second base 110-2 taking into account the mass of each of the mirrors 130a and 130c, the suspended moment consisting of the entire system, ie, the moment of inertia about the axis along the X-axis) is I1 and the first torsion If the torsion spring constant when the bars 120a-1 and 120b-1 are regarded as one spring is k1, then the second base 110-2 is (1 / (2π)) × √ (k1 / I1 ) At the resonance frequency (or (1 / (2π)) × √ (k1 / I1) N times or 1 / N times (where N is an integer equal to or greater than 1)). In the direction of the X-axis Shaft may be rotated about axis was.
 更に、駆動源部160から加えられる電磁力そのものは、ミラー130a及び130cの回転方向(つまり、Y軸に沿った方向を中心軸とする回転方向)とは異なる。一方で、この電磁力は、微振動として第2ベース110-2に伝わる。より具体的には、駆動源部160は、第2ベース110-2に対して、第2ベース110-2そのものの回転方向のねじれをなくしつつも第2ベース110-2内を伝搬する微振動を、波動エネルギーとして加える。言い換えれば、駆動源部160は、第2ベース110-2そのものに回転方向のねじれを与える力を加えることに代えて、第2ベース110-2内をエネルギーとして(言い換えれば、力を発現させる波動エネルギーとして)伝搬する微振動を加える。このような微振動は、第2ベース110-2内を伝搬している時点では、方向性を有していない力となる。言い換えれば、微振動として第2ベース110-2内を伝搬する波動エネルギーは、第2ベース110-2内を任意の方向に向かって伝搬する。また、このような微振動が加えられた第2ベース110-2は、第2ベース110-2そのものが振動する物体となるというよりは、微振動(言い換えれば、波動エネルギー)を伝搬する媒体となる。 Furthermore, the electromagnetic force itself applied from the drive source unit 160 is different from the rotation direction of the mirrors 130a and 130c (that is, the rotation direction centered on the direction along the Y axis). On the other hand, this electromagnetic force is transmitted to the second base 110-2 as fine vibration. More specifically, the drive source unit 160 is a fine vibration that propagates in the second base 110-2 while eliminating the twist in the rotational direction of the second base 110-2 itself with respect to the second base 110-2. Is added as wave energy. In other words, instead of applying a force that imparts a twist in the rotational direction to the second base 110-2 itself, the drive source unit 160 uses the inside of the second base 110-2 as energy (in other words, a wave that expresses the force). Adds a small vibration to propagate (as energy). Such fine vibration becomes a force having no directivity when propagating in the second base 110-2. In other words, the wave energy propagating in the second base 110-2 as a minute vibration propagates in the second base 110-2 in an arbitrary direction. Further, the second base 110-2 to which such a fine vibration is applied is a medium that propagates the fine vibration (in other words, wave energy) rather than the second base 110-2 itself becoming an oscillating object. Become.
 その結果、駆動源部160から第2ベース110-2に対して加えられる微振動は、第2ベース110-1から第2トーションバー120a-2及び120b-2へと伝わる。その後、図11に示すように、第2ベース110-2内を伝搬してきた微振動(言い換えれば、波動エネルギー)が、第2トーションバー120a-2及び120b-2自身の弾性に応じた方向に向かって第2トーションバー120a-2及び120b-2を回転させたり、ミラー130aを回転させたりする。言い換えれば、第2ベース110-2内を伝搬してきた微振動は、第2トーションバー120a-2及び120b-2の回転やミラー130aの回転という形で発現する。言い換えれば、この波動エネルギーは、微振動の方向を限定することなくあらゆる方向の振動として取り出すことができる。つまり、第2ベース110-2内を伝搬した波動エネルギーは、振動(より具体的には、共振)という形で外部に取り出すことができ、その結果、ミラー130aを回転させることができる。その結果、図11に示すように、ミラー130aが、Y軸の方向に沿った軸を中心軸として回転する。より具体的には、ミラー130aは、共振周波数での回転動作を所定の角度の範囲内で繰り返す(言い換えれば、所定の角度の範囲内での回転の往復運動を繰り返す)。 As a result, the slight vibration applied from the drive source unit 160 to the second base 110-2 is transmitted from the second base 110-1 to the second torsion bars 120a-2 and 120b-2. After that, as shown in FIG. 11, the micro-vibration (in other words, wave energy) propagating through the second base 110-2 is directed in a direction corresponding to the elasticity of the second torsion bars 120a-2 and 120b-2 itself. The second torsion bars 120a-2 and 120b-2 are rotated toward the front, and the mirror 130a is rotated. In other words, the micro vibrations propagated in the second base 110-2 are manifested in the form of rotation of the second torsion bars 120a-2 and 120b-2 and rotation of the mirror 130a. In other words, this wave energy can be taken out as vibrations in all directions without limiting the direction of micro vibrations. That is, the wave energy propagated in the second base 110-2 can be extracted outside in the form of vibration (more specifically, resonance), and as a result, the mirror 130a can be rotated. As a result, as shown in FIG. 11, the mirror 130a rotates about the axis along the Y-axis direction as the central axis. More specifically, the mirror 130a repeats the rotation operation at the resonance frequency within a predetermined angle range (in other words, repeats the reciprocating motion of rotation within the predetermined angle range).
 このとき、ミラー130aは、ミラー130a並びに第2トーションバー120a-2及び120b-2に応じて定まる共振周波数で共振するように回転する。より具体的には、ミラー130aは、ミラー130a(より具体的には、ミラー130aを含む被懸架部であり、第2トーションバー120a-2及び120b-2によって吊り下げられる構造物)のY軸に沿った軸周り慣性モーメント並びに第2トーションバー120a-2及び120b-2のねじりバネ定数に応じて定まる共振周波数で共振するように回転する。例えば、ミラー130aのY軸に沿った軸回りの慣性モーメントがIaであり且つ第2トーションバー120a-2及び120b-2を1本のバネとみなした場合のねじりバネ定数がkaであるとすれば、ミラー130aは、(1/(2π))×√(ka/Ia)にて特定される共振周波数(或いは、(1/(2π))×√(ka/Ia)のN倍若しくはN分の1倍(但し、Nは1以上の整数)の共振周波数)で共振するように、Y軸の方向に沿った軸を中心軸として回転する。このため、駆動源部160は、ミラー130aが上述の共振周波数で共振するように、上記共振周波数に同期した態様で微振動を加える。 At this time, the mirror 130a rotates so as to resonate at a resonance frequency determined according to the mirror 130a and the second torsion bars 120a-2 and 120b-2. More specifically, the mirror 130a is a Y axis of the mirror 130a (more specifically, a suspended portion including the mirror 130a and a structure suspended by the second torsion bars 120a-2 and 120b-2). , And a torsion spring constant of the second torsion bars 120a-2 and 120b-2. For example, it is assumed that the moment of inertia about the axis along the Y axis of the mirror 130a is Ia and the torsion spring constant when the second torsion bars 120a-2 and 120b-2 are regarded as one spring is ka. For example, the mirror 130a has a resonance frequency specified by (1 / (2π)) × √ (ka / Ia) (or N times or N minutes of (1 / (2π)) × √ (ka / Ia). So that it resonates at a resonance frequency of 1 (where N is an integer equal to or greater than 1). For this reason, the drive source unit 160 applies slight vibration in a manner synchronized with the resonance frequency so that the mirror 130a resonates at the resonance frequency described above.
 また、ミラー130aの共振周波数は、厳密に言えば、ミラー130aという回転体を含む回転系を支える土台の剛性や質量(或いは、慣性モーメント)によって変化しかねない。例えば、ミラー130aの共振周波数は、ミラー130aという回転体を含む回転系を支える第1ベース110-1や第1トーションバー120a-1及び120b-1や第2ベース110-2等の剛性や質量(或いは、慣性モーメント)によって変化しかねない。このため、ミラー130aを支える土台の剛性や質量(或いは、慣性モーメント)を考慮した上で、(1/(2π))×√(ka/Ia)という数式(或いは、当該数式を特定するパラメータであるka及びIa)に対して所定の補正演算を施した結果得られる共振周波数を、実際のミラー130aの共振周波数として取り扱ってもよい。 Strictly speaking, the resonance frequency of the mirror 130a may change depending on the rigidity and mass (or moment of inertia) of the base supporting the rotating system including the rotating body called the mirror 130a. For example, the resonance frequency of the mirror 130a is such that the rigidity and mass of the first base 110-1, the first torsion bars 120a-1 and 120b-1, the second base 110-2, and the like that support a rotating system including a rotating body called the mirror 130a. (Or moment of inertia). Therefore, in consideration of the rigidity and mass (or moment of inertia) of the base supporting the mirror 130a, an equation (1 / (2π)) × √ (ka / Ia) (or a parameter specifying the equation) A resonance frequency obtained as a result of performing a predetermined correction operation on certain ka and Ia) may be handled as the actual resonance frequency of the mirror 130a.
 同様に、駆動源部160から第2ベース110-2に対して加えられる微振動は、第2ベース110-1から第2トーションバー120c-2及び120d-2へと伝わる。その後、図11に示すように、第2ベース110-2内を伝搬してきた微振動(言い換えれば、波動エネルギー)が、第2トーションバー120c-2及び120d-2自身の弾性に応じた方向に向かって第2トーションバー120c-2及び120d-2を回転させたり、ミラー130cを回転させたりする。言い換えれば、第2ベース110-2内を伝搬してきた微振動は、第2トーションバー120c-2及び120d-2の回転やミラー130cの回転という形で発現する。言い換えれば、この波動エネルギーは、微振動の方向を限定することなくあらゆる方向の振動として取り出すことができる。つまり、第2ベース110-2内を伝搬した波動エネルギーは、振動(より具体的には、共振)という形で外部に取り出すことができ、その結果、ミラー130cを回転させることができる。その結果、図11に示すように、ミラー130cが、Y軸の方向に沿った軸を中心軸として回転する。より具体的には、ミラー130cは、共振周波数での回転動作を所定の角度の範囲内で繰り返す(言い換えれば、所定の角度の範囲内での回転の往復運動を繰り返す)。 Similarly, the slight vibration applied from the drive source unit 160 to the second base 110-2 is transmitted from the second base 110-1 to the second torsion bars 120c-2 and 120d-2. After that, as shown in FIG. 11, the micro-vibration (in other words, wave energy) propagating in the second base 110-2 is directed in a direction corresponding to the elasticity of the second torsion bars 120c-2 and 120d-2 themselves. The second torsion bars 120c-2 and 120d-2 are rotated or the mirror 130c is rotated. In other words, the minute vibrations that have propagated through the second base 110-2 are manifested in the form of rotation of the second torsion bars 120c-2 and 120d-2 and rotation of the mirror 130c. In other words, this wave energy can be taken out as vibrations in all directions without limiting the direction of micro vibrations. That is, the wave energy propagated in the second base 110-2 can be extracted outside in the form of vibration (more specifically, resonance), and as a result, the mirror 130c can be rotated. As a result, as shown in FIG. 11, the mirror 130c rotates about the axis along the Y-axis direction as the central axis. More specifically, the mirror 130c repeats the rotation operation at the resonance frequency within a predetermined angle range (in other words, the reciprocating motion of rotation within the predetermined angle range is repeated).
