WO2012171386A1 - 异系统间频谱共享情况下的干扰抑制方法和设备 - Google Patents

异系统间频谱共享情况下的干扰抑制方法和设备 Download PDF

Info

Publication number
WO2012171386A1
WO2012171386A1 PCT/CN2012/073047 CN2012073047W WO2012171386A1 WO 2012171386 A1 WO2012171386 A1 WO 2012171386A1 CN 2012073047 W CN2012073047 W CN 2012073047W WO 2012171386 A1 WO2012171386 A1 WO 2012171386A1
Authority
WO
WIPO (PCT)
Prior art keywords
cognitive
cell
transmit power
frequency band
downlink
Prior art date
Application number
PCT/CN2012/073047
Other languages
English (en)
French (fr)
Inventor
蒋成钢
李媛媛
白文岭
杨宇
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2012171386A1 publication Critical patent/WO2012171386A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an interference suppression method and apparatus in the case of spectrum sharing between different systems. Background technique
  • OFDM Orthogonal Frequency Division Multiplexing
  • MIMO Multi-Input Multiple-Out-put
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • TD-LTE Time Division-Long Term Evolution
  • the new network tends to have fewer users, and the network load is light, and the spectrum is small. Idle, while the old network is heavily loaded and the spectrum is tight. When the new network matures, the user gradually shifts to the new network, causing the old network spectrum to be idle and the new network spectrum to be tight.
  • the central control node can be used to centrally manage the spectrum usage of RATs in the network.
  • the function of cognitive radio is completed in the network through a central control entity JSM (Joint Spectrum Management), as shown in Figure 2.
  • the JSM can collect the idle spectrum information of each RAT, and generate relevant decisions about the available idle frequency bands according to the network configuration information and the spectrum policy, and can provide the idle frequency band as the "cognitive frequency band" to other RATs according to the spectrum requirements of other RATs or Reclaim the "cognitive band".
  • the authorized RAT has the highest priority for the "cognitive band", the other RAT acts as the cognitive RAT in the "cognitive band”; when the authorized RAT requires the recovery of the "cognitive band”, the JSM adjustment works on the "cognitive band”
  • the cognitive RAT continues to work on other idle spectrum and returns the "cognitive band” to the authorized RAT.
  • the network configuration information includes information such as the location of each RAT base station, configured carrier information, maximum transmit power, and the like, and the network configuration information can be updated according to changes in network devices/parameters.
  • Open loop power control is to first detect the received base station pilot signal power at the mobile station, if the mobile station is connected The received signal power is small, indicating that the loss is large at the moment on the downlink, and thus the loss on the uplink is also large. Thus, to compensate for this predicted channel fading, the mobile station also increases the transmit power; otherwise, the mobile station will reduce the transmit power.
  • the closed-loop power control is a means to compensate for the inaccuracy of the reverse open-loop power control.
  • the base station estimates the uplink power adjustment amount by measuring the uplink received signal of the mobile station, and notifies the mobile station in the downlink, and the mobile station adjusts according to the power adjustment command word. Uplink transmit power; conversely, reduce transmit power.
  • downlink power control also uses such methods. In the process of implementing the embodiments of the present invention, the applicant finds that the prior art has at least the following problems:
  • the spectrum sharing is implemented in the communication network.
  • the idle spectrum can be used as a cognitive frequency band by other systems in the local area, and the system working on the cognitive frequency band is regarded as a cognitive system due to authorization.
  • the frequency band in the neighboring cell of the target cell of the system may not be in an idle state, and the cognitive system of the cognitive band may interfere with the neighboring cell of the target cell of the authorized system, thereby reducing the link quality and network capacity of the authorized system.
  • the existing power control measures are to consider the link quality and network capacity of the local cell. After the introduction of the spectrum sharing mechanism, the existing power control does not reduce the interference of the cognitive system to the authorization system, nor does it inhibit the interference of the authorization system to the cognitive system.
  • the central control entity in the network cannot dynamically adjust the transmit power of the cognitive system based on the interference conditions of the authorized system, thereby protecting the mechanism of the authorization system.
  • the embodiments of the present invention provide an interference suppression method and device in the case of spectrum sharing between different systems, and solving the existing power control does not reduce the mutual interference between the cognitive system and the authorization system.
  • an embodiment of the present invention provides an interference suppression method in the case of spectrum sharing between different systems, including:
  • the embodiment of the present invention further provides a network device, including: a communications module, configured to perform uplink and downlink communications with a terminal device of the cognitive cell, and communicate with a base station of an authorized cell;
  • a limiting module configured to limit a downlink maximum transmit power and/or an uplink maximum transmit power of the communication module to the terminal device in the cognitive cell on the cognitive frequency band.
  • the downlink maximum transmit power and/or the uplink maximum transmit power of the cognitive cell in the cognitive frequency band are limited, thereby effectively reducing the shared spectrum sharing between the cognitive system and the authorization system.
  • Interference between the two systems including the interference of the authorized system to the cognitive system downlink, the cognitive system's interference to the uplink and downlink of the authorized system, enabling the cognitive system to use the authorization without interference/low interference.
  • the idle spectrum resources of the system improve the utilization efficiency of the spectrum and improve the link quality.
  • FIG. 1 is a schematic diagram of an application scenario of a different system idle carrier sharing in the prior art
  • FIG. 2 is a schematic diagram of application of a central control entity (JSM) in the prior art
  • FIG. 3 is a different inter-system spectrum proposed by the embodiment of the present invention. Schematic diagram of an application scenario of the interference suppression method in the shared case;
  • FIG. 4 is a schematic flowchart of a downlink open loop power control process performed by a cognitive cell in a cognitive frequency band according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of a downlink closed loop power control process performed by a cognitive cell in a cognitive frequency band according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of performing uplink closed loop power control processing in a cognitive frequency band by a cognitive cell according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of an interference suppression method in a case of sharing inter-system spectrum in a specific application scenario according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present invention. detailed description
  • the fixed spectrum allocation policy is not likely to change in the short term.
  • the cognitive radio technology can realize the sharing of spectrum between RATs and improve the utilization of spectrum.
  • the first principle of cognitive radio is the protection of the authorization system, that is, the cognitive radio needs to use the idle spectrum resources without interfering with the authorization system on the idle spectrum, and the authorization system includes the authorization system of the idle spectrum area and the adjacent area of the idle spectrum.
  • the technical solution proposed by the embodiment of the present invention aims to make full use of the spectrum resources of the authorization system of the idle spectrum area while reducing the interference to the authorization system of the adjacent area.
  • the technical solution proposed by the embodiment of the present invention considers that different RATs in the wireless communication frequency band mutually utilize each other's idle spectrum resources (for cognitive cells as cognitive frequency bands) through cognitive radio technology, and consider that they work in the cognitive frequency band.
  • the RAT is a cognitive cell, and the cognitive cell of the cognitive frequency band may interfere with the authorized cell of the neighboring cell of the frequency band.
  • the embodiment of the present invention proposes an interference suppression method in the case of inter-system spectrum sharing in the case of inter-system spectrum sharing, and realizes cognition under the condition that cognitive radio realizes inter-system spectrum sharing.
  • the uplink/downlink maximum transmit power of the cell is limited in the cognitive frequency band to reduce the interference of the cognitive cell to the uplink/downlink of the adjacent authorized cell, and at the same time, the interference of the authorized cell to the downlink of the cognitive cell can be reduced. .
  • the technical solution proposed in the embodiments of the present invention may also be applied to other wireless communication systems with authorized/unauthorized (cognitive), primary/secondary, or priority spectrum sharing, and the specific application scenarios are changed. It does not affect the scope of protection of the present invention.
  • the technical solution for limiting the downlink maximum transmit power and/or the uplink maximum transmit power of the cognitive cell in the cognitive frequency band proposed by the present invention includes the limitation of the downlink maximum transmit power and the uplink maximum transmit power, and the following separately Description.
  • the limitation of the maximum downlink transmit power further includes the initial downlink maximum transmit power setting process and the subsequent downlink maximum transmit power adjustment process, which are respectively described below.
  • the specific processing manner is to determine the initial downlink maximum transmit power of the cognitive cell on the cognitive frequency band according to the downlink signal power measurement of the base station of the neighboring authorized cell operating in the cognitive frequency band to the base station of the cognitive cell.
  • the determining manner of the edge terminal device of the neighboring authorized cell working in the cognitive frequency band specifically includes:
  • a neighboring authorized cell that may be affected by the cognitive cell is selected. Then, the selected neighboring authorized cell selects a plurality of terminal devices operating in the cognitive frequency band as the edge terminal device of the authorized cell according to the link quality.
  • the actual determination of the edge terminal device is performed by the selected neighboring authorized cell.
  • the determining manner of the specific edge terminal device can be set according to actual needs, and the corresponding determining process is completed by the neighboring authorized cell, and the content change of the determining mode does not affect the protection scope of the present invention.
  • the setting process of the corresponding initial downlink maximum transmit power specifically includes:
  • the initial downlink maximum transmit power is determined by an open loop transmit power control strategy.
  • the size of the downlink power measurement information of the cognitive cell is larger, the smaller the initial downlink maximum transmit power of the cognitive cell on the cognitive frequency band is, if the cognitive cell is downlinked.
  • the smaller the size of the power measurement information the larger the initial downlink maximum transmit power of the cognitive cell on the cognitive frequency band.
  • the specific processing manner is: after the base station of the cognitive cell starts to work with the initial downlink maximum transmit power, adjust the cognitive cell based on the interference measurement value measured by the edge terminal device of the neighboring authorized cell working in the cognitive frequency band. Downstream maximum transmit power on the band.
  • the corresponding subsequent downlink maximum transmit power adjustment process specifically includes:
  • the adjustment process of the downlink maximum transmit power adopts a closed loop transmit power control strategy.
  • the corresponding adjustment rules include:
  • the magnitude of the interference measurement is greater than the maximum threshold, reducing the downlink maximum transmit power of the cognitive cell on the cognitive frequency band;
  • the downlink maximum transmit power of the cognitive cell on the cognitive band is not adjusted.
  • the execution of the processing is also performed after the neighboring authorized cell is determined in (1), and the specific basis is the interference information measured by the base station of the neighboring authorized cell fed back by the neighboring authorized cell.
  • the interference is measured according to the interference measurement value measured by the base station of the neighboring authorized cell operating in the cognitive frequency band, and the recognition is performed on the cognitive frequency band.
  • the maximum uplink of the terminal equipment of the cell Shooting power.
  • the adjustment process of the uplink maximum transmit power adopts a closed loop transmit power control strategy.
  • the corresponding adjustment rules include:
  • the magnitude of the interference measurement is greater than the maximum threshold, reducing the uplink maximum transmit power of the terminal device of the cognitive cell operating on the cognitive band;
  • the uplink maximum transmit power of the terminal device of the cognitive cell operating on the cognitive band is not adjusted.
  • the subsequent downlink maximum transmit power adjustment process in (1) and the interference measurement value sent by the base station of the neighboring authorized cell involved in the processing in (2) may be specific measurements.
  • the parameter value may also be the data information after the conversion according to the preset rule.
  • the reason for the processing is that the basis of the corresponding limitation adjustment of the technical solution is not the value of the specific interference measurement value, but whether the corresponding interference is Affects the normal operation of the authorized cell. Therefore, the corresponding interference threshold can be set. If the measured specific measurement parameter value exceeds the interference threshold, a message is reported to indicate that the interference threshold is exceeded. Otherwise, the report is reported. A message indicating that the interference threshold is not exceeded.
  • the interference threshold is exceeded (that is, the above-mentioned maximum threshold)
  • the current interference is too strong.
  • the corresponding maximum uplink or downlink transmit power should be reduced if the interference threshold is exceeded. If the number is too small (that is, less than the minimum threshold), it means that the current interference is relatively small, and the tolerable interference margin is still relatively large, which can increase the corresponding uplink or downlink maximum transmit power. If none of the above is the case, it indicates that the current interference is moderate, and the current uplink or downlink maximum transmit power limit can be maintained without adjustment.
  • the foregoing process may be specifically performed by a central control entity or a base station of a cognitive cell, and the selection of the specific execution entity may be determined according to actual system structure deployment and function allocation, such that The changes do not affect the scope of protection of the present invention.
  • the cognitive frequency band described above is specifically an unused frequency band that is not used in the authorization system.
  • the above limitation of the maximum downlink transmit power and the uplink maximum transmit power may be independently applied to specific technical scenarios, or may be jointly applied to specific technical scenarios to increase the interference control effect. Changes do not affect the scope of protection of the present invention.
  • the downlink maximum transmit power and/or the uplink maximum transmit power of the cognitive cell in the cognitive frequency band are limited, thereby effectively reducing the shared spectrum sharing between the cognitive system and the authorization system.
  • Interference between the two systems including the interference of the authorized system to the cognitive system downlink, the cognitive system's interference to the uplink and downlink of the authorized system, enabling the cognitive system to use the authorization without interference/low interference.
  • the idle spectrum resources of the system improve the utilization efficiency of the spectrum and improve the link quality.
  • Both TD-LTE and TD-SCDMA co-sites are covered by the same coverage. Both access technologies adopt multi-carrier mode. Due to the old and new network transition, TD-SCDMA has idle carrier resources, and TD-LTE is overloaded, through cognitive technology TD. -LTE can utilize the common site The idle carrier of the TD-SCDMA cell increases the capacity of the TD-LTE network, and the carrier is not in an idle state adjacent to the TD-SCDMA cell.
  • the TD-LTE downlink operating in the TD-SCDMA idle carrier frequency band is interfered by the neighboring TD-SCDMA intra-frequency cell base station, and the adjacent TD-SCDMA cell downlink is affected by the TD-LTE base station operating in the idle frequency band. Interference, downlink interference is more serious at the cell edge; on the uplink side, the TD-LTE uplink operating in the idle frequency band is interfered by the adjacent TD-SCDMA intra-frequency cell edge terminal, and the adjacent TD-SCDMA intra-frequency cell base station is operated at Interference from TD-LTE edge terminals in idle frequency bands.
  • the existing power control measures are considering the link quality and network capacity of the local cell.
  • the existing power control cannot reduce the mutual interference between the cognitive cell and the authorized cell, and cannot suppress the interference of the authorized cell to the cognitive cell.
  • the central control entity in the network cannot dynamically adjust the transmit power of the cognitive system based on the interference conditions of the authorized system, thereby protecting the mechanism of the authorization system.
  • the technical solution proposed by the embodiment of the present invention is mainly for solving the above problem of interference suppression between an authorized cell and a cognitive cell when the spectrum sharing is implemented by the cognitive radio technology, and the specific technical idea is that the cognitive cell is The downlink/uplink of the cognitive band performs maximum power constraint to reduce uplink/downlink interference between different systems due to spectrum sharing.
  • the TD-LTE cell in the same area uses the idle carrier resource of the TD-SCDMA cell, and the two cells are considered to be the target TD-LTE.
  • the idle carrier resource is a cognitive frequency band.
  • the corresponding processing solution includes:
  • the target TD-LTE cell reduces its maximum transmit power and reduces its coverage radius in the cognitive frequency band, thereby effectively reducing downlink interference to TD-SCDMA edge users in the target cell neighborhood.
  • the solution of the foregoing solution is to protect the neighboring authorized cell working at the same frequency as the cognitive frequency band by limiting the uplink and downlink maximum power of the cognitive cell in the cognitive frequency band.
  • Uplink and downlink In a specific implementation scenario, according to the difference in the power control mode adopted, the corresponding processing process includes the following three parts:
  • the first part the cognitive cell's downlink open loop power control in the cognitive frequency band.
  • Step S401 The base station of the cognitive cell selects a neighboring authorized cell that may be affected by the cognitive cell.
  • Step S402 The selected neighboring authorized cell selects N terminal devices working in the cognitive frequency band as the edge terminal device of the authorized cell according to the link quality.
  • Step S403 The selected neighboring authorized cell triggers the N edge terminal devices to measure the downlink pilot signal of the cognitive cell, estimate the path loss between the base station of the cognitive cell and the edge terminal device, and estimate the path loss. And the edge terminal device transmits the interference level of the time period to the base station of the cognitive cell.
  • Step S404 The base station of the cognitive cell performs a fusion process on the received result. It should be noted that in the actual application scenario, the foregoing process of step S403 and step S404 is actually that the base station of the authorized cell directly reports the interference measurement information and the location information of the edge terminal to the base station of the cognitive cell, and then, The base station of the cognitive cell performs the corresponding operation processing on the corresponding information received, that is, determines the interference situation currently occupied by the edge terminal distributed in each location range, and the specific operation processing method may be based on the specific The path loss value determines the location range of the corresponding edge terminal, and then, within each location range, the average interference condition of the corresponding edge terminal is calculated by a specific algorithm. In this process, the setting rule of the location range, The content of the calculation algorithm of the average interference situation can be set according to actual needs, and such changes do not affect the protection scope of the present invention.
  • the processing load of the base station of the cognitive cell may be used by the base station of the authorized cell to the edge terminal.
  • Corresponding information is processed by the corresponding information, that is, the base station of the authorized cell determines the interference situation currently occupied by the edge terminal distributed in each location range, and sends the result of the corresponding operation processing to the cognitive cell.
  • the corresponding reporting threshold is configured on the base station of the area, and only when the severity of the interference situation exceeds the corresponding reporting threshold in the specific location range, the corresponding interference situation is reported to the base station of the cognitive cell, or the corresponding location range is directly
  • the base station that is reported to the cognitive cell limits the base station of the cognitive cell to the corresponding downlink maximum transmit power of the corresponding location range.
  • the above-mentioned processing scheme can be set according to actual needs, and any scheme capable of making the base station of the cognitive cell aware of the location range that should limit the downlink maximum transmit power can be applied to the embodiment of the present invention, and such a change does not affect the present invention.
  • Step S405 The base station of the cognitive cell calculates, according to the fused path loss condition and the interference level, the interference that the terminal device of the authorized cell can bear, thereby determining the downlink maximum transmit power of the cognitive cell in the cognitive frequency band.
  • Step S406 The cognitive cell uses the downlink maximum transmit power in the cognitive frequency band as the initial downlink maximum transmit power of the cognitive cell in the cognitive frequency band, and performs downlink signal transmission processing.
  • processing of the first part described above is to determine the initial downlink maximum transmit power of the cognitive cell in the cognitive frequency band.
  • the second part is the downlink closed-loop power control of the cognitive cell in the cognitive frequency band.
  • the processing in this part is performed after the first part determines the initial initial maximum transmit power of the cognitive cell in the cognitive frequency band.
  • the specific processing is shown in Figure 5.
  • the corresponding processing includes:
  • Step S501 The selected neighboring authorized cell periodically triggers the N edge terminal devices to measure the downlink interference condition, compares the interference measurement value with the threshold, and sends the comparison result to the base station of the cognitive cell by using the lbit information.
  • the corresponding upper rule may be:
  • Step S502 The base station of the cognitive cell sums the interference reporting result.
  • step S503 is performed
  • step S504 If the summation value ⁇ threshold, step S504 is performed;
  • step S505 is performed.
  • the foregoing processing procedure is only a specific solution proposed by the embodiment of the present invention, and the specific reported numerical information, and the corresponding summation manner are only a preferred example given for convenience of description, as long as the cognitive can be made.
  • the cell determines whether to trigger the corresponding downlink maximum transmit power limiting operation, the specific reporting and the change of the judgment rule, and does not affect the protection scope of the present invention.
  • Step S503 The base station of the cognitive cell triggers the cognitive cell to decrease the downlink maximum transmit power in the cognitive frequency band by one level.
  • Step S504 The base station of the cognitive cell allows the cognitive cell to increase the downlink maximum transmit power in the cognitive frequency band by one level.
  • Step S505 The base station of the cognitive cell does not adjust the downlink maximum transmission of the cognitive cell in the cognitive frequency band.
  • the purpose of the processing in this part is to adjust the downlink maximum transmit power of the cognitive cell in the cognitive frequency band according to the current actual situation of the system.
  • Case 3 Cognition ⁇ , the area of the closed-loop power control in the cognitive frequency band.
  • the processing of this part is performed after the first part determines the neighboring authorized cell, that is, the corresponding processing can be started at least after the step S401 is completed.
  • the specific processing process is as shown in FIG. 6, and the corresponding processing process includes:
  • Step S601 The base station of the selected neighboring authorized cell measures an uplink interference situation, compares the interference measurement value with a threshold, and sends the comparison result to the base station of the acknowledgement area by using lbit information.
  • the corresponding upper rule may be:
  • Step S602 The base station of the cognitive cell sums the interference reporting result.
  • step S603 is performed
  • step S604 If the summation value ⁇ threshold D, step S604 is performed;
  • step S605 is performed.
  • the foregoing processing procedure is only a specific solution proposed by the embodiment of the present invention, and the specific reported numerical information and the corresponding summation manner are only for convenience of description.
  • a preferred example is given, as long as the cognitive cell can determine whether to trigger the corresponding uplink maximum transmit power limiting operation, the specific reporting and the change of the judgment rule does not affect the protection scope of the present invention.
  • Step S603 The base station of the cognitive cell triggers the uplink maximum transmit power of the cognitive cell terminal device in the cognitive frequency band to decrease by one level.
  • Step S604 The base station of the cognitive cell increases the uplink maximum transmit power of the cognitive cell terminal device operating in the cognitive frequency band by one level.
  • Step S605 The base station of the cognitive cell does not adjust the uplink maximum transmission of the cognitive cell terminal device operating in the cognitive frequency band.
  • the purpose of the processing of this part is to adjust the uplink maximum transmission power of the cognitive cell terminal equipment operating in the cognitive frequency band according to the actual interference measurement value.
  • the foregoing neighboring authorized cell is different from the neighboring cell in the existing network, and the coverage of the cell, the transmit power, and the antenna characteristics are strictly considered to determine the neighbor relationship.
  • the foregoing technical solution is described, and spectrum sharing between the TD-LTE and the TD-SCDMA network with the shared site and the coverage is considered, and the idle carrier is implemented by the JSM in the network.
  • Allocation in practical applications, if there is no JSM in the network system, the base station of the cognitive cell performs JSM related function processing), and assumes that TD-LTE utilizes TD-SCDMA idle carrier resources, and there is a TD of idle carrier.
  • the SCDMA cell is a target TD-SCDMA cell.
  • Step S701 The JSM collects spectrum usage of TD-LTE and TD-SCDMA, Analyze available free spectrum resources.
  • Step S702 If the JSM determines that there is an idle carrier in a certain area target TD-SCDMA, and the target TD-LTE load in the same area is heavy, the JSM analyzes whether the target TD-LTE can utilize the target TD-SCDMA idle carrier resource.
  • step S703 is performed
  • Step S703 The JSM triggers the target that is potentially interfered.
  • the TD-SCDMA neighboring TD-SCDMA cell works in the above-mentioned idle carrier frequency band to estimate the path loss of the uplink RSCP, and selects the N terminal devices with the largest path loss as the cell edge terminal device.
  • Step S704 The neighboring TD-SCDMA base station triggers the Nth cell edge terminal device to measure the downlink pilot signal of the target TD-LTE, thereby estimating the path loss, and at the same time, the N terminal devices report the latest interference measurement value, and the base station will measure the path loss. Estimates and interference measurements are uploaded to the JSM.
  • Step S705 The JSM selects the minimum path loss estimation value and the maximum interference measurement value in the reported result, and calculates the interference that can be withstood by the adjacent TD-SCDMA downlink, thereby estimating the maximum transmission power of the target TD-LTE in the cognitive frequency band.
  • Step S706 The JSM configures the target TD-LTE, so that TD-LTE generates a secondary carrier in the cognitive frequency band, and the maximum transmit power is limited by the foregoing power.
  • Steps S703 to S706 are the aforementioned initial downlink maximum transmission power setting process.
  • Step S707 The terminal device that is adjacent to the TD-SCDMA cell operating at the N cell edge of the idle frequency band collects the downlink ISCP, compares the ISCP with the threshold, and periodically reports the measurement result to the JSM in lbit.
  • the threshold is X times the ISCP value of the long-term statistics.
  • Step S708 The JSM sums the interference report results, and performs corresponding processing according to the magnitude relationship between the summation value and the corresponding threshold value.
  • the target TD-LTE is triggered to lower the cognitive frequency band and the downlink is the most The maximum transmit power is one level. If the sum value ⁇ threshold 8, the target TD-LTE is allowed to increase the maximum transmit power of the cognitive band by one level. Otherwise, the transmit power is not adjusted.
  • Step S707 and step S708 are the aforementioned adjustment procedures of the subsequent downlink maximum transmission power.
  • Step S709 The neighboring TD-SCDMA base station measures the uplink ISCP of the idle frequency band, and performs corresponding processing according to the magnitude relationship between the measured value and the corresponding threshold value.
  • the terminal that triggers the target TD-LTE cognitive band reduces the transmit power by one level. If ISCP ⁇ threshold D, the terminal of the target TD-LTE cognitive band is allowed to increase the transmit power by one level. Otherwise, , do not adjust the power.
  • Step S709 is a process for limiting the uplink maximum transmit power of the aforementioned cognitive cell.
  • step S707 and step S708, and the uplink maximum transmit power limit process described in step S709 are relatively independent processes, which are the initial downlink maximum transmit power. There is no necessary sequence for the processing after the setting is completed and applied. The above needs are only for the convenience of description, and do not affect the protection scope of the present invention.
  • the downlink maximum transmit power and/or the uplink maximum transmit power of the cognitive cell in the cognitive frequency band are limited, thereby effectively reducing the shared spectrum sharing between the cognitive system and the authorization system.
  • Interference between the two systems including the interference of the authorized system to the cognitive system downlink, the cognitive system's interference to the uplink and downlink of the authorized system, enabling the cognitive system to use the authorization without interference/low interference.
  • the idle spectrum resources of the system improve the utilization efficiency of the spectrum and improve the link quality.
  • the embodiment of the present invention further provides a network device, and a schematic structural diagram thereof is shown in FIG. 8.
  • the network device may specifically provide a service for a terminal device in a cognitive cell, that is, a base station of the cognitive cell, or the network device may also be a center corresponding to the cognitive cell and the adjacent authorized cell.
  • Control entity the network device at least Includes:
  • the communication module 81 is configured to perform uplink and downlink communication with the terminal device of the cognitive cell, and communicate with the base station of the authorized cell;
  • the limiting module 82 is configured to limit the downlink maximum transmit power and/or the uplink maximum transmit power of the communication module 81 to the terminal device in the cognitive cell on the cognitive frequency band.
  • the communication module 81 is specifically configured to:
  • Downlink communication with the terminal device of the cognitive cell is performed according to the downlink maximum transmit power determined by the restriction module 82.
  • limiting module 82 is specifically configured to:
  • the downlink maximum transmit power of the communication module 81 on the cognitive frequency band is adjusted according to the interference measurement value measured by each edge terminal device received by the communication module 81.
  • the limiting module 82 is further configured to adjust the uplink maximum of the terminal device of the cognitive cell operating on the cognitive frequency band according to the interference measurement value measured by the base station of the neighboring authorized cell received by the communication module 81. Transmit power.
  • the downlink maximum transmit power and/or the uplink maximum transmit power of the cognitive cell in the cognitive frequency band are limited, thereby effectively reducing the shared spectrum sharing between the cognitive system and the authorization system.
  • Interference between the two systems including the interference of the authorized system to the cognitive system downlink, the cognitive system's interference to the uplink and downlink of the authorized system, enabling the cognitive system to use the authorization without interference/low interference.
  • the idle spectrum resources of the system improve the utilization efficiency of the spectrum and improve the link quality.
  • the embodiment of the present invention may be implemented by hardware, or may be implemented by means of software plus a necessary general hardware platform.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.).
  • a number of instructions are included to cause a computer device (which may be a personal computer, a server, or a network side device, etc.) to perform the methods described in various implementation scenarios of embodiments of the present invention.
  • modules in the apparatus in the implementation scenario may be distributed in the apparatus for implementing the scenario according to the implementation scenario description, or may be correspondingly changed in one or more devices different from the implementation scenario.
  • the modules of the above implementation scenarios may be combined into one module, or may be further split into multiple sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种异系统间频谱共享情况下的干扰抑制方法和设备,通过应用本发明实施例的技术方案,限制认知小区在认知频段上的下行最大发射功率和/或上行最大发射功率,从而,可以有效降低认知系统和授权系统共享频谱共享的情况下,两个系统之间的干扰,包括授权系统对认知系统下行链路的干扰,认知系统对授权系统的上行和下行链路的干扰,使认知系统在不干扰/低干扰情况下使用授权系统的空闲频谱资源,提高频谱的利用效率,提高链路质量。

Description

异系统间频语共享情况下的干扰抑制方法和设备 本申请要求于 2011 年 6 月 15 日提交中国专利局, 申请号为 201110160752.0, 发明名称为 "异系统间频谱共享情况下的干扰抑制 方法和设备"的中国专利申请的优先权, 其全部内容通过引用结合在 本申请中。 技术领域
本发明涉及通信技术领域,特别涉及一种异系统间频谱共享情况 下的干扰抑制方法和设备。 背景技术
随着移动通信事业的快速的发展, 日益增长的宽带无线通信需求 与有限频谱资源的矛盾日趋明显, 虽然在 LTE ( Long Term Evolution, 长期演进 ) 已采用 OFDM ( Orthogonal Frequency Division Multiplexing , 正交频分复用技术 ), MIMO ( Multiple-Input Multiple-Out-put, 多入多出)等技术来提高频谱利用率, 但是这些并 不能根本上解决有限频谱资源的问题。
IMT ( International Mobile Telecommunication , 国际移动通信) 频段内不同无线接入系统的频谱使用情况随时间和地域而发生变化, 如用 TD-SCDMA ( Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)覆盖室外区域,而 TD-LTE( Time Division- Long Term Evolution, 时分长期演进 )提供热点地区的覆盖, 举例如 写字楼, 在上班时间, 人员大部分集中在写字楼, TD-LTE负载很重, 而在下班或者节假日, 人员分散在室外, TD-SCDMA 负载较重; 随 着网络建设, 移动通信技术的发展, 运营商也正在从 2G ( 2nd Generation , 第二代移动通信系统) 网络向 3G ( 3rd Generation, 第三 代移动通信系统), 甚至 4G ( 4th Generation, 第四代移动通信系统) 网络演进。 新网络在运营初期往往用户数比较少, 网络负载轻, 频谱 空闲, 而旧的网络负载较重, 频谱紧张; 当新网络成熟以后, 用户渐 渐向新网络转移, 导致旧的网络频谱空闲, 而新网络频谱紧张。
一方面适用于蜂窝通讯的频谱资源越来越紧缺,另一方面用户对 数据的传输需求越来越大,无限制的为负载过重的 RAT( Radio Access Technology,无线接入技术 )增加频谱来扩大网络容量是一件不现实的 问题。 通过认知无线电技术实现频谱的灵活共享充分利用空闲的频 谱, 能很大程度上緩解运营商频谱资源紧缺的压力。 比如在 IMT频 段内, 两种多载波的无线接入系统 IMT-2000和 IMT-Advanced, 通过 认知无线电技术, 如图 1所示的应用场景所示, 两种接入网络可以相 互利用对方的空闲载波, 可以很大程度上提高频谱利用效率, 满足运 营商对频谱资源的需求, 緩解频谱资源紧张的局面。
由于不同 RATs之间可以通过信息的交互来获得相互的频谱使用 信息, 特别是对于单一运营商内部的 RATs, 这种信息交互更容易实 现, 频谱资源的动态调整也更容易进行。 为实现不同 RATs的频谱共 享, 可以采用中心控制节点对网络中 RATs频谱使用情况进行集中管 理。 在网络中通过一个中心控制实体 JSM ( Joint Spectrum Management, 联合频谱管理)来完成认知无线电的功能, 具体如图 2 所示。
JSM能收集各个 RATs的空闲频谱信息, 并根据网络配置信息和 频谱政策生成可用空闲频段的相关决策, 并能根据其它 RAT的频谱 需求, 将空闲频段作为 "认知频段" 提供给其它 RAT使用或者收回 "认知频段"。授权 RAT对 "认知频段"具有最高优先权, 其它 RAT 作为认知 RAT在 "认知频段" 上工作; 当授权 RAT要求收回 "认 知频段" 时, JSM调整工作在 "认知频段" 上的认知 RAT到其它空 闲频谱上继续工作, 并将 "认知频段" 退还给授权 RAT。 网络配置 信息包括各个 RAT基站的位置、 配置的载波信息、 最大发射功率等 信息, 并且网络配置信息能根据网络设备 /参数的变更而更新。
现有功率控制方式包括开环功率控制和闭环功率控制。开环功率 控制是在移动台首先检测接收到的基站导频信号功率,如果移动台接 收到的信号功率小, 表明在下行链路上此刻损耗大, 并由此认为上行 链路上的损耗也大。 于是为了补偿这种预测的信道衰落, 移动台也增 大发射功率; 反之, 移动台将减小发射功率。 而闭环功率控制是对反 向开环功率控制不准确性的弥补手段,基站通过对移动台上行接收信 号的测量, 估算上行功率调整量, 在下行通知移动台, 移动台根据功 率调整命令字调整上行发射功率; 反之, 减小发射功率。 同样, 下行 功率控制也采用此类方法。 在实现本发明实施例的过程中,申请人发现现有技术至少存在以 下问题:
在通信网络内实现频谱共享, 当授权系统目标小区频谱空闲时, 可以将此空闲频谱给本区域其它系统作为认知频段使用,工作在此认 知频段上的系统认为为认知系统,由于授权系统目标小区邻区此频段 未必处于空闲状态,认知频段的认知系统会对授权系统目标小区邻区 产生干扰, 从而降低了授权系统链路质量和网络容量。
现有的功率控制措施都是考虑对本小区链路质量和网络容量。在 引入频谱共享机制后,现有的功率控制并不能降低认知系统对授权系 统的干扰, 也不能抑制授权系统对认知系统的干扰。 在网络中的中心 控制实体不能根据授权系统所受干扰情况动态调整认知系统的发射 功率, 从而保护授权系统的机制。
发明内容
本发明实施例提供一种异系统间频谱共享情况下的干扰抑制方 法和设备,解决现有的功率控制并不能降低认知系统和授权系统之间 的相互干扰的问题。
为达到上述目的,本发明实施例一方面提供了一种异系统间频谱 共享情况下的干扰抑制方法, 包括:
限制认知小区在认知频段上的下行最大发射功率和 /或上行最大 发射功率。
另一方面, 本发明实施例还提供了一种网络设备, 至少包括: 通信模块, 用于与所述认知小区的终端设备进行上行和下行通 信, 并与授权小区的基站进行通信;
限制模块,用于限制所述通信模块在认知频段上对所述认知小区 中的终端设备的下行最大发射功率和 /或上行最大发射功率。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优 点:
通过应用本发明实施例的技术方案,限制认知小区在认知频段上 的下行最大发射功率和 /或上行最大发射功率, 从而, 可以有效降低 认知系统和授权系统共享频谱共享的情况下, 两个系统之间的干扰, 包括授权系统对认知系统下行链路的干扰,认知系统对授权系统的上 行和下行链路的干扰, 使认知系统在不干扰 /低干扰情况下使用授权 系统的空闲频谱资源, 提高频谱的利用效率, 提高链路质量。 附图说明
图 1为现有技术中的异系统空闲载波共享的应用场景的示意图; 图 2为现有技术中中心控制实体(JSM ) 的应用示意图; 图 3 本发明实施例提出的一种异系统间频谱共享情况下的干扰 抑制方法的应用场景示意图;
图 4 为本发明实施例所提出的认知小区在认知频段进行下行开 环功率控制处理的流程示意图;
图 5 为本发明实施例所提出的认知小区在认知频段进行下行闭 环功率控制处理的流程示意图;
图 6 为本发明实施例所提出的认知小区在认知频段进行上行闭 环功率控制处理的流程示意图;
图 7 为本发明实施例提出的一种具体应用场景下的异系统间频 谱共享情况下的干扰抑制方法的流程示意图;
图 8为本发明实施例提出的一种网络设备的结构示意图。 具体实施方式
如背景技术所述, 随着移动通信业务的快速发展, 电信运营商将 面临紧缺的频谱资源问题。 但无线通信频段不同 RAT的频谱使用情 况随时间和地域发生变化, 从而导致某些时间某些区域某些 RATs频 谱需求较大, 而此时相同区域的某些 RATs频率相对空闲。
固定的频谱分配政策在短期内并不可能改变,通过认知无线电技 术能实现 RATs之间频谱的共享, 提高频谱的利用率。
认知无线电的首要原则是对授权系统的保护,即认知无线电要在 不干扰空闲频谱上授权系统的情况下使用空闲频谱资源,而授权系统 包括空闲频谱区域的授权系统和空闲频谱邻近区域的授权系统, 因 此,本发明实施例所提出的技术方案的目的就是充分利用空闲频谱区 域的授权系统的频谱资源, 同时减小对邻近区域的授权系统的干扰。
基于上述的思路,本发明实施例所提出的技术方案考虑无线通信 频段内不同 RATs通过认知无线电技术相互利用对方的空闲频谱资源 (对于认知小区为认知频段),认为工作在认知频段的 RAT为认知小 区, 则认知频段的认知小区会对该频段邻区的授权小区产生干扰。
相应的,本发明实施例提出了一种异系统间频谱共享情况下的异 系统间频谱共享情况下的干扰抑制方法,在以认知无线电实现异系统 间频谱共享的条件下, 通过对认知小区在认知频段上的上行 /下行最 大发射功率进行限制, 来降低认知小区对邻近授权小区的上行 /下行 链路的干扰, 同时, 还能降低授权小区对认知小区下行链路的干扰。
在实际应用中,本发明实施例所提出的技术方案也可以适用于其 他具有授权 /非授权(认知), 主 /次, 或者优先级频谱共享的无线通信 系统中, 具体应用场景的变化并不会影响本发明的保护范围。
在本发明所提出的限制认知小区在认知频段上的下行最大发射 功率和 /或上行最大发射功率的技术方案中, 包括下行最大发射功率 和上行最大发射功率两方面的限制, 以下分别进行说明。 (一)认知小区的下行最大发射功率的限制。
在实际的应用场景中,下行最大发射功率的限制进一步包括初始 下行最大发射功率的设定过程,以及后续下行最大发射功率的调整过 程, 分别进行说明如下。
1、 初始下行最大发射功率的设定过程。
具体的处理方式为根据工作在认知频段的邻近授权小区的边缘 终端设备对认知小区的基站的下行信号功率测量情况,确定认知小区 在认知频段上的初始下行最大发射功率。
其中, 需要说明的是, 工作在认知频段的邻近授权小区的边缘终 端设备的确定方式具体包括:
首先, 选择可能受认知小区影响的邻近授权小区, 然后, 被选择 的邻近授权小区根据链路质量选择工作在认知频段的多个终端设备 作为授权小区的边缘终端设备。
由此可以看出,边缘终端设备的实际确定是由被选择的邻近授权 小区来完成的, 当然, 由于对于认知小区来讲, 关系的实际上是边缘 终端设备所测量到的信息, 而不是边缘终端设备本身, 因此, 具体的 边缘终端设备的确定方式可以根据实际的需要进行设定,并由邻近授 权小区来完成相应的确定过程,确定方式的内容变化并不会影响本发 明的保护范围。
基于上述的边缘终端设备的确定过程,相应的初始下行最大发射 功率的设定过程具体包括:
( 1 )接收被选择的邻近授权小区的基站发送的各边缘终端设备 所接收到的认知小区的下行功率测量信息 (即测量值)。
( 2 )根据认知小区的下行功率测量信息, 确定认知小区在认知 频段上的初始下行最大发射功率。
其中,初始下行最大发射功率的确定过程采用开环发射功率控制 策略。
如果认知小区的下行功率测量信息的大小越大,则认知小区在认 知频段上的初始下行最大发射功率的大小越小,如果认知小区的下行 功率测量信息的大小越小,则认知小区在认知频段上的初始下行最大 发射功率的大小越大。
2、 后续下行最大发射功率的调整过程。
具体的处理方式为在认知小区的基站以初始下行最大发射功率 开始工作后,根据工作在认知频段的邻近授权小区的边缘终端设备所 测量得到的干扰测量值,调整认知小区在认知频段上的下行最大发射 功率。
同样, 基于前述的边缘终端设备的确定过程, 相应的后续下行最 大发射功率的调整过程具体包括:
( 1 )接收被选择的邻近授权小区的基站发送的各边缘终端设备 所测量得到的干扰测量值。
( 2 )根据干扰测量值与相应的门限值的关系, 对认知小区在认 知频段上的下行最大发射功率进行调整。
其中, 下行最大发射功率的调整过程采用闭环发射功率控制策 略。
相应的调整规则包括:
如果干扰测量值的大小大于最高门限值,则降低认知小区在认知 频段上的下行最大发射功率;
如果干扰测量值的大小小于最低门限值,则提高认知小区在认知 频段上的下行最大发射功率;
如果干扰测量值的大小在最高门限值与最低门限值之间,则不对 认知小区在认知频段上的下行最大发射功率进行调整。
(二)认知小区的上行最大发射功率的限制。
此处理的执行同样是在(一)中确定了邻近授权小区后所进行的, 具体的依据即为邻近授权小区所反馈的该邻近授权小区的基站所测 得的干扰信息。
即本处理是在认知小区的基站以初始下行最大发射功率开始工 作后,根据工作在认知频段的邻近授权小区的基站所测量得到的干扰 测量值,调整工作在认知频段上的认知小区的终端设备的上行最大发 射功率。
相应的具体处理过程包括:
( 1 )接收被选择的邻近授权小区的基站发送的该基站所测量得 到的干扰测量值。
( 2 )根据干扰测量值与相应的门限值的关系, 对工作在认知频 段上的认知小区的终端设备的上行最大发射功率进行调整。
其中, 上行最大发射功率的调整过程采用闭环发射功率控制策 略。
相应的调整规则包括:
如果干扰测量值的大小大于最高门限值,则降低工作在认知频段 上的认知小区的终端设备的上行最大发射功率;
如果干扰测量值的大小小于最低门限值,则提高工作在认知频段 上的认知小区的终端设备的上行最大发射功率;
如果干扰测量值的大小在最高门限值与最低门限值之间,则不对 工作在认知频段上的认知小区的终端设备的上行最大发射功率进行 调整。
需要进一步指出的是, 上述的(一)中的后续下行最大发射功率 的调整过程, 以及(二)中的处理中所涉及的邻近授权小区的基站所 发送的干扰测量值, 可以是具体的测量参数值, 也可以是根据预设的 规则进行转换后的数据信息, 这样的处理的原因在于, 本技术方案进 行相应的限制调整的依据不是具体干扰测量值的数值大小,而是相应 的干扰是否影响授权小区的正常工作, 因此, 可以设定相应的干扰门 限值, 如果所测得的具体测量参数值超过了干扰门限值, 则上报一个 信息表示超过干扰门限值,反之, 则上报一个表示没有超过干扰门限 值的信息, 然后, 根据接收到的信息进行统计, 如果超过干扰门限值 的情况过多 (即上述的大于最高门限值), 则表示目前的干扰过强, 应降低相应的上行或下行最大发射功率,如果超过干扰门限值的情况 过少 (即上述的小于最低门限值), 则表示目前的干扰比较小, 可容 忍的干扰余量还比较大, 可以提高相应的上行或下行最大发射功率, 如果都不是以上情况, 则表示目前的干扰比较适中, 可以保持目前的 上行或下行最大发射功率限制不作调整。
具体应用上述的哪种方案可以根据实际需要进行调整,这样的变 化并不影响本发明的保护范围。
需要进一步指出的是, 在实际的操作中, 上述的处理过程具体可 以由中心控制实体或认知小区的基站执行,具体执行主体的选择可以 根据实际系统结构部署和功能分配的情况来确定,这样的变化并不影 响本发明的保护范围。
另一方面,上述的认知频段具体为授权系统中未被使用的空闲频 段。
需要指出的是,上述的下行最大发射功率和上行最大发射功率两 方面的限制可以独立的应用于具体的技术场景中,也可以共同应用于 具体的技术场景中以增加干扰的控制效果,这样的变化并不会影响本 发明的保护范围。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优 点:
通过应用本发明实施例的技术方案,限制认知小区在认知频段上 的下行最大发射功率和 /或上行最大发射功率, 从而, 可以有效降低 认知系统和授权系统共享频谱共享的情况下, 两个系统之间的干扰, 包括授权系统对认知系统下行链路的干扰,认知系统对授权系统的上 行和下行链路的干扰, 使认知系统在不干扰 /低干扰情况下使用授权 系统的空闲频谱资源, 提高频谱的利用效率, 提高链路质量。
下面, 结合具体的应用场景, 对本发明实施例所提出的技术方案 进行说明。
首先通过具体的示例场景对现有技术中存在的问题进行说明如 下:
TD-LTE和 TD-SCDMA共站址同覆盖, 两种接入技术都采用多 载波方式, 由于网络新旧过渡, TD-SCDMA存在空闲载波资源, TD-LTE 在负载过重, 通过认知技术 TD-LTE 可以利用共站址下 TD-SCDMA 小区的空闲载波从而提高 TD-LTE 网络容量, 而邻近 TD-SCDMA小区该载波并不处于空闲状态。
下行方面, 工作在 TD-SCDMA空闲载波频段的 TD-LTE下行链 路受到邻近 TD-SCDMA 同频小区基站的干扰, 而邻近 TD-SCDMA 小区下行链路受到工作在空闲频段的 TD-LTE基站的干扰, 下行干扰 在小区边缘更为严重; 上行方面, 工作在空闲频段的 TD-LTE上行链 路受到邻近 TD-SCDMA 同频小区边缘终端的干扰, 而邻近 TD-SCDMA同频小区基站受到工作在空闲频段的 TD-LTE边缘终端 的干扰。
由此可以看出,现有的功率控制措施都是考虑对本小区链路质量 和网络容量。 在引入频谱共享机制后, 现有的功率控制并不能降低认 知小区对授权小区之间的相互干扰,也不能抑制授权小区对认知小区 的干扰。在网络中的中心控制实体不能根据授权系统所受干扰情况动 态调整认知系统的发射功率, 从而保护授权系统的机制。
本发明实施例所提出的技术方案主要是为了解决上述的通过认 知无线电技术实现频谱共享情况下,授权小区与认知小区之间的干扰 抑制问题, 具体的技术思路在于通过对认知小区在认知频段的下行 / 上行进行最大功率约束,来降低由于频谱共享引起的异系统之间的上 /下行干扰。
如图 3所示, 以 TD网络为例, 若 TD-SCDMA与 TD-LTE频谱 共享,同区域的 TD-LTE小区使用 TD-SCDMA小区的空闲载波资源, 认为两个小区分别为目标 TD-LTE小区和目标 TD-SCDMA小区, 此 空闲载波资源为认知频段。
根据本发明实施例的技术方案, 相应的处理方案包括:
目标 TD-LTE小区在认知频段上降低其最大发射功率,减小其覆 盖半径, 从而, 能有效降低对目标小区邻区的 TD-SCDMA边缘用户 的下行链路干扰。
上述方案的处理方式即通过对认知小区在认知频段的上行和下 行最大功率进行限制,来保护与该认知频段同频工作的邻近授权小区 上行和下行链路。 在具体的实施场景中, 根据所采用的功率控制方式 的差异, 相应的处理过程包括以下三个部分:
第一部分、 认知小区在认知频段的下行开环功率控制。
具体的处理过程如图 4所示, 相应的处理过程包括:
步骤 S401、 认知小区的基站选择可能受认知小区影响的邻近授 权小区。
步骤 S402、 被选择的邻近授权小区根据链路质量选择工作在认 知频段的 N个终端设备作为该授权小区的边缘终端设备。
步骤 S403、 被选择的邻近授权小区触发上述的 N个边缘终端设 备测量认知小区的下行导频信号,估计认知小区的基站与上述边缘终 端设备之间的路损,并将路损估计值和边缘终端设备在该时间段的干 扰水平发送给认知小区的基站。
步骤 S404、 认知小区的基站对接收到的结果进行融合处理。 需要指出的是, 在实际的应用场景中, 上述的步骤 S403和步骤 S404 的处理过程实际上是授权小区的基站将边缘终端的干扰测量信 息和位置信息直接上报给认知小区的基站, 之后, 认知小区的基站会 将接收到的相应的信息进行对应性的运算处理,即确定分布在各个位 置范围内的边缘终端当前所实际承受的干扰情况,具体的运算处理的 方法可以是根据具体的路损值确定相应的边缘终端所处的位置范围, 然后, 在各个位置范围内, 通过具体的算法计算相应的边缘终端当前 所承受平均干扰情况, 在此过程中, 位置范围的设定规则, 以及平均 干扰情况的计算算法的内容可以根据实际的需要进行设定,这样的变 化并不影响本发明的保护范围。
另一方面,考虑到授权小区的基站与认知小区的基站之间的数据 传输量, 以及采用上述方案的情况下, 认知小区的基站的处理负荷, 可以由授权小区的基站对边缘终端所上报的相应的信息进行对应性 的运算处理,即由授权小区的基站确定分布在各个位置范围内的边缘 终端当前所实际承受的干扰情况,并将相应的运算处理的结果发送给 认知小区的基站, 当然, 为了进一步减少数据传输量, 可以在授权小 区的基站上配置相应的上报阈值,只有在具体的位置范围中干扰情况 的严重程度超过相应的上报阈值时,才将相应的干扰情况上报给认知 小区的基站, 或者直接将相应的位置范围上报给认知小区的基站, 使 认知小区的基站对相应位置范围的相应下行最大发射功率进行限制。
上述的处理方案可以根据实际需要进行设定,凡是能够使认知小 区的基站获知应该限制下行最大发射功率的位置范围的方案均可以 应用于本发明实施例中, 这样的变化并不影响本发明的保护范围。
步骤 S405、 认知小区的基站根据融合的路损情况及干扰水平, 计算授权小区的终端设备还能承受的干扰,从而确定认知小区在认知 频段的下行最大发射功率。
步骤 S406、 认知小区在认知频段将上述的下行最大发射功率作 为认知小区在认知频段的初始下行最大发射功率,进行下行信号发射 处理。
由以上说明可知,上述的第一部分的处理过程在于确定认知小区 在认知频段的初始下行最大发射功率。
第二部分、 认知小区在认知频段的下行闭环功率控制。
此部分的处理是在第一部分确定了认知小区在认知频段的下行 初始最大发射功率之后进行的, 具体的处理过程如图 5所示, 相应的 处理过程包括:
步骤 S501、 被选择的邻近授权小区定期触发上述 N个边缘终端 设备测量下行链路干扰情况, 并将干扰测量值与门限比较, 并将比较 结果以 lbit信息发送给认知小区的基站。
在具体的实施场景中, 相应的上^艮规则可以为:
干扰测量值 >门限, 则上报 1;
干扰测量值 <门限, 则上报 0。
步骤 S502、 认知小区的基站对干扰上报结果求和。
如果求和值 >门限 , 则执行步骤 S503;
如果求和值〈门限 则执行步骤 S504;
如果门限 A<求和值 <门限 B, 则执行步骤 S505。 具体的 ,上述的处理过程只是本发明实施例所提出的一种具体方 案, 具体上报的数值信息, 以及相应的求和方式只是为了便于说明而 给出的一种优选示例,只要能够使认知小区确定是否触发相应的下行 最大发射功率的限制操作, 具体的上报和判断规则的变化, 并不会影 响本发明的保护范围。
步骤 S503、 认知小区的基站触发认知小区在认知频段的下行最 大发射功率降低一个等级。
步骤 S504、 认知小区的基站允许认知小区在认知频段的下行最 大发射功率提高一个等级。
步骤 S505、 认知小区的基站不对认知小区在认知频段的下行最 大发射作调整。
由以上的说明可以看出,此部分的处理的目的在于根据系统当前 的实际情况对认知小区在认知频段的下行最大发射功率进行调整。
情况三、 认知 Ί、区在认知频段的上行闭环功率控制。
此部分的处理是在第一部分确定了邻近授权小区之后进行的,即 至少在步骤 S401完成之后才可以开始相应的处理, 具体的处理过程 如图 6所示, 相应的处理过程包括:
步骤 S601、 被选择的邻近授权小区的基站测量上行链路干扰情 况, 并将干扰测量值与门限比较, 并将比较结果以 lbit信息发送给认 、区的基站。
在具体的实施场景中, 相应的上^艮规则可以为:
干扰测量值 >门限, 则上报 1;
干扰测量值 <门限, 则上报 0。
步骤 S602、 认知小区的基站对干扰上报结果求和。
如果求和值〉门限 C, 则执行步骤 S603;
如果求和值〈门限 D, 则执行步骤 S604;
如果门限 C<求和值 <门限 D, 则执行步骤 S605。
具体的,上述的处理过程只是本发明实施例所提出的一种具体方 案, 具体上报的数值信息, 以及相应的求和方式只是为了便于说明而 给出的一种优选示例,只要能够使认知小区确定是否触发相应的上行 最大发射功率的限制操作, 具体的上报和判断规则的变化, 并不会影 响本发明的保护范围。
步骤 S603、 认知小区的基站触发工作在认知频段的认知小区终 端设备的上行最大发射功率降低一个等级。
步骤 S604、 认知小区的基站允许工作在认知频段的认知小区终 端设备的上行最大发射功率提高一个等级。
步骤 S605、 认知小区的基站不对工作在认知频段的认知小区终 端设备的上行最大发射作调整。
由以上的说明可以看出,此部分的处理的目的在于才艮据实际的干 扰测量值对工作在认知频段的认知小区终端设备的上行最大发射功 率进行调整。
需要进一步指出的是,上述的三种情况的处理过程都是由认知小 区的基站来实现的, 但是, 在实际的应用场景中, 也可以由中心控制 实体(JSM )来实现上述处理, 这只是将相应功能的执行主体进行更 改, 对于技术方案的具体内容并进行调整, 这样的变化并不影响本发 明的保护范围。
需要说明的是,上述邻近授权小区不同于现有网络中邻小区的概 念, 需要严格考虑小区的覆盖, 发射功率, 天线特性来确定该邻区关 系。
进一步的, 基于包含中心控制实体(JSM ) 的应用场景, 对上述 的技术方案进行说明, 考虑共站址同覆盖的 TD-LTE和 TD-SCDMA 网络间的频谱共享, 网络中通过 JSM 实现空闲载波的分配(在实际 应用中,如果网络系统中不存在 JSM,则由认知小区的基站执行 JSM 的相关功能处理 ), 并假设 TD-LTE利用 TD-SCDMA空闲载波资源, 存在空闲载波的 TD-SCDMA小区为目标 TD-SCDMA小区, 基于上 述的实施场景, 本发明实施例所提出的技术方案如图 7所示, 具体包 括以下步骤:。
步骤 S701、 JSM收集 TD-LTE和 TD-SCDMA的频谱使用情况, 分析可用的空闲频谱资源。
步骤 S702、 若 JSM确定某区域目标 TD-SCDMA存在空闲载波, 而同区域的目标 TD-LTE负载较重, JSM分析目标 TD-LTE是否可利 用目标 TD-SCDMA空闲载波资源。
如果可以, 则执行步骤 S703;
如果不可以, 则结束本流程。
步骤 S703、 JSM 触发受潜在干扰的目标 TD-SCDMA 的邻近 TD-SCDMA小区内工作在上述空闲载波频段上行 RSCP估算路损, 并选择路损最大的 N个终端设备作为小区边缘终端设备。
步骤 S704、 邻近 TD-SCDMA基站触发上述 N个小区边缘终端 设备测量目标 TD-LTE的下行导频信号, 从而估计路损, 同时, 这 N 个终端设备上报最近的干扰测量值,基站将路损估计值和干扰测量值 上传给 JSM。
步骤 S705、 JSM选择上报结果中的最小路损估计值及最大干扰 测量值, 并计算邻近 TD-SCDMA下行目前还能承受的干扰, 从而估 算目标 TD-LTE在认知频段的最大发射功率。
步骤 S706、 JSM配置该目标 TD-LTE, 使 TD-LTE在认知频段生 成辅载波, 其最大发射功率受上述功率限制。
步骤 S703至步骤 S706即前述的初始下行最大发射功率的设定过 程。
步骤 S707、 邻近 TD-SCDMA小区工作在上述空闲频段的 N个 小区边缘的终端设备统计下行链路 ISCP, 将 ISCP与门限比较, 定期 将测量结果以 lbit上报 JSM。
如果 ISCP值〉门限, 则上报 1;
否则, 如果 ISCP值<门限, 则上报 0。
在具体的实施场景中, 门限值为长期统计的 ISCP值的 X倍。 步骤 S708、 JSM对干扰上报结果求和, 并根据求和值与相应门 限值的大小关系进行相应的处理。
若求和值>门限 A, 则触发目标 TD-LTE降低认知频段降下行最 大发射功率一个等级, 若求和值 <门限8, 则允许目标 TD-LTE提高 认知频段最大发射功率一个等级, 否则, 发射功率不作调整。
步骤 S707和步骤 S708即前述的后续下行最大发射功率的调整过 程。
步骤 S709、 邻近 TD-SCDMA基站测量上述空闲频段的上行 ISCP, 并根据测量值与相应门限值的大小关系进行相应的处理。
若一段时间的 ISCP> 限 C, 则触发目标 TD-LTE认知频段的终 端降低发射功率一个等级, 若 ISCP<门限 D, 则允许目标 TD-LTE认 知频段的终端提高发射功率一个等级, 否则, 不对功率作调整。
步骤 S709即前述的认知小区的上行最大发射功率的限制处理过 程。
需要指出的是,步骤 S707和步骤 S708所描述的后续下行最大发 射功率的调整过程, 以及步骤 S709所描述上行最大发射功率的限制 处理过程是相对独立的两个过程,是在初始下行最大发射功率设定完 成并被应用后的处理过程, 没有必然的先后顺序, 上述的需要只是为 了便于说明而给出的标识, 并不会影响本发明的保护范围。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优 点:
通过应用本发明实施例的技术方案,限制认知小区在认知频段上 的下行最大发射功率和 /或上行最大发射功率, 从而, 可以有效降低 认知系统和授权系统共享频谱共享的情况下, 两个系统之间的干扰, 包括授权系统对认知系统下行链路的干扰,认知系统对授权系统的上 行和下行链路的干扰, 使认知系统在不干扰 /低干扰情况下使用授权 系统的空闲频谱资源, 提高频谱的利用效率, 提高链路质量。
为了实现本发明实施例的技术方案,本发明实施例还提供了一种 网络设备, 其结构示意图如图 8所示。
在具体的实施场景中,该网络设备具体可以为认知小区中的终端 设备提供服务, 即为认知小区的基站, 或者, 该网络设备也可以为对 应该认知小区及邻近授权小区的中心控制实体, 该网络设备至少包 括:
通信模块 81 , 用于与认知小区的终端设备进行上行和下行通信, 并与授权小区的基站进行通信;
限制模块 82, 用于限制通信模块 81在认知频段上对认知小区中 的终端设备的下行最大发射功率和 /或上行最大发射功率。
其中, 通信模块 81 , 具体用于:
接收邻近授权小区的基站发送的各边缘终端设备所接收到的认 知小区的下行功率测量信息,以及该邻近授权小区的基站所测量得到 的干扰测量值;
根据限制模块 82所确定的下行最大发射功率, 与认知小区的终 端设备进行下行通信。
进一步的, 限制模块 82, 具体用于:
根据通信模块 81接收到的认知小区的下行功率测量信息, 确定 认知小区在认知频段上的初始下行最大发射功率;
在通信模块 81以初始下行最大发射功率开始工作后, 根据通信 模块 81所接收到的各边缘终端设备所测量得到的干扰测量值, 调整 通信模块 81在认知频段上的下行最大发射功率。
另一方面, 限制模块 82, 还用于根据通信模块 81所接收到的该 邻近授权小区的基站所测量得到的干扰测量值,调整工作在认知频段 上的认知小区的终端设备的上行最大发射功率。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优 点:
通过应用本发明实施例的技术方案,限制认知小区在认知频段上 的下行最大发射功率和 /或上行最大发射功率, 从而, 可以有效降低 认知系统和授权系统共享频谱共享的情况下, 两个系统之间的干扰, 包括授权系统对认知系统下行链路的干扰,认知系统对授权系统的上 行和下行链路的干扰, 使认知系统在不干扰 /低干扰情况下使用授权 系统的空闲频谱资源, 提高频谱的利用效率, 提高链路质量。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明实施例可以通过硬件实现,也可以借助软件加必要的通用硬 件平台的方式来实现。基于这样的理解, 本发明实施例的技术方案可 以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性 存储介质 (可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或网络侧 设备等)执行本发明实施例各个实施场景所述的方法。
本领域技术人员可以理解附图只是一个优选实施场景的示意图, 附图中的模块或流程并不一定是实施本发明实施例所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照 实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位 于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以 合并为一个模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施场景的优劣。 明实施例并非局限于此,任何本领域的技术人员能思之的变化都应落 入本发明实施例的业务限制范围。

Claims

1、一种异系统间频谱共享情况下的干扰抑制方法, 其特征在于, 至少包括以下步骤:
限制认知小区在认知频段上的下行最大发射功率和 /或上行最大 发射功率。
2、 如权利要求 1所述的方法, 其特征在于, 所述限制认知小区 在认知频段上的下行最大发射功率, 具体包括:
根据工作在认知频段的邻近授权小区的边缘终端设备对所述认 知小区的基站的下行信号功率测量情况,确定所述认知小区在认知频 段上的初始下行最大发射功率;
在所述认知小区的基站以所述初始下行最大发射功率开始工作 后,根据工作在认知频段的邻近授权小区的边缘终端设备所测量得到 的干扰测量值, 调整所述认知小区在认知频段上的下行最大发射功 率。
3、 如权利要求 2所述的方法, 其特征在于, 所述工作在认知频 段的邻近授权小区的边缘终端设备的确定方式, 具体包括:
选择可能受所述认知小区影响的邻近授权小区;
被选择的邻近授权小区根据链路质量选择工作在认知频段的多 个终端设备作为所述授权小区的边缘终端设备。
4、 如权利要求 3所述的方法, 其特征在于,
所述根据工作在认知频段的邻近授权小区的边缘终端设备对所 述认知小区的基站的下行信号功率测量情况,确定所述认知小区在认 知频段上的初始下行最大发射功率, 具体包括:
接收所述被选择的邻近授权小区的基站发送的各边缘终端设备 所接收到的所述认知小区的下行功率测量信息;
根据所述认知小区的下行功率测量信息,确定所述认知小区在认 知频段上的初始下行最大发射功率;
其中,所述初始下行最大发射功率的确定过程采用开环发射功率 控制策略, 如果所述认知小区的下行功率测量信息的大小越大, 则所 述认知小区在认知频段上的初始下行最大发射功率的大小越小,如果 所述认知小区的下行功率测量信息的大小越小,则所述认知小区在认 知频段上的初始下行最大发射功率的大小越大;
或,所述根据工作在认知频段的邻近授权小区的边缘终端设备所 测量得到的干扰测量值,调整所述认知小区在认知频段上的下行最大 发射功率, 具体包括:
接收所述被选择的邻近授权小区的基站发送的各边缘终端设备 所测量得到的干扰测量值;
根据所述干扰测量值与相应的门限值的关系,对所述认知小区在 认知频段上的下行最大发射功率进行调整;
其中,所述下行最大发射功率的调整过程采用闭环发射功率控制 策略, 如果所述干扰测量值的大小大于最高门限值, 则降低所述认知 小区在认知频段上的下行最大发射功率,如果所述干扰测量值的大小 小于最低门限值,则提高所述认知小区在认知频段上的下行最大发射 功率, 如果所述干扰测量值的大小在最高门限值与最低门限值之间, 则不对所述认知小区在认知频段上的下行最大发射功率进行调整。
5、 如权利要求 2所述的方法, 其特征在于, 所述限制认知小区 在认知频段上的上行最大发射功率, 具体包括:
在所述认知小区的基站以所述初始下行最大发射功率开始工作 后,根据工作在认知频段的邻近授权小区的基站所测量得到的干扰测 量值,调整所述认知小区的终端设备在认知频段上的上行最大发射功 率。
6、 如权利要求 5所述的方法, 其特征在于, 所述根据工作在认 知频段的邻近授权小区的基站所测量得到的干扰测量值,调整所述认 知小区的终端设备在认知频段上的上行最大发射功率, 具体包括: 接收所述被选择的邻近授权小区的基站发送的所述基站所测量 得到的干扰测量值;
根据所述干扰测量值与相应的门限值的关系,对所述认知小区的 终端设备在认知频段上的上行最大发射功率进行调整; 其中,所述上行最大发射功率的调整过程采用闭环发射功率控制 策略, 如果所述干扰测量值的大小大于最高门限值, 则降低所述认知 小区的终端设备在认知频段上的上行最大发射功率,如果所述干扰测 量值的大小小于最低门限值,则提高所述认知小区的终端设备在认知 频段上的上行最大发射功率,如果所述干扰测量值的大小在最高门限 值与最低门限值之间,则不对所述认知小区的终端设备在认知频段上 的上行最大发射功率进行调整。
7、 如权利要求 1至 6中任意一项所述的方法, 其特征在于, 所 述限制认知小区在认知频段上的下行最大发射功率和 /或上行最大发 射功率具体由中心控制实体或所述认知小区的基站执行。
8、 如权利要求 1至 6中任意一项所述的方法, 其特征在于, 所 述认知频段, 具体为:
授权系统中未被使用的空闲频段。
9、 一种网络设备, 其特征在于, 至少包括:
通信模块, 用于与所述认知小区的终端设备进行上行和下行通 信, 并与授权小区的基站进行通信;
限制模块,用于限制所述通信模块在认知频段上对所述认知小区 中的终端设备的下行最大发射功率和 /或上行最大发射功率。
10、如权利要求 9所述的网络设备,其特征在于,所述通信模块, 具体用于:
接收邻近授权小区的基站发送的各边缘终端设备所接收到的所 述认知小区的下行功率测量信息,以及所述邻近授权小区的基站所测 量得到的干扰测量值;
根据所述限制模块所确定的下行最大发射功率,与所述认知小区 的终端设备进行下行通信。
11、 如权利要求 10所述的网络设备, 其特征在于,
所述限制模块, 具体用于:
根据所述通信模块接收到的所述认知小区的下行功率测量信息, 确定所述认知 Ί、区在认知频段上的初始下行最大发射功率; 在所述通信模块以所述初始下行最大发射功率开始工作后,根据 所述通信模块所接收到的各边缘终端设备所测量得到的干扰测量值, 调整所述通信模块在认知频段上的下行最大发射功率;
或, 所述限制模块, 还用于:
根据所述通信模块所接收到的所述邻近授权小区的基站所测量 得到的干扰测量值,调整所述认知小区的终端设备在认知频段上的上 行最大发射功率。
12、 如权利要求 9至 11中任意一项所述的网络设备, 其特征在 于, 具体为:
所述认知小区的基站; 或,
对应所述认知小区和所述邻近授权小区的中心控制实体。
PCT/CN2012/073047 2011-06-15 2012-03-26 异系统间频谱共享情况下的干扰抑制方法和设备 WO2012171386A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110160752.0 2011-06-15
CN201110160752.0A CN102833760B (zh) 2011-06-15 2011-06-15 异系统间频谱共享情况下的干扰抑制方法和设备

Publications (1)

Publication Number Publication Date
WO2012171386A1 true WO2012171386A1 (zh) 2012-12-20

Family

ID=47336666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073047 WO2012171386A1 (zh) 2011-06-15 2012-03-26 异系统间频谱共享情况下的干扰抑制方法和设备

Country Status (2)

Country Link
CN (1) CN102833760B (zh)
WO (1) WO2012171386A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010313A (zh) * 2014-01-13 2014-08-27 浙江工业大学 一种基于纳什博弈的协作抗干扰频谱接入方法
CN104105185A (zh) * 2013-04-03 2014-10-15 电信科学技术研究院 设备到设备通信中的发射功率控制方法、装置及系统
CN112584501A (zh) * 2019-09-29 2021-03-30 成都鼎桥通信技术有限公司 单向频段配对处理方法、装置、基站设备和可读存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105532044B (zh) * 2013-07-31 2019-05-28 华为技术有限公司 数据帧的发送、接收方法和装置
WO2015109439A1 (en) * 2014-01-21 2015-07-30 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for coordinating resource scheduling between wireless networks
EP3097721B1 (en) 2014-01-21 2019-08-28 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatuses for coordinating resource scheduling between wireless networks
CN106465131B (zh) 2014-04-09 2020-01-21 瑞典爱立信有限公司 用于协调不同网络之间的资源的方法和装置
WO2016161633A1 (zh) * 2015-04-10 2016-10-13 华为技术有限公司 一种无线网络通信的方法和接入点设备
WO2017041252A1 (zh) * 2015-09-09 2017-03-16 华为技术有限公司 一种接入网设备、终端设备、数据传输方法及系统
CN109951852B (zh) * 2017-12-20 2021-08-13 华为技术有限公司 信号处理方法、装置及系统
CN110032060B (zh) * 2018-01-11 2022-05-17 西门子能源有限公司 过程控制方法、过程控制装置和存储介质
CN109068332B (zh) * 2018-09-26 2022-10-25 中国联合网络通信集团有限公司 数据传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101889461A (zh) * 2007-12-06 2010-11-17 皇家飞利浦电子股份有限公司 分布式频谱认知无线电网络中的频道管理方法
CN102006124A (zh) * 2009-08-28 2011-04-06 华为技术有限公司 频谱预测方法、装置和系统
CN102017465A (zh) * 2008-05-08 2011-04-13 三星电子株式会社 在认知无线电无线通信系统中查询信道状态信息的装置和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8909279B2 (en) * 2007-08-10 2014-12-09 Qualcomm Incorporated Adaptation of transmit power for neighboring nodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101889461A (zh) * 2007-12-06 2010-11-17 皇家飞利浦电子股份有限公司 分布式频谱认知无线电网络中的频道管理方法
CN102017465A (zh) * 2008-05-08 2011-04-13 三星电子株式会社 在认知无线电无线通信系统中查询信道状态信息的装置和方法
CN102006124A (zh) * 2009-08-28 2011-04-06 华为技术有限公司 频谱预测方法、装置和系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105185A (zh) * 2013-04-03 2014-10-15 电信科学技术研究院 设备到设备通信中的发射功率控制方法、装置及系统
US9832776B2 (en) 2013-04-03 2017-11-28 China Academy Of Telecommunications Technology Method, network device, and system for transmit power control during device to-device communication
CN104010313A (zh) * 2014-01-13 2014-08-27 浙江工业大学 一种基于纳什博弈的协作抗干扰频谱接入方法
CN112584501A (zh) * 2019-09-29 2021-03-30 成都鼎桥通信技术有限公司 单向频段配对处理方法、装置、基站设备和可读存储介质
CN112584501B (zh) * 2019-09-29 2022-05-31 成都鼎桥通信技术有限公司 单向频段配对处理方法、装置、基站设备和可读存储介质

Also Published As

Publication number Publication date
CN102833760B (zh) 2015-08-12
CN102833760A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
WO2012171386A1 (zh) 异系统间频谱共享情况下的干扰抑制方法和设备
US10506480B2 (en) Method and apparatus for enhancing measurement in wireless communication system
US10055682B2 (en) Self-optimizing deployment cascade control scheme and device based on TDMA for indoor small cell in interference environments
US20150304889A1 (en) Load balancing method and network control node
US8903375B2 (en) Compensating for coverage holes in a cellular radio system
US8463190B2 (en) System and method for interference reduction in self-optimizing networks
CN103596258B (zh) 功率控制方法及基站
WO2012174916A1 (zh) 异系统间频谱共享情况下的干扰抑制方法和设备
CN102017764A (zh) 估计和限制小区间干扰
KR20110071105A (ko) 동적 토폴로지 적응
CN103493551A (zh) 用于具有相同小区id的分布式rrh系统的上行链路功率控制方案
CN104412668B (zh) 方法和设备
Gerasimenko et al. Characterizing performance of load-aware network selection in multi-radio (WiFi/LTE) heterogeneous networks
US20140323119A1 (en) Method of and apparatus for service coverage management in a radio communication network
EP2876936B1 (en) Method and node b for determining cell switching
US20140206374A1 (en) Method and apparatus for dynamic spectrum management
Pradini et al. Near-optimal practical power control schemes for D2D communications in cellular networks
CN102065501A (zh) 一种小区切换方法和设备
US20170272970A1 (en) Network node and a method performed thereby for congenstion control of a radio base station
US8644871B2 (en) Method and arrangement for maintaining cell coverage
Wang et al. Uplink inter-site carrier aggregation between macro and small cells in heterogeneous networks
Tomić et al. Soft handover and downlink capacity in UMTS network
WO2011130914A1 (en) Method for controlling inter-cell interference in cellular communication arrangement
Cierny et al. On TDD cross-tier in-band interference mitigation: A practical example
Du et al. An interference-aware resource allocation scheme for self-organizing heterogeneous networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800262

Country of ref document: EP

Kind code of ref document: A1