WO2012171181A1 - 图像传感器模组 - Google Patents

图像传感器模组 Download PDF

Info

Publication number
WO2012171181A1
WO2012171181A1 PCT/CN2011/075746 CN2011075746W WO2012171181A1 WO 2012171181 A1 WO2012171181 A1 WO 2012171181A1 CN 2011075746 W CN2011075746 W CN 2011075746W WO 2012171181 A1 WO2012171181 A1 WO 2012171181A1
Authority
WO
WIPO (PCT)
Prior art keywords
image sensor
sensor module
light
degrees
light source
Prior art date
Application number
PCT/CN2011/075746
Other languages
English (en)
French (fr)
Inventor
张铱洪
霍露明
朱秀玲
Original Assignee
香港应用科技研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港应用科技研究院有限公司 filed Critical 香港应用科技研究院有限公司
Priority to PCT/CN2011/075746 priority Critical patent/WO2012171181A1/zh
Priority to CN201190000016.2U priority patent/CN203117945U/zh
Publication of WO2012171181A1 publication Critical patent/WO2012171181A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0428Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by sensing at the edges of the touch surface the interruption of optical paths, e.g. an illumination plane, parallel to the touch surface which may be virtual

Definitions

  • the present invention relates to an image sensor module, and more particularly to an optical touch image sensor module.
  • the image sensor module installed in the upper left corner of the top of the optical touch screen emits light through the peripheral reflection bar and enters the image sensor module in the upper left corner of the top of the optical touch screen.
  • the light emitted by the light source in the image sensor module in the upper right corner of the top of the optical touch screen is reflected by the peripheral reflection bar and enters the image sensor module in the upper right corner.
  • the dense light forms a staggered network of rays in the touch area.
  • the light of the point is blocked, and the line formed between the touched point and the two image sensor modules forms a triangle, and the accuracy of the point is calculated by the size of the angle of the triangle and the length of the line.
  • the coordinate value which is entered by the controller to implement the touch sensing function.
  • the width (i.e., the boundary width) and the thickness (i.e., the boundary height) of the area outside the effective area of the touch screen depend mainly on the width and thickness of the image sensor module.
  • Existing image sensor modules for use in optical touch devices generally include: a light source, a beam splitting element, a light collecting element, and a light detecting component. After the light emitted from the light source is separated by the light splitting element, part of the light is reflected by the reflective strip on the touch screen, enters the image sensor module on the corner of the touch screen, and the light receiving component passes through the light receiving component, and is directed to the light detecting component.
  • the light source may be an infrared light emitting diode, a laser, etc.
  • the light splitting element may be a half mirror, a beam splitter, etc.
  • the light collecting element may be infrared Filter, concentrating lens, etc.
  • the light detecting component may be an array image sensor or a linear array image sensor.
  • U.S. Patent 4,553,842, A discloses an optical touch image sensor module (shown in Figure 2) of an optical position indicating device comprising a light source 30, a beam splitter 26 and a detector assembly 28.
  • the light source 30 and the detector assembly 28 are vertically placed, and the beam splitter 26 is placed at an angle of 45 degrees with the light source 30, so that after the light emitted by the light source 30 passes through the beam splitter 26, 50% of the light passes through the beam splitter 26, 50% of the light.
  • the light reflected by the beam splitter 26 is directed toward the target area, and the light reflected by the target area passes through the beam splitter 26 and enters the detector assembly 28.
  • the disadvantage of the device is that: 50% of the light emitted by the light source is directly lost through the beam splitter; the detector assembly is placed on the back side of the beam splitter to increase the boundary width of the touch screen, and the light source is placed below the touch screen. Increased the border height of the touch screen.
  • U.S. Patent No. 6,504,532 B1 discloses an optical unit (shown in Figure 3) of a coordinate detecting device comprising: a light emitter 15, a diffusing lens 16, a half mirror 17, a reading lens 19 and an image sensor 20.
  • the light emitter 15 is placed coaxially with the diffusing lens 16, the light emitter 15 is placed perpendicular to the reading lens 19, the image sensor 20 is located on the rear side of the reading lens 19 and the two are placed coaxially, the half mirror 17 and the light
  • the emitter 15 is placed at an angle of 45 degrees so that the light emitted by the light emitter 15 is expanded by the diffusing lens 16 and then directed toward the half mirror 17, 50% of the light is reflected by the half mirror 17, and 50% of the light is transmitted through the half mirror.
  • the light is reflected toward the target area, and the light reflected by the target area is reflected by the half mirror 17, is incident on the reading lens 19, is concentrated by the reading lens 19, and is incident on the image sensor 20.
  • U.S. Patent No. 2007/0089915 A1 discloses an improved position detecting device (shown in Figure 4) comprising: a light source 72, an imaging information lens 71, a reflective prism 73, and an array image sensor 70.
  • the light source 72 (not shown) is located on both sides of the imaging information lens 71, and the imaging information lens 71 is placed perpendicular to the array image sensor 70.
  • this structure reduces the boundary height of the touch screen.
  • this structure also has the following disadvantages: The boundary width of the touch screen cannot be reduced, and only the array image sensor can be used, and the array image sensor and the linear image sensor cannot be compatible.
  • the existing optical sensor module for the touch screen cannot be compatible with the array image sensor and the linear image sensor, and can only reduce the boundary height of the touch screen without reducing the boundary width thereof.
  • the technical problem to be solved by the present invention is to provide an image sensor module capable of being compatible with an array image sensor and a linear image sensor. Furthermore, the image sensor module provided by the present invention can not only reduce the boundary height but also reduce the boundary width.
  • the present invention provides an image sensor module, the module comprising: at least one light source for emitting light to a target area; and an infrared filter for filtering light reflected from the target area; And an image sensor, the light passing through the infrared filter and the imaging assembly being imaged onto the image sensor; wherein: the imaging assembly has at least one lens surface having an asymmetric radius of curvature to be compatible with the plurality of image sensors.
  • the imaging assembly of the module further has at least one inclined portion that is at a predetermined angle with respect to the optical axis of the light reflected from the target area to change the direction of propagation of the light.
  • the inclined portion of the imaging assembly in the module is a mirror, and the predetermined angle is in a range of 30 degrees to 60 degrees to reduce the boundary width and boundary width of the module.
  • the inclined portion in the module is an inclined plane, and the lens surface and the inclined plane are integrated, and the predetermined angle is in a range of 30 to 60 degrees to reduce the mode. The boundary width and boundary height of the group.
  • the imaging assembly in the module has two inclined portions, the predetermined angle being 45 degrees.
  • the infrared filter in the module is located on an incident surface or an exit surface of the imaging assembly.
  • the light source in the module is located above the infrared filter, or the light source is multiple and located on both sides of the infrared filter.
  • the image sensor module of the module further includes at least one illumination lens for reducing a beam angle of the light emitted by the light source toward the target area.
  • the light source in the module is plural and arranged parallel to the illumination lens.
  • the light sources in the module are an even number and are evenly arranged in two rows, respectively parallel to the corresponding illumination lens, and the infrared filter is sandwiched between the two rows of light sources.
  • the light source in the module is multiple and arranged in an arc shape.
  • the angle between two adjacent light sources is in the range of 20 to 45 degrees.
  • the plurality of image sensors in the module are a linear image sensor and an array image sensor.
  • the lens surface of the imaging assembly in the module is a biconical surface.
  • the module is for an optical touch screen.
  • the module can be compatible with both the array image sensor and the linear image sensor due to the special optical design of the lens surface in the imaging assembly; and, since the light is generated at least once in the inclined portion of the imaging assembly Total reflection, and the reflected light is deflected downwards, allowing the image sensor to be placed below, thus reducing both the border width and the boundary height.
  • FIG. 1 is a schematic diagram of a touch operation on a conventional touch screen
  • FIG. 2 is a schematic structural view of an optical touch image sensor module of a conventional optical position indicating device
  • FIG. 3 is a schematic structural view of an optical unit of a conventional coordinate detecting device;
  • FIG. 4 is a schematic structural view of a conventional improved position detecting device;
  • FIG. 5 is an optical touch image sensor of a first embodiment of the present invention;
  • FIG. 6 is a perspective view of the optical touch image sensor module of the first embodiment of the present invention;
  • FIG. 7 is a perspective view of an imaging 4a of the optical touch image sensor module of the present invention;
  • FIG. 8a is an imaging optical path diagram of an imaging lens of the conventional optical touch image sensor module; and
  • FIG. 8b is an optical touch image sensor module of the present invention;
  • FIG. 9 is a schematic cross-sectional view of an optical touch image sensor module according to a second embodiment of the present invention;
  • FIG. 10a is a cross-sectional perspective view of an optical touch image sensor module according to a second embodiment of the present invention; view;
  • Figure 10b is a perspective view of the optical touch image sensor module of the second embodiment of the present invention
  • Figure 10c is a perspective view of the imaging assembly 4b;
  • Figure 11 is a cross-sectional view showing an optical touch image sensor module of a third embodiment of the present invention.
  • Figure 12 is a perspective view of an optical touch image sensor module according to a third embodiment of the present invention
  • Figure 13 is a cross-sectional view of the optical touch image sensor module of the fourth embodiment of the present invention
  • Figure 14 is a perspective view of an optical touch image sensor module according to a fourth embodiment of the present invention
  • Figure 15a is a schematic cross-sectional view of an optical touch image sensor module according to a fifth embodiment of the present invention
  • Figure 15b is a schematic cross-sectional view of an optical touch image sensor module of a sixth embodiment of the present invention.
  • Figure 15c is a cross-sectional schematic view of an optical touch image sensor module of a seventh embodiment of the present invention.
  • Figure 15d is a cross-sectional view showing an optical touch image sensor module of an eighth embodiment of the present invention
  • Figure 16a is a perspective view of an optical touch image sensor module of a ninth embodiment of the present invention
  • Figure 16b is a cross-sectional perspective view of an optical touch image sensor module of a ninth embodiment of the present invention
  • Figure 16c is a cross-sectional schematic view of an optical touch image sensor module of a ninth embodiment of the present invention.
  • Figure 17a is a perspective view of an optical touch image sensor module according to a tenth embodiment of the present invention
  • Figure 17b is a cross-sectional perspective view of the optical touch image sensor module of the tenth embodiment of the present invention
  • Figure 17c is a cross-sectional view showing an optical touch image sensor module of a tenth embodiment of the present invention.
  • Figure 18a is a perspective view of an optical touch image sensor module of an eleventh embodiment of the present invention.
  • Figure 18b is a cross-sectional perspective view of an optical touch image sensor module of an eleventh embodiment of the present invention.
  • Figure 18c is a cross-sectional view showing an optical touch image sensor module of an eleventh embodiment of the present invention. detailed description
  • the optical touch image sensor module of the present invention is located at a corner of the touch screen, and has another module (shown in FIG. 1) at the other corner of the touch screen.
  • FIG. 1 shows a cross-sectional view and a perspective view of an optical touch image sensor module according to a first embodiment of the present invention, the module including two infrared light-emitting diodes (IR LEDs) 1a as a light source, An infrared (IR) filter 2a, two 45-degree mirrors 3a placed substantially perpendicular to each other, an imaging lens 4a, and a linear/array image sensor 5a.
  • the two mirrors 3a and the imaging lens 4a constitute an imaging assembly.
  • two IR LEDs 1a are respectively placed on both sides of the IR filter 2a, and are located at the upper side of the side of the touch screen (TP) glass 9a, thereby minimizing the height of the module, and the IR LED is parallel to the TP glass.
  • the image sensor is not affected by external ambient light; the light filtered by the IR filter is directed to the first 45 degree mirror 3a, and the first 45 degree mirror and the IR filter are at an angle of 45 degrees, so that IR After the filter filtered light is reflected by the mirror, the reflected light is substantially 90 degrees with the incident light, and the reflected light is incident on the second 45 degree mirror 3a' at a substantially 45 degree angle of incidence; After the sheet 45 degree mirror 3a' is reflected, it is directed toward the imaging lens 4a in a direction substantially parallel to the TP glass ; and is imaged onto the linear/array image sensor 5a via the imaging lens.
  • the infrared light that is directed to the point is blocked by the finger, so that the light that originally returns to the IR filter 2a by the original return is blocked and no longer hits the IR filter 2a. Then, it is no longer imaged onto the linear/array image sensor 5a, so that the linear/array image sensor 5a detects the information of the touched point, thereby calculating the coordinates of the touched point of the finger, and realizing the touch sensing function.
  • Figure 7 shows a perspective view of the imaging lens of the first embodiment, which has undergone a special optical design with an asymmetrical profile, such as a bi-conical profile, which differs in the direction of X and y on the same surface.
  • the radius of curvature i.e., has different concentrating capabilities in the X and y directions, for example: an angle of view of greater than 90 degrees in the X direction and an angle of view of less than 10 degrees in the y direction.
  • the imaging lens can be a Model 1024 or 512 lens of HAMAMATSU.
  • Figure 8a shows An optical path diagram of a conventional symmetrical aspheric lens in an optical touch image sensor module, and Fig.
  • FIG. 8b shows an optical path diagram of an imaging lens in the module according to the first embodiment of the present invention.
  • the effective area of the light condensed after passing through the conventional symmetrical aspherical lens 6a is smaller than that of 7a.
  • the linear image sensor's photosensitive area height is only less than 2 () () ( ⁇ 1 () () ). If the mechanical tolerance exceeds 100 ⁇ , the concentrated light will exceed the sensor's sensitive area and result in an inability to image.
  • the effective area 7b of the concentrated light after the double-conical imaging lens 4a is greatly increased, and even if there is a mechanical tolerance, the photosensitive area of the sensor can receive sufficient light. Therefore, since the module uses a special optically designed imaging lens, it is compatible with linear image sensors and array image sensors.
  • the 45 degree mirror since the 45 degree mirror is used in the module, the light filtered by the IR filter 2a is deflected downward in a direction substantially perpendicular to the TP glass, effectively reducing the boundary width of the touch screen.
  • the second 45 degree mirror 3a' causes the light to be deflected about 90 degrees for the second time, so that the image sensor can be placed under the TP glass, reducing the boundary height of the touch screen, and the light passes through about ninety times.
  • the deflection of the degree extends the optical path, which greatly reduces the boundary width of the touch screen and increases the aesthetics.
  • the 45-degree mirrors 3a and 3a' in this embodiment may also be mirrors of other angles in the range of 30 degrees to 60 degrees, as long as the light can be deflected by the mirror and a large angle is deflected. Thereby reducing the width and height of the module.
  • Figure 9 shows a cross-sectional view of an optical touch image sensor module in accordance with a second embodiment of the present invention.
  • Figures 10a and 10b show a cross-sectional perspective view and a perspective view, respectively, of the module.
  • Figure 10c shows a perspective view of the imaging assembly 4b.
  • the second embodiment is a further improvement of the first embodiment. Unlike the module of the first embodiment, the module of the second embodiment uses an integral imaging unit 4b instead of the first embodiment.
  • An imaging assembly consisting of two 45 degree mirrors 3a and an imaging lens 4a.
  • the light source 1 b, the IR filter 2 b, and the linear/array image sensor 5 b can be used with the first
  • the light source 1b can adopt an infrared light emitting diode
  • two infrared light emitting diodes lb are respectively placed on both sides of the IR filter 2b, and both are located on the upper side of the side of the touch screen (TP) glass 9b, and the working principle is also basically The same as the first embodiment.
  • the image forming assembly 4b can be integrally formed by plastic injection molding, and the manufacturing process is simpler and more advantageous for mounting than the first embodiment.
  • the lens 4b has two inclined faces 3b and 3b of about 45 degrees, and the first inclined face 3b is aligned with the IR filter 2b such that light filtered by the IR filter 2b is internally reflected on the inclined face, perpendicular to the TP glass. Deviated downward toward the second inclined surface 3b', and a second internal reflection occurs at the second inclined surface 3b', and enters the rear lens 4b' of the imaging assembly 4b substantially in a direction parallel to the TP glass (as shown in the figure). 10c) shown.
  • the rear lens 4b' has substantially the same structure as the imaging lens 4a in the first embodiment, and may be a biconical lens.
  • the module of the second embodiment uses only the integrated imaging assembly, which simultaneously reduces the boundary width and the boundary height of the touch screen; since the imaging assembly has undergone a special optical design, the module is compatible with linear image sensors and array images. Sensor; meanwhile, since an integral imaging assembly is used instead of the imaging assembly consisting of two mirrors and one imaging lens in the first embodiment, the processing and mounting steps are greatly simplified.
  • the imaging assembly 4b is mounted in a plastic housing to save cost.
  • the inclined surface of 45 degrees in this embodiment may also be an inclined surface of other angles in the range of 30 degrees to 60 degrees, as long as the light can be deflected by the inclined surface and a large angle is deflected, thereby reducing the module.
  • the width and height are all right.
  • the module of the third embodiment is a modification of the module of the first embodiment, and the structures of the two are substantially the same.
  • the module of this embodiment also includes: a light source IR LED 1c, an IR filter 2c, two 45 degree mirrors 3c and 3c', an imaging lens 4c, and a linear/array image sensor 5c.
  • the two mirrors 3c, 3c' and the imaging lens 4c constitute an imaging assembly.
  • the only difference is that the module of this embodiment There is only one LED in the middle of the IR filter. This improvement reduces the number of light sources and reduces the energy consumption of the module.
  • the module of the fourth embodiment is a modification of the module of the second embodiment, and the structures of the two are substantially the same.
  • the module of this embodiment also includes: a light source IR LED 1d, an IR filter 2d, an imaging assembly 4d, and a linear/array image sensor 5d. The only difference is that there is only one LED in the module of this embodiment, and it is located at the top of the IR filter. This improvement reduces the number of light sources and reduces the energy consumption of the module.
  • 15a to 15d are cross-sectional views showing optical touch image sensor modules of fifth to eighth embodiments of the present invention, respectively. They are variants of the first to fourth embodiments, respectively. The difference is that the IR filters 2e, 2f, 2g, 2h are not located on the incident faces of the imaging components 4e, 4f, 4g, 4h, but are respectively located on the exit faces of the imaging components 4e, 4f, 4g, 4h.
  • 16a, 16b, and 16c are respectively a perspective view, a cross-sectional perspective view, and a cross-sectional view of an optical touch image sensor module of a ninth embodiment of the present invention.
  • the illumination lens 6i is placed in front of the light source IR LED 1i, and the illumination lens 6i functions to reduce the beam angle of the light emitted by the light source IR LED 1 i;
  • the imaging assembly 4i in the optical touch image sensor module of the example includes only a specially optically designed imaging lens (such as a biconical lens), that is, does not have a mirror for reflecting light as in the first to eighth embodiments or Inclined surface. As shown in Fig.
  • the light emitted from the light source IR LED 1 i passes through the illumination lens 6i, is reflected by the peripheral reflection strip, and is directed to the IR filter 2i located below the light source IR LED 1 i, and the light filtered by the IR filter 2i
  • the imaged component 4i is imaged onto the linear/array image sensor 5i.
  • the module has a more simplified structure and is compatible with linear/array image sensors.
  • 17a, 17b, and 17c are respectively a perspective view, a cross-sectional perspective view, and a cross-sectional view of an optical touch image sensor module of a tenth embodiment of the present invention.
  • the tenth embodiment is a modification of the ninth embodiment, and the structures thereof are substantially the same.
  • the module of this embodiment also includes: a light source IR LED 1j, an IR filter 2j, an imaging assembly 4j, a linear/array image sensor 5j, and an illumination lens 6j.
  • the light source in this embodiment has four IR LEDs arranged in two rows, the IR filter 2j is sandwiched between the two rows of IR LEDs, and each row of IR LEDs has an illumination lens 6j in front of it. And the two IR LEDs in each row are parallel to the corresponding illumination lens 6j o. This improvement improves the brightness of the light source, and the light source is evenly arranged up and down, which improves the accuracy of the touch sensing.
  • 18a, 18b and 18c are respectively a perspective view, a cross-sectional perspective view and a cross-sectional view of an optical touch image sensor module of an eleventh embodiment of the present invention.
  • the eleventh embodiment is a modification of the tenth embodiment, and the module of this embodiment also includes: a light source IR LED 1k, an IR filter 2k, an imaging assembly 4k, and a linear/array image sensor 5k.
  • the light source in the eleventh embodiment uses six IR LEDs, arranged in two rows, the three IR LEDs in each row are arranged in a substantially arc shape, and the angle between two adjacent IR LEDs It is approximately 20 to 45 degrees, preferably 30 degrees; and no illumination lens is disposed in front of the light source IR LED 1k.
  • This improvement further enhances the brightness of the light source.
  • the range of the target area of the light on the touch screen is larger than the range in which the IRLED is placed in a row, thereby improving the range.
  • the accuracy of touch sensing is provided.

Abstract

本发明公开了一种图像传感器模组,该模组包括:至少一个光源,用于向目标区域发出光线;红外滤波片,用于过滤从目标区域反射回来的光线;成像组件;以及图像传感器,经过所述红外滤波片和成像组件的光线成像到图像传感器上。其特征在于:该成像组件还具有至少一个具有不对称曲率半径的透镜表面以兼容多种图像传感器。具有该结构的模组能够同时兼容多种图像传感器,且能减小边界宽度和边界高度。

Description

图像传感器模组 技术领域
本发明涉及一种图像传感器模组, 更具体地, 涉及一种光学触摸图像传 感器模组。
背景技术
现有的红外、 表面声波、 电阻、 电容、 光学等多种触摸技术, 光学触摸 在准确率、 反应速度和寿命方面都有很大的优势。 如图 1 所示, 安装在光学 触摸屏顶部左上角的图像传感器模组, 通过光源发射出光线经过周边反射条 反射, 进入光学触摸屏顶部左上角的图像传感器模组中。 同理,光学触摸屏顶 部右上角的图像传感器模组中的光源发射的光线, 经过周边反射条反射后, 进入右上角的图像传感器模组中。 密布的光线在触摸区域内形成一张交错的 光线网。 当触摸一点时, 该点的光线被阻挡, 被触摸的点与这两个图像传感 器模组之间构成的直线构成一个三角形, 通过这个三角形夹角的大小和直线 的长度计算出该点的准确坐标值, 该坐标值被控制器录入, 实现触摸感应功 能。 触摸屏有效区域以外的区域的宽度 (即, 边界宽度) 和厚度 (即, 边界 高度) 主要取决于图像传感器模组的宽度和厚度。
现有的用于光学触摸装置中的图像传感器模组一般包括: 光源、 分光元 件、 收光元件、 光探测组件。 从光源发出的光线, 经过分光元件分离后, 部 分光线经过触摸屏上的反射条反射, 进入触摸屏一角上的图像传感器模组, 经过其中的收光元件收光, 射向光探测组件。 其中, 光源可以是红外发光二 极管、 激光等; 分光元件可以是半反射镜、 分光镜等; 收光元件可以是红外 滤波片、 聚光透镜等; 光探测组件可以是阵列图像传感器、 线性阵列图像传 感器。
美国专利 US 4553842A公开了一种光学位置指示装置的光学触摸图像传 感器模组 (如图 2所示), 包括光源 30、 分光镜 26和探测器组件 28。 其中, 光源 30和探测器组件 28垂直放置,分光镜 26与光源 30呈 45度角放置,使 得光源 30发出的光经过分光镜 26后, 50%的光透过分光镜 26, 50%的光被 分光镜 26反射射向目标区域,经目标区域反射回来的光穿透分光镜 26,射入 探测器组件 28。 该装置的缺点在于: 光源发出的 50%的光, 直接透过分光镜 损耗掉了; 探测器组件放置在分光镜的后侧, 增大了触摸屏的边界宽度, 而 光源放置在触摸屏的下方, 增加了触摸屏的边界高度。
另一美国专利 US 6504532B1公开了一种坐标探测装置的光学单元 (如 图 3所示), 其包括: 光发射器 15、扩散透镜 16、 半反射镜 17、 读取透镜 19 和图像传感器 20。其中, 光发射器 15与扩散透镜 16同轴放置, 光发射器 15 与读取透镜 19垂直放置,图像传感器 20位于读取透镜 19的后侧且两者同轴 放置, 半反射镜 17与光发射器 15呈 45度角放置, 使得光发射器 15发出的 光经扩散透镜 16扩束后射向半反射镜 17, 50%的光被半反射镜 17反射, 50% 的光透过半反射镜 17射向目标区域,经目标区域反射回来的光经半反射镜 17 反射, 射入读取透镜 19, 经读取透镜 19会聚后, 射入图像传感器 20。 该光 学单元的缺点在于: 光源发出的 50%的光, 直接被半反射镜反射损耗掉了; 读取透镜和图像传感器放置在触摸屏的上方, 大大增加了触摸屏的边界高度, 而光发射器和扩散透镜放置在半反射镜的后侧, 增大了触摸屏的边界宽度。 此外,美国专利 US2007/0089915A1公开了一种改进的位置检测装置(如 图 4所示), 其包括: 光源 72、 成像信息透镜 71、 反射棱镜 73、 阵列图像传 感器 70。 其中光源 72 (未示出)位于成像信息透镜 71的两侧, 成像信息透 镜 71与阵列图像传感器 70垂直放置,光源 72发出的光经目标区域反射回来 后,射向成像信息透镜 71, 经反射棱镜 73全反射后, 垂直射向阵列图像传感 器 70。该装置由于采用了反射棱镜 73,上述光损耗的问题得到了解决, 同时, 这种结构降低了触摸屏的边界高度。 但这种结构还存在以下不足: 无法减小 触摸屏的边界宽度, 仅能使用阵列图像传感器, 而不能兼容阵列图像传感器 和线性图像传感器。
因此, 现有的用于触摸屏的光学传感器模组不能兼容阵列图像传感器和 线性图像传感器, 同时仅能降低触摸屏的边界高度而无法减小其边界宽度。
发明内容
本发明要解决的技术问题是提供一种能够兼容阵列图像传感器和线性图 像传感器的图像传感器模组。 更进一步地, 本发明提供的图像传感器模组不 仅能够减小边界高度而且能够减小边界宽度。 为解决上述技术问题, 本发明提供了一种图像传感器模组, 该模组包括: 至少一个光源, 用于向目标区域发出光线; 红外滤波片, 用于过滤从目标 区域反射回来的光线; 成像组件, 以及图像传感器, 经过所述红外滤波片 和成像组件的光线成像到图像传感器上; 其特征在于: 该成像组件具有至 少一个具有不对称曲率半径的透镜表面以兼容多种图像传感器。 作为本发明的一种优选结构, 该模组中的成像组件还具有至少一个倾斜 部分, 该倾斜部分与从目标区域反射回来的光线的光轴成一预定角度, 以 改变光线的传播方向。 作为本发明的一种优选结构, 该模组中的成像组件的倾斜部分为反射镜, 所述预定角度在 30度至 60度的范围内, 以减小该模组的边界宽度和边界 咼度。 作为本发明的一种优选结构, 该模组中的倾斜部分为倾斜平面, 所述透 镜表面和所述倾斜平面形成一体, 该预定角度在 30度至 60度的范围内, 以减小该模组的边界宽度和边界高度。 作为本发明的一种优选结构, 该模组中的成像组件具有两个倾斜部分, 该预定角度为 45度。 作为本发明的一种优选结构, 该模组中的所述红外滤波片位于该成像组 件的入射面或出射面。 作为本发明的一种优选结构, 该模组中的光源位于所述红外滤波片的上 方, 或者所述光源为多个且分别位于所述红外滤波片的两侧。 作为本发明的一种优选结构, 该模组中的图像传感器模组还包括至少一 个照明透镜, 该照明透镜用于减小所述光源向目标区域发出的光线的光束 角。
作为本发明的一种优选结构, 该模组中的光源为多个, 且布置成平行于 所述照明透镜。
作为本发明的一种优选结构, 该模组中的光源为偶数个, 且均匀布置成 两排,分别平行于对应的照明透镜,所述红外滤波片夹在这两排光源中间。
作为本发明的一种优选结构, 该模组中的光源为多个, 且呈圆弧状排布, 相邻两个光源之间的夹角在 20度至 45度的范围内。
作为本发明的一种优选结构, 该模组中的所述多种图像传感器为线性图 像传感器和阵列图像传感器。
作为本发明的一种优选结构, 该模组中的成像组件的透镜表面为双锥形 表面。
作为本发明的一种优选结构, 该模组用于光学触摸屏。
采用上述结构的图像传感器模组, 由于成像组件中透镜表面的特殊光 学设计,使得该模组能同时兼容阵列图像传感器和线性图像传感器;而且, 由于光线在成像组件的倾斜部分发生了至少一次的全反射, 且经反射的光 线向下偏折, 使得图像传感器能放置在下方, 因此能够同时减小边界宽度 和边界高度。
附图说明
附图仅出于图示的目的, 然而, 通过参考结合所附附图进行的下面的详 细描述, 可以更好地理解本发明本身, 其中:
图 1是对现有的触摸屏进行触摸操作的示意图; 图 2是现有的一种光学位置指示装置的光学触摸图像传感器模组的结构 示意图;
图 3是现有的一种坐标探测装置的光学单元的结构示意图; 图 4是现有的一种改进的位置检测装置的结构示意图; 图 5是本发明的第一实施例的光学触摸图像传感器模组的截面示意图; 图 6是本发明的第一实施例的光学触摸图像传感器模组的立体视图; 图 7是本发明的光学触摸图像传感器模组的成像 4a的立体视图; 图 8a是现有的光学触摸图像传感器模组的成像透镜的成像光路图; 图 8b是本发明的光学触摸图像传感器模组的成像透镜的成像光路图; 图 9是本发明的第二实施例的光学触摸图像传感器模组的截面示意图; 图 10a是本发明的第二实施例的光学触摸图像传感器模组的截面立体视 图;
图 10b是本发明的第二实施例的光学触摸图像传感器模组的立体视图; 图 10c是成像组件 4b的立体视图;
图 11 是本发明的第三实施例的光学触摸图像传感器模组的截面示意 图;
图 12是本发明的第三实施例的光学触摸图像传感器模组的立体视图; 图 13 是本发明的第四实施例的光学触摸图像传感器模组的截面示意 图;
图 14是本发明的第四实施例的光学触摸图像传感器模组的立体视图; 图 15a是本发明的第五实施例的光学触摸图像传感器模组的截面示意 图;
图 15b是本发明的第六实施例的光学触摸图像传感器模组的截面示意 图;
图 15c是本发明的第七实施例的光学触摸图像传感器模组的截面示意 图;
图 15d是本发明的第八实施例的光学触摸图像传感器模组的截面示意 图; 图 16a是本发明的第九实施例的光学触摸图像传感器模组的立体视图; 图 16b是本发明的第九实施例的光学触摸图像传感器模组的截面立体 视图;
图 16c是本发明的第九实施例的光学触摸图像传感器模组的截面示意 图;
图 17a是本发明的第十实施例的光学触摸图像传感器模组的立体视图; 图 17b是本发明的第十实施例的光学触摸图像传感器模组的截面立体 视图;
图 17c是本发明的第十实施例的光学触摸图像传感器模组的截面示意 图;
图 18a是本发明的第十一实施例的光学触摸图像传感器模组的立体视 图;
图 18b是本发明的第十一实施例的光学触摸图像传感器模组的截面立 体视图; 以及
图 18c是本发明的第十一实施例的光学触摸图像传感器模组的截面示 意图。 具体实施方式
本发明的光学触摸图像传感器模组位于触摸屏的一角, 在触摸屏的另一 角有与之相同的另一模组(如图 1所示), 在此, 仅详述其中的一个模组。 图 5和图 6分别示出了根据本发明第一实施例的光学触摸图像传感器模组的截 面图和立体图, 该模组包括作为光源的两个红外发光二极管 (IR LED) 1a、 红外 (IR)滤波片 2a、 两片大致互相垂直放置的 45度反射镜 3a、 成像透镜 4a以及线性 /阵列图像传感器 5a。 两片反射镜 3a和成像透镜 4a组成成像组 件。其中, 2个 IR LED 1a分别放置在 IR滤波片 2a的两侧, 且均位于触摸屏 (TP) 玻璃 9a侧边的上部, 从而最大程度地减小模组高度, IR LED以平行 于 TP玻璃的方向, 向目标区域发出红外光线; 红外光线经周边的反射条反射 后, 沿原路返回射向 IR滤波片 2a, 由于 IR滤波片只让红外光线通过, 对外 界的环境光线有过滤作用, 能够使图像传感器不受外界环境光线的影响; 经 过 IR滤波片过滤后的光线, 射向第一片 45度反射镜 3a, 第一片 45度反射 镜与 IR滤波片大致呈 45度角, 使得 IR滤波片过滤后的光线经该片反射镜反 射后, 反射光线与入射光线大体成 90度, 且反射光线以大体 45度的入射角 射入第二片 45度反射镜 3a'; 光线经第二片 45度反射镜 3a'反射后, 以大体 上平行于 TP玻璃的方向, 射向成像透镜 4a; 经过成像透镜成像到线性 /阵列 图像传感器 5a上。 当手指触摸 TP玻璃的某一点时, 射向该点的红外光线会 被手指阻挡, 使得原本经该点按原路返回射向 IR滤波片 2a的光线被阻挡而 不再射向 IR滤波片 2a, 也就不再成像到线性 /阵列图像传感器 5a上, 从而线 性 /阵列图像传感器 5a探测到触摸点的信息, 从而计算出手指触摸点的坐标, 实现触摸感应功能。
图 7示出了第一实施例中成像透镜的立体图, 该成像透镜经过了特殊的 光学设计, 其具有不对称的轮廓, 例如双锥形轮廓, 在同一表面在 X和 y的 方向上具有不同的曲率半径, 即在 X和 y方向上具有不同的聚光能力, 例如: 在 X方向具有大于 90度的视场角, 而在 y方向具有小于 10度的视场角。 该 成像透镜可以采用 HAMAMATSU公司的 1024型或 512型镜片。 图 8a示出 了现有的作为光学触摸图像传感器模组中对称的非球面透镜的光路图, 图 8b 示出了根据本发明第一实施例的模组中的成像透镜的光路图。 通过对比两图 可以看出, 光线经过传统的对称的非球面透镜 6a后会聚的有效区域比 7a较 小。 线性图像传感器的感光区域高度仅小于 2()() (±1()() )。 如果机械公差超 过100 ^ , 会聚光线就会超出传感器感光区域导致无法成像。 而经过双锥形 的成像透镜 4a后会聚光线的有效区域 7b大大增加, 即使存在机械公差, 传 感器的感光区域仍然能够接收到足够的光线。 因此, 由于该模组中采用了经 过特殊光学设计的成像透镜, 能兼容线性图像传感器和阵列图像传感器。
继续参考图 5, 由于该模组中采用了 45度反射镜, 使经 IR过滤器 2a过 滤的光线以大致垂直于 TP玻璃的方向向下偏折,有效地减小了触摸屏的边界 宽度。 同时, 第二片 45度反射镜 3a'使光线发生第二次大约 90度的偏折, 使 得图像传感器可以置于 TP玻璃的下方, 降低了触摸屏的边界高度, 而光线经 过两次大约九十度的偏折, 延长了光路, 使得触摸屏的边界宽度也大大减小, 增加了美观性。 此外, 该实施例中的 45度反射镜 3a和 3a', 也可为 30度 ~60 度范围内的其他角度的反射镜, 只要能使光线通过该反射镜反射后发生大角 度的偏折, 从而减小模组的宽度和高度即可。
图 9示出了根据本发明第二实施例的光学触摸图像传感器模组的截面 图。 图 10a和 10b分别示出了该模组的截面立体视图和立体视图。 图 10c示 出成像组件 4b的立体视图。第二实施例是对第一实施例的进一步的改进, 与 第一实施例的模组不同的是, 第二实施例的模组中采用形成一体的成像组件 4b代替了第一实施例中的由两片 45度反射镜 3a和成像透镜 4a组成的成像 组件。 此外, 光源 1 b、 IR过滤片 2b、 线性 /阵列图像传感器 5b可采用与第一 实施例相同的部件, 即光源 1b可采用红外发光二极管, 2个红外发光二极管 lb分别放置在 IR滤波片 2b的两侧, 且均位于触摸屏 (TP)玻璃 9b侧边的上 部, 工作原理也基本与第一实施例相同。 成像组件 4b可通过塑料注塑一体形 成, 和第一实施例相比, 制造工艺更加简单且更有利于安装。 该透镜 4b具有 两个大约 45度的倾斜面 3b和 3b,,第一倾斜面 3b对准 IR滤波片 2b,使得经 过 IR滤波片 2b过滤的光线在该倾斜面发生内反射,垂直于 TP玻璃向下偏折 射向第二倾斜面 3b', 在第二倾斜面 3b'发生第二次内反射, 以大致平行于 TP 玻璃的方向射入该成像组件 4b中的后部透镜 4b' (如图 10c)所示。 该后部 透镜 4b'具有和第一实施例中的成像透镜 4a大体相同的结构, 可为双锥形透 镜。 第二实施例的模组仅使用了形成一体的成像组件, 就同时降低了触摸屏 的边界宽度和边界高度; 由于该成像组件经过了特殊的光学设计, 该模组能 够兼容线性图像传感器和阵列图像传感器; 同时, 由于采用一个形成一体的 成像组件代替了第一实施例中的由两个反射镜和一个成像透镜组成的成像组 件,大大简化了加工工艺和安装步骤。此外,成像组件 4b安装在塑料外壳中, 节省成本。该实施例中的 45度的倾斜面, 也可为 30度 -60度范围内的其他角 度的倾斜面, 只要能使光线通过该倾斜面反射后发生大角度的偏折, 从而减 小模组的宽度和高度即可。
图 11和图 12分别示出了本发明的第三实施例的光学触摸图像传感器模 组的截面图和立体视图。 第三实施例的模组是第一实施例的模组的变形, 两 者结构大体相同。 该实施例的模组也包括: 光源 IR LED 1c、 IR过滤片 2c、 两片 45度反射镜 3c和 3c'、 成像透镜 4c和线性 /阵列图像传感器 5c。 两片反 射镜 3c, 3c'和成像透镜 4c组成成像组件。 唯一不同的是, 该实施例的模组 中仅有一颗 LED, 且位于 IR滤波片的顶部, 这种改进减少了光源的数量, 也 降低了模组的能耗。
图 13和图 14分别示出了本发明的第四实施例的光学触摸图像传感器 模组的截面图和立体视图。 第四实施例的模组是第二实施例的模组的变形, 两者结构大体相同。 该实施例的模组也包括: 光源 IR LED 1d、 IR过滤片 2d、 成像组件 4d和线性 /阵列图像传感器 5d。 唯一不同的是, 该实施例的模组中 仅有一颗 LED, 且位于 IR滤波片的顶部, 这种改进减少了光源的数量, 也降 低了模组的能耗。
图 15a至图 15d分别示出了本发明的第五至第八实施例的光学触摸图像 传感器模组的截面图。 其分别是第一至第四实施例的变形。 区别在于, 其中 的 IR滤波片 2e,2f,2g, 2h不位于成像组件 4e, 4f, 4g, 4h的入射面,而分别位于成 像组件 4e, 4f, 4g, 4h的出射面。
图 16a、 图 16b和图 16c分别示出了本发明的第九实施例的光学触摸图 像传感器模组的立体视图, 截面立体视图和截面图。 该实施例与第一至第 八实施例的区别在于: 光源 IR LED 1i的前方放置有照明透镜 6i, 该照明透 镜 6i起到了减小光源 IR LED 1 i发出光线的光束角的作用;该实施例的光学触 摸图像传感器模组中的成像组件 4i仅包括经过特殊光学设计的成像透镜(如 双锥形透镜 ), 即不具有如第一至第八实施例中用于反射光线的反射镜或倾斜 面。如图 16c所示, 从光源 IR LED 1 i发出的光线经过照明透镜 6i后, 被周边 反射条反射, 射向位于光源 IR LED 1 i下方的 IR滤波片 2i, 经 IR滤波片 2i 过滤的光线被成像组件 4i成像到线性 /阵列图像传感器 5i上。该模组具有更加 简化的结构, 且同时能兼容线性 /阵列图像传感器。 图 17a、 图 17b和图 17c分别示出了本发明的第十实施例的光学触摸图 像传感器模组的立体视图, 截面立体视图和截面图。 第十实施例是第九实 施例的变形, 两者结构大体相同。 该实施例的模组也包括: 光源 IR LED 1j、 IR过滤片 2j、 成像组件 4j、 线性 /阵列图像传感器 5j和照明透镜 6j。 唯一不同 的是, 该实施例中的光源有四颗 IR LED, 呈上下两排布置, IR过滤片 2j被夹 在这两排 IR LED中间, 并且每排 IR LED的前方均有一个照明透镜 6j, 且每 排的两颗 IR LED平行于其对应的照明透镜 6j o 这种改进提高了光源的亮度, 并且光源呈上下均匀排布, 提高了触摸感应的准确性。 图 18a, 图 18b和图 18c分别示出了本发明的第十一实施例的光学触摸 图像传感器模组的立体视图, 截面立体视图和截面图。 第十一实施例是第 十实施例的变形, 该实施例的模组也包括: 光源 IR LED 1k、 IR过滤片 2k、 成像组件 4k和线性 /阵列图像传感器 5k。 区别在于: 第十一实施例中的光源 使用了 6颗 IR LED, 呈上下两排布置, 每排的三颗 IR LED呈大致圆弧状排 布, 相邻两颗 IR LED之间的夹角大致为 20度至 45度, 优选为 30度; 而光 源 IR LED 1k的前方不再设置照明透镜。 这种改进进一步地提高了光源的亮 度, 同时, 由于光源 IR LED的特殊排布, 使光线照射到触摸屏上目标区域的 范围比 IRLED放置于一排时所照射到的范围更大, 从而提高了触摸感应的准 确性。
尽管上述描述了本发明的多种具体实施方式, 但本发明并不限于此。 在 不脱离本发明精神和实质的前提下, 本领域的普通技术员可以对本发明进行 各种等效的变形和改动, 而这些变形与改动都在本发明保护范围内。

Claims

1、 一种图像传感器模组, 其包括:
至少一个光源, 用于向目标区域发出光线,
红外滤波片, 用于过滤从目标区域反射回来的光线,
成像组件,
以及图像传感器, 经过所述红外滤波片和成像组件的光线成像到图像 传感器上;
其特征在于: 该成像组件具有至少一个具有不对称曲率半径的透镜表 面以兼容多种图像传感器。
2、 如权利要求 1所述的图像传感器模组, 其特征在于, 所述成像组件 还具有至少一个倾斜部分, 该倾斜部分与从目标区域反射回来的光线 的光轴成一预定角度, 以改变光线的传播方向。
3、 如权利要求 2所述的图像传感器模组, 其特征在于, 所述倾斜部分 为反射镜, 该预定角度在 30度至 60度的范围内, 以减小该模组的边 界宽度和边界高度。
4、 如权利要求 2所述的图像传感器模组, 其特征在于, 所述倾斜部分 为倾斜平面, 所述透镜表面和所述倾斜平面形成一体, 该预定角度在 30度至 60度的范围内, 以减小该模组的边界宽度和边界高度。
5、 如权利要求 2至 4任一项所述的图像传感器模组, 其特征在于, 该 成像组件具有两个倾斜部分, 该预定角度为 45度。
6、 如权利要求 2所述的图像传感器模组, 其特征在于, 所述红外滤波 片位于该成像组件的入射面。
7、 如权利要求 2所述的图像传感器模组, 其特征在于, 所述红外滤波 片位于该成像组件的出射面。
8、 如权利要求 6所述的图像传感器模组, 其特征在于, 所述光源位于 所述红外滤波片的上方, 或者所述光源为多个且分别位于所述红外滤 波片的两侧。
9、 如权利要求 1所述的图像传感器模组, 其特征在于, 所述图像传感 器模组还包括至少一个照明透镜, 该照明透镜用于减小所述光源向目 标区域发出的光线的光束角。
10、 如权利要求 9所述的图像传感器模组, 其特征在于, 所述光源为 多个, 且布置成平行于所述照明透镜。
11、 如权利要求 10所述的图像传感器模组, 其特征在于, 所述光源为 偶数个, 均匀布置成两排, 分别平行于对应的照明透镜, 所述红外滤 波片布置在这两排光源中间。
12、 如权利要求 1所述的图像传感器模组, 其特征在于, 所述光源为 多个, 且呈圆弧状排布, 相邻两个光源之间的夹角在 20度至 45度的范 围内。
13、 如权利要求 1所述的图像传感器模组, 其特征在于, 所述多种图 像传感器为线性图像传感器和 /或阵列图像传感器。
14、 如权利要求 1或 2所述的图像传感器模组, 其特征在于, 该透镜 表面为双锥形表面。
15、 如权利要求 1或 2所述的图像传感器模组, 其特征在于, 该模组 用于光学触摸屏。
16、 如权利要求 1-4, 6-13任意一项的图像传感器模组, 其特征在于, 所述光源为红外发光二极管。
PCT/CN2011/075746 2011-06-14 2011-06-14 图像传感器模组 WO2012171181A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/075746 WO2012171181A1 (zh) 2011-06-14 2011-06-14 图像传感器模组
CN201190000016.2U CN203117945U (zh) 2011-06-14 2011-06-14 图像传感器模组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075746 WO2012171181A1 (zh) 2011-06-14 2011-06-14 图像传感器模组

Publications (1)

Publication Number Publication Date
WO2012171181A1 true WO2012171181A1 (zh) 2012-12-20

Family

ID=47356498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075746 WO2012171181A1 (zh) 2011-06-14 2011-06-14 图像传感器模组

Country Status (2)

Country Link
CN (1) CN203117945U (zh)
WO (1) WO2012171181A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020236072A1 (en) * 2019-05-17 2020-11-26 Flatfrog Laboratories Ab Improved touch sensing apparatus
US11740741B2 (en) 2017-02-06 2023-08-29 Flatfrog Laboratories Ab Optical coupling in touch-sensing systems
US11893189B2 (en) 2020-02-10 2024-02-06 Flatfrog Laboratories Ab Touch-sensing apparatus
US11943563B2 (en) 2019-01-25 2024-03-26 FlatFrog Laboratories, AB Videoconferencing terminal and method of operating the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914188A (zh) * 2014-03-18 2014-07-09 北京工业大学 一种非接触式数字键盘
CN107238395A (zh) * 2017-08-01 2017-10-10 珠海市微半导体有限公司 移动机器人的光流里程传感系统及其景深调整方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010055006A1 (en) * 1999-02-24 2001-12-27 Fujitsu Limited Optical scanning-type touch panel
US20080156967A1 (en) * 2006-12-29 2008-07-03 Samsung Electro-Mechanics Co., Ltd. Optical movement sensing system
CN101369202A (zh) * 2008-06-02 2009-02-18 北京汇冠新技术有限公司 一种用于触摸屏的图像传感装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010055006A1 (en) * 1999-02-24 2001-12-27 Fujitsu Limited Optical scanning-type touch panel
US20080156967A1 (en) * 2006-12-29 2008-07-03 Samsung Electro-Mechanics Co., Ltd. Optical movement sensing system
CN101369202A (zh) * 2008-06-02 2009-02-18 北京汇冠新技术有限公司 一种用于触摸屏的图像传感装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11740741B2 (en) 2017-02-06 2023-08-29 Flatfrog Laboratories Ab Optical coupling in touch-sensing systems
US11943563B2 (en) 2019-01-25 2024-03-26 FlatFrog Laboratories, AB Videoconferencing terminal and method of operating the same
WO2020236072A1 (en) * 2019-05-17 2020-11-26 Flatfrog Laboratories Ab Improved touch sensing apparatus
CN113924543A (zh) * 2019-05-17 2022-01-11 平蛙实验室股份公司 改进的触摸感测设备
US11893189B2 (en) 2020-02-10 2024-02-06 Flatfrog Laboratories Ab Touch-sensing apparatus

Also Published As

Publication number Publication date
CN203117945U (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2012171181A1 (zh) 图像传感器模组
TWI599801B (zh) 影像感測裝置及其光學膜片
JP3481498B2 (ja) 光学式タッチパネル
US8854336B2 (en) Light guide module, optical touch module, and method of increasing a signal to noise ratio of an optical touch module
US20150331544A1 (en) Optical coupling in touch-sensing systems
KR20180037749A (ko) 디스플레이 장치
TWI408429B (zh) 光學感測模組
TWI502212B (zh) 光學裝置、使用微透鏡之感光元件及其製作方法
US20110019204A1 (en) Optical and Illumination Techniques for Position Sensing Systems
WO2011004841A1 (ja) タッチセンサ機能付き表示装置、及び集光遮光フィルム
KR20160034358A (ko) 회절격자를 포함하는 도광판
US20150035799A1 (en) Optical touchscreen
KR101640989B1 (ko) 한정 영역 반사형 광학 센서 및 전자 기기
TWI433009B (zh) 光學式觸控裝置
TW201324259A (zh) 使用者介面顯示裝置
WO2021077406A1 (zh) 指纹识别装置和电子设备
JP6167799B2 (ja) 水滴検出センサ
JP6134442B2 (ja) 光タッチスクリーン
JP2015158389A (ja) 光電センサ
US20120319998A1 (en) Reflecting sheet and optical touch device using the same
US20170123595A1 (en) Optical touch device and operation method thereof
JP3846544B2 (ja) 光デジタイザ
TWI451310B (zh) 光學觸控模組及其光源模組
KR101778540B1 (ko) 터치 센싱 장치
KR101524047B1 (ko) 비접촉식 광센서 및 이를 갖는 단말기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000016.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867609

Country of ref document: EP

Kind code of ref document: A1