 このとき、ミラー130cは、ミラー130c並びに第2トーションバー120c-2及び120d-2に応じて定まる共振周波数で共振するように回転する。より具体的には、ミラー130cは、ミラー130c(より具体的には、ミラー130cを含む被懸架部であり、第2トーションバー120c-2及び120d-2によって吊り下げられる構造物)のY軸に沿った軸周り慣性モーメント並びに第2トーションバー120c-2及び120d-2のねじりバネ定数に応じて定まる共振周波数で共振するように回転する。例えば、ミラー130cのY軸に沿った軸回りの慣性モーメントがIcであり且つ第2トーションバー120c-2及び120d-2を1本のバネとみなした場合のねじりバネ定数がkcであるとすれば、ミラー130aは、(1/(2π))×√(kc/Ic)にて特定される共振周波数(或いは、(1/(2π))×√(kc/Ic)のN倍若しくはN分の1倍(但し、Nは1以上の整数)の共振周波数)で共振するように、Y軸の方向に沿った軸を中心軸として回転する。このため、駆動源部160は、ミラー130cが上述の共振周波数で共振するように、上記共振周波数に同期した態様で微振動を加える。 At this time, the mirror 130c rotates so as to resonate at a resonance frequency determined according to the mirror 130c and the second torsion bars 120c-2 and 120d-2. More specifically, the mirror 130c is a Y-axis of the mirror 130c (more specifically, a suspended portion including the mirror 130c and suspended by the second torsion bars 120c-2 and 120d-2). , And the torsion spring constant of the second torsion bars 120c-2 and 120d-2. For example, it is assumed that the moment of inertia about the axis along the Y axis of the mirror 130c is Ic and the torsion spring constant when the second torsion bars 120c-2 and 120d-2 are regarded as one spring is kc. For example, the mirror 130a has a resonance frequency specified by (1 / (2π)) × √ (kc / Ic) (or N times or N minutes of (1 / (2π)) × √ (kc / Ic). So that it resonates at a resonance frequency of 1 (where N is an integer equal to or greater than 1). For this reason, the drive source unit 160 applies slight vibration in a manner synchronized with the resonance frequency so that the mirror 130c resonates at the resonance frequency described above.
 また、ミラー130aの共振周波数は、厳密に言えば、ミラー130cという回転体を含む回転系を支える土台の剛性や質量(或いは、慣性モーメント)によって変化しかねない。例えば、ミラー130aの共振周波数は、ミラー130cという回転体を含む回転系を支える第1ベース110-1や第1トーションバー120a-1及び120b-1や第2ベース110-2等の剛性や質量(或いは、慣性モーメント)によって変化しかねない。このため、ミラー130cを支える土台の剛性や質量(或いは、慣性モーメント)を考慮した上で、(1/(2π))×√(kc/Ic)という数式(或いは、当該数式を特定するパラメータであるkc及びIc)に対して所定の補正演算を施した結果得られる共振周波数を、実際のミラー130cの共振周波数として取り扱ってもよい。 Strictly speaking, the resonance frequency of the mirror 130a may change depending on the rigidity and mass (or moment of inertia) of the base supporting the rotating system including the rotating body called the mirror 130c. For example, the resonance frequency of the mirror 130a is such that the rigidity and mass of the first base 110-1, the first torsion bars 120a-1 and 120b-1, the second base 110-2, and the like that support a rotating system including a rotating body called the mirror 130c. (Or moment of inertia). Therefore, in consideration of the rigidity and mass (or moment of inertia) of the base supporting the mirror 130c, an equation (1 / (2π)) × √ (kc / Ic) (or a parameter for specifying the equation) A resonance frequency obtained as a result of performing a predetermined correction operation on a certain kc and Ic) may be handled as an actual resonance frequency of the mirror 130c.
 尚、第4実施例では、ミラー130aの共振周波数とミラー130cの共振周波数とは同一であることが好ましい。具体的には、(1/(2π))×√(ka/Ia)=(1/(2π))×√(kc/Ic)となることが好ましい。或いは、MEMSスキャナ103が3つ以上の複数のミラー130を備えている場合には、複数のミラー130のうちの少なくとも2つの共振周波数が同一であることが好ましい。 In the fourth embodiment, it is preferable that the resonance frequency of the mirror 130a and the resonance frequency of the mirror 130c are the same. Specifically, it is preferable that (1 / (2π)) × √ (ka / Ia) = (1 / (2π)) × √ (kc / Ic). Alternatively, when the MEMS scanner 103 includes three or more mirrors 130, it is preferable that at least two of the plurality of mirrors 130 have the same resonance frequency.
 ここで、図12を参照して、駆動源部160から加えられる微振動に起因した方向性のない力について更に説明する。ここに、図12は、駆動源部160から加えられる微振動に起因した方向性のない力について説明するための平面図である。尚、以下の説明では、説明を分かりやすくするために、図9に示す駆動源部160とは異なる構成を有する駆動源部160を用いて説明を進める。但し、図9に示す駆動源部160から加えられる微振動としての電磁力と図12に示す駆動源部160から加えられる微振動としての電磁力とは、実際上は同一の力(つまり、方向性のない力)である。 Here, with reference to FIG. 12, the non-directional force caused by the fine vibration applied from the drive source unit 160 will be further described. Here, FIG. 12 is a plan view for explaining a force having no directivity due to the fine vibration applied from the drive source unit 160. In the following description, in order to make the description easy to understand, the description will be given using the drive source unit 160 having a configuration different from that of the drive source unit 160 shown in FIG. However, the electromagnetic force as fine vibration applied from the drive source unit 160 shown in FIG. 9 and the electromagnetic force as fine vibration applied from the drive source unit 160 shown in FIG. 12 are actually the same force (that is, direction). Power without sex).
 図12に示すように、駆動源部160は、伝達枝160bと、伝達枝160bを介して第1ベース110-1に接続される第1支持板160-1cであって且つY軸の方向に沿って相対向する第1枝160-1x及び160-1yを備える第1支持板160-1cと、伝達枝160bを介して第1ベース110-1に接続される第2支持板160-2cであって且つY軸の方向に沿って相対向する第2枝160-2x及び160-2yを備える第2支持板160-2cと、第1枝160-1x及び160-1yの夫々に巻かれた第1コイル160-1zと、第2枝160-2x及び160-2yの夫々に巻かれた第2コイル160-2zとを備えている。また、第1枝160-1x及び160-1y並びに第2枝160-2x及び160-2yの形状及び特性は同一であるとし、第1枝160-1xに巻かれたコイル160-1zの特性(例えば、巻き数等)及び第1枝160-1yに巻かれたコイル160-1zの特性(例えば、巻き数等)は同一であるとし、第2枝160-2xに巻かれたコイル160-2zの特性(例えば、巻き数等)及び第2枝160-2yに巻かれたコイル160-2zの特性(例えば、巻き数等)は同一であるものとする。 As shown in FIG. 12, the drive source unit 160 includes a transmission branch 160b, a first support plate 160-1c connected to the first base 110-1 via the transmission branch 160b, and in the Y-axis direction. A first support plate 160-1c having first branches 160-1x and 160-1y facing each other along, and a second support plate 160-2c connected to the first base 110-1 via a transmission branch 160b. The second support plate 160-2c having the second branches 160-2x and 160-2y facing each other along the direction of the Y-axis and wound on the first branches 160-1x and 160-1y, respectively. A first coil 160-1z and a second coil 160-2z wound around each of the second branches 160-2x and 160-2y are provided. Further, it is assumed that the shapes and characteristics of the first branches 160-1x and 160-1y and the second branches 160-2x and 160-2y are the same, and the characteristics of the coil 160-1z wound around the first branch 160-1x ( For example, the number of turns, etc.) and the characteristics (eg, the number of turns, etc.) of the coil 160-1z wound around the first branch 160-1y are the same, and the coil 160-2z wound around the second branch 160-2x The characteristics (for example, the number of windings) and the characteristics (for example, the number of windings) of the coil 160-2z wound around the second branch 160-2y are the same.
 ここで、第1枝160-1x及び160-1y並びに第2枝160-2x及び160-2yの夫々に巻かれたコイル160-1z及び160-2zに電流を流すと、電磁相互作用により、第1枝160-1x及び第2枝160-2xに対して第1枝160-1y及び第2枝160-2yの方向に向かって引っ張られる力(つまり、Y軸の負の方向であって図12中下側に向かう方向に作用する力)が発生する場合には、第1枝160-1y及び第2枝160-2yに対しても、第1枝160-1x及び第2枝160-2xの方向に向かって引っ張られる力(つまり、Y軸の正の方向であって図12中上側に向かう方向に作用する力)が発生する。この力は、互いに逆向きで同じ大きさであるため、それらが外部に加速度を生じさせたり、それら自身に加速度を発生させることもなく、第1枝160-1xと第1枝160-1yとが接合する点P1(言い換えれば、伝達枝160b上の点P1)及び第2枝160-2xと第2枝160-2yとが接合する点P2(言い換えれば、伝達枝160b上の点P2)には微振動のみが伝達される。その結果、点P1及びP2における力には方向性がないことになる。同様に、電磁相互作用により、第1枝160-1x及び第2枝160-2xに対して第1枝160-1y及び第2枝160-2yから引き離される力(つまり、Y軸の正の方向であって図12中上側に向かう方向に作用する力)が発生する場合には、第1枝160-1y及び第2枝160-2yに対しても第1枝160-1x及び第2枝160-2xから引き離される力(つまり、Y軸の負の方向であって図12中下側に向かう方向に作用する力)が発生する。この力は、互いに逆向きで同じ大きさであるため、それらが外部に加速度を生じさせたり、それら自身に加速度を発生させることもなく、第1枝160-1xと第1枝160-1yとが接合する点P1及び第2枝160-2xと第2枝160-2yとが接合する点P2には微振動のみが伝達される。その結果、点P1及びP2における力には方向性がないことになる。 Here, when an electric current is passed through the coils 160-1z and 160-2z wound around the first branches 160-1x and 160-1y and the second branches 160-2x and 160-2y, respectively, The force pulled in the direction of the first branch 160-1y and the second branch 160-2y with respect to the first branch 160-1x and the second branch 160-2x (that is, in the negative direction of the Y-axis, as shown in FIG. When a force acting in the direction toward the middle and lower side is generated, the first branch 160-1x and the second branch 160-2x are also applied to the first branch 160-1y and the second branch 160-2y. A force that is pulled in the direction (that is, a force acting in the positive direction of the Y axis and in the direction toward the upper side in FIG. 12) is generated. Since these forces are opposite to each other and have the same magnitude, the first branch 160-1x and the first branch 160-1y do not cause acceleration to the outside or generate acceleration themselves. Are joined at point P1 (in other words, point P1 on the transmission branch 160b) and point P2 (in other words, point P2 on the transmission branch 160b) where the second branch 160-2x and the second branch 160-2y are joined. Only fine vibrations are transmitted. As a result, the forces at points P1 and P2 are not directional. Similarly, the force that separates the first branch 160-1y and the second branch 160-2y from the first branch 160-1y and the second branch 160-2y by the electromagnetic interaction (that is, the positive direction of the Y-axis). When a force acting in the direction toward the upper side in FIG. 12 is generated, the first branch 160-1x and the second branch 160 are also applied to the first branch 160-1y and the second branch 160-2y. -2x is generated (that is, a force acting in the negative direction of the Y-axis and in the downward direction in FIG. 12). Since these forces are opposite to each other and have the same magnitude, the first branch 160-1x and the first branch 160-1y do not cause acceleration to the outside or generate acceleration themselves. Only a slight vibration is transmitted to the point P1 where the two parts are joined and the point P2 where the second branch 160-2x and the second branch 160-2y are joined. As a result, the forces at points P1 and P2 are not directional.
 しかしながら、本願発明者の実験によれば、上記構成によって第1ベース110-1並びに第1トーションバー120a-1及び120b-1を介して伝わる微振動(つまり、波動エネルギーであって、方向性のない力)が第2ベース110-2内を伝搬し、その結果、ミラー130a及び130cがY軸の方向に沿った軸を中心軸として回転することが判明している。つまり、駆動源部160により加えられる微振動が上述した方向性のない力(言い換えれば、波動エネルギー)として第2ベース110-2内を伝搬することで、ミラー130a及び130cがY軸の方向に沿った軸を中心軸として回転することが判明している。 However, according to experiments by the inventors of the present application, the above-described configuration causes micro vibrations transmitted through the first base 110-1 and the first torsion bars 120a-1 and 120b-1 (that is, wave energy having directional characteristics). It has been found that the mirrors 130a and 130c rotate about the axis along the direction of the Y axis as a central axis. That is, the micro-vibration applied by the drive source unit 160 propagates in the second base 110-2 as the above-described non-directional force (in other words, wave energy), so that the mirrors 130a and 130c move in the Y-axis direction. It has been found that the axis along the axis rotates.
 このように、第4実施例においては、ミラー130aがミラー130a並びに第2トーションバー120a-2及び120b-2に応じて定まる共振周波数で共振するように、Y軸の方向に沿った軸を中心軸としてミラー130aを回転させることができる。更に、第4実施例においては、ミラー130cがミラー130c並びに第2トーションバー120c-2及び120d-2に応じて定まる共振周波数で共振するように、Y軸の方向に沿った軸を中心軸としてミラー130cを回転させることができる。加えて、第4実施例においては、X軸の方向に沿った軸を中心軸として第2ベース110-2を回転させることができる。ここで、ミラー130a及び130cが第2トーションバー120a-2及び120b-2並びに第2トーションバー120c-2及び120d-2を介して第2ベース110-2に接続されていることを考慮すれば、X軸の方向に沿った軸を中心軸とする第2ベース110-2の回転に合わせて、ミラー130a及び130cもまたX軸の方向に沿った軸を中心軸として回転する。その結果、ミラー130a及び130cがX軸及びY軸の夫々を中心軸として共振するようにミラー130a及び130cを回転させることができる。つまり、第4実施例においては、ミラー130a及び130cは、X軸を中心軸として回転駆動すると共に、Y軸を中心軸として自励共振する。 Thus, in the fourth embodiment, the axis along the Y-axis direction is centered so that the mirror 130a resonates at a resonance frequency determined according to the mirror 130a and the second torsion bars 120a-2 and 120b-2. The mirror 130a can be rotated as an axis. Furthermore, in the fourth embodiment, the axis along the Y-axis direction is set as the central axis so that the mirror 130c resonates at a resonance frequency determined according to the mirror 130c and the second torsion bars 120c-2 and 120d-2. The mirror 130c can be rotated. In addition, in the fourth embodiment, the second base 110-2 can be rotated about the axis along the X-axis direction as the central axis. Here, considering that the mirrors 130a and 130c are connected to the second base 110-2 via the second torsion bars 120a-2 and 120b-2 and the second torsion bars 120c-2 and 120d-2. In accordance with the rotation of the second base 110-2 with the axis along the X-axis direction as the central axis, the mirrors 130a and 130c also rotate about the axis along the X-axis direction as the central axis. As a result, the mirrors 130a and 130c can be rotated so that the mirrors 130a and 130c resonate with the X axis and the Y axis as the central axes. In other words, in the fourth embodiment, the mirrors 130a and 130c are driven to rotate about the X axis as the central axis and self-resonate with the Y axis as the central axis.
 ここで、「共振」とは、無限小の力の繰り返しにより無限大の変位が生じる現象である。このため、ミラー130a及び130cを回転させるために加えられる力を小さくしても、ミラー130a及び130cの回転範囲(言い換えれば、回転方向の振幅)を大きくとることができる。つまり、ミラー130a及び130cが回転するために必要な力を相対的に小さくすることができる。このため、ミラー130a及び130cの回転に必要な力を加えるために必要な電力量をも少なくすることができる。従って、より効率的にミラー130a及び130cを移動させることができ、その結果、MEMSスキャナ103の低消費電力化を実現することができる。 Here, “resonance” is a phenomenon in which infinite displacement occurs due to repeated infinitesimal force. Therefore, even if the force applied to rotate the mirrors 130a and 130c is reduced, the rotation range of the mirrors 130a and 130c (in other words, the amplitude in the rotation direction) can be increased. That is, the force required to rotate the mirrors 130a and 130c can be relatively reduced. For this reason, it is possible to reduce the amount of electric power necessary for applying the force necessary to rotate the mirrors 130a and 130c. Therefore, the mirrors 130a and 130c can be moved more efficiently, and as a result, low power consumption of the MEMS scanner 103 can be realized.
 加えて、第4実施例では、方向性を有していない力を加えている。 In addition, in the fourth embodiment, a force having no directionality is applied.
 ここで、比較例として、いわゆる方向性を有する力を加えることでミラー130a及び130cの2軸回転駆動を行う構成(例えば、第2ベース110-2そのものをミラー130a及び130cの回転方向に向かって大きくねじれさせ、そのねじれを第2トーションバー120a-2及び120b-2や第2トーションバー120c-2及び120d-2やミラー130a及び130cに直接加えることでミラー130a及び130cの2軸回転駆動を行う構成)を例にあげて説明する。この場合、ミラー130a及び130cをX軸の方向に沿った軸を中心軸として回転させる方向性を有する力(例えば、第1ベース110-1を、X軸の方向に沿った軸を中心軸として回転させるようにねじれさせる力)をある駆動源部160から加えると共に、ミラー130a及び130cをY軸の方向に沿った軸を中心軸として回転させる方向性を有する力(例えば、第2ベース110-2を、Y軸の方向に沿った軸を中心軸として回転させるようにねじれさせる力)を他の駆動源部160から加える必要がある。つまり、方向性を有する力を加えることでミラー130a及び130cの2軸回転駆動を行う場合には、通常は、2つ以上の駆動源部160をMEMSスキャナが備えていなければならない。言い換えれば、方向性を有する力を加えることでミラー130a及び130cの2軸回転駆動を行う場合には、1つの駆動源部160からは1つの方向に向かって作用する力しか加えることができないため、2つ以上の駆動源部160をMEMSスキャナが備えていなければならない。 Here, as a comparative example, a configuration in which a so-called directional force is applied to perform biaxial rotation driving of the mirrors 130a and 130c (eg, the second base 110-2 itself is directed toward the rotation direction of the mirrors 130a and 130c) Twisting the mirrors 130a and 130c directly by directly twisting the torsion bars 120a-2 and 120b-2, the second torsion bars 120c-2 and 120d-2, and the mirrors 130a and 130c. A configuration to be performed) will be described as an example. In this case, a force having directionality to rotate the mirrors 130a and 130c about the axis along the X-axis direction (for example, the first base 110-1 is set about the axis along the X-axis direction as the central axis). A force (for example, the second base 110-) that applies a direction to rotate the mirrors 130a and 130c about the axis along the direction of the Y axis as a central axis is applied from a certain drive source unit 160. 2 is required to be applied from the other drive source unit 160) (a force for twisting 2 to rotate about an axis along the Y-axis direction as a central axis). That is, when performing biaxial rotation driving of the mirrors 130a and 130c by applying a force having directionality, normally, the MEMS scanner must include two or more drive source units 160. In other words, when the two-axis rotational drive of the mirrors 130a and 130c is performed by applying a directional force, only one force acting in one direction can be applied from one drive source unit 160. The MEMS scanner must include two or more drive source units 160.
 しかるに、第4実施例では、微振動に起因した方向性のない力を加えることで、ミラー130a及び130cの2軸回転駆動を行うことができる。ここで、微振動に起因した方向性のない力を加えているがゆえに、1つの駆動源部160から加えられた微振動(つまり、方向性のない力)は、第1トーションバー120a-1及び120b-1の弾性(つまり、ミラー130a及び130cを支持する第2ベース110-2をX軸の方向に沿った軸を中心軸として回転させる弾性)並びに第2トーションバー120a-2から120d-2の弾性(つまり、ミラー130a及び130cをY軸の方向に沿った軸を中心軸として回転させる弾性)を利用して、ミラー130a及び130cをX軸及びY軸の夫々の方向に沿った軸を中心軸として回転させることができる。つまり、第4実施例では、ミラー130a及び130cの2軸回転駆動を行う場合であっても、2つの駆動源部160を備える必要は必ずしもない。このため、単一の駆動源部160を用いて、ミラー130a及び130cの2軸回転駆動を行うための微振動に起因した方向性のない力を加えることができる。 However, in the fourth embodiment, the two-axis rotation drive of the mirrors 130a and 130c can be performed by applying a non-directional force due to the micro-vibration. Here, since a non-directional force due to the micro-vibration is applied, the micro-vibration (that is, non-directional force) applied from one drive source unit 160 is the first torsion bar 120a-1. 120b-1 (that is, the elasticity of rotating the second base 110-2 supporting the mirrors 130a and 130c about the axis along the X-axis direction) and the second torsion bars 120a-2 to 120d- 2 using the elasticity of 2 (that is, the elasticity of rotating the mirrors 130a and 130c about the axis along the Y-axis direction as the central axis), the mirrors 130a and 130c are axes along the X-axis and Y-axis directions, respectively. Can be rotated around the center axis. That is, in the fourth embodiment, it is not always necessary to provide the two drive source units 160 even when the two-axis rotational drive of the mirrors 130a and 130c is performed. For this reason, it is possible to apply a non-directional force due to the fine vibration for performing the biaxial rotation drive of the mirrors 130a and 130c using the single drive source unit 160.
 加えて、仮に1つの駆動源部から2つの方向に向かって作用する力を加えることができたとしても、方向性を有する力を加えることでミラー130a及び130cの2軸回転駆動を行う場合には、結局のところ、2つの方向に作用する成分(つまり、ミラー130a及び130cをX軸の方向に沿った軸を中心軸として回転させる方向性を有する力の成分と、ミラー130a及び130cをY軸の方向に沿った軸を中心軸として回転させる方向性を有する力の成分)を有する力を加える必要がある。しかるに、第4実施例では、微振動に起因した方向性のない力を波動エネルギーとして加えているため、力が作用する方向を考慮した上で当該力を加える必要がなくなるという利点も有している。 In addition, even if a force acting in two directions can be applied from one drive source unit, when the two-axis rotational drive of the mirrors 130a and 130c is performed by applying a force having directionality, After all, a component acting in two directions (that is, a force component having a direction to rotate the mirrors 130a and 130c about the axis along the X-axis direction as a central axis, and the mirrors 130a and 130c as Y It is necessary to apply a force having a force component having a directionality that rotates the axis along the axis direction as a central axis. However, in the fourth embodiment, since a non-directional force due to micro vibration is applied as wave energy, there is an advantage that it is not necessary to apply the force in consideration of the direction in which the force acts. Yes.
 加えて、微振動に起因した方向性のない力を加えているがゆえに、駆動源部160の配置位置が限定されてしまうことはなくなる。言い換えれば、微振動に起因した方向性のない力を加えているがゆえに、ミラー130a及び130cの回転の方向に依存して駆動源部160の配置位置が限定されてしまうことはなくなる。つまり、駆動源部160の配置位置がどのような位置に設定されたとしても、駆動源部160から加えられる微振動(つまり、方向性のない力)は、第2トーションバー120a-2及び120b-2並びに第2トーションバー120c-2及び120d-2の夫々の弾性を利用して、ミラー130a及び130cをY軸の夫々の方向に沿った軸を中心軸として回転させることができる。これにより、MEMSスキャナ103の設計の自由度を相対的に増加させることができる。これは、各構成要件のサイズ的な又は設計的な制約が大きいMEMSスキャナにとって実践上非常に有利である。 In addition, since a non-directional force due to micro vibration is applied, the arrangement position of the drive source unit 160 is not limited. In other words, since a non-directional force due to micro vibration is applied, the arrangement position of the drive source unit 160 is not limited depending on the direction of rotation of the mirrors 130a and 130c. In other words, no matter what the position of the drive source unit 160 is set, the minute vibration (that is, non-directional force) applied from the drive source unit 160 is caused by the second torsion bars 120a-2 and 120b. -2 and the elasticity of the second torsion bars 120c-2 and 120d-2, the mirrors 130a and 130c can be rotated about the axis along the direction of the Y axis as the central axis. Thereby, the design freedom of the MEMS scanner 103 can be relatively increased. This is very advantageous in practice for MEMS scanners where the size or design constraints of each component are large.
 更に第4実施例では、第2ベース110-2の裏側にリブ119が形成されているため、駆動源部160から加えられる微振動によって、第2ベース110-2そのものが波打つように変形振動する。以下、図13を参照して、第2ベース110-2の変形振動の態様について説明する。図13は、第2ベース110-2の変形振動の態様を、ミラー130a及び130bの回転の態様と関連付けて示す側面図である。尚、図13は、図11に示す矢印「X」の方向から第2ベース110-2並びにミラー130a及び130cを観察した場合の側面図を示す。 Furthermore, in the fourth embodiment, since the rib 119 is formed on the back side of the second base 110-2, the second base 110-2 itself deforms and vibrates so as to wave due to the slight vibration applied from the drive source unit 160. . Hereinafter, the deformation vibration mode of the second base 110-2 will be described with reference to FIG. FIG. 13 is a side view showing the deformation vibration mode of the second base 110-2 in association with the rotation mode of the mirrors 130a and 130b. FIG. 13 is a side view when the second base 110-2 and the mirrors 130a and 130c are observed from the direction of the arrow “X” shown in FIG.
 図13(a)に示すように、駆動源部160から第2ベース110-2に対して微振動が加えられていない状態では、第2ベース110-2は変形振動しておらず、ミラー130a及び130bも回転していない。 As shown in FIG. 13 (a), in the state where the micro-vibration is not applied from the drive source unit 160 to the second base 110-2, the second base 110-2 is not deformed and the mirror 130a. And 130b are not rotated.
 図13(b)に示すように、駆動源部160から第2ベース110-2に対して微振動が加えられると、リブ119が形成されている領域110aは、剛性が相対的に高いため、微振動によって屈曲しにくい一方で、リブ119が形成されていない領域110bは、剛性が相対的に低いため、微振動によって屈曲しやすい。その結果、第2ベース110-2は、リブが形成されている領域110aを節とし且つリブ119が形成されていない領域110bを腹にして、X軸の方向に沿って波打つように変形振動する。より具体的には、第2ベース110-2は、リブ119が形成されている部分を節とし且つリブ119が形成されていない部分を腹にする定常波のようにその外観を変形させながら振動する。尚、図13(b)に示す例では、第2ベース110-2は、その中心から折れ曲がるように変形振動する。但し、第2ベース110-2は、他の変形モード(例えば、更に多くの節を有する変形モード)で変形振動してもよい。 As shown in FIG. 13B, when a slight vibration is applied from the drive source unit 160 to the second base 110-2, the region 110a where the rib 119 is formed has a relatively high rigidity. While it is difficult to bend due to slight vibration, the region 110b where the rib 119 is not formed is relatively low in rigidity, and thus is easily bent due to slight vibration. As a result, the second base 110-2 deforms and vibrates so as to wave in the direction of the X axis, with the region 110a where the rib is formed as a node and the region 110b where the rib 119 is not formed as a belly. . More specifically, the second base 110-2 vibrates while deforming its appearance like a standing wave having a portion where the rib 119 is formed as a node and a portion where the rib 119 is not formed as a belly. . In the example shown in FIG. 13B, the second base 110-2 is deformed and oscillated so as to be bent from the center thereof. However, the second base 110-2 may be subjected to deformation vibration in another deformation mode (for example, a deformation mode having more nodes).
 尚、第4実施例における第2ベース110-2の変形振動は、リブ119が適切な箇所に形成されることによって実現されている。従って、上述したリブ119は、リブが形成されている領域110aを節とし且つリブ119が形成されていない領域110bを腹にして第2ベース110-2がX軸の方向に沿って変形振動するように、第2ベース110-2上の適切な箇所に形成されることが好ましい。このとき、第2トーションバー120a-2及び120b-2並びに第2トーションバー120c-2及び120d-2が接続されている箇所が領域110aに対応することが好ましい。例えば、上述したリブ119は、X軸の方向に沿った曲げ剛性が相対的に高い部分とX軸の方向に沿った曲げ剛性が相対的に低い部分とがX軸の方向に沿って順に現れるように、第2ベース110-2上の適切な箇所に形成されることが好ましい。或いは、例えば、上述したリブ119は、X軸の方向に沿った曲げ剛性が相対的に高い部分とX軸の方向に沿った曲げ剛性が相対的に低い部分とがX軸の方向に沿って順に現れると共に、第2トーションバー120a-2及び120b-2並びに第2トーションバー120c-2及び120d-2が接続されている箇所が領域110aになり且つその他の箇所が領域110bになるように、第2ベース110-2上の適切な箇所に形成されることが好ましい。 In addition, the deformation vibration of the second base 110-2 in the fourth embodiment is realized by forming the rib 119 at an appropriate location. Therefore, in the rib 119 described above, the second base 110-2 deforms and vibrates along the X-axis direction with the region 110a where the rib is formed as a node and the region 110b where the rib 119 is not formed as an antinode. Thus, it is preferably formed at an appropriate location on the second base 110-2. At this time, it is preferable that the portion where the second torsion bars 120a-2 and 120b-2 and the second torsion bars 120c-2 and 120d-2 are connected corresponds to the region 110a. For example, in the rib 119 described above, a portion having a relatively high bending rigidity along the X-axis direction and a portion having a relatively low bending rigidity along the X-axis direction appear in order along the X-axis direction. Thus, it is preferably formed at an appropriate location on the second base 110-2. Alternatively, for example, in the rib 119 described above, a portion having a relatively high bending rigidity along the X-axis direction and a portion having a relatively low bending rigidity along the X-axis direction are along the X-axis direction. As shown in order, the portion to which the second torsion bars 120a-2 and 120b-2 and the second torsion bars 120c-2 and 120d-2 are connected becomes the region 110a, and the other portions become the region 110b. Preferably, the second base 110-2 is formed at an appropriate location.
 このとき、駆動源部160から加えられる微振動の周期によっては、第2ベース110-2は、共振するように変形振動する。ここで、第4実施例では、第2ベース110-2の変形振動における共振周波数は、ミラー130a及び130bの共振周波数と同一であることが好ましい。言い換えれば、ミラー130a及び130bの共振周波数と同一の共振周波数で第2ベース110-2が変形振動するように、第2ベース110-2の特性が定められることが好ましい。例えば、ミラー130a及び130bの共振周波数と同一の共振周波数で変形振動するように、第2ベース110-2の裏側に形成されるリブ119の特性(例えば、形成位置や、大きさや、質量や、剛性や、密度等)が定められることが好ましい。 At this time, depending on the period of fine vibration applied from the drive source unit 160, the second base 110-2 undergoes deformation vibration so as to resonate. Here, in the fourth embodiment, the resonance frequency in the deformation vibration of the second base 110-2 is preferably the same as the resonance frequency of the mirrors 130a and 130b. In other words, it is preferable that the characteristics of the second base 110-2 be determined such that the second base 110-2 deforms and vibrates at the same resonance frequency as that of the mirrors 130a and 130b. For example, the characteristics of the ribs 119 formed on the back side of the second base 110-2 so as to deform and vibrate at the same resonance frequency as that of the mirrors 130a and 130b (for example, the formation position, size, mass, (Rigidity, density, etc.) are preferably determined.
 尚、第2ベース110-2の変形振動における共振周波数は、第2ベース110-2及びリブ119を含む構造物を一つのバネ系としてみなし、当該バネ系に付加されている質量をMとし且つ当該バネ系のバネ定数をkとした場合には、(1/(2π))×√(k/M)にて特定される。但し、当該バネ系が一つのバネに一つの質量構造物が接続された(言い換えれば、固有振動数が1個であり且つ固有振動モードが1個である)1自由度のバネ系であれば、(1/(2π))×√(k/M)という共振周波数を採用することができる。一方で、当該バネ系が一つのバネに2つの質量構造物が接続された2自由度以上のバネ系であれば、(1/(2π))×√(k/M)という共振周波数における「k」及び「M」等を補正することが好ましい。尚、第2ベース110-2及びリブ119を含む構造物を一つのバネ系とみなした場合、当該バネ系に付加されている質量M及び当該バネ系のバネ定数kは、第2ベース110-2の剛性及び質量に応じて定まる。第4実施例では、第2ベース110-2の剛性及び質量をリブ119によって調整している。このため、第2ベース110-2の共振周波数は、実質的には、上述したリブ119の特性によって定められる。 The resonance frequency in the deformation vibration of the second base 110-2 is that the structure including the second base 110-2 and the rib 119 is regarded as one spring system, and the mass added to the spring system is M and When the spring constant of the spring system is k, it is specified by (1 / (2π)) × √ (k / M). However, if the spring system is a one-degree-of-freedom spring system in which one mass structure is connected to one spring (in other words, the natural frequency is one and the natural vibration mode is one). , (1 / (2π)) × √ (k / M) resonant frequency can be employed. On the other hand, if the spring system is a spring system having two or more degrees of freedom in which two mass structures are connected to one spring, the resonance frequency “1 / (2π)) × √ (k / M)” It is preferable to correct “k” and “M”. When the structure including the second base 110-2 and the rib 119 is regarded as one spring system, the mass M added to the spring system and the spring constant k of the spring system are determined by the second base 110-. 2 is determined according to rigidity and mass. In the fourth embodiment, the rigidity and mass of the second base 110-2 are adjusted by the rib 119. Therefore, the resonance frequency of the second base 110-2 is substantially determined by the characteristics of the rib 119 described above.
 また、第2ベース110-2の変形振動における共振周波数は、厳密に言えば、第2ベース110-2という変形振動体を含む振動系を支える土台の剛性や質量(或いは、慣性モーメント)によって変化しかねない。例えば、第2ベース110-2の変形振動における共振周波数は、第2ベース110-2という変形振動体を含む振動系を支える第1ベース110-1や第1トーションバー120a-1及び120b-1等の剛性や質量(或いは、慣性モーメント)によって変化しかねない。このため、第2ベース110-2を支える土台の剛性や質量(或いは、慣性モーメント)を考慮した上で、(1/(2π))×√(k/M)という数式(或いは、当該数式を特定するパラメータであるk及びM)に対して所定の補正演算を施した結果得られる共振周波数を、実際の第2ベース110-2の変形振動における共振周波数として取り扱ってもよい。 Strictly speaking, the resonance frequency in the deformation vibration of the second base 110-2 varies depending on the rigidity and mass (or moment of inertia) of the base supporting the vibration system including the deformation vibration body called the second base 110-2. There is no doubt. For example, the resonance frequency in the deformation vibration of the second base 110-2 is such that the first base 110-1 and the first torsion bars 120a-1 and 120b-1 supporting the vibration system including the deformation vibration body called the second base 110-2. It may change depending on rigidity and mass (or moment of inertia). Therefore, in consideration of the rigidity and mass (or moment of inertia) of the base supporting the second base 110-2, an equation (1 / (2π)) × √ (k / M) (or the equation) The resonance frequency obtained as a result of performing a predetermined correction operation on the specified parameters k and M) may be handled as the resonance frequency in the actual deformation vibration of the second base 110-2.
 また、第2ベース110-2の変形振動における共振は、第2ベース110-2の変形振動に係るバネ系を一つのバネに2つの質量構造物が接続された2自由度のバネ系とみなすことによって規定することに代えて、第2ベース110-2という板状の部材の高次の共振モードとみなすことによって規定してもよい。 The resonance in the deformation vibration of the second base 110-2 regards the spring system related to the deformation vibration of the second base 110-2 as a two-degree-of-freedom spring system in which two mass structures are connected to one spring. Instead of the above, it may be defined as a higher-order resonance mode of a plate-like member called the second base 110-2.
 ここで、上述したように、駆動源部160からはミラー130a及び130cが上述の共振周波数で共振するように当該共振周波数に同期した態様で微振動が加えられている。従って、このような微振動の印加により、第2ベース110-2は、共振するように変形振動する。つまり、図13(a)から図13(f)に時系列的に示すように、第2ベース110-2は、両端が開放された定常波の如き外観を有するように変形振動する。つまり、第2ベース110-2は、ミラー130a及び130cの回転軸に直交する方向(つまり、X軸の方向)に沿って定常波が現れるような外観を有する。 Here, as described above, fine vibration is applied from the drive source unit 160 in a manner synchronized with the resonance frequency so that the mirrors 130a and 130c resonate at the resonance frequency. Accordingly, the second base 110-2 is deformed and oscillated so as to resonate due to the application of such fine vibration. That is, as shown in FIG. 13A to FIG. 13F in time series, the second base 110-2 deforms and vibrates so as to have an appearance like a standing wave with both ends open. That is, the second base 110-2 has an appearance such that a standing wave appears along a direction orthogonal to the rotation axes of the mirrors 130a and 130c (that is, the X-axis direction).
 このような態様で第2ベース110-2が変形振動すると、ミラー130a側における第2ベース110-2(具体的には、図13(a)から図13(f)の夫々の相対的に左側の第2ベース110-2)の変形の態様とミラー130c側における第2ベース110-2(具体的には、図13(a)から図13(f)の夫々の相対的に右側の第2ベース110-2)の変形の態様とは逆になる。例えば、ミラー130a側における第2ベース110-2がミラー130aの回転軸を中心として反時計周りに変形している場合(例えば、図13(a)から図13(c)に示すように変形している場合)、ミラー130c側における第2ベース110-2は、ミラー130cの回転軸を中心として時計周りに変形することになる。同様に、例えば、ミラー130a側における第2ベース110-2がミラー130aの回転軸を中心として時計周りに変形している場合(例えば、図13(d)から図13(f)に示すように変形している場合)、ミラー130c側における第2ベース110-2は、ミラー130cの回転軸を中心として反時計周りに変形することになる。従って、ミラー130a及び130cの夫々の共振周波数が等しいことから、ミラー130a及び130cは、第2ベース110-2の変形振動に伴って、ミラー130aの回転の位相とミラー130cの回転の位相とが互いに逆相になるように回転する。言い換えれば、ミラー130a及び130cは、ミラー130aの回転の位相がミラー130cの回転の位相に対して180°ずれるように回転する。言い換えれば、ミラー130a及び130cは、ミラー130aの回転の位相とミラー130cの回転の位相との間のずれが180°に固定されるように回転する。このようなミラー130aの回転の位相とミラー130cの回転の位相との間の関係は、図13(c)から図13(f)に示すように、第2ベース110-2の変形振動がどのような状態であっても成立する。 When the second base 110-2 deforms and vibrates in this manner, the second base 110-2 on the mirror 130a side (specifically, the relatively left side of each of FIGS. 13 (a) to 13 (f)). Of the second base 110-2) and the second base 110-2 on the side of the mirror 130c (specifically, the second base on the relatively right side of each of FIGS. 13 (a) to 13 (f)). This is the opposite of the deformation mode of the base 110-2). For example, when the second base 110-2 on the mirror 130a side is deformed counterclockwise around the rotation axis of the mirror 130a (for example, as illustrated in FIGS. 13A to 13C). The second base 110-2 on the mirror 130c side is deformed clockwise around the rotation axis of the mirror 130c. Similarly, for example, when the second base 110-2 on the mirror 130a side is deformed clockwise around the rotation axis of the mirror 130a (for example, as shown in FIGS. 13 (d) to 13 (f)). When deformed), the second base 110-2 on the mirror 130c side is deformed counterclockwise around the rotation axis of the mirror 130c. Accordingly, since the resonance frequencies of the mirrors 130a and 130c are the same, the mirrors 130a and 130c have a rotation phase of the mirror 130a and a rotation phase of the mirror 130c in accordance with the deformation vibration of the second base 110-2. Rotate so that they are out of phase with each other. In other words, the mirrors 130a and 130c rotate so that the phase of rotation of the mirror 130a is shifted by 180 ° with respect to the phase of rotation of the mirror 130c. In other words, the mirrors 130a and 130c rotate so that the deviation between the rotation phase of the mirror 130a and the rotation phase of the mirror 130c is fixed at 180 °. The relationship between the phase of rotation of the mirror 130a and the phase of rotation of the mirror 130c is based on which deformation vibration of the second base 110-2 occurs as shown in FIGS. 13 (c) to 13 (f). This is true even in such a state.
 尚、ミラー130aの回転の位相と第2ベース110-2の変形振動の位相との間のずれは、時間の経過によって変動してもよいし固定されていてもよい。同様に、ミラー130cの回転の位相と第2ベース110-2の変形振動の位相との間のずれは、時間の経過によって変動してもよいし固定されていてもよい。上述の図13を用いた説明は、ミラー130a及び130cの回転の位相と第2ベース110-2の変形振動の位相との間のずれが固定されている場合の例を示している。しかしながら、ミラー130a及び130cの回転の位相と第2ベース110-2の変形振動の位相との間のずれが変動する場合であっても、ミラー130a及び130cが、ミラー130aの回転の位相とミラー130cの回転の位相とが互いに逆相になるように回転することに変わりはない。 Note that the deviation between the phase of rotation of the mirror 130a and the phase of deformation vibration of the second base 110-2 may vary over time or may be fixed. Similarly, the deviation between the phase of rotation of the mirror 130c and the phase of deformation vibration of the second base 110-2 may vary with time or may be fixed. The above description using FIG. 13 shows an example in the case where the deviation between the rotation phase of the mirrors 130a and 130c and the phase of the deformation vibration of the second base 110-2 is fixed. However, even if the deviation between the phase of the rotation of the mirrors 130a and 130c and the phase of the deformation vibration of the second base 110-2 varies, the mirrors 130a and 130c There is no change in the rotation so that the phases of the rotation of 130c are opposite to each other.
 このように、第4実施例によれば、ミラー130aの回転の位相とミラー130cの回転の位相とが互いに逆相になるように、ミラー130a及び130cを回転させることができる。つまり、2つのミラー130a及び130cを同期させながら逆相で回転(つまり、駆動)させることができる。従って、1つのミラー130を基準周波数fで回転させるMEMSスキャナと比較して、2つのミラー130a及び130cを1つのミラー130の如く取り扱うことで、基準周波数fの2倍の周波数2fで(言い換えれば、1/2の周期で)1つのミラー130を回転させている状態と同様の状態を実現することができる。言い換えれば、ミラー130a及び130cの夫々を基準周波数fの半分の周波数f/2で回転させても、2つのミラー130a及び130cを1つのミラー130の如く取り扱うことで、基準周波数fで1つのミラー130を回転させている状態と同様の状態を実現することができる。例えば、静止時の状態を0°として1周期で±X°回転することができるミラー130を例にあげて説明する。仮に1つのミラー130を用いるのであれば、-X°からX°に至るまでの角度を利用するためには、1周期の期間が必要になる。一方で、互いに逆相で回転する2つのミラー130a及び130cを用いるのであれば、半周期で、ミラー130aが0°からX°まで回転すると共にミラー130cが0°から-X°まで回転する。このため、第1実施例によれば、-X°からX°に至るまでの角度を利用するためには、1周期の期間は必ずしも必要ではなく、例えば半周期で足りる。従って、ミラー130a及び130cの夫々を駆動する周波数を落としても、ミラー130a及び130cを1枚のミラー130の如く取り扱った場合の当該ミラー130の駆動周波数が落ちることはない。 Thus, according to the fourth embodiment, the mirrors 130a and 130c can be rotated so that the rotation phase of the mirror 130a and the rotation phase of the mirror 130c are opposite to each other. That is, the two mirrors 130a and 130c can be rotated (that is, driven) in opposite phases while being synchronized. Therefore, compared to a MEMS scanner that rotates one mirror 130 at the reference frequency f, the two mirrors 130a and 130c are handled as one mirror 130 at a frequency 2f that is twice the reference frequency f (in other words, A state similar to the state of rotating one mirror 130 (with a period of 1/2) can be realized. In other words, even if each of the mirrors 130a and 130c is rotated at a frequency f / 2 that is half the reference frequency f, the two mirrors 130a and 130c are handled as one mirror 130, so that one mirror at the reference frequency f. A state similar to the state of rotating 130 can be realized. For example, a mirror 130 that can be rotated ± X ° in one cycle with the state at rest being 0 ° will be described as an example. If one mirror 130 is used, a period of one cycle is required to use an angle from −X ° to X °. On the other hand, if two mirrors 130a and 130c rotating in opposite phases are used, the mirror 130a rotates from 0 ° to X ° and the mirror 130c rotates from 0 ° to −X ° in a half cycle. For this reason, according to the first embodiment, in order to use the angle from −X ° to X °, one period is not necessarily required, and a half period is sufficient, for example. Therefore, even if the frequency for driving each of the mirrors 130a and 130c is lowered, the driving frequency of the mirror 130 when the mirrors 130a and 130c are handled like one mirror 130 is not lowered.
 尚、図13では、ミラー130a及び130cの夫々の回転の位相と、第2ベース110-2の変形振動の位相とが逆相になる例を示している。しかしながら、図14に示すように、ミラー130a及び130cの夫々の回転の位相と、第2ベース110-2の変形振動の位相とが同相になってもよい。ミラー130a及び130cの夫々の回転の位相と第2ベース110-2の変形振動の位相とが同相になる場合であっても、ベース110の変形振動の位相とが同相になってもよい。ミラー130a及び130cの夫々の回転の位相と第2ベース110-2の変形振動の位相とが逆相になる場合に享受することができる各種効果を好適に享受することができる。 FIG. 13 shows an example in which the rotation phase of each of the mirrors 130a and 130c and the phase of the deformation vibration of the second base 110-2 are reversed. However, as shown in FIG. 14, the rotation phase of each of the mirrors 130a and 130c may be in phase with the phase of the deformation vibration of the second base 110-2. Even if the phase of rotation of each of the mirrors 130a and 130c and the phase of the deformation vibration of the second base 110-2 are in phase, the phase of the deformation vibration of the base 110 may be in phase. Various effects that can be enjoyed when the phase of the rotation of each of the mirrors 130a and 130c and the phase of the deformation vibration of the second base 110-2 are reversed are preferably enjoyed.
 加えて、第4実施例では、尚、磁極162aは、第2ベース110-2の一方側の辺110-2であって且つミラー130aとミラー130cとの間の領域(つまりは、第2ベース110-2における変形振動の腹となる領域)に隣接して配置され、且つ、磁極162b及び162cは、第2ベース110-2の回転軸に対して磁極162aと反対側に位置する領域であって且つミラー130a及びミラー130cをY軸の方向に沿って挟みこむ位置に配置される。つまり、磁極162aは、磁極162b及び162cとの間で第2ベース110-2の回転軸を挟みこむような位置に配置されている。このため、第2ベース110-2をX軸の方向に沿って回転させやすくなる。更には、磁極162b及び162cは、第2ベース110-2(或いは、ミラー130a及びミラー130c)をY軸の方向に沿って挟みこむ位置に配置される。従って、磁極162b及び162cによって生ずる微振動によって、第2ベース110-2を変形振動させやすくなる。 In addition, in the fourth embodiment, the magnetic pole 162a is a side 110-2 on one side of the second base 110-2 and a region between the mirror 130a and the mirror 130c (that is, the second base 110-2). The magnetic poles 162b and 162c are located on the side opposite to the magnetic pole 162a with respect to the rotation axis of the second base 110-2. In addition, the mirror 130a and the mirror 130c are disposed at positions where the mirror 130a and the mirror 130c are sandwiched along the Y-axis direction. That is, the magnetic pole 162a is disposed at a position where the rotation axis of the second base 110-2 is sandwiched between the magnetic poles 162b and 162c. This makes it easier to rotate the second base 110-2 along the X-axis direction. Further, the magnetic poles 162b and 162c are arranged at positions where the second base 110-2 (or the mirror 130a and the mirror 130c) is sandwiched along the direction of the Y axis. Accordingly, the second base 110-2 is easily deformed and vibrated by the slight vibration generated by the magnetic poles 162b and 162c.
 尚、上述した第4実施例では、ミラー130a及び130cを回転させるための力(つまり、駆動源部から加えられる)として、微振動を用いる例について説明している。しかしながら、ミラー130a及び130cを回転させるための力として、微振動以外の任意の力を用いてもよい。例えば、特開2006-293116号公報に記載されている「基板の板波を用いてミラーにねじれ振動を生じさせる駆動方式(例えば、ラム波共鳴圧電駆動方式)」を利用して、ミラー130a及び130cを回転させてもよい。或いは、例えば、ミラー130a及び130cを回転させるための力として、ミラー130a及び130cを直接的に回転させる方向に作用する方向性のある力を用いてもよい。言い換えれば、例えば、ミラー130a及び130cを回転させるための力として、第1トーションバー120a-1及び120b-1並びに第2トーションバー120a-1から120d-1を直接的にねじれさせる方向に作用する方向性のある力を用いてもよい。以下の第5実施例から第6実施例においても同様である。 In the fourth embodiment described above, an example is described in which fine vibration is used as the force for rotating the mirrors 130a and 130c (that is, applied from the drive source unit). However, any force other than the slight vibration may be used as the force for rotating the mirrors 130a and 130c. For example, the mirror 130a and the mirror 130a and the “driving method in which torsional vibration is generated in the mirror using the plate wave of the substrate (for example, Lamb wave resonance piezoelectric driving method)” described in JP-A-2006-293116 is disclosed. 130c may be rotated. Alternatively, for example, as a force for rotating the mirrors 130a and 130c, a directional force acting in the direction of directly rotating the mirrors 130a and 130c may be used. In other words, for example, the first torsion bars 120a-1 and 120b-1 and the second torsion bars 120a-1 to 120d-1 act as a force for rotating the mirrors 130a and 130c in the direction of directly twisting. A directional force may be used. The same applies to the following fifth to sixth embodiments.
 (5)第5実施例
 続いて、図15を参照して、第5実施例のMEMSスキャナ104について説明する。図15は、第5実施例のMEMSスキャナ104の基本構成を概念的に示す平面図である。尚、上述の第4実施例のMEMSスキャナ103と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
(5) Fifth Embodiment Next, the MEMS scanner 104 of the fifth embodiment will be described with reference to FIG. FIG. 15 is a plan view conceptually showing the basic structure of the MEMS scanner 104 of the fifth embodiment. In addition, about the same structure as the MEMS scanner 103 of the above-mentioned 4th Example, the detailed description is abbreviate | omitted by attaching | subjecting the same referential mark.
 図15に示すように、第5実施例のMEMSスキャナ104は、第4実施例のMEMSスキャナ103と同様に、第1ベース110-1と、第1トーションバー120a-1及び120b-1と、第2ベース110-2と、第2トーションバー120a-2及び120b-2と、第2トーションバー120c-2及び120d-2と、ミラー130aと、ミラー130cとを備えている。第5実施例のMEMSスキャナ104は、電磁力に起因した力(微振動)を加える駆動源部160に代えて、圧電効果に起因した力(微振動)を加える駆動源部140を備えている。 As shown in FIG. 15, the MEMS scanner 104 according to the fifth embodiment is similar to the MEMS scanner 103 according to the fourth embodiment in that the first base 110-1, the first torsion bars 120a-1 and 120b-1, A second base 110-2, second torsion bars 120a-2 and 120b-2, second torsion bars 120c-2 and 120d-2, a mirror 130a, and a mirror 130c are provided. The MEMS scanner 104 of the fifth embodiment includes a drive source unit 140 that applies a force (microvibration) due to the piezoelectric effect, instead of the drive source unit 160 that applies a force (microvibration) due to electromagnetic force. .
 駆動源部140は、第1圧電素子140-1aと、第2圧電素子140-2aと、伝達枝140bと、第1空隙140-1dを有すると共に伝達枝140bを介して第1ベース110-1に固定される第1支持板140-1cと、第2空隙140-2dを有すると共に伝達枝140bを介して第1ベース110-1に固定される第2支持板140-2cとを備えている。第1支持板140-1c上では、第1空隙140-1dによって規定される相対向する第1枝140-1e及び140-1fによって、第1圧電素子140-1aが挟持される。第2支持板140-2c上では、第2空隙140-2dによって規定される相対向する第2枝140-2e及び140-2fによって、第2圧電素子140-2aが挟持される。不図示の電極を介して第1圧電素子140-1aに電圧を印加することで、第1圧電素子140-1aはその形状を変化させる。この第1圧電素子140-1aの形状の変化は、第1枝140-1e及び140-1fの形状の変化を引き起こす。その結果、第1枝140-1e及び140-1fの形状の変化は、後に詳述するように微振動(ないしは、波動エネルギー)として伝達枝140bを介して第1ベース110-1に伝えられる。同様に、不図示の電極を介して第2圧電素子140-2aに電圧を印加することで、第2圧電素子140-2aはその形状を変化させる。この第2圧電素子140-2aの形状の変化は、第2枝140-2e及び140-2fの形状の変化を引き起こす。その結果、第2枝140-2e及び140-2fの形状の変化は、後に詳述するように微振動(ないしは、波動エネルギー)として伝達枝140bを介して第1ベース110-1に伝えられる。 The drive source unit 140 includes a first piezoelectric element 140-1a, a second piezoelectric element 140-2a, a transmission branch 140b, a first gap 140-1d, and the first base 110-1 via the transmission branch 140b. And a second support plate 140-2c having a second gap 140-2d and fixed to the first base 110-1 via the transmission branch 140b. . On the first support plate 140-1c, the first piezoelectric element 140-1a is sandwiched by the first branches 140-1e and 140-1f facing each other defined by the first gap 140-1d. On the second support plate 140-2c, the second piezoelectric element 140-2a is sandwiched between the opposing second branches 140-2e and 140-2f defined by the second gap 140-2d. By applying a voltage to the first piezoelectric element 140-1a via an electrode (not shown), the first piezoelectric element 140-1a changes its shape. This change in the shape of the first piezoelectric element 140-1a causes a change in the shape of the first branches 140-1e and 140-1f. As a result, changes in the shapes of the first branches 140-1e and 140-1f are transmitted to the first base 110-1 via the transmission branch 140b as fine vibration (or wave energy) as will be described in detail later. Similarly, by applying a voltage to the second piezoelectric element 140-2a via an electrode (not shown), the second piezoelectric element 140-2a changes its shape. This change in the shape of the second piezoelectric element 140-2a causes a change in the shape of the second branches 140-2e and 140-2f. As a result, changes in the shapes of the second branches 140-2e and 140-2f are transmitted to the first base 110-1 via the transmission branch 140b as fine vibration (or wave energy) as will be described in detail later.
 このような駆動源部140から加えられる微振動は、図12を用いて説明した方向性のない力となる。従って、第5実施例のMEMSスキャナ104によれば、上述した第4実施例のMEMSスキャナ103が享受する各種効果と同様の効果を好適に享受することができる。 Such micro-vibration applied from the drive source unit 140 is a force having no direction described with reference to FIG. Therefore, according to the MEMS scanner 104 of 5th Example, the effect similar to the various effects which the MEMS scanner 103 of 4th Example mentioned above can enjoy can be enjoyed suitably.
 (6)第6実施例
 続いて、図16を参照して、第6実施例のMEMSスキャナ105について説明する。図16は、第6実施例のMEMSスキャナ105の基本構成を概念的に示す平面図である。尚、上述の第4実施例のMEMSスキャナ103と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
(6) Sixth Embodiment Next, the MEMS scanner 105 of the sixth embodiment will be described with reference to FIG. FIG. 16 is a plan view conceptually showing the basic structure of the MEMS scanner 105 of the sixth embodiment. In addition, about the same structure as the MEMS scanner 103 of the above-mentioned 4th Example, the detailed description is abbreviate | omitted by attaching | subjecting the same referential mark.
 図16に示すように、第6実施例のMEMSスキャナ105は、第4実施例のMEMSスキャナ103と同様に、第1ベース110-1と、第1トーションバー120a-1及び120b-1と、第2ベース110-2と、第2トーションバー120a-2及び120b-2と、第2トーションバー120c-2及び120d-2と、ミラー130aと、ミラー130cとを備えている。第6実施例のMEMSスキャナ105は、電磁力に起因した力(微振動)を加える駆動源部160に代えて、静電力に起因した力(微振動)を加える駆動源部150を備えている。 As shown in FIG. 16, the MEMS scanner 105 of the sixth embodiment is similar to the MEMS scanner 103 of the fourth embodiment in that the first base 110-1, the first torsion bars 120a-1 and 120b-1, A second base 110-2, second torsion bars 120a-2 and 120b-2, second torsion bars 120c-2 and 120d-2, a mirror 130a, and a mirror 130c are provided. The MEMS scanner 105 according to the sixth embodiment includes a drive source unit 150 that applies a force (microvibration) due to an electrostatic force, instead of the drive source unit 160 that applies a force (microvibration) due to electromagnetic force. .
 駆動源部150(150aから150c)は、第2ベース110-2の外側の辺に沿って配置される櫛歯状の第1電極151aから151cと、第1ベース110-1の内側の辺に固定されると共に第1電極151aから151cの間に分布する櫛歯状の第2電極152aから152cとを備える。尚、第1電極151a及び第2電極152aは、上述した磁極162aと同様の位置に配置される。第1電極151b及び第2電極152bは、上述した磁極162bと同様の位置に配置される。第1電極151c及び第2電極152cは、上述した磁極162cと同様の位置に配置される。 The drive source unit 150 (150a to 150c) is provided on the inner side of the first base 110-1 and the comb-shaped first electrodes 151a to 151c arranged along the outer side of the second base 110-2. Comb-like second electrodes 152a to 152c that are fixed and distributed between the first electrodes 151a to 151c are provided. The first electrode 151a and the second electrode 152a are arranged at the same position as the magnetic pole 162a described above. The first electrode 151b and the second electrode 152b are disposed at the same position as the magnetic pole 162b described above. The first electrode 151c and the second electrode 152c are disposed at the same position as the magnetic pole 162c described above.
 この場合、第1電極151aから151c(又は、第2電極152aから152c)には、不図示の駆動源部制御回路から所望のタイミングで、所望の電圧が印加される。第1電極と第2電極との間の電位差に起因して、第1電極151aから151cと第2電極152aから152cとの間には静電力(言い換えれば、クーロン力)が生ずる。その結果、静電力が発生する。この静電力は微振動として第2ベース110-2に伝えられる。 In this case, a desired voltage is applied to the first electrodes 151a to 151c (or the second electrodes 152a to 152c) at a desired timing from a drive source unit control circuit (not shown). Due to the potential difference between the first electrode and the second electrode, an electrostatic force (in other words, Coulomb force) is generated between the first electrodes 151a to 151c and the second electrodes 152a to 152c. As a result, electrostatic force is generated. This electrostatic force is transmitted to the second base 110-2 as a slight vibration.
 このような駆動源部150から加えられる微振動は、図12を用いて説明した方向性のない力となる。従って、第6実施例のMEMSスキャナ105によれば、上述した第4実施例のMEMSスキャナ103が享受する各種効果と同様の効果を好適に享受することができる。 Such micro-vibration applied from the driving source unit 150 is a force having no direction described with reference to FIG. Therefore, according to the MEMS scanner 105 of the sixth embodiment, it is possible to preferably enjoy the same effects as the various effects that the MEMS scanner 103 of the fourth embodiment described above enjoys.
 尚、上述の説明では、2つのミラー130a及び130cを備えるMEMSスキャナ100から106について説明しているが、3つ以上のミラー130を備えるMEMSスキャナに対して、上述した構成を適用してもよいことは言うまでもない。 In the above description, the MEMS scanners 100 to 106 including two mirrors 130a and 130c are described. However, the above-described configuration may be applied to a MEMS scanner including three or more mirrors 130. Needless to say.
 尚、上述した第1実施例のMEMSスキャナ100から第6実施例のMEMSスキャナ105は、例えば、ヘッドアップディスプレイや、ヘッドマウントディスプレイや、レーザスキャナや、レーザプリンタや、走査型駆動装置等の各種電子機器に対して適用することができる。従って、これらの電子機器もまた、本発明の範囲に含まれるものである。 Note that the MEMS scanner 100 of the first embodiment to the MEMS scanner 105 of the sixth embodiment described above are various types such as a head-up display, a head mounted display, a laser scanner, a laser printer, and a scanning drive device. It can be applied to electronic devices. Therefore, these electronic devices are also included in the scope of the present invention.
 また、本発明は、請求の範囲及び明細書全体から読み取るこのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴う駆動装置もまた本発明の技術思想に含まれる。 Further, the present invention can be appropriately changed without departing from the gist or concept of the present invention that can be read from the claims and the entire specification, and a drive device that includes such a change is also included in the technical concept of the present invention. It is.
 100~105 MEMSスキャナ
 110 ベース
 110-1 第1ベース
 110-2 第2ベース
 120 トーションバー
 120-1 第1トーションバー
 120-2 第2トーションバー
 130 ミラー
 140、150、160 駆動源部
100 to 105 MEMS scanner 110 base 110-1 first base 110-2 second base 120 torsion bar 120-1 first torsion bar 120-2 second torsion bar 130 mirror 140, 150, 160 drive source section

Claims (10)

  1.  ベース部と、
     夫々が回転可能な複数の被駆動部と、
     夫々が前記ベース部と前記複数の被駆動部のうちの対応する一つの被駆動部とを接続し、且つ夫々が前記対応する一つの被駆動部を一の方向に沿った軸を中心軸として回転させるような弾性を有する複数の弾性部と、
     前記複数の被駆動部の夫々及び前記複数の弾性部のうち前記夫々の被駆動部に対応する一つの弾性部により定まる共振周波数で前記夫々の被駆動部が前記一の方向に沿った軸を中心軸として共振しながら回転するように前記複数の被駆動部を回転させるための加振力を前記ベース部に加える印加部と
     を備え、
     前記印加部は、前記複数の被駆動部のうちの第1の被駆動部が回転する位相が前記複数の駆動部のうちの第2の被駆動部が回転する位相に対して逆相となるように、前記加振力を加える
     ことを特徴とする駆動装置。
    A base part;
    A plurality of driven parts each rotatable,
    Each connects the base part and a corresponding one of the plurality of driven parts, and each of the corresponding driven parts has an axis along one direction as a central axis. A plurality of elastic parts having elasticity to rotate;
    Each of the driven parts has an axis along the one direction at a resonance frequency determined by one of the plurality of driven parts and one elastic part corresponding to each of the driven parts among the plurality of elastic parts. An application unit that applies an excitation force to the base unit to rotate the plurality of driven units so as to rotate while resonating as a central axis;
    The application unit has a phase in which a first driven unit among the plurality of driven units rotates is opposite to a phase in which a second driven unit among the plurality of driven units rotates. As described above, the driving force is applied.
  2.  前記複数の被駆動部の夫々及び前記複数の弾性部のうち前記夫々の被駆動部に対応する一つの弾性部により定まる共振周波数は、前記複数の被駆動部のうちの少なくとも2つの間で同じになることを特徴とする請求項1に記載の駆動装置。 The resonance frequency determined by each of the plurality of driven parts and one elastic part corresponding to each of the driven parts among the plurality of elastic parts is the same between at least two of the plurality of driven parts. The drive device according to claim 1, wherein
  3.  前記印加部は、前記一の方向とは異なる他の方向に沿って前記ベース部が定常波状に変形振動するように前記加振力を加え、
     前記複数の被駆動部の夫々は、前記複数の弾性部を介して、前記ベース部の変形振動における節に対応する箇所に接続されていることを特徴とする請求項1に記載の駆動装置。
    The application unit applies the excitation force so that the base unit deforms and vibrates in a standing wave shape along another direction different from the one direction,
    2. The driving device according to claim 1, wherein each of the plurality of driven parts is connected to a portion corresponding to a node in the deformation vibration of the base part via the plurality of elastic parts.
  4.  前記印加部は、前記他の方向に沿った前記ベース部の変形振動が共振となるように前記加振力を加えることを特徴とする請求項3に記載の駆動装置。 4. The driving apparatus according to claim 3, wherein the application unit applies the excitation force so that the deformation vibration of the base unit along the other direction becomes resonance.
  5.  前記ベース部が共振する共振周波数は、前記複数の被駆動部のうちの少なくとも一つの共振周波数と同一であることを特徴とする請求項4に記載の駆動装置。 5. The driving device according to claim 4, wherein a resonance frequency at which the base portion resonates is the same as at least one resonance frequency of the plurality of driven portions.
  6.  前記ベース部の変形振動における節に対応する箇所の剛性が、前記ベース部の変形振動における節以外の箇所の剛性よりも高いことを特徴とする請求項3に記載の駆動装置。 4. The drive device according to claim 3, wherein the rigidity of the portion corresponding to the node in the deformation vibration of the base portion is higher than the rigidity of the portion other than the node in the deformation vibration of the base portion.
  7.  前記ベース部の変形振動における節に対応する箇所の質量が、前記ベース部の変形振動における節以外の箇所の質量よりも小さいことを特徴とする請求項3に記載の駆動装置。 The drive device according to claim 3, wherein a mass of a portion corresponding to a node in the deformation vibration of the base portion is smaller than a mass of a portion other than the node in the deformation vibration of the base portion.
  8.  前記加振力は、無方向性振動エネルギーとしての無方向性微振動又は異方性微振動であることを特徴とする請求項1に記載の駆動装置。 The driving device according to claim 1, wherein the excitation force is non-directional fine vibration or anisotropic fine vibration as non-directional vibration energy.
  9.  前記印加部は、前記一の方向に沿った軸を中心軸とする回転方向とは異なる方向に作用する力によって生ずる前記微振動を加えることを特徴とする請求項8に記載の駆動装置。 The driving device according to claim 8, wherein the application unit applies the micro vibration generated by a force acting in a direction different from a rotation direction having an axis along the one direction as a central axis.
  10.  前記印加部は、静止時の前記被駆動部の表面に沿った方向に作用する力によって生ずる前記微振動を加えることを特徴とする請求項8に記載の駆動装置。 9. The driving apparatus according to claim 8, wherein the application unit applies the micro vibration generated by a force acting in a direction along the surface of the driven unit when stationary.
PCT/JP2011/063683 2011-06-15 2011-06-15 Drive device WO2012172654A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063683 WO2012172654A1 (en) 2011-06-15 2011-06-15 Drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063683 WO2012172654A1 (en) 2011-06-15 2011-06-15 Drive device

Publications (1)

Publication Number Publication Date
WO2012172654A1 true WO2012172654A1 (en) 2012-12-20

Family

ID=47356681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063683 WO2012172654A1 (en) 2011-06-15 2011-06-15 Drive device

Country Status (1)

Country Link
WO (1) WO2012172654A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312465A (en) * 2006-05-16 2007-11-29 Omron Corp Drive unit, optical scanning device, and substance information detection device
JP2009258210A (en) * 2008-04-14 2009-11-05 Panasonic Corp Optical reflection element
JP2011013401A (en) * 2009-07-01 2011-01-20 National Institute Of Advanced Industrial Science & Technology Optical scanning device
WO2011061833A1 (en) * 2009-11-19 2011-05-26 パイオニア株式会社 Drive apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312465A (en) * 2006-05-16 2007-11-29 Omron Corp Drive unit, optical scanning device, and substance information detection device
JP2009258210A (en) * 2008-04-14 2009-11-05 Panasonic Corp Optical reflection element
JP2011013401A (en) * 2009-07-01 2011-01-20 National Institute Of Advanced Industrial Science & Technology Optical scanning device
WO2011061833A1 (en) * 2009-11-19 2011-05-26 パイオニア株式会社 Drive apparatus

Similar Documents

Publication Publication Date Title
WO2012172652A1 (en) Drive device
JP4827993B2 (en) Drive device
US7724411B2 (en) 2-axis driving electromagnetic scanner
JP5229704B2 (en) Optical scanning device
JP6388262B2 (en) Scanner device
JP6935254B2 (en) Drive device
GB2576686A (en) Vibrational energy harvesters with reduced wear
JP4958195B2 (en) Drive device
JP4849497B2 (en) Drive device
WO2012172653A1 (en) Drive device
JP2009122293A (en) Oscillating body apparatus, optical deflector, and optical equipment using the same
JP5624213B2 (en) Drive device
JP2014199326A (en) Driving device
JP4958196B2 (en) Drive device
JP4896270B1 (en) Drive device
WO2012172654A1 (en) Drive device
JP6914124B2 (en) Drive device
JP6785588B2 (en) Drive device
JP6929006B2 (en) Drive device
JP4958197B2 (en) Drive device
WO2013168273A1 (en) Drive device
JP4852185B2 (en) Drive device
WO2011061955A1 (en) Drive device
WO2013168275A1 (en) Drive device
WO2013168274A1 (en) Drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP