WO2012171302A1 - Pusch信道解调性能测试方法及装置 - Google Patents

Pusch信道解调性能测试方法及装置 Download PDF

Info

Publication number
WO2012171302A1
WO2012171302A1 PCT/CN2011/083491 CN2011083491W WO2012171302A1 WO 2012171302 A1 WO2012171302 A1 WO 2012171302A1 CN 2011083491 W CN2011083491 W CN 2011083491W WO 2012171302 A1 WO2012171302 A1 WO 2012171302A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
channel
service data
tested
base station
Prior art date
Application number
PCT/CN2011/083491
Other languages
English (en)
French (fr)
Inventor
邢斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012171302A1 publication Critical patent/WO2012171302A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/24Testing correct operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present invention relates to the field of communications, and in particular to a PUSCH (Physical Uplink Shared)
  • PUSCH Physical Uplink Shared
  • Channel, physical uplink shared channel Channel demodulation performance test method and device.
  • LTE Long Term Evolution
  • the demodulation performance of a channel has certain requirements, and the performance of the channel demodulation directly affects the performance of the LTE system.
  • 3GPP TS 36.141 (3rd Generation Partnership Project Technical Specification Group; Radio Access Network; Evolved Universal Terrestrial Radio Access; Base Station conformance testing; 3rd Generation Partnership Project Technical Specification Group; Radio Access Network; Evolved Global Terrestrial Radio Access;
  • the Base Station Performance Test Protocol (abbreviated as 141 protocol) proposes the test specifications for the uplink and downlink channels in the LTE system under various channel conditions and mobile scenarios, and the minimum requirements for throughput under certain test conditions. For example, when the scene EVA (Extended Vehicular A model) 5 Hz is selected for the PUSCH channel, the FRC (Fixed Reference Channel) is A3-l, and the SNR (Signal to Noise Ratio) is -2.1 dB.
  • BLER Bit Error Rate
  • a method for testing an uplink PUSCH channel demodulation performance including: triggering PUSCH service data for testing, transmitting the PUSCH service data through a PUSCH channel to be tested; and acquiring a PUSCH channel to be tested on a base station side
  • the HARQ feedback generated after the HARQ (Hybrid Automatic Repeat Request) processing is performed on the PUSCH service data, and the TA generated by the base station side adjusting the time offset of the PUSCH service channel to be tested is obtained. ( Timing Advance, timing advance) adjustment value; adjusting the transmission of the PUSCH service data according to the HARQ feedback and the TA adjustment value, and performing the test cyclically.
  • the PUSCH channel to be tested performs CRC on the PUSCH service data at the base station side (Cyclical Redundancy Check);
  • the PUSCH channel to be tested generates HARQ feedback according to the result of the CRC on the base station side; and the HARQ feedback is obtained.
  • the PUSCH channel to be tested acquires the PUSCH of the uplink PHY (Physical Layer) measurement on the base station side
  • the TA value of the channel determining whether the TA needs to be adjusted according to a predetermined TA algorithm, and if necessary, generating a valid timing advance command TAC (Timing Advance Command) containing the TA adjustment value, if not required, generating Invalid TAC; Get a valid TAC.
  • TAC Timing Advance Command
  • the method further includes: calculating, in real time, the BLER of the HARQ process performed by the base station side on the PUSCH service data by the base station side.
  • the method Before triggering the PUSCH service data for testing, before sending the PUSCH service data by using the PUSCH channel to be tested, the method further includes: setting a PUSCH service parameter according to a user operation, where the service parameters include: a channel bandwidth of the service data, AWGN (Additive White) Gaussion Noise, RB (Resource Block Resource Block) starting position, RB number, SR, HARQ feedback mode, RV (Redundancy Version) sequence, maximum number of transmissions occupied by channel and PUSCH service data , mobile scene, MIMO (Multiple Input Multiple Output) mode.
  • AWGN Additional White
  • RB Resource Block Resource Block
  • a PUSCH channel demodulation performance testing apparatus including: a service triggering module, configured to trigger PUSCH service data for testing, and send the PUSCH service data by using a PUSCH channel to be tested; a module, configured to obtain the HARQ feedback generated by performing the HARQ process on the PUSCH service data on the base station side of the PUSCH channel to be tested, and the adjustment obtaining module is configured to acquire the time that the PUSCH channel to be tested is on the base station side to the PUSCH channel to be tested.
  • the TA adjustment value generated by the adjustment; the transmission adjustment module is configured to adjust the transmission of the PUSCH service data according to the HARQ feedback and the adjustment value of the TA, and perform the test cyclically.
  • the feedback acquisition module is configured to perform CRC on the PUSCH service data at the base station on the PUSCH channel to be tested, and generate HARQ feedback according to the result of the CRC, and obtain the HARQ feedback.
  • the adjustment acquisition module is configured to acquire the TA value of the PUSCH channel to be tested of the uplink PHY measurement on the base station side of the PUSCH channel to be tested, and obtain a valid TAC including the TA adjustment value according to the predetermined TA algorithm, and obtain the valid TAC.
  • the device further includes: a performance statistics module, configured to calculate, in real time, a BLER that performs HARQ processing on the PUSCH service data on the base station side of the PUSCH channel to be tested.
  • the device further includes: a parameter setting module, configured to set a PUSCH service parameter according to a user operation, where the service parameter includes: a channel bandwidth of the service data, an AWGN channel, a resource block RB start position occupied by the PUSCH service data, an RB number, SR, HARQ feedback mode, RV sequence, maximum number of transmissions, moving scene, MIMO mode.
  • the PUSCH service data for testing is transmitted through the PUSCH channel to be tested, and the PUSCH channel performance is cyclically tested and verified by using the TA adjustment and the HARQ feedback function of the PUSCH channel, and the prior art is solved. Lack of a comprehensive test method for channel performance, and thus achieve a comprehensive and effective evaluation of PUSCH channel performance.
  • FIG. 1 is a flowchart of a PUSCH channel demodulation performance test method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a vector signal generator according to an example of the present invention
  • FIG. 4 is a flowchart of HARQ processing when a HARQ entity requests a new transmission according to an example of the present invention
  • FIG. 5 is a HARQ when a HARQ entity requests a retransmission according to an example of the present invention.
  • 6 is a flowchart of a process for a HARQ entity to achieve a maximum number of transmissions according to an example of the present invention
  • FIG. 7 is a flowchart of a TA adjustment process according to an example of the present invention
  • FIG. 8 is a PUSCH channel solution according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a PUSCH channel demodulation performance testing apparatus according to a preferred embodiment of the present invention.
  • FIG. 1 is a flowchart of a PUSCH channel demodulation performance testing method according to an embodiment of the present invention.
  • a PUSCH channel demodulation performance test method includes: Step S102: Trigger PUSCH service data for testing, and send the PUSCH service data by using a PUSCH channel to be tested; Step S104, acquiring the foregoing The PUSCH channel to be tested performs the foregoing PUSCH service data on the base station side.
  • Step S106 the TA adjustment value generated by adjusting the time offset of the PUSCH channel to be tested on the base station side by the base station side is obtained; Step S108, according to the foregoing HARQ feedback and the TA adjustment value
  • the transmission of the PUSCH service data is adjusted, and the test is performed cyclically.
  • the above method utilizes the HARQ feedback function and the TA adjustment function of the PUSCH channel, and the channel performance is reflected by these two functions.
  • step S104 may further include the following processing:
  • the PUSCH channel to be tested performs CRC check on the PUSCH service data on the base station side; (2) the PUSCH channel to be tested generates HARQ feedback according to the result of the CRC on the base station side;
  • step S104 the PUSCH channel to be tested performs HARQ processing on the PUSCH service data on the base station side, which mainly means that the base station side generates HARQ feedback according to the CRC check result of the PUSCH service data for testing, that is, ACK (acknowledgment character) / NACK (non- Confirm the character) feedback.
  • the ultimate goal is to obtain the generated HARQ feedback as the basis for evaluating channel performance.
  • step S106 may further include the following processing: (1) The above-mentioned PUSCH channel to be tested acquires the TA value of the PUSCH channel to be tested measured by the uplink PHY on the base station side;
  • the TA of the PUSCH channel is used for the timing of the PUSCH channel, and the transmission time offset of the PUSCH channel is determined according to the TA value, which is essential for correct transmission of traffic on the PUSCH.
  • the TA adjustment is mainly performed by the TAC. Therefore, the test of the demodulation performance of the PUSCH channel can be judged by the issuance of the TAC. From the perspective of testing, the main purpose is to obtain an effective TAC to adjust the TA in real time. Whether the TA adjustment is accurate or whether the test requirements are met is mainly reflected by whether the service data can pass the CRC check smoothly. Accuracy will inevitably lead to the failure of the business data CRC check.
  • the step S108 may further include the following process: calculating, in real time, the BLER of the HARQ process performed on the PUSCH service data by the base station side of the PUSCH channel to be tested. Whether the demodulation performance of the PUSCH service channel to be tested meets the requirements, one of the most important indicators is the statistical value of the BLER of the service data. The accuracy of the TA adjustment can also be reflected in the statistical value of the BLER. Therefore, the current BLER value can be counted in real time to intuitively reflect the demodulation performance of the PUSCH traffic channel to be tested.
  • the method further includes the following steps: setting the service parameter of the PUSCH service according to the operation of the user, where the service parameter includes: a channel bandwidth of the service data, an AWGN channel, and an RB start position occupied by the PUSCH service data, RB number, SR, HARQ feedback mode, RV sequence, maximum number of transmissions, moving scene, MIMO mode.
  • the service parameters of the PUSCH service used for testing can be set as needed to better achieve the purpose of testing.
  • the PUSCH service used for testing can be triggered by a vector signal generator, and the principle thereof is as shown in FIG.
  • the test method according to the above preferred embodiment is combined with the 141 protocol to include the following steps: Step S302, configuring a vector signal generator to connect the instrument to the radio unit of the base station, according to the FRC specified in the 141 protocol, AWGN, fading (fading model), SR and other parameters of the configuration instrument; Step S304, the vector signal generator sends PUSCH service data to the base station side, that is, generates service data according to a certain channel model; step S306, the base station stores the received PUSCH data in a specified BUFFER (buffer register), and measures the measured The TA value is also stored in the specified BUFFER; Step S308, the base station generates feedback as ACK or NACK according to the CRC demodulation result of the service data.
  • Step S302 configuring a vector signal generator to connect the instrument to the radio unit of the base station, according to the FRC specified in the 141 protocol, AWGN, fading (fading model), SR and other parameters of the configuration instrument
  • Step S304 the vector signal generator
  • the HARQ feedback message at the same time, determining the TAC command to be sent according to the TA value on the PUSCH channel of the vector signal generator measured by the uplink PHY, and forming the data into a data packet according to the interface definition. Finally, the packet is The data is sent to the interface buffer through the SRIO (Serial Rapid 10) channel; in step S310, the data stored in the interface buffer address is sent to the feedback receiving interface of the vector signal generator, and the vector signal generator adjusts according to the feedback result after obtaining the feedback.
  • the data is transmitted, that is, the PUSCH service data of the next TTI (Transmission Time Interval) is generated, and the test is performed cyclically. More specifically, the above test process includes the following steps:
  • the base station side receives the PUSCH service data and stores it in the designated BUFFER, and stores the TA value of the uplink PHY measurement into the specified BUFFER.
  • the processed PUSCH service data is processed according to the uplink HARQ mechanism, which is mainly performed by the uplink scheduler of the base station; the HARQ feedback is a direct reflection of the performance of the PUSCH channel, and the transmission condition of the service can be seen from the feedback ACK/NACK. If the HARQ entity requests a new transmission, the HARQ processing flow is as shown in FIG.
  • Step S402 setting CURRENT_TX_B (for indicating the number of transmission times) to 0; Step S404, setting CURRENT_IRV (for indicating the RV value) to Step S406, storing the related MAC PDU in the HARQ buffer; Step S408, storing the uplink grant in the HARQ entity; Step S410, setting HARQ_FEEDBACK (for indicating the feedback of the HARQ) to be an ACK; Step S412, generating a transport block; Step S414, instructing the physical layer to generate a transmission with the CURRENT_IRV in the specified TTI; Step S416, CURRENT IRV++, ending.
  • Step S502 CURRENT TX B++
  • Step S504 whether the retransmission time is a measurement gap, if yes, then, otherwise, go to the next step
  • Step S506 uplink Whether it is allocated by the PDCCH (Physical Downlink Control Channel), if yes, go to step S512, otherwise go to the next step
  • Step S508, set the value of CURRENT_IRV to the value in the uplink grant
  • Step S510 set HARQ_FEEDBACK NACK
  • Step S512 whether the corresponding data receives the ACK, if yes, go to step S520, otherwise go to the next step
  • Step S516, instruct the physical layer to generate the transmission with the CURRENT_IRV in the specified TTI
  • Step S518, CURRENT IRV++ ending
  • step S520 saving the data in the HARQ buffer area, and ending.
  • Step S602 determining whether CURRENT_TX_B is equal to the maximum number of retransmissions, and if yes, proceeding to step S604, if not, ending; step S604, determining whether to receive Go to ACK, if yes, then end, if no, go to step S606; Step S606, notify the HARQ entity; Step S608, determine whether the transmission corresponds to CCCH (Common Control Channel), if yes, then Go to step S610, if no, go to step S612; Step S610, notifying an RRC (Radio Resource Control) entity; Step S612, clearing the HARQ Buffer, and ending.
  • CCCH Common Control Channel
  • Step S702 Acquire the TA value reported by the PHY; Step S704, determine whether the value is an invalid value, if it is an invalid value, go to step S710, otherwise go to the next step.
  • Step S706 whether the value is an abnormal value, if the value is abnormal, go to step S710, otherwise go to the next step;
  • Step S708 store the TA value reported by the PHY into the circular buffer;
  • Step S710 save the previous average value
  • Step S712 calculating the mean value of the circular buffer;
  • Step S714 smoothing the average value;
  • TAC needs to be sent, store the TAC value in the corresponding cache address of the interface, and set the corresponding flag bit to indicate that the TTI needs to send TAC.
  • the two pieces of data are stored in the specified BUFFER, and a data packet is combined and sent to the vector signal generator.
  • FIG. 8 is a structural diagram of a PUSCH channel demodulation performance testing apparatus according to an embodiment of the present invention. As shown in FIG.
  • the PUSCH channel demodulation performance testing apparatus includes: a service triggering module 802, configured to trigger PUSCH service data for testing, and send the PUSCH service data by using a PUSCH channel to be tested;
  • the module 804 is connected to the service triggering module 802, and is configured to obtain the HARQ feedback generated by the base station side after performing HARQ processing on the PUSCH service data by the base station side, and the adjustment obtaining module 806 is connected to the service triggering module 802, and is configured to obtain The TA adjustment value generated by the base station side adjusting the time offset of the PUSCH channel to be tested on the base station side;
  • the sending adjustment module 808 is connected to the feedback obtaining module 804 and the adjustment obtaining module 806, and is set according to the foregoing HARQ feedback and The adjustment value of the TA is adjusted to transmit the PUSCH service data, and the test is performed cyclically.
  • the above device utilizes the HARQ feedback function and the TA adjustment function of the PUSCH channel, and the channel performance is reflected by these two functions.
  • the TA on the PUSCH channel is used for the timing of the PUSCH channel, and the transmission time offset of the PUSCH is determined according to the TA value, which is crucial for the correct transmission of the traffic on the PUSCH, and the HARQ feedback is a direct reflection of the PUSCH channel performance. Therefore, the channel can be fully tested by HARQ feedback and TA adjustment. Performance.
  • the above device is also provided with a feedback adjustment function, that is, adjusting the transmission of the PUSCH service data according to the HARQ feedback and the TA adjustment value, and performing the test cyclically, thereby ensuring the validity of the test.
  • the service triggering module 802 can implement the principle of the vector signal generator, and the device can simulate the generated vector signal, and combine various channel models and mobile scenes that are provided by the device to complete various tests of the PUSCH channel.
  • the feedback obtaining module 804 may be configured to perform CRC (check) on the PUSCH service data on the base station side of the PUSCH channel to be tested, and generate HARQ feedback according to the result of the CRC, and obtain the HARQ feedback.
  • the test of the PUSCH channel essentially tests the performance of the channel on the base station side.
  • the feedback obtaining module 804 is mainly used to acquire HARQ feedback generated by the base station.
  • the specific processing needs to be completed on the base station side, and the data collection is completed in the uplink PHY, including: collecting uplink PUSCH service data, storing the data in the specified BUFFER, and performing CRC check to generate a CRC OK or CRC ERROR;
  • the processing of the service data is completed in the scheduler, including: processing the service data stored in the specified BUFFER according to the uplink PHY: CRC OK or CRC ERROR, performing feedback ACK/NACK processing, that is, generating HARQ feedback; final feedback acquisition
  • the module 804 can obtain the HARQ feedback through the FPGA (Field Programmable Gate Array).
  • the feedback obtaining module 804 can send the HARQ feedback to the transmission adjustment module 808 as a basis for adjusting the service data transmission.
  • the adjustment acquisition module 806 may be configured to acquire the TA value of the PUSCH channel to be tested of the uplink PHY measurement on the base station side of the PUSCH channel to be tested, and generate a valid TAC including the TA adjustment value according to a predetermined TA algorithm. , get the valid TAC.
  • the TA of the PUSCH channel is used for the timing of the PUSCH channel, and the transmission time offset of the PUSCH channel is determined according to the TA value, which is essential for correct transmission of traffic on the PUSCH.
  • the TA adjustment is mainly performed by the TAC. Therefore, the test of the demodulation performance of the PUSCH channel can be judged by the issuance of the TAC.
  • the main function of the adjustment acquisition module 806 is to obtain an adjustment value of the TA or to obtain a valid TAC including the TA adjustment value.
  • the specific TA adjustment process needs to be completed by the base station, and the data collection is completed in the uplink PHY, that is, the TA value of the PUSCH channel measured by the uplink PHY is collected and stored in the designated BUFFER; the TA adjustment process is completed in the scheduler, that is, according to The TA value of the PUSCH channel measured by the uplink PHY is processed by the TAC command; the final adjustment acquisition module 806 can complete the acquisition of the TA adjustment value by using the FPGA, and then the adjustment acquisition module 806 can send the TA adjustment value to the transmission adjustment module 808. Adjust the basis for sending business data.
  • the data collection is completed in the uplink PHY, that is, the TA value of the PUSCH channel measured by the uplink PHY is collected and stored in the designated BUFFER; the TA adjustment process is completed in the scheduler, that is, according to The TA value of the PUSCH channel measured by the uplink PHY is processed by the TAC command; the final adjustment acquisition module 806 can complete the acquisition of the
  • the PUSCH channel demodulation performance testing apparatus may further include:
  • the performance statistics module 810 is connected to the transmission adjustment module 808 and configured to perform real-time statistics on the BLER of the HARQ process performed on the PUSCH service data by the base station side of the PUSCH channel to be tested. Whether the demodulation performance of the PUSCH channel to be tested meets the requirements, one of the most important indicators is the BLER statistic value of the service data. The accuracy of the TA adjustment can also be reflected in the BLER statistic value.
  • the performance statistics module 810 can calculate the current BLER statistics in real time and intuitively reflect the demodulation performance of the PUSCH service channel to be tested. Preferably, as shown in FIG.
  • the PUSCH channel demodulation performance testing apparatus may further include: a parameter setting module 800, connected to the service triggering module 802, configured to set the PUSCH service according to the operation of the user.
  • the service parameters include: channel bandwidth of the service data, AWGN channel, RB location, number of RBs, SNR, HARQ feedback mode, maximum number of transmissions, mobile scenario, MIMO mode.
  • the parameter setting module 800 enables the user to test the service parameters of the PUSCH service for testing according to requirements, so as to better achieve the purpose of testing.
  • the technical solution provided by the present invention solves the problem that the test scheme lacks the test scheme and the evaluation result of the test result is not uniform in the PUSCH channel demodulation performance test in the LTE system, and combines the two services on the PUSCH channel. : TA adjustment and HARQ feedback and the interleaving of these two services.
  • the demodulation performance of the PUSCH channel is tested by the TA adjustment and HARQ feedback mechanism, and the processing capability of the PUSCH channel in the multi-service situation can be effectively tested.
  • the technical solution provided by the present invention can effectively evaluate the performance of the PUSCH channel, improve the efficiency of the performance test of the LTE system, provide reference for testing other channel performances, and provide reference for the design and implementation of the LTE system, so that the designer can
  • the system has a comprehensive understanding of the performance, laying the foundation for the system's efficiency and performance improvement, and has great significance for the implementation of the LTE system.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种PUSCH信道解调性能测试方法及装置,上述方法包括:触发用于测试的PUSCH业务数据,通过待测PUSCH信道发送该PUSCH业务数据;获取待测PUSCH信道在基站侧对上述PUSCH业务数据进行HARQ处理后生成的HARQ反馈;获取待测PUSCH信道在基站侧对上述待测PUSCH信道的时偏进行调整而生成的TA调整值;根据HARQ反馈和TA调整值调整上述PUSCH业务数据的发送,循环地进行测试。通过本发明提供的技术方案,解决了现有技术中缺乏信道性能综合测试手段的问题,进而达到了全面有效的评测PUSCH信道性能的效果。

Description

PUSCH信道解调性能测试方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种 PUSCH ( Physical Uplink Shared
Channel, 物理上行共享信道) 信道解调性能测试方法及装置。 背景技术 在 LTE (Long Term Evolution,长期演进) 系统中, 对信道的解调性能有一定的要 求, 信道解调性能的好坏直接影响 LTE系统的性能。 当前已经存在多种信道性能测试 方法和装置, 例如, 矢量信号发生器和接收机测试仪都可以满足提供信道性能测试的 多种信道模型和移动场景。 3GPP TS 36.141 (3rd Generation Partnership Project Technical Specification Group; Radio Access Network; Evolved Universal Terrestrial Radio Access; Base Station conformance testing, 第 3代合作伙伴计划技术规范组; 无线接入网; 演进 型全球地面无线接入; 基站性能测试)协议 (简称为 141协议)提出了对于 LTE系统 中上下行信道在各种信道条件、 移动场景下的测试规范以及吞吐量在一定测试条件下 的最低要求。 例如, 针对 PUSCH信道, 选择场景 EVA (Extended Vehicular A model) 5Hz, FRC (Fixed Reference Channel, 固定参考信道) 为 A3-l, SNR ( Signal to Noise Ratio, 信噪比)为 -2.1dB时, 要求 BLER (BLock Error Rate, 误块率)小于等于 30%。 而目前对于 141协议, 没有一种综合测试手段用于进行信道性能的测试。 发明内容 本发明提供了一种 PUSCH信道解调性能测试方法及装置, 以至少解决上述问题。 根据本发明的一个方面, 提供了一种上行 PUSCH信道解调性能测试方法, 包括: 触发用于测试的 PUSCH业务数据, 通过待测 PUSCH信道发送该 PUSCH业务数据; 获取待测 PUSCH信道在基站侧对上述 PUSCH业务数据进行 HARQ( Hybrid Automatic Repeat Request, 混合自动重传请求)处理后生成的 HARQ反馈; 获取待测 PUSCH信 道在基站侧对上述待测 PUSCH 业务信道的时偏进行调整而生成的 TA ( Timing Advance, 定时提前量)调整值; 根据 HARQ反馈和 TA调整值调整上述 PUSCH业务 数据的发送, 循环地进行测试。 获取待测 PUSCH信道在基站侧对上述 PUSCH业务数据进行 HARQ处理后生成 的 HARQ反馈包括: 待测 PUSCH信道在基站侧对上述 PUSCH业务数据进行 CRC (Cyclical Redundancy Check, 循环冗余校验); 待测 PUSCH信道在基站侧根据 CRC 的结果, 生成 HARQ反馈; 获取该 HARQ反馈。 获取待测 PUSCH信道在基站侧对上述待测 PUSCH业务信道的时偏进行调整而生 成的 TA调整值包括: 待测 PUSCH信道在基站侧获取上行 PHY (Physical Layer, 物 理层)测量的待测 PUSCH信道的 TA值; 根据预定的 TA算法判断是否需要调整 TA, 如果需要, 则生成包含 TA调整值的有效的定时提前量命令 TAC ( Timing Advance Command, 定时提前量命令), 如果不需要, 则生成无效的 TAC; 获取有效的 TAC。 在根据 HARQ反馈和 TA调整值调整上述 PUSCH业务数据的发送, 循环地进行 测试之后, 还包括: 实时地统计待测 PUSCH信道在基站侧对上述 PUSCH业务数据进 行的 HARQ处理的 BLER。 在触发用于测试的 PUSCH业务数据, 通过待测 PUSCH信道发送该 PUSCH业务 数据之前, 还包括: 根据用户的操作设置 PUSCH业务参数, 其中, 业务参数包括: 业务数据的信道带宽、 AWGN (Additive White Gaussion Noise, 加性高斯白噪声) 信 道、 PUSCH业务数据占用的 RB (Resource Block资源块) 起始位置、 RB数、 S R、 HARQ反馈模式、 RV (Redundancy Version, 冗余版本) 序列、 最大传输次数、 移动 场景、 MIMO (Multiple Input Multiple Output, 多入多出) 模式。 根据本发明的另一方面, 提供了一种 PUSCH信道解调性能测试装置, 包括: 业 务触发模块, 设置为触发用于测试的 PUSCH业务数据, 通过待测 PUSCH信道发送该 PUSCH业务数据; 反馈获取模块, 设置为获取上述待测 PUSCH信道在基站侧对上述 PUSCH业务数据进行 HARQ处理后生成的 HARQ反馈; 调整获取模块, 设置为获取 上述待测 PUSCH信道在基站侧对上述待测 PUSCH信道的时偏进行调整而生成的 TA 调整值; 发送调整模块, 设置为根据上述 HARQ 反馈和上述 TA 的调整值调整上述 PUSCH业务数据的发送, 循环地进行测试。 反馈获取模块, 设置为在待测 PUSCH信道在基站对上述 PUSCH业务数据进行 CRC, 并根据 CRC的结果, 生成 HARQ反馈后, 获取该 HARQ反馈。 调整获取模块, 设置为在待测 PUSCH信道在基站侧获取上行 PHY测量的待测 PUSCH信道的 TA值, 并根据预定的 TA算法生成包含 TA调整值的有效的 TAC后, 获取该有效的 TAC。 上述装置还包括: 性能统计模块, 设置为实时地统计待测 PUSCH信道在基站侧 对上述 PUSCH业务数据进行 HARQ处理的 BLER。 上述装置还包括: 参数设置模块, 设置为根据用户的操作设置 PUSCH业务参数, 其中, 业务参数包括: 业务数据的信道带宽、 AWGN信道、 PUSCH业务数据占用的 资源块 RB起始位置、 RB数、 S R、 HARQ反馈模式、 RV序列、 最大传输次数、 移 动场景、 MIMO模式。 通过本发明,采用通过待测的 PUSCH信道发送模拟的用于测试的 PUSCH业务数 据,利用 PUSCH信道的 TA调整和 HARQ反馈功能对 PUSCH信道性能进行循环测试 和验证的方案, 解决了现有技术中缺乏一种信道性能综合测试手段的问题, 进而达到 了全面有效的评测 PUSCH信道性能的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例的 PUSCH信道解调性能测试方法的流程图; 图 2是根据本发明实例的矢量信号生成器的结构原理图; 图 3是根据本发明实例的 PUSCH信道解调性能测试方法的流程图; 图 4是根据本发明实例的 HARQ实体请求一次新的传输时的 HARQ处理流程图; 图 5是根据本发明实例的 HARQ实体请求一次重传时的 HARQ处理流程图; 图 6是根据本发明实例的 HARQ实体达到最大传输次数的处理流程图; 图 7是根据本发明实例的 TA调整处理的流程图; 图 8是根据本发明实施例的 PUSCH信道解调性能测试装置的结构框图; 图 9是根据本发明优选实施例的 PUSCH信道解调性能测试装置的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 1是根据本发明实施例的 PUSCH信道解调性能测试方法的流程图。 如图 1所 示, 根据本发明实施例的 PUSCH信道解调性能测试方法包括: 步骤 S102, 触发用于测试的 PUSCH业务数据, 通过待测 PUSCH信道发送该 PUSCH业务数据; 步骤 S 104, 获取上述待测 PUSCH信道在基站侧对上述 PUSCH业务数据进行
HARQ处理后生成的 HARQ反馈; 步骤 S106, 获取上述待测 PUSCH信道在基站侧对上述待测 PUSCH信道的时偏 进行调整而生成的 TA调整值; 步骤 S108, 根据上述 HARQ反馈和上述 TA调整值调整上述 PUSCH业务数据的 发送, 循环地进行测试。 上述方法利用了 PUSCH信道的 HARQ反馈功能和 TA调整功能, 通过这两项功 能来反映信道性能。 PUSCH信道上的 TA用于 PUSCH信道的定时, 根据 TA值确定 PUSCH的发送时偏, 对于 PUSCH上业务的正确传输至关重要, 而 HARQ反馈(表明 HARQ处理是否成功)是 PUSCH信道性能的直接反映。 因此, 通过 HARQ反馈和 TA 调整可以全面的测试信道的性能。 上述方法还设置了反馈调整功能, 即根据 HARQ反 馈和 TA调整值调整 PUSCH业务数据的发送, 循环地进行测试, 从而确保了测试的有 效性。 优选地, 步骤 S104可以进一步包括以下处理:
( 1 ) 上述待测 PUSCH信道在基站侧对上述 PUSCH业务数据进行 CRC校验; (2) 上述待测 PUSCH信道在基站侧根据 CRC的结果, 生成 HARQ反馈;
(3 ) 获取该 HARQ反馈。 对 PUSCH信道的测试,实质上就是对该信道在基站侧的性能进行测试。步骤 S104 中待测 PUSCH信道在基站侧对 PUSCH业务数据进行 HARQ处理, 主要是指基站侧 根据用于测试的 PUSCH业务数据的 CRC校验结果生成 HARQ反馈, 即 ACK (确认 字符) /NACK (非确认字符)反馈。就测试角度来说,其最终目的在于获取生成的 HARQ 反馈, 将其作为评价信道性能的依据。 优选地, 步骤 S106还可以进一步包括以下处理: ( 1 )上述待测 PUSCH信道在基站侧获取上行 PHY测量的该待测 PUSCH信道的 TA值;
(2)根据预定的 TA算法判断是否需要调整 TA, 如果需要, 则生成包含 TA调整 值的有效的 TAC, 如果不需要, 则生成无效的 TAC; (3 ) 获取上述有效的 TAC。
PUSCH信道的 TA用于 PUSCH信道的定时,根据 TA值确定 PUSCH信道的发送 时偏, 对于 PUSCH上业务的正确传输至关重要。 TA调整主要是通过 TAC进行的, 因此, 对 PUSCH信道解调性能的测试可以通过 TAC的下发来判断。 就测试的角度来 说, 主要的目的在于获取有效 TAC来实时的调整 TA, TA调整是否准确或者说是否符 合测试要求主要是通过业务数据是否可以顺利的通过 CRC校验来体现的, TA调整不 准确必然会导致业务数据 CRC校验的失败。 优选地, 步骤 S108之后还可以进一步包括以下处理: 实时地统计待测 PUSCH信 道在基站侧对上述 PUSCH业务数据进行的 HARQ处理的 BLER。 待测 PUSCH业务信道的解调性能是否符合要求, 一个最为重要的指标就是业务 数据的 BLER的统计值, TA调整准确与否同样可以体现在 BLER的统计值上。 因此, 可以实时地统计当前的 BLER值, 以直观的反映待测 PUSCH业务信道的解调性能。 优选地, 步骤 S102 之前还可以进一步包括以下处理: 根据用户的操作设置上述 PUSCH业务的业务参数, 其中, 业务参数包括: 业务数据的信道带宽、 AWGN信道、 PUSCH业务数据占用的 RB起始位置、 RB数、 S R、 HARQ反馈模式、 RV序列、 最 大传输次数、 移动场景、 MIMO模式。 在测试开始之初, 可以根据需要对用于测试的 PUSCH业务的业务参数进行设置, 以更好的达到测试的目的。 下面结合实例及图 2至图 5对上述优选实施例进行详细说明。 在具体实施过程中, 用于测试的 PUSCH业务可以使用矢量信号生成器触发, 其 原理如图 2所示。 如图 3所示, 根据上述优选实施例的测试方法与 141协议结合后包 括以下步骤: 步骤 S302, 配置矢量信号生成器, 将仪器与基站的射频单元进行连接, 按照 141 协议中规定的 FRC, AWGN, fading (衰落模型), S R等配置仪器的参数; 步骤 S304, 矢量信号生成器向基站侧发送 PUSCH业务数据, 即按照一定的信道 模型生成业务数据; 步骤 S306, 基站将接收到的 PUSCH数据存入指定的 BUFFER (缓冲寄存器)中, 并将测量的 TA值也存放在指定的 BUFFER中; 步骤 S308, 基站根据业务数据的 CRC解调结果生成反馈为 ACK或者 NACK的
HARQ反馈消息; 同时, 根据上行 PHY测量的矢量信号生成器的 PUSCH信道上的 TA值来确定是否要发送的 TAC命令,并将这两种数据按照接口定义组成一个数据包, 最后, 将这包数据通过 SRIO (串行 Rapid 10 ) 通道发送给接口缓存; 步骤 S310, 将接口缓存地址中存放的数据发送给矢量信号发生器的反馈接收接 口, 矢量信号生成器在获得反馈后根据反馈结果来调整数据的发送, 即生成下个 TTI (Transmission Time Interval, 传输时间间隔) 的 PUSCH业务数据, 循环进行测试。 更加具体的说, 上述测试过程包括以下步骤:
1、 配置矢量信号生成器, 选择 141协议中的 FRC进行配置, 并打开仪器的射频 发送开关。 2、 触发 PUSCH业务, 发送业务数据。
3、基站侧接收 PUSCH业务数据将其存储在指定 BUFFER中,同时存储上行 PHY 测量的 TA值到指定的 BUFFER中。
4、根据上行 HARQ机制处理保存的 PUSCH业务数据,主要在基站的上行调度器 完成; HARQ反馈是 PUSCH信道性能的直接反映,可以从反馈的 ACK/NACK看出业 务的传输情况。 如果 HARQ实体请求一次新的传输, HARQ处理流程如图 4所示: 步骤 S402, 把 CURRENT_TX_ B (用于指示传输次数统计) 设为 0; 步骤 S404, 把 CURRENT_IRV (用于指示 RV值) 设为 0; 步骤 S406, 存储在 HARQ缓存中的相关 MAC PDU; 步骤 S408, 存储 HARQ实体中的上行授权; 步骤 S410, 设置 HARQ_FEEDBACK (用于指示 HARQ的反馈) 为 ACK; 步骤 S412, 生成一个传输块; 步骤 S414, 指示物理层在指定的 TTI用 CURRENT_IRV生成传输; 步骤 S416, CURRENT IRV++, 结束。 如果 HARQ实体请求一次重传, HARQ处理流程如图 5所示: 步骤 S502, CURRENT TX B++; 步骤 S504, 该重传时刻是否是测量间隙, 若是则结束, 否则转到下一步; 步骤 S506, 上行是否是由 PDCCH (Physical Downlink Control Channel, 物理下行 控制信道) 分配的, 若是则转到步骤 S512, 否则转到下一步; 步骤 S508, 设置 CURRENT_IRV的值为上行授权中的值; 步骤 S510, 设置 HARQ_FEEDBACK为 NACK; 步骤 S512, 对应的数据是否收到 ACK, 若是则转到步骤 S520, 否则转到下一步; 步骤 S514, 生成一个传输块; 步骤 S516, 指示物理层在指定的 TTI用 CURRENT_IRV生成传输; 步骤 S518, CURRENT IRV++, 结束; 步骤 S520, 将数据保存在 HARQ缓存区中, 结束。 对于新传和重传最终需要判断在最大传输次数中是否传输成功, 若传输成功则清 空 HARQ Buffer, 进行下一次传输, 否则传输失败结束。 如图 6所示, HARQ实体达 到最大传输次数的处理流程包括: 步骤 S602, 判断 CURRENT_TX_ B是否等于最大重传次数, 如果是, 转至步骤 S604, 如果否, 则结束; 步骤 S604, 判断是否收到 ACK, 如果是, 则结束, 如果否, 则转至步骤 S606; 步骤 S606, 通知 HARQ实体; 步骤 S608, 判断该传输是否和 CCCH (Common Control Channel, 公共控制信道) 对应, 如果是, 则转至步骤 S610, 如果否, 则转至步骤 S612; 步骤 S610, 通知 RRC (Radio Resource Control, 无线资源控制) 实体; 步骤 S612, 清空 HARQ Buffer, 结束。
5、根据上行 PHY对 PUSCH业务数据进行 CRC校验生成 CRCI OK or ERROR处 理的结果生成 PDCCH或者 PHICH (Physical HARQ Indicate Channel, 物理 HARQ指 示信道) 上的 ACK/NACK。
6、 处理完成后, 将反馈的 ACK/NACK存储到接口相应的缓存地址中, 如果是 HARQAuto (HARQ 自动) 模式, 置相应的标志位为 l(ACK)或者 0(NACK), 置存在 标志位为 1, 表示本 TTI有 ACK/NACK反馈; 如果是 IR (增量冗余) 模式, 则将反 馈的 ACK/NACK存储到接口相应的缓存地址中, 并将 RV值也一并存入, 并置标志位 为 1CACK)或者 0(NACK), 置存在标志位为 1, 表示本 TTI有 ACK/NACK反馈。
7、 处理保存的 TA值, 根据 TA算法判断是否需要给仪器发送 TAC, 主要在基站 下行调度器完成; PUSCH上的 TA用于 PUSCH信道的定时, 根据 TA值确定 PUSCH 的发送时偏, 对于 PUSCH上业务的正确传输至关重要, 因此, 对于 PUSCH信道解调 性能的测试可以通过 TAC的下发来判断。 TA的处理流程如图 7所示: 步骤 S702, 获取 PHY上报的 TA值; 骤 S704, 判断该值是否为无效值, 若为无效值则转到步骤 S710, 否则转到下
步骤 S706, 该值是否为异常值, 若为异常值转到步骤 S710, 否则转到下一步; 步骤 S708, 将 PHY上报的 TA值存入循环缓冲区中; 步骤 S710, 将前一均值存入循环缓冲区中; 步骤 S712, 计算循环缓冲区的均值; 步骤 S714, 对均值进行平滑滤波; 步骤 S716, 计算 TAC; 步骤 S718, 判断 TAC是否等于 31, 若等于 31则转到步骤 S726, 否则转到下一
步骤 S720, 出窗次数 +1 ; 步骤 S722, 出窗次数是否达到门限, 若没有达到门限则转到步骤 S726, 否则转 到下一步; 步骤 S724, 下发 TAC, 结束; 步骤 S726, TA周期是否是无穷大, 若是则结束; 否则转到下一步; 步骤 S728, TA是否快超时, 若是则结束, 否则转到下一步; 步骤 S730, 下发 TAC=31, 结束。
8、 若需要发送 TAC, 则将 TAC值存储到接口相应的缓存地址中, 并置相应的标 志位, 以表示该 TTI需要发送 TAC。
9、 对 TA和 HARQ处理完成后, 将这两部分数据存入指定的 BUFFER中, 并组 成一个数据包发送给矢量信号生成器。
10、矢量生成器根据 TAC以及 ACK/NACK进行时偏调整以及重传或者新传处理。 图 8是根据本发明实施例的 PUSCH信道解调性能测试装置的结构图。 如图 8所 示, 根据本发明实施例的 PUSCH信道解调性能测试装置包括: 业务触发模块 802, 设置为触发用于测试的 PUSCH业务数据, 通过待测 PUSCH 信道发送该 PUSCH业务数据; 反馈获取模块 804, 连接至业务触发模块 802, 设置为获取上述待测 PUSCH信道 在基站侧对上述 PUSCH业务数据进行 HARQ处理后生成的 HARQ反馈; 调整获取模块 806, 连接至业务触发模块 802, 设置为获取上述待测 PUSCH信道 在基站侧对上述待测 PUSCH信道的时偏进行调整而生成的 TA调整值; 发送调整模块 808,连接至反馈获取模块 804及调整获取模块 806, 设置为根据上 述 HARQ反馈和上述 TA的调整值调整上述 PUSCH业务数据的发送, 循环地进行测 试。 上述装置利用了 PUSCH信道的 HARQ反馈功能和 TA调整功能, 通过这两项功 能来反映信道性能。 PUSCH信道上的 TA用于 PUSCH信道的定时, 根据 TA值确定 PUSCH 的发送时偏, 对于 PUSCH上业务的正确传输至关重要, 而 HARQ 反馈是 PUSCH信道性能的直接反映。因此,通过 HARQ反馈和 TA调整可以全面的测试信道 的性能。上述装置还设置了反馈调整功能,即根据 HARQ反馈和 TA调整值调整 PUSCH 业务数据的发送, 循环地进行测试, 从而确保了测试的有效性。 在具体实施过程中, 业务触发模块 802可参考矢量信号生成器的原理实现,该设备可以模拟生成矢量信号, 再结合其自身具备的各种信道模型和移动场景就可以完成 PUSCH信道的各种测试要 求。 优选地, 反馈获取模块 804,可以设置为在上述待测 PUSCH信道在基站侧对上述 PUSCH业务数据进行 CRC (校验), 并根据 CRC的结果, 生成 HARQ反馈后, 获取 该 HARQ反馈。 对 PUSCH信道的测试, 实质上就是对该信道在基站侧的性能进行测试。 反馈获 取模块 804主要用于获取基站生成的 HARQ反馈。 具体的处理需要在基站侧完成, 数 据采集在上行 PHY中完成, 包括: 采集上行 PUSCH业务数据, 并将数据存储在指定 的 BUFFER中, 并对其进行 CRC校验, 生成 CRC OK或者 CRC ERROR; 业务数据 的处理在调度器中完成, 包括: 根据上行 PHY对存入指定 BUFFER中的业务数据进 行处理的结果: CRC OK或者 CRC ERROR,进行反馈 ACK/NACK处理,即生成 HARQ 反馈;最终反馈获取模块 804可以通过 FPGA (现场可编程门阵列, Field Programmable Gate Array) 完成 HARQ反馈的获取, 之后, 反馈获取模块 804即可将 HARQ反馈发 送给发送调整模块 808, 作为调整业务数据发送的依据。 优选地,调整获取模块 806,可以设置为在上述待测 PUSCH信道在基站侧获取上 行 PHY测量的上述待测 PUSCH信道的 TA值,并根据预定的 TA算法生成包含 TA调 整值的有效的 TAC后, 获取该有效的 TAC。
PUSCH信道的 TA用于 PUSCH信道的定时,根据 TA值确定 PUSCH信道的发送 时偏, 对于 PUSCH上业务的正确传输至关重要。 TA调整主要是通过 TAC进行的, 因此,对 PUSCH信道解调性能的测试可以通过 TAC的下发来判断。调整获取模块 806 的主要作用在于获取 TA的调整值或者说获取包含 TA调整值的有效的 TAC。 具体的 TA调整处理需要由基站完成,数据采集在上行 PHY中完成, 即收集上行 PHY测量的 PUSCH信道的 TA值, 将其存入指定的 BUFFER中; TA调整处理在调度器中完成, 即根据上行 PHY测量的 PUSCH信道的 TA值进行 TAC命令的处理;最终调整获取模 块 806可以通过 FPGA完成 TA调整值的获取,之后,调整获取模块 806即可将 TA调 整值发送给发送调整模块 808, 作为调整业务数据发送的依据。 优选地, 如图 9所示, 根据本发明优选实施例的 PUSCH信道解调性能测试装置 可以进一步包括: 性能统计模块 810,连接至发送调整模块 808,设置为实时地统计上述待测 PUSCH 信道在基站侧对上述 PUSCH业务数据进行的 HARQ处理的 BLER。 待测 PUSCH信道的解调性能是否符合要求, 一个最为重要的指标就是业务数据 的 BLER统计值, TA调整准确与否同样可以体现在 BLER统计值上。 性能统计模块 810可以实时地统计当前的 BLER统计值,直观的反映待测 PUSCH业务信道的解调性 能。 优选地, 如图 9所示, 根据本发明优选实施例的 PUSCH信道解调性能测试装置 可以进一步包括: 参数设置模块 800, 连接至业务触发模块 802, 设置为根据用户的操作设置上述 PUSCH业务的业务参数, 其中, 业务参数包括: 业务数据的信道带宽、 AWGN信道、 RB位置、 RB数、 SNR、 HARQ反馈模式、 最大传输次数、 移动场景、 MIMO模式。 参数设置模块 800使得用户可以根据需要对用于测试的 PUSCH业务的业务参数 进行测试, 以更好的达到测试的目的。 从以上的描述中, 可以看出, 本发明提供的技术方案解决了 LTE系统中 PUSCH 信道解调性能测试中缺乏测试方案、测试结果评价标准不统一等问题, 结合了 PUSCH 信道上的两种业务: TA调整和 HARQ反馈以及这两种业务的交织, 通过 TA调整和 HARQ反馈的机制对 PUSCH信道的解调性能进行测试,可以有效地测试 PUSCH信道 在多业务情况下的处理能力。 在对评测结果进行评定时, 根据 141协议对这两种业务 的评测标准可以很容易的获得 PUSCH信道的性能是否符合要求。 因此, 通过本发明 提供的技术方案, 可以有效地评测 PUSCH信道的性能, 提高 LTE系统性能测试的效 率, 为其他信道性能的测试提供参考, 为 LTE系统的设计和实现提供参考, 使设计人 员对系统的性能有全面的了解, 为系统的效率和性能的提升奠定基础, 对于 LTE系统 的实现具有较大意义。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种物理上行共享信道 PUSCH信道解调性能测试方法, 包括:
触发用于测试的 PUSCH业务数据,通过待测 PUSCH信道发送所述 PUSCH 业务数据;
获取所述待测 PUSCH信道在基站侧对所述 PUSCH业务数据进行混合自动 重传请求 HARQ处理后生成的 HARQ反馈;
获取所述待测 PUSCH信道在基站侧对所述待测 PUSCH信道的时偏进行调 整而生成的定时提前量 TA调整值;
根据所述 HARQ反馈和所述 TA调整值调整所述 PUSCH业务数据的发送, 循环地进行测试。
2. 根据权利要求 1所述的方法, 其中, 获取所述待测 PUSCH信道对所述 PUSCH 业务数据进行混合自动重传请求 HARQ处理后生成的 HARQ反馈包括:
所述待测 PUSCH信道在基站侧对所述 PUSCH业务数据进行循环冗余校验 CRC;
所述待测 PUSCH信道在基站侧根据所述 CRC的结果, 生成所述 HARQ 反馈;
获取所述 HARQ反馈。
3. 根据权利要求 2所述的方法, 其中, 获取所述待测 PUSCH信道对所述 PUSCH 信道的时偏进行调整而生成的定时提前量 TA调整值包括:
所述待测 PUSCH 信道在基站侧获取上行物理层 PHY测量的所述待测 PUSCH信道的 TA值;
根据预定的 TA算法判断是否需要调整 TA, 如果需要, 则生成包含 TA调 整值的有效的定时提前量命令 TAC, 如果不需要, 则生成无效的 TAC;
获取所述有效的 TAC。
4. 根据权利要求 3所述的方法, 其中, 在根据所述 HARQ反馈和所述 TA的调整 值调整所述 PUSCH业务数据的发送, 循环的进行测试之后, 还包括: 实时地统计所述待测 PUSCH信道在基站侧对所述 PUSCH业务数据进行的 HARQ处理的误块率 BLER。 根据权利要求 1至 4任一项所述的方法, 其中, 在触发用于测试的 PUSCH业 务数据, 通过待测 PUSCH信道发送所述 PUSCH业务数据之前, 还包括: 根据用户的操作设置 PUSCH业务参数, 其中, 所述业务参数包括: 业务 数据的信道带宽、 加性高斯白噪声 AWGN信道、 PUSCH业务数据占用的资源 块 RB起始位置、 RB数、 信噪比 SNR、 HARQ反馈模式、 冗余版本 RV序列、 最大传输次数、 移动场景、 多入多出 MIMO模式。 一种物理上行共享信道 PUSCH信道解调性能测试装置, 包括:
业务触发模块,设置为触发用于测试的 PUSCH业务数据,通过待测 PUSCH 信道发送所述 PUSCH业务数据;
反馈获取模块, 设置为获取所述待测 PUSCH信道在基站侧对所述 PUSCH 业务数据进行混合自动重传请求 HARQ处理后生成的 HARQ反馈;
调整获取模块, 设置为获取所述待测 PUSCH信道在基站侧对所述待测 PUSCH信道的时偏进行调整而生成的定时提前量 TA调整值;
发送调整模块, 设置为根据所述 HARQ反馈和所述 TA的调整值调整所述 PUSCH业务数据的发送, 循环地进行测试。 根据权利要求 6 所述的装置, 其中, 所述反馈获取模块, 设置为在所述待测 PUSCH信道在基站对所述 PUSCH业务数据进行循环冗余校验 CRC,并根据所 述 CRC的结果, 生成所述 HARQ反馈后, 获取所述 HARQ反馈。 根据权利要求 7 所述的装置, 其中, 所述调整获取模块, 设置为在所述待测 PUSCH信道在基站侧获取上行物理层 PHY测量的所述待测 PUSCH信道的 TA 值, 并根据预定的 TA算法生成包含 TA调整值的有效的定时提前量命令 TAC 后, 获取所述有效的 TAC。 根据权利要求 8所述的装置, 其中, 还包括:
性能统计模块, 设置为实时地统计所述待测 PUSCH信道在基站侧对所述 PUSCH业务数据进行 HARQ处理的误块率 BLER。 根据权利要求 6至 9任一项所述的装置, 其中, 还包括: 参数设置模块, 设置为根据用户的操作设置 PUSCH业务参数, 其中, 所 述业务参数包括:业务数据的信道带宽、加性高斯白噪声 AWGN信道、 PUSCH 业务数据占用的资源块 RB起始位置、 RB数、 信噪比 S R、 HARQ反馈模式、 冗余版本 RV序列、 最大传输次数、 移动场景、 多入多出 MIMO模式。
PCT/CN2011/083491 2011-06-17 2011-12-05 Pusch信道解调性能测试方法及装置 WO2012171302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110164265.1A CN102833055B (zh) 2011-06-17 2011-06-17 Pusch信道解调性能测试方法及装置
CN201110164265.1 2011-06-17

Publications (1)

Publication Number Publication Date
WO2012171302A1 true WO2012171302A1 (zh) 2012-12-20

Family

ID=47336036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083491 WO2012171302A1 (zh) 2011-06-17 2011-12-05 Pusch信道解调性能测试方法及装置

Country Status (2)

Country Link
CN (1) CN102833055B (zh)
WO (1) WO2012171302A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087506A1 (zh) * 2018-11-02 2020-05-07 北京小米移动软件有限公司 传输时间提前量的设置方法及装置
US11153840B2 (en) * 2019-03-28 2021-10-19 Mediatek Inc. UE feedback of timing adjustment after a measurement gap

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379782A (zh) * 2006-01-31 2009-03-04 交互数字技术公司 无线通信系统中提供和利用基于无争用信道的方法和设备
CN101771517A (zh) * 2008-12-29 2010-07-07 大唐移动通信设备有限公司 一种时间调整定时器超时的处理方法和装置
CN101848490A (zh) * 2009-03-24 2010-09-29 三星电子株式会社 移动通信系统中根据数据重复重发的操作方法和装置
CN102047747A (zh) * 2008-09-19 2011-05-04 Lg电子株式会社 用于考虑到时间校准计时器的发送和接收信号的方法及其用户设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2082516A4 (en) * 2007-11-15 2013-11-20 Lg Electronics Inc METHOD FOR TRANSMITTING NEWS USING HARQ
ES2637645T3 (es) * 2008-02-01 2017-10-16 Lg Electronics, Inc. Procedimiento de una operación HARQ de enlace ascendente en una expiración de un temporizador de alineación temporal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379782A (zh) * 2006-01-31 2009-03-04 交互数字技术公司 无线通信系统中提供和利用基于无争用信道的方法和设备
CN102047747A (zh) * 2008-09-19 2011-05-04 Lg电子株式会社 用于考虑到时间校准计时器的发送和接收信号的方法及其用户设备
CN101771517A (zh) * 2008-12-29 2010-07-07 大唐移动通信设备有限公司 一种时间调整定时器超时的处理方法和装置
CN101848490A (zh) * 2009-03-24 2010-09-29 三星电子株式会社 移动通信系统中根据数据重复重发的操作方法和装置

Also Published As

Publication number Publication date
CN102833055B (zh) 2018-08-31
CN102833055A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
US9294234B2 (en) Methods and arrangements for early HARQ feedback in a mobile communication system
US8854992B2 (en) Artificial delay inflation and jitter reduction to improve TCP throughputs
KR101692552B1 (ko) 이동통신시스템에서 harq 및 arq 파라미터 설정 장치 및 방법
JP6508662B2 (ja) 無線ネットワーク・カバレッジ拡張方法、装置、およびシステム
RU2474063C2 (ru) Способы и устройства в системе беспроводной связи
US20080270866A1 (en) Transmission with automatic repeat request process
JP6019068B2 (ja) ダウンリンクシグナリングチャネルの受信を選択的に有効にするための方法および装置
EP2564557B1 (en) Method for setting and adjusting a parameter dependent on a round trip time
Chen et al. RAM: Rate adaptation in mobile environments
KR20080080234A (ko) H―arq 지원 arq 동작을 구현하기 위한 방법 및시스템
TW201644295A (zh) 在存取點與行動終端機之間使用下行鏈路及上行鏈路傳輸之無線通訊測試之方法
US20140105058A1 (en) Method and System for Measuring Wireless Link Quality
WO2014110974A1 (zh) Csi测量方法和装置
WO2013104165A1 (zh) 上行数据及上行调度信息的传输方法、装置
WO2016095444A1 (zh) 无线数据传输的方法、网络侧设备、用户设备和系统
WO2012024869A1 (zh) 一种提高物理下行控制信道传输性能的方法及装置
JP5182220B2 (ja) 基地局、無線通信システム、基地局制御方法
WO2012116627A1 (zh) 测量传输错误信息方法和网络设备
JP3968317B2 (ja) 無線基地局装置
WO2015013889A1 (zh) 数据传输方法、基站及用户设备
WO2016084268A1 (ja) 基地局および協調送信方式選択方法
WO2015062099A1 (zh) VoIP数据的传输方法和基站
JP4675743B2 (ja) 無線lanスループット測定装置および無線lanスループット測定方法
US20120155390A1 (en) Method and apparatus for log reporting in a wireless communication system
WO2009018698A1 (fr) Procédés et systèmes pour sélectionner le nombre de flux de données mimo

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867758

Country of ref document: EP

Kind code of ref document: A1