WO2012172033A1 - Vorrichtung mit einem elektrisch beheizbaren wabenkörper und verfahren zum betreiben des wabenkörpers - Google Patents

Vorrichtung mit einem elektrisch beheizbaren wabenkörper und verfahren zum betreiben des wabenkörpers Download PDF

Info

Publication number
WO2012172033A1
WO2012172033A1 PCT/EP2012/061391 EP2012061391W WO2012172033A1 WO 2012172033 A1 WO2012172033 A1 WO 2012172033A1 EP 2012061391 W EP2012061391 W EP 2012061391W WO 2012172033 A1 WO2012172033 A1 WO 2012172033A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
honeycomb body
current
exhaust gas
exhaust
Prior art date
Application number
PCT/EP2012/061391
Other languages
English (en)
French (fr)
Inventor
Jan Hodgson
Christian Vorsmann
Original Assignee
Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46319123&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012172033(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Emitec Gesellschaft Für Emissionstechnologie Mbh filed Critical Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority to JP2014515200A priority Critical patent/JP6254523B2/ja
Priority to EP12728071.7A priority patent/EP2721264B1/de
Publication of WO2012172033A1 publication Critical patent/WO2012172033A1/de
Priority to US14/107,085 priority patent/US9593615B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2889Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with heat exchangers in a single housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a device for the catalytic conversion or other treatment of exhaust gases in an exhaust system, in particular in an exhaust gas purification system of a motor vehicle. It has a arranged in a jacket tube, can be traversed by an exhaust gas and electrically heatable honeycomb body.
  • the invention also relates to a method for operating such an electrically heatable honeycomb body.
  • the honeycomb body has a Stromleit Modell to which a current-generating voltage can be applied.
  • the resistance of the current conducting structure would have to be increased, which is generally distinguished by a finer division by gaps and / or electrical insulating layers can be reached.
  • the device is preferably arranged in an exhaust aftertreatment system of an internal combustion engine of a motor vehicle, in particular an Otto engine or a diesel engine, wherein the jacket tube preferably the exhaust pipe of the
  • the honeycomb body preferably has a multiplicity of channels which are in the flow direction of the exhaust gas.
  • the channel walls can be designed with flow-influencing structures, with a porosity and / or with openings.
  • the through-flowable honeycomb body is made of a plurality of metallic foils which are at least partially structured and / or corrugated.
  • the metallic foils may be stacked and / or wrapped or wrapped around each other and form the channel walls. It is very particularly preferred that the layers are formed of alternating structured and smooth films.
  • at least one of these metallic foils is embodied as a current-conducting structure insulated from adjacent metallic foils and has electrical contacts for connecting a voltage source outside the jacket tube.
  • the current-conducting structure preferably has the shortest possible current path, as achieved, for example, by a meander-shaped design.
  • these have such a size or are provided with such an insulating material, so that at an applied voltage of more than 24 V, in particular up to more than 48 V or even 60 V, no electrical arcing can occur. This is achieved in particular by a gap size of at least 1 mm [millimeters].
  • honeycomb bodies in particular honeycomb bodies extruded from electrically conductive material, can be modified such that the insulation meets the increased requirements. Above all, the dimensions and materials of the insulation must be adapted. However, care must also be taken that the insulation remains durable and functional under operating loads. In exhaust systems honeycomb bodies are exposed to strong thermal cycling loads with corresponding strains and deposits can lead to short circuits. For such loads, the insulation must be designed.
  • the device has a control unit, wherein the control unit is set up to generate a pulsed voltage and apply it to the current-conducting structure.
  • a control device is made possible to supply the electric power discontinuously of Stromleit Vietnamese so that the energy supplied by the pulses can be adjusted by the pulse width and / or the pulse repetition frequency.
  • an on-board voltage of, for example, 48 V, which were not originally designed for such high voltages. With sufficiently short pulses and suitably low repetition frequency, melting is not to be feared. Even any forming arc in case of damage to the insulation are repeatedly erased by the pulsed application of the voltage.
  • the Stromleit Conceptual an electrical resistance between 0.001 ohms [Ohm] and 10 ⁇ , preferably between 0.03 ⁇ and 0.8 ⁇ , most preferably between 0.05 ⁇ and 0.3 ⁇ .
  • a power of 1000 W [Watt] this would have to have a resistance of about 2.3 ⁇ .
  • the current-carrying structure would have to have a resistance of 4.6 ⁇ or 1.2 ⁇ .
  • This is achieved, for example, with a pulsed square-wave voltage with a pulse duration of 0.11 s [second] and a pulse interval of 0.5 s, ie a repetition rate of 2 Hz [Hertz].
  • a method for operating an electrically heatable honeycomb body with at least one current conducting structure through which an exhaust gas generating voltage of greater than 24 V is applied to the current conducting structure, the voltage being a pulsed voltage is.
  • a pulsed voltage is understood to mean a voltage which rises periodically between the voltage zero and a maximum voltage value and drops again.
  • a pulsed voltage is preferably a square-wave voltage or a sawtooth voltage.
  • the pulsed voltage is applied at a repetition rate of 0.1 Hz [Hertz] to 1000 Hz, more preferably from 1 Hz to 100 Hz.
  • repetition rate is meant the reciprocal of the time between an increase in the voltage until the next increase in the voltage of the next pulse.
  • the introduced into the Stromleit Vietnamese energy can thus be done via a frequency modulation at the same pulse length.
  • each pulse has a pulse duration of 0.001 s [second] to 1 s, particularly preferably from 0.005 s to 0.5 s.
  • the pulsed voltage has a voltage level of about 48 V.
  • the maximum voltage pulsed voltage after the periodic increase has a value between 46 V to 50 V, in particular about 48 V.
  • the pulse duration and / or the repetition rate are set as a function of exhaust gas parameters, in particular as a function of the exhaust gas temperature.
  • FIG. 1 shows a motor vehicle with a device according to the invention, a section of a Stromleitmila,
  • FIG. 3 shows a first circuit for supplying power to a
  • FIG. 5 shows a third circuit for supplying power to a
  • FIG. 6 voltage profile in a frequency modulation
  • Fig. 1 shows a schematic diagram of a motor vehicle 13 with an internal combustion engine 14, to which an exhaust system 2 is connected, in which a device 1 according to the invention is arranged.
  • the device 1 comprises a first honeycomb body 4, which is arranged in a jacket tube 3, and in which a Stromleit croqu 5 is formed.
  • the Stromleit gleich 5 is connected to a control unit 9.
  • a second honeycomb body 15 is further arranged.
  • the first honeycomb body 4 and the second honeycomb body 15 arranged at a distance behind are via support elements 16 connected, which protrude into the honeycomb body 4, 15 and which are arranged in the first honeycomb body 4 in sleeves with the interposition of an electrical insulation.
  • the Stromleit Weg 5 is designed with columns 6 and insulating material 7 in such a way that at an applied voltage of z. B. 48 V in operation do not form arcs.
  • a pulsed voltage can be applied to the current conducting structure 5, so that the supplied electrical energy can be adapted to the current conducting structure 5 and the desired exhaust gas temperature.
  • FIG. 2 schematically shows a detail of a current-conducting structure 5.
  • the current-conducting structure 5 has a meandering shape.
  • column 6 are present in the Stromleit Vietnamese 5.
  • the Stromleit Quilt 5 is applied to the columns 6 with insulating material 7.
  • the columns 6 and the insulating material 7 are designed so that at an applied voltage of z. B. 48 V can not form shorts, in particular by arcs.
  • 3 to 5 show schematically the electrical wiring of a Stromleit Vietnamese 5.
  • the power is usually supplied by a battery of the motor vehicle 13.
  • the circuits have a main switch 17 and a control unit 9.
  • the main switch 17 in principle switches on the power supply during operation of the internal combustion engine 14, while a control device 9 associated adjusting means of influencing the voltage applied to the Stromleit Vietnamese 5 voltage during operation is used.
  • a pulsed voltage can be generated via the control unit 9, which is applied to the Stromleit Vietnamese 5.
  • control unit 9 can influence the voltage supply between the current-conducting structure 5 and ground.
  • control unit 9 can influence the voltage supply between the battery and the current-conducting structure 5.
  • the control unit 9 can vary the applied voltage both between the current-conducting structure 5 and the battery and between the current-conducting structure 5 and the ground.
  • FIGS. 6 and 7 illustrate the setting possibilities of the energy which can be supplied to a current-conducting structure 5 via a pulsed voltage 8.
  • the voltage 8 is plotted over time 18.
  • the pulses 10, which are embodied here as rectangular pulses, have a maximum voltage level 12 with a pulse duration 11 and a pulse interval 19 relative to one another.
  • Fig. 6 the principle of a frequency modulation is shown.
  • the pulses 10 are repeated with a constant pulse duration 11 at different pulse spacing 19. In this way, by adjusting the repetition frequency, that is to say the reciprocal of the pulse interval 19, the energy supplied to the current-conducting structure 5 per unit time can be set.
  • a pulse width modulation is indicated.
  • the pulses 10 with a voltage level 12 and a pulse duration 11 are generated at the same pulse interval 19, the pulse duration 11 is varied.
  • the power supplied to the Stromleit Vietnamese 5 can be adjusted over the pulse duration. It is also possible that both the pulse duration 11 and the pulse interval 19 are varied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Vorrichtung (1) zur Behandlung von Abgasen in einem Abgassystem (2) eines Verbrennungsmotors, insbesondere in einem Kraftfahrzeug mit einem elektrisch beheizbaren, in einem Mantelrohr (3) angeordneten, von einem Abgas durchströmbaren Wabenkörper (4) sowie ein Verfahren zum Betreiben eines solchen elektrisch beheizbaren und für ein Abgas durchströmbaren Wabenkörpers (4). Der Wabenkörper (4) weist wenigstens eine Stromleitstruktur (5) mit für Spannungen über 24 V ausgelegten elektrischen Isolierungen (7) auf, an die zum Aufheizen des Wabenkörpers (4) eine Strom erzeugende Spannung (8) angelegt wird. Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass die Spannung (8) eine gepulste Spannung ist. Mit der erfindungsgemäßen Lehre ist es möglich, Heizelemente im Abgasstrom mit einer Bordspannung von z. B. 48 V zu versorgen. Insbesondere wird ein Verfahren bereitgestellt, mit dem durch Einstellung von Pulsbreite und/oder Wiederholfrequenz der gepulsten Spannung (8) die Wärmeerzeugung in dem elektrisch beheizbaren Wabenkörper (4) auch bei Betriebsspannungen von über 24 V in einem gewünschten Bereich gehalten werden kann.

Description

Vorrichtung mit einem elektrisch beheizbaren Wabenkörper und Verfahren zum Betreiben des Wabenkörpers
Die vorliegende Erfindung betrifft eine Vorrichtung zur katalytischen Umsetzung oder anderweitigen Behandlung von Abgasen in einem Abgassystem, insbesondere in einem Abgasreinigungssystem eines Kraftfahrzeuges. Sie weist einen in einem Mantelrohr angeordneten, von einem Abgas durchströmbaren und elektrisch beheizbaren Wabenkörper auf. Die Erfindung betrifft auch ein Verfahren zum Betreiben eines solchen elektrisch beheizbaren Wabenkörpers. Der Wabenkörper weist dazu eine Stromleitstruktur auf, an die eine stromerzeugende Spannung angelegt werden kann.
Um die Temperatur von Abgasen einer Verbrennungskraftmaschine und gegebenenfalls die Temperatur einer Abgasreinigungskomponente zu beeinflussen, ist es bekannt, das Abgas und/oder die Abgasreinigungskomponente mit einer Heizeinrichtung zu beeinflussen. Es wird dabei angestrebt, die Temperatur des Abgases beziehungsweise der Abgasreinigungskomponente über eine kritische Temperatur zu erhöhen, so dass eine katalytische Reaktion der Schadstoffe im Abgas mit einer katalytischen Beschichtung der Abgasreinigungskomponenten stattfinden kann. Dies ist insbesondere wünschenswert bei Kalt- oder Neustartvorgängen der Verbrennungskraftmaschine. Auch bei anderen Vorgängen in einer Abgasreinigungsanlage müssen bestimmte Temperaturbereiche eingehalten werden, um eine gute Reinigung zu erzielen. Dies betrifft insbesondere die Regeneration von Partikelfiltern und Adsorbern.
Als Heizeinrichtungen wurden bereits Wabenkörper mit Stromleitstrukturen vorgeschlagen, die beim Anlegen einer Spannung durch Ohmsche Widerstandserwärmung das Abgas und/oder eine Abgasreinigungskomponente erwärmen. Solche Wabenkörper sind beispielsweise in der WO 89/10471 und der WO 89/10472 beschrieben. Dort werden die Stromleitstrukturen durch Metallfolien gebildet, die gegebenenfalls strukturiert und aufgewickelt werden. Aufgrund des geringen spezifischen Widerstands der Metallfolien ist es jedoch schwierig, Stromleitstrukturen herzustellen, die bei einer Betriebsspannung von 24 V [Volt] oder höher, bei der es sich im Allgemeinen um eine Gleichspannung handelt, nicht zu hohe Leistung aufnehmen und dann schmelzen oder die Stromversorgung zerstören. Der Widerstand der Stromleitstruktur wird daher beispielsweise durch eine mäanderförmige Ausbildung der Metallfolien erhöht, wozu allerdings elektrisch isolierende Spalte oder Isolierschichten zwischen den Folien gebildet werden müssen.
Um bei einer Erhöhung der Bordspannung eines Kraftfahrzeuges, also der Spannung mit der die Verbraucher des Kraftfahrzeuges versorgt werden, weiterhin eine bestimmte Heizleistung in der Stromleitstruktur zu erzielen, müsste der Widerstand der Stromleitstruktur erhöht werden, was im allgemeinen durch eine feinere Unterteilung durch Spalte und/oder elektrische Isolierschichten erreichbar ist. Mit der Erhöhung der Bordspannung eines Kraftfahrzeugs auf z. B. 48 V wird aber die Gefahr eines Versagens der Isolierung größer, z. B. durch Lichtbogen oder ähnliche Mechanismen.
Es ist daher Aufgabe der vorliegenden Erfindung, die mit Bezug auf den Stand der Technik geschilderten Probleme zumindest teilweise zu lösen und insbesondere eine Vorrichtung zur Behandlung, insbesondere katalytischen Umsetzung, von Abgasen und ein Verfahren zum Betreiben eines elektrisch beheizbaren Wabenkörpers anzugeben, die das Aufheizen des Abgases einer Verbrennungskraftmaschine und/oder einer Abgasreinigungskomponente bei einer Versorgungsspannung von über 24 V ermöglichen.
Gelöst werden diesen Aufgaben mit einer Vorrichtung und einem Verfahren gemäß den Merkmalen der unabhängigen Patentansprüche. Vorteilhafte Weiterbildungen sind in den jeweiligen abhängigen Patentansprüchen angegeben. Die in den Patentansprüchen einzeln aufgeführten Merkmale sind in beliebiger, technologisch sinnvoller, Weise miteinander kombinierbar und können durch erläuternde Sachverhalte aus der Beschreibung ergänzt werden, wobei weitere Ausführungsvarianten der Erfindung aufgezeigt werden.
Die Aufgaben werden gelöst durch eine Vorrichtung zur Behandlung, insbesondere katalytischen Umsetzung, von Abgasen in einem Abgassystem mit einem ersten in einem Mantelrohr angeordneten, von einem Abgas durchströmbaren Wabenkörper, wobei der Wabenkörper mindestens eine Stromleitstruktur aufweist, begrenzt von Spalten und/oder Isolierschichten, die eine Isolierung auch unter Betriebsbedingungen für Spannungen größer 24 V, insbesondere größer 48 V, bewirken. Die Vorrichtung ist bevorzugt in einem Abgasnachbehandlungssystem einer Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Otto-Motors oder eines Diesel-Motors angeordnet, wobei das Mantelrohr bevorzugt die Abgasleitung des
Abgasnachbehandlungs Systems bildet. Der Wabenkörper weist bevorzugt eine Vielzahl von sich in Strömungsrichtung des Abgases er steckenden Kanälen auf. Die Kanälwände können mit Strömungsbeeinflussenden Strukturen, mit einer Porosität und/oder mit Öffnungen ausgeführt sein. Ganz besonders bevorzugt ist der durchströmbare Wabenkörper aus einer Vielzahl von metallischen Folien hergestellt, die zumindest teilweise strukturiert und/oder gewellt ausgeführt sind. Die metallischen Folien können gestapelt und/oder gewickelt bzw. umeinander verschlungen sein und bilden die Kanälwände aus. Es ist ganz besonders bevorzugt, dass die Lagen aus abwechselnden strukturierten und glatten Folien gebildet sind. Insbesondere mindestens eine dieser metallischen Folien ist als Stromleitstruktur gegenüber benachbarten metallischen Folien isoliert ausgeführt und weist elektrische Kontakte zum Anschließen einer Spannungsquelle außerhalb des Mantelrohres auf. Um einen genügend hohen elektrischen Widerstand in der Stromleitstruktur zu erreichen, weist die Stromleitstruktur bevorzugt einen möglichst langen Strompfad auf, wie er beispielsweise durch eine mäanderförmige Gestaltung erzielt wird. Dies hat allerdings relativ feine Isolierstrukturen zur Folge. Erfindungsgemäß weisen diese eine solche Größe auf beziehungsweise sind mit einem solchen Isoliermaterial versehen, so dass bei einer angelegten Spannung von mehr als 24 V, insbesondere bis zu mehr als 48 V oder sogar 60 V, keine elektrischen Überschläge entstehen können. Dies wird insbesondere durch eine Spaltgröße von mindestens 1 mm [Millimeter] erreicht.
Im Prinzip können viele der bekannten Bauformen von elektrisch beheizbaren Wabenkörpern, insbesondere auch aus elektrisch leitfähigem Material extrudierte Wabenkörper, so verändert werden, dass die Isolierung den erhöhten Anforderungen entspricht. Dabei sind vor allem die Dimensionen und Materialien der Isolierung anzupassen. Es ist aber auch darauf zu achten, dass die Isolierung bei Betriebsbelastungen haltbar und funktionsfähig bleibt. In Abgasanlagen sind Wabenkörper starken thermischen Wechselbelastungen mit entsprechenden Dehnungen ausgesetzt und Ablagerungen können zu Kurzschlüssen führen. Für solche Belastungen muss die Isolierung ausgelegt sein.
Bei einer bevorzugten Ausführungsform der Erfindung weist die Vorrichtung ein Steuergerät auf, wobei das Steuergerät dafür eingerichtet ist, eine gepulste Spannung zu erzeugen und diese an die Stromleitstruktur anzulegen. Mit einem solchen Steuergerät wird ermöglicht, die elektrische Leistung diskontinuierlich der Stromleitstruktur zuzuführen, so dass die durch die Pulse zugeführte Energie durch die Pulsbreite und/oder die Pulswiederholfrequenz eingestellt werden kann. Bei dem Einsatz eines solchen Steuergeräts können auch Stromleitstrukturen mit einer Bordspannung von beispielsweise 48 V betrieben werden, die ursprünglich nicht für so hohe Spannungen ausgelegt waren. Bei genügend kurzen Pulsen und geeignet niedriger Wiederholfrequenz ist ein Schmelzen nicht zu befürchten. Sogar sich eventuell ausbildende Lichtbogen bei Schäden an der Isolierung werden durch das gepulste Anlegen der Spannung immer wieder gelöscht.
Gemäß einer anderen vorteilhaften Weiterbildung der Vorrichtung weist die Stromleitstruktur einen elektrischen Widerstand zwischen 0,001 Ω [Ohm] und 10 Ω, bevorzugt zwischen 0,03 Ω und 0,8 Ω, ganz besonders bevorzugt zwischen 0,05 Ω und 0,3 Ω auf. Um einer Stromleitstruktur bei einer konstanten Spannung von 48 V eine Leistung von 1000 W [Watt] zuzuführen, müsste diese einen Widerstand von ungefähr 2,3 Ω aufweisen. Entsprechend müsste für eine konstant zugeführte Leistung von 500 W oder 2000 W, die Stromleitstruktur einen Widerstand von 4,6 Ω beziehungsweise von 1,2 Ω aufweisen. Gemäß der vorliegenden Erfindung reicht es aber beispielsweise bei einem Widerstand der Stromleitstruktur von 0,5 Ω aus, wenn eine gepulste Spannung mit einer Spannungshöhe von 48 V bei angelegter Spannung nur für etwas mehr als ein Fünftel (1/5) der Zeit im Vergleich zur nicht eingeschalteten Spannung anliegt, um in einem zeitlich gemittelten Durchschnitt eine Leistung von etwa 1000 W zuzuführen. Dies wird beispielsweise bei einer gepulsten Rechteckspannung mit einer Pulsdauer von 0,11 s [Sekunde] und einem Pulsabstand von 0,5 s, also einer Wiederholrate von 2 Hz [Hertz], erreicht.
Einem weiteren Aspekt der Erfindung folgend wird ein Verfahren zum Betreiben eines elektrisch beheizbaren und für ein Abgas durchströmbaren Wabenkörpers mit wenigstens einer Stromleitstruktur vorgeschlagen, bei dem zum Aufheizen des Wabenkörpers eine stromerzeugende Spannung größer 24 V an die Stromleitstruktur angelegt wird, wobei die Spannung eine gepulste Spannung ist. Unter einer gepulsten Spannung wird eine Spannung verstanden, die zwischen der Spannung Null und einem maximalen Spannungswert periodisch ansteigt und wieder abfällt. Eine gepulste Spannung ist bevorzugt eine Rechteckspannung oder eine Sägezahnspannung. Mit dem gepulsten Einbringen der elektrischen Leistung in die Stromleitstruktur wird Energie nur diskontinuierlich der Stromleitstruktur zugeführt, so dass der Leistungseintrag auch in Stromleitstrukturen mit geringem Widerstand bei hoher maximaler Spannung in einem gewünschten Bereich gehalten werden kann.
Bevorzugt wird die gepulste Spannung mit einer Wiederholrate von 0,1 Hz [Hertz] bis 1000 Hz, besonders bevorzugt von 1 Hz bis 100 Hz, angelegt. Mit Wiederholrate ist der Kehrwert der Zeit zwischen einem Anstieg der Spannung bis zu dem nächsten Anstieg der Spannung des nächsten Pulses gemeint. Die in die Stromleitstruktur eingebrachte Energie kann somit über eine Frequenzmodulation bei gleichbleibender Pulslänge erfolgen.
Beim Anlegen einer Rechteckspannung ist bevorzugt, dass jeder Puls eine Pulsdauer von 0,001 s [Sekunde] bis 1 s, besonders bevorzugt von 0,005 s bis 0,5 s, aufweist. Auf diese Weise wird ermöglicht, dass die in die Stromleitstruktur eingebrachte Energie durch eine Pulsbreitenmodulation angepasst werden kann. Ganz besonders bevorzugt hat die gepulste Spannung eine Spannungshöhe von ungefähr 48 V. Damit ist gemeint, dass die maximale Spannung gepulste Spannung nach dem periodischen Ansteigen einen Wert zwischen 46 V bis 50 V, insbesondere etwa 48 V, aufweist. In einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens wird die Pulsdauer und/oder die Wiederholrate in Abhängigkeit von Abgasparametern, insbesondere in Abhängigkeit von der Abgastemperatur, eingestellt. Auf diese Weise kann gerade die elektrische Energie der Stromleitstruktur zugeführt werden, die benötigt wird, um das Abgas und/oder den Wabenkörper auf eine erforderliche Temperatur zu erhöhen. Es kann somit ein effizientes Aufheizen stattfinden. Dabei können Regelkreise mit der Pulsbreite und/oder der Wiederholrate als Stellgröße(n) gebildet werden. Die für das erfindungsgemäße Verfahren offenbarten Details und Vorteile lassen sich auf die erfindungsgemäße Vorrichtung übertragen und anwenden und umgekehrt. Die Erfindung sowie das technische Umfeld werden nachfolgend anhand der Figuren beispielhaft erläutert. Es ist darauf hinzuweisen, dass die Figuren besonders bevorzugte Ausführungsvarianten der Erfindung zeigen, diese jedoch nicht darauf beschränkt ist. Es zeigen schematisch:
Fig. 1: ein Kraftfahrzeug mit einer erfindungsgemäßen Vorrichtung, einen Ausschnitt einer Stromleitstruktur,
Fig. 3: eine erste Schaltung zur Spannungs Versorgung einer
Stromleitstruktur,
Fig. 4: eine zweite Schaltung zur Spannungsversorgung einer
Stromleitstruktur,
Fig. 5: eine dritte Schaltung zur Spannungsversorgung einer
Stromleitstruktur,
Fig. 6: Spannungsverlauf bei einer Frequenzmodulation,
Spannungsverlauf bei einer Pulsbreitenmodulation.
Fig. 1 zeigt Schema tisch ein Kraftfahrzeug 13 mit einer Verbrennungskraftmaschine 14, an die ein Abgassystem 2 angeschlossen ist, in dem eine erfindungsgemäße Vorrichtung 1 angeordnet ist. Die Vorrichtung 1 umfasst einen ersten Wabenkörper 4, der in einem Mantelrohr 3 angeordnet ist, und in dem eine Stromleitstruktur 5 ausgebildet ist. Die Stromleitstruktur 5 ist mit einem Steuergerät 9 verbunden. In dem Mantelrohr 3 ist ferner ein zweiter Wabenkörper 15 angeordnet. Der erste Wabenkörper 4 und der mit Abstand dahinter angeordnete zweite Wabenkörper 15 sind über Stützelemente 16 verbunden, die in die Wabenkörper 4, 15 hineinragen und die im ersten Wabenkörper 4 in Hülsen unter Zwischenschaltung einer elektrischen Isolierung angeordnet sind. Die Stromleitstruktur 5 ist mit Spalten 6 und Isoliermaterial 7 in einer solchen Weise ausgelegt, dass sich bei einer angelegten Spannung von z. B. 48 V im Betrieb keine Lichtbogen ausbilden. Zudem kann im Betrieb eine gepulste Spannung an die Stromleitstruktur 5 angelegt werden, so dass die zugeführte elektrische Energie an die Stromleitstruktur 5 und die gewünschte Abgastemperatur angepasst werden können.
Fig. 2 stellt schematisch einen Ausschnitt einer Stromleitstruktur 5 dar. Die Stromleitstruktur 5 weist eine mäanderförmige Gestalt auf. Dadurch sind Spalte 6 in der Stromleitstruktur 5 vorhanden. In diesem Ausführungsbeispiel ist die Stromleitstruktur 5 hin zu den Spalten 6 mit Isoliermaterial 7 beaufschlagt. Die Spalten 6 und das Isoliermaterial 7 sind so ausgelegt, dass sich bei einer angelegten Spannung von z. B. 48 V keine Kurzschlüsse, insbesondere durch Lichtbogen, ausbilden können. Die Fig. 3 bis 5 zeigen schematisch die elektrische Beschaltung einer Stromleitstruktur 5. Die Energieversorgung erfolgt in der Regel durch eine Batterie des Kraftfahrzeugs 13. Die Schaltungen weisen einen Hauptschalter 17 und ein Steuergerät 9 auf. Der Hauptschalter 17 schaltet prinzipiell die Energieversorgung während des Betriebs der Verbrennungskraftmaschine 14 ein, während ein dem Steuergerät 9 zugeordnetes Stellmittel der Beeinflussung der an die Stromleitstruktur 5 angelegten Spannung im Betrieb dient. So kann über das Steuergerät 9 eine gepulste Spannung erzeugt werden, die an der Stromleitstruktur 5 anliegt.
Bei der in Fig. 3 dargestellten Beschaltungsform kann das Steuergerät 9 die Spannungsversorgung zwischen Stromleitstruktur 5 und Masse beeinflussen. Bei dem in Fig. 4 dargestellten Schaltbild kann das Steuergerät 9 die Spannungs Versorgung zwischen Batterie und Stromleitstruktur 5 beeinflussen. Bei der in Fig. 5 dargestellten Schaltungsanordnung kann das Steuergerät 9 sowohl zwischen Stromleitstruktur 5 und Batterie als auch zwischen Stromleitstruktur 5 und Masse die angelegte Spannung variieren.
Fig. 6 und 7 stellen beispielhaft die Einstellungsmöglichkeiten der einer Stromleitstruktur 5 zuführbaren Energie über eine gepulste Spannung 8 dar. Hierzu ist die Spannung 8 über die Zeit 18 aufgetragen. Die Pulse 10, die hier als Rechteckpulse ausgeführt sind, weisen eine maximale Spannungshöhe 12 mit einer Pulsdauer 11 und einem Pulsabstand 19 zueinander auf. In Fig. 6 ist das Prinzip einer Frequenzmodulation dargestellt. Die Pulse 10 werden mit einer konstanten Pulsdauer 11 bei unterschiedlichem Pulsabstand 19 wiederholt. Auf diese Weise lässt sich durch Einstellen der Wiederholfrequenz, also dem Kehrwert des Pulsabstands 19, die der Stromleitstruktur 5 pro Zeiteinheit zugeführte Energie einstellen.
Im Gegensatz dazu ist in Fig. 7 eine Pulsbreitenmodulation angedeutet. Die Pulse 10 mit einer Spannungshöhe 12 und einer Pulsdauer 11 werden zwar mit gleichem Pulsabstand 19 erzeugt, doch wird die Pulsdauer 11 variiert. Somit lässt sich die der Stromleitstruktur 5 zugeführte Energie über die Pulsdauer einstellen. Es ist auch möglich, dass sowohl die Pulsdauer 11 als auch der Pulsabstand 19 variiert werden.
Mit der erfindungsgemäßen Lehre ist es möglich, Heizelemente in einem Abgassystem mit einer Bordspannung von 48 V oder sogar 60 V zu versorgen. Insbesondere wird ein Verfahren bereitgestellt, mit dem eine Nutzung von Heizelementen, deren elektrischer Widerstand nicht genügend erhöht werden kann, mit einer hohen Betriebsspannung möglich wird. Bezugszeichenliste
1 Vorrichtung
2 Abgassystem
3 Mantelrohr
4 erster Wabenkörper
5 Stromleitstruktur
6 Spalt
7 Isoliermaterial
8 Spannung
9 Steuergerät
10 Puls
11 Pulsdauer
12 Spannungshöhe
13 Kraftfahrzeug
14 Verbrennungskraftmaschine
15 zweiter Wabenkörper
16 Stützelemente
17 Hauptschalter
18 Zeit
19 Pulsabstand

Claims

Patentansprüche
Vorrichtung (1) zur Behandlung von Abgasen in einem Abgassystem
(2) mit einem ersten in einem Mantelrohr
(3) angeordneten, von einem Abgas durchströmbaren Wabenkörper
(4) , wobei der Wabenkörper (4) mindestens eine Stromleitstruktur
(5) aufweist, begrenzt von Spalten (6) und/oder Isoliermaterial (7), die eine Isolierung auch unter Betriebsbedingungen für Spannungen (8) größer 24 V (Volt), insbesondere größer 48 V, bewirken.
Vorrichtung (1) nach Anspruch 1, umfassend ein Steuergerät (9), wobei das Steuergerät (9) dafür eingerichtet ist, eine gepulste Spannung (8), insbesondere von mindestens 24 V, vorzugsweise zwischen 48 und 60 V zu erzeugen und diese an die Stromleitstruktur (5) anzulegen.
Vorrichtung (1) nach Anspruch 1 oder 2, wobei die Stromleitstruktur (5) einen elektrischen Widerstand zwischen 0,001 Ω (Ohm) und 10 Ω, bevorzugt zwischen 0,03 Ω und 0,8 Ω, ganz besonders bevorzugt zwischen 0,05 Ω und 0,3 Ω, aufweist.
Verfahren zum Betreiben eines elektrisch beheizbaren und für ein Abgas durchströmbaren Wabenkörpers (4) mit wenigstens einer Stromleitstruktur (5), an die zum Aufheizen des Wabenkörpers (4) eine Strom erzeugende Spannung (8) größer 24 V angelegt wird, dadurch gekennzeichnet, dass die Spannung (8) eine gepulste Spannung ist.
Verfahren nach Anspruch 4, wobei die gepulste Spannung (8) mit einer Wiederholrate von 0,1 Hz (Hertz) bis 1000 Hz, vorzugsweise 1 Hz bis 100 Hz, angelegt wird. Verfahren nach Anspruch 4 oder 5, wobei jeder Puls (10) eine Pulsdauer (11) von 0,005 s (Sekunden) bis 0,5 s aufweist.
Verfahren nach einem der Ansprüche 4 bis 6, wobei die gepulste Spannung (8) eine maximale Spannungshöhe (12) zwischen 48 V und 60 V hat.
Verfahren nach einem der Ansprüche 5 bis 7, wobei die Pulsdauer und/oder die Wiederholrate in Abhängigkeit von Abgasparametern eingestellt werden, insbesondere der Abgastemperatur.
PCT/EP2012/061391 2011-06-15 2012-06-15 Vorrichtung mit einem elektrisch beheizbaren wabenkörper und verfahren zum betreiben des wabenkörpers WO2012172033A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014515200A JP6254523B2 (ja) 2011-06-15 2012-06-15 電気的に加熱可能なハニカム体を有する装置およびハニカム体を作動する方法
EP12728071.7A EP2721264B1 (de) 2011-06-15 2012-06-15 Vorrichtung mit einem elektrisch beheizbaren wabenkörper und verfahren zum betreiben des wabenkörpers
US14/107,085 US9593615B2 (en) 2011-06-15 2013-12-16 Device having an electrically heatable honeycomb body and method for operating the honeycomb body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011104193A DE102011104193A1 (de) 2011-06-15 2011-06-15 Vorrichtung mit einem elektrisch beheizbaren Wabenkörper und Verfahren zum Betreiben des Wabenkörpers
DE102011104193.5 2011-06-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/107,085 Continuation US9593615B2 (en) 2011-06-15 2013-12-16 Device having an electrically heatable honeycomb body and method for operating the honeycomb body

Publications (1)

Publication Number Publication Date
WO2012172033A1 true WO2012172033A1 (de) 2012-12-20

Family

ID=46319123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/061391 WO2012172033A1 (de) 2011-06-15 2012-06-15 Vorrichtung mit einem elektrisch beheizbaren wabenkörper und verfahren zum betreiben des wabenkörpers

Country Status (5)

Country Link
US (1) US9593615B2 (de)
EP (1) EP2721264B1 (de)
JP (1) JP6254523B2 (de)
DE (1) DE102011104193A1 (de)
WO (1) WO2012172033A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018024478A1 (de) 2016-08-04 2018-02-08 Continental Automotive Gmbh Metallische folie mit aufgebrachtem flächigem elektrischem leiter und unter verwendung der folie hergestellter wabenkörper

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480370B2 (en) 2017-08-22 2019-11-19 GM Global Technology Operations LLC Dual power supply for eCAT and control
FR3111944B1 (fr) * 2020-06-30 2023-03-24 Faurecia Systemes Dechappement Dispositif de chauffage, dispositif de purification, ligne d’échappement, procédé de fabrication du dispositif de chauffage
DE102021207901A1 (de) 2021-07-22 2023-01-26 Psa Automobiles Sa Stromzufuhrvorrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2719252A1 (de) * 1977-01-31 1978-08-03 Toyota Motor Co Ltd Heizvorrichtung fuer einen katalysator
US4272668A (en) * 1979-11-13 1981-06-09 Armstrong Cork Company Small round air stream heating unit
JPH03181337A (ja) * 1989-12-11 1991-08-07 Nippon Yakin Kogyo Co Ltd 絶縁性に優れた自己発熱型触媒担体
EP0503445A1 (de) * 1991-03-13 1992-09-16 W.R. Grace & Co.-Conn. Elektrisch heizbarer Katalysator-Einsatz
EP0541190A1 (de) * 1991-11-05 1993-05-12 W.R. Grace & Co.-Conn. Kernelement für elektrisch heizbaren Katalysator
US5321231A (en) * 1992-01-24 1994-06-14 General Motors Corporation System for supplying power to an electrically heated catalyst
US5388404A (en) * 1992-06-09 1995-02-14 Mitsubishi Denki Kabushiki Kaisha Controller device for electrically heated catalyst of automotive engine

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473732A (en) * 1981-01-07 1984-09-25 General Electric Company Power circuit for induction cooking
US4562695A (en) * 1983-12-27 1986-01-07 Ford Motor Company Particulate trap system for engine exhaust using electrically powered regeneration
DE3813220C2 (de) 1988-04-20 1997-03-20 Bosch Gmbh Robert Verfahren und Einrichtung zum Stellen eines Tankentlüftungsventiles
DE8816514U1 (de) 1988-04-25 1989-10-26 Emitec Emissionstechnologie
JP2706929B2 (ja) * 1990-10-31 1998-01-28 三菱自動車工業株式会社 ヒータ付き触媒のプリヒート制御装置
WO1992013636A1 (de) 1991-01-31 1992-08-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Wabenkörper mit mehreren, gegeneinander abgestützten scheiben
US5525309A (en) * 1991-01-31 1996-06-11 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Honeycomb body with a plurality of disks braced against one another
US5232671A (en) 1992-01-27 1993-08-03 W. R. Grace & Co.-Conn. Core for a catalytic converter
JPH0611839U (ja) * 1992-07-13 1994-02-15 カルソニック株式会社 金属触媒コンバータ
JPH0754644A (ja) * 1992-12-21 1995-02-28 Toyota Motor Corp 電気加熱式触媒装置
DE4303601A1 (de) * 1993-02-08 1994-08-11 Emitec Emissionstechnologie Elektrisch beheizbarer Wabenkörper mit durch Schlitze erhöhtem Widerstand
DE19505727A1 (de) * 1995-02-20 1996-08-22 Emitec Emissionstechnologie Vorrichtung zur katalytischen Umsetzung von Abgasen in einem Abgassystem
JPH10131743A (ja) * 1996-10-28 1998-05-19 Toyota Motor Corp 電気加熱式触媒装置のハニカム体及びその製造方法
WO2000071867A1 (en) * 1999-05-20 2000-11-30 Institute For Advanced Engineering Purification system of exhaust gas of internal combustion engine
EP1287242A1 (de) * 2000-06-01 2003-03-05 Blue Planet Co., Ltd Vorrichtung zur beseitigung von russ und nox in dieselauslassgas
JP4236884B2 (ja) * 2002-08-05 2009-03-11 日本碍子株式会社 排気ガス処理装置
WO2005005798A1 (ja) * 2003-07-10 2005-01-20 Ngk Insulators, Ltd. プラズマ発生電極及びプラズマ反応器
JP2005240583A (ja) * 2004-02-24 2005-09-08 Fuji Heavy Ind Ltd 電気加熱触媒の通電制御装置
JP4570909B2 (ja) * 2004-06-04 2010-10-27 富士重工業株式会社 電気加熱触媒の故障診断装置
US7384455B2 (en) * 2004-10-05 2008-06-10 Caterpillar Inc. Filter service system and method
JP4239992B2 (ja) * 2005-03-16 2009-03-18 トヨタ自動車株式会社 ガス浄化装置
DE102007025418A1 (de) * 2007-05-31 2008-12-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Elektrisch beheizbarer Wabenkörper mit Zonen erhöhter Widerstände
US9284870B2 (en) * 2007-09-14 2016-03-15 GM Global Technology Operations LLC Electrically heated particulate matter filter soot control system
US8112990B2 (en) * 2007-09-14 2012-02-14 GM Global Technology Operations LLC Low exhaust temperature electrically heated particulate matter filter system
US8776502B2 (en) * 2008-07-03 2014-07-15 Donaldson Company, Inc. System and method for regenerating an auxiliary power unit exhaust filter
DE102008035561A1 (de) 2008-07-30 2010-02-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Vorrichtung aufweisend zumindest einen elektrisch beheizbaren Wabenkörper
DE102009012094A1 (de) 2009-03-06 2010-09-09 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Vorrichtung zur Reinigung von Abgas mit einem Heizapparat
DE102009018182A1 (de) 2009-04-22 2010-10-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Mehrstufig beheizbarer Wabenkörper
US8479496B2 (en) 2009-07-02 2013-07-09 GM Global Technology Operations LLC Selective catalytic reduction system using electrically heated catalyst
US8627645B2 (en) * 2011-05-25 2014-01-14 Ford Global Technologies, Llc Emission control with a particulate matter sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2719252A1 (de) * 1977-01-31 1978-08-03 Toyota Motor Co Ltd Heizvorrichtung fuer einen katalysator
US4272668A (en) * 1979-11-13 1981-06-09 Armstrong Cork Company Small round air stream heating unit
JPH03181337A (ja) * 1989-12-11 1991-08-07 Nippon Yakin Kogyo Co Ltd 絶縁性に優れた自己発熱型触媒担体
EP0503445A1 (de) * 1991-03-13 1992-09-16 W.R. Grace & Co.-Conn. Elektrisch heizbarer Katalysator-Einsatz
EP0541190A1 (de) * 1991-11-05 1993-05-12 W.R. Grace & Co.-Conn. Kernelement für elektrisch heizbaren Katalysator
US5321231A (en) * 1992-01-24 1994-06-14 General Motors Corporation System for supplying power to an electrically heated catalyst
US5388404A (en) * 1992-06-09 1995-02-14 Mitsubishi Denki Kabushiki Kaisha Controller device for electrically heated catalyst of automotive engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018024478A1 (de) 2016-08-04 2018-02-08 Continental Automotive Gmbh Metallische folie mit aufgebrachtem flächigem elektrischem leiter und unter verwendung der folie hergestellter wabenkörper
DE102016214489A1 (de) 2016-08-04 2018-02-08 Continental Automotive Gmbh Metallische Folie mit aufgebrachtem flächigem elektrischem Leiter und unter Verwendung der Folie hergestellter Wabenkörper
US11092051B2 (en) 2016-08-04 2021-08-17 Vitesco Technologies GmbH Metallic film having applied flat electrical conductor and honeycomb body produced using said film

Also Published As

Publication number Publication date
EP2721264B1 (de) 2016-10-26
US20140112850A1 (en) 2014-04-24
US9593615B2 (en) 2017-03-14
JP6254523B2 (ja) 2017-12-27
JP2014519577A (ja) 2014-08-14
DE102011104193A1 (de) 2012-12-20
EP2721264A1 (de) 2014-04-23

Similar Documents

Publication Publication Date Title
EP2310643B1 (de) Verfahren zum betrieb einer vorrichtung aufweisend zumindest einen elektrisch beheizbaren wabenkörper
EP1967712B1 (de) Elektrisch beheizbarer Wabenkörper und Verfahren zu dessen Betrieb
EP2721264B1 (de) Vorrichtung mit einem elektrisch beheizbaren wabenkörper und verfahren zum betreiben des wabenkörpers
WO1989010470A1 (fr) Procede pour accelerer la reponse d'un catalyseur de gaz d'echappement; dispositifs et supports chauffes electriquement pour la mise en oeuvre de ce procede
DE10102681B4 (de) Plasmaartiges Abgasreinigungsgerät
WO2006050546A1 (de) Verfahren und filteranordnung zum abscheiden von russpartikeln
WO2011124465A1 (de) Verfahren und abgasbehandlungsvorrichtung zur regeneration einer abgasreinigungskomponente
EP1971757B1 (de) Verfahren und vorrichtung zur verringerung der partikelanzahl im abgas einer verbrennungskraftmaschine
EP1229992B1 (de) Filteranordnung zum abscheiden von russpartikel aus einem abgasstrom
DE3631379C2 (de)
EP2477748B1 (de) Vorrichtung zur behandlung von russpartikel enthaltendem abgas
EP2603678B1 (de) Verfahren und vorrichtung zur verringerung von russpartikeln im abgas einer verbrennungskraftmaschine
DE3705979C2 (de)
WO2014114408A1 (de) Vorrichtung und verfahren zur behandlung eines partikel aufweisenden abgases
DE19855092B4 (de) Vorrichtung und Verfahren zum Reinigen des Abgases einer Brennkraftmaschine
DE102005034033A1 (de) Verfahren und Vorrichtung zur Verminderung des Partikelanteils in Abgasen
EP2616648B1 (de) Anordnung für eine stromversorgung einer komponente in einem abgassystem
EP0840838B1 (de) Verfahren und vorrichtung zur zerlegung von stickstoffoxiden in abgasen von verbrennungsmotoren
EP2603677B1 (de) Halterung für zumindest eine elektrode in einer abgasleitung
DE19855089B4 (de) Schwefelfalle für ein Abgasreinigungssystem einer Brennkraftmaschine und Verfahren zum Betreiben der Schwefelfalle
EP1179123A1 (de) Heizelement zum beheizen strömender gase
EP2616181B1 (de) Vorrichtung zur erzeugung eines elektrischen feldes in einem abgassystem
DE4010913A1 (de) Abgasreinigungseinrichtung, insbesondere fuer kraftfahrzeuge mit innerer brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12728071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515200

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012728071

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012728071

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE