WO2012169661A1 - Monatin polyvalent metal salt crystal - Google Patents

Monatin polyvalent metal salt crystal Download PDF

Info

Publication number
WO2012169661A1
WO2012169661A1 PCT/JP2012/065176 JP2012065176W WO2012169661A1 WO 2012169661 A1 WO2012169661 A1 WO 2012169661A1 JP 2012065176 W JP2012065176 W JP 2012065176W WO 2012169661 A1 WO2012169661 A1 WO 2012169661A1
Authority
WO
WIPO (PCT)
Prior art keywords
monatin
crystals
crystal
polyvalent metal
metal salt
Prior art date
Application number
PCT/JP2012/065176
Other languages
French (fr)
Japanese (ja)
Inventor
森 健一
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2012169661A1 publication Critical patent/WO2012169661A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/60Sweeteners
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/20Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals substituted additionally by nitrogen atoms, e.g. tryptophane

Definitions

  • the present invention relates to a novel (2R, 4R) monatin polyvalent metal salt crystal.
  • the present invention also relates to a sweetening composition containing the crystals.
  • the present invention relates to a sweetening composition containing a reducing sugar.
  • Patent Documents 4 to 5 In recent years, several studies have been made on the production method of monatin (Patent Documents 4 to 5), and some findings have been reported on monatin crystals. Examples of polyvalent metal salt crystals and their effects There was no description about.
  • Patent Documents 6 to 10 ZA 87/4288 ZA 88/4220 US 5,994,559 WO2003-056026 WO2003-059865 WO2003-045914 US2005-272939 JP-A-2005-154291 JP 2006-052213 A JP2010-155817A R. Vleggaar et. Al. , J .; Chem. Soc. Perkin Trans. , 3095-3098, (1992) Holzapfel et. al. , Synthetic Communications, 24 (22), 3197-3211 (1994). K. Nakamura et. al. , Organic Letters, 2, 2967-2970 (2000).
  • An object of the present invention is to provide a novel monatin crystal that can form a sweetening composition that hardly decomposes even when exposed to high temperature and high humidity in the presence of reducing sugar.
  • [5] Has intrinsic X-ray diffraction peaks at diffraction angles (2 ⁇ ⁇ 0.2 °, CuK ⁇ ) at 4.9 °, 16.8 °, 18.0 ° and 24.6 ° ((2R, 4R) characterized in that it is a monatin) 2 magnesium salt crystals, [4], wherein the (2R, 4R) monatin polyvalent metal salt crystals.
  • a diffraction angle (2 ⁇ ⁇ 0.2 °, CuK ⁇ ) having a characteristic X-ray diffraction peak of any of the following (1) to (3) ((2R, 4R) monatin) is a 2 magnesium salt crystal.
  • the reducing sugar is dihydroxyacetone, glyceraldehyde, erythrulose, erythrose, threose, ribulose, xylulose, ribose, arabinose, xylose, lyxose, deoxyribose, psicose, fructose, sorbose, tagatose, allose, altrose, glucose, mannose [15]
  • (2R.4R) monatin polyvalent metal salt crystals can form a sweetening composition that is difficult to decompose even when exposed to high temperature and high humidity in the presence of reducing sugar. It has become possible to clarify the utility and various physical properties of these stereoisomers as sweeteners. It has also become possible to provide oral products such as beverages, foods, pharmaceuticals, quasi-drugs, and feeds that contain general-purpose stable and safe monatin polyvalent metal salt crystals. The present invention is naturally applicable to (2S, 4S) monatin.
  • natural monatin exhibits a (2S, 4S) isomer in its three-dimensional structure, but all compounds having the same chemical structural formula are collectively referred to as “monatin”, and therefore, non-natural stereoisomers of monatin.
  • stereoisomers of natural monatin “non-natural monatin”, “(2S, 4R) monatin”, “(2R, 4S) monatin”, “(2R, 4R) monatin” or the like.
  • monatin ((2S, 4S) form) is added to these stereoisomers, and these are referred to as “four kinds of stereoisomers”, or natural monatin is particularly referred to as “(2S, 4S) monatin”. Alternatively, it is referred to as “(2S, 4S) monatin” or the like.
  • (2R, 4R) monatin used in the present invention can be prepared by a known method, and its production method is not limited. For example, it can be obtained from tryptophan via indolepyruvic acid by an enzymatic method (Patent Document 4; WO2003-056026), or it can be obtained from tryptophan via indolepyruvic acid via an oxime body (reduction) Patent Document 5; WO2003-059865).
  • (2R, 4R) monatin natural monatin (2S, 4S) isomers, non-natural stereoisomers (2S, 4R) isomers, (2R, 4S) isomers are included. It doesn't matter.
  • divalent metal salts are preferable, alkaline earth metal salts are more preferable, magnesium salts, calcium salts, strontium salts, and barium salts are more preferable, magnesium salts, calcium salts, and barium salts are still more preferable, magnesium salts, calcium A salt is particularly preferred.
  • inorganic polyvalent metal compounds such as calcium hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium acetate, magnesium acetate, calcium oxalate It can be introduced by various methods such as neutralization and salt exchange with organic polyvalent metal compounds such as magnesium oxalate, calcium lactate and magnesium lactate.
  • ((2R, 4R) monatin) 2 divalent metal salt crystals are preferable from the viewpoint of being acceptable for human consumption and easy to prepare.
  • (2R, 4R) monatin) 2 alkaline earth metal salt crystals are more preferred, ((2R, 4R) monatin) 2 magnesium salt crystals, ((2R, 4R) monatin) 2 calcium salt crystals, ((2R, 4R) Monatin 2 strontium salt crystals, ((2R, 4R) monatin) 2 barium salt crystals are more preferred, ((2R, 4R) monatin) 2 magnesium salt crystals, ((2R, 4R) monatin) 2 calcium salt crystals, (( 2R, 4R) monatin) is even more preferably 2 barium salt crystals, ((2R, 4R) monatin) 2 magnesium salt crystals, ((2R 4R) monatin) 2 calcium salt crystals are particularly preferred
  • Crystallization can be obtained by subjecting an aqueous solution containing (2R, 4R) monatin and a calcium source or an organic solvent-containing aqueous solution to standing or stirring crystallization.
  • the (2R, 4R) monatin calcium concentration in the solution is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%.
  • the temperature at which the crystals are precipitated is not particularly limited as long as the crystals are precipitated, but is preferably 15 to 100 ° C.
  • Precipitated crystals can be easily obtained wet crystals by subjecting them to a separation step such as a filtration step.
  • the crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used.
  • a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc.
  • An inorganic salt or the like may also be included.
  • the wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step.
  • Drying equipment used for drying is not particularly limited, using ((2R, 4R) monatin) temperature range to the extent that 2 calcium salt crystals are not dissolved can be used, vacuum drying or flash drying, hot air drying, etc. it can.
  • 2 calcium salt ((2R, 4R) monatin) of the present invention include those having a crystal polymorphism, depending on the type and crystallization method of crystallization solvent, because it forms a very different crystal forms, on that point or less Detailed description.
  • the melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C.
  • the proportion of ethanol in the ethanol-containing aqueous solution is 50% to 99%, more preferably 75% to 99%.
  • the deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step.
  • the crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used.
  • a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc.
  • the wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step.
  • Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 calcium salt crystals are not dissolved can be used, preferably 10 ⁇ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and vacuum drying, airflow drying, hot air drying, and the like can be used.
  • Crystal precipitation can be obtained by subjecting an isopropanol-containing aqueous solution of (2R, 4R) monatin and calcium source to standing or stirring crystallization.
  • the (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%.
  • the melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C.
  • the proportion of isopropanol in the isopropanol-containing aqueous solution is 50% to 99%, more preferably 75% to 99%.
  • the deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step.
  • the crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used.
  • a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc.
  • the wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step.
  • Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 calcium salt crystals are not dissolved can be used, preferably 10 ⁇ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and vacuum drying, airflow drying, hot air drying, and the like can be used.
  • Crystal precipitation can be obtained by subjecting a THF-containing aqueous solution of (2R, 4R) monatin and a calcium source to standing or stirring crystallization.
  • the (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%.
  • the melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C.
  • the proportion of THF in the aqueous solution containing THF is 50% to 99%, more preferably 75% to 99%.
  • the deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step.
  • the crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used.
  • a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc.
  • the melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C.
  • the proportion of acetonitrile is 50% to 99%, more preferably 75% to 99%.
  • the deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step.
  • the crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used.
  • a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc.
  • An inorganic salt or the like may also be included.
  • the wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 calcium salt crystals are not dissolved can be used, preferably 10 ⁇ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and vacuum drying, airflow drying, hot air drying, and the like can be used.
  • ((2R, 4R) monatin) 2 calcium salt 5.7 hydrate crystal as shown in FIG. 8, exhibited needles, the diffraction angle (2 ⁇ ⁇ 0.2 °, CuK ⁇ ) As having intrinsic X-ray diffraction peaks at 5.0 °, 12.8 °, 15.3 °, 18.1 ° and 23.7 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal.
  • Crystal precipitation can be obtained by subjecting an organic solvent-containing aqueous solution of (2R, 4R) monatin and a calcium source to standing or stirring crystallization.
  • the (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%.
  • the melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C.
  • the type of the organic solvent in the organic solvent-containing aqueous solution is not particularly limited, but is preferably a water-soluble organic solvent having a boiling point of 100 ° C. or lower, and more preferably a water-soluble organic solvent having a boiling point of 80 ° C. or lower.
  • the proportion of the organic solvent is 50% to 99%, more preferably 75% to 99%.
  • organic solvent to be used examples include water-miscible solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, and THF.
  • a preferred solvent is ethanol.
  • the deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used.
  • ((2R, 4R) monatin) 2 calcium salt pentahydrate crystals exhibit needles as shown in FIG. 2, the diffraction angle (2 ⁇ ⁇ 0.2 °, CuK ⁇ ) , 6 It has intrinsic X-ray diffraction peaks at 0.0 °, 9.8 °, 16.0 °, 21.5 °, and 22.3 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal. Furthermore ((2R, 4R) monatin) even when exposed to high temperature and high humidity in a state of coexistence with reducing sugars than 2 calcium salt organic solvate crystal also has decomposed hard nature.
  • Crystallization can be obtained by subjecting an aqueous solution containing (2R, 4R) monatin and a magnesium source or an organic solvent-containing aqueous solution to standing or stirring crystallization.
  • the (2R, 4R) monatin magnesium concentration in the solution is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%.
  • the temperature at which the crystals are precipitated is not particularly limited as long as the crystals are precipitated, but is preferably 15 to 100 ° C.
  • Precipitated crystals can be easily obtained wet crystals by subjecting them to a separation step such as a filtration step.
  • the crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used.
  • a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc.
  • An inorganic salt or the like may also be included.
  • the wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step.
  • Drying equipment used for drying is not particularly limited, using ((2R, 4R) monatin) temperature range enough to 2 magnesium salt crystals are not dissolved can be used, vacuum drying or flash drying, hot air drying, etc. it can.
  • 2 magnesium salt ((2R, 4R) monatin) of the present invention include those having a crystal polymorphism, depending on the type and crystallization method of crystallization solvent, because it forms a very different crystal forms, on that point or less Detailed description.
  • the wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step.
  • Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 magnesium salt crystals are not dissolved can be used, preferably 10 ⁇ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and drying under reduced pressure or airflow drying can be used.
  • the resulting ((2R, 4R) monatin) 2 magnesium salt 3.1 hydrate 2.4 ethanol solvate crystal is thus, as shown in FIG. 18, it exhibited a fine crystal, the diffraction angle (2 ⁇ ⁇ 0. 2 °, CuK ⁇ ) has intrinsic X-ray diffraction peaks at 7.2 °, 10.0 °, 10.6 °, 12.3 °, 14.8 °, 17.8 °, and 25.3 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal.
  • Crystal precipitation can be obtained by subjecting a methanol-containing aqueous solution of (2R, 4R) monatin and a magnesium source to standing or stirring crystallization.
  • the (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%.
  • the wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step.
  • Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 magnesium salt crystals are not dissolved can be used, preferably 10 ⁇ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and drying under reduced pressure or airflow drying can be used.
  • Crystal precipitation can be obtained by subjecting a DMF-containing aqueous solution of (2R, 4R) monatin and a magnesium source to standing or stirring crystallization.
  • the (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%.
  • the melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C.
  • the proportion of DMF in the DMF-containing aqueous solution is 50% to 99%, more preferably 75% to 99%.
  • the deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step.
  • the crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used.
  • a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc.
  • the wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step.
  • Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 magnesium salt crystals are not dissolved can be used, preferably 10 ⁇ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and drying under reduced pressure or airflow drying can be used.
  • the inorganic anion concentration mentioned here is a specified number (N) of the salt concentration relative to the total weight (kg).
  • the deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step.
  • the crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used.
  • a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc.
  • An inorganic salt or the like may also be included.
  • the wet crystals thus obtained can be led to dry crystals by controlling the drying conditions.
  • Crystal deposition can be obtained by subjecting an aqueous solution containing (2R, 4R) monatin and a magnesium source or an organic solvent-containing aqueous solution to standing or stirring crystallization.
  • the (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%.
  • the melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 10 to 100 ° C.
  • the temperature of the slurry on which the crystals are precipitated is preferably 10 ° C. to 100 ° C., more preferably 10 ° C. to 65 ° C.
  • the holding time of the slurry liquid is within 24 hours if it is 65 ° C. or higher, and is not particularly limited if it is 65 ° C. or lower.
  • concentration 0.028 N / kg or less is preferable and 0.0069 N / kg or less is more preferable.
  • the inorganic anion concentration mentioned here is a specified number (N) of the salt concentration relative to the total weight (kg).
  • N the number of the salt concentration relative to the total weight (kg).
  • the deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step.
  • the crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used.
  • a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc.
  • An inorganic salt or the like may also be included.
  • the wet crystals thus obtained can be led to dry crystals by controlling the drying conditions at a low temperature.
  • ((2R, 4R) monatin) temperature range enough to 2 magnesium salt crystals are not dissolved can be used, preferably 10 ⁇ 60 ° C., more preferably from 10 ° C. ⁇ 40 ° C. from the viewpoint of quality stability during manufacture, drying time As long as it is not overdried, any time can be selected, and vacuum drying or airflow drying can be used.
  • Crystal precipitation can be obtained by subjecting an organic solvent-containing aqueous solution of (2R, 4R) monatin and a magnesium source to standing or stirring crystallization.
  • the (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%.
  • the melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C.
  • the type of the organic solvent in the organic solvent-containing aqueous solution is not particularly limited, but is preferably a water-soluble organic solvent having a boiling point of 100 ° C. or lower, and more preferably a water-soluble organic solvent having a boiling point of 80 ° C. or lower.
  • the proportion of the organic solvent is 50% to 99%, more preferably 75% to 99%.
  • the deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step.
  • the crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used.
  • a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc.
  • An inorganic salt or the like may also be included.
  • the wet crystals thus obtained can be led to dry crystals by controlling the drying conditions. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 magnesium salt crystals are not dissolved can be used, preferably 25 ⁇ 120 ° C., the quality in manufacturing stability From the viewpoint of safety, 40 ° C. to 100 ° C.
  • desired crystals can be obtained by storing it under high temperature and high humidity.
  • the temperature at that time is 25 ° C. to 100 ° C., more preferably 40 ° C. to 80 ° C.
  • the relative humidity is stored in the range of 20% to 100%, more preferably 60% to 100%.
  • the storage time is 24 hours to 168 hours, more preferably 48 hours to 120 hours.
  • the resulting ((2R, 4R) monatin) 2 magnesium salt tetrahydrate crystals present a fine crystal, the diffraction angle (2 ⁇ ⁇ 0.2 °, CuK ⁇ ) as, 8 It has intrinsic X-ray diffraction peaks at .9 °, 11.2 °, 15.0 °, 17.8 ° and 22.5 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal.
  • Crystal deposition can be obtained by subjecting an aqueous solution containing (2R, 4R) monatin and a magnesium source or an organic solvent-containing aqueous solution to standing or stirring crystallization.
  • the (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%.
  • the melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 10 to 100 ° C.
  • the temperature of the slurry on which the crystals are precipitated is preferably 10 ° C. to 100 ° C., more preferably 65 ° C. to 100 ° C.
  • the holding time of the slurry liquid is not particularly limited.
  • the target crystal can be obtained by high-temperature crystallization or a high salting-out effect even at a low temperature.
  • the crystallization temperature is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, still more preferably 60 ° C. or higher, and particularly preferably 65 ° C. or higher.
  • the inorganic anion concentration is preferably 0.14 N / kg or more, more preferably 0.28 N / kg or more, and 0.55 N / kg.
  • the above is more preferable, and 0.88 N / kg or more is particularly preferable.
  • the inorganic anion concentration mentioned here is a specified number (N) of the salt concentration relative to the total weight (kg).
  • the proportion of the organic solvent in the organic solvent-containing aqueous solution is 0.1% to 75%, more preferably 0.1% to 50%.
  • the deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step.
  • the crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used.
  • a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc.
  • An inorganic salt or the like may also be included.
  • the wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) temperature range enough to 2 magnesium salt crystals are not dissolved can be used, preferably 10 ⁇ 120 ° C., during production Productivity From the viewpoint, 60 ° C. to 120 ° C. is more preferable, and drying under reduced pressure or airflow drying can be used.
  • ((2R, 4R) monatin) 2 magnesium salt organic solvate crystals have the property of not easily decomposing even when exposed to high temperature and high humidity in the presence of reducing sugar. Furthermore, ((2R, 4R) monatin) 2 magnesium salt tetrahydrate crystal or 7.5 hydrate crystal or 9 hydrate crystal decomposes even when exposed to high temperature and high humidity in the presence of reducing sugar. It also has the most useful properties that are difficult.
  • ((2R, 4R) monatin) Among the two magnesium salt crystals, ((2R, 4R) monatin) 2 magnesium salt 3.1 water from the viewpoint of being stable even if it coexists with a reducing sugar under high temperature and high humidity.
  • the (2R, 4R) monatin polyvalent metal salt crystal of the present invention is slightly different in the ratio of monatin to metal, the ratio of monatin to water, or the ratio of monatin to solvent, as long as it has this peak set. Even if there are fluctuations, they should be regarded as the same crystal.
  • the (2R, 4R) monatin polyvalent metal salt crystal of the present invention can form a monatin crystal together with other inorganic / organic impurities.
  • the lower limit of the chemical purity of the monatin crystal containing the (2R, 4R) monatin polyvalent metal crystal of the present invention is not particularly limited as long as the crystal is formed, but from the viewpoint that a stable crystal can be formed. % By weight is preferred, 60% by weight is more preferred, 70% by weight is more preferred, 80% by weight is even more preferred, 90% by weight is particularly preferred, and 95% by weight is particularly preferred.
  • the upper limit of the chemical purity is preferably 100% by mass from the viewpoint of achieving a sweetness multiplication factor even with a smaller amount.
  • the chemical purity here is the ratio of the “monatin polyvalent metal salt hydrate crystal” mass to the total mass of the monatin crystal.
  • the causes of purity reduction include impurities of monatin itself (including other isomers), inorganic salts, calcium, metal salts other than magnesium, and the like, but are not limited thereto.
  • the (2R, 4R) monatin polyvalent metal salt crystal of the present invention further comprises (2S, 4S) monatin polyvalent metal salt, (2S, 4R) monatin polyvalent metal, (2R, 4S) monatin as other monatin isomers.
  • Monatin crystals can be formed with polyvalent metal salts and other inorganic and organic impurities.
  • the sweetening power of the monatin crystal containing the (2R, 4R) monatin polyvalent metal salt crystal of the present invention is not particularly limited.
  • It is preferably 200 times or more, more preferably 500 times or more, still more preferably 1000 times or more, still more preferably 1500 times or more, still more preferably 2000 times or more, and particularly preferably 2500 times or more with respect to the aqueous sugar solution.
  • the (2R, 4R) monatin polyvalent metal salt crystal of the present invention can be widely used as a sweetening composition.
  • the form of the sweetening composition is not particularly limited, and examples thereof include liquids, powders, and solids.
  • a powder form and a solid form are preferable, and a powder form is particularly preferable.
  • the sweetening composition of the present invention can further contain a reducing sugar.
  • This sweetening composition has the property that monatin is hardly decomposed even when exposed to high temperature and high humidity.
  • the reducing sugar used in the present invention is not particularly limited as long as it is a sugar capable of causing a Maillard reaction having a reducing ability.
  • dihydroxyacetone, glyceraldehyde, erythrulose, erythrose, threose, ribulose Monosaccharides such as xylulose, ribose, arabinose, xylose, lyxose, deoxyribose, psicose, fructose, sorbose, tagatose, allose, altrose, glucose, mannose, gulose, idose, galactose, talose, fucose, fucrose, rhamnose, cedoheptulose; And disaccharides such as lactose, maltose, tulanose, sucrose, trehalose, and robiose.
  • Glucose, fructose, maltose, lactose, galactose, mannose, arabinose, and xylose are preferred, glucose, fructose, maltose, and lactose are more preferred, and glucose and maltose are further preferred in terms of good sweetness characteristics and high market needs preferable.
  • the monatin disappearance phenomenon is caused by the Maillard reaction caused by the reducing sugar and the amino group of monatin.
  • the amino group of monatin is sterically covered so that the reducing sugar is difficult to access.
  • the sweetener composition of the present invention can further contain other sweeteners (except for monatin or a salt thereof).
  • Other sweeteners are not particularly limited, and specific examples include oligosaccharides such as fructooligosaccharide, maltooligosaccharide, isomaltoligosaccharide, and galactooligosaccharide; xylitol, lactitol, sorbitol, erythritol, mannitol, maltitol, reduced palatinose -Sugar alcohols such as reduced starch saccharified products; Aspartame, acesulfame K, sucralose, saccharin, stevioside, neotame, cyclamate, stevia, glycyrrhizin, monelin, thaumatin, alitame, dulcin, brazein, neocrine, MHPPAPM (N- [N- [ 3- (3-H
  • aspartame, acesulfame K, sucralose, saccharin, cyclamate, stevioside, neotame are preferred, aspartame, acesulfame K, sucralose, saccharin, stevioside, neotame are more preferred, aspartame, acesulfame K, sucralose, stevioside, Neotame is more preferred, aspartame, acesulfame K, sucralose and neotame are even more preferred, aspartame, acesulfame K and sucralose are particularly preferred, and aspartame and sucralose are particularly preferred.
  • aspartame is particularly preferable from the viewpoint of obtaining a sweet synergistic effect.
  • dextrins such as dextrin, maltodextrin, starch degradation product, reduced starch degradation product, cyclodextrin, indigestible dextrin, polysaccharides such as crystalline cellulose, polydextrose, etc .
  • citric acid PH adjusters such as phosphoric acid, lactic acid, malic acid, tartaric acid, gluconic acid and their salts
  • antioxidants such as L-ascorbic acid, erythorbic acid, tocopherol (vitamin E); sodium acetate, glycine, glycerin
  • Preservatives such as fatty acid esters and lysozyme
  • preservatives such as sodium benzoate and potassium sorbate
  • stabilizers such as pectin, gum arabic, carrageenan, soybean
  • the monatin polyvalent metal salt crystal or sweetening composition of the present invention can be used for oral products such as beverages, foods, pharmaceuticals, quasi drugs, and feeds.
  • the dosage form is not particularly limited, and examples thereof include powder, granules, cubes, pastes, and liquids.
  • liquid drinks such as fruit drinks, vegetable drinks, colas, carbonated drinks, sports drinks, coffee, tea, cocoa, milk drinks; powdered drinks such as powdered juices; plum drinks, medicinal liquors, fruit liquors, sake, etc.
  • Beverages such as liquor; chocolate, cookies, cakes, donuts, chewing gum, jelly, pudding, mousse, Japanese confectionery, etc .; French bread, croissants, etc .; dairy products such as coffee milk, yogurt; ice cream, Ice confectionery such as sherbet; powder mix such as baking mix and dessert mix; tabletop sweetener such as liquid tabletop sweetener and powder tabletop sweetener; seafood dried products and seafood salted products; Processed products; dressing, sauce, soy sauce, miso, mirin, sauce, ketchup, noodle soup Spices such as curry powder; processed cereals such as instant noodles; foods such as cereals; tablet pharmaceuticals; powder pharmaceuticals; syrup pharmaceuticals; drop pharmaceuticals; etc.
  • Quasi-drugs represented by agents, dentifrices, drinks, etc. pet foods, liquid feeds, powdered feeds, etc.
  • beverages, foods, pharmaceuticals, quasi-drugs, and feeds that retain the crystal form of monatin are preferable from the viewpoint of maintaining the sweetness and sweetness stability of monatin, and powdered beverages, confectionery, powder mixes, and powder tabletops.
  • Sweeteners, tablet pharmaceuticals, powdered pharmaceuticals, and powdered feeds are more preferable, and powdered beverages, powdered tabletop sweeteners, and powder mixes are more preferable.
  • the monatin polyvalent metal salt crystal or sweetening composition of the present invention is extremely effective as a metabolic syndrome prevention / treatment agent, obesity prevention / treatment agent, diabetes prevention / treatment agent, and caries prevention agent. In addition, it has sweetness synergistic effect, flavor synergistic effect, bitterness masking, and photodegradation stabilizing effect.
  • TSKguardcolumn SuperIC-C inner diameter 4.6mm, length 10mm ⁇ Eluent> 2.2 mmol / L methanesulfonic acid +1.0 mmol / L 18-crown-6 +0.5 mmol / L histidine ⁇ column temperature> 40 ° C. ⁇ Flow rate> 1 ml / min ⁇ Standard solution> Calcium chloride or magnesium chloride (special grade reagent) was dissolved in pure water to obtain a standard solution.
  • Example 1 ((2R, 4R) monatin) dissolved 2 calcium salt 5 hydrate crystal prepared in Production Example 1 of a (2R, 4R)) monatin potassium salt crystals 5 g (13.7 mmol) in water 75ml At 50 ° C., 0.758 g (6.83 mmol) of calcium chloride was added. To the monatin solution, 75 ml of ethanol was added and stirred at 50 ° C. for 3 hours, then cooled to 25 ° C. over 2.5 hours, and further stirred at 25 ° C. for 10 hours. The precipitated crystals were separated by filtration and dried under reduced pressure at 40 ° C. The dried crystals were stored in a constant temperature and humidity chamber at 44 ° C. and 78% for 24 hours to obtain 4.6 g of desired calcium salt crystals.
  • Example 3 ((2R, 4R) monatin) Preparation of 2 calcium salt 4.6 hydrate 0.67 ethanol solvate crystal (2R, 4R) monatin potassium salt crystals 15g (41 mmol) in water 225ml After dissolution, 2.274 g (20.5 mmol) of calcium chloride was added. The monatin solution was heated to 50 ° C., added with 75 ml of ethanol, stirred for 1.5 hours, cooled to 25 ° C. over 2.5 hours, and further stirred at 25 ° C. for 12.5 hours. The precipitated crystals were separated by filtration and dried under reduced pressure at 40 ° C. 14.1 g of the desired calcium salt crystals were obtained.
  • Example 4 ((2R, 4R) monatin) Preparation of 2 calcium salt 5.7 hydrate crystal ((2R, 4R) monatin) 2 calcium salt crystal pentahydrate crystals 0.4 g (1.08 mmol ) was dissolved in 8.5 ml of water, heated to 65 ° C., and 8.5 ml of CH 3 CN was added. Stir at 45 ° C. for 12 hours. The precipitated crystals were separated by filtration and dried under reduced pressure at 40 ° C. to obtain 0.288 g of calcium salt crystals.
  • Example 5 ((2R, 4R) monatin) Preparation of 2 calcium salt 5.9 hydrate 0.72THF hydrate crystals (2R, 4R) monatin) 2 calcium salt crystal pentahydrate crystals 0.4 g ( 1.08 mmol) was dissolved in 8.5 ml of water, heated to 65 ° C., and 8.5 ml of THF was added. Stir at 45 ° C. for 12 hours. The precipitated crystals were separated by filtration and dried under reduced pressure at 40 ° C. to obtain 0.288 g of calcium salt crystals.
  • Example 6 ((2R, 4R) monatin) Preparation of 2 calcium salt 3.8 hydrate 0.63i-PrOH hydrate crystals ((2R, 4R) monatin) 2 calcium salt crystal pentahydrate crystals 0 0.4 g (1.08 mmol) was dissolved in 8.5 ml of water, heated to 65 ° C., and 8.5 ml of i-PrOH was added. Stir at 45 ° C. for 25 hours. The precipitated crystals were separated by filtration and dried under reduced pressure at 40 ° C. to obtain 0.337 g of calcium salt crystals.
  • Example 8 ((2R, 4R) monatin) Preparation of 2 magnesium salt dihydrate crystals (2R, 4R) Mona Tin potassium salt crystals 120 g (345 mmol) was dissolved in water 150 ml, sulfate at 60 ° C. 4.15 g (34.5 mmol) of magnesium was added. Further, 16.61 g (138 mmol) of magnesium sulfate (100 ml of water) was added over 6.4 hours. After completion of the addition, the precipitated crystals were separated by filtration and washed with 100 ml of water to obtain wet crystals (204.7 g). The wet crystals were dried under reduced pressure at 40 ° C. to obtain 105 g of magnesium salt crystals.
  • Example 9 ((2R, 4R) monatin) Preparation of 2 magnesium salt 3.1 hydrate 2.4 ethanol solvate crystal (2R, 4R) Mona tin-free substance crystals 10 g (33.3 mmol) of water After dispersing in 100 ml, 0.971 g (16.7 mmol) of magnesium hydroxide was added at 25 ° C. and stirred for 3 hours. Further, 506 ml of ethanol was added dropwise in about 3 hours, followed by stirring at 25 ° C. for 25.5 hours. The precipitated crystals (17.73 g) were filtered off and dried under reduced pressure at room temperature. 12.04 g of the desired magnesium salt crystals were obtained.
  • Example 10 ((2R, 4R) monatin) Preparation of 2 magnesium salt 7.2 hydrate 0.23 methanolate crystals (2R, 4R) Mona tin-free substance crystals 10 g (33.3 mmol) of water After dispersing in 100 ml, 0.971 g (16.7 mmol) of magnesium hydroxide was added at 25 ° C. and stirred for 3 hours. Further, 506 ml of methanol was added dropwise in about 3 hours, followed by stirring at 25 ° C. for 20 hours. The precipitated crystals (15.87 g) were filtered off and dried under reduced pressure at room temperature. 11.94 g of the desired magnesium salt crystals were obtained.
  • Example 12 ((2R, 4R) monatin) Preparation of 2 magnesium salt nonahydrate crystals (2R, 4R) Mona tin-free substance crystals 30 g (100 mmol) dispersed in water 300 ml, water at 65 ° C. 3.21 g (55 mmol) of magnesium oxide was added. Stir at 65 ° C. for 1 hour. The precipitated crystals (27.28 g) were filtered off and dried under reduced pressure at 40 ° C. for 4 hours to obtain 22.29 g of magnesium salt crystals.
  • Example 13 was obtained by the method of water vapor adsorption desorption curves a second embodiment of the crystal ((2R, 4R) monatin) obtained by the method of 2 magnesium salt tetrahydrate crystals and Example 8 (2R, 4R ) monatin) was determined water vapor adsorption desorption curves of 2 magnesium salt dihydrate crystals. The measured values are shown in FIGS.
  • Table 3 shows the results of the monatin survival rate. Calcium salt crystals and magnesium salt crystals were found to have a higher survival rate under high temperature and high humidity than potassium salt crystals.
  • Table 4 shows the results of the transmittance of the stored product solution. In the case of potassium salt crystals, the transmittance decreases and the color is yellow, but in the case of calcium salt crystals and magnesium salt crystals, no color change is observed.
  • Example 2 Storage stability evaluation (containing sucrose) Obtained in Example 1 ((2R, 4R) monatin) 2 calcium salt pentahydrate crystals, obtained in Example 2 ((2R, 4R) monatin) and 2 magnesium salt tetrahydrate crystals Preparation
  • the storage stability of the monatin monopotassium salt crystal obtained in 1 was evaluated by the following method.
  • [Storage conditions] 1 g of the sweetening composition shown in Formulation Table 2 was filled in a paper wrapping material and sealed with a heat seal. The sample was stored in a constant temperature and humidity chamber at 44 ° C. and 78% for a predetermined time, and the entire amount of the stored sample was dissolved in 50 mL of water.
  • Table 6 shows the results of the monatin survival rate. Calcium salt crystals and magnesium salt crystals were found to have a higher survival rate under high temperature and high humidity than potassium salt crystals.
  • Table 7 shows the results of the transmittance of the stored product solution. In the case of potassium salt crystals, the transmittance decreases and the color is yellow, but in the case of calcium salt crystals and magnesium salt crystals, no color change is observed.
  • [ Figure 1] is a ((2R, 4R) monatin) powder X-ray diffraction diagram after the humidity control 2 calcium salt pentahydrate crystals.
  • Example 1 [ Figure 2] is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 calcium salt pentahydrate crystals. (Magnification 200 times)
  • Example 1 [Figure 3] is a ((2R, 4R) monatin) powder X-ray diffraction diagram after the humidity control 2 magnesium salt tetrahydrate crystals.
  • Figure 4] is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 magnesium salt tetrahydrate crystals.
  • Example 4 is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 calcium salt 5.7 hydrate crystals. (Magnification 200 times) (Example 4)
  • Figure 9 is a ((2R, 4R) monatin) powder X-ray diffraction chart after drying of 2 calcium salt 5.9 hydrate 0.72THF hydrate crystals.
  • Figure 10 is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 calcium salt 5.9 hydrate 0.72THF hydrate crystals.
  • FIG. 10 is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 magnesium salt 7.2 hydrate 0.23 methanolate crystals. (Magnification 200 times) (Example 10) [Figure 21] is a ((2R, 4R) monatin) powder X-ray diffraction pattern of 2 magnesium salt 8.5 hydrate 2.5DMF hydrate crystals. (Example 11) [ Figure 22] is an illustration of the (2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 magnesium salt 8.5 hydrate 2.5DMF hydrate crystals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Indole Compounds (AREA)
  • Seasonings (AREA)
  • Medicinal Preparation (AREA)

Abstract

[Problem] To provide a novel monatin crystal capable of forming a sweet composition that resists decomposition even when exposed to heat and humidity together with a reducing salt. [Solution] It was found that a (2R,4R)-monatin polyvalent metal salt crystal solves said problem.

Description

モナティン多価金属塩結晶Monatin polyvalent metal salt crystals
 本発明は、新規(2R,4R)モナティン多価金属塩結晶に関する。また、当該結晶を含有する甘味組成物に関する。更に還元糖を含有する甘味組成物に関する。 The present invention relates to a novel (2R, 4R) monatin polyvalent metal salt crystal. The present invention also relates to a sweetening composition containing the crystals. Furthermore, the present invention relates to a sweetening composition containing a reducing sugar.
 モナティンは、南アフリカの北部トランスバール(northern Transvaal)地方に自生する植物シュレロチトン イリシホリアス(Schlerochiton ilicifolius)の根皮から単離された天然由来のアミノ酸誘導体であり、R.Vleggaar等により、その構造に関し、(2S,4S)−2−amino−4−carboxy−4−hydroxy−5−(3−indolyl)−pentanoic acid((2S,4S)−4−hydroxy−4−(3−indolylmethyl)−glutamic acid)と報告されている(非特許文献1)。また、この天然植物由来の(2S,4S)体(天然型モナティン)の甘味強度は、同文献等によると、ショ糖の800倍~1400倍と報告されている。モナティンの合成法については、幾つかの方法が報告されているものの、それらの多くは立体異性体混合物の合成法に関するものであり、天然型モナティンと同一化学構造式を有する4種の立体異性体それぞれを純品として合成、単離し、それらの諸性質を詳細に調べ、報告した例は古くは殆ど無かった。(特許文献1~3、非特許文献2~3) Monatin is a naturally occurring amino acid derivative isolated from the root bark of the plant Schlerochiton Ilicifolius, which grows naturally in the northern Transvaal region of South Africa. Vleggaar et al. (2S, 4S) -2-amino-4-carboxylic-4-hydroxy-5- (3-indylyl) -pentanoic acid ((2S, 4S) -4-hydroxy-4- ( 3-indolethyl) -glutamic acid) (Non-patent Document 1). The sweetness intensity of the (2S, 4S) body (natural monatin) derived from this natural plant is reported to be 800 to 1400 times that of sucrose according to the literature. Although several methods have been reported for the synthesis of monatin, many of them relate to the synthesis of stereoisomer mixtures, and four stereoisomers having the same chemical structure as natural monatin. Each was synthesized and isolated as a pure product, their properties were investigated in detail, and there were almost no examples reported. (Patent Documents 1 to 3, Non-Patent Documents 2 to 3)
 近年、モナティンの製法について、いくつかの研究がなされ(特許文献4~5)、また、モナティン結晶については、いくつかの知見が報告されているが、多価金属塩結晶の実施例およびその効果に関する記載はなかった。(特許文献6~10)
ZA 87/4288 ZA 88/4220 US 5,994,559 WO2003−056026 WO2003−059865 WO2003−045914 US2005−272939 特開2005−154291 特開2006−052213 特開2010−155817 R.Vleggaar et.Al.,J.Chem.Soc.Perkin Trans.,3095−3098,(1992) Holzapfel et.al.,Synthetic Communications,24(22),3197−3211(1994) K.Nakamura et.al.,Organic Letters,2,2967−2970(2000)
In recent years, several studies have been made on the production method of monatin (Patent Documents 4 to 5), and some findings have been reported on monatin crystals. Examples of polyvalent metal salt crystals and their effects There was no description about. (Patent Documents 6 to 10)
ZA 87/4288 ZA 88/4220 US 5,994,559 WO2003-056026 WO2003-059865 WO2003-045914 US2005-272939 JP-A-2005-154291 JP 2006-052213 A JP2010-155817A R. Vleggaar et. Al. , J .; Chem. Soc. Perkin Trans. , 3095-3098, (1992) Holzapfel et. al. , Synthetic Communications, 24 (22), 3197-3211 (1994). K. Nakamura et. al. , Organic Letters, 2, 2967-2970 (2000).
 本発明の課題は、還元糖と共存した状態で高温高湿下にさらされても分解し難い甘味組成物を形成しうる、新規モナティン結晶を提供することである。 An object of the present invention is to provide a novel monatin crystal that can form a sweetening composition that hardly decomposes even when exposed to high temperature and high humidity in the presence of reducing sugar.
 本発明者等は鋭意検討を行った結果、(2R.4R)モナティン多価金属塩結晶によって、上記課題が解決されることを見出した。 As a result of intensive studies, the present inventors have found that (2R.4R) monatin polyvalent metal salt crystals can solve the above problems.
すなわち、本発明は、以下の態様を含む。
〔1〕(2R,4R)モナティン多価金属塩結晶。
〔2〕多価金属塩が二価金属塩であることを特徴とする、〔1〕記載の(2R,4R)モナティン多価金属塩結晶。
〔3〕多価金属塩がアルカリ土類金属塩であることを特徴とする、〔2〕記載の(2R,4R)モナティン多価金属塩結晶。
〔4〕多価金属塩がカルシウム塩、マグネシウム塩から選ばれる少なくとも1種の塩であることを特徴とする、〔3〕記載の(2R,4R)モナティン多価金属塩結晶。
〔5〕回折角度(2θ±0.2°、CuKα)として、4.9°、16.8°、18.0°、24.6°に固有X線回折ピークを有する((2R,4R)モナティン)マグネシウム塩結晶であることを特徴とする、〔4〕記載の(2R,4R)モナティン多価金属塩結晶。
〔6〕回折角度(2θ±0.2°、CuKα)として、下記(1)~(3)のいずれかの固有X線回折ピークを有する((2R,4R)モナティン)マグネシウム塩結晶であることを特徴とする、〔4〕記載の(2R,4R)モナティン多価金属塩結晶。
(1)8.7°、10.5°、15.9°、17.4°、21.0°、25.6°
(2)8.9°、11.2°、15.0°、17.8°、22.5°
(3)4.9°、16.8°、18.0°、24.6°
〔7〕回折角度(2θ±0.2°、CuKα)として、下記(1)~(4)のいずれかの固有X線回折ピークを有する((2R,4R)モナティン)マグネシウム塩結晶であることを特徴とする、〔4〕記載の(2R,4R)モナティン多価金属塩結晶。
(1)7.5°、10.3°、11.2°、16.0°18.1°、23.0°
(2)8.7°、10.5°、15.9°、17.4°、21.0°、25.6°
(3)8.9°、11.2°、15.0°、17.8°、22.5°
(4)4.9°、16.8°、18.0°、24.6°
〔8〕回折角度(2θ±0.2°、CuKα)として、下記(1)または(2)のいずれかの固有X線回折ピークを有する((2R,4R)モナティン)カルシウム塩結晶であることを特徴とする、〔4〕記載の(2R,4R)モナティン多価金属塩結晶。
(1)5.0°、12.8°、15.3°、18.1°、23.7°
(2)6.0°、9.8°、16.0°、21.5°、22.3°
〔9〕回折角度(2θ±0.2°、CuKα)として、下記(1)~(3)のいずれかの固有X線回折ピークを有する((2R,4R)モナティン)カルシウム塩結晶であることを特徴とする、〔4〕記載の(2R,4R)モナティン多価金属塩結晶。
(1)5.1°、15.9°、19.7°、22.3°
(2)5.0°、12.8°、15.3°、18.1°、23.7°
(3)6.0°、9.8°、16.0°、21.5°、22.3°
〔10〕鏡像体過剰率が10~100%eeであることを特徴とする、〔1〕~〔9〕のいずれか一項に記載の(2R,4R)モナティン多価金属塩結晶。
〔11〕ジアステレオマー過剰率が10~100%deであることを特徴とする、〔1〕~〔10〕のいずれか一項に記載の(2R,4R)モナティン多価金属塩結晶。
〔12〕化学純度が50~100質量%であることを特徴とする、〔1〕~〔11〕のいずれか一項に記載の(2R,4R)モナティン多価金属塩結晶。
〔13〕5%ショ糖水溶液に対して甘味倍率が200倍以上であることを特徴とする、〔1〕~〔12〕のいずれか一項に記載の(2R,4R)モナティン多価金属塩結晶。
〔14〕〔1〕~〔13〕のいずれか一項に記載の(2R,4R)モナティン多価金属塩結晶を含有することを特徴とする、甘味組成物。
〔15〕更に、還元糖を含有することを特徴とする、〔14〕記載の甘味組成物。
〔16〕還元糖がジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、トレオース、リブロース、キシルロース、リボース、アラビノース、キシロース、リキソース、デオキシリボース、プシコース、フルクトース、ソルボース、タガトース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、フコース、フクロース、ラムノース、セドヘプツロース、ラクトース、マルトース、ツラノース、セロビオース、マルトトリオース、アカルボースであることを特徴とする、〔15〕の甘味組成物。
〔17〕粉体状であることを特徴とする、〔14〕~〔16〕のいずれか一項記載の甘味組成物。
〔18〕更に、還元糖産生物質を含有することを特徴とする、〔14〕記載の甘味組成物。
〔19〕〔1〕~〔13〕のいずれか一項に記載の(2R,4R)モナティン多価金属塩結晶を含有することを特徴とする、経口製品。
〔20〕〔14〕~〔18〕のいずれか一項に記載の甘味組成物を含有することを特徴とする、経口製品。
That is, the present invention includes the following aspects.
[1] (2R, 4R) monatin polyvalent metal salt crystal.
[2] The (2R, 4R) monatin polyvalent metal salt crystal according to [1], wherein the polyvalent metal salt is a divalent metal salt.
[3] The (2R, 4R) monatin polyvalent metal salt crystal according to [2], wherein the polyvalent metal salt is an alkaline earth metal salt.
[4] The (2R, 4R) monatin polyvalent metal salt crystal according to [3], wherein the polyvalent metal salt is at least one salt selected from calcium salts and magnesium salts.
[5] Has intrinsic X-ray diffraction peaks at diffraction angles (2θ ± 0.2 °, CuKα) at 4.9 °, 16.8 °, 18.0 ° and 24.6 ° ((2R, 4R) characterized in that it is a monatin) 2 magnesium salt crystals, [4], wherein the (2R, 4R) monatin polyvalent metal salt crystals.
[6] A diffraction angle (2θ ± 0.2 °, CuKα) having a characteristic X-ray diffraction peak of any of the following (1) to (3) ((2R, 4R) monatin) is a 2 magnesium salt crystal. The (2R, 4R) monatin polyvalent metal salt crystal according to [4], wherein
(1) 8.7 °, 10.5 °, 15.9 °, 17.4 °, 21.0 °, 25.6 °
(2) 8.9 °, 11.2 °, 15.0 °, 17.8 °, 22.5 °
(3) 4.9 °, 16.8 °, 18.0 °, 24.6 °
[7] As a diffraction angle (2θ ± 0.2 °, CuKα), it has a characteristic X-ray diffraction peak of any one of the following (1) to (4) ((2R, 4R) monatin) 2 magnesium salt crystal The (2R, 4R) monatin polyvalent metal salt crystal according to [4], wherein
(1) 7.5 °, 10.3 °, 11.2 °, 16.0 ° 18.1 °, 23.0 °
(2) 8.7 °, 10.5 °, 15.9 °, 17.4 °, 21.0 °, 25.6 °
(3) 8.9 °, 11.2 °, 15.0 °, 17.8 °, 22.5 °
(4) 4.9 °, 16.8 °, 18.0 °, 24.6 °
[8] As a diffraction angle (2θ ± 0.2 °, CuKα), it has a characteristic X-ray diffraction peak of either (1) or (2) below ((2R, 4R) monatin) 2 calcium salt crystal The (2R, 4R) monatin polyvalent metal salt crystal according to [4], wherein
(1) 5.0 °, 12.8 °, 15.3 °, 18.1 °, 23.7 °
(2) 6.0 °, 9.8 °, 16.0 °, 21.5 °, 22.3 °
[9] diffraction angles (2θ ± 0.2 °, CuKα) as is the following (1) having any unique X-ray diffraction peak of ~ (3) ((2R, 4R) monatin) 2 calcium salt crystals The (2R, 4R) monatin polyvalent metal salt crystal according to [4], wherein
(1) 5.1 °, 15.9 °, 19.7 °, 22.3 °
(2) 5.0 °, 12.8 °, 15.3 °, 18.1 °, 23.7 °
(3) 6.0 °, 9.8 °, 16.0 °, 21.5 °, 22.3 °
[10] The (2R, 4R) monatin polyvalent metal salt crystal according to any one of [1] to [9], wherein the enantiomeric excess is 10 to 100% ee.
[11] The (2R, 4R) monatin polyvalent metal salt crystal according to any one of [1] to [10], wherein the diastereomeric excess is 10 to 100% de.
[12] The (2R, 4R) monatin polyvalent metal salt crystal according to any one of [1] to [11], wherein the chemical purity is 50 to 100% by mass.
[13] The (2R, 4R) monatin polyvalent metal salt according to any one of [1] to [12], wherein the sweetness multiplication factor is 200 times or more with respect to a 5% sucrose aqueous solution crystal.
[14] A sweetening composition comprising the (2R, 4R) monatin polyvalent metal salt crystal according to any one of [1] to [13].
[15] The sweetening composition according to [14], further comprising a reducing sugar.
[16] The reducing sugar is dihydroxyacetone, glyceraldehyde, erythrulose, erythrose, threose, ribulose, xylulose, ribose, arabinose, xylose, lyxose, deoxyribose, psicose, fructose, sorbose, tagatose, allose, altrose, glucose, mannose [15] The sweetening composition according to [15], characterized in that the composition is gulose, idose, galactose, talose, fucose, fucose, rhamnose, cedoheptulose, lactose, maltose, tulanose, cellobiose, maltotriose, acarbose.
[17] The sweetening composition according to any one of [14] to [16], which is in a powder form.
[18] The sweetening composition according to [14], further comprising a reducing sugar-producing substance.
[19] An oral product comprising the (2R, 4R) monatin polyvalent metal salt crystal according to any one of [1] to [13].
[20] An oral product comprising the sweetening composition according to any one of [14] to [18].
 (2R.4R)モナティン多価金属塩結晶よって、還元糖と共存した状態で高温高湿下にさらされても分解し難い甘味組成物を形成しうることを見出した。
 これらの立体異性体の甘味剤としての実用性、諸物性を明らかにすることも可能になった。そして、汎用安定かつ安全なモナティン多価金属塩結晶を含有する、飲料、食品、医薬品、医薬部外品、飼料等の経口製品を提供することも可能になった。本発明は(2S,4S)モナティンにも当然ながら応用可能である。
It has been found that (2R.4R) monatin polyvalent metal salt crystals can form a sweetening composition that is difficult to decompose even when exposed to high temperature and high humidity in the presence of reducing sugar.
It has become possible to clarify the utility and various physical properties of these stereoisomers as sweeteners. It has also become possible to provide oral products such as beverages, foods, pharmaceuticals, quasi-drugs, and feeds that contain general-purpose stable and safe monatin polyvalent metal salt crystals. The present invention is naturally applicable to (2S, 4S) monatin.
 本発明は、新規(2R,4R)モナティン多価金属塩結晶に関する。 The present invention relates to a novel (2R, 4R) monatin polyvalent metal salt crystal.
 本発明において、天然型モナティンはその立体構造において(2S,4S)体を示すが、それと同一の化学構造式を有する化合物を全て「モナティン」と総称し、従って、モナティンの非天然型立体異性体を、「天然型モナティンの立体異性体」、「非天然型モナティン」、「(2S,4R)モナティン」、「(2R,4S)モナティン」、或いは「(2R,4R)モナティン」等と称する。また、これらの立体異性体に、モナティン((2S,4S)体)を加えて、これらを「4種の立体異性体」と称したり、特に天然型モナティンを、「(2S,4S)モナティン」或いは「(2S,4S)モナティン」等と称したりする。 In the present invention, natural monatin exhibits a (2S, 4S) isomer in its three-dimensional structure, but all compounds having the same chemical structural formula are collectively referred to as “monatin”, and therefore, non-natural stereoisomers of monatin. Are referred to as “stereoisomers of natural monatin”, “non-natural monatin”, “(2S, 4R) monatin”, “(2R, 4S) monatin”, “(2R, 4R) monatin” or the like. In addition, monatin ((2S, 4S) form) is added to these stereoisomers, and these are referred to as “four kinds of stereoisomers”, or natural monatin is particularly referred to as “(2S, 4S) monatin”. Alternatively, it is referred to as “(2S, 4S) monatin” or the like.
 本発明で使用される(2R,4R)モナティンは、公知の方法により調製することができ、その製法は限定されない。例えば、トリプトファンから、インドールピルビン酸を経て、酵素法により得ることもできるし(特許文献4;WO2003−056026号公報)、トリプトファンから、インドールピルビン酸を経て、オキシム体、還元により得ることもできる(特許文献5;WO2003−059865号公報)。製造段階において、(2R,4R)モナティンの他に、天然型モナティン(2S,4S)体や、その非天然型立体異性体(2S,4R)体、(2R,4S)体は含まれていても構わない。 (2R, 4R) monatin used in the present invention can be prepared by a known method, and its production method is not limited. For example, it can be obtained from tryptophan via indolepyruvic acid by an enzymatic method (Patent Document 4; WO2003-056026), or it can be obtained from tryptophan via indolepyruvic acid via an oxime body (reduction) Patent Document 5; WO2003-059865). In the production stage, in addition to (2R, 4R) monatin, natural monatin (2S, 4S) isomers, non-natural stereoisomers (2S, 4R) isomers, (2R, 4S) isomers are included. It doesn't matter.
 このようにして得られた(2R,4R)モナティンは、モナティンの4つの異性体を含有する混合物を使用することもできるし、吸着樹脂、イオン交換樹脂、その他公知の方法を駆使して分離精製したものを使用してもよい。一端フリー体、アンモニウム塩、カリウム塩、塩基性アミノ酸塩等の公知の塩として取上げることもできる。モナティン多価金属塩を得る方法としては、特に制限はないが、公知のモナティンのフリー体または1価塩に対して、中和または塩交換をすることにより多価金属塩としたものや、イオン交換樹脂により塩交換したものを使用することができる。 The (2R, 4R) monatin thus obtained can be used as a mixture containing the four isomers of monatin, or can be separated and purified using adsorption resins, ion exchange resins and other known methods. You may use what you did. It can also be picked up as a known salt such as a free end, ammonium salt, potassium salt, basic amino acid salt and the like. The method for obtaining the monatin polyvalent metal salt is not particularly limited, but it is possible to obtain a polyvalent metal salt by neutralization or salt exchange with a known free form or monovalent salt of monatin, Those exchanged with an exchange resin can be used.
 本発明で使用される多価金属塩は、周期律表において2以上の価数を有する元素であって、人体摂取が許容されるものであって、モナティンと塩を形勢しうるものでありさえすれば、特に制限されない。具体的に、二価金属塩としては、マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩;鉄塩、ニッケル塩、銅塩、亜鉛塩、等の遷移金属塩、等が挙げられ、三価金属としては、アルミニウム塩、等の金属塩、が挙げられる。これらは1種または、2種以上を併用しても構わない。中でも、二価金属塩が好ましく、アルカリ土類金属塩がより好ましく、マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩が更に好ましく、マグネシウム塩、カルシウム塩、バリウム塩が更に一層好ましく、マグネシウム塩、カルシウム塩が特に好ましい。 The polyvalent metal salt used in the present invention is an element having a valence of 2 or more in the periodic table, which can be ingested by the human body, and can form monatin and salt. If it does, it will not be restricted in particular. Specifically, as the divalent metal salt, alkaline earth metal salts such as magnesium salt, calcium salt, strontium salt, barium salt; transition metal salts such as iron salt, nickel salt, copper salt, zinc salt, etc. Examples of the trivalent metal include metal salts such as aluminum salts. These may be used alone or in combination of two or more. Among them, divalent metal salts are preferable, alkaline earth metal salts are more preferable, magnesium salts, calcium salts, strontium salts, and barium salts are more preferable, magnesium salts, calcium salts, and barium salts are still more preferable, magnesium salts, calcium A salt is particularly preferred.
 本発明で使用される多価金属塩を得る簡便な方法としては、水酸化カルシウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、等の無機多価金属化合物や、酢酸カルシウム、酢酸マグネシウム、シュウ酸カルシウム、ショウ酸マグネシウム、乳酸カルシウム、乳酸マグネシウム等の有機多価金属化合物により、中和、塩交換等各種方法により導入することができる。 As a simple method for obtaining a polyvalent metal salt used in the present invention, inorganic polyvalent metal compounds such as calcium hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium acetate, magnesium acetate, calcium oxalate It can be introduced by various methods such as neutralization and salt exchange with organic polyvalent metal compounds such as magnesium oxalate, calcium lactate and magnesium lactate.
 本発明の(2R,4R)モナティン多価金属塩結晶の中でも、人体摂取を許容され、容易に調製しやすいという観点で、((2R,4R)モナティン)二価金属塩結晶が好ましく、((2R,4R)モナティン)アルカリ土類金属塩結晶がより好ましく、((2R,4R)モナティン)マグネシウム塩結晶、((2R,4R)モナティン)カルシウム塩結晶、((2R,4R)モナティンストロンチウム塩結晶、((2R,4R)モナティン)バリウム塩結晶が更に好ましく、((2R,4R)モナティン)マグネシウム塩結晶、((2R,4R)モナティン)カルシウム塩結晶、((2R,4R)モナティン)バリウム塩結晶が更に一層好ましく、((2R,4R)モナティン)マグネシウム塩結晶、((2R,4R)モナティン)カルシウム塩結晶が特に好ましい。 Among the (2R, 4R) monatin polyvalent metal salt crystals of the present invention, ((2R, 4R) monatin) 2 divalent metal salt crystals are preferable from the viewpoint of being acceptable for human consumption and easy to prepare. (2R, 4R) monatin) 2 alkaline earth metal salt crystals are more preferred, ((2R, 4R) monatin) 2 magnesium salt crystals, ((2R, 4R) monatin) 2 calcium salt crystals, ((2R, 4R) Monatin 2 strontium salt crystals, ((2R, 4R) monatin) 2 barium salt crystals are more preferred, ((2R, 4R) monatin) 2 magnesium salt crystals, ((2R, 4R) monatin) 2 calcium salt crystals, (( 2R, 4R) monatin) is even more preferably 2 barium salt crystals, ((2R, 4R) monatin) 2 magnesium salt crystals, ((2R 4R) monatin) 2 calcium salt crystals are particularly preferred.
 本発明の(2R,4R)モナティン多価金属塩結晶のうち((2R,4R)モナティン)カルシウム塩結晶について詳述する。 Of the present invention (2R, 4R) monatin out of the polyvalent metal salt crystals ((2R, 4R) monatin) will be described in detail 2 calcium salt crystals.
 (2R,4R)モナティンとカルシウム源を含有する水溶液又は有機溶媒含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶液中の(2R,4R)モナティンカルシウム濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。結晶を析出させる温度は結晶が析出しさえすれば特に制限はないが、15~100℃が好ましい。 Crystallization can be obtained by subjecting an aqueous solution containing (2R, 4R) monatin and a calcium source or an organic solvent-containing aqueous solution to standing or stirring crystallization. The (2R, 4R) monatin calcium concentration in the solution is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The temperature at which the crystals are precipitated is not particularly limited as long as the crystals are precipitated, but is preferably 15 to 100 ° C.
 析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。 Precipitated crystals can be easily obtained wet crystals by subjecting them to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included.
 こうして得られた湿結晶は、公知の乾燥工程に付することにより、乾燥結晶に導くことができる。乾燥工程に使用される乾燥設備は特に制限はなく、((2R,4R)モナティン)カルシウム塩結晶が溶解しない程度の温度域が使用でき、減圧乾燥または気流乾燥、温風乾燥、等を使用できる。 The wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, using ((2R, 4R) monatin) temperature range to the extent that 2 calcium salt crystals are not dissolved can be used, vacuum drying or flash drying, hot air drying, etc. it can.
 本発明の((2R,4R)モナティン)カルシウム塩は、結晶多形を有するものであって、晶析溶媒の種類や晶析方法によって、著しく異なる結晶形を形成するので、以下その点について詳述する。 2 calcium salt ((2R, 4R) monatin) of the present invention include those having a crystal polymorphism, depending on the type and crystallization method of crystallization solvent, because it forms a very different crystal forms, on that point or less Detailed description.
〔((2R,4R)モナティン)カルシウム塩4.6水和物0.67エタノール和物結晶〕
 表題結晶の取得方法を以下に示す。
 (2R,4R)モナティンとカルシウム源とのエタノール含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶媒中の(2R,4R)モナティン結晶濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。溶解させる温度は結晶が溶解し続けさえすれば特に制限はないが、15~100℃が好ましい。エタノール含有水溶液中のエタノールの割合は50%~99%、より好ましくは75%~99%である。析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。こうして得られた湿結晶は、公知の乾燥工程に付することにより、乾燥結晶に導くことができる。乾燥工程に使用される乾燥設備は特に制限はなく、((2R,4R)モナティン)カルシウム塩結晶が溶解しない程度の温度域が使用できるが、好ましくは10~60℃、製造時の品質安定性の観点から10℃~40℃がより好ましく、減圧乾燥または気流乾燥、温風乾燥、等を使用できる。
[((2R, 4R) monatin) 2 calcium salt 4.6 hydrate 0.67 ethanol solvate crystal]
The method for obtaining the title crystal is shown below.
Crystal precipitation can be obtained by subjecting an ethanol-containing aqueous solution of (2R, 4R) monatin and a calcium source to standing or stirring crystallization. The (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C. The proportion of ethanol in the ethanol-containing aqueous solution is 50% to 99%, more preferably 75% to 99%. The deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included. The wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 calcium salt crystals are not dissolved can be used, preferably 10 ~ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and vacuum drying, airflow drying, hot air drying, and the like can be used.
 こうして得られた((2R,4R)モナティン)カルシウム塩4.6水和物0.67エタノール和物結晶は、図6に示されるような、針状晶を呈し、回折角度(2θ±0.2°、CuKα)として、5.4°、6.0°、16.4°、22.2°、27.3°に固有X線回折ピークを有する。そして、((2R,4R)モナティン)カリウム塩結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。 Thus obtained ((2R, 4R) monatin) 2 calcium salt 4.6 hydrate 0.67 ethanolate crystals, as shown in FIG. 6, exhibited needles, the diffraction angle (2 [Theta] ± 0 .2 °, CuKα) have intrinsic X-ray diffraction peaks at 5.4 °, 6.0 °, 16.4 °, 22.2 ° and 27.3 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal.
〔((2R,4R)モナティン)カルシウム塩3.8水和物0.63イソプロパノール和物結晶〕
 表題結晶の取得方法を以下に示す。
(2R,4R)モナティンとカルシウム源とのイソプロパノール含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶媒中の(2R,4R)モナティン結晶濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。溶解させる温度は結晶が溶解し続けさえすれば特に制限はないが、15~100℃が好ましい。イソプロパノール含有水溶液中のイソプロパノールの割合は50%~99%、より好ましくは75%~99%である。析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。こうして得られた湿結晶は、公知の乾燥工程に付することにより、乾燥結晶に導くことができる。乾燥工程に使用される乾燥設備は特に制限はなく、((2R,4R)モナティン)カルシウム塩結晶が溶解しない程度の温度域が使用できるが、好ましくは10~60℃、製造時の品質安定性の観点から10℃~40℃がより好ましく、減圧乾燥または気流乾燥、温風乾燥、等を使用できる。 こうして得られた((2R,4R)モナティン)カルシウム塩3.8水和物0.63イソプロパノール和物結晶は、図12に示されるような、針状晶を呈し、回折角度(2θ±0.2°、CuKα)として、5.4°、15.9°、19.7°、22.3°に固有X線回折ピークを有する。そして、((2R,4R)モナティン)カリウム塩結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。
[((2R, 4R) monatin) 2 calcium salt 3.8 hydrate 0.63 isopropanol solvate crystal]
The method for obtaining the title crystal is shown below.
Crystal precipitation can be obtained by subjecting an isopropanol-containing aqueous solution of (2R, 4R) monatin and calcium source to standing or stirring crystallization. The (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C. The proportion of isopropanol in the isopropanol-containing aqueous solution is 50% to 99%, more preferably 75% to 99%. The deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included. The wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 calcium salt crystals are not dissolved can be used, preferably 10 ~ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and vacuum drying, airflow drying, hot air drying, and the like can be used. Thus obtained ((2R, 4R) monatin) 2 calcium salt 3.8 hydrate 0.63 isopropanol solvate crystal, such as shown in FIG. 12, exhibited needles, the diffraction angle (2 [Theta] ± 0 .2 °, CuKα) have intrinsic X-ray diffraction peaks at 5.4 °, 15.9 °, 19.7 ° and 22.3 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal.
〔((2R,4R)モナティン)カルシウム塩5.9水和物0.72THF和物結晶〕
 表題結晶の取得方法を以下に示す。
(2R,4R)モナティンとカルシウム源とのTHF含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶媒中の(2R,4R)モナティン結晶濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。溶解させる温度は結晶が溶解し続けさえすれば特に制限はないが、15~100℃が好ましい。THF含有水溶液中のTHFの割合は50%~99%、より好ましくは75%~99%である。析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。こうして得られた湿結晶は、公知の乾燥工程に付することにより、乾燥結晶に導くことができる。乾燥工程に使用される乾燥設備は特に制限はなく、((2R,4R)モナティン)カルシウム塩結晶が溶解しない程度の温度域が使用できるが、好ましくは10~60℃、製造時の品質安定性の観点から10℃~40℃がより好ましく、減圧乾燥または気流乾燥、温風乾燥、等を使用できる。
[((2R, 4R) monatin) 2 calcium salt 5.9 hydrate 0.72THF solvate crystal]
The method for obtaining the title crystal is shown below.
Crystal precipitation can be obtained by subjecting a THF-containing aqueous solution of (2R, 4R) monatin and a calcium source to standing or stirring crystallization. The (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C. The proportion of THF in the aqueous solution containing THF is 50% to 99%, more preferably 75% to 99%. The deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included. The wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 calcium salt crystals are not dissolved can be used, preferably 10 ~ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and vacuum drying, airflow drying, hot air drying, and the like can be used.
 こうして得られた((2R,4R)モナティン)カルシウム塩5.9水和物0.72THF和物結晶は、図10に示されるような、針状晶を呈し、回折角度(2θ±0.2°、CuKα)として、5.1°、15.9°、19.7°、22.3°に固有X線回折ピークを有する。そして、((2R,4R)モナティン)カリウム塩結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。 Thus obtained ((2R, 4R) monatin) 2 calcium salt 5.9 hydrate 0.72THF hydrate crystals, as shown in FIG. 10, exhibits a needle-like crystals, the diffraction angle (2θ ± 0. 2 °, CuKα) has intrinsic X-ray diffraction peaks at 5.1 °, 15.9 °, 19.7 °, and 22.3 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal.
〔((2R,4R)モナティン)カルシウム塩5.7水和物結晶〕
 表題結晶の取得方法を以下に示す。
(2R,4R)モナティンとカルシウム源との水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができるが、特にアセトニトリル含有水溶液が好ましい。溶媒中の(2R,4R)モナティン結晶濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。溶解させる温度は結晶が溶解し続けさえすれば特に制限はないが、15~100℃が好ましい。アセトニトリル含有水溶液を使用する場合には、アセトニトリルの割合は50%~99%、より好ましくは75%~99%である。析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。こうして得られた湿結晶は、公知の乾燥工程に付することにより、乾燥結晶に導くことができる。乾燥工程に使用される乾燥設備は特に制限はなく、((2R,4R)モナティン)カルシウム塩結晶が溶解しない程度の温度域が使用できるが、好ましくは10~60℃、製造時の品質安定性の観点から10℃~40℃がより好ましく、減圧乾燥または気流乾燥、温風乾燥、等を使用できる。
[((2R, 4R) monatin) 2 calcium salt 5.7 hydrate crystalline]
The method for obtaining the title crystal is shown below.
Crystallization can be obtained by allowing an aqueous solution of (2R, 4R) monatin and a calcium source to stand or stirring crystallization, but an acetonitrile-containing aqueous solution is particularly preferable. The (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C. When an acetonitrile-containing aqueous solution is used, the proportion of acetonitrile is 50% to 99%, more preferably 75% to 99%. The deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included. The wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 calcium salt crystals are not dissolved can be used, preferably 10 ~ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and vacuum drying, airflow drying, hot air drying, and the like can be used.
 こうして得られた((2R,4R)モナティン)カルシウム塩5.7水和物結晶は、図8に示されるような、針状晶を呈し、回折角度(2θ±0.2°、CuKα)として、5.0°、12.8°、15.3°、18.1°、23.7°に固有X線回折ピークを有する。そして、((2R,4R)モナティン)カリウム塩結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。 Thus obtained ((2R, 4R) monatin) 2 calcium salt 5.7 hydrate crystal, as shown in FIG. 8, exhibited needles, the diffraction angle (2θ ± 0.2 °, CuKα) As having intrinsic X-ray diffraction peaks at 5.0 °, 12.8 °, 15.3 °, 18.1 ° and 23.7 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal.
〔((2R,4R)モナティン)カルシウム塩5水和物結晶〕
 表題結晶の取得方法を以下に示す。
 (2R,4R)モナティンとカルシウム源との有機溶媒含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶媒中の(2R,4R)モナティン結晶濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。溶解させる温度は結晶が溶解し続けさえすれば特に制限はないが、15~100℃が好ましい。有機溶媒含有水溶液中の有機溶媒の種類は特に制限はないが、好ましくは沸点が100℃以下の水溶性有機溶媒、更に沸点80℃以下の水溶性有機溶媒が好ましい。有機溶媒の割合は50%~99%、より好ましくは75%~99%である。使用する有機溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、THF、等の水と混和しうる溶媒が挙げられる。好ましい溶媒としてはエタノールが挙げられる。析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。こうして得られた湿結晶は、公知の乾燥工程に付することにより、乾燥結晶に導くことができる。乾燥工程に使用される乾燥設備は特に制限はなく、((2R,4R)モナティン)カルシウム塩結晶が溶解しない程度の温度域が使用できるが、好ましくは10~60℃、製造時の品質安定性の観点から10℃~40℃がより好ましく、減圧乾燥または気流乾燥、温風乾燥、等を使用できる。さらに有機溶媒和物になっている場合は、高温高湿下で保存することにより、所望の結晶をえることができる。その時の温度としては25℃~100℃、より好ましくは40℃~80℃の範囲で保存する。相対湿度の範囲としては20%~100%、より好ましくは60%~100%の範囲で保存する。保存時間としては24時間~168時間、より好ましくは48時間~120時間の範囲で保存する。
[((2R, 4R) monatin) 2 calcium salt pentahydrate crystals]
The method for obtaining the title crystal is shown below.
Crystal precipitation can be obtained by subjecting an organic solvent-containing aqueous solution of (2R, 4R) monatin and a calcium source to standing or stirring crystallization. The (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C. The type of the organic solvent in the organic solvent-containing aqueous solution is not particularly limited, but is preferably a water-soluble organic solvent having a boiling point of 100 ° C. or lower, and more preferably a water-soluble organic solvent having a boiling point of 80 ° C. or lower. The proportion of the organic solvent is 50% to 99%, more preferably 75% to 99%. Examples of the organic solvent to be used include water-miscible solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, and THF. A preferred solvent is ethanol. The deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included. The wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 calcium salt crystals are not dissolved can be used, preferably 10 ~ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and vacuum drying, airflow drying, hot air drying, and the like can be used. Furthermore, when it is an organic solvate, desired crystals can be obtained by storing it under high temperature and high humidity. The temperature at that time is 25 ° C. to 100 ° C., more preferably 40 ° C. to 80 ° C. The relative humidity is stored in the range of 20% to 100%, more preferably 60% to 100%. The storage time is 24 hours to 168 hours, more preferably 48 hours to 120 hours.
 こうして得られた((2R,4R)モナティン)カルシウム塩5水和物結晶は、図2に示されるような針状晶を呈し、回折角度(2θ±0.2°、CuKα)として、6.0°、9.8°、16.0°、21.5°、22.3°に固有X線回折ピークを有する。そして、((2R,4R)モナティン)カリウム塩結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。更に((2R,4R)モナティン)カルシウム塩有機溶媒和物結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。 As thus obtained ((2R, 4R) monatin) 2 calcium salt pentahydrate crystals exhibit needles as shown in FIG. 2, the diffraction angle (2θ ± 0.2 °, CuKα) , 6 It has intrinsic X-ray diffraction peaks at 0.0 °, 9.8 °, 16.0 °, 21.5 °, and 22.3 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal. Furthermore ((2R, 4R) monatin) even when exposed to high temperature and high humidity in a state of coexistence with reducing sugars than 2 calcium salt organic solvate crystal also has decomposed hard nature.
 ((2R,4R)モナティン)カルシウム塩結晶の中でも、高温高湿下で還元糖と共存していても安定であるという観点で、((2R,4R)モナティン)カルシウム塩4.6水和物0.67エタノール和物結晶、((2R,4R)モナティン)カルシウム塩3.8水和物0.63イソプロパノール和物結晶、((2R,4R)モナティン)カルシウム塩5.9水和物0.72THF和物結晶、((2R,4R)モナティン)カルシウム塩5.7水和物結晶、((2R,4R)モナティン)カルシウム塩5水和物結晶が好ましく、((2R,4R)モナティン)カルシウム塩5.9水和物0.72THF和物結晶、((2R,4R)モナティン)カルシウム塩5.7水和物結晶、((2R,4R)モナティン)カルシウム塩5水和物結晶がより好ましく、((2R,4R)モナティン)カルシウム塩5.7水和物結晶、((2R,4R)モナティン)カルシウム塩5水和物結晶が更に好ましく、((2R,4R)モナティン)カルシウム塩5水和物結晶が特に好ましい。 ((2R, 4R) monatin) Of 2 calcium salt crystal, in terms of a stable coexist with a reducing sugar under high temperature and high humidity, ((2R, 4R) monatin) 2 calcium salt 4.6 Water hydrate 0.67 ethanol solvate crystal, ((2R, 4R) monatin) 2 calcium salt 3.8 hydrate 0.63 isopropanol solvate crystal, ((2R, 4R) monatin) 2 calcium salt 5.9 water solvate 0.72THF solvate crystal, ((2R, 4R) monatin) 2 calcium salt 5.7 hydrate crystal, ((2R, 4R) monatin) is preferably 2 calcium salt pentahydrate crystals, ((2R , 4R) monatin) 2 calcium salt 5.9 hydrate 0.72THF hydrate crystals, ((2R, 4R) monatin) 2 calcium salt 5.7 hydrate crystal, ((2R, 4R) monatin) 2 Cal Umushio pentahydrate crystals are more preferable, ((2R, 4R) monatin) 2 calcium salt 5.7 hydrate crystal, ((2R, 4R) monatin) is more preferably 2 calcium salt pentahydrate crystals, ((2R, 4R) monatin) 2 calcium salt pentahydrate crystals are particularly preferred.
 次に本発明の(2R,4R)モナティン多価金属塩結晶のうち((2R,4R)モナティン)マグネシウム塩結晶について詳述する。 Next, ((2R, 4R) monatin) 2 magnesium salt crystal among the (2R, 4R) monatin polyvalent metal salt crystals of the present invention will be described in detail.
 (2R,4R)モナティンとマグネシウム源を含有する水溶液又は有機溶媒含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶液中の(2R,4R)モナティンマグネシウム濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。結晶を析出させる温度は結晶が析出しさえすれば特に制限はないが、15~100℃が好ましい。 Crystallization can be obtained by subjecting an aqueous solution containing (2R, 4R) monatin and a magnesium source or an organic solvent-containing aqueous solution to standing or stirring crystallization. The (2R, 4R) monatin magnesium concentration in the solution is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The temperature at which the crystals are precipitated is not particularly limited as long as the crystals are precipitated, but is preferably 15 to 100 ° C.
 析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。 Precipitated crystals can be easily obtained wet crystals by subjecting them to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included.
 こうして得られた湿結晶は、公知の乾燥工程に付することにより、乾燥結晶に導くことができる。乾燥工程に使用される乾燥設備は特に制限はなく、((2R,4R)モナティン)マグネシウム塩結晶が溶解しない程度の温度域が使用でき、減圧乾燥または気流乾燥、温風乾燥、等を使用できる。 The wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, using ((2R, 4R) monatin) temperature range enough to 2 magnesium salt crystals are not dissolved can be used, vacuum drying or flash drying, hot air drying, etc. it can.
 本発明の((2R,4R)モナティン)マグネシウム塩は、結晶多形を有するものであって、晶析溶媒の種類や晶析方法によって、著しく異なる結晶形を形成するので、以下その点について詳述する。 2 magnesium salt ((2R, 4R) monatin) of the present invention include those having a crystal polymorphism, depending on the type and crystallization method of crystallization solvent, because it forms a very different crystal forms, on that point or less Detailed description.
〔((2R,4R)モナティン)マグネシウム塩3.1水和物2.4エタノール和物結晶〕
 表題結晶の取得方法を以下に示す。
 (2R,4R)モナティンとマグネシウム源とのエタノール含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶媒中の(2R,4R)モナティン結晶濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。溶解させる温度は結晶が溶解し続けさえすれば特に制限はないが、15~100℃が好ましい。エタノール含有水溶液中のエタノールの割合は50%~99%、より好ましくは75%~99%である。析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。こうして得られた湿結晶は、公知の乾燥工程に付することにより、乾燥結晶に導くことができる。乾燥工程に使用される乾燥設備は特に制限はなく、((2R,4R)モナティン)マグネシウム塩結晶が溶解しない程度の温度域が使用できるが、好ましくは10~60℃、製造時の品質安定性の観点から10℃~40℃がより好ましく、減圧乾燥または気流乾燥等を使用できる。
[((2R, 4R) monatin) 2 magnesium salt 3.1 hydrate 2.4 ethanol solvate crystal]
The method for obtaining the title crystal is shown below.
Crystal precipitation can be obtained by subjecting an ethanol-containing aqueous solution of (2R, 4R) monatin and a magnesium source to standing or stirring crystallization. The (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C. The proportion of ethanol in the ethanol-containing aqueous solution is 50% to 99%, more preferably 75% to 99%. The deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included. The wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 magnesium salt crystals are not dissolved can be used, preferably 10 ~ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and drying under reduced pressure or airflow drying can be used.
 こうして得られた((2R,4R)モナティン)マグネシウム塩3.1水和物2.4エタノール和物結晶は、図18に示されるような、微細晶を呈し、回折角度(2θ±0.2°、CuKα)として、7.2°、10.0°、10.6°、12.3°、14.8°、17.8°、25.3°に固有X線回折ピークを有する。そして、((2R,4R)モナティン)カリウム塩結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。 The resulting ((2R, 4R) monatin) 2 magnesium salt 3.1 hydrate 2.4 ethanol solvate crystal is thus, as shown in FIG. 18, it exhibited a fine crystal, the diffraction angle (2θ ± 0. 2 °, CuKα) has intrinsic X-ray diffraction peaks at 7.2 °, 10.0 °, 10.6 °, 12.3 °, 14.8 °, 17.8 °, and 25.3 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal.
〔((2R,4R)モナティン)マグネシウム塩7.2水和物0.23メタノール和物結晶〕
 表題結晶の取得方法を以下に示す。
 (2R,4R)モナティンとマグネシウム源とのメタノール含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶媒中の(2R,4R)モナティン結晶濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましい。溶解させる温度は結晶が溶解し続けさえすれば特に制限はないが、15~100℃が好ましい。メタノール含有水溶液中のメタノールの割合は50%~99%、より好ましくは75%~99%である。析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。こうして得られた湿結晶は、公知の乾燥工程に付することにより、乾燥結晶に導くことができる。乾燥工程に使用される乾燥設備は特に制限はなく、((2R,4R)モナティン)マグネシウム塩結晶が溶解しない程度の温度域が使用できるが、好ましくは10~60℃、製造時の品質安定性の観点から10℃~40℃がより好ましく、減圧乾燥または気流乾燥等を使用できる。
[((2R, 4R) monatin) 2 magnesium salt 7.2 hydrate 0.23 methanolate crystal]
The method for obtaining the title crystal is shown below.
Crystal precipitation can be obtained by subjecting a methanol-containing aqueous solution of (2R, 4R) monatin and a magnesium source to standing or stirring crystallization. The (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C. The proportion of methanol in the methanol-containing aqueous solution is 50% to 99%, more preferably 75% to 99%. The deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included. The wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 magnesium salt crystals are not dissolved can be used, preferably 10 ~ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and drying under reduced pressure or airflow drying can be used.
 こうして得られた((2R,4R)モナティン)マグネシウム塩7.2水和物0.23メタノール和物結晶は、図20に示されるような、微細晶を呈し、回折角度(2θ±0.2°、CuKα)として、8.0°、10.0°、10.3°、11.4°、16.1°、19.0°、23.7°に固有X線回折ピークを有する。そして、((2R,4R)モナティン)カリウム塩結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。 The resulting ((2R, 4R) monatin) 2 magnesium salt 7.2 hydrate 0.23 methanolate crystals Thus, as shown in FIG. 20, exhibits fine crystals, the diffraction angle (2θ ± 0. 2 °, CuKα) have intrinsic X-ray diffraction peaks at 8.0 °, 10.0 °, 10.3 °, 11.4 °, 16.1 °, 19.0 °, 23.7 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal.
〔((2R,4R)モナティン)マグネシウム塩8.5水和物2.5DMF和物結晶〕
 表題結晶の取得方法を以下に示す。
(2R,4R)モナティンとマグネシウム源とのDMF含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶媒中の(2R,4R)モナティン結晶濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。溶解させる温度は結晶が溶解し続けさえすれば特に制限はないが、15~100℃が好ましい。DMF含有水溶液中のDMFの割合は50%~99%、より好ましくは75%~99%である。析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。こうして得られた湿結晶は、公知の乾燥工程に付することにより、乾燥結晶に導くことができる。乾燥工程に使用される乾燥設備は特に制限はなく、((2R,4R)モナティン)マグネシウム塩結晶が溶解しない程度の温度域が使用できるが、好ましくは10~60℃、製造時の品質安定性の観点から10℃~40℃がより好ましく、減圧乾燥または気流乾燥等を使用できる。
[((2R, 4R) monatin) 2 magnesium salt 8.5 hydrate 2.5DMF solvate crystal]
The method for obtaining the title crystal is shown below.
Crystal precipitation can be obtained by subjecting a DMF-containing aqueous solution of (2R, 4R) monatin and a magnesium source to standing or stirring crystallization. The (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C. The proportion of DMF in the DMF-containing aqueous solution is 50% to 99%, more preferably 75% to 99%. The deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included. The wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 magnesium salt crystals are not dissolved can be used, preferably 10 ~ 60 ° C., the quality in manufacturing stability From the viewpoint of safety, 10 ° C. to 40 ° C. is more preferable, and drying under reduced pressure or airflow drying can be used.
 こうして得られた((2R,4R)モナティン)マグネシウム塩8.5水和物2.5DMF和物結晶は、図22に示されるような、微細晶を呈し、回折角度(2θ±0.2°、CuKα)として、7.5°、10.3°、11.2°、16.0°18.1°、23.0°に固有X線回折ピークを有する。そして、((2R,4R)モナティン)カリウム塩結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。 Thus obtained ((2R, 4R) monatin) 2 magnesium salt 8.5 hydrate 2.5DMF hydrate crystals, as shown in FIG. 22, exhibited a fine crystal, the diffraction angle (2 [Theta] ± 0.2 (°, CuKα) has intrinsic X-ray diffraction peaks at 7.5 °, 10.3 °, 11.2 °, 16.0 ° 18.1 °, and 23.0 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal.
〔((2R,4R)モナティン)マグネシウム塩9水和物結晶〕
 表題結晶の取得方法を以下に示す。
 (2R,4R)モナティンとマグネシウム源を含有する水溶液又は有機溶媒含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶媒中の(2R,4R)モナティン結晶濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。溶解させる温度は結晶が溶解し続けさえすれば特に制限はないが、10~100℃が好ましい。結晶を析出させたスラリーの温度は10℃~100℃、より好ましくは10℃~65℃が望ましい。スラリー液の保持時間は65℃以上であれば24時間以内、65℃以下であれば特に制限はない。また、65℃以上で安定して目的とする結晶を取得する場合には、無機アニオン濃度としては、0.028N/kg以下が好ましく、0.0069N/kg以下がより好ましい。ただし、ここにいう無機アニオン濃度は、全重量(kg)に対する塩濃度の規定数(N)である。
 析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。
 こうして得られた湿結晶は、乾燥条件を制御することにより、乾燥結晶に導くことができる。((2R,4R)モナティン)マグネシウム塩結晶が溶解しない程度の温度域が使用でき、好ましくは10~60℃、製造時の品質安定性の観点から10℃~40℃がより好ましい。乾燥時間は過乾燥にならない限り任意の時間が選択でき、好ましくは6時間以内、水分含量の安定性の観点から4時間以内がより好ましく、減圧乾燥または気流乾燥等を使用できる。
[((2R, 4R) monatin) 2 magnesium salt nonahydrate crystals]
The method for obtaining the title crystal is shown below.
Crystal deposition can be obtained by subjecting an aqueous solution containing (2R, 4R) monatin and a magnesium source or an organic solvent-containing aqueous solution to standing or stirring crystallization. The (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 10 to 100 ° C. The temperature of the slurry on which the crystals are precipitated is preferably 10 ° C. to 100 ° C., more preferably 10 ° C. to 65 ° C. The holding time of the slurry liquid is within 24 hours if it is 65 ° C. or higher, and is not particularly limited if it is 65 ° C. or lower. Moreover, when acquiring the target crystal | crystallization stably above 65 degreeC, as an inorganic anion density | concentration, 0.028 N / kg or less is preferable and 0.0069 N / kg or less is more preferable. However, the inorganic anion concentration mentioned here is a specified number (N) of the salt concentration relative to the total weight (kg).
The deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included.
The wet crystals thus obtained can be led to dry crystals by controlling the drying conditions. ((2R, 4R) monatin) temperature range enough to 2 magnesium salt crystals are not dissolved can be used, preferably 10 ~ 60 ° C., more preferably from 10 ° C. ~ 40 ° C. from the viewpoint of quality stability during manufacture. The drying time can be selected as long as it is not overdried, preferably within 6 hours, and more preferably within 4 hours from the viewpoint of the stability of the water content, and vacuum drying or airflow drying can be used.
 こうして得られた((2R,4R)モナティン)マグネシウム塩9水和物結晶は、図24に示されるような、柱状晶を呈し、回折角度(2θ±0.2°、CuKα)として、8.7°、10.5°、15.9°、17.4°、21.0°、25.6°に固有X線回折ピークを有する。そして、((2R,4R)モナティン)カリウム塩結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。更に((2R,4R)モナティン)マグネシウム塩有機溶媒和物結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。 The resulting ((2R, 4R) monatin) 2 magnesium salt nonahydrate crystals Thus, as shown in FIG. 24, exhibits a columnar crystal, the diffraction angle (2θ ± 0.2 °, CuKα) as, 8 It has intrinsic X-ray diffraction peaks at 0.7 °, 10.5 °, 15.9 °, 17.4 °, 21.0 ° and 25.6 °. And ((2R, 4R) 2 monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal. Furthermore, ((2R, 4R) monatin) 2 magnesium salt organic solvate crystals have the property of not easily decomposing even when exposed to high temperature and high humidity in the presence of reducing sugar.
〔((2R,4R)モナティン)マグネシウム塩7.5水和物結晶〕
 表題結晶の取得方法を以下に示す。
 (2R,4R)モナティンとマグネシウム源を含有する水溶液又は有機溶媒含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶媒中の(2R,4R)モナティン結晶濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。溶解させる温度は結晶が溶解し続けさえすれば特に制限はないが、10~100℃が好ましい。結晶を析出させたスラリーの温度は10℃~100℃、より好ましくは10℃~65℃が望ましい。スラリー液の保持時間は65℃以上であれば24時間以内、65℃以下であれば特に制限はない。また、65℃以上で安定して目的とする結晶を取得する場合には、無機アニオン濃度としては、0.028N/kg以下が好ましく、0.0069N/kg以下がより好ましい。ただし、ここにいう無機アニオン濃度は、全重量(kg)に対する塩濃度の規定数(N)である。
 析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。
 こうして得られた湿結晶は、乾燥条件を低温制御することにより、乾燥結晶に導くことができる。((2R,4R)モナティン)マグネシウム塩結晶が溶解しない程度の温度域が使用でき、好ましくは10~60℃、製造時の品質安定性の観点から10℃~40℃がより好ましく、乾燥時間は過乾燥にならない限り任意の時間が選択でき、減圧乾燥または気流乾燥等を使用できる。
[((2R, 4R) monatin) 2 magnesium salt 7.5 hydrate crystalline]
The method for obtaining the title crystal is shown below.
Crystal deposition can be obtained by subjecting an aqueous solution containing (2R, 4R) monatin and a magnesium source or an organic solvent-containing aqueous solution to standing or stirring crystallization. The (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 10 to 100 ° C. The temperature of the slurry on which the crystals are precipitated is preferably 10 ° C. to 100 ° C., more preferably 10 ° C. to 65 ° C. The holding time of the slurry liquid is within 24 hours if it is 65 ° C. or higher, and is not particularly limited if it is 65 ° C. or lower. Moreover, when acquiring the target crystal | crystallization stably above 65 degreeC, as an inorganic anion density | concentration, 0.028 N / kg or less is preferable and 0.0069 N / kg or less is more preferable. However, the inorganic anion concentration mentioned here is a specified number (N) of the salt concentration relative to the total weight (kg).
The deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included.
The wet crystals thus obtained can be led to dry crystals by controlling the drying conditions at a low temperature. ((2R, 4R) monatin) temperature range enough to 2 magnesium salt crystals are not dissolved can be used, preferably 10 ~ 60 ° C., more preferably from 10 ° C. ~ 40 ° C. from the viewpoint of quality stability during manufacture, drying time As long as it is not overdried, any time can be selected, and vacuum drying or airflow drying can be used.
 こうして得られた((2R,4R)モナティン)マグネシウム塩7.5水和物結晶は、図14に示されるような、柱状晶を呈し、回折角度(2θ±0.2°、CuKα)として、8.7°、10.5°、15.9°、17.4°、21.0°、25.6°に固有X線回折ピークを有する。そして、((2R,4R)モナティン)カリウム塩結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。更に((2R,4R)モナティン)マグネシウム塩有機溶媒和物結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。 The resulting ((2R, 4R) monatin) 2 magnesium salt 7.5 hydrate crystals Thus, as shown in FIG. 14, exhibits a columnar crystal, the diffraction angle (2θ ± 0.2 °, CuKα) as , 8.7 °, 10.5 °, 15.9 °, 17.4 °, 21.0 °, 25.6 °, have intrinsic X-ray diffraction peaks. And ((2R, 4R) 2 monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal. Furthermore, ((2R, 4R) monatin) 2 magnesium salt organic solvate crystals have the property of not easily decomposing even when exposed to high temperature and high humidity in the presence of reducing sugar.
〔((2R,4R)モナティン)マグネシウム塩4水和物結晶〕
 表題結晶の取得方法を以下に示す。
(2R,4R)モナティンとマグネシウム源との有機溶媒含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶媒中の(2R,4R)モナティン結晶濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。溶解させる温度は結晶が溶解し続けさえすれば特に制限はないが、15~100℃が好ましい。有機溶媒含有水溶液中の有機溶媒の種類は特に制限はないが、好ましくは沸点が100℃以下の水溶性有機溶媒、更に沸点80℃以下の水溶性有機溶媒が好ましい。有機溶媒の割合は50%~99%、より好ましくは75%~99%である。析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。こうして得られた湿結晶は、乾燥条件を制御することにより、乾燥結晶に導くことができる。乾燥工程に使用される乾燥設備は特に制限はなく、((2R,4R)モナティン)マグネシウム塩結晶が溶解しない程度の温度域が使用できるが、好ましくは25~120℃、製造時の品質安定性の観点から40℃~100℃がより好ましく、減圧乾燥または気流乾燥、温風乾燥、等を使用できる。さらに有機溶媒和物になっている場合は、高温高湿下で保存することにより、所望の結晶をえることができる。その時の温度としては25℃~100℃、より好ましくは40℃~80℃の範囲で保存する。相対湿度の範囲としては20%~100%、より好ましくは60%~100%の範囲で保存する。保存時間としては24時間~168時間、より好ましくは48時間~120時間の範囲で保存する。
[((2R, 4R) monatin) 2 magnesium salt tetrahydrate crystals]
The method for obtaining the title crystal is shown below.
Crystal precipitation can be obtained by subjecting an organic solvent-containing aqueous solution of (2R, 4R) monatin and a magnesium source to standing or stirring crystallization. The (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 15 to 100 ° C. The type of the organic solvent in the organic solvent-containing aqueous solution is not particularly limited, but is preferably a water-soluble organic solvent having a boiling point of 100 ° C. or lower, and more preferably a water-soluble organic solvent having a boiling point of 80 ° C. or lower. The proportion of the organic solvent is 50% to 99%, more preferably 75% to 99%. The deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included. The wet crystals thus obtained can be led to dry crystals by controlling the drying conditions. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) the temperature range to the extent that 2 magnesium salt crystals are not dissolved can be used, preferably 25 ~ 120 ° C., the quality in manufacturing stability From the viewpoint of safety, 40 ° C. to 100 ° C. is more preferable, and vacuum drying, air flow drying, hot air drying, and the like can be used. Furthermore, when it is an organic solvate, desired crystals can be obtained by storing it under high temperature and high humidity. The temperature at that time is 25 ° C. to 100 ° C., more preferably 40 ° C. to 80 ° C. The relative humidity is stored in the range of 20% to 100%, more preferably 60% to 100%. The storage time is 24 hours to 168 hours, more preferably 48 hours to 120 hours.
 こうして得られた((2R,4R)モナティン)マグネシウム塩4水和物結晶は、図4に示されるような、微細晶を呈し、回折角度(2θ±0.2°、CuKα)として、8.9°、11.2°、15.0°、17.8°、22.5°に固有X線回折ピークを有する。そして、((2R,4R)モナティン)カリウム塩結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。 The resulting ((2R, 4R) monatin) 2 magnesium salt tetrahydrate crystals Thus, as shown in FIG. 4, present a fine crystal, the diffraction angle (2θ ± 0.2 °, CuKα) as, 8 It has intrinsic X-ray diffraction peaks at .9 °, 11.2 °, 15.0 °, 17.8 ° and 22.5 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal.
〔((2R,4R)モナティン)マグネシウム塩2水和物結晶〕
 表題結晶の取得方法を以下に示す。
 (2R,4R)モナティンとマグネシウム源を含有する水溶液又は有機溶媒含有水溶液を静置または攪拌晶析に付することにより、結晶析出を得ることができる。溶媒中の(2R,4R)モナティン結晶濃度としては、過飽和が掛かっており結晶が析出しさえすれば特に制限は無いが1wt%~60wt%が好ましい。製造に適した溶解液の粘度が得られるという観点から2wt%~50wt%がより好ましく、5wt%~45wt%が更に好ましく。溶解させる温度は結晶が溶解し続けさえすれば特に制限はないが、10~100℃が好ましい。結晶を析出させたスラリーの温度は10℃~100℃、より好ましくは65℃~100℃が望ましい。スラリー液の保持時間は特に制限はない。高温晶析、あるいは、低温でも高い塩析効果により、目的とする結晶を取得することができる。温度制御のみで目的とする結晶を取得する場合には、晶析温度としては、50℃以上が好ましく、55℃以上がより好ましく、60℃以上が更に好ましく、65℃以上が特に好ましい。また、65℃未満で安定して目的とする結晶を取得する場合には、無機アニオン濃度としては、0.14N/kg以上が好ましく、0.28N/kg以上がより好ましく、0.55N/kg以上が更に好ましく、0.88N/kg以上が特に好ましい。ただし、ここにいう無機アニオン濃度は、全重量(kg)に対する塩濃度の規定数(N)である。
有機溶媒含有水溶液中の有機溶媒の割合は0.1%~75%、より好ましくは0.1%~50%である。
 析出してきた結晶は、ろ過工程等の分離工程に付すことにより、容易に湿結晶を得ることができる。結晶洗浄に際しては、結晶溶媒交換を起しさえしなければ特に制限はないが、水を使用することができる。また、結晶溶媒交換を起こしさえしなければ、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、sec−ブタノール、プロピレングリコール、アセトニトリル、THF、等の水と混和しうる溶媒や無機塩等も含んでいても構わない。
 こうして得られた湿結晶は、公知の乾燥工程に付することにより、乾燥結晶に導くことができる。乾燥工程に使用される乾燥設備は特に制限はなく、((2R,4R)モナティン)マグネシウム塩結晶が溶解しない程度の温度域が使用でき、好ましくは10~120℃、製造時の生産性の観点から60℃~120℃がより好ましく、減圧乾燥または気流乾燥等を使用できる。
[((2R, 4R) monatin) 2 magnesium salt dihydrate crystals]
The method for obtaining the title crystal is shown below.
Crystal deposition can be obtained by subjecting an aqueous solution containing (2R, 4R) monatin and a magnesium source or an organic solvent-containing aqueous solution to standing or stirring crystallization. The (2R, 4R) monatin crystal concentration in the solvent is not particularly limited as long as it is supersaturated and crystals are precipitated, but 1 wt% to 60 wt% is preferable. From the viewpoint of obtaining a viscosity of a solution suitable for production, it is more preferably 2 wt% to 50 wt%, further preferably 5 wt% to 45 wt%. The melting temperature is not particularly limited as long as the crystals continue to dissolve, but is preferably 10 to 100 ° C. The temperature of the slurry on which the crystals are precipitated is preferably 10 ° C. to 100 ° C., more preferably 65 ° C. to 100 ° C. The holding time of the slurry liquid is not particularly limited. The target crystal can be obtained by high-temperature crystallization or a high salting-out effect even at a low temperature. When obtaining the target crystal only by temperature control, the crystallization temperature is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, still more preferably 60 ° C. or higher, and particularly preferably 65 ° C. or higher. In addition, when stably obtaining the target crystal at less than 65 ° C., the inorganic anion concentration is preferably 0.14 N / kg or more, more preferably 0.28 N / kg or more, and 0.55 N / kg. The above is more preferable, and 0.88 N / kg or more is particularly preferable. However, the inorganic anion concentration mentioned here is a specified number (N) of the salt concentration relative to the total weight (kg).
The proportion of the organic solvent in the organic solvent-containing aqueous solution is 0.1% to 75%, more preferably 0.1% to 50%.
The deposited crystal can be easily obtained by subjecting it to a separation step such as a filtration step. The crystal washing is not particularly limited as long as crystal solvent exchange does not occur, but water can be used. In addition, a solvent miscible with water such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, sec-butanol, propylene glycol, acetonitrile, THF, etc. An inorganic salt or the like may also be included.
The wet crystal thus obtained can be converted into a dry crystal by subjecting it to a known drying step. Drying equipment used for drying is not particularly limited, ((2R, 4R) monatin) temperature range enough to 2 magnesium salt crystals are not dissolved can be used, preferably 10 ~ 120 ° C., during production Productivity From the viewpoint, 60 ° C. to 120 ° C. is more preferable, and drying under reduced pressure or airflow drying can be used.
 こうして得られた((2R,4R)モナティン)マグネシウム塩2水和物結晶は、図16に示されるような、針状晶を呈し、回折角度(2θ±0.2°、CuKα)として、4.9°、16.8°、18.0°、24.6°に固有X線回折ピークを有する。そして、((2R,4R)モナティン)カリウム塩結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。更に((2R,4R)モナティン)マグネシウム塩有機溶媒和物結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い性質も有している。更に((2R,4R)モナティン)マグネシウム塩4水和物結晶もしくは7.5水和物結晶もしくは9水和物結晶より還元糖と共存した状態で高温高湿下にさらされても分解し難い最も有用性の高い性質も有している。 The resulting ((2R, 4R) monatin) 2 magnesium salt dihydrate crystals Thus, as shown in FIG. 16, exhibited needles, the diffraction angle (2θ ± 0.2 °, CuKα) as, It has intrinsic X-ray diffraction peaks at 4.9 °, 16.8 °, 18.0 ° and 24.6 °. Further, ((2R, 4R) monatin) has a property that it is difficult to decompose even if it is exposed to high temperature and high humidity in the state of coexisting with reducing sugar from a potassium salt crystal. Furthermore, ((2R, 4R) monatin) 2 magnesium salt organic solvate crystals have the property of not easily decomposing even when exposed to high temperature and high humidity in the presence of reducing sugar. Furthermore, ((2R, 4R) monatin) 2 magnesium salt tetrahydrate crystal or 7.5 hydrate crystal or 9 hydrate crystal decomposes even when exposed to high temperature and high humidity in the presence of reducing sugar. It also has the most useful properties that are difficult.
 ((2R,4R)モナティン)マグネシウム塩結晶の中でも、高温高湿下で還元糖と共存していても安定であるという観点で、((2R,4R)モナティン)マグネシウム塩3.1水和物2.4エタノール和物結晶、((2R,4R)モナティン)マグネシウム塩7.2水和物0.23メタノール和物結晶、((2R,4R)モナティン)マグネシウム塩8.5水和物2.5DMF和物結晶、((2R,4R)モナティン)マグネシウム塩9水和物結晶、((2R,4R)モナティン)マグネシウム塩7.5水和物結晶、((2R,4R)モナティン)マグネシウム塩4水和物結晶、((2R,4R)モナティン)マグネシウム塩2水和物結晶が好ましく、((2R,4R)モナティン)マグネシウム塩8.5水和物2.5DMF和物結晶、((2R,4R)モナティン)マグネシウム塩9水和物結晶、((2R,4R)モナティン)マグネシウム塩7.5水和物結晶、((2R,4R)モナティン)マグネシウム塩4水和物結晶、((2R,4R)モナティン)マグネシウム塩2水和物結晶がより好ましく、((2R,4R)モナティン)マグネシウム塩9水和物結晶、((2R,4R)モナティン)マグネシウム塩7.5水和物結晶、((2R,4R)モナティン)マグネシウム塩4水和物結晶、((2R,4R)モナティン)マグネシウム塩2水和物結晶が更に好ましく、((2R,4R)モナティン)マグネシウム塩7.5水和物結晶、((2R,4R)モナティン)マグネシウム塩4水和物結晶、((2R,4R)モナティン)マグネシウム塩2水和物結晶が更に一層好ましく、((2R,4R)モナティン)マグネシウム塩4水和物結晶、((2R,4R)モナティン)マグネシウム塩2水和物結晶が殊更好ましく、((2R,4R)モナティン)マグネシウム塩2水和物結晶が特に好ましい。 ((2R, 4R) monatin) Among the two magnesium salt crystals, ((2R, 4R) monatin) 2 magnesium salt 3.1 water from the viewpoint of being stable even if it coexists with a reducing sugar under high temperature and high humidity. Japanese hydrate 2.4 ethanol solvate, ((2R, 4R) monatin) 2 magnesium salt 7.2 hydrate 0.23 methanol solvate crystal, ((2R, 4R) monatin) 2 magnesium salt 8.5 water solvate 2.5DMF solvate crystal, ((2R, 4R) monatin) 2 magnesium salt nonahydrate crystals, ((2R, 4R) monatin) 2 magnesium salt 7.5 hydrate crystal, ((2R, 4R ) monatin) 2 magnesium salt tetrahydrate crystals, ((2R, 4R) monatin) dihydrate crystals preferably 2 magnesium salt, ((2R, 4R) monatin) 2 magnesium salt 8.5 hydrate 2.5DMF solvate crystal, ((2R, 4R) monatin) 2 magnesium salt nonahydrate crystals, ((2R, 4R) monatin) 2 magnesium salt 7.5 hydrate crystal, ((2R, 4R) monatin ) 2 magnesium salt tetrahydrate crystals, ((2R, 4R) monatin) is more preferably 2 magnesium salt dihydrate crystals, ((2R, 4R) monatin) 2 magnesium salt nonahydrate crystals, ((2R , 4R) monatin) 2 magnesium salt 7.5 hydrate crystal, ((2R, 4R) monatin) 2 magnesium salt tetrahydrate crystals, ((2R, 4R) monatin) 2 magnesium salt dihydrate crystals more preferably, ((2R, 4R) monatin) 2 magnesium salt 7.5 hydrate crystal, ((2R, 4R) monatin) 2 magnesium salt tetrahydrate crystals, ((2R, 4R) Even more preferably Natin) 2 magnesium salt dihydrate crystals, ((2R, 4R) monatin) 2 magnesium salt tetrahydrate crystals, ((2R, 4R) monatin) 2 magnesium salt dihydrate crystals especially preferably, ((2R, 4R) monatin) 2 magnesium salt dihydrate crystals are particularly preferred.
 なお、本発明の(2R,4R)モナティン多価金属塩結晶は、本ピークセットを有してさえすれば、モナティンと金属の比率や、モナティンと水の比率や、モナティンと溶媒の比率に若干変動があっても、同一結晶と見做されるべきものである。 The (2R, 4R) monatin polyvalent metal salt crystal of the present invention is slightly different in the ratio of monatin to metal, the ratio of monatin to water, or the ratio of monatin to solvent, as long as it has this peak set. Even if there are fluctuations, they should be regarded as the same crystal.
 本発明の(2R,4R)モナティン多価金属塩結晶は、更に他のモナティン異性体として(2S,4S)モナティン多価金属塩結晶と共にモナティン結晶を形成しうる。この場合の、鏡像体過剰率は特に制限はないが、安定結晶を保ち少量で有効な甘味質を呈するという観点で、鏡像体過剰率は10%~100%eeが好ましく、30%~100%eeがより好ましく、50%~100%eeが更に好ましく、70%~100%eeが更に一層好ましく、90%~100%eeが殊更好ましく、95%~100%eeが特に好ましい。 The (2R, 4R) monatin polyvalent metal salt crystal of the present invention can form a monatin crystal together with the (2S, 4S) monatin polyvalent metal salt crystal as another monatin isomer. In this case, the enantiomeric excess is not particularly limited, but the enantiomeric excess is preferably 10% to 100% ee, and preferably 30% to 100% from the viewpoint of maintaining stable crystals and exhibiting an effective sweetness in a small amount. ee is more preferable, 50% to 100% ee is further preferable, 70% to 100% ee is still more preferable, 90% to 100% ee is particularly preferable, and 95% to 100% ee is particularly preferable.
 本発明の(2R,4R)モナティン多価金属塩結晶は、更に他のモナティン異性体として、(2S,4R)モナティン多価金属塩結晶、(2R,4S)モナティン多価金属結晶と共にモナティン結晶を形成しうる。そのジアステレオマー過剰率は特に制限はないが、安定結晶を保ち少量で有効な甘味質を呈するという観点で、ジアステレオマー過剰率は10%~100%deが好ましく、30%~100%deがより好ましく、50%~100%deが更に好ましく、70%~100%deが更に一層好ましく、90%~100%deが殊更好ましく、95%~100%deが特に好ましい。 The (2R, 4R) monatin polyvalent metal salt crystal of the present invention further comprises, as other monatin isomers, (2S, 4R) monatin polyvalent metal salt crystals, monatin crystals together with (2R, 4S) monatin polyvalent metal crystals. Can be formed. The diastereomeric excess is not particularly limited, but from the viewpoint of maintaining stable crystals and exhibiting an effective sweetness in a small amount, the diastereomeric excess is preferably 10% to 100% de, and 30% to 100% de Is more preferable, 50% to 100% de is more preferable, 70% to 100% de is still more preferable, 90% to 100% de is particularly preferable, and 95% to 100% de is particularly preferable.
 本発明の(2R,4R)モナティン多価金属塩結晶は、更に他の無機・有機不純物と共に、モナティン結晶を形成しうる。本発明の(2R,4R)モナティン多価金属結晶を含有するモナティン結晶の化学純度の下限値は、結晶を形成しさえすれば特に制限はないが、安定結晶を形成しうるという観点で、50質量%が好ましく、60質量%がより好ましく、70質量%が更に好ましく、80質量%が更に一層好ましく、90質量%が殊更好ましく、95質量%が特に好ましい。一方、化学純度の上限値は、より少量の配合でも甘味倍率を達成するという観点で、100質量%が好ましい。ここでいう化学純度とは、モナティン結晶全体質量に対する、「モナティン多価金属塩水和物結晶」質量の割合である。純度低減の原因は、モナティン自体の不純物(他の異性体を含む)、無機塩、カルシウム、マグネシウム以外の金属塩等が挙げられるが、これらに限定されるわけではない。 The (2R, 4R) monatin polyvalent metal salt crystal of the present invention can form a monatin crystal together with other inorganic / organic impurities. The lower limit of the chemical purity of the monatin crystal containing the (2R, 4R) monatin polyvalent metal crystal of the present invention is not particularly limited as long as the crystal is formed, but from the viewpoint that a stable crystal can be formed. % By weight is preferred, 60% by weight is more preferred, 70% by weight is more preferred, 80% by weight is even more preferred, 90% by weight is particularly preferred, and 95% by weight is particularly preferred. On the other hand, the upper limit of the chemical purity is preferably 100% by mass from the viewpoint of achieving a sweetness multiplication factor even with a smaller amount. The chemical purity here is the ratio of the “monatin polyvalent metal salt hydrate crystal” mass to the total mass of the monatin crystal. The causes of purity reduction include impurities of monatin itself (including other isomers), inorganic salts, calcium, metal salts other than magnesium, and the like, but are not limited thereto.
 本発明の(2R,4R)モナティン多価金属塩結晶は、更に他のモナティン異性体として(2S,4S)モナティン多価金属塩、(2S,4R)モナティン多価金属、(2R,4S)モナティン多価金属塩、他の無機・有機不純物と共にモナティン結晶を形成しうる。本発明の(2R,4R)モナティン多価金属塩結晶を含有するモナティン結晶の甘味倍率は、特に制限はないが、安定結晶を保ちつつ少量で有効な甘味質を呈するという観点で、5%ショ糖水溶液に対して、200倍以上が好ましく、500倍以上がより好ましく、1000倍以上が更に好ましく、1500倍以上が更に一層好ましく、2000倍以上が殊更好ましく、2500倍以上が特に好ましい。 The (2R, 4R) monatin polyvalent metal salt crystal of the present invention further comprises (2S, 4S) monatin polyvalent metal salt, (2S, 4R) monatin polyvalent metal, (2R, 4S) monatin as other monatin isomers. Monatin crystals can be formed with polyvalent metal salts and other inorganic and organic impurities. The sweetening power of the monatin crystal containing the (2R, 4R) monatin polyvalent metal salt crystal of the present invention is not particularly limited. However, from the viewpoint of exhibiting an effective sweetness in a small amount while maintaining a stable crystal, It is preferably 200 times or more, more preferably 500 times or more, still more preferably 1000 times or more, still more preferably 1500 times or more, still more preferably 2000 times or more, and particularly preferably 2500 times or more with respect to the aqueous sugar solution.
 本発明の(2R,4R)モナティン多価金属塩結晶は、甘味組成物として広く使用することができる。甘味組成物の形態としては、特に制限はないが、液状、粉体状、固形状等が挙げられる。特に結晶構造に由来する安定化効果を十分に発揮できるという観点で、粉体状、固形状が好ましく、粉体状が特に好ましい。 The (2R, 4R) monatin polyvalent metal salt crystal of the present invention can be widely used as a sweetening composition. The form of the sweetening composition is not particularly limited, and examples thereof include liquids, powders, and solids. In particular, from the viewpoint that the stabilization effect derived from the crystal structure can be sufficiently exerted, a powder form and a solid form are preferable, and a powder form is particularly preferable.
 本発明の甘味組成物には、更に還元糖を含有させることができる。この甘味組成物は、高温高湿下にさらされてもモナティンが分解し難いという性質を有する。 The sweetening composition of the present invention can further contain a reducing sugar. This sweetening composition has the property that monatin is hardly decomposed even when exposed to high temperature and high humidity.
 本発明で使用される還元糖としては、還元能力を有するメイラード反応を起こしうる糖であれば特に制限はないが、具体的には、ジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、トレオース、リブロース、キシルロース、リボース、アラビノース、キシロース、リキソース、デオキシリボース、プシコース、フルクトース、ソルボース、タガトース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、フコース、フクロース、ラムノース、セドヘプツロースなどの単糖類;ラクトース、マルトース、ツラノース、スクロース、トレハロース、ロビオースなどの二糖類;等が挙げられる。甘味特性が良好であり市場からのニーズが高いという観点で、グルコース、フラクトース、マルトース、ラクトース、ガラクトース、マンノース、アラビノース、キシロースが好ましく、グルコース、フラクトース、マルトース、ラクトースがより好ましく、グルコース、マルトースが更に好ましい。 The reducing sugar used in the present invention is not particularly limited as long as it is a sugar capable of causing a Maillard reaction having a reducing ability. Specifically, dihydroxyacetone, glyceraldehyde, erythrulose, erythrose, threose, ribulose, Monosaccharides such as xylulose, ribose, arabinose, xylose, lyxose, deoxyribose, psicose, fructose, sorbose, tagatose, allose, altrose, glucose, mannose, gulose, idose, galactose, talose, fucose, fucrose, rhamnose, cedoheptulose; And disaccharides such as lactose, maltose, tulanose, sucrose, trehalose, and robiose. Glucose, fructose, maltose, lactose, galactose, mannose, arabinose, and xylose are preferred, glucose, fructose, maltose, and lactose are more preferred, and glucose and maltose are further preferred in terms of good sweetness characteristics and high market needs preferable.
 また、本発明に使用される還元糖は、「処方上で還元糖を産生しうる物質」、すなわち還元糖産生物質に代替することができる。本発明の還元糖産生物質としては、各処方条件によって、還元糖を産生しうるものであれば特に限定されないが、具体的にはスクロースやトレハロースなどが挙げられる。甘味特性が良好であり市場からのニーズが高いという観点で、スクロースが好ましい。 In addition, the reducing sugar used in the present invention can be replaced with a “substance that can produce reducing sugar on the formulation”, that is, a reducing sugar-producing substance. The reducing sugar-producing substance of the present invention is not particularly limited as long as it can produce reducing sugar depending on each formulation condition, and specific examples include sucrose and trehalose. Sucrose is preferable from the viewpoint of good sweetness characteristics and high market needs.
 従来、公知のモナティン結晶((2R,4R)モナティン1カリウム塩、(2R,4R)モナティン1ナトリウム塩、等)と還元糖との甘味組成物を調製した場合には、高温高湿下においてモナティンが消失しやすいという現象が見出されていたが、本発明の(2R,4R)モナティン多価金属塩結晶によって、本現象を著しく改善できたことは大変意義深い。 Conventionally, when a sweetening composition of known monatin crystals ((2R, 4R) monatin monopotassium salt, (2R, 4R) monatin monosodium salt, etc.) and a reducing sugar is prepared, monatin is produced under high temperature and high humidity. However, it is very significant that this phenomenon can be remarkably improved by the (2R, 4R) monatin polyvalent metal salt crystal of the present invention.
 モナティン消失現象は、還元糖とモナティンのアミノ基によるメイラード反応が原因であると推測している。多価金属に対して複数のモナティンが結合することにより、モナティンのアミノ基が立体的に覆われ、還元糖が接近しにくい構造になっている可能性が考えられる。 It is speculated that the monatin disappearance phenomenon is caused by the Maillard reaction caused by the reducing sugar and the amino group of monatin. By combining a plurality of monatins with a polyvalent metal, it is possible that the amino group of monatin is sterically covered so that the reducing sugar is difficult to access.
 本発明の甘味料組成物には、更に他の甘味剤(モナティンまたはその塩を除く)を配合することができる。他の甘味剤としては、特に制限はないが、具体的には、フラクトオリゴ糖・マルトオリゴ糖・イソマルトオリゴ糖・ガラクトオリゴ糖などのオリゴ糖類; キシリトール・ラクチトール・ソルビトール・エリスリトール・マンニトール・マルチトール・還元パラチノース・還元でん粉糖化物などの糖アルコール類; アスパルテーム、アセサルファムK、スクラロース、サッカリン、ステビオサイド、ネオテーム、チクロ、ステビア、グリチルリチン、モネリン、ソーマチン、アリテーム、ズルチン、ブラゼイン、ネオクリン、MHPPAPM(N−[N−[3−(3−ヒドロキシ−4−メトキシフェニル)プロピル]−L−α−アスパルチル]−L−フェニルアラニン 1−メチルエステル1水和物(アドバンテーム、(CAS No.714229−20−6))、等の高甘味度甘味料(HIS)が挙げられる。これらは、単独に使用しても良いし、2種以上を混合して使用しても構わない。甘味相乗効果が得られるという観点で、アスパルテーム、アセサルファムK、スクラロース、サッカリン、チクロ、ステビオサイド、ネオテームが好ましく、アスパルテーム、アセサルファムK、スクラロース、サッカリン、ステビオサイド、ネオテームがより好ましく、アスパルテーム、アセサルファムK、スクラロース、ステビオサイド、ネオテームがさらに好ましく、アスパルテーム、アセサルファムK、スクラロース、ネオテームが更に一層好ましく、アスパルテーム、アセサルファムK、スクラロースが殊更好ましく、アスパルテーム、スクラロースが特に好ましい。味質ならびに甘味相乗効果が得られるという観点では、アスパルテームが特に好ましい。 The sweetener composition of the present invention can further contain other sweeteners (except for monatin or a salt thereof). Other sweeteners are not particularly limited, and specific examples include oligosaccharides such as fructooligosaccharide, maltooligosaccharide, isomaltoligosaccharide, and galactooligosaccharide; xylitol, lactitol, sorbitol, erythritol, mannitol, maltitol, reduced palatinose -Sugar alcohols such as reduced starch saccharified products; Aspartame, acesulfame K, sucralose, saccharin, stevioside, neotame, cyclamate, stevia, glycyrrhizin, monelin, thaumatin, alitame, dulcin, brazein, neocrine, MHPPAPM (N- [N- [ 3- (3-Hydroxy-4-methoxyphenyl) propyl] -L-α-aspartyl] -L-phenylalanine 1-methyl ester monohydrate (Advantame, (CAS No. 7 4229-20-6)), etc. These may be used alone or in admixture of two or more. From the viewpoint of obtaining an effect, aspartame, acesulfame K, sucralose, saccharin, cyclamate, stevioside, neotame are preferred, aspartame, acesulfame K, sucralose, saccharin, stevioside, neotame are more preferred, aspartame, acesulfame K, sucralose, stevioside, Neotame is more preferred, aspartame, acesulfame K, sucralose and neotame are even more preferred, aspartame, acesulfame K and sucralose are particularly preferred, and aspartame and sucralose are particularly preferred. In particular, aspartame is particularly preferable from the viewpoint of obtaining a sweet synergistic effect.
 その他、各種食品素材の他に、本発明の効果を阻害しない程度に飲料、食品、医薬品、医薬部外品、飼料等の経口製品として使用可能な各種添加剤を使用することができる。具体的には、デキストリン・マルトデキストリン・澱粉分解物・還元澱粉分解物・サイクロデキストリン・難消化性デキストリンなどのデキストリン類、結晶セルロース・ポリデキストロースなどの多糖類等と言った賦形剤;クエン酸、リン酸、乳酸、リンゴ酸、酒石酸、グルコン酸等及びそれらの塩のようなpH調整剤;L−アスコルビン酸、エリソルビン酸、トコフェロール(ビタミンE)等の酸化防止剤;酢酸ナトリウム、グリシン、グリセリン脂肪酸エステル、リゾチーム等の日持ち向上剤;安息香酸ナトリウム、ソルビン酸カリウム等の保存料;ペクチン、アラビアガム、カラギーナン、大豆多糖類、ヒドロキシプロピルセルロース(HPC)等の安定剤;キサンタンガム、ローカストビーンガム、グアーガム、タマリンドガム、カラヤガム等の増粘安定剤;リン酸カルシウム、炭酸カルシウム、炭酸マグネシウム、二酸化ケイ素、貝殻カルシウム等の固結防止剤;シナモン油、レモン油、ミント油、オレンジ油、バニラ等の天然香料、メントール、シトラール、シンナミックアルコール、テルピネオール、バニリン等の合成香料、それらを調合した調合香料等の香料;クチナシ色素、カラメル色素、コチニール色素、アナトー色素、ベニバナ色素、β−カロチン、及び各種タール系合成色素等の着色料;炭酸水素ナトリウム、デンプン、寒天末、ゼラチン末、結晶セルロース等の崩壊剤、ステアリン酸、シュガーエステル、安息香酸、タルク等の滑沢剤;炭酸水素ナトリウム、グルコノデルタラクトン等の膨張剤;レシチン、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等の乳化剤が挙げられる。これらは任意の割合で併用でき、これらは1種または2種以上を混合して使用してもよい。 In addition to various food materials, various additives that can be used as oral products such as beverages, foods, pharmaceuticals, quasi drugs, and feeds can be used to the extent that the effects of the present invention are not impaired. Specifically, dextrins such as dextrin, maltodextrin, starch degradation product, reduced starch degradation product, cyclodextrin, indigestible dextrin, polysaccharides such as crystalline cellulose, polydextrose, etc .; citric acid PH adjusters such as phosphoric acid, lactic acid, malic acid, tartaric acid, gluconic acid and their salts; antioxidants such as L-ascorbic acid, erythorbic acid, tocopherol (vitamin E); sodium acetate, glycine, glycerin Preservatives such as fatty acid esters and lysozyme; preservatives such as sodium benzoate and potassium sorbate; stabilizers such as pectin, gum arabic, carrageenan, soybean polysaccharide, hydroxypropyl cellulose (HPC); xanthan gum, locust bean gum, Guar gum, tamarind gum, Thickening stabilizers such as Raya gum; anti-caking agents such as calcium phosphate, calcium carbonate, magnesium carbonate, silicon dioxide, shell calcium; natural flavors such as cinnamon oil, lemon oil, mint oil, orange oil, vanilla, menthol, citral, Synthetic fragrances such as synthetic alcohol, terpineol, and vanillin, and fragrances such as blended fragrances prepared from them; coloring of gardenia pigments, caramel pigments, cochineal pigments, anato pigments, safflower pigments, β-carotene, and various tar-based synthetic pigments Disintegrants such as sodium bicarbonate, starch, agar powder, gelatin powder and crystalline cellulose, lubricants such as stearic acid, sugar ester, benzoic acid and talc; swelling agents such as sodium bicarbonate and glucono delta lactone; Lecithin, sucrose fatty acid ester, glycerin fatty acid ester Examples include emulsifiers such as stealth and sorbitan fatty acid esters. These can be used together in an arbitrary ratio, and these may be used alone or in combination of two or more.
 本発明のモナティン多価金属塩結晶あるいは甘味組成物は、飲料、食品、医薬品、医薬部外品、飼料等の経口製品に使用することができる。その剤型は、特に限定されず、例えば、粉末、顆粒、キューブ、ペースト、液体などが挙げられる。具体的には、果実飲料、野菜飲料、コーラ、炭酸飲料、スポーツドリンク、コーヒー、紅茶、ココア、乳飲料等の液体飲料;粉末ジュース等の粉末飲料;梅酒、薬用酒、果実酒、日本酒等の酒;等に代表される飲料、 チョコレート、クッキー、ケーキ、ドーナツ、チューイングガム、ゼリー、プディング、ムース、和菓子等の菓子;フランスパン、クロワッサン等のパン;コーヒー牛乳、ヨーグルト等の乳製品;アイスクリーム、シャーベット等の氷菓;ベーキングミックス、デザートミックス等の粉末ミックス;液体卓上甘味料、粉末卓上甘味料等の卓上甘味料;魚介乾製品、魚介塩蔵品;佃煮;ハム、ベーコン、ソーセージ等の食肉・水産物加工製品;ドレッシング、たれ、醤油、味噌、みりん、ソース、ケチャップ、麺つゆ等の調味料;カレー粉等の香辛料;即席麺等の穀物加工品;シリアル;等に代表される食品、錠剤医薬品;散剤医薬品;シロップ剤医薬品;ドロップ剤医薬品;等に代表される医薬品、 口内清涼剤;うがい剤;歯磨き剤;ドリンク剤;等に代表される医薬部外品、 ペットフード;液体飼料;粉末飼料;等に代表される飼料、等が挙げられる。特に、モナティンの甘味質、甘味安定性を保持しうるという観点で、モナティンの結晶形状を保持した飲料、食品、医薬品、医薬部外品、飼料が好ましく、粉末飲料、菓子、粉末ミックス、粉末卓上甘味料、錠剤医薬品、散剤医薬品、粉末飼料がより好ましく、粉末飲料、粉末卓上甘味料、粉末ミックスがより好ましい。 The monatin polyvalent metal salt crystal or sweetening composition of the present invention can be used for oral products such as beverages, foods, pharmaceuticals, quasi drugs, and feeds. The dosage form is not particularly limited, and examples thereof include powder, granules, cubes, pastes, and liquids. Specifically, liquid drinks such as fruit drinks, vegetable drinks, colas, carbonated drinks, sports drinks, coffee, tea, cocoa, milk drinks; powdered drinks such as powdered juices; plum drinks, medicinal liquors, fruit liquors, sake, etc. Beverages such as liquor; chocolate, cookies, cakes, donuts, chewing gum, jelly, pudding, mousse, Japanese confectionery, etc .; French bread, croissants, etc .; dairy products such as coffee milk, yogurt; ice cream, Ice confectionery such as sherbet; powder mix such as baking mix and dessert mix; tabletop sweetener such as liquid tabletop sweetener and powder tabletop sweetener; seafood dried products and seafood salted products; Processed products; dressing, sauce, soy sauce, miso, mirin, sauce, ketchup, noodle soup Spices such as curry powder; processed cereals such as instant noodles; foods such as cereals; tablet pharmaceuticals; powder pharmaceuticals; syrup pharmaceuticals; drop pharmaceuticals; etc. Quasi-drugs represented by agents, dentifrices, drinks, etc., pet foods, liquid feeds, powdered feeds, etc. In particular, beverages, foods, pharmaceuticals, quasi-drugs, and feeds that retain the crystal form of monatin are preferable from the viewpoint of maintaining the sweetness and sweetness stability of monatin, and powdered beverages, confectionery, powder mixes, and powder tabletops. Sweeteners, tablet pharmaceuticals, powdered pharmaceuticals, and powdered feeds are more preferable, and powdered beverages, powdered tabletop sweeteners, and powder mixes are more preferable.
 本発明のモナティン多価金属塩結晶あるいは甘味組成物は、メタボリックシンドローム予防・治療剤、肥満予防・治療剤、糖尿病予防・治療剤、虫歯予防剤として極めて有効である。付加的に、甘味相乗効果、風味相乗効果、苦味マスキング、光分解安定化効果も有する。 The monatin polyvalent metal salt crystal or sweetening composition of the present invention is extremely effective as a metabolic syndrome prevention / treatment agent, obesity prevention / treatment agent, diabetes prevention / treatment agent, and caries prevention agent. In addition, it has sweetness synergistic effect, flavor synergistic effect, bitterness masking, and photodegradation stabilizing effect.
 以下、実施例により本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
〔測定方法〕
まずは各種測定方法について説明する。
〔Measuring method〕
First, various measurement methods will be described.
〔粉末X線回折測定方法〕
1)サンプル結晶0.5gを採取し、メノウ乳鉢で60秒間すりつぶした。得られた粉末をガラスプレートにセットし、上から圧力をかけて平らにした。直ちに粉末X線回折装置にセットし、以下の条件で測定した。
2) Cu−Kα線による粉末X線回折の測定は、スペクトリス株式会社製X線回折装置PW3050を用い、管球:Cu、管電流:30mA、管電圧:40kV、サンプリング幅:0.020°、走査速度:3°/min、波長:1.54056Å、測定回折角範囲(2θ):4~30°の条件で測定した。
測定プログラム:X’ PERT DATA COLLECTION
解析プログラム:X’PERT High Score
3)得られたデーターをエクセルにてグラフ化し、4~30°の範囲の特徴的鋭角極大ピークを読み取った。本方法の回折角の誤差は±0.2°である。
[Powder X-ray diffraction measurement method]
1) 0.5 g of sample crystals were collected and ground in an agate mortar for 60 seconds. The obtained powder was set on a glass plate and flattened by applying pressure from above. The sample was immediately set on a powder X-ray diffractometer and measured under the following conditions.
2) Measurement of powder X-ray diffraction by Cu-Kα rays was performed using an X-ray diffractometer PW3050 manufactured by Spectris Co., Ltd., tube: Cu, tube current: 30 mA, tube voltage: 40 kV, sampling width: 0.020 °, Measurement was performed under the conditions of scanning speed: 3 ° / min, wavelength: 1.54056 mm, measurement diffraction angle range (2θ): 4 to 30 °.
Measurement program: X 'PERT DATA COLLECTION
Analysis program: X'PERT High Score
3) The obtained data was graphed with Excel, and a characteristic acute maximum peak in the range of 4 to 30 ° was read. The error of the diffraction angle of this method is ± 0.2 °.
〔モナティン含量測定方法〕
(2R,4R)モナティンとカルシウム又はマグネシウムのモル比は、以下の条件で所定濃度の(2R,4R)モナティン多価金属塩結晶溶液中のモナティン含量を下記条件のHPLCで測定し、濃度比にて決定した。
 <使用機器>
 ポンプ:LC−9A 島津製作所(株)製
 カラムオーブン:CTO−10A 島津製作所(株)製
 検出器:SPD−10A 島津製作所(株)製
 オートサンプラー:SIL−9A 島津製作所(株)製
 グラジエンター:LPG−1000 東京理化器機(株)製
 <カラム>CAPCELL PAK C18 TYPE MGII 5μm 4.6mm×250mm 資生堂(株)製
 <カラム温度>40℃
 <検出波長>210nm
 <移動液組成>A液 20mMKH2PO4/アセトニトリル=100/5
        B液 アセトニトリルのみ
 <グラジエントパターン>
Figure JPOXMLDOC01-appb-T000001
<リテンションタイム> (2S,4R)モナティン:11.8分
            (2R,4R)モナティン:15.1分
 <注入量>10μL
<分析サイクル>70分/1検体
<モナティン含量測定標準物質>
 (2R,4R)モナティンカリウム塩1水和物結晶 分子量348.4
(2R,4R)モナティン多価金属塩結晶溶液中のモナティン含量
=(292.3/348.4)*(Wstd*Qs)/(Ws*Qstd)*100(%)
 Wstd:標準物質濃度(mg/mL)
 Qstd:標準物質のarea値
 Ws:(2R,4R)モナティン多価金属塩濃度(mg/mL)
 Qs:(2R,4R)モナティン多価金属塩のarea値
 (2R,4R)モナティンフリー体 分子量292.3
 (ただし、水和物、溶媒和物の場合には、その質量も換算する。)
[Method for measuring monatin content]
The molar ratio of (2R, 4R) monatin to calcium or magnesium was determined by measuring the monatin content in a (2R, 4R) monatin polyvalent metal salt crystal solution at a predetermined concentration under the following conditions by HPLC under the following conditions. Decided.
<Devices used>
Pump: LC-9A manufactured by Shimadzu Corporation Column oven: CTO-10A manufactured by Shimadzu Corporation Detector: SPD-10A manufactured by Shimadzu Corporation Autosampler: SIL-9A manufactured by Shimadzu Corporation Gradient: LPG-1000 manufactured by Tokyo Rika Kikai Co., Ltd. <Column> CAPCELL PAK C18 TYPE MGII 5 μm 4.6 mm × 250 mm manufactured by Shiseido Co., Ltd. <Column temperature> 40 ° C.
<Detection wavelength> 210 nm
<Moving liquid composition> A liquid 20 mM KH2PO4 / acetonitrile = 100/5
Liquid B Acetonitrile only <Gradient pattern>
Figure JPOXMLDOC01-appb-T000001
<Retention time> (2S, 4R) monatin: 11.8 minutes (2R, 4R) monatin: 15.1 minutes <Injection volume> 10 μL
<Analysis cycle> 70 minutes / sample <Monatin content measurement standard>
(2R, 4R) monatin potassium salt monohydrate crystal molecular weight 348.4
Monatin content in (2R, 4R) monatin polyvalent metal salt crystal solution = (292.3 / 348.4) * (Wstd * Qs) / (Ws * Qstd) * 100 (%)
Wstd: standard substance concentration (mg / mL)
Qstd: area value of standard substance Ws: (2R, 4R) monatin polyvalent metal salt concentration (mg / mL)
Qs: area value of (2R, 4R) monatin polyvalent metal salt (2R, 4R) monatin free form molecular weight 292.3
(However, in the case of hydrates and solvates, the mass is also converted.)
〔カルシウム又はマグネシウムイオン測定方法〕
(2R,4R)モナティンとカルシウム又はマグネシウムのモル比は、以下の条件で所定濃度の(2R,4R)モナティン多価金属塩結晶溶液中のカルシウムイオン濃度又はマグネシウムイオン濃度を下記条件のイオンクロマトグラフで測定し、濃度比にて決定した。
<装置名> 東ソー(株)製 イオンクロマトグラフIC−2001
<陽イオン測定カラム>東ソー(株)製 TSKgel SuperIC−Cation、内径4.6mm、長さ150mm
<ガードカラム>東ソー(株)製 TSKguardcolumn SuperIC−C、内径4.6mm、長さ10mm
<溶離液> 2.2mmol/L メタンスルホン酸 +1.0mmol/L 18−crown−6 +0.5mmol/L ヒスチジン
<カラム温度>40℃
<流速>1ml/min
<標準溶液> 塩化カルシウム又は塩化マグネシウム(特級試薬)を純水に溶解し標準溶液とした。
[Calcium or magnesium ion measurement method]
The molar ratio of (2R, 4R) monatin to calcium or magnesium is the ion chromatograph of the calcium ion concentration or magnesium ion concentration in the predetermined concentration of (2R, 4R) monatin polyvalent metal salt crystal solution under the following conditions: And determined by the concentration ratio.
<Device Name> Ion Chromatograph IC-2001 manufactured by Tosoh Corporation
<Cation measurement column> TSKgel SuperIC-Cation manufactured by Tosoh Corporation, inner diameter 4.6 mm, length 150 mm
<Guard column> Tosoh Co., Ltd. TSKguardcolumn SuperIC-C, inner diameter 4.6mm, length 10mm
<Eluent> 2.2 mmol / L methanesulfonic acid +1.0 mmol / L 18-crown-6 +0.5 mmol / L histidine <column temperature> 40 ° C.
<Flow rate> 1 ml / min
<Standard solution> Calcium chloride or magnesium chloride (special grade reagent) was dissolved in pure water to obtain a standard solution.
〔1H−NMRスペクトル測定方法〕
<装置名> Bruker製 AVANCE400  1H;400MHz
<溶媒> 重水
<温度> 室温
<濃度> 約1質量%
[1H-NMR spectrum measurement method]
<Device name> AVANCE400 1H made by Bruker; 400 MHz
<Solvent> Heavy water <Temperature> Room temperature <Concentration> About 1% by mass
〔MSスペクトル測定方法〕
<装置名> Thermo Quest社製 TSQ700
<測定モード> ESIモード
[MS spectrum measurement method]
<Device name> TSQ700 manufactured by Thermo Quest
<Measurement mode> ESI mode
〔水分測定方法〕
 (2R,4R)モナティンと水のモル比は、以下の条件で所定濃度の(2R,4R)モナティン多価金属塩結晶溶液中の水濃度をカールフィッシャー法により測定し、得られた滴定液量から算出した。
<装置名>平沼産業株式会社製 自動水分測定装置 AQV−2000
Figure JPOXMLDOC01-appb-I000002
n製)
<溶媒> 150mlメタノール
<温度>室温
<サンプル量> 30mg
[Moisture measurement method]
The molar ratio of (2R, 4R) monatin to water was determined by measuring the water concentration in a (2R, 4R) monatin polyvalent metal salt crystal solution at a predetermined concentration by the Karl Fischer method under the following conditions. Calculated from
<Device Name> Hiranuma Sangyo Co., Ltd. Automatic Moisture Analyzer AQV-2000
Figure JPOXMLDOC01-appb-I000002
n made)
<Solvent> 150 ml methanol <Temperature> Room temperature <Sample amount> 30 mg
〔溶媒含量測定方法〕
上記記載の1H−NMRスペクトルを用いて、各溶媒の対象置換基に由来する1Hあたりのプロトン積分値とモナティンの3位メチレン(σ:2ppm、1H)に由来する1Hあたりのプロトン積分値の比をもって、モナティンに対する各溶媒のモル比として算出した。
(Solvent content measurement method)
Using the 1H-NMR spectrum described above, the ratio of the proton integral value per 1H derived from the target substituent of each solvent and the proton integral value per 1H derived from the 3rd-position methylene (σ: 2 ppm, 1H) of monatin Calculated as the molar ratio of each solvent to monatin.
〔モナティン溶液透過率測定方法〕
<装置名> Varian製 紫外可視分光光度計 Cary50
<測定波長>430nm
<温度> 25℃
<サンプル>甘味組成物1gを水50mlに全溶解させる。
[Monatin solution permeability measurement method]
<Device name> Varian UV-Vis spectrophotometer Cary50
<Measurement wavelength> 430 nm
<Temperature> 25 ° C
<Sample> 1 g of the sweetening composition is completely dissolved in 50 ml of water.
〔水蒸気吸着脱着測定〕
<装置>日本ベル株式会社製 自動蒸気吸着量測定装置BELSORP18
<測定方式> 定容量式ガス吸着法
<吸着ガス> H
<空気恒温槽温度(K)> 353
<吸着温度(K)> 298
<飽和蒸気圧(kPa)> 3.169
<吸着断面積(nm)> 0.125
<最大吸着圧(相対圧 P/PO)> 脱着;0.90  吸着;0.95
<最小吸着圧(相対圧 P/PO)> 脱着;0.10  吸着;0.05
<平衡時間> 500sec
(Water vapor adsorption / desorption measurement)
<Apparatus> Automatic vapor adsorption measuring device BELSORP18 manufactured by Nippon Bell Co., Ltd.
<Measurement method> constant volume Ryoshiki gas adsorption method <adsorbed gas> H 2 O
<Air temperature chamber temperature (K)> 353
<Adsorption temperature (K)> 298
<Saturated vapor pressure (kPa)> 3.169
<Adsorption sectional area (nm 2 )> 0.125
<Maximum adsorption pressure (relative pressure P / PO)>Desorption; 0.90 Adsorption; 0.95
<Minimum adsorption pressure (relative pressure P / PO)>Desorption; 0.10 Adsorption; 0.05
<Equilibrium time> 500 sec
〔製造例1〕(2R,4R)モナティンカリウム塩結晶の調製
 WO2003−045914号公報(特許文献6)記載の〔実施例17〕に則り、(2R,4R)モナティン1カリウム塩結晶10gを調製した。
[Production Example 1] Preparation of (2R, 4R) monatin potassium salt crystal 10 g of (2R, 4R) monatin monopotassium salt crystal was prepared according to [Example 17] described in WO2003-045914 (Patent Document 6). did.
〔製造例2〕(2R,4R)モナティンフリー体結晶の調製
 製造例1で得られた(2R,4R)モナティンカリウム塩結晶40g(109ミリモル)を水700mlに溶解し、溶解液を10℃に保ったまま1M硫酸水溶液54.5mlを2時間かけて滴下した。析出した結晶をろ過し、40℃で一晩減圧乾燥して(2R,4R)モナティンフリー体31.5gを調製した。
[Production Example 2] Preparation of (2R, 4R) monatin-free crystals 40 g (109 mmol) of (2R, 4R) monatin potassium salt crystals obtained in Production Example 1 were dissolved in 700 ml of water. While maintaining the temperature, 54.5 ml of 1M sulfuric acid aqueous solution was added dropwise over 2 hours. The precipitated crystals were filtered and dried under reduced pressure at 40 ° C. overnight to prepare 31.5 g of (2R, 4R) monatin free form.
〔実施例1〕((2R,4R)モナティン)カルシウム塩5水和物結晶の調製
 製造例1の(2R,4R))モナティン1カリウム塩結晶5g(13.7ミリモル)を水75mlに溶解し、50℃にて塩化カルシウム0.758g(6.83ミリモル)を添加した。モナティン溶解液にエタノール75mlを加え50℃で3時間攪拌後、25℃まで2.5時間をかけて冷却し、25℃で10時間更に攪拌した。析出した結晶をろ別し、40℃で減圧乾燥を行った。乾燥結晶を44℃78%の恒温恒湿器で24時間保存し、所望のカルシウム塩結晶4.6gを得た。
Example 1 ((2R, 4R) monatin) dissolved 2 calcium salt 5 hydrate crystal prepared in Production Example 1 of a (2R, 4R)) monatin potassium salt crystals 5 g (13.7 mmol) in water 75ml At 50 ° C., 0.758 g (6.83 mmol) of calcium chloride was added. To the monatin solution, 75 ml of ethanol was added and stirred at 50 ° C. for 3 hours, then cooled to 25 ° C. over 2.5 hours, and further stirred at 25 ° C. for 10 hours. The precipitated crystals were separated by filtration and dried under reduced pressure at 40 ° C. The dried crystals were stored in a constant temperature and humidity chamber at 44 ° C. and 78% for 24 hours to obtain 4.6 g of desired calcium salt crystals.
<1HNMR(D2O)σ>1.94−2.01(q 1H),2.57−2.61(q 1H),2.99−3.03(d 1H),3.19−3.23(d 1H),3.54−3.57(q 1H),7.05−7.17(m 3H),7.40−7.42(m 1H),7.64−7.66(m 1H)。
<ESI−MS>293.1(M+H)、291.1(M−H)
<水分含量>13.5wt%(モナティン:水=2:5相当)
<カルシウム含量>5.6wt%(モナティン:カルシウム=2:1相当)
<固有X線回折ピーク(2θ±0.2°、CuKα)>6.0°、9.8°、16.0°、21.5°、22.3°(図1)
<結晶形状> 晶析ML中の結晶形状は比較的微細な針状であった。(図2)
<1HNMR (D2O) σ> 1.94-2.01 (q1H), 2.57-2.61 (q1H), 2.99-3.03 (d1H), 3.19-3.23 (D 1H), 3.54-3.57 (q 1H), 7.05-7.17 (m 3H), 7.40-7.42 (m 1H), 7.64-7.66 (m 1H).
<ESI-MS> 293.1 (M + H) + , 291.1 (M−H)
<Moisture content> 13.5 wt% (equivalent to monatin: water = 2: 5)
<Calcium content> 5.6 wt% (equivalent to monatin: calcium = 2: 1)
<Intrinsic X-ray diffraction peak (2θ ± 0.2 °, CuKα)> 6.0 °, 9.8 °, 16.0 °, 21.5 °, 22.3 ° (FIG. 1)
<Crystal shape> The crystal shape in crystallization ML was a comparatively fine needle shape. (Figure 2)
〔実施例2〕((2R,4R)モナティン)マグネシウム塩4水和物結晶の調製
 製造例1の(2R,4R))モナティン1カリウム塩結晶10g(28.5ミリモル)を水20mlに溶解し、室温にて501mM塩化マグネシウム水溶液28.3mLを添加した。25℃で18時間攪拌後モナティン溶解液にメタノール80gを加え室温で6時間攪拌した。析出した結晶をろ別し、80%メタノール50gで2時間スラリー洗浄し、濾過後40℃で減圧乾燥を行った。乾燥結晶を44℃78%の恒温恒湿器で24時間保存し、さらに40℃で減圧乾燥し所望のマグネシウム塩結晶8.8gを得た。
Example 2 ((2R, 4R) monatin) dissolved 2 magnesium salt 4 hydrate crystal prepared in Production Example 1 of a (2R, 4R)) monatin potassium salt crystals 10 g (28.5 mmol) in water 20ml Then, 28.3 mL of a 501 mM magnesium chloride aqueous solution was added at room temperature. After stirring at 25 ° C. for 18 hours, 80 g of methanol was added to the monatin solution, followed by stirring at room temperature for 6 hours. The precipitated crystals were separated by filtration, washed with slurry with 50 g of 80% methanol for 2 hours, filtered and dried under reduced pressure at 40 ° C. The dried crystals were stored for 24 hours in a constant temperature and humidity chamber at 44 ° C. and 78%, and further dried under reduced pressure at 40 ° C. to obtain 8.8 g of desired magnesium salt crystals.
<1HNMR(D2O)σ>1.94−2.01(q 1H),2.57−2.61(q 1H),2.99−3.03(d 1H),3.19−3.23(d 1H),3.54−3.57(q 1H),7.05−7.17(m 3H),7.40−7.42(m 1H),7.64−7.66(m 1H)。
<ESI−MS>293.1(M+H)、291.1(M−H)
<水分含量>10.8wt%(モナティン:水=2:4相当)
<マグネシウム含量>3.6wt%(モナティン:マグネシウム=2:1相当)
<固有X線回折ピーク(2θ±0.2°、CuKα)>8.9°、11.2°、15.0°、17.8°、22.5°(図3)
<結晶形状> 晶析ML中の結晶形状は比較的微細な破片状であった。(図4)
<甘味倍率>2700倍(5%のショ糖水溶液との比較、7名パネラー平均値)
<1HNMR (D2O) σ> 1.94-2.01 (q1H), 2.57-2.61 (q1H), 2.99-3.03 (d1H), 3.19-3.23 (D 1H), 3.54-3.57 (q 1H), 7.05-7.17 (m 3H), 7.40-7.42 (m 1H), 7.64-7.66 (m 1H).
<ESI-MS> 293.1 (M + H) + , 291.1 (M−H)
<Moisture content> 10.8 wt% (equivalent to monatin: water = 2: 4)
<Magnesium content> 3.6 wt% (equivalent to monatin: magnesium = 2: 1)
<Intrinsic X-ray diffraction peak (2θ ± 0.2 °, CuKα)> 8.9 °, 11.2 °, 15.0 °, 17.8 °, 22.5 ° (FIG. 3)
<Crystal shape> The crystal shape in crystallization ML was a comparatively fine fragment shape. (Fig. 4)
<Sweetness magnification> 2700 times (comparison with 5% sucrose aqueous solution, average of 7 panelists)
〔実施例3〕((2R,4R)モナティン)カルシウム塩4.6水和物0.67エタノール和物結晶の調製
(2R,4R)モナティン1カリウム塩結晶15g(41ミリモル)を水225mlに溶解し、塩化カルシウム2.274g(20.5ミリモル)を添加した。モナティン溶解液を50℃に加熱しエタノール75mlを加え1.5時間攪拌後、25℃まで2.5時間をかけて冷却し、25℃で12.5時間更に攪拌した。析出した結晶をろ別し、40℃で減圧乾燥を行った。所望のカルシウム塩結晶14.1gを得た。
<水分含量> 12.2wt%(モナティン:水=1.9:4.6相当)
<カルシウム含量> 5.8wt%(モナティン:カルシウム=1.9:1相当)
<EtOH含量> 4.5wt%(モナティン:EtOH=1.9:0.67相当)
<固有X線回折ピーク(2θ±0.2°、CuKα)> 5.4°、6.0 °、16.4°、22.2°、27.3°(図5)
<結晶形状> 晶析ML中の結晶形状は針状であった。(図6)
Example 3 ((2R, 4R) monatin) Preparation of 2 calcium salt 4.6 hydrate 0.67 ethanol solvate crystal (2R, 4R) monatin potassium salt crystals 15g (41 mmol) in water 225ml After dissolution, 2.274 g (20.5 mmol) of calcium chloride was added. The monatin solution was heated to 50 ° C., added with 75 ml of ethanol, stirred for 1.5 hours, cooled to 25 ° C. over 2.5 hours, and further stirred at 25 ° C. for 12.5 hours. The precipitated crystals were separated by filtration and dried under reduced pressure at 40 ° C. 14.1 g of the desired calcium salt crystals were obtained.
<Moisture content> 12.2 wt% (equivalent to monatin: water = 1.9: 4.6)
<Calcium content> 5.8 wt% (equivalent to monatin: calcium = 1.9: 1)
<EtOH content> 4.5 wt% (monatin: EtOH = 1.9: 0.67 equivalent)
<Intrinsic X-ray diffraction peak (2θ ± 0.2 °, CuKα)> 5.4 °, 6.0 °, 16.4 °, 22.2 °, 27.3 ° (FIG. 5)
<Crystal shape> The crystal shape in the crystallization ML was acicular. (Fig. 6)
〔実施例4〕((2R,4R)モナティン)カルシウム塩5.7水和物結晶の調製
((2R,4R)モナティン)カルシウム塩結晶5水和物結晶0.4g(1.08ミリモル)を水8.5mlに溶解し、65℃に加熱後CHCN 8.5mlを添加した。45℃で12時間攪拌した。析出した結晶をろ別し、40℃で減圧乾燥を行ってカルシウム塩結晶0.288gを得た。
<水分含量> 12.6wt%(モナティン:水=2.3:5.7相当)
<カルシウム含量> 4.9wt%(モナティン:カルシウム=2.3:1相当)
<CHCN含量> 0wt%
<固有X線回折ピーク(2θ±0.2°、CuKα)> 5.0°、12.8°、15.3°、18.1°23.7°(図7)
<結晶形状> 晶析ML中の結晶形状は微細な針状であった。(図8)
Example 4 ((2R, 4R) monatin) Preparation of 2 calcium salt 5.7 hydrate crystal ((2R, 4R) monatin) 2 calcium salt crystal pentahydrate crystals 0.4 g (1.08 mmol ) Was dissolved in 8.5 ml of water, heated to 65 ° C., and 8.5 ml of CH 3 CN was added. Stir at 45 ° C. for 12 hours. The precipitated crystals were separated by filtration and dried under reduced pressure at 40 ° C. to obtain 0.288 g of calcium salt crystals.
<Water content> 12.6 wt% (monatin: water = 2.3: 5.7 equivalent)
<Calcium content> 4.9 wt% (monatin: calcium = 2.3: 1 equivalent)
<CH 3 CN content> 0 wt%
<Intrinsic X-ray diffraction peak (2θ ± 0.2 °, CuKα)> 5.0 °, 12.8 °, 15.3 °, 18.1 ° 23.7 ° (FIG. 7)
<Crystal shape> The crystal shape in crystallization ML was a fine needle shape. (Fig. 8)
〔実施例5〕((2R,4R)モナティン)カルシウム塩5.9水和物0.72THF和物結晶の調製
(2R,4R)モナティン)カルシウム塩結晶5水和物結晶0.4g(1.08ミリモル)を水8.5mlに溶解し、65℃に加熱後THF 8.5mlを添加した。45℃で12時間攪拌した。析出した結晶をろ別し、40℃で減圧乾燥を行ってカルシウム塩結晶0.288gを得た。
<水分含量> 11.4wt%(モナティン:水=2.5:5.9相当)
<カルシウム含量> 4.3wt%(モナティン:カルシウム=2.5:1相当)
<THF含量> 5.6wt%(モナティン:THF=2.5:0.72相当)
<固有X線回折ピーク(2θ±0.2°、CuKα)> 5.1°、15.9°、19.7°、22.3°(図9)
<結晶形状> 晶析ML中の結晶形状は微細な針状であった。(図10)
Example 5 ((2R, 4R) monatin) Preparation of 2 calcium salt 5.9 hydrate 0.72THF hydrate crystals (2R, 4R) monatin) 2 calcium salt crystal pentahydrate crystals 0.4 g ( 1.08 mmol) was dissolved in 8.5 ml of water, heated to 65 ° C., and 8.5 ml of THF was added. Stir at 45 ° C. for 12 hours. The precipitated crystals were separated by filtration and dried under reduced pressure at 40 ° C. to obtain 0.288 g of calcium salt crystals.
<Water content> 11.4 wt% (monatin: water = 2.5: 5.9 equivalent)
<Calcium content> 4.3 wt% (equivalent to monatin: calcium = 2.5: 1)
<THF content> 5.6 wt% (monatin: THF = 2.5: 0.72 equivalent)
<Intrinsic X-ray diffraction peak (2θ ± 0.2 °, CuKα)> 5.1 °, 15.9 °, 19.7 °, 22.3 ° (FIG. 9)
<Crystal shape> The crystal shape in crystallization ML was a fine needle shape. (Fig. 10)
〔実施例6〕((2R,4R)モナティン)カルシウム塩3.8水和物0.63i−PrOH和物結晶の調製
((2R,4R)モナティン)カルシウム塩結晶5水和物結晶0.4g(1.08ミリモル)を水8.5mlに溶解し、65℃に加熱後i−PrOH 8.5mlを添加した。45℃で25時間攪拌した。析出した結晶をろ別し、40℃で減圧乾燥を行ってカルシウム塩結晶0.337gを得た。
<水分含量> 10.67wt%(モナティン:水=1.7:3.8相当)
<カルシウム含量> 6.2wt%(モナティン:カルシウム=1.7:1相当)
<i−PrOH含量> 5.87wt%(モナティン:i−PrOH=1.7:0.63相当)
<固有X線回折ピーク(2θ±0.2°、CuKα)> 5.4°、15.9°、19.7°、22.3°(図11)
<結晶形状> 晶析ML中の結晶形状は針状であった。(図12)
Example 6 ((2R, 4R) monatin) Preparation of 2 calcium salt 3.8 hydrate 0.63i-PrOH hydrate crystals ((2R, 4R) monatin) 2 calcium salt crystal pentahydrate crystals 0 0.4 g (1.08 mmol) was dissolved in 8.5 ml of water, heated to 65 ° C., and 8.5 ml of i-PrOH was added. Stir at 45 ° C. for 25 hours. The precipitated crystals were separated by filtration and dried under reduced pressure at 40 ° C. to obtain 0.337 g of calcium salt crystals.
<Water content> 10.67 wt% (monatin: water = 1.7: 3.8 equivalent)
<Calcium content> 6.2 wt% (equivalent to monatin: calcium = 1.7: 1)
<I-PrOH content> 5.87 wt% (monatin: i-PrOH = 1.7: 0.63 equivalent)
<Intrinsic X-ray diffraction peak (2θ ± 0.2 °, CuKα)> 5.4 °, 15.9 °, 19.7 °, 22.3 ° (FIG. 11)
<Crystal shape> The crystal shape in the crystallization ML was acicular. (Fig. 12)
〔実施例7〕((2R,4R)モナティン)マグネシウム塩7.5水和物結晶の調製
(2R,4R)モナティンフリー体結晶30g(100ミリモル)を水300mlに分散し、40℃にて水酸化マグネシウム3.36g(58ミリモル)を添加した。40℃で4時間攪拌後、25℃で16時間攪拌した。析出した結晶(38.38g)をろ別し、40℃で減圧乾燥を行ってマグネシウム塩結晶28.9gを得た。
<水分含量> 18.34wt%(モナティン:水=2:7.5相当)
<マグネシウム含量> 3.67wt%(モナティン:マグネシウム=2:1相当)
<固有X線回折ピーク(2θ±0.2°、CuKα)> 8.7°、10.5°、15.9°、17.4°21.0°、25.6°(図13)
<結晶形状> 晶析ML中の結晶形状は柱状であった。(図14)
Example 7 ((2R, 4R) monatin) Preparation of 2 magnesium salt 7.5 hydrate crystals (2R, 4R) Mona tin-free substance crystals 30 g (100 mmol) dispersed in water 300 ml, the 40 ° C. Then 3.36 g (58 mmol) of magnesium hydroxide was added. After stirring at 40 ° C. for 4 hours, the mixture was stirred at 25 ° C. for 16 hours. The precipitated crystals (38.38 g) were collected by filtration and dried under reduced pressure at 40 ° C. to obtain 28.9 g of magnesium salt crystals.
<Water content> 18.34 wt% (monatin: water = 2: 7.5 equivalent)
<Magnesium content> 3.67 wt% (equivalent to monatin: magnesium = 2: 1)
<Intrinsic X-ray diffraction peak (2θ ± 0.2 °, CuKα)> 8.7 °, 10.5 °, 15.9 °, 17.4 ° 21.0 °, 25.6 ° (FIG. 13)
<Crystal shape> The crystal shape in the crystallization ML was columnar. (Fig. 14)
〔実施例8〕((2R,4R)モナティン)マグネシウム塩2水和物結晶の調製
(2R,4R)モナティンカリウム塩結晶120g(345ミリモル)を水150mlに溶解し、60℃にて硫酸マグネシウム4.15g(34.5ミリモル)を添加した。更に硫酸マグネシウム16.61g(138ミリモル)水溶液(水100ml)を6.4時間かけて添加した。添加終了後、析出した結晶をろ別し、水100mlで洗浄して湿結晶を得た(204.7g)。湿結晶を40℃で減圧乾燥しマグネシウム塩結晶105gを得た。さらに少量混在する硫酸カリウムを除くため乾燥結晶105gに水400mlを添加し25℃で1.5時間攪拌した。得られたスラリーをろ別し、水300mlで洗浄して湿結晶を得た(153.9g)。湿結晶を40℃で減圧乾燥しマグネシウム塩結晶85.7gを得た。
<固有X線回折ピーク(2θ±0.2°、CuKα)> 4.9°、16.8°、18.0°、24.6°(図15)
<水分含量> 6.0wt%(モナティン:水=1:1相当)
<マグネシウム含量> 3.61wt%(モナティン:マグネシウム=2:1相当)
<結晶形状> 晶析ML中の結晶形状は微細晶であった。(図16)
The Example 8 ((2R, 4R) monatin) Preparation of 2 magnesium salt dihydrate crystals (2R, 4R) Mona Tin potassium salt crystals 120 g (345 mmol) was dissolved in water 150 ml, sulfate at 60 ° C. 4.15 g (34.5 mmol) of magnesium was added. Further, 16.61 g (138 mmol) of magnesium sulfate (100 ml of water) was added over 6.4 hours. After completion of the addition, the precipitated crystals were separated by filtration and washed with 100 ml of water to obtain wet crystals (204.7 g). The wet crystals were dried under reduced pressure at 40 ° C. to obtain 105 g of magnesium salt crystals. Further, 400 ml of water was added to 105 g of the dried crystals and stirred at 25 ° C. for 1.5 hours in order to remove a small amount of potassium sulfate. The resulting slurry was filtered and washed with 300 ml of water to obtain wet crystals (153.9 g). The wet crystals were dried under reduced pressure at 40 ° C. to obtain 85.7 g of magnesium salt crystals.
<Intrinsic X-ray diffraction peak (2θ ± 0.2 °, CuKα)> 4.9 °, 16.8 °, 18.0 °, 24.6 ° (FIG. 15)
<Moisture content> 6.0 wt% (equivalent to monatin: water = 1: 1)
<Magnesium content> 3.61 wt% (equivalent to monatin: magnesium = 2: 1)
<Crystal shape> The crystal shape in crystallization ML was a fine crystal. (Fig. 16)
〔実施例9〕((2R,4R)モナティン)マグネシウム塩3.1水和物2.4エタノール和物結晶の調製
(2R,4R)モナティンフリー体結晶10g(33.3ミリモル)を水100mlに分散し、25℃にて水酸化マグネシウム0.971g(16.7ミリモル)を添加し3時間撹拌した。更にエタノール506mlを約3時間で滴下した後、25℃で25.5時間攪拌した。析出した結晶(17.73g)をろ別し、室温で減圧乾燥を行った。所望のマグネシウム塩結晶12.04gを得た。
<水分含量> 6.7wt%(モナティン:水=2.1:3.1相当)
<マグネシウム含量> 2.9wt%(モナティン:マグネシウム=2.1:1相当)
<EtOH含量> 13.5wt%(モナティン:エタノール=2.1:2.4相当)
<固有X線回折ピーク(2θ±0.2°、CuKα)> 7.2°、10.0°、10.6°、12.3°、14.8°、17.8°、25.3°(図17)
<結晶形状> 晶析ML中の結晶形状は微細であった。(図18)
Example 9 ((2R, 4R) monatin) Preparation of 2 magnesium salt 3.1 hydrate 2.4 ethanol solvate crystal (2R, 4R) Mona tin-free substance crystals 10 g (33.3 mmol) of water After dispersing in 100 ml, 0.971 g (16.7 mmol) of magnesium hydroxide was added at 25 ° C. and stirred for 3 hours. Further, 506 ml of ethanol was added dropwise in about 3 hours, followed by stirring at 25 ° C. for 25.5 hours. The precipitated crystals (17.73 g) were filtered off and dried under reduced pressure at room temperature. 12.04 g of the desired magnesium salt crystals were obtained.
<Water content> 6.7 wt% (monatin: water = 2.1: 3.1 equivalent)
<Magnesium content> 2.9 wt% (equivalent to monatin: magnesium = 2.1: 1)
<EtOH content> 13.5 wt% (equivalent to monatin: ethanol = 2.1: 2.4)
<Intrinsic X-ray diffraction peak (2θ ± 0.2 °, CuKα)> 7.2 °, 10.0 °, 10.6 °, 12.3 °, 14.8 °, 17.8 °, 25.3 ° (Fig. 17)
<Crystal shape> The crystal shape in the crystallization ML was fine. (Fig. 18)
〔実施例10〕((2R,4R)モナティン)マグネシウム塩7.2水和物0.23メタノール和物結晶の調製
(2R,4R)モナティンフリー体結晶10g(33.3ミリモル)を水100mlに分散し、25℃にて水酸化マグネシウム0.971g(16.7ミリモル)を添加し3時間撹拌した。更にメタノール506mlを約3時間で滴下した後、25℃で20時間攪拌した。析出した結晶(15.87g)をろ別し、室温で減圧乾燥を行った。所望のマグネシウム塩結晶11.94gを得た。
<水分含量> 18.16wt%(モナティン:水=1.9:7.2相当)
<マグネシウム含量> 3.3wt%(モナティン:マグネシウム=1.9:1相当)
<メタノール含量> 1.0wt%(モナティン:メタノール=1.9:0.23相当)
<固有X線回折ピーク(2θ±0.2°、CuKα)> 8.0°、10.0°、10.3°、11.4°、16.1°、19.0°、23.7°(図19)
<結晶形状> 晶析ML中の結晶形状は微細であった。(図20)
Example 10 ((2R, 4R) monatin) Preparation of 2 magnesium salt 7.2 hydrate 0.23 methanolate crystals (2R, 4R) Mona tin-free substance crystals 10 g (33.3 mmol) of water After dispersing in 100 ml, 0.971 g (16.7 mmol) of magnesium hydroxide was added at 25 ° C. and stirred for 3 hours. Further, 506 ml of methanol was added dropwise in about 3 hours, followed by stirring at 25 ° C. for 20 hours. The precipitated crystals (15.87 g) were filtered off and dried under reduced pressure at room temperature. 11.94 g of the desired magnesium salt crystals were obtained.
<Water content> 18.16 wt% (monatin: water = 1.9: 7.2 equivalent)
<Magnesium content> 3.3 wt% (equivalent to monatin: magnesium = 1.9: 1)
<Methanol content> 1.0 wt% (monatin: methanol = 1.9: 0.23 equivalent)
<Intrinsic X-ray diffraction peak (2θ ± 0.2 °, CuKα)> 8.0 °, 10.0 °, 10.3 °, 11.4 °, 16.1 °, 19.0 °, 23.7 ° (Fig. 19)
<Crystal shape> The crystal shape in the crystallization ML was fine. (Fig. 20)
〔実施例11〕((2R,4R)モナティン)マグネシウム塩8.5水和物2.5DMF和物結晶の調製
(2R,4R)モナティン)マグネシウム塩4水和物結晶0.4g(0.56ミリモル)を水10mlに溶解し、DMF10mlを添加した。45℃で47時間攪拌した。析出した結晶をろ別し、40℃で減圧乾燥を行ってマグネシウム塩結晶0.212gを得た。
<水分含量> 7.46wt%(モナティン:水=2.5:8.5相当)
<マグネシウム含量> 2.9wt%(モナティン:マグネシウム=2.5:1相当)
<DMF含量> 2.7wt%(モナティン:DMF=2.5:2.5相当)
<固有X線回折ピーク(2θ±0.2°、CuKα)> 7.5°、10.3°、11.2°、16.0°18.1°、23.0°(図21)
<結晶形状> 晶析ML中の結晶は微細晶であった。(図22)
Example 11 ((2R, 4R) monatin) Preparation of 2 magnesium salt 8.5 hydrate 2.5DMF hydrate crystals (2R, 4R) monatin) 2 magnesium salt tetrahydrate crystals 0.4 g (0 .56 mmol) was dissolved in 10 ml of water and 10 ml of DMF was added. The mixture was stirred at 45 ° C. for 47 hours. The precipitated crystals were separated by filtration and dried under reduced pressure at 40 ° C. to obtain 0.212 g of magnesium salt crystals.
<Water content> 7.46 wt% (corresponding to monatin: water = 2.5: 8.5)
<Magnesium content> 2.9 wt% (equivalent to monatin: magnesium = 2.5: 1)
<DMF content> 2.7 wt% (monatin: DMF = 2.5: 2.5 equivalent)
<Intrinsic X-ray diffraction peak (2θ ± 0.2 °, CuKα)> 7.5 °, 10.3 °, 11.2 °, 16.0 ° 18.1 °, 23.0 ° (FIG. 21)
<Crystal shape> Crystals in the crystallization ML were fine crystals. (Fig. 22)
〔実施例12〕((2R,4R)モナティン)マグネシウム塩9水和物結晶の調製
(2R,4R)モナティンフリー体結晶30g(100ミリモル)を水300mlに分散し、65℃にて水酸化マグネシウム3.21g(55ミリモル)を添加した。65℃で1時間攪拌した。析出した結晶(27.28g)をろ別し、40℃で4時間減圧乾燥を行ってマグネシウム塩結晶22.29gを得た。
<水分含量> 21.22wt%(モナティン:水=2:9相当)
<マグネシウム含量> 3.45wt%(モナティン:マグネシウム=2:1相当)
<固有X線回折ピーク(2θ±0.2°、CuKα)> 8.7°、10.5°、15.9°、17.4°21.0°、25.6°(図23)
<結晶形状> 晶析ML中の結晶形状は柱状であった。(図24)
Example 12 ((2R, 4R) monatin) Preparation of 2 magnesium salt nonahydrate crystals (2R, 4R) Mona tin-free substance crystals 30 g (100 mmol) dispersed in water 300 ml, water at 65 ° C. 3.21 g (55 mmol) of magnesium oxide was added. Stir at 65 ° C. for 1 hour. The precipitated crystals (27.28 g) were filtered off and dried under reduced pressure at 40 ° C. for 4 hours to obtain 22.29 g of magnesium salt crystals.
<Water content> 21.22 wt% (monatin: water = 2: 9 equivalent)
<Magnesium content> 3.45 wt% (equivalent to monatin: magnesium = 2: 1)
<Intrinsic X-ray diffraction peak (2θ ± 0.2 °, CuKα)> 8.7 °, 10.5 °, 15.9 °, 17.4 ° 21.0 °, 25.6 ° (FIG. 23)
<Crystal shape> The crystal shape in the crystallization ML was columnar. (Fig. 24)
〔実施例13〕結晶の水蒸気吸着脱着曲線
実施例2の方法により得られた((2R,4R)モナティン)マグネシウム塩4水和物結晶及び実施例8の方法により得られた(2R,4R)モナティン)マグネシウム塩2水和物結晶の水蒸気吸着脱着曲線を求めた。その測定値を図25及び図26に示す。
Example 13 was obtained by the method of water vapor adsorption desorption curves a second embodiment of the crystal ((2R, 4R) monatin) obtained by the method of 2 magnesium salt tetrahydrate crystals and Example 8 (2R, 4R ) monatin) was determined water vapor adsorption desorption curves of 2 magnesium salt dihydrate crystals. The measured values are shown in FIGS.
〔試験例1〕保存安定性評価(グルコース配合)
 実施例1で得られた((2R,4R)モナティン)カルシウム塩5水和物結晶、実施例2で得られた((2R,4R)モナティン)マグネシウム塩4水和物結晶、実施例3で得られた((2R,4R)モナティン)カルシウム塩4.6水和物0.67エタノール和物結晶、実施例8で得られた(2R,4R)モナティン)マグネシウム塩2水和物結晶、実施例9で得られた(2R,4R)モナティン)マグネシウム塩1エタノール和物結晶、実施例10で得られた(2R,4R)モナティン)マグネシウム塩0.23メタノール和物結晶と製造例1で得られたモナティン1カリウム塩結晶について以下のような方法で保存安定性を評価した。
Figure JPOXMLDOC01-appb-T000003
〔保存条件〕
 配合表1の甘味組成物1gを紙包材に充填し、ヒートシールにて密閉した。44℃ 78%の恒温恒湿器内で所定時間保存し、保存サンプルを水50mLに全量を溶解し、その溶解液のHPLC分析値から各モナティン塩の残存率を算出した。
〔残存率経時変化〕
 表3にモナティンの残存率の結果を示す。カルシウム塩結晶及びマグネシウム塩結晶はカリウム塩結晶に比べ高温高湿下での残存率が高いことが明らかとなった。表4に保存品溶解液の透過率の結果を示す。カリウム塩結晶の場合は透過率が低下して黄色に着色するが、カルシウム塩結晶及びマグネシウム塩結晶の場合は色の変化は観察されなかった。
[Test Example 1] Storage stability evaluation (with glucose)
Obtained in Example 1 ((2R, 4R) monatin) 2 calcium salt pentahydrate crystals, obtained in Example 2 ((2R, 4R) monatin) 2 magnesium salt tetrahydrate crystals, Example ((2R, 4R) monatin) 2 calcium salt 4.6 hydrate 0.67 ethanol solvate crystal obtained in Example 3, (2R, 4R) monatin obtained in Example 8 2 magnesium salt dihydrate Product crystal, (2R, 4R) monatin) obtained in Example 9, 2 magnesium salt 1 ethanol solvate crystal, (2R, 4R) monatin obtained in Example 10) 2 magnesium salt 0.23 methanol solvate crystal The storage stability of the monatin monopotassium salt crystals obtained in Production Example 1 was evaluated by the following method.
Figure JPOXMLDOC01-appb-T000003
[Storage conditions]
1 g of the sweetening composition shown in Formulation Table 1 was filled into a paper wrapping material and sealed with a heat seal. The sample was stored in a constant temperature and humidity chamber at 44 ° C. and 78% for a predetermined time, and the entire amount of the stored sample was dissolved in 50 mL of water, and the residual rate of each monatin salt was calculated from the HPLC analysis value of the dissolved solution.
[Residual rate change with time]
Table 3 shows the results of the monatin survival rate. Calcium salt crystals and magnesium salt crystals were found to have a higher survival rate under high temperature and high humidity than potassium salt crystals. Table 4 shows the results of the transmittance of the stored product solution. In the case of potassium salt crystals, the transmittance decreases and the color is yellow, but in the case of calcium salt crystals and magnesium salt crystals, no color change is observed.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
〔試験例2〕保存安定性評価(ショ糖配合)
 実施例1で得られた((2R,4R)モナティン)カルシウム塩5水和物結晶、実施例2で得られた((2R,4R)モナティン)マグネシウム塩4水和物結晶と製造例1で得られたモナティン1カリウム塩結晶について以下のような方法で保存安定性を評価した。
Figure JPOXMLDOC01-appb-T000006
〔保存条件〕
配合表2の甘味組成物1gを紙包材に充填し、ヒートシールにて密閉した。44℃ 78%の恒温恒湿器内で所定時間保存し、保存サンプルを水50mLに全量を溶解し、その溶解液のHPLC分析値から各モナティン塩の残存率を算出した。
〔残存率経時変化〕
表6にモナティンの残存率の結果を示す。カルシウム塩結晶及びマグネシウム塩結晶はカリウム塩結晶に比べ高温高湿下での残存率が高いことが明らかとなった。表7に保存品溶解液の透過率の結果を示す。カリウム塩結晶の場合は透過率が低下して黄色に着色するが、カルシウム塩結晶及びマグネシウム塩結晶の場合は色の変化は観察されなかった。
[Test Example 2] Storage stability evaluation (containing sucrose)
Obtained in Example 1 ((2R, 4R) monatin) 2 calcium salt pentahydrate crystals, obtained in Example 2 ((2R, 4R) monatin) and 2 magnesium salt tetrahydrate crystals Preparation The storage stability of the monatin monopotassium salt crystal obtained in 1 was evaluated by the following method.
Figure JPOXMLDOC01-appb-T000006
[Storage conditions]
1 g of the sweetening composition shown in Formulation Table 2 was filled in a paper wrapping material and sealed with a heat seal. The sample was stored in a constant temperature and humidity chamber at 44 ° C. and 78% for a predetermined time, and the entire amount of the stored sample was dissolved in 50 mL of water.
[Residual rate change with time]
Table 6 shows the results of the monatin survival rate. Calcium salt crystals and magnesium salt crystals were found to have a higher survival rate under high temperature and high humidity than potassium salt crystals. Table 7 shows the results of the transmittance of the stored product solution. In the case of potassium salt crystals, the transmittance decreases and the color is yellow, but in the case of calcium salt crystals and magnesium salt crystals, no color change is observed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
〔処方例1〕粉末卓上甘味料
 以下、粉末卓上甘味料の処方例を示す。
[Prescription Example 1] Powdered tabletop sweetener A formulation example of a powdered tabletop sweetener is shown below.
〔処方例2〕粉末ミックス
 以下、粉末ミックスの処方例を示す。
Figure JPOXMLDOC01-appb-T000010
[Prescription Example 2] Powder Mix An example of a powder mix is shown below.
Figure JPOXMLDOC01-appb-T000010
 (2R,4R)モナティン多価金属結晶によって、安定なモナティンの結晶提供が可能となった。これらの立体異性体の甘味剤としての実用性、諸物性を明らかとした。そして、汎用安定かつ安全なモナティンの多価金属結晶を含有する、飲料、食品、医薬品、医薬部外品、飼料等の経口製品を提供できるようになったことは、極めて意義深い。 (2R, 4R) Monatin polyvalent metal crystals have made it possible to provide stable monatin crystals. The utility and various physical properties of these stereoisomers as sweeteners were clarified. It is extremely significant that oral products such as beverages, foods, pharmaceuticals, quasi-drugs, feeds, etc., containing general-purpose stable and safe polyvalent metal crystals of monatin can be provided.
〔図1〕は((2R,4R)モナティン)カルシウム塩5水和物結晶の調湿後の粉末X線回折図である。(実施例1)
〔図2〕は((2R,4R)モナティン)カルシウム塩5水和物結晶の晶析液分離直前の光学顕微鏡写真を図示したものである。(倍率200倍)(実施例1)
〔図3〕は((2R,4R)モナティン)マグネシウム塩4水和物結晶の調湿後の粉末X線回折図である。(実施例2)
〔図4〕は((2R,4R)モナティン)マグネシウム塩4水和物結晶の晶析液分離直前の光学顕微鏡写真を図示したものである。(倍率200倍)(実施例2)
〔図5〕は((2R,4R)モナティン)カルシウム塩4.6水和物0.67エタノール和物結晶の乾燥後の粉末X線回折図である。(実施例3)
〔図6〕は(2R,4R)モナティン)カルシウム塩4.6水和物0.67エタノール和物結晶の晶析液分離直前の光学顕微鏡写真を図示したものである。(倍率200倍)(実施例3)
〔図7〕は((2R,4R)モナティン)カルシウム塩5.7水和物結晶の乾燥後の粉末X線回折図である。(実施例4)
〔図8〕は((2R,4R)モナティン)カルシウム塩5.7水和物結晶の晶析液分離直前の光学顕微鏡写真を図示したものである。(倍率200倍)(実施例4)
〔図9〕は((2R,4R)モナティン)カルシウム塩5.9水和物0.72THF和物結晶の乾燥後の粉末X線回折図である。(実施例5)
〔図10〕は((2R,4R)モナティン)カルシウム塩5.9水和物0.72THF和物結晶の晶析液分離直前の光学顕微鏡写真を図示したものである。(倍率200倍)(実施例5)
〔図11〕は((2R,4R)モナティン)カルシウム塩3.8水和物0.63i−PrOH和物結晶の乾燥後の粉末X線回折図である。(実施例6)
〔図12〕は((2R,4R)モナティン)カルシウム塩3.8水和物0.63i−PrOH和物結晶の晶析液分離直前の光学顕微鏡写真を図示したものである。(倍率200倍)(実施例6)
〔図13〕は((2R,4R)モナティン)マグネシウム塩7.5水和物結晶の乾燥後の粉末X線回折図である。(実施例7)
〔図14〕は((2R,4R)モナティン)マグネシウム塩7.5水和物結晶の晶析液分離直前の光学顕微鏡写真を図示したものである。(倍率200倍)(実施例7)
〔図15〕は((2R,4R)モナティン)マグネシウム塩2水和物結晶の乾燥後の粉末X線回折図である。(実施例8)
〔図16〕は((2R,4R)モナティン)マグネシウム塩2水和物結晶の晶析液分離直前の光学顕微鏡写真を図示したものである。(倍率200倍)(実施例8)
〔図17〕は((2R,4R)モナティン)マグネシウム塩3.1水和物2.4エタノール和物結晶の乾燥後の粉末X線回折図である。(実施例9)
〔図18〕は((2R,4R)モナティン)マグネシウム塩3.1水和物2.4エタノール和物結晶の晶析液分離直前の光学顕微鏡写真を図示したものである。(倍率200倍)(実施例9)
〔図19〕は((2R,4R)モナティン)マグネシウム塩7.2水和物0.23メタノール和物結晶の乾燥後の粉末X線回折図である。(実施例10)
〔図20〕は((2R,4R)モナティン)マグネシウム塩7.2水和物0.23メタノール和物結晶の晶析液分離直前の光学顕微鏡写真を図示したものである。(倍率200倍)(実施例10)
〔図21〕は((2R,4R)モナティン)マグネシウム塩8.5水和物2.5DMF和物結晶の粉末X線回折図である。(実施例11)
〔図22〕は(2R,4R)モナティン)マグネシウム塩8.5水和物2.5DMF和物結晶の晶析液分離直前の光学顕微鏡写真を図示したものである。(倍率200倍)(実施例11)
〔図23〕は((2R,4R)モナティン)マグネシウム塩9水和物結晶の乾燥後の粉末X線回折図である。(実施例12)
〔図24〕は((2R,4R)モナティン)マグネシウム塩9水和物結晶の晶析液分離直前の光学顕微鏡写真を図示したものである。(倍率200倍)(実施例12)
〔図25〕は実施例2で得られた((2R,4R)モナティン)マグネシウム塩4水和物結晶の水蒸気吸脱着曲線。
〔図26〕は実施例8で得られた((2R,4R)モナティン)マグネシウム塩2水和物結晶の水蒸気吸脱着曲線。
[Figure 1] is a ((2R, 4R) monatin) powder X-ray diffraction diagram after the humidity control 2 calcium salt pentahydrate crystals. Example 1
[Figure 2] is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 calcium salt pentahydrate crystals. (Magnification 200 times) (Example 1)
[Figure 3] is a ((2R, 4R) monatin) powder X-ray diffraction diagram after the humidity control 2 magnesium salt tetrahydrate crystals. (Example 2)
[Figure 4] is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 magnesium salt tetrahydrate crystals. (Magnification 200 times) (Example 2)
[Figure 5] is a ((2R, 4R) monatin) powder X-ray diffraction chart after drying of 2 calcium salt 4.6 hydrate 0.67 ethanol solvate crystal. (Example 3)
[6] is an illustration of the (2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 calcium salt 4.6 hydrate 0.67 ethanol solvate crystal. (Magnification 200 times) (Example 3)
[Figure 7] is a ((2R, 4R) monatin) powder X-ray diffraction chart after drying of 2 calcium salt 5.7 hydrate crystals. Example 4
[Figure 8] is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 calcium salt 5.7 hydrate crystals. (Magnification 200 times) (Example 4)
[Figure 9] is a ((2R, 4R) monatin) powder X-ray diffraction chart after drying of 2 calcium salt 5.9 hydrate 0.72THF hydrate crystals. (Example 5)
[Figure 10] is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 calcium salt 5.9 hydrate 0.72THF hydrate crystals. (Magnification 200 times) (Example 5)
[Figure 11] is a ((2R, 4R) monatin) powder X-ray diffraction chart after drying of 2 calcium salt 3.8 hydrate 0.63i-PrOH solvate crystal. (Example 6)
[Figure 12] is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 calcium salt 3.8 hydrate 0.63i-PrOH solvate crystal. (Magnification 200 times) (Example 6)
[Figure 13] is a ((2R, 4R) monatin) powder X-ray diffraction chart after drying of 2 magnesium salt 7.5 hydrate crystals. (Example 7)
[Figure 14] is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 magnesium salt 7.5 hydrate crystals. (Magnification 200 times) (Example 7)
[Figure 15] is a ((2R, 4R) monatin) powder X-ray diffraction chart after drying of 2 magnesium salt dihydrate crystals. (Example 8)
[Figure 16] is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 magnesium salt dihydrate crystals. (Magnification 200 times) (Example 8)
[Figure 17] is a ((2R, 4R) monatin) powder X-ray diffraction chart after drying of 2 magnesium salt 3.1 hydrate 2.4 ethanol solvate crystal. Example 9
[Figure 18] is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 magnesium salt 3.1 hydrate 2.4 ethanol solvate crystal. (Magnification 200 times) (Example 9)
[Figure 19] is a ((2R, 4R) monatin) powder X-ray diffraction chart after drying of 2 magnesium salt 7.2 hydrate 0.23 methanolate crystals. (Example 10)
[Figure 20] is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 magnesium salt 7.2 hydrate 0.23 methanolate crystals. (Magnification 200 times) (Example 10)
[Figure 21] is a ((2R, 4R) monatin) powder X-ray diffraction pattern of 2 magnesium salt 8.5 hydrate 2.5DMF hydrate crystals. (Example 11)
[Figure 22] is an illustration of the (2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 magnesium salt 8.5 hydrate 2.5DMF hydrate crystals. (Magnification 200 times) (Example 11)
[Figure 23] is a ((2R, 4R) monatin) powder X-ray diffraction chart after drying of 2 magnesium salt nonahydrate crystals. (Example 12)
[Figure 24] is an illustration of the ((2R, 4R) monatin) optical micrograph of crystallized solution separation shortly before 2 magnesium salt nonahydrate crystals. (Magnification 200 times) (Example 12)
[Figure 25] is obtained in Example 2 ((2R, 4R) monatin) steam adsorption and desorption curves of 2 magnesium salt tetrahydrate crystals.
[Figure 26] was obtained in Example 8 ((2R, 4R) monatin) 2 vapor adsorption and desorption curves of the magnesium salt dihydrate crystals.

Claims (20)

  1. (2R,4R)モナティン多価金属塩結晶。 (2R, 4R) monatin polyvalent metal salt crystals.
  2. 多価金属塩が二価金属塩であることを特徴とする、請求項1記載の(2R,4R)モナティン多価金属塩結晶。 The (2R, 4R) monatin polyvalent metal salt crystal according to claim 1, wherein the polyvalent metal salt is a divalent metal salt.
  3. 多価金属塩がアルカリ土類金属塩であることを特徴とする、請求項2記載の(2R,4R)モナティン多価金属塩結晶。 3. The (2R, 4R) monatin polyvalent metal salt crystal according to claim 2, wherein the polyvalent metal salt is an alkaline earth metal salt.
  4. 多価金属塩がカルシウム塩、マグネシウム塩から選ばれる少なくとも1種の塩であることを特徴とする、請求項3記載の(2R,4R)モナティン多価金属塩結晶。 4. The (2R, 4R) monatin polyvalent metal salt crystal according to claim 3, wherein the polyvalent metal salt is at least one salt selected from calcium salt and magnesium salt.
  5. 回折角度(2θ±0.2°、CuKα)として、4.9°、16.8°、18.0°、24.6°に固有X線回折ピークを有する((2R,4R)モナティン)マグネシウム塩結晶であることを特徴とする、請求項4記載の(2R,4R)モナティン多価金属塩結晶。 As diffraction angles (2θ ± 0.2 °, CuKα), there are intrinsic X-ray diffraction peaks at 4.9 °, 16.8 °, 18.0 °, and 24.6 ° ((2R, 4R) monatin) 2 The (2R, 4R) monatin polyvalent metal salt crystal according to claim 4, wherein the crystal is a magnesium salt crystal.
  6. 回折角度(2θ±0.2°、CuKα)として、下記(1)~(3)のいずれかの固有X線回折ピークを有する((2R,4R)モナティン)マグネシウム塩結晶であることを特徴とする、請求項4記載の(2R,4R)モナティン多価金属塩結晶。
    (1)8.7°、10.5°、15.9°、17.4°、21.0°、25.6°
    (2)8.9°、11.2°、15.0°、17.8°、22.5°
    (3)4.9°、16.8°、18.0°、24.6°
    Wherein the diffraction angle (2θ ± 0.2 °, CuKα) as a following (1) having any unique X-ray diffraction peak of ~ (3) ((2R, 4R) monatin) 2 magnesium salt crystals The (2R, 4R) monatin polyvalent metal salt crystal according to claim 4.
    (1) 8.7 °, 10.5 °, 15.9 °, 17.4 °, 21.0 °, 25.6 °
    (2) 8.9 °, 11.2 °, 15.0 °, 17.8 °, 22.5 °
    (3) 4.9 °, 16.8 °, 18.0 °, 24.6 °
  7. 回折角度(2θ±0.2°、CuKα)として、下記(1)~(4)のいずれかの固有X線回折ピークを有する((2R,4R)モナティン)マグネシウム塩結晶であることを特徴とする、請求項4記載の(2R,4R)モナティン多価金属塩結晶。
    (1)7.5°、10.3°、11.2°、16.0°18.1°、23.0°
    (2)8.7°、10.5°、15.9°、17.4°、21.0°、25.6°
    (3)8.9°、11.2°、15.0°、17.8°、22.5°
    (4)4.9°、16.8°、18.0°、24.6°
    Wherein the diffraction angle (2θ ± 0.2 °, CuKα) as a following (1) having any unique X-ray diffraction peak of ~ (4) ((2R, 4R) monatin) 2 magnesium salt crystals The (2R, 4R) monatin polyvalent metal salt crystal according to claim 4.
    (1) 7.5 °, 10.3 °, 11.2 °, 16.0 ° 18.1 °, 23.0 °
    (2) 8.7 °, 10.5 °, 15.9 °, 17.4 °, 21.0 °, 25.6 °
    (3) 8.9 °, 11.2 °, 15.0 °, 17.8 °, 22.5 °
    (4) 4.9 °, 16.8 °, 18.0 °, 24.6 °
  8. 回折角度(2θ±0.2°、CuKα)として、下記(1)または(2)のいずれかの固有X線回折ピークを有する((2R,4R)モナティン)カルシウム塩結晶であることを特徴とする、請求項4記載の(2R,4R)モナティン多価金属塩結晶。
    (1)5.0°、12.8°、15.3°、18.1°、23.7°
    (2)6.0°、9.8°、16.0°、21.5°、22.3°
    Wherein the diffraction angle (2θ ± 0.2 °, CuKα) as a have any of the characteristic X-ray diffraction peaks of the following (1) or (2) ((2R, 4R) monatin) 2 calcium salt crystals The (2R, 4R) monatin polyvalent metal salt crystal according to claim 4.
    (1) 5.0 °, 12.8 °, 15.3 °, 18.1 °, 23.7 °
    (2) 6.0 °, 9.8 °, 16.0 °, 21.5 °, 22.3 °
  9. 回折角度(2θ±0.2°、CuKα)として、下記(1)~(3)のいずれかの固有X線回折ピークを有する((2R,4R)モナティン)カルシウム塩結晶であることを特徴とする、請求項4記載の(2R,4R)モナティン多価金属塩結晶。
    (1)5.1°、15.9°、19.7°、22.3°
    (2)5.0°、12.8°、15.3°、18.1°、23.7°
    (3)6.0°、9.8°、16.0°、21.5°、22.3°
    Wherein the diffraction angle (2θ ± 0.2 °, CuKα) as a following (1) having any unique X-ray diffraction peak of ~ (3) ((2R, 4R) monatin) 2 calcium salt crystals The (2R, 4R) monatin polyvalent metal salt crystal according to claim 4.
    (1) 5.1 °, 15.9 °, 19.7 °, 22.3 °
    (2) 5.0 °, 12.8 °, 15.3 °, 18.1 °, 23.7 °
    (3) 6.0 °, 9.8 °, 16.0 °, 21.5 °, 22.3 °
  10. 鏡像体過剰率が10~100%eeであることを特徴とする、請求項1~9のいずれか一項に記載の(2R,4R)モナティン多価金属塩結晶。 The (2R, 4R) monatin polyvalent metal salt crystal according to any one of claims 1 to 9, wherein the enantiomeric excess is 10 to 100% ee.
  11. ジアステレオマー過剰率が10~100%deであることを特徴とする、請求項1~10のいずれか一項に記載の(2R,4R)モナティン多価金属塩結晶。 The (2R, 4R) monatin polyvalent metal salt crystal according to any one of claims 1 to 10, wherein the diastereomeric excess is 10 to 100% de.
  12. 化学純度が50~100質量%であることを特徴とする、請求項1~11のいずれか一項に記載の(2R,4R)モナティン多価金属塩結晶。 The (2R, 4R) monatin polyvalent metal salt crystal according to any one of claims 1 to 11, which has a chemical purity of 50 to 100% by mass.
  13. 5%ショ糖水溶液に対して甘味倍率が200倍以上であることを特徴とする、請求項1~12のいずれか一項に記載の(2R,4R)モナティン多価金属塩結晶。 The (2R, 4R) monatin polyvalent metal salt crystal according to any one of claims 1 to 12, which has a sweetening ratio of 200 times or more with respect to a 5% sucrose aqueous solution.
  14. 請求項1~13のいずれか一項に記載の(2R,4R)モナティン多価金属塩結晶を含有することを特徴とする、甘味組成物。 A sweetening composition comprising the (2R, 4R) monatin polyvalent metal salt crystal according to any one of claims 1 to 13.
  15. 更に、還元糖を含有することを特徴とする、請求項14記載の甘味組成物。 The sweetening composition according to claim 14, further comprising a reducing sugar.
  16. 還元糖がジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、トレオース、リブロース、キシルロース、リボース、アラビノース、キシロース、リキソース、デオキシリボース、プシコース、フルクトース、ソルボース、タガトース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、フコース、フクロース、ラムノース、セドヘプツロース、ラクトース、マルトース、ツラノース、セロビオース、マルトトリオース、アカルボースであることを特徴とする、請求項15の甘味組成物。 Reducing sugar is dihydroxyacetone, glyceraldehyde, erythrulose, erythrose, threose, ribulose, xylulose, ribose, arabinose, xylose, lyxose, deoxyribose, psicose, fructose, sorbose, tagatose, allose, altrose, glucose, mannose, gulose, 16. Sweet composition according to claim 15, characterized in that it is idose, galactose, talose, fucose, fucose, rhamnose, cedoheptulose, lactose, maltose, tulanose, cellobiose, maltotriose, acarbose.
  17. 粉体状であることを特徴とする、請求項14~16のいずれか一項記載の甘味組成物。 The sweetening composition according to any one of claims 14 to 16, wherein the sweetening composition is in a powder form.
  18. 更に、還元糖産生物質を含有することを特徴とする、請求項14記載の甘味組成物。 The sweetening composition according to claim 14, further comprising a reducing sugar-producing substance.
  19. 請求項1~13のいずれか一項に記載の(2R,4R)モナティン多価金属塩結晶を含有することを特徴とする、経口製品。 An oral product comprising the (2R, 4R) monatin polyvalent metal salt crystal according to any one of claims 1 to 13.
  20. 請求項14~18のいずれか一項に記載の甘味組成物を含有することを特徴とする、経口製品。 An oral product comprising the sweetening composition according to any one of claims 14 to 18.
PCT/JP2012/065176 2011-06-08 2012-06-07 Monatin polyvalent metal salt crystal WO2012169661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011128660A JP2014156404A (en) 2011-06-08 2011-06-08 Monatin polyvalent metal salt crystal
JP2011-128660 2011-06-08

Publications (1)

Publication Number Publication Date
WO2012169661A1 true WO2012169661A1 (en) 2012-12-13

Family

ID=47296207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065176 WO2012169661A1 (en) 2011-06-08 2012-06-07 Monatin polyvalent metal salt crystal

Country Status (2)

Country Link
JP (1) JP2014156404A (en)
WO (1) WO2012169661A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073679A1 (en) * 2011-11-17 2013-05-23 味の素株式会社 Method for producing (2r,4r)-monatin polyvalent metal salt crystals
WO2017068034A1 (en) * 2015-10-22 2017-04-27 Givaudan Sa Sweetness enhancement
WO2017068033A1 (en) * 2015-10-22 2017-04-27 Givaudan Sa Method of masking off-tastes with cellobiose and/or psicose

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045914A1 (en) * 2001-11-30 2003-06-05 Ajinomoto Co., Inc. Crystals of non-natural stereoisomer salts of monatin and utilization thereof
JP2005154291A (en) * 2003-11-21 2005-06-16 Ajinomoto Co Inc Organic amine salt of glutamic acid derivative and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045914A1 (en) * 2001-11-30 2003-06-05 Ajinomoto Co., Inc. Crystals of non-natural stereoisomer salts of monatin and utilization thereof
JP2005154291A (en) * 2003-11-21 2005-06-16 Ajinomoto Co Inc Organic amine salt of glutamic acid derivative and its use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073679A1 (en) * 2011-11-17 2013-05-23 味の素株式会社 Method for producing (2r,4r)-monatin polyvalent metal salt crystals
WO2017068034A1 (en) * 2015-10-22 2017-04-27 Givaudan Sa Sweetness enhancement
WO2017068033A1 (en) * 2015-10-22 2017-04-27 Givaudan Sa Method of masking off-tastes with cellobiose and/or psicose
US11071317B2 (en) 2015-10-22 2021-07-27 Givaudan S.A. Sweetness enhancement

Also Published As

Publication number Publication date
JP2014156404A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
US7973070B2 (en) Monatin hydrate crystals
CA2486015C (en) Novel amino acid derivative and sweetening agent
US7553974B2 (en) Crystal of (2R,4R)-monatin potassium salt and sweetener composition containing same
JP6014640B2 (en) Rebaudioside A derivative product and production method
KR100949049B1 (en) Crystals of non-natural stereoisomer salts of monatin and utilization thereof
US7935377B2 (en) Crystals of free (2R, 4R)-monatin and use thereof
KR20090021386A (en) Rebaudioside a composition and method for purifying rebaudioside a
EP3327025B1 (en) Crystalline form a of rebaudioside d, and preparation method and application therefor
ES2919346T3 (en) Crystal form x2 of grapiprant
WO2012169661A1 (en) Monatin polyvalent metal salt crystal
JP6534394B2 (en) Crystalline Form of S-Acetyl Glutathione, Its Preparation, and Use in Pharmaceutical and Functional Food Formulations
US20130011538A1 (en) Crystal of multivalent metal salt of monatin
CN111410672A (en) Rebaudioside crystal in crystal form B, preparation method and application
JP4945941B2 (en) (2R, 4R) -Monatin potassium salt crystals
KR20010043389A (en) Novel aspartame derivative crystal and process for producing the same
JP2006052213A5 (en)
JP2024068511A (en) Method for producing ellagic acid composition
CN106061983A (en) Crystal (1) of pyrazino[2,1-c][1,2,4]triazine compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP